]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'net-6.14-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *
26  */
27
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41
42 #include "gem/i915_gem_clflush.h"
43 #include "gem/i915_gem_context.h"
44 #include "gem/i915_gem_ioctls.h"
45 #include "gem/i915_gem_mman.h"
46 #include "gem/i915_gem_object_frontbuffer.h"
47 #include "gem/i915_gem_pm.h"
48 #include "gem/i915_gem_region.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_workarounds.h"
53
54 #include "i915_drv.h"
55 #include "i915_file_private.h"
56 #include "i915_trace.h"
57 #include "i915_vgpu.h"
58 #include "intel_clock_gating.h"
59
60 static int
61 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
62 {
63         int err;
64
65         err = mutex_lock_interruptible(&ggtt->vm.mutex);
66         if (err)
67                 return err;
68
69         memset(node, 0, sizeof(*node));
70         err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
71                                           size, 0, I915_COLOR_UNEVICTABLE,
72                                           0, ggtt->mappable_end,
73                                           DRM_MM_INSERT_LOW);
74
75         mutex_unlock(&ggtt->vm.mutex);
76
77         return err;
78 }
79
80 static void
81 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
82 {
83         mutex_lock(&ggtt->vm.mutex);
84         drm_mm_remove_node(node);
85         mutex_unlock(&ggtt->vm.mutex);
86 }
87
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90                             struct drm_file *file)
91 {
92         struct drm_i915_private *i915 = to_i915(dev);
93         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
94         struct drm_i915_gem_get_aperture *args = data;
95         struct i915_vma *vma;
96         u64 pinned;
97
98         if (mutex_lock_interruptible(&ggtt->vm.mutex))
99                 return -EINTR;
100
101         pinned = ggtt->vm.reserved;
102         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
103                 if (i915_vma_is_pinned(vma))
104                         pinned += vma->node.size;
105
106         mutex_unlock(&ggtt->vm.mutex);
107
108         args->aper_size = ggtt->vm.total;
109         args->aper_available_size = args->aper_size - pinned;
110
111         return 0;
112 }
113
114 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
115                            unsigned long flags)
116 {
117         struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
118         bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
119         LIST_HEAD(still_in_list);
120         intel_wakeref_t wakeref;
121         struct i915_vma *vma;
122         int ret;
123
124         assert_object_held(obj);
125
126         if (list_empty(&obj->vma.list))
127                 return 0;
128
129         /*
130          * As some machines use ACPI to handle runtime-resume callbacks, and
131          * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
132          * as they are required by the shrinker. Ergo, we wake the device up
133          * first just in case.
134          */
135         wakeref = intel_runtime_pm_get(rpm);
136
137 try_again:
138         ret = 0;
139         spin_lock(&obj->vma.lock);
140         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
141                                                        struct i915_vma,
142                                                        obj_link))) {
143                 list_move_tail(&vma->obj_link, &still_in_list);
144                 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
145                         continue;
146
147                 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
148                         ret = -EBUSY;
149                         break;
150                 }
151
152                 /*
153                  * Requiring the vm destructor to take the object lock
154                  * before destroying a vma would help us eliminate the
155                  * i915_vm_tryget() here, AND thus also the barrier stuff
156                  * at the end. That's an easy fix, but sleeping locks in
157                  * a kthread should generally be avoided.
158                  */
159                 ret = -EAGAIN;
160                 if (!i915_vm_tryget(vma->vm))
161                         break;
162
163                 spin_unlock(&obj->vma.lock);
164
165                 /*
166                  * Since i915_vma_parked() takes the object lock
167                  * before vma destruction, it won't race us here,
168                  * and destroy the vma from under us.
169                  */
170
171                 ret = -EBUSY;
172                 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
173                         assert_object_held(vma->obj);
174                         ret = i915_vma_unbind_async(vma, vm_trylock);
175                 }
176
177                 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
178                                       !i915_vma_is_active(vma))) {
179                         if (vm_trylock) {
180                                 if (mutex_trylock(&vma->vm->mutex)) {
181                                         ret = __i915_vma_unbind(vma);
182                                         mutex_unlock(&vma->vm->mutex);
183                                 }
184                         } else {
185                                 ret = i915_vma_unbind(vma);
186                         }
187                 }
188
189                 i915_vm_put(vma->vm);
190                 spin_lock(&obj->vma.lock);
191         }
192         list_splice_init(&still_in_list, &obj->vma.list);
193         spin_unlock(&obj->vma.lock);
194
195         if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
196                 rcu_barrier(); /* flush the i915_vm_release() */
197                 goto try_again;
198         }
199
200         intel_runtime_pm_put(rpm, wakeref);
201
202         return ret;
203 }
204
205 static int
206 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
207             bool needs_clflush)
208 {
209         char *vaddr;
210         int ret;
211
212         vaddr = kmap(page);
213
214         if (needs_clflush)
215                 drm_clflush_virt_range(vaddr + offset, len);
216
217         ret = __copy_to_user(user_data, vaddr + offset, len);
218
219         kunmap(page);
220
221         return ret ? -EFAULT : 0;
222 }
223
224 static int
225 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
226                      struct drm_i915_gem_pread *args)
227 {
228         unsigned int needs_clflush;
229         char __user *user_data;
230         unsigned long offset;
231         pgoff_t idx;
232         u64 remain;
233         int ret;
234
235         ret = i915_gem_object_lock_interruptible(obj, NULL);
236         if (ret)
237                 return ret;
238
239         ret = i915_gem_object_pin_pages(obj);
240         if (ret)
241                 goto err_unlock;
242
243         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
244         if (ret)
245                 goto err_unpin;
246
247         i915_gem_object_finish_access(obj);
248         i915_gem_object_unlock(obj);
249
250         remain = args->size;
251         user_data = u64_to_user_ptr(args->data_ptr);
252         offset = offset_in_page(args->offset);
253         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
254                 struct page *page = i915_gem_object_get_page(obj, idx);
255                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
256
257                 ret = shmem_pread(page, offset, length, user_data,
258                                   needs_clflush);
259                 if (ret)
260                         break;
261
262                 remain -= length;
263                 user_data += length;
264                 offset = 0;
265         }
266
267         i915_gem_object_unpin_pages(obj);
268         return ret;
269
270 err_unpin:
271         i915_gem_object_unpin_pages(obj);
272 err_unlock:
273         i915_gem_object_unlock(obj);
274         return ret;
275 }
276
277 static inline bool
278 gtt_user_read(struct io_mapping *mapping,
279               loff_t base, int offset,
280               char __user *user_data, int length)
281 {
282         void __iomem *vaddr;
283         unsigned long unwritten;
284
285         /* We can use the cpu mem copy function because this is X86. */
286         vaddr = io_mapping_map_atomic_wc(mapping, base);
287         unwritten = __copy_to_user_inatomic(user_data,
288                                             (void __force *)vaddr + offset,
289                                             length);
290         io_mapping_unmap_atomic(vaddr);
291         if (unwritten) {
292                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
293                 unwritten = copy_to_user(user_data,
294                                          (void __force *)vaddr + offset,
295                                          length);
296                 io_mapping_unmap(vaddr);
297         }
298         return unwritten;
299 }
300
301 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
302                                              struct drm_mm_node *node,
303                                              bool write)
304 {
305         struct drm_i915_private *i915 = to_i915(obj->base.dev);
306         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
307         struct i915_vma *vma;
308         struct i915_gem_ww_ctx ww;
309         int ret;
310
311         i915_gem_ww_ctx_init(&ww, true);
312 retry:
313         vma = ERR_PTR(-ENODEV);
314         ret = i915_gem_object_lock(obj, &ww);
315         if (ret)
316                 goto err_ww;
317
318         ret = i915_gem_object_set_to_gtt_domain(obj, write);
319         if (ret)
320                 goto err_ww;
321
322         if (!i915_gem_object_is_tiled(obj))
323                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
324                                                   PIN_MAPPABLE |
325                                                   PIN_NONBLOCK /* NOWARN */ |
326                                                   PIN_NOEVICT);
327         if (vma == ERR_PTR(-EDEADLK)) {
328                 ret = -EDEADLK;
329                 goto err_ww;
330         } else if (!IS_ERR(vma)) {
331                 node->start = i915_ggtt_offset(vma);
332                 node->flags = 0;
333         } else {
334                 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
335                 if (ret)
336                         goto err_ww;
337                 GEM_BUG_ON(!drm_mm_node_allocated(node));
338                 vma = NULL;
339         }
340
341         ret = i915_gem_object_pin_pages(obj);
342         if (ret) {
343                 if (drm_mm_node_allocated(node)) {
344                         ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
345                         remove_mappable_node(ggtt, node);
346                 } else {
347                         i915_vma_unpin(vma);
348                 }
349         }
350
351 err_ww:
352         if (ret == -EDEADLK) {
353                 ret = i915_gem_ww_ctx_backoff(&ww);
354                 if (!ret)
355                         goto retry;
356         }
357         i915_gem_ww_ctx_fini(&ww);
358
359         return ret ? ERR_PTR(ret) : vma;
360 }
361
362 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
363                                  struct drm_mm_node *node,
364                                  struct i915_vma *vma)
365 {
366         struct drm_i915_private *i915 = to_i915(obj->base.dev);
367         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
368
369         i915_gem_object_unpin_pages(obj);
370         if (drm_mm_node_allocated(node)) {
371                 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
372                 remove_mappable_node(ggtt, node);
373         } else {
374                 i915_vma_unpin(vma);
375         }
376 }
377
378 static int
379 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
380                    const struct drm_i915_gem_pread *args)
381 {
382         struct drm_i915_private *i915 = to_i915(obj->base.dev);
383         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
384         unsigned long remain, offset;
385         intel_wakeref_t wakeref;
386         struct drm_mm_node node;
387         void __user *user_data;
388         struct i915_vma *vma;
389         int ret = 0;
390
391         if (overflows_type(args->size, remain) ||
392             overflows_type(args->offset, offset))
393                 return -EINVAL;
394
395         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
396
397         vma = i915_gem_gtt_prepare(obj, &node, false);
398         if (IS_ERR(vma)) {
399                 ret = PTR_ERR(vma);
400                 goto out_rpm;
401         }
402
403         user_data = u64_to_user_ptr(args->data_ptr);
404         remain = args->size;
405         offset = args->offset;
406
407         while (remain > 0) {
408                 /* Operation in this page
409                  *
410                  * page_base = page offset within aperture
411                  * page_offset = offset within page
412                  * page_length = bytes to copy for this page
413                  */
414                 u32 page_base = node.start;
415                 unsigned page_offset = offset_in_page(offset);
416                 unsigned page_length = PAGE_SIZE - page_offset;
417                 page_length = remain < page_length ? remain : page_length;
418                 if (drm_mm_node_allocated(&node)) {
419                         ggtt->vm.insert_page(&ggtt->vm,
420                                              i915_gem_object_get_dma_address(obj,
421                                                                              offset >> PAGE_SHIFT),
422                                              node.start,
423                                              i915_gem_get_pat_index(i915,
424                                                                     I915_CACHE_NONE), 0);
425                 } else {
426                         page_base += offset & PAGE_MASK;
427                 }
428
429                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
430                                   user_data, page_length)) {
431                         ret = -EFAULT;
432                         break;
433                 }
434
435                 remain -= page_length;
436                 user_data += page_length;
437                 offset += page_length;
438         }
439
440         i915_gem_gtt_cleanup(obj, &node, vma);
441 out_rpm:
442         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
443         return ret;
444 }
445
446 /**
447  * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
448  * @dev: drm device pointer
449  * @data: ioctl data blob
450  * @file: drm file pointer
451  *
452  * On error, the contents of *data are undefined.
453  */
454 int
455 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
456                      struct drm_file *file)
457 {
458         struct drm_i915_private *i915 = to_i915(dev);
459         struct drm_i915_gem_pread *args = data;
460         struct drm_i915_gem_object *obj;
461         int ret;
462
463         /* PREAD is disallowed for all platforms after TGL-LP.  This also
464          * covers all platforms with local memory.
465          */
466         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
467                 return -EOPNOTSUPP;
468
469         if (args->size == 0)
470                 return 0;
471
472         if (!access_ok(u64_to_user_ptr(args->data_ptr),
473                        args->size))
474                 return -EFAULT;
475
476         obj = i915_gem_object_lookup(file, args->handle);
477         if (!obj)
478                 return -ENOENT;
479
480         /* Bounds check source.  */
481         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
482                 ret = -EINVAL;
483                 goto out;
484         }
485
486         trace_i915_gem_object_pread(obj, args->offset, args->size);
487         ret = -ENODEV;
488         if (obj->ops->pread)
489                 ret = obj->ops->pread(obj, args);
490         if (ret != -ENODEV)
491                 goto out;
492
493         ret = i915_gem_object_wait(obj,
494                                    I915_WAIT_INTERRUPTIBLE,
495                                    MAX_SCHEDULE_TIMEOUT);
496         if (ret)
497                 goto out;
498
499         ret = i915_gem_shmem_pread(obj, args);
500         if (ret == -EFAULT || ret == -ENODEV)
501                 ret = i915_gem_gtt_pread(obj, args);
502
503 out:
504         i915_gem_object_put(obj);
505         return ret;
506 }
507
508 /* This is the fast write path which cannot handle
509  * page faults in the source data
510  */
511
512 static inline bool
513 ggtt_write(struct io_mapping *mapping,
514            loff_t base, int offset,
515            char __user *user_data, int length)
516 {
517         void __iomem *vaddr;
518         unsigned long unwritten;
519
520         /* We can use the cpu mem copy function because this is X86. */
521         vaddr = io_mapping_map_atomic_wc(mapping, base);
522         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
523                                                       user_data, length);
524         io_mapping_unmap_atomic(vaddr);
525         if (unwritten) {
526                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
527                 unwritten = copy_from_user((void __force *)vaddr + offset,
528                                            user_data, length);
529                 io_mapping_unmap(vaddr);
530         }
531
532         return unwritten;
533 }
534
535 /**
536  * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
537  * user into the GTT, uncached.
538  * @obj: i915 GEM object
539  * @args: pwrite arguments structure
540  */
541 static int
542 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
543                          const struct drm_i915_gem_pwrite *args)
544 {
545         struct drm_i915_private *i915 = to_i915(obj->base.dev);
546         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
547         struct intel_runtime_pm *rpm = &i915->runtime_pm;
548         unsigned long remain, offset;
549         intel_wakeref_t wakeref;
550         struct drm_mm_node node;
551         struct i915_vma *vma;
552         void __user *user_data;
553         int ret = 0;
554
555         if (overflows_type(args->size, remain) ||
556             overflows_type(args->offset, offset))
557                 return -EINVAL;
558
559         if (i915_gem_object_has_struct_page(obj)) {
560                 /*
561                  * Avoid waking the device up if we can fallback, as
562                  * waking/resuming is very slow (worst-case 10-100 ms
563                  * depending on PCI sleeps and our own resume time).
564                  * This easily dwarfs any performance advantage from
565                  * using the cache bypass of indirect GGTT access.
566                  */
567                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
568                 if (!wakeref)
569                         return -EFAULT;
570         } else {
571                 /* No backing pages, no fallback, we must force GGTT access */
572                 wakeref = intel_runtime_pm_get(rpm);
573         }
574
575         vma = i915_gem_gtt_prepare(obj, &node, true);
576         if (IS_ERR(vma)) {
577                 ret = PTR_ERR(vma);
578                 goto out_rpm;
579         }
580
581         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
582
583         user_data = u64_to_user_ptr(args->data_ptr);
584         offset = args->offset;
585         remain = args->size;
586         while (remain) {
587                 /* Operation in this page
588                  *
589                  * page_base = page offset within aperture
590                  * page_offset = offset within page
591                  * page_length = bytes to copy for this page
592                  */
593                 u32 page_base = node.start;
594                 unsigned int page_offset = offset_in_page(offset);
595                 unsigned int page_length = PAGE_SIZE - page_offset;
596                 page_length = remain < page_length ? remain : page_length;
597                 if (drm_mm_node_allocated(&node)) {
598                         /* flush the write before we modify the GGTT */
599                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
600                         ggtt->vm.insert_page(&ggtt->vm,
601                                              i915_gem_object_get_dma_address(obj,
602                                                                              offset >> PAGE_SHIFT),
603                                              node.start,
604                                              i915_gem_get_pat_index(i915,
605                                                                     I915_CACHE_NONE), 0);
606                         wmb(); /* flush modifications to the GGTT (insert_page) */
607                 } else {
608                         page_base += offset & PAGE_MASK;
609                 }
610                 /* If we get a fault while copying data, then (presumably) our
611                  * source page isn't available.  Return the error and we'll
612                  * retry in the slow path.
613                  * If the object is non-shmem backed, we retry again with the
614                  * path that handles page fault.
615                  */
616                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
617                                user_data, page_length)) {
618                         ret = -EFAULT;
619                         break;
620                 }
621
622                 remain -= page_length;
623                 user_data += page_length;
624                 offset += page_length;
625         }
626
627         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
628         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
629
630         i915_gem_gtt_cleanup(obj, &node, vma);
631 out_rpm:
632         intel_runtime_pm_put(rpm, wakeref);
633         return ret;
634 }
635
636 /* Per-page copy function for the shmem pwrite fastpath.
637  * Flushes invalid cachelines before writing to the target if
638  * needs_clflush_before is set and flushes out any written cachelines after
639  * writing if needs_clflush is set.
640  */
641 static int
642 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
643              bool needs_clflush_before,
644              bool needs_clflush_after)
645 {
646         char *vaddr;
647         int ret;
648
649         vaddr = kmap(page);
650
651         if (needs_clflush_before)
652                 drm_clflush_virt_range(vaddr + offset, len);
653
654         ret = __copy_from_user(vaddr + offset, user_data, len);
655         if (!ret && needs_clflush_after)
656                 drm_clflush_virt_range(vaddr + offset, len);
657
658         kunmap(page);
659
660         return ret ? -EFAULT : 0;
661 }
662
663 static int
664 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
665                       const struct drm_i915_gem_pwrite *args)
666 {
667         unsigned int partial_cacheline_write;
668         unsigned int needs_clflush;
669         void __user *user_data;
670         unsigned long offset;
671         pgoff_t idx;
672         u64 remain;
673         int ret;
674
675         ret = i915_gem_object_lock_interruptible(obj, NULL);
676         if (ret)
677                 return ret;
678
679         ret = i915_gem_object_pin_pages(obj);
680         if (ret)
681                 goto err_unlock;
682
683         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
684         if (ret)
685                 goto err_unpin;
686
687         i915_gem_object_finish_access(obj);
688         i915_gem_object_unlock(obj);
689
690         /* If we don't overwrite a cacheline completely we need to be
691          * careful to have up-to-date data by first clflushing. Don't
692          * overcomplicate things and flush the entire patch.
693          */
694         partial_cacheline_write = 0;
695         if (needs_clflush & CLFLUSH_BEFORE)
696                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
697
698         user_data = u64_to_user_ptr(args->data_ptr);
699         remain = args->size;
700         offset = offset_in_page(args->offset);
701         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
702                 struct page *page = i915_gem_object_get_page(obj, idx);
703                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
704
705                 ret = shmem_pwrite(page, offset, length, user_data,
706                                    (offset | length) & partial_cacheline_write,
707                                    needs_clflush & CLFLUSH_AFTER);
708                 if (ret)
709                         break;
710
711                 remain -= length;
712                 user_data += length;
713                 offset = 0;
714         }
715
716         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
717
718         i915_gem_object_unpin_pages(obj);
719         return ret;
720
721 err_unpin:
722         i915_gem_object_unpin_pages(obj);
723 err_unlock:
724         i915_gem_object_unlock(obj);
725         return ret;
726 }
727
728 /**
729  * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
730  * @dev: drm device
731  * @data: ioctl data blob
732  * @file: drm file
733  *
734  * On error, the contents of the buffer that were to be modified are undefined.
735  */
736 int
737 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
738                       struct drm_file *file)
739 {
740         struct drm_i915_private *i915 = to_i915(dev);
741         struct drm_i915_gem_pwrite *args = data;
742         struct drm_i915_gem_object *obj;
743         int ret;
744
745         /* PWRITE is disallowed for all platforms after TGL-LP.  This also
746          * covers all platforms with local memory.
747          */
748         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
749                 return -EOPNOTSUPP;
750
751         if (args->size == 0)
752                 return 0;
753
754         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
755                 return -EFAULT;
756
757         obj = i915_gem_object_lookup(file, args->handle);
758         if (!obj)
759                 return -ENOENT;
760
761         /* Bounds check destination. */
762         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
763                 ret = -EINVAL;
764                 goto err;
765         }
766
767         /* Writes not allowed into this read-only object */
768         if (i915_gem_object_is_readonly(obj)) {
769                 ret = -EINVAL;
770                 goto err;
771         }
772
773         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
774
775         ret = -ENODEV;
776         if (obj->ops->pwrite)
777                 ret = obj->ops->pwrite(obj, args);
778         if (ret != -ENODEV)
779                 goto err;
780
781         ret = i915_gem_object_wait(obj,
782                                    I915_WAIT_INTERRUPTIBLE |
783                                    I915_WAIT_ALL,
784                                    MAX_SCHEDULE_TIMEOUT);
785         if (ret)
786                 goto err;
787
788         ret = -EFAULT;
789         /* We can only do the GTT pwrite on untiled buffers, as otherwise
790          * it would end up going through the fenced access, and we'll get
791          * different detiling behavior between reading and writing.
792          * pread/pwrite currently are reading and writing from the CPU
793          * perspective, requiring manual detiling by the client.
794          */
795         if (!i915_gem_object_has_struct_page(obj) ||
796             i915_gem_cpu_write_needs_clflush(obj))
797                 /* Note that the gtt paths might fail with non-page-backed user
798                  * pointers (e.g. gtt mappings when moving data between
799                  * textures). Fallback to the shmem path in that case.
800                  */
801                 ret = i915_gem_gtt_pwrite_fast(obj, args);
802
803         if (ret == -EFAULT || ret == -ENOSPC) {
804                 if (i915_gem_object_has_struct_page(obj))
805                         ret = i915_gem_shmem_pwrite(obj, args);
806         }
807
808 err:
809         i915_gem_object_put(obj);
810         return ret;
811 }
812
813 /**
814  * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
815  * @dev: drm device
816  * @data: ioctl data blob
817  * @file: drm file
818  */
819 int
820 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
821                          struct drm_file *file)
822 {
823         struct drm_i915_gem_sw_finish *args = data;
824         struct drm_i915_gem_object *obj;
825
826         obj = i915_gem_object_lookup(file, args->handle);
827         if (!obj)
828                 return -ENOENT;
829
830         /*
831          * Proxy objects are barred from CPU access, so there is no
832          * need to ban sw_finish as it is a nop.
833          */
834
835         /* Pinned buffers may be scanout, so flush the cache */
836         i915_gem_object_flush_if_display(obj);
837         i915_gem_object_put(obj);
838
839         return 0;
840 }
841
842 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
843 {
844         struct drm_i915_gem_object *obj, *on;
845         int i;
846
847         /*
848          * Only called during RPM suspend. All users of the userfault_list
849          * must be holding an RPM wakeref to ensure that this can not
850          * run concurrently with themselves (and use the struct_mutex for
851          * protection between themselves).
852          */
853
854         list_for_each_entry_safe(obj, on,
855                                  &to_gt(i915)->ggtt->userfault_list, userfault_link)
856                 __i915_gem_object_release_mmap_gtt(obj);
857
858         list_for_each_entry_safe(obj, on,
859                                  &i915->runtime_pm.lmem_userfault_list, userfault_link)
860                 i915_gem_object_runtime_pm_release_mmap_offset(obj);
861
862         /*
863          * The fence will be lost when the device powers down. If any were
864          * in use by hardware (i.e. they are pinned), we should not be powering
865          * down! All other fences will be reacquired by the user upon waking.
866          */
867         for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
868                 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
869
870                 /*
871                  * Ideally we want to assert that the fence register is not
872                  * live at this point (i.e. that no piece of code will be
873                  * trying to write through fence + GTT, as that both violates
874                  * our tracking of activity and associated locking/barriers,
875                  * but also is illegal given that the hw is powered down).
876                  *
877                  * Previously we used reg->pin_count as a "liveness" indicator.
878                  * That is not sufficient, and we need a more fine-grained
879                  * tool if we want to have a sanity check here.
880                  */
881
882                 if (!reg->vma)
883                         continue;
884
885                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
886                 reg->dirty = true;
887         }
888 }
889
890 static void discard_ggtt_vma(struct i915_vma *vma)
891 {
892         struct drm_i915_gem_object *obj = vma->obj;
893
894         spin_lock(&obj->vma.lock);
895         if (!RB_EMPTY_NODE(&vma->obj_node)) {
896                 rb_erase(&vma->obj_node, &obj->vma.tree);
897                 RB_CLEAR_NODE(&vma->obj_node);
898         }
899         spin_unlock(&obj->vma.lock);
900 }
901
902 struct i915_vma *
903 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
904                             struct i915_gem_ww_ctx *ww,
905                             const struct i915_gtt_view *view,
906                             u64 size, u64 alignment, u64 flags)
907 {
908         struct drm_i915_private *i915 = to_i915(obj->base.dev);
909         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
910         struct i915_vma *vma;
911         int ret;
912
913         GEM_WARN_ON(!ww);
914
915         if (flags & PIN_MAPPABLE &&
916             (!view || view->type == I915_GTT_VIEW_NORMAL)) {
917                 /*
918                  * If the required space is larger than the available
919                  * aperture, we will not able to find a slot for the
920                  * object and unbinding the object now will be in
921                  * vain. Worse, doing so may cause us to ping-pong
922                  * the object in and out of the Global GTT and
923                  * waste a lot of cycles under the mutex.
924                  */
925                 if (obj->base.size > ggtt->mappable_end)
926                         return ERR_PTR(-E2BIG);
927
928                 /*
929                  * If NONBLOCK is set the caller is optimistically
930                  * trying to cache the full object within the mappable
931                  * aperture, and *must* have a fallback in place for
932                  * situations where we cannot bind the object. We
933                  * can be a little more lax here and use the fallback
934                  * more often to avoid costly migrations of ourselves
935                  * and other objects within the aperture.
936                  *
937                  * Half-the-aperture is used as a simple heuristic.
938                  * More interesting would to do search for a free
939                  * block prior to making the commitment to unbind.
940                  * That caters for the self-harm case, and with a
941                  * little more heuristics (e.g. NOFAULT, NOEVICT)
942                  * we could try to minimise harm to others.
943                  */
944                 if (flags & PIN_NONBLOCK &&
945                     obj->base.size > ggtt->mappable_end / 2)
946                         return ERR_PTR(-ENOSPC);
947         }
948
949 new_vma:
950         vma = i915_vma_instance(obj, &ggtt->vm, view);
951         if (IS_ERR(vma))
952                 return vma;
953
954         if (i915_vma_misplaced(vma, size, alignment, flags)) {
955                 if (flags & PIN_NONBLOCK) {
956                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
957                                 return ERR_PTR(-ENOSPC);
958
959                         /*
960                          * If this misplaced vma is too big (i.e, at-least
961                          * half the size of aperture) or hasn't been pinned
962                          * mappable before, we ignore the misplacement when
963                          * PIN_NONBLOCK is set in order to avoid the ping-pong
964                          * issue described above. In other words, we try to
965                          * avoid the costly operation of unbinding this vma
966                          * from the GGTT and rebinding it back because there
967                          * may not be enough space for this vma in the aperture.
968                          */
969                         if (flags & PIN_MAPPABLE &&
970                             (vma->fence_size > ggtt->mappable_end / 2 ||
971                             !i915_vma_is_map_and_fenceable(vma)))
972                                 return ERR_PTR(-ENOSPC);
973                 }
974
975                 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
976                         discard_ggtt_vma(vma);
977                         goto new_vma;
978                 }
979
980                 ret = i915_vma_unbind(vma);
981                 if (ret)
982                         return ERR_PTR(ret);
983         }
984
985         ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
986
987         if (ret)
988                 return ERR_PTR(ret);
989
990         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
991                 mutex_lock(&ggtt->vm.mutex);
992                 i915_vma_revoke_fence(vma);
993                 mutex_unlock(&ggtt->vm.mutex);
994         }
995
996         ret = i915_vma_wait_for_bind(vma);
997         if (ret) {
998                 i915_vma_unpin(vma);
999                 return ERR_PTR(ret);
1000         }
1001
1002         return vma;
1003 }
1004
1005 struct i915_vma * __must_check
1006 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1007                          const struct i915_gtt_view *view,
1008                          u64 size, u64 alignment, u64 flags)
1009 {
1010         struct i915_gem_ww_ctx ww;
1011         struct i915_vma *ret;
1012         int err;
1013
1014         for_i915_gem_ww(&ww, err, true) {
1015                 err = i915_gem_object_lock(obj, &ww);
1016                 if (err)
1017                         continue;
1018
1019                 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1020                                                   alignment, flags);
1021                 if (IS_ERR(ret))
1022                         err = PTR_ERR(ret);
1023         }
1024
1025         return err ? ERR_PTR(err) : ret;
1026 }
1027
1028 int
1029 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1030                        struct drm_file *file_priv)
1031 {
1032         struct drm_i915_private *i915 = to_i915(dev);
1033         struct drm_i915_gem_madvise *args = data;
1034         struct drm_i915_gem_object *obj;
1035         int err;
1036
1037         switch (args->madv) {
1038         case I915_MADV_DONTNEED:
1039         case I915_MADV_WILLNEED:
1040             break;
1041         default:
1042             return -EINVAL;
1043         }
1044
1045         obj = i915_gem_object_lookup(file_priv, args->handle);
1046         if (!obj)
1047                 return -ENOENT;
1048
1049         err = i915_gem_object_lock_interruptible(obj, NULL);
1050         if (err)
1051                 goto out;
1052
1053         if (i915_gem_object_has_pages(obj) &&
1054             i915_gem_object_is_tiled(obj) &&
1055             i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1056                 if (obj->mm.madv == I915_MADV_WILLNEED) {
1057                         GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1058                         i915_gem_object_clear_tiling_quirk(obj);
1059                         i915_gem_object_make_shrinkable(obj);
1060                 }
1061                 if (args->madv == I915_MADV_WILLNEED) {
1062                         GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1063                         i915_gem_object_make_unshrinkable(obj);
1064                         i915_gem_object_set_tiling_quirk(obj);
1065                 }
1066         }
1067
1068         if (obj->mm.madv != __I915_MADV_PURGED) {
1069                 obj->mm.madv = args->madv;
1070                 if (obj->ops->adjust_lru)
1071                         obj->ops->adjust_lru(obj);
1072         }
1073
1074         if (i915_gem_object_has_pages(obj) ||
1075             i915_gem_object_has_self_managed_shrink_list(obj)) {
1076                 unsigned long flags;
1077
1078                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1079                 if (!list_empty(&obj->mm.link)) {
1080                         struct list_head *list;
1081
1082                         if (obj->mm.madv != I915_MADV_WILLNEED)
1083                                 list = &i915->mm.purge_list;
1084                         else
1085                                 list = &i915->mm.shrink_list;
1086                         list_move_tail(&obj->mm.link, list);
1087
1088                 }
1089                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1090         }
1091
1092         /* if the object is no longer attached, discard its backing storage */
1093         if (obj->mm.madv == I915_MADV_DONTNEED &&
1094             !i915_gem_object_has_pages(obj))
1095                 i915_gem_object_truncate(obj);
1096
1097         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1098
1099         i915_gem_object_unlock(obj);
1100 out:
1101         i915_gem_object_put(obj);
1102         return err;
1103 }
1104
1105 /*
1106  * A single pass should suffice to release all the freed objects (along most
1107  * call paths), but be a little more paranoid in that freeing the objects does
1108  * take a little amount of time, during which the rcu callbacks could have added
1109  * new objects into the freed list, and armed the work again.
1110  */
1111 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1112 {
1113         while (atomic_read(&i915->mm.free_count)) {
1114                 flush_work(&i915->mm.free_work);
1115                 drain_workqueue(i915->bdev.wq);
1116                 rcu_barrier();
1117         }
1118 }
1119
1120 /*
1121  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1122  * have workers that are armed by RCU and then rearm themselves in their
1123  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1124  * waiting for the RCU grace period so that we catch work queued via RCU from
1125  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1126  * result, we make an assumption that we only don't require more than 3 passes
1127  * to catch all _recursive_ RCU delayed work.
1128  */
1129 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1130 {
1131         int i;
1132
1133         for (i = 0; i < 3; i++) {
1134                 flush_workqueue(i915->wq);
1135                 rcu_barrier();
1136                 i915_gem_drain_freed_objects(i915);
1137         }
1138
1139         drain_workqueue(i915->wq);
1140 }
1141
1142 int i915_gem_init(struct drm_i915_private *dev_priv)
1143 {
1144         struct intel_gt *gt;
1145         unsigned int i;
1146         int ret;
1147
1148         /*
1149          * In the proccess of replacing cache_level with pat_index a tricky
1150          * dependency is created on the definition of the enum i915_cache_level.
1151          * in case this enum is changed, PTE encode would be broken.
1152          * Add a WARNING here. And remove when we completely quit using this
1153          * enum
1154          */
1155         BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1156                      I915_CACHE_LLC != 1 ||
1157                      I915_CACHE_L3_LLC != 2 ||
1158                      I915_CACHE_WT != 3 ||
1159                      I915_MAX_CACHE_LEVEL != 4);
1160
1161         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1162         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1163                 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1164
1165         for_each_gt(gt, dev_priv, i) {
1166                 intel_uc_fetch_firmwares(&gt->uc);
1167                 intel_wopcm_init(&gt->wopcm);
1168                 if (GRAPHICS_VER(dev_priv) >= 8)
1169                         setup_private_pat(gt);
1170         }
1171
1172         ret = i915_init_ggtt(dev_priv);
1173         if (ret) {
1174                 GEM_BUG_ON(ret == -EIO);
1175                 goto err_unlock;
1176         }
1177
1178         /*
1179          * Despite its name intel_clock_gating_init applies both display
1180          * clock gating workarounds; GT mmio workarounds and the occasional
1181          * GT power context workaround. Worse, sometimes it includes a context
1182          * register workaround which we need to apply before we record the
1183          * default HW state for all contexts.
1184          *
1185          * FIXME: break up the workarounds and apply them at the right time!
1186          */
1187         intel_clock_gating_init(dev_priv);
1188
1189         for_each_gt(gt, dev_priv, i) {
1190                 ret = intel_gt_init(gt);
1191                 if (ret)
1192                         goto err_unlock;
1193         }
1194
1195         /*
1196          * Register engines early to ensure the engine list is in its final
1197          * rb-tree form, lowering the amount of code that has to deal with
1198          * the intermediate llist state.
1199          */
1200         intel_engines_driver_register(dev_priv);
1201
1202         return 0;
1203
1204         /*
1205          * Unwinding is complicated by that we want to handle -EIO to mean
1206          * disable GPU submission but keep KMS alive. We want to mark the
1207          * HW as irrevisibly wedged, but keep enough state around that the
1208          * driver doesn't explode during runtime.
1209          */
1210 err_unlock:
1211         i915_gem_drain_workqueue(dev_priv);
1212
1213         if (ret != -EIO) {
1214                 for_each_gt(gt, dev_priv, i) {
1215                         intel_gt_driver_remove(gt);
1216                         intel_gt_driver_release(gt);
1217                         intel_uc_cleanup_firmwares(&gt->uc);
1218                 }
1219         }
1220
1221         if (ret == -EIO) {
1222                 /*
1223                  * Allow engines or uC initialisation to fail by marking the GPU
1224                  * as wedged. But we only want to do this when the GPU is angry,
1225                  * for all other failure, such as an allocation failure, bail.
1226                  */
1227                 for_each_gt(gt, dev_priv, i) {
1228                         if (!intel_gt_is_wedged(gt)) {
1229                                 i915_probe_error(dev_priv,
1230                                                  "Failed to initialize GPU, declaring it wedged!\n");
1231                                 intel_gt_set_wedged(gt);
1232                         }
1233                 }
1234
1235                 /* Minimal basic recovery for KMS */
1236                 ret = i915_ggtt_enable_hw(dev_priv);
1237                 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1238                 intel_clock_gating_init(dev_priv);
1239         }
1240
1241         i915_gem_drain_freed_objects(dev_priv);
1242
1243         return ret;
1244 }
1245
1246 void i915_gem_driver_register(struct drm_i915_private *i915)
1247 {
1248         i915_gem_driver_register__shrinker(i915);
1249 }
1250
1251 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1252 {
1253         i915_gem_driver_unregister__shrinker(i915);
1254 }
1255
1256 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1257 {
1258         struct intel_gt *gt;
1259         unsigned int i;
1260
1261         i915_gem_suspend_late(dev_priv);
1262         for_each_gt(gt, dev_priv, i)
1263                 intel_gt_driver_remove(gt);
1264         dev_priv->uabi_engines = RB_ROOT;
1265
1266         /* Flush any outstanding unpin_work. */
1267         i915_gem_drain_workqueue(dev_priv);
1268 }
1269
1270 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1271 {
1272         struct intel_gt *gt;
1273         unsigned int i;
1274
1275         for_each_gt(gt, dev_priv, i) {
1276                 intel_gt_driver_release(gt);
1277                 intel_uc_cleanup_firmwares(&gt->uc);
1278         }
1279
1280         /* Flush any outstanding work, including i915_gem_context.release_work. */
1281         i915_gem_drain_workqueue(dev_priv);
1282
1283         drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1284 }
1285
1286 static void i915_gem_init__mm(struct drm_i915_private *i915)
1287 {
1288         spin_lock_init(&i915->mm.obj_lock);
1289
1290         init_llist_head(&i915->mm.free_list);
1291
1292         INIT_LIST_HEAD(&i915->mm.purge_list);
1293         INIT_LIST_HEAD(&i915->mm.shrink_list);
1294
1295         i915_gem_init__objects(i915);
1296 }
1297
1298 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1299 {
1300         i915_gem_init__mm(dev_priv);
1301         i915_gem_init__contexts(dev_priv);
1302 }
1303
1304 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1305 {
1306         i915_gem_drain_workqueue(dev_priv);
1307         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1308         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1309         drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1310 }
1311
1312 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1313 {
1314         struct drm_i915_file_private *file_priv;
1315         struct i915_drm_client *client;
1316         int ret = -ENOMEM;
1317
1318         drm_dbg(&i915->drm, "\n");
1319
1320         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1321         if (!file_priv)
1322                 goto err_alloc;
1323
1324         client = i915_drm_client_alloc();
1325         if (!client)
1326                 goto err_client;
1327
1328         file->driver_priv = file_priv;
1329         file_priv->i915 = i915;
1330         file_priv->file = file;
1331         file_priv->client = client;
1332
1333         file_priv->bsd_engine = -1;
1334         file_priv->hang_timestamp = jiffies;
1335
1336         ret = i915_gem_context_open(i915, file);
1337         if (ret)
1338                 goto err_context;
1339
1340         return 0;
1341
1342 err_context:
1343         i915_drm_client_put(client);
1344 err_client:
1345         kfree(file_priv);
1346 err_alloc:
1347         return ret;
1348 }
1349
1350 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1351 #include "selftests/mock_gem_device.c"
1352 #include "selftests/i915_gem.c"
1353 #endif
This page took 0.105558 seconds and 4 git commands to generate.