]> Git Repo - linux.git/blob - fs/f2fs/gc.c
f2fs: put allocate_segment after refresh_sit_entry
[linux.git] / fs / f2fs / gc.c
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28         struct f2fs_sb_info *sbi = data;
29         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31         long wait_ms;
32
33         wait_ms = gc_th->min_sleep_time;
34
35         do {
36                 if (try_to_freeze())
37                         continue;
38                 else
39                         wait_event_interruptible_timeout(*wq,
40                                                 kthread_should_stop(),
41                                                 msecs_to_jiffies(wait_ms));
42                 if (kthread_should_stop())
43                         break;
44
45                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46                         increase_sleep_time(gc_th, &wait_ms);
47                         continue;
48                 }
49
50 #ifdef CONFIG_F2FS_FAULT_INJECTION
51                 if (time_to_inject(sbi, FAULT_CHECKPOINT))
52                         f2fs_stop_checkpoint(sbi, false);
53 #endif
54
55                 /*
56                  * [GC triggering condition]
57                  * 0. GC is not conducted currently.
58                  * 1. There are enough dirty segments.
59                  * 2. IO subsystem is idle by checking the # of writeback pages.
60                  * 3. IO subsystem is idle by checking the # of requests in
61                  *    bdev's request list.
62                  *
63                  * Note) We have to avoid triggering GCs frequently.
64                  * Because it is possible that some segments can be
65                  * invalidated soon after by user update or deletion.
66                  * So, I'd like to wait some time to collect dirty segments.
67                  */
68                 if (!mutex_trylock(&sbi->gc_mutex))
69                         continue;
70
71                 if (!is_idle(sbi)) {
72                         increase_sleep_time(gc_th, &wait_ms);
73                         mutex_unlock(&sbi->gc_mutex);
74                         continue;
75                 }
76
77                 if (has_enough_invalid_blocks(sbi))
78                         decrease_sleep_time(gc_th, &wait_ms);
79                 else
80                         increase_sleep_time(gc_th, &wait_ms);
81
82                 stat_inc_bggc_count(sbi);
83
84                 /* if return value is not zero, no victim was selected */
85                 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true))
86                         wait_ms = gc_th->no_gc_sleep_time;
87
88                 trace_f2fs_background_gc(sbi->sb, wait_ms,
89                                 prefree_segments(sbi), free_segments(sbi));
90
91                 /* balancing f2fs's metadata periodically */
92                 f2fs_balance_fs_bg(sbi);
93
94         } while (!kthread_should_stop());
95         return 0;
96 }
97
98 int start_gc_thread(struct f2fs_sb_info *sbi)
99 {
100         struct f2fs_gc_kthread *gc_th;
101         dev_t dev = sbi->sb->s_bdev->bd_dev;
102         int err = 0;
103
104         gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
105         if (!gc_th) {
106                 err = -ENOMEM;
107                 goto out;
108         }
109
110         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
111         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
112         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
113
114         gc_th->gc_idle = 0;
115
116         sbi->gc_thread = gc_th;
117         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
118         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
119                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
120         if (IS_ERR(gc_th->f2fs_gc_task)) {
121                 err = PTR_ERR(gc_th->f2fs_gc_task);
122                 kfree(gc_th);
123                 sbi->gc_thread = NULL;
124         }
125 out:
126         return err;
127 }
128
129 void stop_gc_thread(struct f2fs_sb_info *sbi)
130 {
131         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
132         if (!gc_th)
133                 return;
134         kthread_stop(gc_th->f2fs_gc_task);
135         kfree(gc_th);
136         sbi->gc_thread = NULL;
137 }
138
139 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
140 {
141         int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
142
143         if (gc_th && gc_th->gc_idle) {
144                 if (gc_th->gc_idle == 1)
145                         gc_mode = GC_CB;
146                 else if (gc_th->gc_idle == 2)
147                         gc_mode = GC_GREEDY;
148         }
149         return gc_mode;
150 }
151
152 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
153                         int type, struct victim_sel_policy *p)
154 {
155         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
156
157         if (p->alloc_mode == SSR) {
158                 p->gc_mode = GC_GREEDY;
159                 p->dirty_segmap = dirty_i->dirty_segmap[type];
160                 p->max_search = dirty_i->nr_dirty[type];
161                 p->ofs_unit = 1;
162         } else {
163                 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
164                 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
165                 p->max_search = dirty_i->nr_dirty[DIRTY];
166                 p->ofs_unit = sbi->segs_per_sec;
167         }
168
169         /* we need to check every dirty segments in the FG_GC case */
170         if (gc_type != FG_GC && p->max_search > sbi->max_victim_search)
171                 p->max_search = sbi->max_victim_search;
172
173         p->offset = sbi->last_victim[p->gc_mode];
174 }
175
176 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
177                                 struct victim_sel_policy *p)
178 {
179         /* SSR allocates in a segment unit */
180         if (p->alloc_mode == SSR)
181                 return sbi->blocks_per_seg;
182         if (p->gc_mode == GC_GREEDY)
183                 return sbi->blocks_per_seg * p->ofs_unit;
184         else if (p->gc_mode == GC_CB)
185                 return UINT_MAX;
186         else /* No other gc_mode */
187                 return 0;
188 }
189
190 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
191 {
192         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
193         unsigned int secno;
194
195         /*
196          * If the gc_type is FG_GC, we can select victim segments
197          * selected by background GC before.
198          * Those segments guarantee they have small valid blocks.
199          */
200         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
201                 if (sec_usage_check(sbi, secno))
202                         continue;
203
204                 if (no_fggc_candidate(sbi, secno))
205                         continue;
206
207                 clear_bit(secno, dirty_i->victim_secmap);
208                 return secno * sbi->segs_per_sec;
209         }
210         return NULL_SEGNO;
211 }
212
213 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
214 {
215         struct sit_info *sit_i = SIT_I(sbi);
216         unsigned int secno = GET_SECNO(sbi, segno);
217         unsigned int start = secno * sbi->segs_per_sec;
218         unsigned long long mtime = 0;
219         unsigned int vblocks;
220         unsigned char age = 0;
221         unsigned char u;
222         unsigned int i;
223
224         for (i = 0; i < sbi->segs_per_sec; i++)
225                 mtime += get_seg_entry(sbi, start + i)->mtime;
226         vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
227
228         mtime = div_u64(mtime, sbi->segs_per_sec);
229         vblocks = div_u64(vblocks, sbi->segs_per_sec);
230
231         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
232
233         /* Handle if the system time has changed by the user */
234         if (mtime < sit_i->min_mtime)
235                 sit_i->min_mtime = mtime;
236         if (mtime > sit_i->max_mtime)
237                 sit_i->max_mtime = mtime;
238         if (sit_i->max_mtime != sit_i->min_mtime)
239                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
240                                 sit_i->max_mtime - sit_i->min_mtime);
241
242         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
243 }
244
245 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
246                         unsigned int segno, struct victim_sel_policy *p)
247 {
248         if (p->alloc_mode == SSR)
249                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
250
251         /* alloc_mode == LFS */
252         if (p->gc_mode == GC_GREEDY)
253                 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
254         else
255                 return get_cb_cost(sbi, segno);
256 }
257
258 static unsigned int count_bits(const unsigned long *addr,
259                                 unsigned int offset, unsigned int len)
260 {
261         unsigned int end = offset + len, sum = 0;
262
263         while (offset < end) {
264                 if (test_bit(offset++, addr))
265                         ++sum;
266         }
267         return sum;
268 }
269
270 /*
271  * This function is called from two paths.
272  * One is garbage collection and the other is SSR segment selection.
273  * When it is called during GC, it just gets a victim segment
274  * and it does not remove it from dirty seglist.
275  * When it is called from SSR segment selection, it finds a segment
276  * which has minimum valid blocks and removes it from dirty seglist.
277  */
278 static int get_victim_by_default(struct f2fs_sb_info *sbi,
279                 unsigned int *result, int gc_type, int type, char alloc_mode)
280 {
281         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
282         struct victim_sel_policy p;
283         unsigned int secno, last_victim;
284         unsigned int last_segment = MAIN_SEGS(sbi);
285         unsigned int nsearched = 0;
286
287         mutex_lock(&dirty_i->seglist_lock);
288
289         p.alloc_mode = alloc_mode;
290         select_policy(sbi, gc_type, type, &p);
291
292         p.min_segno = NULL_SEGNO;
293         p.min_cost = get_max_cost(sbi, &p);
294
295         if (p.max_search == 0)
296                 goto out;
297
298         last_victim = sbi->last_victim[p.gc_mode];
299         if (p.alloc_mode == LFS && gc_type == FG_GC) {
300                 p.min_segno = check_bg_victims(sbi);
301                 if (p.min_segno != NULL_SEGNO)
302                         goto got_it;
303         }
304
305         while (1) {
306                 unsigned long cost;
307                 unsigned int segno;
308
309                 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
310                 if (segno >= last_segment) {
311                         if (sbi->last_victim[p.gc_mode]) {
312                                 last_segment = sbi->last_victim[p.gc_mode];
313                                 sbi->last_victim[p.gc_mode] = 0;
314                                 p.offset = 0;
315                                 continue;
316                         }
317                         break;
318                 }
319
320                 p.offset = segno + p.ofs_unit;
321                 if (p.ofs_unit > 1) {
322                         p.offset -= segno % p.ofs_unit;
323                         nsearched += count_bits(p.dirty_segmap,
324                                                 p.offset - p.ofs_unit,
325                                                 p.ofs_unit);
326                 } else {
327                         nsearched++;
328                 }
329
330                 secno = GET_SECNO(sbi, segno);
331
332                 if (sec_usage_check(sbi, secno))
333                         goto next;
334                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
335                         goto next;
336                 if (gc_type == FG_GC && p.alloc_mode == LFS &&
337                                         no_fggc_candidate(sbi, secno))
338                         goto next;
339
340                 cost = get_gc_cost(sbi, segno, &p);
341
342                 if (p.min_cost > cost) {
343                         p.min_segno = segno;
344                         p.min_cost = cost;
345                 }
346 next:
347                 if (nsearched >= p.max_search) {
348                         if (!sbi->last_victim[p.gc_mode] && segno <= last_victim)
349                                 sbi->last_victim[p.gc_mode] = last_victim + 1;
350                         else
351                                 sbi->last_victim[p.gc_mode] = segno + 1;
352                         break;
353                 }
354         }
355         if (p.min_segno != NULL_SEGNO) {
356 got_it:
357                 if (p.alloc_mode == LFS) {
358                         secno = GET_SECNO(sbi, p.min_segno);
359                         if (gc_type == FG_GC)
360                                 sbi->cur_victim_sec = secno;
361                         else
362                                 set_bit(secno, dirty_i->victim_secmap);
363                 }
364                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
365
366                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
367                                 sbi->cur_victim_sec,
368                                 prefree_segments(sbi), free_segments(sbi));
369         }
370 out:
371         mutex_unlock(&dirty_i->seglist_lock);
372
373         return (p.min_segno == NULL_SEGNO) ? 0 : 1;
374 }
375
376 static const struct victim_selection default_v_ops = {
377         .get_victim = get_victim_by_default,
378 };
379
380 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
381 {
382         struct inode_entry *ie;
383
384         ie = radix_tree_lookup(&gc_list->iroot, ino);
385         if (ie)
386                 return ie->inode;
387         return NULL;
388 }
389
390 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
391 {
392         struct inode_entry *new_ie;
393
394         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
395                 iput(inode);
396                 return;
397         }
398         new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
399         new_ie->inode = inode;
400
401         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
402         list_add_tail(&new_ie->list, &gc_list->ilist);
403 }
404
405 static void put_gc_inode(struct gc_inode_list *gc_list)
406 {
407         struct inode_entry *ie, *next_ie;
408         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
409                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
410                 iput(ie->inode);
411                 list_del(&ie->list);
412                 kmem_cache_free(inode_entry_slab, ie);
413         }
414 }
415
416 static int check_valid_map(struct f2fs_sb_info *sbi,
417                                 unsigned int segno, int offset)
418 {
419         struct sit_info *sit_i = SIT_I(sbi);
420         struct seg_entry *sentry;
421         int ret;
422
423         mutex_lock(&sit_i->sentry_lock);
424         sentry = get_seg_entry(sbi, segno);
425         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
426         mutex_unlock(&sit_i->sentry_lock);
427         return ret;
428 }
429
430 /*
431  * This function compares node address got in summary with that in NAT.
432  * On validity, copy that node with cold status, otherwise (invalid node)
433  * ignore that.
434  */
435 static void gc_node_segment(struct f2fs_sb_info *sbi,
436                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
437 {
438         struct f2fs_summary *entry;
439         block_t start_addr;
440         int off;
441         int phase = 0;
442
443         start_addr = START_BLOCK(sbi, segno);
444
445 next_step:
446         entry = sum;
447
448         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
449                 nid_t nid = le32_to_cpu(entry->nid);
450                 struct page *node_page;
451                 struct node_info ni;
452
453                 /* stop BG_GC if there is not enough free sections. */
454                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
455                         return;
456
457                 if (check_valid_map(sbi, segno, off) == 0)
458                         continue;
459
460                 if (phase == 0) {
461                         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
462                                                         META_NAT, true);
463                         continue;
464                 }
465
466                 if (phase == 1) {
467                         ra_node_page(sbi, nid);
468                         continue;
469                 }
470
471                 /* phase == 2 */
472                 node_page = get_node_page(sbi, nid);
473                 if (IS_ERR(node_page))
474                         continue;
475
476                 /* block may become invalid during get_node_page */
477                 if (check_valid_map(sbi, segno, off) == 0) {
478                         f2fs_put_page(node_page, 1);
479                         continue;
480                 }
481
482                 get_node_info(sbi, nid, &ni);
483                 if (ni.blk_addr != start_addr + off) {
484                         f2fs_put_page(node_page, 1);
485                         continue;
486                 }
487
488                 move_node_page(node_page, gc_type);
489                 stat_inc_node_blk_count(sbi, 1, gc_type);
490         }
491
492         if (++phase < 3)
493                 goto next_step;
494 }
495
496 /*
497  * Calculate start block index indicating the given node offset.
498  * Be careful, caller should give this node offset only indicating direct node
499  * blocks. If any node offsets, which point the other types of node blocks such
500  * as indirect or double indirect node blocks, are given, it must be a caller's
501  * bug.
502  */
503 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
504 {
505         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
506         unsigned int bidx;
507
508         if (node_ofs == 0)
509                 return 0;
510
511         if (node_ofs <= 2) {
512                 bidx = node_ofs - 1;
513         } else if (node_ofs <= indirect_blks) {
514                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
515                 bidx = node_ofs - 2 - dec;
516         } else {
517                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
518                 bidx = node_ofs - 5 - dec;
519         }
520         return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
521 }
522
523 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
524                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
525 {
526         struct page *node_page;
527         nid_t nid;
528         unsigned int ofs_in_node;
529         block_t source_blkaddr;
530
531         nid = le32_to_cpu(sum->nid);
532         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
533
534         node_page = get_node_page(sbi, nid);
535         if (IS_ERR(node_page))
536                 return false;
537
538         get_node_info(sbi, nid, dni);
539
540         if (sum->version != dni->version) {
541                 f2fs_put_page(node_page, 1);
542                 return false;
543         }
544
545         *nofs = ofs_of_node(node_page);
546         source_blkaddr = datablock_addr(node_page, ofs_in_node);
547         f2fs_put_page(node_page, 1);
548
549         if (source_blkaddr != blkaddr)
550                 return false;
551         return true;
552 }
553
554 static void move_encrypted_block(struct inode *inode, block_t bidx,
555                                                         unsigned int segno, int off)
556 {
557         struct f2fs_io_info fio = {
558                 .sbi = F2FS_I_SB(inode),
559                 .type = DATA,
560                 .op = REQ_OP_READ,
561                 .op_flags = 0,
562                 .encrypted_page = NULL,
563         };
564         struct dnode_of_data dn;
565         struct f2fs_summary sum;
566         struct node_info ni;
567         struct page *page;
568         block_t newaddr;
569         int err;
570
571         /* do not read out */
572         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
573         if (!page)
574                 return;
575
576         if (!check_valid_map(F2FS_I_SB(inode), segno, off))
577                 goto out;
578
579         if (f2fs_is_atomic_file(inode))
580                 goto out;
581
582         set_new_dnode(&dn, inode, NULL, NULL, 0);
583         err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
584         if (err)
585                 goto out;
586
587         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
588                 ClearPageUptodate(page);
589                 goto put_out;
590         }
591
592         /*
593          * don't cache encrypted data into meta inode until previous dirty
594          * data were writebacked to avoid racing between GC and flush.
595          */
596         f2fs_wait_on_page_writeback(page, DATA, true);
597
598         get_node_info(fio.sbi, dn.nid, &ni);
599         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
600
601         /* read page */
602         fio.page = page;
603         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
604
605         allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
606                                                         &sum, CURSEG_COLD_DATA);
607
608         fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
609                                         FGP_LOCK | FGP_CREAT, GFP_NOFS);
610         if (!fio.encrypted_page) {
611                 err = -ENOMEM;
612                 goto recover_block;
613         }
614
615         err = f2fs_submit_page_bio(&fio);
616         if (err)
617                 goto put_page_out;
618
619         /* write page */
620         lock_page(fio.encrypted_page);
621
622         if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
623                 err = -EIO;
624                 goto put_page_out;
625         }
626         if (unlikely(!PageUptodate(fio.encrypted_page))) {
627                 err = -EIO;
628                 goto put_page_out;
629         }
630
631         set_page_dirty(fio.encrypted_page);
632         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
633         if (clear_page_dirty_for_io(fio.encrypted_page))
634                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
635
636         set_page_writeback(fio.encrypted_page);
637
638         /* allocate block address */
639         f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
640
641         fio.op = REQ_OP_WRITE;
642         fio.op_flags = REQ_SYNC;
643         fio.new_blkaddr = newaddr;
644         f2fs_submit_page_mbio(&fio);
645
646         f2fs_update_data_blkaddr(&dn, newaddr);
647         set_inode_flag(inode, FI_APPEND_WRITE);
648         if (page->index == 0)
649                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
650 put_page_out:
651         f2fs_put_page(fio.encrypted_page, 1);
652 recover_block:
653         if (err)
654                 __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
655                                                                 true, true);
656 put_out:
657         f2fs_put_dnode(&dn);
658 out:
659         f2fs_put_page(page, 1);
660 }
661
662 static void move_data_page(struct inode *inode, block_t bidx, int gc_type,
663                                                         unsigned int segno, int off)
664 {
665         struct page *page;
666
667         page = get_lock_data_page(inode, bidx, true);
668         if (IS_ERR(page))
669                 return;
670
671         if (!check_valid_map(F2FS_I_SB(inode), segno, off))
672                 goto out;
673
674         if (f2fs_is_atomic_file(inode))
675                 goto out;
676
677         if (gc_type == BG_GC) {
678                 if (PageWriteback(page))
679                         goto out;
680                 set_page_dirty(page);
681                 set_cold_data(page);
682         } else {
683                 struct f2fs_io_info fio = {
684                         .sbi = F2FS_I_SB(inode),
685                         .type = DATA,
686                         .op = REQ_OP_WRITE,
687                         .op_flags = REQ_SYNC,
688                         .page = page,
689                         .encrypted_page = NULL,
690                 };
691                 bool is_dirty = PageDirty(page);
692                 int err;
693
694 retry:
695                 set_page_dirty(page);
696                 f2fs_wait_on_page_writeback(page, DATA, true);
697                 if (clear_page_dirty_for_io(page)) {
698                         inode_dec_dirty_pages(inode);
699                         remove_dirty_inode(inode);
700                 }
701
702                 set_cold_data(page);
703
704                 err = do_write_data_page(&fio);
705                 if (err == -ENOMEM && is_dirty) {
706                         congestion_wait(BLK_RW_ASYNC, HZ/50);
707                         goto retry;
708                 }
709         }
710 out:
711         f2fs_put_page(page, 1);
712 }
713
714 /*
715  * This function tries to get parent node of victim data block, and identifies
716  * data block validity. If the block is valid, copy that with cold status and
717  * modify parent node.
718  * If the parent node is not valid or the data block address is different,
719  * the victim data block is ignored.
720  */
721 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
722                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
723 {
724         struct super_block *sb = sbi->sb;
725         struct f2fs_summary *entry;
726         block_t start_addr;
727         int off;
728         int phase = 0;
729
730         start_addr = START_BLOCK(sbi, segno);
731
732 next_step:
733         entry = sum;
734
735         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
736                 struct page *data_page;
737                 struct inode *inode;
738                 struct node_info dni; /* dnode info for the data */
739                 unsigned int ofs_in_node, nofs;
740                 block_t start_bidx;
741                 nid_t nid = le32_to_cpu(entry->nid);
742
743                 /* stop BG_GC if there is not enough free sections. */
744                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
745                         return;
746
747                 if (check_valid_map(sbi, segno, off) == 0)
748                         continue;
749
750                 if (phase == 0) {
751                         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
752                                                         META_NAT, true);
753                         continue;
754                 }
755
756                 if (phase == 1) {
757                         ra_node_page(sbi, nid);
758                         continue;
759                 }
760
761                 /* Get an inode by ino with checking validity */
762                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
763                         continue;
764
765                 if (phase == 2) {
766                         ra_node_page(sbi, dni.ino);
767                         continue;
768                 }
769
770                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
771
772                 if (phase == 3) {
773                         inode = f2fs_iget(sb, dni.ino);
774                         if (IS_ERR(inode) || is_bad_inode(inode))
775                                 continue;
776
777                         /* if encrypted inode, let's go phase 3 */
778                         if (f2fs_encrypted_inode(inode) &&
779                                                 S_ISREG(inode->i_mode)) {
780                                 add_gc_inode(gc_list, inode);
781                                 continue;
782                         }
783
784                         start_bidx = start_bidx_of_node(nofs, inode);
785                         data_page = get_read_data_page(inode,
786                                         start_bidx + ofs_in_node, REQ_RAHEAD,
787                                         true);
788                         if (IS_ERR(data_page)) {
789                                 iput(inode);
790                                 continue;
791                         }
792
793                         f2fs_put_page(data_page, 0);
794                         add_gc_inode(gc_list, inode);
795                         continue;
796                 }
797
798                 /* phase 4 */
799                 inode = find_gc_inode(gc_list, dni.ino);
800                 if (inode) {
801                         struct f2fs_inode_info *fi = F2FS_I(inode);
802                         bool locked = false;
803
804                         if (S_ISREG(inode->i_mode)) {
805                                 if (!down_write_trylock(&fi->dio_rwsem[READ]))
806                                         continue;
807                                 if (!down_write_trylock(
808                                                 &fi->dio_rwsem[WRITE])) {
809                                         up_write(&fi->dio_rwsem[READ]);
810                                         continue;
811                                 }
812                                 locked = true;
813                         }
814
815                         start_bidx = start_bidx_of_node(nofs, inode)
816                                                                 + ofs_in_node;
817                         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
818                                 move_encrypted_block(inode, start_bidx, segno, off);
819                         else
820                                 move_data_page(inode, start_bidx, gc_type, segno, off);
821
822                         if (locked) {
823                                 up_write(&fi->dio_rwsem[WRITE]);
824                                 up_write(&fi->dio_rwsem[READ]);
825                         }
826
827                         stat_inc_data_blk_count(sbi, 1, gc_type);
828                 }
829         }
830
831         if (++phase < 5)
832                 goto next_step;
833 }
834
835 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
836                         int gc_type)
837 {
838         struct sit_info *sit_i = SIT_I(sbi);
839         int ret;
840
841         mutex_lock(&sit_i->sentry_lock);
842         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
843                                               NO_CHECK_TYPE, LFS);
844         mutex_unlock(&sit_i->sentry_lock);
845         return ret;
846 }
847
848 static int do_garbage_collect(struct f2fs_sb_info *sbi,
849                                 unsigned int start_segno,
850                                 struct gc_inode_list *gc_list, int gc_type)
851 {
852         struct page *sum_page;
853         struct f2fs_summary_block *sum;
854         struct blk_plug plug;
855         unsigned int segno = start_segno;
856         unsigned int end_segno = start_segno + sbi->segs_per_sec;
857         int sec_freed = 0;
858         unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
859                                                 SUM_TYPE_DATA : SUM_TYPE_NODE;
860
861         /* readahead multi ssa blocks those have contiguous address */
862         if (sbi->segs_per_sec > 1)
863                 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
864                                         sbi->segs_per_sec, META_SSA, true);
865
866         /* reference all summary page */
867         while (segno < end_segno) {
868                 sum_page = get_sum_page(sbi, segno++);
869                 unlock_page(sum_page);
870         }
871
872         blk_start_plug(&plug);
873
874         for (segno = start_segno; segno < end_segno; segno++) {
875
876                 /* find segment summary of victim */
877                 sum_page = find_get_page(META_MAPPING(sbi),
878                                         GET_SUM_BLOCK(sbi, segno));
879                 f2fs_put_page(sum_page, 0);
880
881                 if (get_valid_blocks(sbi, segno, 1) == 0 ||
882                                 !PageUptodate(sum_page) ||
883                                 unlikely(f2fs_cp_error(sbi)))
884                         goto next;
885
886                 sum = page_address(sum_page);
887                 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
888
889                 /*
890                  * this is to avoid deadlock:
891                  * - lock_page(sum_page)         - f2fs_replace_block
892                  *  - check_valid_map()            - mutex_lock(sentry_lock)
893                  *   - mutex_lock(sentry_lock)     - change_curseg()
894                  *                                  - lock_page(sum_page)
895                  */
896
897                 if (type == SUM_TYPE_NODE)
898                         gc_node_segment(sbi, sum->entries, segno, gc_type);
899                 else
900                         gc_data_segment(sbi, sum->entries, gc_list, segno,
901                                                                 gc_type);
902
903                 stat_inc_seg_count(sbi, type, gc_type);
904 next:
905                 f2fs_put_page(sum_page, 0);
906         }
907
908         if (gc_type == FG_GC)
909                 f2fs_submit_merged_bio(sbi,
910                                 (type == SUM_TYPE_NODE) ? NODE : DATA, WRITE);
911
912         blk_finish_plug(&plug);
913
914         if (gc_type == FG_GC &&
915                 get_valid_blocks(sbi, start_segno, sbi->segs_per_sec) == 0)
916                 sec_freed = 1;
917
918         stat_inc_call_count(sbi->stat_info);
919
920         return sec_freed;
921 }
922
923 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background)
924 {
925         unsigned int segno;
926         int gc_type = sync ? FG_GC : BG_GC;
927         int sec_freed = 0;
928         int ret = -EINVAL;
929         struct cp_control cpc;
930         struct gc_inode_list gc_list = {
931                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
932                 .iroot = RADIX_TREE_INIT(GFP_NOFS),
933         };
934
935         cpc.reason = __get_cp_reason(sbi);
936 gc_more:
937         if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
938                 goto stop;
939         if (unlikely(f2fs_cp_error(sbi))) {
940                 ret = -EIO;
941                 goto stop;
942         }
943
944         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed, 0)) {
945                 gc_type = FG_GC;
946                 /*
947                  * If there is no victim and no prefree segment but still not
948                  * enough free sections, we should flush dent/node blocks and do
949                  * garbage collections.
950                  */
951                 if (dirty_segments(sbi) || prefree_segments(sbi)) {
952                         ret = write_checkpoint(sbi, &cpc);
953                         if (ret)
954                                 goto stop;
955                 } else if (has_not_enough_free_secs(sbi, 0, 0)) {
956                         ret = write_checkpoint(sbi, &cpc);
957                         if (ret)
958                                 goto stop;
959                 }
960         } else if (gc_type == BG_GC && !background) {
961                 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
962                 goto stop;
963         }
964
965         if (!__get_victim(sbi, &segno, gc_type))
966                 goto stop;
967         ret = 0;
968
969         if (do_garbage_collect(sbi, segno, &gc_list, gc_type) &&
970                         gc_type == FG_GC)
971                 sec_freed++;
972
973         if (gc_type == FG_GC)
974                 sbi->cur_victim_sec = NULL_SEGNO;
975
976         if (!sync) {
977                 if (has_not_enough_free_secs(sbi, sec_freed, 0))
978                         goto gc_more;
979
980                 if (gc_type == FG_GC)
981                         ret = write_checkpoint(sbi, &cpc);
982         }
983 stop:
984         mutex_unlock(&sbi->gc_mutex);
985
986         put_gc_inode(&gc_list);
987
988         if (sync)
989                 ret = sec_freed ? 0 : -EAGAIN;
990         return ret;
991 }
992
993 void build_gc_manager(struct f2fs_sb_info *sbi)
994 {
995         u64 main_count, resv_count, ovp_count, blocks_per_sec;
996
997         DIRTY_I(sbi)->v_ops = &default_v_ops;
998
999         /* threshold of # of valid blocks in a section for victims of FG_GC */
1000         main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg;
1001         resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg;
1002         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1003         blocks_per_sec = sbi->blocks_per_seg * sbi->segs_per_sec;
1004
1005         sbi->fggc_threshold = div_u64((main_count - ovp_count) * blocks_per_sec,
1006                                         (main_count - resv_count));
1007 }
This page took 0.090147 seconds and 4 git commands to generate.