2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
26 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
53 #include <net/ip.h> /* for local_port_range[] */
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h> /* for Unix socket types */
71 #include <net/af_unix.h> /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
98 extern struct security_operations *security_ops;
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
106 static int __init enforcing_setup(char *str)
108 unsigned long enforcing;
109 if (!kstrtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
113 __setup("enforcing=", enforcing_setup);
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
119 static int __init selinux_enabled_setup(char *str)
121 unsigned long enabled;
122 if (!kstrtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
126 __setup("selinux=", selinux_enabled_setup);
128 int selinux_enabled = 1;
131 static struct kmem_cache *sel_inode_cache;
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled. If the always_check_network
141 * policy capability is enabled, SECMARK is always considered enabled.
144 static int selinux_secmark_enabled(void)
146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
154 * (1) if any are enabled or false (0) if neither are enabled. If the
155 * always_check_network policy capability is enabled, peer labeling
156 * is always considered enabled.
159 static int selinux_peerlbl_enabled(void)
161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
165 * initialise the security for the init task
167 static void cred_init_security(void)
169 struct cred *cred = (struct cred *) current->real_cred;
170 struct task_security_struct *tsec;
172 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
174 panic("SELinux: Failed to initialize initial task.\n");
176 tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 cred->security = tsec;
181 * get the security ID of a set of credentials
183 static inline u32 cred_sid(const struct cred *cred)
185 const struct task_security_struct *tsec;
187 tsec = cred->security;
192 * get the objective security ID of a task
194 static inline u32 task_sid(const struct task_struct *task)
199 sid = cred_sid(__task_cred(task));
205 * get the subjective security ID of the current task
207 static inline u32 current_sid(void)
209 const struct task_security_struct *tsec = current_security();
214 /* Allocate and free functions for each kind of security blob. */
216 static int inode_alloc_security(struct inode *inode)
218 struct inode_security_struct *isec;
219 u32 sid = current_sid();
221 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
225 mutex_init(&isec->lock);
226 INIT_LIST_HEAD(&isec->list);
228 isec->sid = SECINITSID_UNLABELED;
229 isec->sclass = SECCLASS_FILE;
230 isec->task_sid = sid;
231 inode->i_security = isec;
236 static void inode_free_rcu(struct rcu_head *head)
238 struct inode_security_struct *isec;
240 isec = container_of(head, struct inode_security_struct, rcu);
241 kmem_cache_free(sel_inode_cache, isec);
244 static void inode_free_security(struct inode *inode)
246 struct inode_security_struct *isec = inode->i_security;
247 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
249 spin_lock(&sbsec->isec_lock);
250 if (!list_empty(&isec->list))
251 list_del_init(&isec->list);
252 spin_unlock(&sbsec->isec_lock);
255 * The inode may still be referenced in a path walk and
256 * a call to selinux_inode_permission() can be made
257 * after inode_free_security() is called. Ideally, the VFS
258 * wouldn't do this, but fixing that is a much harder
259 * job. For now, simply free the i_security via RCU, and
260 * leave the current inode->i_security pointer intact.
261 * The inode will be freed after the RCU grace period too.
263 call_rcu(&isec->rcu, inode_free_rcu);
266 static int file_alloc_security(struct file *file)
268 struct file_security_struct *fsec;
269 u32 sid = current_sid();
271 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
276 fsec->fown_sid = sid;
277 file->f_security = fsec;
282 static void file_free_security(struct file *file)
284 struct file_security_struct *fsec = file->f_security;
285 file->f_security = NULL;
289 static int superblock_alloc_security(struct super_block *sb)
291 struct superblock_security_struct *sbsec;
293 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
297 mutex_init(&sbsec->lock);
298 INIT_LIST_HEAD(&sbsec->isec_head);
299 spin_lock_init(&sbsec->isec_lock);
301 sbsec->sid = SECINITSID_UNLABELED;
302 sbsec->def_sid = SECINITSID_FILE;
303 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304 sb->s_security = sbsec;
309 static void superblock_free_security(struct super_block *sb)
311 struct superblock_security_struct *sbsec = sb->s_security;
312 sb->s_security = NULL;
316 /* The file system's label must be initialized prior to use. */
318 static const char *labeling_behaviors[7] = {
320 "uses transition SIDs",
322 "uses genfs_contexts",
323 "not configured for labeling",
324 "uses mountpoint labeling",
325 "uses native labeling",
328 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
330 static inline int inode_doinit(struct inode *inode)
332 return inode_doinit_with_dentry(inode, NULL);
341 Opt_labelsupport = 5,
345 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
347 static const match_table_t tokens = {
348 {Opt_context, CONTEXT_STR "%s"},
349 {Opt_fscontext, FSCONTEXT_STR "%s"},
350 {Opt_defcontext, DEFCONTEXT_STR "%s"},
351 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352 {Opt_labelsupport, LABELSUPP_STR},
356 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
358 static int may_context_mount_sb_relabel(u32 sid,
359 struct superblock_security_struct *sbsec,
360 const struct cred *cred)
362 const struct task_security_struct *tsec = cred->security;
365 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 FILESYSTEM__RELABELFROM, NULL);
370 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371 FILESYSTEM__RELABELTO, NULL);
375 static int may_context_mount_inode_relabel(u32 sid,
376 struct superblock_security_struct *sbsec,
377 const struct cred *cred)
379 const struct task_security_struct *tsec = cred->security;
381 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELFROM, NULL);
386 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387 FILESYSTEM__ASSOCIATE, NULL);
391 static int selinux_is_sblabel_mnt(struct super_block *sb)
393 struct superblock_security_struct *sbsec = sb->s_security;
395 if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396 sbsec->behavior == SECURITY_FS_USE_TRANS ||
397 sbsec->behavior == SECURITY_FS_USE_TASK)
400 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
401 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405 * Special handling for rootfs. Is genfs but supports
406 * setting SELinux context on in-core inodes.
408 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
414 static int sb_finish_set_opts(struct super_block *sb)
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = root->d_inode;
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
451 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452 sb->s_id, sb->s_type->name,
453 labeling_behaviors[sbsec->behavior-1]);
455 sbsec->flags |= SE_SBINITIALIZED;
456 if (selinux_is_sblabel_mnt(sb))
457 sbsec->flags |= SBLABEL_MNT;
459 /* Initialize the root inode. */
460 rc = inode_doinit_with_dentry(root_inode, root);
462 /* Initialize any other inodes associated with the superblock, e.g.
463 inodes created prior to initial policy load or inodes created
464 during get_sb by a pseudo filesystem that directly
466 spin_lock(&sbsec->isec_lock);
468 if (!list_empty(&sbsec->isec_head)) {
469 struct inode_security_struct *isec =
470 list_entry(sbsec->isec_head.next,
471 struct inode_security_struct, list);
472 struct inode *inode = isec->inode;
473 spin_unlock(&sbsec->isec_lock);
474 inode = igrab(inode);
476 if (!IS_PRIVATE(inode))
480 spin_lock(&sbsec->isec_lock);
481 list_del_init(&isec->list);
484 spin_unlock(&sbsec->isec_lock);
490 * This function should allow an FS to ask what it's mount security
491 * options were so it can use those later for submounts, displaying
492 * mount options, or whatever.
494 static int selinux_get_mnt_opts(const struct super_block *sb,
495 struct security_mnt_opts *opts)
498 struct superblock_security_struct *sbsec = sb->s_security;
499 char *context = NULL;
503 security_init_mnt_opts(opts);
505 if (!(sbsec->flags & SE_SBINITIALIZED))
511 /* make sure we always check enough bits to cover the mask */
512 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
514 tmp = sbsec->flags & SE_MNTMASK;
515 /* count the number of mount options for this sb */
516 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
518 opts->num_mnt_opts++;
521 /* Check if the Label support flag is set */
522 if (sbsec->flags & SBLABEL_MNT)
523 opts->num_mnt_opts++;
525 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526 if (!opts->mnt_opts) {
531 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532 if (!opts->mnt_opts_flags) {
538 if (sbsec->flags & FSCONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->sid, &context, &len);
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
545 if (sbsec->flags & CONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
552 if (sbsec->flags & DEFCONTEXT_MNT) {
553 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
556 opts->mnt_opts[i] = context;
557 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
559 if (sbsec->flags & ROOTCONTEXT_MNT) {
560 struct inode *root = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *isec = root->i_security;
563 rc = security_sid_to_context(isec->sid, &context, &len);
566 opts->mnt_opts[i] = context;
567 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
569 if (sbsec->flags & SBLABEL_MNT) {
570 opts->mnt_opts[i] = NULL;
571 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
574 BUG_ON(i != opts->num_mnt_opts);
579 security_free_mnt_opts(opts);
583 static int bad_option(struct superblock_security_struct *sbsec, char flag,
584 u32 old_sid, u32 new_sid)
586 char mnt_flags = sbsec->flags & SE_MNTMASK;
588 /* check if the old mount command had the same options */
589 if (sbsec->flags & SE_SBINITIALIZED)
590 if (!(sbsec->flags & flag) ||
591 (old_sid != new_sid))
594 /* check if we were passed the same options twice,
595 * aka someone passed context=a,context=b
597 if (!(sbsec->flags & SE_SBINITIALIZED))
598 if (mnt_flags & flag)
604 * Allow filesystems with binary mount data to explicitly set mount point
605 * labeling information.
607 static int selinux_set_mnt_opts(struct super_block *sb,
608 struct security_mnt_opts *opts,
609 unsigned long kern_flags,
610 unsigned long *set_kern_flags)
612 const struct cred *cred = current_cred();
614 struct superblock_security_struct *sbsec = sb->s_security;
615 const char *name = sb->s_type->name;
616 struct inode *inode = sbsec->sb->s_root->d_inode;
617 struct inode_security_struct *root_isec = inode->i_security;
618 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619 u32 defcontext_sid = 0;
620 char **mount_options = opts->mnt_opts;
621 int *flags = opts->mnt_opts_flags;
622 int num_opts = opts->num_mnt_opts;
624 mutex_lock(&sbsec->lock);
626 if (!ss_initialized) {
628 /* Defer initialization until selinux_complete_init,
629 after the initial policy is loaded and the security
630 server is ready to handle calls. */
634 printk(KERN_WARNING "SELinux: Unable to set superblock options "
635 "before the security server is initialized\n");
638 if (kern_flags && !set_kern_flags) {
639 /* Specifying internal flags without providing a place to
640 * place the results is not allowed */
646 * Binary mount data FS will come through this function twice. Once
647 * from an explicit call and once from the generic calls from the vfs.
648 * Since the generic VFS calls will not contain any security mount data
649 * we need to skip the double mount verification.
651 * This does open a hole in which we will not notice if the first
652 * mount using this sb set explict options and a second mount using
653 * this sb does not set any security options. (The first options
654 * will be used for both mounts)
656 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
661 * parse the mount options, check if they are valid sids.
662 * also check if someone is trying to mount the same sb more
663 * than once with different security options.
665 for (i = 0; i < num_opts; i++) {
668 if (flags[i] == SBLABEL_MNT)
670 rc = security_context_to_sid(mount_options[i],
671 strlen(mount_options[i]), &sid, GFP_KERNEL);
673 printk(KERN_WARNING "SELinux: security_context_to_sid"
674 "(%s) failed for (dev %s, type %s) errno=%d\n",
675 mount_options[i], sb->s_id, name, rc);
682 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
684 goto out_double_mount;
686 sbsec->flags |= FSCONTEXT_MNT;
691 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
693 goto out_double_mount;
695 sbsec->flags |= CONTEXT_MNT;
697 case ROOTCONTEXT_MNT:
698 rootcontext_sid = sid;
700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
702 goto out_double_mount;
704 sbsec->flags |= ROOTCONTEXT_MNT;
708 defcontext_sid = sid;
710 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
712 goto out_double_mount;
714 sbsec->flags |= DEFCONTEXT_MNT;
723 if (sbsec->flags & SE_SBINITIALIZED) {
724 /* previously mounted with options, but not on this attempt? */
725 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726 goto out_double_mount;
731 if (strcmp(sb->s_type->name, "proc") == 0)
732 sbsec->flags |= SE_SBPROC;
734 if (!sbsec->behavior) {
736 * Determine the labeling behavior to use for this
739 rc = security_fs_use(sb);
742 "%s: security_fs_use(%s) returned %d\n",
743 __func__, sb->s_type->name, rc);
747 /* sets the context of the superblock for the fs being mounted. */
749 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
753 sbsec->sid = fscontext_sid;
757 * Switch to using mount point labeling behavior.
758 * sets the label used on all file below the mountpoint, and will set
759 * the superblock context if not already set.
761 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762 sbsec->behavior = SECURITY_FS_USE_NATIVE;
763 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
767 if (!fscontext_sid) {
768 rc = may_context_mount_sb_relabel(context_sid, sbsec,
772 sbsec->sid = context_sid;
774 rc = may_context_mount_inode_relabel(context_sid, sbsec,
779 if (!rootcontext_sid)
780 rootcontext_sid = context_sid;
782 sbsec->mntpoint_sid = context_sid;
783 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
786 if (rootcontext_sid) {
787 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
792 root_isec->sid = rootcontext_sid;
793 root_isec->initialized = 1;
796 if (defcontext_sid) {
797 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
800 printk(KERN_WARNING "SELinux: defcontext option is "
801 "invalid for this filesystem type\n");
805 if (defcontext_sid != sbsec->def_sid) {
806 rc = may_context_mount_inode_relabel(defcontext_sid,
812 sbsec->def_sid = defcontext_sid;
815 rc = sb_finish_set_opts(sb);
817 mutex_unlock(&sbsec->lock);
821 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
822 "security settings for (dev %s, type %s)\n", sb->s_id, name);
826 static int selinux_cmp_sb_context(const struct super_block *oldsb,
827 const struct super_block *newsb)
829 struct superblock_security_struct *old = oldsb->s_security;
830 struct superblock_security_struct *new = newsb->s_security;
831 char oldflags = old->flags & SE_MNTMASK;
832 char newflags = new->flags & SE_MNTMASK;
834 if (oldflags != newflags)
836 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
838 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
840 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
842 if (oldflags & ROOTCONTEXT_MNT) {
843 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845 if (oldroot->sid != newroot->sid)
850 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
851 "different security settings for (dev %s, "
852 "type %s)\n", newsb->s_id, newsb->s_type->name);
856 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857 struct super_block *newsb)
859 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860 struct superblock_security_struct *newsbsec = newsb->s_security;
862 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
863 int set_context = (oldsbsec->flags & CONTEXT_MNT);
864 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
867 * if the parent was able to be mounted it clearly had no special lsm
868 * mount options. thus we can safely deal with this superblock later
873 /* how can we clone if the old one wasn't set up?? */
874 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
876 /* if fs is reusing a sb, make sure that the contexts match */
877 if (newsbsec->flags & SE_SBINITIALIZED)
878 return selinux_cmp_sb_context(oldsb, newsb);
880 mutex_lock(&newsbsec->lock);
882 newsbsec->flags = oldsbsec->flags;
884 newsbsec->sid = oldsbsec->sid;
885 newsbsec->def_sid = oldsbsec->def_sid;
886 newsbsec->behavior = oldsbsec->behavior;
889 u32 sid = oldsbsec->mntpoint_sid;
893 if (!set_rootcontext) {
894 struct inode *newinode = newsb->s_root->d_inode;
895 struct inode_security_struct *newisec = newinode->i_security;
898 newsbsec->mntpoint_sid = sid;
900 if (set_rootcontext) {
901 const struct inode *oldinode = oldsb->s_root->d_inode;
902 const struct inode_security_struct *oldisec = oldinode->i_security;
903 struct inode *newinode = newsb->s_root->d_inode;
904 struct inode_security_struct *newisec = newinode->i_security;
906 newisec->sid = oldisec->sid;
909 sb_finish_set_opts(newsb);
910 mutex_unlock(&newsbsec->lock);
914 static int selinux_parse_opts_str(char *options,
915 struct security_mnt_opts *opts)
918 char *context = NULL, *defcontext = NULL;
919 char *fscontext = NULL, *rootcontext = NULL;
920 int rc, num_mnt_opts = 0;
922 opts->num_mnt_opts = 0;
924 /* Standard string-based options. */
925 while ((p = strsep(&options, "|")) != NULL) {
927 substring_t args[MAX_OPT_ARGS];
932 token = match_token(p, tokens, args);
936 if (context || defcontext) {
938 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
941 context = match_strdup(&args[0]);
951 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
954 fscontext = match_strdup(&args[0]);
961 case Opt_rootcontext:
964 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
967 rootcontext = match_strdup(&args[0]);
975 if (context || defcontext) {
977 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
980 defcontext = match_strdup(&args[0]);
986 case Opt_labelsupport:
990 printk(KERN_WARNING "SELinux: unknown mount option\n");
997 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1001 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002 if (!opts->mnt_opts_flags) {
1003 kfree(opts->mnt_opts);
1008 opts->mnt_opts[num_mnt_opts] = fscontext;
1009 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1012 opts->mnt_opts[num_mnt_opts] = context;
1013 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1016 opts->mnt_opts[num_mnt_opts] = rootcontext;
1017 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1020 opts->mnt_opts[num_mnt_opts] = defcontext;
1021 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1024 opts->num_mnt_opts = num_mnt_opts;
1035 * string mount options parsing and call set the sbsec
1037 static int superblock_doinit(struct super_block *sb, void *data)
1040 char *options = data;
1041 struct security_mnt_opts opts;
1043 security_init_mnt_opts(&opts);
1048 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1050 rc = selinux_parse_opts_str(options, &opts);
1055 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1058 security_free_mnt_opts(&opts);
1062 static void selinux_write_opts(struct seq_file *m,
1063 struct security_mnt_opts *opts)
1068 for (i = 0; i < opts->num_mnt_opts; i++) {
1071 if (opts->mnt_opts[i])
1072 has_comma = strchr(opts->mnt_opts[i], ',');
1076 switch (opts->mnt_opts_flags[i]) {
1078 prefix = CONTEXT_STR;
1081 prefix = FSCONTEXT_STR;
1083 case ROOTCONTEXT_MNT:
1084 prefix = ROOTCONTEXT_STR;
1086 case DEFCONTEXT_MNT:
1087 prefix = DEFCONTEXT_STR;
1091 seq_puts(m, LABELSUPP_STR);
1097 /* we need a comma before each option */
1099 seq_puts(m, prefix);
1102 seq_puts(m, opts->mnt_opts[i]);
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1110 struct security_mnt_opts opts;
1113 rc = selinux_get_mnt_opts(sb, &opts);
1115 /* before policy load we may get EINVAL, don't show anything */
1121 selinux_write_opts(m, &opts);
1123 security_free_mnt_opts(&opts);
1128 static inline u16 inode_mode_to_security_class(umode_t mode)
1130 switch (mode & S_IFMT) {
1132 return SECCLASS_SOCK_FILE;
1134 return SECCLASS_LNK_FILE;
1136 return SECCLASS_FILE;
1138 return SECCLASS_BLK_FILE;
1140 return SECCLASS_DIR;
1142 return SECCLASS_CHR_FILE;
1144 return SECCLASS_FIFO_FILE;
1148 return SECCLASS_FILE;
1151 static inline int default_protocol_stream(int protocol)
1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1156 static inline int default_protocol_dgram(int protocol)
1158 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1161 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1167 case SOCK_SEQPACKET:
1168 return SECCLASS_UNIX_STREAM_SOCKET;
1170 return SECCLASS_UNIX_DGRAM_SOCKET;
1177 if (default_protocol_stream(protocol))
1178 return SECCLASS_TCP_SOCKET;
1180 return SECCLASS_RAWIP_SOCKET;
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1185 return SECCLASS_RAWIP_SOCKET;
1187 return SECCLASS_DCCP_SOCKET;
1189 return SECCLASS_RAWIP_SOCKET;
1195 return SECCLASS_NETLINK_ROUTE_SOCKET;
1196 case NETLINK_FIREWALL:
1197 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198 case NETLINK_SOCK_DIAG:
1199 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 return SECCLASS_NETLINK_XFRM_SOCKET;
1204 case NETLINK_SELINUX:
1205 return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 return SECCLASS_NETLINK_AUDIT_SOCKET;
1208 case NETLINK_IP6_FW:
1209 return SECCLASS_NETLINK_IP6FW_SOCKET;
1210 case NETLINK_DNRTMSG:
1211 return SECCLASS_NETLINK_DNRT_SOCKET;
1212 case NETLINK_KOBJECT_UEVENT:
1213 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1215 return SECCLASS_NETLINK_SOCKET;
1218 return SECCLASS_PACKET_SOCKET;
1220 return SECCLASS_KEY_SOCKET;
1222 return SECCLASS_APPLETALK_SOCKET;
1225 return SECCLASS_SOCKET;
1228 #ifdef CONFIG_PROC_FS
1229 static int selinux_proc_get_sid(struct dentry *dentry,
1234 char *buffer, *path;
1236 buffer = (char *)__get_free_page(GFP_KERNEL);
1240 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1244 /* each process gets a /proc/PID/ entry. Strip off the
1245 * PID part to get a valid selinux labeling.
1246 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247 while (path[1] >= '0' && path[1] <= '9') {
1251 rc = security_genfs_sid("proc", path, tclass, sid);
1253 free_page((unsigned long)buffer);
1257 static int selinux_proc_get_sid(struct dentry *dentry,
1265 /* The inode's security attributes must be initialized before first use. */
1266 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1268 struct superblock_security_struct *sbsec = NULL;
1269 struct inode_security_struct *isec = inode->i_security;
1271 struct dentry *dentry;
1272 #define INITCONTEXTLEN 255
1273 char *context = NULL;
1277 if (isec->initialized)
1280 mutex_lock(&isec->lock);
1281 if (isec->initialized)
1284 sbsec = inode->i_sb->s_security;
1285 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286 /* Defer initialization until selinux_complete_init,
1287 after the initial policy is loaded and the security
1288 server is ready to handle calls. */
1289 spin_lock(&sbsec->isec_lock);
1290 if (list_empty(&isec->list))
1291 list_add(&isec->list, &sbsec->isec_head);
1292 spin_unlock(&sbsec->isec_lock);
1296 switch (sbsec->behavior) {
1297 case SECURITY_FS_USE_NATIVE:
1299 case SECURITY_FS_USE_XATTR:
1300 if (!inode->i_op->getxattr) {
1301 isec->sid = sbsec->def_sid;
1305 /* Need a dentry, since the xattr API requires one.
1306 Life would be simpler if we could just pass the inode. */
1308 /* Called from d_instantiate or d_splice_alias. */
1309 dentry = dget(opt_dentry);
1311 /* Called from selinux_complete_init, try to find a dentry. */
1312 dentry = d_find_alias(inode);
1316 * this is can be hit on boot when a file is accessed
1317 * before the policy is loaded. When we load policy we
1318 * may find inodes that have no dentry on the
1319 * sbsec->isec_head list. No reason to complain as these
1320 * will get fixed up the next time we go through
1321 * inode_doinit with a dentry, before these inodes could
1322 * be used again by userspace.
1327 len = INITCONTEXTLEN;
1328 context = kmalloc(len+1, GFP_NOFS);
1334 context[len] = '\0';
1335 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1337 if (rc == -ERANGE) {
1340 /* Need a larger buffer. Query for the right size. */
1341 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1348 context = kmalloc(len+1, GFP_NOFS);
1354 context[len] = '\0';
1355 rc = inode->i_op->getxattr(dentry,
1361 if (rc != -ENODATA) {
1362 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1363 "%d for dev=%s ino=%ld\n", __func__,
1364 -rc, inode->i_sb->s_id, inode->i_ino);
1368 /* Map ENODATA to the default file SID */
1369 sid = sbsec->def_sid;
1372 rc = security_context_to_sid_default(context, rc, &sid,
1376 char *dev = inode->i_sb->s_id;
1377 unsigned long ino = inode->i_ino;
1379 if (rc == -EINVAL) {
1380 if (printk_ratelimit())
1381 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382 "context=%s. This indicates you may need to relabel the inode or the "
1383 "filesystem in question.\n", ino, dev, context);
1385 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1386 "returned %d for dev=%s ino=%ld\n",
1387 __func__, context, -rc, dev, ino);
1390 /* Leave with the unlabeled SID */
1398 case SECURITY_FS_USE_TASK:
1399 isec->sid = isec->task_sid;
1401 case SECURITY_FS_USE_TRANS:
1402 /* Default to the fs SID. */
1403 isec->sid = sbsec->sid;
1405 /* Try to obtain a transition SID. */
1406 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408 isec->sclass, NULL, &sid);
1413 case SECURITY_FS_USE_MNTPOINT:
1414 isec->sid = sbsec->mntpoint_sid;
1417 /* Default to the fs superblock SID. */
1418 isec->sid = sbsec->sid;
1420 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421 /* We must have a dentry to determine the label on
1424 /* Called from d_instantiate or
1425 * d_splice_alias. */
1426 dentry = dget(opt_dentry);
1428 /* Called from selinux_complete_init, try to
1430 dentry = d_find_alias(inode);
1432 * This can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as
1436 * these will get fixed up the next time we go through
1437 * inode_doinit() with a dentry, before these inodes
1438 * could be used again by userspace.
1442 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1452 isec->initialized = 1;
1455 mutex_unlock(&isec->lock);
1457 if (isec->sclass == SECCLASS_FILE)
1458 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1462 /* Convert a Linux signal to an access vector. */
1463 static inline u32 signal_to_av(int sig)
1469 /* Commonly granted from child to parent. */
1470 perm = PROCESS__SIGCHLD;
1473 /* Cannot be caught or ignored */
1474 perm = PROCESS__SIGKILL;
1477 /* Cannot be caught or ignored */
1478 perm = PROCESS__SIGSTOP;
1481 /* All other signals. */
1482 perm = PROCESS__SIGNAL;
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1493 static int cred_has_perm(const struct cred *actor,
1494 const struct cred *target,
1497 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1499 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1508 static int task_has_perm(const struct task_struct *tsk1,
1509 const struct task_struct *tsk2,
1512 const struct task_security_struct *__tsec1, *__tsec2;
1516 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1517 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1519 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1528 static int current_has_perm(const struct task_struct *tsk,
1533 sid = current_sid();
1534 tsid = task_sid(tsk);
1535 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1538 #if CAP_LAST_CAP > 63
1539 #error Fix SELinux to handle capabilities > 63.
1542 /* Check whether a task is allowed to use a capability. */
1543 static int cred_has_capability(const struct cred *cred,
1546 struct common_audit_data ad;
1547 struct av_decision avd;
1549 u32 sid = cred_sid(cred);
1550 u32 av = CAP_TO_MASK(cap);
1553 ad.type = LSM_AUDIT_DATA_CAP;
1556 switch (CAP_TO_INDEX(cap)) {
1558 sclass = SECCLASS_CAPABILITY;
1561 sclass = SECCLASS_CAPABILITY2;
1565 "SELinux: out of range capability %d\n", cap);
1570 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571 if (audit == SECURITY_CAP_AUDIT) {
1572 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1579 /* Check whether a task is allowed to use a system operation. */
1580 static int task_has_system(struct task_struct *tsk,
1583 u32 sid = task_sid(tsk);
1585 return avc_has_perm(sid, SECINITSID_KERNEL,
1586 SECCLASS_SYSTEM, perms, NULL);
1589 /* Check whether a task has a particular permission to an inode.
1590 The 'adp' parameter is optional and allows other audit
1591 data to be passed (e.g. the dentry). */
1592 static int inode_has_perm(const struct cred *cred,
1593 struct inode *inode,
1595 struct common_audit_data *adp)
1597 struct inode_security_struct *isec;
1600 validate_creds(cred);
1602 if (unlikely(IS_PRIVATE(inode)))
1605 sid = cred_sid(cred);
1606 isec = inode->i_security;
1608 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1611 /* Same as inode_has_perm, but pass explicit audit data containing
1612 the dentry to help the auditing code to more easily generate the
1613 pathname if needed. */
1614 static inline int dentry_has_perm(const struct cred *cred,
1615 struct dentry *dentry,
1618 struct inode *inode = dentry->d_inode;
1619 struct common_audit_data ad;
1621 ad.type = LSM_AUDIT_DATA_DENTRY;
1622 ad.u.dentry = dentry;
1623 return inode_has_perm(cred, inode, av, &ad);
1626 /* Same as inode_has_perm, but pass explicit audit data containing
1627 the path to help the auditing code to more easily generate the
1628 pathname if needed. */
1629 static inline int path_has_perm(const struct cred *cred,
1633 struct inode *inode = path->dentry->d_inode;
1634 struct common_audit_data ad;
1636 ad.type = LSM_AUDIT_DATA_PATH;
1638 return inode_has_perm(cred, inode, av, &ad);
1641 /* Same as path_has_perm, but uses the inode from the file struct. */
1642 static inline int file_path_has_perm(const struct cred *cred,
1646 struct common_audit_data ad;
1648 ad.type = LSM_AUDIT_DATA_PATH;
1649 ad.u.path = file->f_path;
1650 return inode_has_perm(cred, file_inode(file), av, &ad);
1653 /* Check whether a task can use an open file descriptor to
1654 access an inode in a given way. Check access to the
1655 descriptor itself, and then use dentry_has_perm to
1656 check a particular permission to the file.
1657 Access to the descriptor is implicitly granted if it
1658 has the same SID as the process. If av is zero, then
1659 access to the file is not checked, e.g. for cases
1660 where only the descriptor is affected like seek. */
1661 static int file_has_perm(const struct cred *cred,
1665 struct file_security_struct *fsec = file->f_security;
1666 struct inode *inode = file_inode(file);
1667 struct common_audit_data ad;
1668 u32 sid = cred_sid(cred);
1671 ad.type = LSM_AUDIT_DATA_PATH;
1672 ad.u.path = file->f_path;
1674 if (sid != fsec->sid) {
1675 rc = avc_has_perm(sid, fsec->sid,
1683 /* av is zero if only checking access to the descriptor. */
1686 rc = inode_has_perm(cred, inode, av, &ad);
1692 /* Check whether a task can create a file. */
1693 static int may_create(struct inode *dir,
1694 struct dentry *dentry,
1697 const struct task_security_struct *tsec = current_security();
1698 struct inode_security_struct *dsec;
1699 struct superblock_security_struct *sbsec;
1701 struct common_audit_data ad;
1704 dsec = dir->i_security;
1705 sbsec = dir->i_sb->s_security;
1708 newsid = tsec->create_sid;
1710 ad.type = LSM_AUDIT_DATA_DENTRY;
1711 ad.u.dentry = dentry;
1713 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1714 DIR__ADD_NAME | DIR__SEARCH,
1719 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720 rc = security_transition_sid(sid, dsec->sid, tclass,
1721 &dentry->d_name, &newsid);
1726 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1730 return avc_has_perm(newsid, sbsec->sid,
1731 SECCLASS_FILESYSTEM,
1732 FILESYSTEM__ASSOCIATE, &ad);
1735 /* Check whether a task can create a key. */
1736 static int may_create_key(u32 ksid,
1737 struct task_struct *ctx)
1739 u32 sid = task_sid(ctx);
1741 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1745 #define MAY_UNLINK 1
1748 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1749 static int may_link(struct inode *dir,
1750 struct dentry *dentry,
1754 struct inode_security_struct *dsec, *isec;
1755 struct common_audit_data ad;
1756 u32 sid = current_sid();
1760 dsec = dir->i_security;
1761 isec = dentry->d_inode->i_security;
1763 ad.type = LSM_AUDIT_DATA_DENTRY;
1764 ad.u.dentry = dentry;
1767 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1783 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1788 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1792 static inline int may_rename(struct inode *old_dir,
1793 struct dentry *old_dentry,
1794 struct inode *new_dir,
1795 struct dentry *new_dentry)
1797 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798 struct common_audit_data ad;
1799 u32 sid = current_sid();
1801 int old_is_dir, new_is_dir;
1804 old_dsec = old_dir->i_security;
1805 old_isec = old_dentry->d_inode->i_security;
1806 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807 new_dsec = new_dir->i_security;
1809 ad.type = LSM_AUDIT_DATA_DENTRY;
1811 ad.u.dentry = old_dentry;
1812 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1813 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1816 rc = avc_has_perm(sid, old_isec->sid,
1817 old_isec->sclass, FILE__RENAME, &ad);
1820 if (old_is_dir && new_dir != old_dir) {
1821 rc = avc_has_perm(sid, old_isec->sid,
1822 old_isec->sclass, DIR__REPARENT, &ad);
1827 ad.u.dentry = new_dentry;
1828 av = DIR__ADD_NAME | DIR__SEARCH;
1829 if (new_dentry->d_inode)
1830 av |= DIR__REMOVE_NAME;
1831 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1834 if (new_dentry->d_inode) {
1835 new_isec = new_dentry->d_inode->i_security;
1836 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837 rc = avc_has_perm(sid, new_isec->sid,
1839 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1847 /* Check whether a task can perform a filesystem operation. */
1848 static int superblock_has_perm(const struct cred *cred,
1849 struct super_block *sb,
1851 struct common_audit_data *ad)
1853 struct superblock_security_struct *sbsec;
1854 u32 sid = cred_sid(cred);
1856 sbsec = sb->s_security;
1857 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1860 /* Convert a Linux mode and permission mask to an access vector. */
1861 static inline u32 file_mask_to_av(int mode, int mask)
1865 if (!S_ISDIR(mode)) {
1866 if (mask & MAY_EXEC)
1867 av |= FILE__EXECUTE;
1868 if (mask & MAY_READ)
1871 if (mask & MAY_APPEND)
1873 else if (mask & MAY_WRITE)
1877 if (mask & MAY_EXEC)
1879 if (mask & MAY_WRITE)
1881 if (mask & MAY_READ)
1888 /* Convert a Linux file to an access vector. */
1889 static inline u32 file_to_av(struct file *file)
1893 if (file->f_mode & FMODE_READ)
1895 if (file->f_mode & FMODE_WRITE) {
1896 if (file->f_flags & O_APPEND)
1903 * Special file opened with flags 3 for ioctl-only use.
1912 * Convert a file to an access vector and include the correct open
1915 static inline u32 open_file_to_av(struct file *file)
1917 u32 av = file_to_av(file);
1919 if (selinux_policycap_openperm)
1925 /* Hook functions begin here. */
1927 static int selinux_ptrace_access_check(struct task_struct *child,
1932 rc = cap_ptrace_access_check(child, mode);
1936 if (mode & PTRACE_MODE_READ) {
1937 u32 sid = current_sid();
1938 u32 csid = task_sid(child);
1939 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1942 return current_has_perm(child, PROCESS__PTRACE);
1945 static int selinux_ptrace_traceme(struct task_struct *parent)
1949 rc = cap_ptrace_traceme(parent);
1953 return task_has_perm(parent, current, PROCESS__PTRACE);
1956 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1961 error = current_has_perm(target, PROCESS__GETCAP);
1965 return cap_capget(target, effective, inheritable, permitted);
1968 static int selinux_capset(struct cred *new, const struct cred *old,
1969 const kernel_cap_t *effective,
1970 const kernel_cap_t *inheritable,
1971 const kernel_cap_t *permitted)
1975 error = cap_capset(new, old,
1976 effective, inheritable, permitted);
1980 return cred_has_perm(old, new, PROCESS__SETCAP);
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation. However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1993 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1998 rc = cap_capable(cred, ns, cap, audit);
2002 return cred_has_capability(cred, cap, audit);
2005 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2007 const struct cred *cred = current_cred();
2019 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2024 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2027 rc = 0; /* let the kernel handle invalid cmds */
2033 static int selinux_quota_on(struct dentry *dentry)
2035 const struct cred *cred = current_cred();
2037 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2040 static int selinux_syslog(int type)
2045 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2046 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2047 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2049 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2050 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2051 /* Set level of messages printed to console */
2052 case SYSLOG_ACTION_CONSOLE_LEVEL:
2053 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2055 case SYSLOG_ACTION_CLOSE: /* Close log */
2056 case SYSLOG_ACTION_OPEN: /* Open log */
2057 case SYSLOG_ACTION_READ: /* Read from log */
2058 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2059 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2061 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2075 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2077 int rc, cap_sys_admin = 0;
2079 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080 SECURITY_CAP_NOAUDIT);
2084 return __vm_enough_memory(mm, pages, cap_sys_admin);
2087 /* binprm security operations */
2089 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2091 const struct task_security_struct *old_tsec;
2092 struct task_security_struct *new_tsec;
2093 struct inode_security_struct *isec;
2094 struct common_audit_data ad;
2095 struct inode *inode = file_inode(bprm->file);
2098 rc = cap_bprm_set_creds(bprm);
2102 /* SELinux context only depends on initial program or script and not
2103 * the script interpreter */
2104 if (bprm->cred_prepared)
2107 old_tsec = current_security();
2108 new_tsec = bprm->cred->security;
2109 isec = inode->i_security;
2111 /* Default to the current task SID. */
2112 new_tsec->sid = old_tsec->sid;
2113 new_tsec->osid = old_tsec->sid;
2115 /* Reset fs, key, and sock SIDs on execve. */
2116 new_tsec->create_sid = 0;
2117 new_tsec->keycreate_sid = 0;
2118 new_tsec->sockcreate_sid = 0;
2120 if (old_tsec->exec_sid) {
2121 new_tsec->sid = old_tsec->exec_sid;
2122 /* Reset exec SID on execve. */
2123 new_tsec->exec_sid = 0;
2126 * Minimize confusion: if no_new_privs and a transition is
2127 * explicitly requested, then fail the exec.
2129 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2132 /* Check for a default transition on this program. */
2133 rc = security_transition_sid(old_tsec->sid, isec->sid,
2134 SECCLASS_PROCESS, NULL,
2140 ad.type = LSM_AUDIT_DATA_PATH;
2141 ad.u.path = bprm->file->f_path;
2143 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145 new_tsec->sid = old_tsec->sid;
2147 if (new_tsec->sid == old_tsec->sid) {
2148 rc = avc_has_perm(old_tsec->sid, isec->sid,
2149 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2153 /* Check permissions for the transition. */
2154 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2159 rc = avc_has_perm(new_tsec->sid, isec->sid,
2160 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2164 /* Check for shared state */
2165 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167 SECCLASS_PROCESS, PROCESS__SHARE,
2173 /* Make sure that anyone attempting to ptrace over a task that
2174 * changes its SID has the appropriate permit */
2176 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177 struct task_struct *tracer;
2178 struct task_security_struct *sec;
2182 tracer = ptrace_parent(current);
2183 if (likely(tracer != NULL)) {
2184 sec = __task_cred(tracer)->security;
2190 rc = avc_has_perm(ptsid, new_tsec->sid,
2192 PROCESS__PTRACE, NULL);
2198 /* Clear any possibly unsafe personality bits on exec: */
2199 bprm->per_clear |= PER_CLEAR_ON_SETID;
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2207 const struct task_security_struct *tsec = current_security();
2215 /* Enable secure mode for SIDs transitions unless
2216 the noatsecure permission is granted between
2217 the two SIDs, i.e. ahp returns 0. */
2218 atsecure = avc_has_perm(osid, sid,
2220 PROCESS__NOATSECURE, NULL);
2223 return (atsecure || cap_bprm_secureexec(bprm));
2226 static int match_file(const void *p, struct file *file, unsigned fd)
2228 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233 struct files_struct *files)
2235 struct file *file, *devnull = NULL;
2236 struct tty_struct *tty;
2240 tty = get_current_tty();
2242 spin_lock(&tty_files_lock);
2243 if (!list_empty(&tty->tty_files)) {
2244 struct tty_file_private *file_priv;
2246 /* Revalidate access to controlling tty.
2247 Use file_path_has_perm on the tty path directly
2248 rather than using file_has_perm, as this particular
2249 open file may belong to another process and we are
2250 only interested in the inode-based check here. */
2251 file_priv = list_first_entry(&tty->tty_files,
2252 struct tty_file_private, list);
2253 file = file_priv->file;
2254 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2257 spin_unlock(&tty_files_lock);
2260 /* Reset controlling tty. */
2264 /* Revalidate access to inherited open files. */
2265 n = iterate_fd(files, 0, match_file, cred);
2266 if (!n) /* none found? */
2269 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270 if (IS_ERR(devnull))
2272 /* replace all the matching ones with this */
2274 replace_fd(n - 1, devnull, 0);
2275 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2281 * Prepare a process for imminent new credential changes due to exec
2283 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2285 struct task_security_struct *new_tsec;
2286 struct rlimit *rlim, *initrlim;
2289 new_tsec = bprm->cred->security;
2290 if (new_tsec->sid == new_tsec->osid)
2293 /* Close files for which the new task SID is not authorized. */
2294 flush_unauthorized_files(bprm->cred, current->files);
2296 /* Always clear parent death signal on SID transitions. */
2297 current->pdeath_signal = 0;
2299 /* Check whether the new SID can inherit resource limits from the old
2300 * SID. If not, reset all soft limits to the lower of the current
2301 * task's hard limit and the init task's soft limit.
2303 * Note that the setting of hard limits (even to lower them) can be
2304 * controlled by the setrlimit check. The inclusion of the init task's
2305 * soft limit into the computation is to avoid resetting soft limits
2306 * higher than the default soft limit for cases where the default is
2307 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2309 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2310 PROCESS__RLIMITINH, NULL);
2312 /* protect against do_prlimit() */
2314 for (i = 0; i < RLIM_NLIMITS; i++) {
2315 rlim = current->signal->rlim + i;
2316 initrlim = init_task.signal->rlim + i;
2317 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2319 task_unlock(current);
2320 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2325 * Clean up the process immediately after the installation of new credentials
2328 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2330 const struct task_security_struct *tsec = current_security();
2331 struct itimerval itimer;
2341 /* Check whether the new SID can inherit signal state from the old SID.
2342 * If not, clear itimers to avoid subsequent signal generation and
2343 * flush and unblock signals.
2345 * This must occur _after_ the task SID has been updated so that any
2346 * kill done after the flush will be checked against the new SID.
2348 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2350 memset(&itimer, 0, sizeof itimer);
2351 for (i = 0; i < 3; i++)
2352 do_setitimer(i, &itimer, NULL);
2353 spin_lock_irq(¤t->sighand->siglock);
2354 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355 __flush_signals(current);
2356 flush_signal_handlers(current, 1);
2357 sigemptyset(¤t->blocked);
2359 spin_unlock_irq(¤t->sighand->siglock);
2362 /* Wake up the parent if it is waiting so that it can recheck
2363 * wait permission to the new task SID. */
2364 read_lock(&tasklist_lock);
2365 __wake_up_parent(current, current->real_parent);
2366 read_unlock(&tasklist_lock);
2369 /* superblock security operations */
2371 static int selinux_sb_alloc_security(struct super_block *sb)
2373 return superblock_alloc_security(sb);
2376 static void selinux_sb_free_security(struct super_block *sb)
2378 superblock_free_security(sb);
2381 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2386 return !memcmp(prefix, option, plen);
2389 static inline int selinux_option(char *option, int len)
2391 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2398 static inline void take_option(char **to, char *from, int *first, int len)
2405 memcpy(*to, from, len);
2409 static inline void take_selinux_option(char **to, char *from, int *first,
2412 int current_size = 0;
2420 while (current_size < len) {
2430 static int selinux_sb_copy_data(char *orig, char *copy)
2432 int fnosec, fsec, rc = 0;
2433 char *in_save, *in_curr, *in_end;
2434 char *sec_curr, *nosec_save, *nosec;
2440 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2448 in_save = in_end = orig;
2452 open_quote = !open_quote;
2453 if ((*in_end == ',' && open_quote == 0) ||
2455 int len = in_end - in_curr;
2457 if (selinux_option(in_curr, len))
2458 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2460 take_option(&nosec, in_curr, &fnosec, len);
2462 in_curr = in_end + 1;
2464 } while (*in_end++);
2466 strcpy(in_save, nosec_save);
2467 free_page((unsigned long)nosec_save);
2472 static int selinux_sb_remount(struct super_block *sb, void *data)
2475 struct security_mnt_opts opts;
2476 char *secdata, **mount_options;
2477 struct superblock_security_struct *sbsec = sb->s_security;
2479 if (!(sbsec->flags & SE_SBINITIALIZED))
2485 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2488 security_init_mnt_opts(&opts);
2489 secdata = alloc_secdata();
2492 rc = selinux_sb_copy_data(data, secdata);
2494 goto out_free_secdata;
2496 rc = selinux_parse_opts_str(secdata, &opts);
2498 goto out_free_secdata;
2500 mount_options = opts.mnt_opts;
2501 flags = opts.mnt_opts_flags;
2503 for (i = 0; i < opts.num_mnt_opts; i++) {
2507 if (flags[i] == SBLABEL_MNT)
2509 len = strlen(mount_options[i]);
2510 rc = security_context_to_sid(mount_options[i], len, &sid,
2513 printk(KERN_WARNING "SELinux: security_context_to_sid"
2514 "(%s) failed for (dev %s, type %s) errno=%d\n",
2515 mount_options[i], sb->s_id, sb->s_type->name, rc);
2521 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522 goto out_bad_option;
2525 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526 goto out_bad_option;
2528 case ROOTCONTEXT_MNT: {
2529 struct inode_security_struct *root_isec;
2530 root_isec = sb->s_root->d_inode->i_security;
2532 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533 goto out_bad_option;
2536 case DEFCONTEXT_MNT:
2537 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538 goto out_bad_option;
2547 security_free_mnt_opts(&opts);
2549 free_secdata(secdata);
2552 printk(KERN_WARNING "SELinux: unable to change security options "
2553 "during remount (dev %s, type=%s)\n", sb->s_id,
2558 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2560 const struct cred *cred = current_cred();
2561 struct common_audit_data ad;
2564 rc = superblock_doinit(sb, data);
2568 /* Allow all mounts performed by the kernel */
2569 if (flags & MS_KERNMOUNT)
2572 ad.type = LSM_AUDIT_DATA_DENTRY;
2573 ad.u.dentry = sb->s_root;
2574 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2577 static int selinux_sb_statfs(struct dentry *dentry)
2579 const struct cred *cred = current_cred();
2580 struct common_audit_data ad;
2582 ad.type = LSM_AUDIT_DATA_DENTRY;
2583 ad.u.dentry = dentry->d_sb->s_root;
2584 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2587 static int selinux_mount(const char *dev_name,
2590 unsigned long flags,
2593 const struct cred *cred = current_cred();
2595 if (flags & MS_REMOUNT)
2596 return superblock_has_perm(cred, path->dentry->d_sb,
2597 FILESYSTEM__REMOUNT, NULL);
2599 return path_has_perm(cred, path, FILE__MOUNTON);
2602 static int selinux_umount(struct vfsmount *mnt, int flags)
2604 const struct cred *cred = current_cred();
2606 return superblock_has_perm(cred, mnt->mnt_sb,
2607 FILESYSTEM__UNMOUNT, NULL);
2610 /* inode security operations */
2612 static int selinux_inode_alloc_security(struct inode *inode)
2614 return inode_alloc_security(inode);
2617 static void selinux_inode_free_security(struct inode *inode)
2619 inode_free_security(inode);
2622 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623 struct qstr *name, void **ctx,
2626 const struct cred *cred = current_cred();
2627 struct task_security_struct *tsec;
2628 struct inode_security_struct *dsec;
2629 struct superblock_security_struct *sbsec;
2630 struct inode *dir = dentry->d_parent->d_inode;
2634 tsec = cred->security;
2635 dsec = dir->i_security;
2636 sbsec = dir->i_sb->s_security;
2638 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639 newsid = tsec->create_sid;
2641 rc = security_transition_sid(tsec->sid, dsec->sid,
2642 inode_mode_to_security_class(mode),
2647 "%s: security_transition_sid failed, rc=%d\n",
2653 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2656 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657 const struct qstr *qstr,
2659 void **value, size_t *len)
2661 const struct task_security_struct *tsec = current_security();
2662 struct inode_security_struct *dsec;
2663 struct superblock_security_struct *sbsec;
2664 u32 sid, newsid, clen;
2668 dsec = dir->i_security;
2669 sbsec = dir->i_sb->s_security;
2672 newsid = tsec->create_sid;
2674 if ((sbsec->flags & SE_SBINITIALIZED) &&
2675 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676 newsid = sbsec->mntpoint_sid;
2677 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678 rc = security_transition_sid(sid, dsec->sid,
2679 inode_mode_to_security_class(inode->i_mode),
2682 printk(KERN_WARNING "%s: "
2683 "security_transition_sid failed, rc=%d (dev=%s "
2686 -rc, inode->i_sb->s_id, inode->i_ino);
2691 /* Possibly defer initialization to selinux_complete_init. */
2692 if (sbsec->flags & SE_SBINITIALIZED) {
2693 struct inode_security_struct *isec = inode->i_security;
2694 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2696 isec->initialized = 1;
2699 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2703 *name = XATTR_SELINUX_SUFFIX;
2706 rc = security_sid_to_context_force(newsid, &context, &clen);
2716 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2718 return may_create(dir, dentry, SECCLASS_FILE);
2721 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2723 return may_link(dir, old_dentry, MAY_LINK);
2726 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2728 return may_link(dir, dentry, MAY_UNLINK);
2731 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2733 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2736 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2738 return may_create(dir, dentry, SECCLASS_DIR);
2741 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2743 return may_link(dir, dentry, MAY_RMDIR);
2746 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2748 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2751 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752 struct inode *new_inode, struct dentry *new_dentry)
2754 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2757 static int selinux_inode_readlink(struct dentry *dentry)
2759 const struct cred *cred = current_cred();
2761 return dentry_has_perm(cred, dentry, FILE__READ);
2764 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2766 const struct cred *cred = current_cred();
2768 return dentry_has_perm(cred, dentry, FILE__READ);
2771 static noinline int audit_inode_permission(struct inode *inode,
2772 u32 perms, u32 audited, u32 denied,
2775 struct common_audit_data ad;
2776 struct inode_security_struct *isec = inode->i_security;
2779 ad.type = LSM_AUDIT_DATA_INODE;
2782 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783 audited, denied, &ad, flags);
2789 static int selinux_inode_permission(struct inode *inode, int mask)
2791 const struct cred *cred = current_cred();
2794 unsigned flags = mask & MAY_NOT_BLOCK;
2795 struct inode_security_struct *isec;
2797 struct av_decision avd;
2799 u32 audited, denied;
2801 from_access = mask & MAY_ACCESS;
2802 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2804 /* No permission to check. Existence test. */
2808 validate_creds(cred);
2810 if (unlikely(IS_PRIVATE(inode)))
2813 perms = file_mask_to_av(inode->i_mode, mask);
2815 sid = cred_sid(cred);
2816 isec = inode->i_security;
2818 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2819 audited = avc_audit_required(perms, &avd, rc,
2820 from_access ? FILE__AUDIT_ACCESS : 0,
2822 if (likely(!audited))
2825 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2831 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2833 const struct cred *cred = current_cred();
2834 unsigned int ia_valid = iattr->ia_valid;
2835 __u32 av = FILE__WRITE;
2837 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838 if (ia_valid & ATTR_FORCE) {
2839 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2845 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2849 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2852 return dentry_has_perm(cred, dentry, av);
2855 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2857 const struct cred *cred = current_cred();
2860 path.dentry = dentry;
2863 return path_has_perm(cred, &path, FILE__GETATTR);
2866 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2868 const struct cred *cred = current_cred();
2870 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871 sizeof XATTR_SECURITY_PREFIX - 1)) {
2872 if (!strcmp(name, XATTR_NAME_CAPS)) {
2873 if (!capable(CAP_SETFCAP))
2875 } else if (!capable(CAP_SYS_ADMIN)) {
2876 /* A different attribute in the security namespace.
2877 Restrict to administrator. */
2882 /* Not an attribute we recognize, so just check the
2883 ordinary setattr permission. */
2884 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2887 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888 const void *value, size_t size, int flags)
2890 struct inode *inode = dentry->d_inode;
2891 struct inode_security_struct *isec = inode->i_security;
2892 struct superblock_security_struct *sbsec;
2893 struct common_audit_data ad;
2894 u32 newsid, sid = current_sid();
2897 if (strcmp(name, XATTR_NAME_SELINUX))
2898 return selinux_inode_setotherxattr(dentry, name);
2900 sbsec = inode->i_sb->s_security;
2901 if (!(sbsec->flags & SBLABEL_MNT))
2904 if (!inode_owner_or_capable(inode))
2907 ad.type = LSM_AUDIT_DATA_DENTRY;
2908 ad.u.dentry = dentry;
2910 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2911 FILE__RELABELFROM, &ad);
2915 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2916 if (rc == -EINVAL) {
2917 if (!capable(CAP_MAC_ADMIN)) {
2918 struct audit_buffer *ab;
2922 /* We strip a nul only if it is at the end, otherwise the
2923 * context contains a nul and we should audit that */
2926 if (str[size - 1] == '\0')
2927 audit_size = size - 1;
2934 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2935 audit_log_format(ab, "op=setxattr invalid_context=");
2936 audit_log_n_untrustedstring(ab, value, audit_size);
2941 rc = security_context_to_sid_force(value, size, &newsid);
2946 rc = avc_has_perm(sid, newsid, isec->sclass,
2947 FILE__RELABELTO, &ad);
2951 rc = security_validate_transition(isec->sid, newsid, sid,
2956 return avc_has_perm(newsid,
2958 SECCLASS_FILESYSTEM,
2959 FILESYSTEM__ASSOCIATE,
2963 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964 const void *value, size_t size,
2967 struct inode *inode = dentry->d_inode;
2968 struct inode_security_struct *isec = inode->i_security;
2972 if (strcmp(name, XATTR_NAME_SELINUX)) {
2973 /* Not an attribute we recognize, so nothing to do. */
2977 rc = security_context_to_sid_force(value, size, &newsid);
2979 printk(KERN_ERR "SELinux: unable to map context to SID"
2980 "for (%s, %lu), rc=%d\n",
2981 inode->i_sb->s_id, inode->i_ino, -rc);
2985 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2987 isec->initialized = 1;
2992 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2994 const struct cred *cred = current_cred();
2996 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2999 static int selinux_inode_listxattr(struct dentry *dentry)
3001 const struct cred *cred = current_cred();
3003 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3006 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3008 if (strcmp(name, XATTR_NAME_SELINUX))
3009 return selinux_inode_setotherxattr(dentry, name);
3011 /* No one is allowed to remove a SELinux security label.
3012 You can change the label, but all data must be labeled. */
3017 * Copy the inode security context value to the user.
3019 * Permission check is handled by selinux_inode_getxattr hook.
3021 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3025 char *context = NULL;
3026 struct inode_security_struct *isec = inode->i_security;
3028 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3032 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033 * value even if it is not defined by current policy; otherwise,
3034 * use the in-core value under current policy.
3035 * Use the non-auditing forms of the permission checks since
3036 * getxattr may be called by unprivileged processes commonly
3037 * and lack of permission just means that we fall back to the
3038 * in-core context value, not a denial.
3040 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041 SECURITY_CAP_NOAUDIT);
3043 error = security_sid_to_context_force(isec->sid, &context,
3046 error = security_sid_to_context(isec->sid, &context, &size);
3059 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060 const void *value, size_t size, int flags)
3062 struct inode_security_struct *isec = inode->i_security;
3066 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3069 if (!value || !size)
3072 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3076 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3078 isec->initialized = 1;
3082 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3084 const int len = sizeof(XATTR_NAME_SELINUX);
3085 if (buffer && len <= buffer_size)
3086 memcpy(buffer, XATTR_NAME_SELINUX, len);
3090 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3092 struct inode_security_struct *isec = inode->i_security;
3096 /* file security operations */
3098 static int selinux_revalidate_file_permission(struct file *file, int mask)
3100 const struct cred *cred = current_cred();
3101 struct inode *inode = file_inode(file);
3103 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3107 return file_has_perm(cred, file,
3108 file_mask_to_av(inode->i_mode, mask));
3111 static int selinux_file_permission(struct file *file, int mask)
3113 struct inode *inode = file_inode(file);
3114 struct file_security_struct *fsec = file->f_security;
3115 struct inode_security_struct *isec = inode->i_security;
3116 u32 sid = current_sid();
3119 /* No permission to check. Existence test. */
3122 if (sid == fsec->sid && fsec->isid == isec->sid &&
3123 fsec->pseqno == avc_policy_seqno())
3124 /* No change since file_open check. */
3127 return selinux_revalidate_file_permission(file, mask);
3130 static int selinux_file_alloc_security(struct file *file)
3132 return file_alloc_security(file);
3135 static void selinux_file_free_security(struct file *file)
3137 file_free_security(file);
3140 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3143 const struct cred *cred = current_cred();
3153 case FS_IOC_GETFLAGS:
3155 case FS_IOC_GETVERSION:
3156 error = file_has_perm(cred, file, FILE__GETATTR);
3159 case FS_IOC_SETFLAGS:
3161 case FS_IOC_SETVERSION:
3162 error = file_has_perm(cred, file, FILE__SETATTR);
3165 /* sys_ioctl() checks */
3169 error = file_has_perm(cred, file, 0);
3174 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175 SECURITY_CAP_AUDIT);
3178 /* default case assumes that the command will go
3179 * to the file's ioctl() function.
3182 error = file_has_perm(cred, file, FILE__IOCTL);
3187 static int default_noexec;
3189 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3191 const struct cred *cred = current_cred();
3194 if (default_noexec &&
3195 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3197 * We are making executable an anonymous mapping or a
3198 * private file mapping that will also be writable.
3199 * This has an additional check.
3201 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3207 /* read access is always possible with a mapping */
3208 u32 av = FILE__READ;
3210 /* write access only matters if the mapping is shared */
3211 if (shared && (prot & PROT_WRITE))
3214 if (prot & PROT_EXEC)
3215 av |= FILE__EXECUTE;
3217 return file_has_perm(cred, file, av);
3224 static int selinux_mmap_addr(unsigned long addr)
3228 /* do DAC check on address space usage */
3229 rc = cap_mmap_addr(addr);
3233 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234 u32 sid = current_sid();
3235 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3236 MEMPROTECT__MMAP_ZERO, NULL);
3242 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243 unsigned long prot, unsigned long flags)
3245 if (selinux_checkreqprot)
3248 return file_map_prot_check(file, prot,
3249 (flags & MAP_TYPE) == MAP_SHARED);
3252 static int selinux_file_mprotect(struct vm_area_struct *vma,
3253 unsigned long reqprot,
3256 const struct cred *cred = current_cred();
3258 if (selinux_checkreqprot)
3261 if (default_noexec &&
3262 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3264 if (vma->vm_start >= vma->vm_mm->start_brk &&
3265 vma->vm_end <= vma->vm_mm->brk) {
3266 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3267 } else if (!vma->vm_file &&
3268 vma->vm_start <= vma->vm_mm->start_stack &&
3269 vma->vm_end >= vma->vm_mm->start_stack) {
3270 rc = current_has_perm(current, PROCESS__EXECSTACK);
3271 } else if (vma->vm_file && vma->anon_vma) {
3273 * We are making executable a file mapping that has
3274 * had some COW done. Since pages might have been
3275 * written, check ability to execute the possibly
3276 * modified content. This typically should only
3277 * occur for text relocations.
3279 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3285 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3288 static int selinux_file_lock(struct file *file, unsigned int cmd)
3290 const struct cred *cred = current_cred();
3292 return file_has_perm(cred, file, FILE__LOCK);
3295 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3298 const struct cred *cred = current_cred();
3303 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304 err = file_has_perm(cred, file, FILE__WRITE);
3313 case F_GETOWNER_UIDS:
3314 /* Just check FD__USE permission */
3315 err = file_has_perm(cred, file, 0);
3323 #if BITS_PER_LONG == 32
3328 err = file_has_perm(cred, file, FILE__LOCK);
3335 static int selinux_file_set_fowner(struct file *file)
3337 struct file_security_struct *fsec;
3339 fsec = file->f_security;
3340 fsec->fown_sid = current_sid();
3345 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3346 struct fown_struct *fown, int signum)
3349 u32 sid = task_sid(tsk);
3351 struct file_security_struct *fsec;
3353 /* struct fown_struct is never outside the context of a struct file */
3354 file = container_of(fown, struct file, f_owner);
3356 fsec = file->f_security;
3359 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3361 perm = signal_to_av(signum);
3363 return avc_has_perm(fsec->fown_sid, sid,
3364 SECCLASS_PROCESS, perm, NULL);
3367 static int selinux_file_receive(struct file *file)
3369 const struct cred *cred = current_cred();
3371 return file_has_perm(cred, file, file_to_av(file));
3374 static int selinux_file_open(struct file *file, const struct cred *cred)
3376 struct file_security_struct *fsec;
3377 struct inode_security_struct *isec;
3379 fsec = file->f_security;
3380 isec = file_inode(file)->i_security;
3382 * Save inode label and policy sequence number
3383 * at open-time so that selinux_file_permission
3384 * can determine whether revalidation is necessary.
3385 * Task label is already saved in the file security
3386 * struct as its SID.
3388 fsec->isid = isec->sid;
3389 fsec->pseqno = avc_policy_seqno();
3391 * Since the inode label or policy seqno may have changed
3392 * between the selinux_inode_permission check and the saving
3393 * of state above, recheck that access is still permitted.
3394 * Otherwise, access might never be revalidated against the
3395 * new inode label or new policy.
3396 * This check is not redundant - do not remove.
3398 return file_path_has_perm(cred, file, open_file_to_av(file));
3401 /* task security operations */
3403 static int selinux_task_create(unsigned long clone_flags)
3405 return current_has_perm(current, PROCESS__FORK);
3409 * allocate the SELinux part of blank credentials
3411 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3413 struct task_security_struct *tsec;
3415 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3419 cred->security = tsec;
3424 * detach and free the LSM part of a set of credentials
3426 static void selinux_cred_free(struct cred *cred)
3428 struct task_security_struct *tsec = cred->security;
3431 * cred->security == NULL if security_cred_alloc_blank() or
3432 * security_prepare_creds() returned an error.
3434 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3435 cred->security = (void *) 0x7UL;
3440 * prepare a new set of credentials for modification
3442 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3445 const struct task_security_struct *old_tsec;
3446 struct task_security_struct *tsec;
3448 old_tsec = old->security;
3450 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3454 new->security = tsec;
3459 * transfer the SELinux data to a blank set of creds
3461 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3463 const struct task_security_struct *old_tsec = old->security;
3464 struct task_security_struct *tsec = new->security;
3470 * set the security data for a kernel service
3471 * - all the creation contexts are set to unlabelled
3473 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3475 struct task_security_struct *tsec = new->security;
3476 u32 sid = current_sid();
3479 ret = avc_has_perm(sid, secid,
3480 SECCLASS_KERNEL_SERVICE,
3481 KERNEL_SERVICE__USE_AS_OVERRIDE,
3485 tsec->create_sid = 0;
3486 tsec->keycreate_sid = 0;
3487 tsec->sockcreate_sid = 0;
3493 * set the file creation context in a security record to the same as the
3494 * objective context of the specified inode
3496 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3498 struct inode_security_struct *isec = inode->i_security;
3499 struct task_security_struct *tsec = new->security;
3500 u32 sid = current_sid();
3503 ret = avc_has_perm(sid, isec->sid,
3504 SECCLASS_KERNEL_SERVICE,
3505 KERNEL_SERVICE__CREATE_FILES_AS,
3509 tsec->create_sid = isec->sid;
3513 static int selinux_kernel_module_request(char *kmod_name)
3516 struct common_audit_data ad;
3518 sid = task_sid(current);
3520 ad.type = LSM_AUDIT_DATA_KMOD;
3521 ad.u.kmod_name = kmod_name;
3523 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3524 SYSTEM__MODULE_REQUEST, &ad);
3527 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3529 return current_has_perm(p, PROCESS__SETPGID);
3532 static int selinux_task_getpgid(struct task_struct *p)
3534 return current_has_perm(p, PROCESS__GETPGID);
3537 static int selinux_task_getsid(struct task_struct *p)
3539 return current_has_perm(p, PROCESS__GETSESSION);
3542 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3544 *secid = task_sid(p);
3547 static int selinux_task_setnice(struct task_struct *p, int nice)
3551 rc = cap_task_setnice(p, nice);
3555 return current_has_perm(p, PROCESS__SETSCHED);
3558 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3562 rc = cap_task_setioprio(p, ioprio);
3566 return current_has_perm(p, PROCESS__SETSCHED);
3569 static int selinux_task_getioprio(struct task_struct *p)
3571 return current_has_perm(p, PROCESS__GETSCHED);
3574 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3575 struct rlimit *new_rlim)
3577 struct rlimit *old_rlim = p->signal->rlim + resource;
3579 /* Control the ability to change the hard limit (whether
3580 lowering or raising it), so that the hard limit can
3581 later be used as a safe reset point for the soft limit
3582 upon context transitions. See selinux_bprm_committing_creds. */
3583 if (old_rlim->rlim_max != new_rlim->rlim_max)
3584 return current_has_perm(p, PROCESS__SETRLIMIT);
3589 static int selinux_task_setscheduler(struct task_struct *p)
3593 rc = cap_task_setscheduler(p);
3597 return current_has_perm(p, PROCESS__SETSCHED);
3600 static int selinux_task_getscheduler(struct task_struct *p)
3602 return current_has_perm(p, PROCESS__GETSCHED);
3605 static int selinux_task_movememory(struct task_struct *p)
3607 return current_has_perm(p, PROCESS__SETSCHED);
3610 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3617 perm = PROCESS__SIGNULL; /* null signal; existence test */
3619 perm = signal_to_av(sig);
3621 rc = avc_has_perm(secid, task_sid(p),
3622 SECCLASS_PROCESS, perm, NULL);
3624 rc = current_has_perm(p, perm);
3628 static int selinux_task_wait(struct task_struct *p)
3630 return task_has_perm(p, current, PROCESS__SIGCHLD);
3633 static void selinux_task_to_inode(struct task_struct *p,
3634 struct inode *inode)
3636 struct inode_security_struct *isec = inode->i_security;
3637 u32 sid = task_sid(p);
3640 isec->initialized = 1;
3643 /* Returns error only if unable to parse addresses */
3644 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3645 struct common_audit_data *ad, u8 *proto)
3647 int offset, ihlen, ret = -EINVAL;
3648 struct iphdr _iph, *ih;
3650 offset = skb_network_offset(skb);
3651 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3655 ihlen = ih->ihl * 4;
3656 if (ihlen < sizeof(_iph))
3659 ad->u.net->v4info.saddr = ih->saddr;
3660 ad->u.net->v4info.daddr = ih->daddr;
3664 *proto = ih->protocol;
3666 switch (ih->protocol) {
3668 struct tcphdr _tcph, *th;
3670 if (ntohs(ih->frag_off) & IP_OFFSET)
3674 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3678 ad->u.net->sport = th->source;
3679 ad->u.net->dport = th->dest;
3684 struct udphdr _udph, *uh;
3686 if (ntohs(ih->frag_off) & IP_OFFSET)
3690 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3694 ad->u.net->sport = uh->source;
3695 ad->u.net->dport = uh->dest;
3699 case IPPROTO_DCCP: {
3700 struct dccp_hdr _dccph, *dh;
3702 if (ntohs(ih->frag_off) & IP_OFFSET)
3706 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3710 ad->u.net->sport = dh->dccph_sport;
3711 ad->u.net->dport = dh->dccph_dport;
3722 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3724 /* Returns error only if unable to parse addresses */
3725 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3726 struct common_audit_data *ad, u8 *proto)
3729 int ret = -EINVAL, offset;
3730 struct ipv6hdr _ipv6h, *ip6;
3733 offset = skb_network_offset(skb);
3734 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3738 ad->u.net->v6info.saddr = ip6->saddr;
3739 ad->u.net->v6info.daddr = ip6->daddr;
3742 nexthdr = ip6->nexthdr;
3743 offset += sizeof(_ipv6h);
3744 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3753 struct tcphdr _tcph, *th;
3755 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3759 ad->u.net->sport = th->source;
3760 ad->u.net->dport = th->dest;
3765 struct udphdr _udph, *uh;
3767 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3771 ad->u.net->sport = uh->source;
3772 ad->u.net->dport = uh->dest;
3776 case IPPROTO_DCCP: {
3777 struct dccp_hdr _dccph, *dh;
3779 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3783 ad->u.net->sport = dh->dccph_sport;
3784 ad->u.net->dport = dh->dccph_dport;
3788 /* includes fragments */
3798 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3799 char **_addrp, int src, u8 *proto)
3804 switch (ad->u.net->family) {
3806 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3809 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3810 &ad->u.net->v4info.daddr);
3813 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3815 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3818 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3819 &ad->u.net->v6info.daddr);
3829 "SELinux: failure in selinux_parse_skb(),"
3830 " unable to parse packet\n");
3840 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3842 * @family: protocol family
3843 * @sid: the packet's peer label SID
3846 * Check the various different forms of network peer labeling and determine
3847 * the peer label/SID for the packet; most of the magic actually occurs in
3848 * the security server function security_net_peersid_cmp(). The function
3849 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3850 * or -EACCES if @sid is invalid due to inconsistencies with the different
3854 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3861 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3864 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3868 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3869 if (unlikely(err)) {
3871 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3872 " unable to determine packet's peer label\n");
3880 * selinux_conn_sid - Determine the child socket label for a connection
3881 * @sk_sid: the parent socket's SID
3882 * @skb_sid: the packet's SID
3883 * @conn_sid: the resulting connection SID
3885 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3886 * combined with the MLS information from @skb_sid in order to create
3887 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3888 * of @sk_sid. Returns zero on success, negative values on failure.
3891 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3895 if (skb_sid != SECSID_NULL)
3896 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3903 /* socket security operations */
3905 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3906 u16 secclass, u32 *socksid)
3908 if (tsec->sockcreate_sid > SECSID_NULL) {
3909 *socksid = tsec->sockcreate_sid;
3913 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3917 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3919 struct sk_security_struct *sksec = sk->sk_security;
3920 struct common_audit_data ad;
3921 struct lsm_network_audit net = {0,};
3922 u32 tsid = task_sid(task);
3924 if (sksec->sid == SECINITSID_KERNEL)
3927 ad.type = LSM_AUDIT_DATA_NET;
3931 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3934 static int selinux_socket_create(int family, int type,
3935 int protocol, int kern)
3937 const struct task_security_struct *tsec = current_security();
3945 secclass = socket_type_to_security_class(family, type, protocol);
3946 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3950 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3953 static int selinux_socket_post_create(struct socket *sock, int family,
3954 int type, int protocol, int kern)
3956 const struct task_security_struct *tsec = current_security();
3957 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3958 struct sk_security_struct *sksec;
3961 isec->sclass = socket_type_to_security_class(family, type, protocol);
3964 isec->sid = SECINITSID_KERNEL;
3966 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3971 isec->initialized = 1;
3974 sksec = sock->sk->sk_security;
3975 sksec->sid = isec->sid;
3976 sksec->sclass = isec->sclass;
3977 err = selinux_netlbl_socket_post_create(sock->sk, family);
3983 /* Range of port numbers used to automatically bind.
3984 Need to determine whether we should perform a name_bind
3985 permission check between the socket and the port number. */
3987 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3989 struct sock *sk = sock->sk;
3993 err = sock_has_perm(current, sk, SOCKET__BIND);
3998 * If PF_INET or PF_INET6, check name_bind permission for the port.
3999 * Multiple address binding for SCTP is not supported yet: we just
4000 * check the first address now.
4002 family = sk->sk_family;
4003 if (family == PF_INET || family == PF_INET6) {
4005 struct sk_security_struct *sksec = sk->sk_security;
4006 struct common_audit_data ad;
4007 struct lsm_network_audit net = {0,};
4008 struct sockaddr_in *addr4 = NULL;
4009 struct sockaddr_in6 *addr6 = NULL;
4010 unsigned short snum;
4013 if (family == PF_INET) {
4014 addr4 = (struct sockaddr_in *)address;
4015 snum = ntohs(addr4->sin_port);
4016 addrp = (char *)&addr4->sin_addr.s_addr;
4018 addr6 = (struct sockaddr_in6 *)address;
4019 snum = ntohs(addr6->sin6_port);
4020 addrp = (char *)&addr6->sin6_addr.s6_addr;
4026 inet_get_local_port_range(sock_net(sk), &low, &high);
4028 if (snum < max(PROT_SOCK, low) || snum > high) {
4029 err = sel_netport_sid(sk->sk_protocol,
4033 ad.type = LSM_AUDIT_DATA_NET;
4035 ad.u.net->sport = htons(snum);
4036 ad.u.net->family = family;
4037 err = avc_has_perm(sksec->sid, sid,
4039 SOCKET__NAME_BIND, &ad);
4045 switch (sksec->sclass) {
4046 case SECCLASS_TCP_SOCKET:
4047 node_perm = TCP_SOCKET__NODE_BIND;
4050 case SECCLASS_UDP_SOCKET:
4051 node_perm = UDP_SOCKET__NODE_BIND;
4054 case SECCLASS_DCCP_SOCKET:
4055 node_perm = DCCP_SOCKET__NODE_BIND;
4059 node_perm = RAWIP_SOCKET__NODE_BIND;
4063 err = sel_netnode_sid(addrp, family, &sid);
4067 ad.type = LSM_AUDIT_DATA_NET;
4069 ad.u.net->sport = htons(snum);
4070 ad.u.net->family = family;
4072 if (family == PF_INET)
4073 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4075 ad.u.net->v6info.saddr = addr6->sin6_addr;
4077 err = avc_has_perm(sksec->sid, sid,
4078 sksec->sclass, node_perm, &ad);
4086 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4088 struct sock *sk = sock->sk;
4089 struct sk_security_struct *sksec = sk->sk_security;
4092 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4097 * If a TCP or DCCP socket, check name_connect permission for the port.
4099 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4100 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4101 struct common_audit_data ad;
4102 struct lsm_network_audit net = {0,};
4103 struct sockaddr_in *addr4 = NULL;
4104 struct sockaddr_in6 *addr6 = NULL;
4105 unsigned short snum;
4108 if (sk->sk_family == PF_INET) {
4109 addr4 = (struct sockaddr_in *)address;
4110 if (addrlen < sizeof(struct sockaddr_in))
4112 snum = ntohs(addr4->sin_port);
4114 addr6 = (struct sockaddr_in6 *)address;
4115 if (addrlen < SIN6_LEN_RFC2133)
4117 snum = ntohs(addr6->sin6_port);
4120 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4124 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4125 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4127 ad.type = LSM_AUDIT_DATA_NET;
4129 ad.u.net->dport = htons(snum);
4130 ad.u.net->family = sk->sk_family;
4131 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4136 err = selinux_netlbl_socket_connect(sk, address);
4142 static int selinux_socket_listen(struct socket *sock, int backlog)
4144 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4147 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4150 struct inode_security_struct *isec;
4151 struct inode_security_struct *newisec;
4153 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4157 newisec = SOCK_INODE(newsock)->i_security;
4159 isec = SOCK_INODE(sock)->i_security;
4160 newisec->sclass = isec->sclass;
4161 newisec->sid = isec->sid;
4162 newisec->initialized = 1;
4167 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4170 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4173 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4174 int size, int flags)
4176 return sock_has_perm(current, sock->sk, SOCKET__READ);
4179 static int selinux_socket_getsockname(struct socket *sock)
4181 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4184 static int selinux_socket_getpeername(struct socket *sock)
4186 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4189 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4193 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4197 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4200 static int selinux_socket_getsockopt(struct socket *sock, int level,
4203 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4206 static int selinux_socket_shutdown(struct socket *sock, int how)
4208 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4211 static int selinux_socket_unix_stream_connect(struct sock *sock,
4215 struct sk_security_struct *sksec_sock = sock->sk_security;
4216 struct sk_security_struct *sksec_other = other->sk_security;
4217 struct sk_security_struct *sksec_new = newsk->sk_security;
4218 struct common_audit_data ad;
4219 struct lsm_network_audit net = {0,};
4222 ad.type = LSM_AUDIT_DATA_NET;
4224 ad.u.net->sk = other;
4226 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4227 sksec_other->sclass,
4228 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4232 /* server child socket */
4233 sksec_new->peer_sid = sksec_sock->sid;
4234 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4239 /* connecting socket */
4240 sksec_sock->peer_sid = sksec_new->sid;
4245 static int selinux_socket_unix_may_send(struct socket *sock,
4246 struct socket *other)
4248 struct sk_security_struct *ssec = sock->sk->sk_security;
4249 struct sk_security_struct *osec = other->sk->sk_security;
4250 struct common_audit_data ad;
4251 struct lsm_network_audit net = {0,};
4253 ad.type = LSM_AUDIT_DATA_NET;
4255 ad.u.net->sk = other->sk;
4257 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4261 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4263 struct common_audit_data *ad)
4269 err = sel_netif_sid(ifindex, &if_sid);
4272 err = avc_has_perm(peer_sid, if_sid,
4273 SECCLASS_NETIF, NETIF__INGRESS, ad);
4277 err = sel_netnode_sid(addrp, family, &node_sid);
4280 return avc_has_perm(peer_sid, node_sid,
4281 SECCLASS_NODE, NODE__RECVFROM, ad);
4284 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4288 struct sk_security_struct *sksec = sk->sk_security;
4289 u32 sk_sid = sksec->sid;
4290 struct common_audit_data ad;
4291 struct lsm_network_audit net = {0,};
4294 ad.type = LSM_AUDIT_DATA_NET;
4296 ad.u.net->netif = skb->skb_iif;
4297 ad.u.net->family = family;
4298 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4302 if (selinux_secmark_enabled()) {
4303 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4309 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4312 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4317 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4320 struct sk_security_struct *sksec = sk->sk_security;
4321 u16 family = sk->sk_family;
4322 u32 sk_sid = sksec->sid;
4323 struct common_audit_data ad;
4324 struct lsm_network_audit net = {0,};
4329 if (family != PF_INET && family != PF_INET6)
4332 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4333 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4336 /* If any sort of compatibility mode is enabled then handoff processing
4337 * to the selinux_sock_rcv_skb_compat() function to deal with the
4338 * special handling. We do this in an attempt to keep this function
4339 * as fast and as clean as possible. */
4340 if (!selinux_policycap_netpeer)
4341 return selinux_sock_rcv_skb_compat(sk, skb, family);
4343 secmark_active = selinux_secmark_enabled();
4344 peerlbl_active = selinux_peerlbl_enabled();
4345 if (!secmark_active && !peerlbl_active)
4348 ad.type = LSM_AUDIT_DATA_NET;
4350 ad.u.net->netif = skb->skb_iif;
4351 ad.u.net->family = family;
4352 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4356 if (peerlbl_active) {
4359 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4362 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4365 selinux_netlbl_err(skb, err, 0);
4368 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4371 selinux_netlbl_err(skb, err, 0);
4376 if (secmark_active) {
4377 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4386 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4387 int __user *optlen, unsigned len)
4392 struct sk_security_struct *sksec = sock->sk->sk_security;
4393 u32 peer_sid = SECSID_NULL;
4395 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4396 sksec->sclass == SECCLASS_TCP_SOCKET)
4397 peer_sid = sksec->peer_sid;
4398 if (peer_sid == SECSID_NULL)
4399 return -ENOPROTOOPT;
4401 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4405 if (scontext_len > len) {
4410 if (copy_to_user(optval, scontext, scontext_len))
4414 if (put_user(scontext_len, optlen))
4420 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4422 u32 peer_secid = SECSID_NULL;
4425 if (skb && skb->protocol == htons(ETH_P_IP))
4427 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4430 family = sock->sk->sk_family;
4434 if (sock && family == PF_UNIX)
4435 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4437 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4440 *secid = peer_secid;
4441 if (peer_secid == SECSID_NULL)
4446 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4448 struct sk_security_struct *sksec;
4450 sksec = kzalloc(sizeof(*sksec), priority);
4454 sksec->peer_sid = SECINITSID_UNLABELED;
4455 sksec->sid = SECINITSID_UNLABELED;
4456 selinux_netlbl_sk_security_reset(sksec);
4457 sk->sk_security = sksec;
4462 static void selinux_sk_free_security(struct sock *sk)
4464 struct sk_security_struct *sksec = sk->sk_security;
4466 sk->sk_security = NULL;
4467 selinux_netlbl_sk_security_free(sksec);
4471 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4473 struct sk_security_struct *sksec = sk->sk_security;
4474 struct sk_security_struct *newsksec = newsk->sk_security;
4476 newsksec->sid = sksec->sid;
4477 newsksec->peer_sid = sksec->peer_sid;
4478 newsksec->sclass = sksec->sclass;
4480 selinux_netlbl_sk_security_reset(newsksec);
4483 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4486 *secid = SECINITSID_ANY_SOCKET;
4488 struct sk_security_struct *sksec = sk->sk_security;
4490 *secid = sksec->sid;
4494 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4496 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4497 struct sk_security_struct *sksec = sk->sk_security;
4499 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4500 sk->sk_family == PF_UNIX)
4501 isec->sid = sksec->sid;
4502 sksec->sclass = isec->sclass;
4505 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4506 struct request_sock *req)
4508 struct sk_security_struct *sksec = sk->sk_security;
4510 u16 family = req->rsk_ops->family;
4514 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4517 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4520 req->secid = connsid;
4521 req->peer_secid = peersid;
4523 return selinux_netlbl_inet_conn_request(req, family);
4526 static void selinux_inet_csk_clone(struct sock *newsk,
4527 const struct request_sock *req)
4529 struct sk_security_struct *newsksec = newsk->sk_security;
4531 newsksec->sid = req->secid;
4532 newsksec->peer_sid = req->peer_secid;
4533 /* NOTE: Ideally, we should also get the isec->sid for the
4534 new socket in sync, but we don't have the isec available yet.
4535 So we will wait until sock_graft to do it, by which
4536 time it will have been created and available. */
4538 /* We don't need to take any sort of lock here as we are the only
4539 * thread with access to newsksec */
4540 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4543 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4545 u16 family = sk->sk_family;
4546 struct sk_security_struct *sksec = sk->sk_security;
4548 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4549 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4552 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4555 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4557 skb_set_owner_w(skb, sk);
4560 static int selinux_secmark_relabel_packet(u32 sid)
4562 const struct task_security_struct *__tsec;
4565 __tsec = current_security();
4568 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4571 static void selinux_secmark_refcount_inc(void)
4573 atomic_inc(&selinux_secmark_refcount);
4576 static void selinux_secmark_refcount_dec(void)
4578 atomic_dec(&selinux_secmark_refcount);
4581 static void selinux_req_classify_flow(const struct request_sock *req,
4584 fl->flowi_secid = req->secid;
4587 static int selinux_tun_dev_alloc_security(void **security)
4589 struct tun_security_struct *tunsec;
4591 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4594 tunsec->sid = current_sid();
4600 static void selinux_tun_dev_free_security(void *security)
4605 static int selinux_tun_dev_create(void)
4607 u32 sid = current_sid();
4609 /* we aren't taking into account the "sockcreate" SID since the socket
4610 * that is being created here is not a socket in the traditional sense,
4611 * instead it is a private sock, accessible only to the kernel, and
4612 * representing a wide range of network traffic spanning multiple
4613 * connections unlike traditional sockets - check the TUN driver to
4614 * get a better understanding of why this socket is special */
4616 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4620 static int selinux_tun_dev_attach_queue(void *security)
4622 struct tun_security_struct *tunsec = security;
4624 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4625 TUN_SOCKET__ATTACH_QUEUE, NULL);
4628 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4630 struct tun_security_struct *tunsec = security;
4631 struct sk_security_struct *sksec = sk->sk_security;
4633 /* we don't currently perform any NetLabel based labeling here and it
4634 * isn't clear that we would want to do so anyway; while we could apply
4635 * labeling without the support of the TUN user the resulting labeled
4636 * traffic from the other end of the connection would almost certainly
4637 * cause confusion to the TUN user that had no idea network labeling
4638 * protocols were being used */
4640 sksec->sid = tunsec->sid;
4641 sksec->sclass = SECCLASS_TUN_SOCKET;
4646 static int selinux_tun_dev_open(void *security)
4648 struct tun_security_struct *tunsec = security;
4649 u32 sid = current_sid();
4652 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4653 TUN_SOCKET__RELABELFROM, NULL);
4656 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4657 TUN_SOCKET__RELABELTO, NULL);
4665 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4669 struct nlmsghdr *nlh;
4670 struct sk_security_struct *sksec = sk->sk_security;
4672 if (skb->len < NLMSG_HDRLEN) {
4676 nlh = nlmsg_hdr(skb);
4678 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4680 if (err == -EINVAL) {
4681 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4682 "SELinux: unrecognized netlink message"
4683 " type=%hu for sclass=%hu\n",
4684 nlh->nlmsg_type, sksec->sclass);
4685 if (!selinux_enforcing || security_get_allow_unknown())
4695 err = sock_has_perm(current, sk, perm);
4700 #ifdef CONFIG_NETFILTER
4702 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4708 struct common_audit_data ad;
4709 struct lsm_network_audit net = {0,};
4714 if (!selinux_policycap_netpeer)
4717 secmark_active = selinux_secmark_enabled();
4718 netlbl_active = netlbl_enabled();
4719 peerlbl_active = selinux_peerlbl_enabled();
4720 if (!secmark_active && !peerlbl_active)
4723 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4726 ad.type = LSM_AUDIT_DATA_NET;
4728 ad.u.net->netif = ifindex;
4729 ad.u.net->family = family;
4730 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4733 if (peerlbl_active) {
4734 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4737 selinux_netlbl_err(skb, err, 1);
4743 if (avc_has_perm(peer_sid, skb->secmark,
4744 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4748 /* we do this in the FORWARD path and not the POST_ROUTING
4749 * path because we want to make sure we apply the necessary
4750 * labeling before IPsec is applied so we can leverage AH
4752 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4758 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4759 struct sk_buff *skb,
4760 const struct net_device *in,
4761 const struct net_device *out,
4762 int (*okfn)(struct sk_buff *))
4764 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4767 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4769 struct sk_buff *skb,
4770 const struct net_device *in,
4771 const struct net_device *out,
4772 int (*okfn)(struct sk_buff *))
4774 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4778 static unsigned int selinux_ip_output(struct sk_buff *skb,
4784 if (!netlbl_enabled())
4787 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4788 * because we want to make sure we apply the necessary labeling
4789 * before IPsec is applied so we can leverage AH protection */
4792 struct sk_security_struct *sksec;
4794 if (sk->sk_state == TCP_LISTEN)
4795 /* if the socket is the listening state then this
4796 * packet is a SYN-ACK packet which means it needs to
4797 * be labeled based on the connection/request_sock and
4798 * not the parent socket. unfortunately, we can't
4799 * lookup the request_sock yet as it isn't queued on
4800 * the parent socket until after the SYN-ACK is sent.
4801 * the "solution" is to simply pass the packet as-is
4802 * as any IP option based labeling should be copied
4803 * from the initial connection request (in the IP
4804 * layer). it is far from ideal, but until we get a
4805 * security label in the packet itself this is the
4806 * best we can do. */
4809 /* standard practice, label using the parent socket */
4810 sksec = sk->sk_security;
4813 sid = SECINITSID_KERNEL;
4814 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4820 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4821 struct sk_buff *skb,
4822 const struct net_device *in,
4823 const struct net_device *out,
4824 int (*okfn)(struct sk_buff *))
4826 return selinux_ip_output(skb, PF_INET);
4829 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4833 struct sock *sk = skb->sk;
4834 struct sk_security_struct *sksec;
4835 struct common_audit_data ad;
4836 struct lsm_network_audit net = {0,};
4842 sksec = sk->sk_security;
4844 ad.type = LSM_AUDIT_DATA_NET;
4846 ad.u.net->netif = ifindex;
4847 ad.u.net->family = family;
4848 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4851 if (selinux_secmark_enabled())
4852 if (avc_has_perm(sksec->sid, skb->secmark,
4853 SECCLASS_PACKET, PACKET__SEND, &ad))
4854 return NF_DROP_ERR(-ECONNREFUSED);
4856 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4857 return NF_DROP_ERR(-ECONNREFUSED);
4862 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4868 struct common_audit_data ad;
4869 struct lsm_network_audit net = {0,};
4874 /* If any sort of compatibility mode is enabled then handoff processing
4875 * to the selinux_ip_postroute_compat() function to deal with the
4876 * special handling. We do this in an attempt to keep this function
4877 * as fast and as clean as possible. */
4878 if (!selinux_policycap_netpeer)
4879 return selinux_ip_postroute_compat(skb, ifindex, family);
4881 secmark_active = selinux_secmark_enabled();
4882 peerlbl_active = selinux_peerlbl_enabled();
4883 if (!secmark_active && !peerlbl_active)
4889 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4890 * packet transformation so allow the packet to pass without any checks
4891 * since we'll have another chance to perform access control checks
4892 * when the packet is on it's final way out.
4893 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4894 * is NULL, in this case go ahead and apply access control.
4895 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4896 * TCP listening state we cannot wait until the XFRM processing
4897 * is done as we will miss out on the SA label if we do;
4898 * unfortunately, this means more work, but it is only once per
4900 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4901 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4906 /* Without an associated socket the packet is either coming
4907 * from the kernel or it is being forwarded; check the packet
4908 * to determine which and if the packet is being forwarded
4909 * query the packet directly to determine the security label. */
4911 secmark_perm = PACKET__FORWARD_OUT;
4912 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4915 secmark_perm = PACKET__SEND;
4916 peer_sid = SECINITSID_KERNEL;
4918 } else if (sk->sk_state == TCP_LISTEN) {
4919 /* Locally generated packet but the associated socket is in the
4920 * listening state which means this is a SYN-ACK packet. In
4921 * this particular case the correct security label is assigned
4922 * to the connection/request_sock but unfortunately we can't
4923 * query the request_sock as it isn't queued on the parent
4924 * socket until after the SYN-ACK packet is sent; the only
4925 * viable choice is to regenerate the label like we do in
4926 * selinux_inet_conn_request(). See also selinux_ip_output()
4927 * for similar problems. */
4929 struct sk_security_struct *sksec = sk->sk_security;
4930 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4932 /* At this point, if the returned skb peerlbl is SECSID_NULL
4933 * and the packet has been through at least one XFRM
4934 * transformation then we must be dealing with the "final"
4935 * form of labeled IPsec packet; since we've already applied
4936 * all of our access controls on this packet we can safely
4937 * pass the packet. */
4938 if (skb_sid == SECSID_NULL) {
4941 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4945 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4948 return NF_DROP_ERR(-ECONNREFUSED);
4951 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4953 secmark_perm = PACKET__SEND;
4955 /* Locally generated packet, fetch the security label from the
4956 * associated socket. */
4957 struct sk_security_struct *sksec = sk->sk_security;
4958 peer_sid = sksec->sid;
4959 secmark_perm = PACKET__SEND;
4962 ad.type = LSM_AUDIT_DATA_NET;
4964 ad.u.net->netif = ifindex;
4965 ad.u.net->family = family;
4966 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4970 if (avc_has_perm(peer_sid, skb->secmark,
4971 SECCLASS_PACKET, secmark_perm, &ad))
4972 return NF_DROP_ERR(-ECONNREFUSED);
4974 if (peerlbl_active) {
4978 if (sel_netif_sid(ifindex, &if_sid))
4980 if (avc_has_perm(peer_sid, if_sid,
4981 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4982 return NF_DROP_ERR(-ECONNREFUSED);
4984 if (sel_netnode_sid(addrp, family, &node_sid))
4986 if (avc_has_perm(peer_sid, node_sid,
4987 SECCLASS_NODE, NODE__SENDTO, &ad))
4988 return NF_DROP_ERR(-ECONNREFUSED);
4994 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4995 struct sk_buff *skb,
4996 const struct net_device *in,
4997 const struct net_device *out,
4998 int (*okfn)(struct sk_buff *))
5000 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5003 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5004 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5005 struct sk_buff *skb,
5006 const struct net_device *in,
5007 const struct net_device *out,
5008 int (*okfn)(struct sk_buff *))
5010 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5014 #endif /* CONFIG_NETFILTER */
5016 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5020 err = cap_netlink_send(sk, skb);
5024 return selinux_nlmsg_perm(sk, skb);
5027 static int ipc_alloc_security(struct task_struct *task,
5028 struct kern_ipc_perm *perm,
5031 struct ipc_security_struct *isec;
5034 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5038 sid = task_sid(task);
5039 isec->sclass = sclass;
5041 perm->security = isec;
5046 static void ipc_free_security(struct kern_ipc_perm *perm)
5048 struct ipc_security_struct *isec = perm->security;
5049 perm->security = NULL;
5053 static int msg_msg_alloc_security(struct msg_msg *msg)
5055 struct msg_security_struct *msec;
5057 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5061 msec->sid = SECINITSID_UNLABELED;
5062 msg->security = msec;
5067 static void msg_msg_free_security(struct msg_msg *msg)
5069 struct msg_security_struct *msec = msg->security;
5071 msg->security = NULL;
5075 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5078 struct ipc_security_struct *isec;
5079 struct common_audit_data ad;
5080 u32 sid = current_sid();
5082 isec = ipc_perms->security;
5084 ad.type = LSM_AUDIT_DATA_IPC;
5085 ad.u.ipc_id = ipc_perms->key;
5087 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5090 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5092 return msg_msg_alloc_security(msg);
5095 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5097 msg_msg_free_security(msg);
5100 /* message queue security operations */
5101 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5103 struct ipc_security_struct *isec;
5104 struct common_audit_data ad;
5105 u32 sid = current_sid();
5108 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5112 isec = msq->q_perm.security;
5114 ad.type = LSM_AUDIT_DATA_IPC;
5115 ad.u.ipc_id = msq->q_perm.key;
5117 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5120 ipc_free_security(&msq->q_perm);
5126 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5128 ipc_free_security(&msq->q_perm);
5131 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5133 struct ipc_security_struct *isec;
5134 struct common_audit_data ad;
5135 u32 sid = current_sid();
5137 isec = msq->q_perm.security;
5139 ad.type = LSM_AUDIT_DATA_IPC;
5140 ad.u.ipc_id = msq->q_perm.key;
5142 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5143 MSGQ__ASSOCIATE, &ad);
5146 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5154 /* No specific object, just general system-wide information. */
5155 return task_has_system(current, SYSTEM__IPC_INFO);
5158 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5161 perms = MSGQ__SETATTR;
5164 perms = MSGQ__DESTROY;
5170 err = ipc_has_perm(&msq->q_perm, perms);
5174 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5176 struct ipc_security_struct *isec;
5177 struct msg_security_struct *msec;
5178 struct common_audit_data ad;
5179 u32 sid = current_sid();
5182 isec = msq->q_perm.security;
5183 msec = msg->security;
5186 * First time through, need to assign label to the message
5188 if (msec->sid == SECINITSID_UNLABELED) {
5190 * Compute new sid based on current process and
5191 * message queue this message will be stored in
5193 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5199 ad.type = LSM_AUDIT_DATA_IPC;
5200 ad.u.ipc_id = msq->q_perm.key;
5202 /* Can this process write to the queue? */
5203 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5206 /* Can this process send the message */
5207 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5210 /* Can the message be put in the queue? */
5211 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5212 MSGQ__ENQUEUE, &ad);
5217 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5218 struct task_struct *target,
5219 long type, int mode)
5221 struct ipc_security_struct *isec;
5222 struct msg_security_struct *msec;
5223 struct common_audit_data ad;
5224 u32 sid = task_sid(target);
5227 isec = msq->q_perm.security;
5228 msec = msg->security;
5230 ad.type = LSM_AUDIT_DATA_IPC;
5231 ad.u.ipc_id = msq->q_perm.key;
5233 rc = avc_has_perm(sid, isec->sid,
5234 SECCLASS_MSGQ, MSGQ__READ, &ad);
5236 rc = avc_has_perm(sid, msec->sid,
5237 SECCLASS_MSG, MSG__RECEIVE, &ad);
5241 /* Shared Memory security operations */
5242 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5249 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5253 isec = shp->shm_perm.security;
5255 ad.type = LSM_AUDIT_DATA_IPC;
5256 ad.u.ipc_id = shp->shm_perm.key;
5258 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5261 ipc_free_security(&shp->shm_perm);
5267 static void selinux_shm_free_security(struct shmid_kernel *shp)
5269 ipc_free_security(&shp->shm_perm);
5272 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5274 struct ipc_security_struct *isec;
5275 struct common_audit_data ad;
5276 u32 sid = current_sid();
5278 isec = shp->shm_perm.security;
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = shp->shm_perm.key;
5283 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5284 SHM__ASSOCIATE, &ad);
5287 /* Note, at this point, shp is locked down */
5288 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5296 /* No specific object, just general system-wide information. */
5297 return task_has_system(current, SYSTEM__IPC_INFO);
5300 perms = SHM__GETATTR | SHM__ASSOCIATE;
5303 perms = SHM__SETATTR;
5310 perms = SHM__DESTROY;
5316 err = ipc_has_perm(&shp->shm_perm, perms);
5320 static int selinux_shm_shmat(struct shmid_kernel *shp,
5321 char __user *shmaddr, int shmflg)
5325 if (shmflg & SHM_RDONLY)
5328 perms = SHM__READ | SHM__WRITE;
5330 return ipc_has_perm(&shp->shm_perm, perms);
5333 /* Semaphore security operations */
5334 static int selinux_sem_alloc_security(struct sem_array *sma)
5336 struct ipc_security_struct *isec;
5337 struct common_audit_data ad;
5338 u32 sid = current_sid();
5341 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5345 isec = sma->sem_perm.security;
5347 ad.type = LSM_AUDIT_DATA_IPC;
5348 ad.u.ipc_id = sma->sem_perm.key;
5350 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5353 ipc_free_security(&sma->sem_perm);
5359 static void selinux_sem_free_security(struct sem_array *sma)
5361 ipc_free_security(&sma->sem_perm);
5364 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5366 struct ipc_security_struct *isec;
5367 struct common_audit_data ad;
5368 u32 sid = current_sid();
5370 isec = sma->sem_perm.security;
5372 ad.type = LSM_AUDIT_DATA_IPC;
5373 ad.u.ipc_id = sma->sem_perm.key;
5375 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5376 SEM__ASSOCIATE, &ad);
5379 /* Note, at this point, sma is locked down */
5380 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5388 /* No specific object, just general system-wide information. */
5389 return task_has_system(current, SYSTEM__IPC_INFO);
5393 perms = SEM__GETATTR;
5404 perms = SEM__DESTROY;
5407 perms = SEM__SETATTR;
5411 perms = SEM__GETATTR | SEM__ASSOCIATE;
5417 err = ipc_has_perm(&sma->sem_perm, perms);
5421 static int selinux_sem_semop(struct sem_array *sma,
5422 struct sembuf *sops, unsigned nsops, int alter)
5427 perms = SEM__READ | SEM__WRITE;
5431 return ipc_has_perm(&sma->sem_perm, perms);
5434 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5440 av |= IPC__UNIX_READ;
5442 av |= IPC__UNIX_WRITE;
5447 return ipc_has_perm(ipcp, av);
5450 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5452 struct ipc_security_struct *isec = ipcp->security;
5456 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5459 inode_doinit_with_dentry(inode, dentry);
5462 static int selinux_getprocattr(struct task_struct *p,
5463 char *name, char **value)
5465 const struct task_security_struct *__tsec;
5471 error = current_has_perm(p, PROCESS__GETATTR);
5477 __tsec = __task_cred(p)->security;
5479 if (!strcmp(name, "current"))
5481 else if (!strcmp(name, "prev"))
5483 else if (!strcmp(name, "exec"))
5484 sid = __tsec->exec_sid;
5485 else if (!strcmp(name, "fscreate"))
5486 sid = __tsec->create_sid;
5487 else if (!strcmp(name, "keycreate"))
5488 sid = __tsec->keycreate_sid;
5489 else if (!strcmp(name, "sockcreate"))
5490 sid = __tsec->sockcreate_sid;
5498 error = security_sid_to_context(sid, value, &len);
5508 static int selinux_setprocattr(struct task_struct *p,
5509 char *name, void *value, size_t size)
5511 struct task_security_struct *tsec;
5512 struct task_struct *tracer;
5519 /* SELinux only allows a process to change its own
5520 security attributes. */
5525 * Basic control over ability to set these attributes at all.
5526 * current == p, but we'll pass them separately in case the
5527 * above restriction is ever removed.
5529 if (!strcmp(name, "exec"))
5530 error = current_has_perm(p, PROCESS__SETEXEC);
5531 else if (!strcmp(name, "fscreate"))
5532 error = current_has_perm(p, PROCESS__SETFSCREATE);
5533 else if (!strcmp(name, "keycreate"))
5534 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5535 else if (!strcmp(name, "sockcreate"))
5536 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5537 else if (!strcmp(name, "current"))
5538 error = current_has_perm(p, PROCESS__SETCURRENT);
5544 /* Obtain a SID for the context, if one was specified. */
5545 if (size && str[1] && str[1] != '\n') {
5546 if (str[size-1] == '\n') {
5550 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5551 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5552 if (!capable(CAP_MAC_ADMIN)) {
5553 struct audit_buffer *ab;
5556 /* We strip a nul only if it is at the end, otherwise the
5557 * context contains a nul and we should audit that */
5558 if (str[size - 1] == '\0')
5559 audit_size = size - 1;
5562 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5563 audit_log_format(ab, "op=fscreate invalid_context=");
5564 audit_log_n_untrustedstring(ab, value, audit_size);
5569 error = security_context_to_sid_force(value, size,
5576 new = prepare_creds();
5580 /* Permission checking based on the specified context is
5581 performed during the actual operation (execve,
5582 open/mkdir/...), when we know the full context of the
5583 operation. See selinux_bprm_set_creds for the execve
5584 checks and may_create for the file creation checks. The
5585 operation will then fail if the context is not permitted. */
5586 tsec = new->security;
5587 if (!strcmp(name, "exec")) {
5588 tsec->exec_sid = sid;
5589 } else if (!strcmp(name, "fscreate")) {
5590 tsec->create_sid = sid;
5591 } else if (!strcmp(name, "keycreate")) {
5592 error = may_create_key(sid, p);
5595 tsec->keycreate_sid = sid;
5596 } else if (!strcmp(name, "sockcreate")) {
5597 tsec->sockcreate_sid = sid;
5598 } else if (!strcmp(name, "current")) {
5603 /* Only allow single threaded processes to change context */
5605 if (!current_is_single_threaded()) {
5606 error = security_bounded_transition(tsec->sid, sid);
5611 /* Check permissions for the transition. */
5612 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5613 PROCESS__DYNTRANSITION, NULL);
5617 /* Check for ptracing, and update the task SID if ok.
5618 Otherwise, leave SID unchanged and fail. */
5621 tracer = ptrace_parent(p);
5623 ptsid = task_sid(tracer);
5627 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5628 PROCESS__PTRACE, NULL);
5647 static int selinux_ismaclabel(const char *name)
5649 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5652 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5654 return security_sid_to_context(secid, secdata, seclen);
5657 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5659 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5662 static void selinux_release_secctx(char *secdata, u32 seclen)
5668 * called with inode->i_mutex locked
5670 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5672 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5676 * called with inode->i_mutex locked
5678 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5680 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5683 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5686 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5695 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5696 unsigned long flags)
5698 const struct task_security_struct *tsec;
5699 struct key_security_struct *ksec;
5701 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5705 tsec = cred->security;
5706 if (tsec->keycreate_sid)
5707 ksec->sid = tsec->keycreate_sid;
5709 ksec->sid = tsec->sid;
5715 static void selinux_key_free(struct key *k)
5717 struct key_security_struct *ksec = k->security;
5723 static int selinux_key_permission(key_ref_t key_ref,
5724 const struct cred *cred,
5728 struct key_security_struct *ksec;
5731 /* if no specific permissions are requested, we skip the
5732 permission check. No serious, additional covert channels
5733 appear to be created. */
5737 sid = cred_sid(cred);
5739 key = key_ref_to_ptr(key_ref);
5740 ksec = key->security;
5742 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5745 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5747 struct key_security_struct *ksec = key->security;
5748 char *context = NULL;
5752 rc = security_sid_to_context(ksec->sid, &context, &len);
5761 static struct security_operations selinux_ops = {
5764 .ptrace_access_check = selinux_ptrace_access_check,
5765 .ptrace_traceme = selinux_ptrace_traceme,
5766 .capget = selinux_capget,
5767 .capset = selinux_capset,
5768 .capable = selinux_capable,
5769 .quotactl = selinux_quotactl,
5770 .quota_on = selinux_quota_on,
5771 .syslog = selinux_syslog,
5772 .vm_enough_memory = selinux_vm_enough_memory,
5774 .netlink_send = selinux_netlink_send,
5776 .bprm_set_creds = selinux_bprm_set_creds,
5777 .bprm_committing_creds = selinux_bprm_committing_creds,
5778 .bprm_committed_creds = selinux_bprm_committed_creds,
5779 .bprm_secureexec = selinux_bprm_secureexec,
5781 .sb_alloc_security = selinux_sb_alloc_security,
5782 .sb_free_security = selinux_sb_free_security,
5783 .sb_copy_data = selinux_sb_copy_data,
5784 .sb_remount = selinux_sb_remount,
5785 .sb_kern_mount = selinux_sb_kern_mount,
5786 .sb_show_options = selinux_sb_show_options,
5787 .sb_statfs = selinux_sb_statfs,
5788 .sb_mount = selinux_mount,
5789 .sb_umount = selinux_umount,
5790 .sb_set_mnt_opts = selinux_set_mnt_opts,
5791 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5792 .sb_parse_opts_str = selinux_parse_opts_str,
5794 .dentry_init_security = selinux_dentry_init_security,
5796 .inode_alloc_security = selinux_inode_alloc_security,
5797 .inode_free_security = selinux_inode_free_security,
5798 .inode_init_security = selinux_inode_init_security,
5799 .inode_create = selinux_inode_create,
5800 .inode_link = selinux_inode_link,
5801 .inode_unlink = selinux_inode_unlink,
5802 .inode_symlink = selinux_inode_symlink,
5803 .inode_mkdir = selinux_inode_mkdir,
5804 .inode_rmdir = selinux_inode_rmdir,
5805 .inode_mknod = selinux_inode_mknod,
5806 .inode_rename = selinux_inode_rename,
5807 .inode_readlink = selinux_inode_readlink,
5808 .inode_follow_link = selinux_inode_follow_link,
5809 .inode_permission = selinux_inode_permission,
5810 .inode_setattr = selinux_inode_setattr,
5811 .inode_getattr = selinux_inode_getattr,
5812 .inode_setxattr = selinux_inode_setxattr,
5813 .inode_post_setxattr = selinux_inode_post_setxattr,
5814 .inode_getxattr = selinux_inode_getxattr,
5815 .inode_listxattr = selinux_inode_listxattr,
5816 .inode_removexattr = selinux_inode_removexattr,
5817 .inode_getsecurity = selinux_inode_getsecurity,
5818 .inode_setsecurity = selinux_inode_setsecurity,
5819 .inode_listsecurity = selinux_inode_listsecurity,
5820 .inode_getsecid = selinux_inode_getsecid,
5822 .file_permission = selinux_file_permission,
5823 .file_alloc_security = selinux_file_alloc_security,
5824 .file_free_security = selinux_file_free_security,
5825 .file_ioctl = selinux_file_ioctl,
5826 .mmap_file = selinux_mmap_file,
5827 .mmap_addr = selinux_mmap_addr,
5828 .file_mprotect = selinux_file_mprotect,
5829 .file_lock = selinux_file_lock,
5830 .file_fcntl = selinux_file_fcntl,
5831 .file_set_fowner = selinux_file_set_fowner,
5832 .file_send_sigiotask = selinux_file_send_sigiotask,
5833 .file_receive = selinux_file_receive,
5835 .file_open = selinux_file_open,
5837 .task_create = selinux_task_create,
5838 .cred_alloc_blank = selinux_cred_alloc_blank,
5839 .cred_free = selinux_cred_free,
5840 .cred_prepare = selinux_cred_prepare,
5841 .cred_transfer = selinux_cred_transfer,
5842 .kernel_act_as = selinux_kernel_act_as,
5843 .kernel_create_files_as = selinux_kernel_create_files_as,
5844 .kernel_module_request = selinux_kernel_module_request,
5845 .task_setpgid = selinux_task_setpgid,
5846 .task_getpgid = selinux_task_getpgid,
5847 .task_getsid = selinux_task_getsid,
5848 .task_getsecid = selinux_task_getsecid,
5849 .task_setnice = selinux_task_setnice,
5850 .task_setioprio = selinux_task_setioprio,
5851 .task_getioprio = selinux_task_getioprio,
5852 .task_setrlimit = selinux_task_setrlimit,
5853 .task_setscheduler = selinux_task_setscheduler,
5854 .task_getscheduler = selinux_task_getscheduler,
5855 .task_movememory = selinux_task_movememory,
5856 .task_kill = selinux_task_kill,
5857 .task_wait = selinux_task_wait,
5858 .task_to_inode = selinux_task_to_inode,
5860 .ipc_permission = selinux_ipc_permission,
5861 .ipc_getsecid = selinux_ipc_getsecid,
5863 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5864 .msg_msg_free_security = selinux_msg_msg_free_security,
5866 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5867 .msg_queue_free_security = selinux_msg_queue_free_security,
5868 .msg_queue_associate = selinux_msg_queue_associate,
5869 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5870 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5871 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5873 .shm_alloc_security = selinux_shm_alloc_security,
5874 .shm_free_security = selinux_shm_free_security,
5875 .shm_associate = selinux_shm_associate,
5876 .shm_shmctl = selinux_shm_shmctl,
5877 .shm_shmat = selinux_shm_shmat,
5879 .sem_alloc_security = selinux_sem_alloc_security,
5880 .sem_free_security = selinux_sem_free_security,
5881 .sem_associate = selinux_sem_associate,
5882 .sem_semctl = selinux_sem_semctl,
5883 .sem_semop = selinux_sem_semop,
5885 .d_instantiate = selinux_d_instantiate,
5887 .getprocattr = selinux_getprocattr,
5888 .setprocattr = selinux_setprocattr,
5890 .ismaclabel = selinux_ismaclabel,
5891 .secid_to_secctx = selinux_secid_to_secctx,
5892 .secctx_to_secid = selinux_secctx_to_secid,
5893 .release_secctx = selinux_release_secctx,
5894 .inode_notifysecctx = selinux_inode_notifysecctx,
5895 .inode_setsecctx = selinux_inode_setsecctx,
5896 .inode_getsecctx = selinux_inode_getsecctx,
5898 .unix_stream_connect = selinux_socket_unix_stream_connect,
5899 .unix_may_send = selinux_socket_unix_may_send,
5901 .socket_create = selinux_socket_create,
5902 .socket_post_create = selinux_socket_post_create,
5903 .socket_bind = selinux_socket_bind,
5904 .socket_connect = selinux_socket_connect,
5905 .socket_listen = selinux_socket_listen,
5906 .socket_accept = selinux_socket_accept,
5907 .socket_sendmsg = selinux_socket_sendmsg,
5908 .socket_recvmsg = selinux_socket_recvmsg,
5909 .socket_getsockname = selinux_socket_getsockname,
5910 .socket_getpeername = selinux_socket_getpeername,
5911 .socket_getsockopt = selinux_socket_getsockopt,
5912 .socket_setsockopt = selinux_socket_setsockopt,
5913 .socket_shutdown = selinux_socket_shutdown,
5914 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5915 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5916 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5917 .sk_alloc_security = selinux_sk_alloc_security,
5918 .sk_free_security = selinux_sk_free_security,
5919 .sk_clone_security = selinux_sk_clone_security,
5920 .sk_getsecid = selinux_sk_getsecid,
5921 .sock_graft = selinux_sock_graft,
5922 .inet_conn_request = selinux_inet_conn_request,
5923 .inet_csk_clone = selinux_inet_csk_clone,
5924 .inet_conn_established = selinux_inet_conn_established,
5925 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5926 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5927 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5928 .req_classify_flow = selinux_req_classify_flow,
5929 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5930 .tun_dev_free_security = selinux_tun_dev_free_security,
5931 .tun_dev_create = selinux_tun_dev_create,
5932 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5933 .tun_dev_attach = selinux_tun_dev_attach,
5934 .tun_dev_open = selinux_tun_dev_open,
5935 .skb_owned_by = selinux_skb_owned_by,
5937 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5938 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5939 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5940 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5941 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5942 .xfrm_state_alloc = selinux_xfrm_state_alloc,
5943 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
5944 .xfrm_state_free_security = selinux_xfrm_state_free,
5945 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5946 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5947 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5948 .xfrm_decode_session = selinux_xfrm_decode_session,
5952 .key_alloc = selinux_key_alloc,
5953 .key_free = selinux_key_free,
5954 .key_permission = selinux_key_permission,
5955 .key_getsecurity = selinux_key_getsecurity,
5959 .audit_rule_init = selinux_audit_rule_init,
5960 .audit_rule_known = selinux_audit_rule_known,
5961 .audit_rule_match = selinux_audit_rule_match,
5962 .audit_rule_free = selinux_audit_rule_free,
5966 static __init int selinux_init(void)
5968 if (!security_module_enable(&selinux_ops)) {
5969 selinux_enabled = 0;
5973 if (!selinux_enabled) {
5974 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5978 printk(KERN_INFO "SELinux: Initializing.\n");
5980 /* Set the security state for the initial task. */
5981 cred_init_security();
5983 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5985 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5986 sizeof(struct inode_security_struct),
5987 0, SLAB_PANIC, NULL);
5990 if (register_security(&selinux_ops))
5991 panic("SELinux: Unable to register with kernel.\n");
5993 if (selinux_enforcing)
5994 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5996 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6001 static void delayed_superblock_init(struct super_block *sb, void *unused)
6003 superblock_doinit(sb, NULL);
6006 void selinux_complete_init(void)
6008 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6010 /* Set up any superblocks initialized prior to the policy load. */
6011 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6012 iterate_supers(delayed_superblock_init, NULL);
6015 /* SELinux requires early initialization in order to label
6016 all processes and objects when they are created. */
6017 security_initcall(selinux_init);
6019 #if defined(CONFIG_NETFILTER)
6021 static struct nf_hook_ops selinux_ipv4_ops[] = {
6023 .hook = selinux_ipv4_postroute,
6024 .owner = THIS_MODULE,
6026 .hooknum = NF_INET_POST_ROUTING,
6027 .priority = NF_IP_PRI_SELINUX_LAST,
6030 .hook = selinux_ipv4_forward,
6031 .owner = THIS_MODULE,
6033 .hooknum = NF_INET_FORWARD,
6034 .priority = NF_IP_PRI_SELINUX_FIRST,
6037 .hook = selinux_ipv4_output,
6038 .owner = THIS_MODULE,
6040 .hooknum = NF_INET_LOCAL_OUT,
6041 .priority = NF_IP_PRI_SELINUX_FIRST,
6045 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6047 static struct nf_hook_ops selinux_ipv6_ops[] = {
6049 .hook = selinux_ipv6_postroute,
6050 .owner = THIS_MODULE,
6052 .hooknum = NF_INET_POST_ROUTING,
6053 .priority = NF_IP6_PRI_SELINUX_LAST,
6056 .hook = selinux_ipv6_forward,
6057 .owner = THIS_MODULE,
6059 .hooknum = NF_INET_FORWARD,
6060 .priority = NF_IP6_PRI_SELINUX_FIRST,
6066 static int __init selinux_nf_ip_init(void)
6070 if (!selinux_enabled)
6073 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6075 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6077 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6079 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6080 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6082 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6089 __initcall(selinux_nf_ip_init);
6091 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6092 static void selinux_nf_ip_exit(void)
6094 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6096 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6097 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6098 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6103 #else /* CONFIG_NETFILTER */
6105 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6106 #define selinux_nf_ip_exit()
6109 #endif /* CONFIG_NETFILTER */
6111 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6112 static int selinux_disabled;
6114 int selinux_disable(void)
6116 if (ss_initialized) {
6117 /* Not permitted after initial policy load. */
6121 if (selinux_disabled) {
6122 /* Only do this once. */
6126 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6128 selinux_disabled = 1;
6129 selinux_enabled = 0;
6131 reset_security_ops();
6133 /* Try to destroy the avc node cache */
6136 /* Unregister netfilter hooks. */
6137 selinux_nf_ip_exit();
6139 /* Unregister selinuxfs. */