1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/udp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116 #include <linux/prefetch.h>
117 #include <linux/compat.h>
118 #include <linux/mroute.h>
119 #include <linux/mroute6.h>
120 #include <linux/icmpv6.h>
122 #include <linux/uaccess.h>
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <net/proto_memory.h>
131 #include <linux/net_tstamp.h>
132 #include <net/xfrm.h>
133 #include <linux/ipsec.h>
134 #include <net/cls_cgroup.h>
135 #include <net/netprio_cgroup.h>
136 #include <linux/sock_diag.h>
138 #include <linux/filter.h>
139 #include <net/sock_reuseport.h>
140 #include <net/bpf_sk_storage.h>
142 #include <trace/events/sock.h>
145 #include <net/busy_poll.h>
146 #include <net/phonet/phonet.h>
148 #include <linux/ethtool.h>
152 static DEFINE_MUTEX(proto_list_mutex);
153 static LIST_HEAD(proto_list);
155 static void sock_def_write_space_wfree(struct sock *sk);
156 static void sock_def_write_space(struct sock *sk);
159 * sk_ns_capable - General socket capability test
160 * @sk: Socket to use a capability on or through
161 * @user_ns: The user namespace of the capability to use
162 * @cap: The capability to use
164 * Test to see if the opener of the socket had when the socket was
165 * created and the current process has the capability @cap in the user
166 * namespace @user_ns.
168 bool sk_ns_capable(const struct sock *sk,
169 struct user_namespace *user_ns, int cap)
171 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
172 ns_capable(user_ns, cap);
174 EXPORT_SYMBOL(sk_ns_capable);
177 * sk_capable - Socket global capability test
178 * @sk: Socket to use a capability on or through
179 * @cap: The global capability to use
181 * Test to see if the opener of the socket had when the socket was
182 * created and the current process has the capability @cap in all user
185 bool sk_capable(const struct sock *sk, int cap)
187 return sk_ns_capable(sk, &init_user_ns, cap);
189 EXPORT_SYMBOL(sk_capable);
192 * sk_net_capable - Network namespace socket capability test
193 * @sk: Socket to use a capability on or through
194 * @cap: The capability to use
196 * Test to see if the opener of the socket had when the socket was created
197 * and the current process has the capability @cap over the network namespace
198 * the socket is a member of.
200 bool sk_net_capable(const struct sock *sk, int cap)
202 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
204 EXPORT_SYMBOL(sk_net_capable);
207 * Each address family might have different locking rules, so we have
208 * one slock key per address family and separate keys for internal and
211 static struct lock_class_key af_family_keys[AF_MAX];
212 static struct lock_class_key af_family_kern_keys[AF_MAX];
213 static struct lock_class_key af_family_slock_keys[AF_MAX];
214 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
217 * Make lock validator output more readable. (we pre-construct these
218 * strings build-time, so that runtime initialization of socket
222 #define _sock_locks(x) \
223 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
224 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
225 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
226 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
227 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
228 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
229 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
230 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
231 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
232 x "27" , x "28" , x "AF_CAN" , \
233 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
234 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
235 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
236 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
237 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
241 static const char *const af_family_key_strings[AF_MAX+1] = {
242 _sock_locks("sk_lock-")
244 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("slock-")
247 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("clock-")
251 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
252 _sock_locks("k-sk_lock-")
254 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
255 _sock_locks("k-slock-")
257 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
258 _sock_locks("k-clock-")
260 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
261 _sock_locks("rlock-")
263 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
264 _sock_locks("wlock-")
266 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
267 _sock_locks("elock-")
271 * sk_callback_lock and sk queues locking rules are per-address-family,
272 * so split the lock classes by using a per-AF key:
274 static struct lock_class_key af_callback_keys[AF_MAX];
275 static struct lock_class_key af_rlock_keys[AF_MAX];
276 static struct lock_class_key af_wlock_keys[AF_MAX];
277 static struct lock_class_key af_elock_keys[AF_MAX];
278 static struct lock_class_key af_kern_callback_keys[AF_MAX];
280 /* Run time adjustable parameters. */
281 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
282 EXPORT_SYMBOL(sysctl_wmem_max);
283 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
284 EXPORT_SYMBOL(sysctl_rmem_max);
285 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
286 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
288 int sysctl_tstamp_allow_data __read_mostly = 1;
290 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
291 EXPORT_SYMBOL_GPL(memalloc_socks_key);
294 * sk_set_memalloc - sets %SOCK_MEMALLOC
295 * @sk: socket to set it on
297 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
298 * It's the responsibility of the admin to adjust min_free_kbytes
299 * to meet the requirements
301 void sk_set_memalloc(struct sock *sk)
303 sock_set_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation |= __GFP_MEMALLOC;
305 static_branch_inc(&memalloc_socks_key);
307 EXPORT_SYMBOL_GPL(sk_set_memalloc);
309 void sk_clear_memalloc(struct sock *sk)
311 sock_reset_flag(sk, SOCK_MEMALLOC);
312 sk->sk_allocation &= ~__GFP_MEMALLOC;
313 static_branch_dec(&memalloc_socks_key);
316 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
317 * progress of swapping. SOCK_MEMALLOC may be cleared while
318 * it has rmem allocations due to the last swapfile being deactivated
319 * but there is a risk that the socket is unusable due to exceeding
320 * the rmem limits. Reclaim the reserves and obey rmem limits again.
324 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
326 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 unsigned int noreclaim_flag;
331 /* these should have been dropped before queueing */
332 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
334 noreclaim_flag = memalloc_noreclaim_save();
335 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
339 memalloc_noreclaim_restore(noreclaim_flag);
343 EXPORT_SYMBOL(__sk_backlog_rcv);
345 void sk_error_report(struct sock *sk)
347 sk->sk_error_report(sk);
349 switch (sk->sk_family) {
353 trace_inet_sk_error_report(sk);
359 EXPORT_SYMBOL(sk_error_report);
361 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
363 struct __kernel_sock_timeval tv;
365 if (timeo == MAX_SCHEDULE_TIMEOUT) {
369 tv.tv_sec = timeo / HZ;
370 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
373 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
374 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
375 *(struct old_timeval32 *)optval = tv32;
380 struct __kernel_old_timeval old_tv;
381 old_tv.tv_sec = tv.tv_sec;
382 old_tv.tv_usec = tv.tv_usec;
383 *(struct __kernel_old_timeval *)optval = old_tv;
384 return sizeof(old_tv);
387 *(struct __kernel_sock_timeval *)optval = tv;
390 EXPORT_SYMBOL(sock_get_timeout);
392 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
393 sockptr_t optval, int optlen, bool old_timeval)
395 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
396 struct old_timeval32 tv32;
398 if (optlen < sizeof(tv32))
401 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
403 tv->tv_sec = tv32.tv_sec;
404 tv->tv_usec = tv32.tv_usec;
405 } else if (old_timeval) {
406 struct __kernel_old_timeval old_tv;
408 if (optlen < sizeof(old_tv))
410 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
412 tv->tv_sec = old_tv.tv_sec;
413 tv->tv_usec = old_tv.tv_usec;
415 if (optlen < sizeof(*tv))
417 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
423 EXPORT_SYMBOL(sock_copy_user_timeval);
425 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
428 struct __kernel_sock_timeval tv;
429 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
435 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
439 static int warned __read_mostly;
441 WRITE_ONCE(*timeo_p, 0);
442 if (warned < 10 && net_ratelimit()) {
444 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
445 __func__, current->comm, task_pid_nr(current));
449 val = MAX_SCHEDULE_TIMEOUT;
450 if ((tv.tv_sec || tv.tv_usec) &&
451 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
452 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
454 WRITE_ONCE(*timeo_p, val);
458 static bool sock_needs_netstamp(const struct sock *sk)
460 switch (sk->sk_family) {
469 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
471 if (sk->sk_flags & flags) {
472 sk->sk_flags &= ~flags;
473 if (sock_needs_netstamp(sk) &&
474 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
475 net_disable_timestamp();
480 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
483 struct sk_buff_head *list = &sk->sk_receive_queue;
485 if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
486 atomic_inc(&sk->sk_drops);
487 trace_sock_rcvqueue_full(sk, skb);
491 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
492 atomic_inc(&sk->sk_drops);
497 skb_set_owner_r(skb, sk);
499 /* we escape from rcu protected region, make sure we dont leak
504 spin_lock_irqsave(&list->lock, flags);
505 sock_skb_set_dropcount(sk, skb);
506 __skb_queue_tail(list, skb);
507 spin_unlock_irqrestore(&list->lock, flags);
509 if (!sock_flag(sk, SOCK_DEAD))
510 sk->sk_data_ready(sk);
513 EXPORT_SYMBOL(__sock_queue_rcv_skb);
515 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
516 enum skb_drop_reason *reason)
518 enum skb_drop_reason drop_reason;
521 err = sk_filter(sk, skb);
523 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
526 err = __sock_queue_rcv_skb(sk, skb);
529 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
532 drop_reason = SKB_DROP_REASON_PROTO_MEM;
535 drop_reason = SKB_NOT_DROPPED_YET;
540 *reason = drop_reason;
543 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
545 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
546 const int nested, unsigned int trim_cap, bool refcounted)
548 int rc = NET_RX_SUCCESS;
550 if (sk_filter_trim_cap(sk, skb, trim_cap))
551 goto discard_and_relse;
555 if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
556 atomic_inc(&sk->sk_drops);
557 goto discard_and_relse;
560 bh_lock_sock_nested(sk);
563 if (!sock_owned_by_user(sk)) {
565 * trylock + unlock semantics:
567 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
569 rc = sk_backlog_rcv(sk, skb);
571 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
572 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
574 atomic_inc(&sk->sk_drops);
575 goto discard_and_relse;
587 EXPORT_SYMBOL(__sk_receive_skb);
589 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
591 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
593 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
595 struct dst_entry *dst = __sk_dst_get(sk);
597 if (dst && dst->obsolete &&
598 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
599 dst, cookie) == NULL) {
600 sk_tx_queue_clear(sk);
601 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
602 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
609 EXPORT_SYMBOL(__sk_dst_check);
611 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
613 struct dst_entry *dst = sk_dst_get(sk);
615 if (dst && dst->obsolete &&
616 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
617 dst, cookie) == NULL) {
625 EXPORT_SYMBOL(sk_dst_check);
627 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
629 int ret = -ENOPROTOOPT;
630 #ifdef CONFIG_NETDEVICES
631 struct net *net = sock_net(sk);
635 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
642 /* Paired with all READ_ONCE() done locklessly. */
643 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
645 if (sk->sk_prot->rehash)
646 sk->sk_prot->rehash(sk);
657 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
663 ret = sock_bindtoindex_locked(sk, ifindex);
669 EXPORT_SYMBOL(sock_bindtoindex);
671 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
673 int ret = -ENOPROTOOPT;
674 #ifdef CONFIG_NETDEVICES
675 struct net *net = sock_net(sk);
676 char devname[IFNAMSIZ];
683 /* Bind this socket to a particular device like "eth0",
684 * as specified in the passed interface name. If the
685 * name is "" or the option length is zero the socket
688 if (optlen > IFNAMSIZ - 1)
689 optlen = IFNAMSIZ - 1;
690 memset(devname, 0, sizeof(devname));
693 if (copy_from_sockptr(devname, optval, optlen))
697 if (devname[0] != '\0') {
698 struct net_device *dev;
701 dev = dev_get_by_name_rcu(net, devname);
703 index = dev->ifindex;
710 sockopt_lock_sock(sk);
711 ret = sock_bindtoindex_locked(sk, index);
712 sockopt_release_sock(sk);
719 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
720 sockptr_t optlen, int len)
722 int ret = -ENOPROTOOPT;
723 #ifdef CONFIG_NETDEVICES
724 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
725 struct net *net = sock_net(sk);
726 char devname[IFNAMSIZ];
728 if (bound_dev_if == 0) {
737 ret = netdev_get_name(net, devname, bound_dev_if);
741 len = strlen(devname) + 1;
744 if (copy_to_sockptr(optval, devname, len))
749 if (copy_to_sockptr(optlen, &len, sizeof(int)))
760 bool sk_mc_loop(const struct sock *sk)
762 if (dev_recursion_level())
766 /* IPV6_ADDRFORM can change sk->sk_family under us. */
767 switch (READ_ONCE(sk->sk_family)) {
769 return inet_test_bit(MC_LOOP, sk);
770 #if IS_ENABLED(CONFIG_IPV6)
772 return inet6_test_bit(MC6_LOOP, sk);
778 EXPORT_SYMBOL(sk_mc_loop);
780 void sock_set_reuseaddr(struct sock *sk)
783 sk->sk_reuse = SK_CAN_REUSE;
786 EXPORT_SYMBOL(sock_set_reuseaddr);
788 void sock_set_reuseport(struct sock *sk)
791 sk->sk_reuseport = true;
794 EXPORT_SYMBOL(sock_set_reuseport);
796 void sock_no_linger(struct sock *sk)
799 WRITE_ONCE(sk->sk_lingertime, 0);
800 sock_set_flag(sk, SOCK_LINGER);
803 EXPORT_SYMBOL(sock_no_linger);
805 void sock_set_priority(struct sock *sk, u32 priority)
807 WRITE_ONCE(sk->sk_priority, priority);
809 EXPORT_SYMBOL(sock_set_priority);
811 void sock_set_sndtimeo(struct sock *sk, s64 secs)
814 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
815 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
817 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
820 EXPORT_SYMBOL(sock_set_sndtimeo);
822 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
825 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
826 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
827 sock_set_flag(sk, SOCK_RCVTSTAMP);
828 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
830 sock_reset_flag(sk, SOCK_RCVTSTAMP);
831 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
835 void sock_enable_timestamps(struct sock *sk)
838 __sock_set_timestamps(sk, true, false, true);
841 EXPORT_SYMBOL(sock_enable_timestamps);
843 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
846 case SO_TIMESTAMP_OLD:
847 __sock_set_timestamps(sk, valbool, false, false);
849 case SO_TIMESTAMP_NEW:
850 __sock_set_timestamps(sk, valbool, true, false);
852 case SO_TIMESTAMPNS_OLD:
853 __sock_set_timestamps(sk, valbool, false, true);
855 case SO_TIMESTAMPNS_NEW:
856 __sock_set_timestamps(sk, valbool, true, true);
861 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
863 struct net *net = sock_net(sk);
864 struct net_device *dev = NULL;
869 if (sk->sk_bound_dev_if)
870 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
873 pr_err("%s: sock not bind to device\n", __func__);
877 num = ethtool_get_phc_vclocks(dev, &vclock_index);
880 for (i = 0; i < num; i++) {
881 if (*(vclock_index + i) == phc_index) {
893 WRITE_ONCE(sk->sk_bind_phc, phc_index);
898 int sock_set_timestamping(struct sock *sk, int optname,
899 struct so_timestamping timestamping)
901 int val = timestamping.flags;
904 if (val & ~SOF_TIMESTAMPING_MASK)
907 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
908 !(val & SOF_TIMESTAMPING_OPT_ID))
911 if (val & SOF_TIMESTAMPING_OPT_ID &&
912 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
914 if ((1 << sk->sk_state) &
915 (TCPF_CLOSE | TCPF_LISTEN))
917 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
918 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
920 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
922 atomic_set(&sk->sk_tskey, 0);
926 if (val & SOF_TIMESTAMPING_OPT_STATS &&
927 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
930 if (val & SOF_TIMESTAMPING_BIND_PHC) {
931 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
936 WRITE_ONCE(sk->sk_tsflags, val);
937 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
939 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
940 sock_enable_timestamp(sk,
941 SOCK_TIMESTAMPING_RX_SOFTWARE);
943 sock_disable_timestamp(sk,
944 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
948 void sock_set_keepalive(struct sock *sk)
951 if (sk->sk_prot->keepalive)
952 sk->sk_prot->keepalive(sk, true);
953 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
956 EXPORT_SYMBOL(sock_set_keepalive);
958 static void __sock_set_rcvbuf(struct sock *sk, int val)
960 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
961 * as a negative value.
963 val = min_t(int, val, INT_MAX / 2);
964 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
966 /* We double it on the way in to account for "struct sk_buff" etc.
967 * overhead. Applications assume that the SO_RCVBUF setting they make
968 * will allow that much actual data to be received on that socket.
970 * Applications are unaware that "struct sk_buff" and other overheads
971 * allocate from the receive buffer during socket buffer allocation.
973 * And after considering the possible alternatives, returning the value
974 * we actually used in getsockopt is the most desirable behavior.
976 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
979 void sock_set_rcvbuf(struct sock *sk, int val)
982 __sock_set_rcvbuf(sk, val);
985 EXPORT_SYMBOL(sock_set_rcvbuf);
987 static void __sock_set_mark(struct sock *sk, u32 val)
989 if (val != sk->sk_mark) {
990 WRITE_ONCE(sk->sk_mark, val);
995 void sock_set_mark(struct sock *sk, u32 val)
998 __sock_set_mark(sk, val);
1001 EXPORT_SYMBOL(sock_set_mark);
1003 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1005 /* Round down bytes to multiple of pages */
1006 bytes = round_down(bytes, PAGE_SIZE);
1008 WARN_ON(bytes > sk->sk_reserved_mem);
1009 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1013 static int sock_reserve_memory(struct sock *sk, int bytes)
1019 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1025 pages = sk_mem_pages(bytes);
1027 /* pre-charge to memcg */
1028 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1029 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1033 /* pre-charge to forward_alloc */
1034 sk_memory_allocated_add(sk, pages);
1035 allocated = sk_memory_allocated(sk);
1036 /* If the system goes into memory pressure with this
1037 * precharge, give up and return error.
1039 if (allocated > sk_prot_mem_limits(sk, 1)) {
1040 sk_memory_allocated_sub(sk, pages);
1041 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1044 sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1046 WRITE_ONCE(sk->sk_reserved_mem,
1047 sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1052 void sockopt_lock_sock(struct sock *sk)
1054 /* When current->bpf_ctx is set, the setsockopt is called from
1055 * a bpf prog. bpf has ensured the sk lock has been
1056 * acquired before calling setsockopt().
1058 if (has_current_bpf_ctx())
1063 EXPORT_SYMBOL(sockopt_lock_sock);
1065 void sockopt_release_sock(struct sock *sk)
1067 if (has_current_bpf_ctx())
1072 EXPORT_SYMBOL(sockopt_release_sock);
1074 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1076 return has_current_bpf_ctx() || ns_capable(ns, cap);
1078 EXPORT_SYMBOL(sockopt_ns_capable);
1080 bool sockopt_capable(int cap)
1082 return has_current_bpf_ctx() || capable(cap);
1084 EXPORT_SYMBOL(sockopt_capable);
1086 static int sockopt_validate_clockid(__kernel_clockid_t value)
1089 case CLOCK_REALTIME:
1090 case CLOCK_MONOTONIC:
1098 * This is meant for all protocols to use and covers goings on
1099 * at the socket level. Everything here is generic.
1102 int sk_setsockopt(struct sock *sk, int level, int optname,
1103 sockptr_t optval, unsigned int optlen)
1105 struct so_timestamping timestamping;
1106 struct socket *sock = sk->sk_socket;
1107 struct sock_txtime sk_txtime;
1114 * Options without arguments
1117 if (optname == SO_BINDTODEVICE)
1118 return sock_setbindtodevice(sk, optval, optlen);
1120 if (optlen < sizeof(int))
1123 if (copy_from_sockptr(&val, optval, sizeof(val)))
1126 valbool = val ? 1 : 0;
1128 /* handle options which do not require locking the socket. */
1131 if ((val >= 0 && val <= 6) ||
1132 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1133 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1134 sock_set_priority(sk, val);
1139 assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1142 assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1145 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1151 return -ENOPROTOOPT;
1152 #ifdef CONFIG_NET_RX_BUSY_POLL
1156 WRITE_ONCE(sk->sk_ll_usec, val);
1158 case SO_PREFER_BUSY_POLL:
1159 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1161 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1163 case SO_BUSY_POLL_BUDGET:
1164 if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1165 !sockopt_capable(CAP_NET_ADMIN))
1167 if (val < 0 || val > U16_MAX)
1169 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1172 case SO_MAX_PACING_RATE:
1174 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1175 unsigned long pacing_rate;
1177 if (sizeof(ulval) != sizeof(val) &&
1178 optlen >= sizeof(ulval) &&
1179 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1183 cmpxchg(&sk->sk_pacing_status,
1186 /* Pairs with READ_ONCE() from sk_getsockopt() */
1187 WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1188 pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1189 if (ulval < pacing_rate)
1190 WRITE_ONCE(sk->sk_pacing_rate, ulval);
1194 if (val < -1 || val > 1)
1196 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1197 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1198 /* Paired with READ_ONCE() in tcp_rtx_synack()
1199 * and sk_getsockopt().
1201 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1205 int (*set_peek_off)(struct sock *sk, int val);
1207 set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1209 ret = set_peek_off(sk, val);
1216 sockopt_lock_sock(sk);
1220 if (val && !sockopt_capable(CAP_NET_ADMIN))
1223 sock_valbool_flag(sk, SOCK_DBG, valbool);
1226 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1229 sk->sk_reuseport = valbool;
1232 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1236 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1239 /* Don't error on this BSD doesn't and if you think
1240 * about it this is right. Otherwise apps have to
1241 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1242 * are treated in BSD as hints
1244 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1246 /* Ensure val * 2 fits into an int, to prevent max_t()
1247 * from treating it as a negative value.
1249 val = min_t(int, val, INT_MAX / 2);
1250 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1251 WRITE_ONCE(sk->sk_sndbuf,
1252 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1253 /* Wake up sending tasks if we upped the value. */
1254 sk->sk_write_space(sk);
1257 case SO_SNDBUFFORCE:
1258 if (!sockopt_capable(CAP_NET_ADMIN)) {
1263 /* No negative values (to prevent underflow, as val will be
1271 /* Don't error on this BSD doesn't and if you think
1272 * about it this is right. Otherwise apps have to
1273 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1274 * are treated in BSD as hints
1276 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1279 case SO_RCVBUFFORCE:
1280 if (!sockopt_capable(CAP_NET_ADMIN)) {
1285 /* No negative values (to prevent underflow, as val will be
1288 __sock_set_rcvbuf(sk, max(val, 0));
1292 if (sk->sk_prot->keepalive)
1293 sk->sk_prot->keepalive(sk, valbool);
1294 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1298 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1302 sk->sk_no_check_tx = valbool;
1306 if (optlen < sizeof(ling)) {
1307 ret = -EINVAL; /* 1003.1g */
1310 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1314 if (!ling.l_onoff) {
1315 sock_reset_flag(sk, SOCK_LINGER);
1317 unsigned long t_sec = ling.l_linger;
1319 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1320 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1322 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1323 sock_set_flag(sk, SOCK_LINGER);
1330 case SO_TIMESTAMP_OLD:
1331 case SO_TIMESTAMP_NEW:
1332 case SO_TIMESTAMPNS_OLD:
1333 case SO_TIMESTAMPNS_NEW:
1334 sock_set_timestamp(sk, optname, valbool);
1337 case SO_TIMESTAMPING_NEW:
1338 case SO_TIMESTAMPING_OLD:
1339 if (optlen == sizeof(timestamping)) {
1340 if (copy_from_sockptr(×tamping, optval,
1341 sizeof(timestamping))) {
1346 memset(×tamping, 0, sizeof(timestamping));
1347 timestamping.flags = val;
1349 ret = sock_set_timestamping(sk, optname, timestamping);
1354 int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1359 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1361 ret = set_rcvlowat(sk, val);
1363 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1366 case SO_RCVTIMEO_OLD:
1367 case SO_RCVTIMEO_NEW:
1368 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1369 optlen, optname == SO_RCVTIMEO_OLD);
1372 case SO_SNDTIMEO_OLD:
1373 case SO_SNDTIMEO_NEW:
1374 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1375 optlen, optname == SO_SNDTIMEO_OLD);
1378 case SO_ATTACH_FILTER: {
1379 struct sock_fprog fprog;
1381 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1383 ret = sk_attach_filter(&fprog, sk);
1388 if (optlen == sizeof(u32)) {
1392 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1395 ret = sk_attach_bpf(ufd, sk);
1399 case SO_ATTACH_REUSEPORT_CBPF: {
1400 struct sock_fprog fprog;
1402 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1404 ret = sk_reuseport_attach_filter(&fprog, sk);
1407 case SO_ATTACH_REUSEPORT_EBPF:
1409 if (optlen == sizeof(u32)) {
1413 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1416 ret = sk_reuseport_attach_bpf(ufd, sk);
1420 case SO_DETACH_REUSEPORT_BPF:
1421 ret = reuseport_detach_prog(sk);
1424 case SO_DETACH_FILTER:
1425 ret = sk_detach_filter(sk);
1428 case SO_LOCK_FILTER:
1429 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1432 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1436 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1437 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1442 __sock_set_mark(sk, val);
1445 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1449 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1452 case SO_WIFI_STATUS:
1453 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1457 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1460 case SO_SELECT_ERR_QUEUE:
1461 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1465 case SO_INCOMING_CPU:
1466 reuseport_update_incoming_cpu(sk, val);
1471 dst_negative_advice(sk);
1475 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1476 if (!(sk_is_tcp(sk) ||
1477 (sk->sk_type == SOCK_DGRAM &&
1478 sk->sk_protocol == IPPROTO_UDP)))
1480 } else if (sk->sk_family != PF_RDS) {
1484 if (val < 0 || val > 1)
1487 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1492 if (optlen != sizeof(struct sock_txtime)) {
1495 } else if (copy_from_sockptr(&sk_txtime, optval,
1496 sizeof(struct sock_txtime))) {
1499 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1503 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1504 * scheduler has enough safe guards.
1506 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1507 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1512 ret = sockopt_validate_clockid(sk_txtime.clockid);
1516 sock_valbool_flag(sk, SOCK_TXTIME, true);
1517 sk->sk_clockid = sk_txtime.clockid;
1518 sk->sk_txtime_deadline_mode =
1519 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1520 sk->sk_txtime_report_errors =
1521 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1524 case SO_BINDTOIFINDEX:
1525 ret = sock_bindtoindex_locked(sk, val);
1529 if (val & ~SOCK_BUF_LOCK_MASK) {
1533 sk->sk_userlocks = val | (sk->sk_userlocks &
1534 ~SOCK_BUF_LOCK_MASK);
1537 case SO_RESERVE_MEM:
1546 delta = val - sk->sk_reserved_mem;
1548 sock_release_reserved_memory(sk, -delta);
1550 ret = sock_reserve_memory(sk, delta);
1558 sockopt_release_sock(sk);
1562 int sock_setsockopt(struct socket *sock, int level, int optname,
1563 sockptr_t optval, unsigned int optlen)
1565 return sk_setsockopt(sock->sk, level, optname,
1568 EXPORT_SYMBOL(sock_setsockopt);
1570 static const struct cred *sk_get_peer_cred(struct sock *sk)
1572 const struct cred *cred;
1574 spin_lock(&sk->sk_peer_lock);
1575 cred = get_cred(sk->sk_peer_cred);
1576 spin_unlock(&sk->sk_peer_lock);
1581 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1582 struct ucred *ucred)
1584 ucred->pid = pid_vnr(pid);
1585 ucred->uid = ucred->gid = -1;
1587 struct user_namespace *current_ns = current_user_ns();
1589 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1590 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1594 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1596 struct user_namespace *user_ns = current_user_ns();
1599 for (i = 0; i < src->ngroups; i++) {
1600 gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1602 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1609 int sk_getsockopt(struct sock *sk, int level, int optname,
1610 sockptr_t optval, sockptr_t optlen)
1612 struct socket *sock = sk->sk_socket;
1617 unsigned long ulval;
1619 struct old_timeval32 tm32;
1620 struct __kernel_old_timeval tm;
1621 struct __kernel_sock_timeval stm;
1622 struct sock_txtime txtime;
1623 struct so_timestamping timestamping;
1626 int lv = sizeof(int);
1629 if (copy_from_sockptr(&len, optlen, sizeof(int)))
1634 memset(&v, 0, sizeof(v));
1638 v.val = sock_flag(sk, SOCK_DBG);
1642 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1646 v.val = sock_flag(sk, SOCK_BROADCAST);
1650 v.val = READ_ONCE(sk->sk_sndbuf);
1654 v.val = READ_ONCE(sk->sk_rcvbuf);
1658 v.val = sk->sk_reuse;
1662 v.val = sk->sk_reuseport;
1666 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1670 v.val = sk->sk_type;
1674 v.val = sk->sk_protocol;
1678 v.val = sk->sk_family;
1682 v.val = -sock_error(sk);
1684 v.val = xchg(&sk->sk_err_soft, 0);
1688 v.val = sock_flag(sk, SOCK_URGINLINE);
1692 v.val = sk->sk_no_check_tx;
1696 v.val = READ_ONCE(sk->sk_priority);
1700 lv = sizeof(v.ling);
1701 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1702 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ;
1708 case SO_TIMESTAMP_OLD:
1709 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1710 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1711 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1714 case SO_TIMESTAMPNS_OLD:
1715 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1718 case SO_TIMESTAMP_NEW:
1719 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1722 case SO_TIMESTAMPNS_NEW:
1723 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1726 case SO_TIMESTAMPING_OLD:
1727 case SO_TIMESTAMPING_NEW:
1728 lv = sizeof(v.timestamping);
1729 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1730 * returning the flags when they were set through the same option.
1731 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1733 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1734 v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1735 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1739 case SO_RCVTIMEO_OLD:
1740 case SO_RCVTIMEO_NEW:
1741 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1742 SO_RCVTIMEO_OLD == optname);
1745 case SO_SNDTIMEO_OLD:
1746 case SO_SNDTIMEO_NEW:
1747 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1748 SO_SNDTIMEO_OLD == optname);
1752 v.val = READ_ONCE(sk->sk_rcvlowat);
1760 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1764 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1769 struct ucred peercred;
1770 if (len > sizeof(peercred))
1771 len = sizeof(peercred);
1773 spin_lock(&sk->sk_peer_lock);
1774 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1775 spin_unlock(&sk->sk_peer_lock);
1777 if (copy_to_sockptr(optval, &peercred, len))
1784 struct pid *peer_pid;
1785 struct file *pidfd_file = NULL;
1788 if (len > sizeof(pidfd))
1789 len = sizeof(pidfd);
1791 spin_lock(&sk->sk_peer_lock);
1792 peer_pid = get_pid(sk->sk_peer_pid);
1793 spin_unlock(&sk->sk_peer_lock);
1798 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1803 if (copy_to_sockptr(optval, &pidfd, len) ||
1804 copy_to_sockptr(optlen, &len, sizeof(int))) {
1805 put_unused_fd(pidfd);
1811 fd_install(pidfd, pidfd_file);
1817 const struct cred *cred;
1820 cred = sk_get_peer_cred(sk);
1824 n = cred->group_info->ngroups;
1825 if (len < n * sizeof(gid_t)) {
1826 len = n * sizeof(gid_t);
1828 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1830 len = n * sizeof(gid_t);
1832 ret = groups_to_user(optval, cred->group_info);
1841 struct sockaddr_storage address;
1843 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1848 if (copy_to_sockptr(optval, &address, len))
1853 /* Dubious BSD thing... Probably nobody even uses it, but
1854 * the UNIX standard wants it for whatever reason... -DaveM
1857 v.val = sk->sk_state == TCP_LISTEN;
1861 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1865 return security_socket_getpeersec_stream(sock,
1866 optval, optlen, len);
1869 v.val = READ_ONCE(sk->sk_mark);
1873 v.val = sock_flag(sk, SOCK_RCVMARK);
1877 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1880 case SO_WIFI_STATUS:
1881 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1885 if (!READ_ONCE(sock->ops)->set_peek_off)
1888 v.val = READ_ONCE(sk->sk_peek_off);
1891 v.val = sock_flag(sk, SOCK_NOFCS);
1894 case SO_BINDTODEVICE:
1895 return sock_getbindtodevice(sk, optval, optlen, len);
1898 len = sk_get_filter(sk, optval, len);
1904 case SO_LOCK_FILTER:
1905 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1908 case SO_BPF_EXTENSIONS:
1909 v.val = bpf_tell_extensions();
1912 case SO_SELECT_ERR_QUEUE:
1913 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1916 #ifdef CONFIG_NET_RX_BUSY_POLL
1918 v.val = READ_ONCE(sk->sk_ll_usec);
1920 case SO_PREFER_BUSY_POLL:
1921 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1925 case SO_MAX_PACING_RATE:
1926 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1927 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1928 lv = sizeof(v.ulval);
1929 v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1932 v.val = min_t(unsigned long, ~0U,
1933 READ_ONCE(sk->sk_max_pacing_rate));
1937 case SO_INCOMING_CPU:
1938 v.val = READ_ONCE(sk->sk_incoming_cpu);
1943 u32 meminfo[SK_MEMINFO_VARS];
1945 sk_get_meminfo(sk, meminfo);
1947 len = min_t(unsigned int, len, sizeof(meminfo));
1948 if (copy_to_sockptr(optval, &meminfo, len))
1954 #ifdef CONFIG_NET_RX_BUSY_POLL
1955 case SO_INCOMING_NAPI_ID:
1956 v.val = READ_ONCE(sk->sk_napi_id);
1958 /* aggregate non-NAPI IDs down to 0 */
1959 if (v.val < MIN_NAPI_ID)
1969 v.val64 = sock_gen_cookie(sk);
1973 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1977 lv = sizeof(v.txtime);
1978 v.txtime.clockid = sk->sk_clockid;
1979 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1980 SOF_TXTIME_DEADLINE_MODE : 0;
1981 v.txtime.flags |= sk->sk_txtime_report_errors ?
1982 SOF_TXTIME_REPORT_ERRORS : 0;
1985 case SO_BINDTOIFINDEX:
1986 v.val = READ_ONCE(sk->sk_bound_dev_if);
1989 case SO_NETNS_COOKIE:
1993 v.val64 = sock_net(sk)->net_cookie;
1997 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2000 case SO_RESERVE_MEM:
2001 v.val = READ_ONCE(sk->sk_reserved_mem);
2005 /* Paired with WRITE_ONCE() in sk_setsockopt() */
2006 v.val = READ_ONCE(sk->sk_txrehash);
2010 /* We implement the SO_SNDLOWAT etc to not be settable
2013 return -ENOPROTOOPT;
2018 if (copy_to_sockptr(optval, &v, len))
2021 if (copy_to_sockptr(optlen, &len, sizeof(int)))
2027 * Initialize an sk_lock.
2029 * (We also register the sk_lock with the lock validator.)
2031 static inline void sock_lock_init(struct sock *sk)
2033 if (sk->sk_kern_sock)
2034 sock_lock_init_class_and_name(
2036 af_family_kern_slock_key_strings[sk->sk_family],
2037 af_family_kern_slock_keys + sk->sk_family,
2038 af_family_kern_key_strings[sk->sk_family],
2039 af_family_kern_keys + sk->sk_family);
2041 sock_lock_init_class_and_name(
2043 af_family_slock_key_strings[sk->sk_family],
2044 af_family_slock_keys + sk->sk_family,
2045 af_family_key_strings[sk->sk_family],
2046 af_family_keys + sk->sk_family);
2050 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2051 * even temporarly, because of RCU lookups. sk_node should also be left as is.
2052 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2054 static void sock_copy(struct sock *nsk, const struct sock *osk)
2056 const struct proto *prot = READ_ONCE(osk->sk_prot);
2057 #ifdef CONFIG_SECURITY_NETWORK
2058 void *sptr = nsk->sk_security;
2061 /* If we move sk_tx_queue_mapping out of the private section,
2062 * we must check if sk_tx_queue_clear() is called after
2063 * sock_copy() in sk_clone_lock().
2065 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2066 offsetof(struct sock, sk_dontcopy_begin) ||
2067 offsetof(struct sock, sk_tx_queue_mapping) >=
2068 offsetof(struct sock, sk_dontcopy_end));
2070 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2072 unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2073 prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2074 /* alloc is larger than struct, see sk_prot_alloc() */);
2076 #ifdef CONFIG_SECURITY_NETWORK
2077 nsk->sk_security = sptr;
2078 security_sk_clone(osk, nsk);
2082 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2086 struct kmem_cache *slab;
2090 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2093 if (want_init_on_alloc(priority))
2094 sk_prot_clear_nulls(sk, prot->obj_size);
2096 sk = kmalloc(prot->obj_size, priority);
2099 if (security_sk_alloc(sk, family, priority))
2102 if (!try_module_get(prot->owner))
2109 security_sk_free(sk);
2112 kmem_cache_free(slab, sk);
2118 static void sk_prot_free(struct proto *prot, struct sock *sk)
2120 struct kmem_cache *slab;
2121 struct module *owner;
2123 owner = prot->owner;
2126 cgroup_sk_free(&sk->sk_cgrp_data);
2127 mem_cgroup_sk_free(sk);
2128 security_sk_free(sk);
2130 kmem_cache_free(slab, sk);
2137 * sk_alloc - All socket objects are allocated here
2138 * @net: the applicable net namespace
2139 * @family: protocol family
2140 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2141 * @prot: struct proto associated with this new sock instance
2142 * @kern: is this to be a kernel socket?
2144 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2145 struct proto *prot, int kern)
2149 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2151 sk->sk_family = family;
2153 * See comment in struct sock definition to understand
2154 * why we need sk_prot_creator -acme
2156 sk->sk_prot = sk->sk_prot_creator = prot;
2157 sk->sk_kern_sock = kern;
2159 sk->sk_net_refcnt = kern ? 0 : 1;
2160 if (likely(sk->sk_net_refcnt)) {
2161 get_net_track(net, &sk->ns_tracker, priority);
2162 sock_inuse_add(net, 1);
2164 __netns_tracker_alloc(net, &sk->ns_tracker,
2168 sock_net_set(sk, net);
2169 refcount_set(&sk->sk_wmem_alloc, 1);
2171 mem_cgroup_sk_alloc(sk);
2172 cgroup_sk_alloc(&sk->sk_cgrp_data);
2173 sock_update_classid(&sk->sk_cgrp_data);
2174 sock_update_netprioidx(&sk->sk_cgrp_data);
2175 sk_tx_queue_clear(sk);
2180 EXPORT_SYMBOL(sk_alloc);
2182 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2183 * grace period. This is the case for UDP sockets and TCP listeners.
2185 static void __sk_destruct(struct rcu_head *head)
2187 struct sock *sk = container_of(head, struct sock, sk_rcu);
2188 struct sk_filter *filter;
2190 if (sk->sk_destruct)
2191 sk->sk_destruct(sk);
2193 filter = rcu_dereference_check(sk->sk_filter,
2194 refcount_read(&sk->sk_wmem_alloc) == 0);
2196 sk_filter_uncharge(sk, filter);
2197 RCU_INIT_POINTER(sk->sk_filter, NULL);
2200 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2202 #ifdef CONFIG_BPF_SYSCALL
2203 bpf_sk_storage_free(sk);
2206 if (atomic_read(&sk->sk_omem_alloc))
2207 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2208 __func__, atomic_read(&sk->sk_omem_alloc));
2210 if (sk->sk_frag.page) {
2211 put_page(sk->sk_frag.page);
2212 sk->sk_frag.page = NULL;
2215 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2216 put_cred(sk->sk_peer_cred);
2217 put_pid(sk->sk_peer_pid);
2219 if (likely(sk->sk_net_refcnt))
2220 put_net_track(sock_net(sk), &sk->ns_tracker);
2222 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2224 sk_prot_free(sk->sk_prot_creator, sk);
2227 void sk_destruct(struct sock *sk)
2229 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2231 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2232 reuseport_detach_sock(sk);
2233 use_call_rcu = true;
2237 call_rcu(&sk->sk_rcu, __sk_destruct);
2239 __sk_destruct(&sk->sk_rcu);
2242 static void __sk_free(struct sock *sk)
2244 if (likely(sk->sk_net_refcnt))
2245 sock_inuse_add(sock_net(sk), -1);
2247 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2248 sock_diag_broadcast_destroy(sk);
2253 void sk_free(struct sock *sk)
2256 * We subtract one from sk_wmem_alloc and can know if
2257 * some packets are still in some tx queue.
2258 * If not null, sock_wfree() will call __sk_free(sk) later
2260 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2263 EXPORT_SYMBOL(sk_free);
2265 static void sk_init_common(struct sock *sk)
2267 skb_queue_head_init(&sk->sk_receive_queue);
2268 skb_queue_head_init(&sk->sk_write_queue);
2269 skb_queue_head_init(&sk->sk_error_queue);
2271 rwlock_init(&sk->sk_callback_lock);
2272 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2273 af_rlock_keys + sk->sk_family,
2274 af_family_rlock_key_strings[sk->sk_family]);
2275 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2276 af_wlock_keys + sk->sk_family,
2277 af_family_wlock_key_strings[sk->sk_family]);
2278 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2279 af_elock_keys + sk->sk_family,
2280 af_family_elock_key_strings[sk->sk_family]);
2281 if (sk->sk_kern_sock)
2282 lockdep_set_class_and_name(&sk->sk_callback_lock,
2283 af_kern_callback_keys + sk->sk_family,
2284 af_family_kern_clock_key_strings[sk->sk_family]);
2286 lockdep_set_class_and_name(&sk->sk_callback_lock,
2287 af_callback_keys + sk->sk_family,
2288 af_family_clock_key_strings[sk->sk_family]);
2292 * sk_clone_lock - clone a socket, and lock its clone
2293 * @sk: the socket to clone
2294 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2296 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2298 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2300 struct proto *prot = READ_ONCE(sk->sk_prot);
2301 struct sk_filter *filter;
2302 bool is_charged = true;
2305 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2309 sock_copy(newsk, sk);
2311 newsk->sk_prot_creator = prot;
2314 if (likely(newsk->sk_net_refcnt)) {
2315 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2316 sock_inuse_add(sock_net(newsk), 1);
2318 /* Kernel sockets are not elevating the struct net refcount.
2319 * Instead, use a tracker to more easily detect if a layer
2320 * is not properly dismantling its kernel sockets at netns
2323 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2326 sk_node_init(&newsk->sk_node);
2327 sock_lock_init(newsk);
2328 bh_lock_sock(newsk);
2329 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2330 newsk->sk_backlog.len = 0;
2332 atomic_set(&newsk->sk_rmem_alloc, 0);
2334 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2335 refcount_set(&newsk->sk_wmem_alloc, 1);
2337 atomic_set(&newsk->sk_omem_alloc, 0);
2338 sk_init_common(newsk);
2340 newsk->sk_dst_cache = NULL;
2341 newsk->sk_dst_pending_confirm = 0;
2342 newsk->sk_wmem_queued = 0;
2343 newsk->sk_forward_alloc = 0;
2344 newsk->sk_reserved_mem = 0;
2345 atomic_set(&newsk->sk_drops, 0);
2346 newsk->sk_send_head = NULL;
2347 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2348 atomic_set(&newsk->sk_zckey, 0);
2350 sock_reset_flag(newsk, SOCK_DONE);
2352 /* sk->sk_memcg will be populated at accept() time */
2353 newsk->sk_memcg = NULL;
2355 cgroup_sk_clone(&newsk->sk_cgrp_data);
2358 filter = rcu_dereference(sk->sk_filter);
2360 /* though it's an empty new sock, the charging may fail
2361 * if sysctl_optmem_max was changed between creation of
2362 * original socket and cloning
2364 is_charged = sk_filter_charge(newsk, filter);
2365 RCU_INIT_POINTER(newsk->sk_filter, filter);
2368 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2369 /* We need to make sure that we don't uncharge the new
2370 * socket if we couldn't charge it in the first place
2371 * as otherwise we uncharge the parent's filter.
2374 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2375 sk_free_unlock_clone(newsk);
2379 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2381 if (bpf_sk_storage_clone(sk, newsk)) {
2382 sk_free_unlock_clone(newsk);
2387 /* Clear sk_user_data if parent had the pointer tagged
2388 * as not suitable for copying when cloning.
2390 if (sk_user_data_is_nocopy(newsk))
2391 newsk->sk_user_data = NULL;
2394 newsk->sk_err_soft = 0;
2395 newsk->sk_priority = 0;
2396 newsk->sk_incoming_cpu = raw_smp_processor_id();
2398 /* Before updating sk_refcnt, we must commit prior changes to memory
2399 * (Documentation/RCU/rculist_nulls.rst for details)
2402 refcount_set(&newsk->sk_refcnt, 2);
2404 sk_set_socket(newsk, NULL);
2405 sk_tx_queue_clear(newsk);
2406 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2408 if (newsk->sk_prot->sockets_allocated)
2409 sk_sockets_allocated_inc(newsk);
2411 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2412 net_enable_timestamp();
2416 EXPORT_SYMBOL_GPL(sk_clone_lock);
2418 void sk_free_unlock_clone(struct sock *sk)
2420 /* It is still raw copy of parent, so invalidate
2421 * destructor and make plain sk_free() */
2422 sk->sk_destruct = NULL;
2426 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2428 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2430 bool is_ipv6 = false;
2433 #if IS_ENABLED(CONFIG_IPV6)
2434 is_ipv6 = (sk->sk_family == AF_INET6 &&
2435 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2437 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2438 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2439 READ_ONCE(dst->dev->gso_ipv4_max_size);
2440 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2441 max_size = GSO_LEGACY_MAX_SIZE;
2443 return max_size - (MAX_TCP_HEADER + 1);
2446 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2450 sk->sk_route_caps = dst->dev->features;
2452 sk->sk_route_caps |= NETIF_F_GSO;
2453 if (sk->sk_route_caps & NETIF_F_GSO)
2454 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2455 if (unlikely(sk->sk_gso_disabled))
2456 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2457 if (sk_can_gso(sk)) {
2458 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2459 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2461 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2462 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2463 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2464 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2467 sk->sk_gso_max_segs = max_segs;
2468 sk_dst_set(sk, dst);
2470 EXPORT_SYMBOL_GPL(sk_setup_caps);
2473 * Simple resource managers for sockets.
2478 * Write buffer destructor automatically called from kfree_skb.
2480 void sock_wfree(struct sk_buff *skb)
2482 struct sock *sk = skb->sk;
2483 unsigned int len = skb->truesize;
2486 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2487 if (sock_flag(sk, SOCK_RCU_FREE) &&
2488 sk->sk_write_space == sock_def_write_space) {
2490 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2491 sock_def_write_space_wfree(sk);
2499 * Keep a reference on sk_wmem_alloc, this will be released
2500 * after sk_write_space() call
2502 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2503 sk->sk_write_space(sk);
2507 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2508 * could not do because of in-flight packets
2510 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2513 EXPORT_SYMBOL(sock_wfree);
2515 /* This variant of sock_wfree() is used by TCP,
2516 * since it sets SOCK_USE_WRITE_QUEUE.
2518 void __sock_wfree(struct sk_buff *skb)
2520 struct sock *sk = skb->sk;
2522 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2526 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2531 if (unlikely(!sk_fullsock(sk))) {
2532 skb->destructor = sock_edemux;
2537 skb->destructor = sock_wfree;
2538 skb_set_hash_from_sk(skb, sk);
2540 * We used to take a refcount on sk, but following operation
2541 * is enough to guarantee sk_free() wont free this sock until
2542 * all in-flight packets are completed
2544 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2546 EXPORT_SYMBOL(skb_set_owner_w);
2548 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2550 /* Drivers depend on in-order delivery for crypto offload,
2551 * partial orphan breaks out-of-order-OK logic.
2553 if (skb_is_decrypted(skb))
2556 return (skb->destructor == sock_wfree ||
2557 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2560 /* This helper is used by netem, as it can hold packets in its
2561 * delay queue. We want to allow the owner socket to send more
2562 * packets, as if they were already TX completed by a typical driver.
2563 * But we also want to keep skb->sk set because some packet schedulers
2564 * rely on it (sch_fq for example).
2566 void skb_orphan_partial(struct sk_buff *skb)
2568 if (skb_is_tcp_pure_ack(skb))
2571 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2576 EXPORT_SYMBOL(skb_orphan_partial);
2579 * Read buffer destructor automatically called from kfree_skb.
2581 void sock_rfree(struct sk_buff *skb)
2583 struct sock *sk = skb->sk;
2584 unsigned int len = skb->truesize;
2586 atomic_sub(len, &sk->sk_rmem_alloc);
2587 sk_mem_uncharge(sk, len);
2589 EXPORT_SYMBOL(sock_rfree);
2592 * Buffer destructor for skbs that are not used directly in read or write
2593 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2595 void sock_efree(struct sk_buff *skb)
2599 EXPORT_SYMBOL(sock_efree);
2601 /* Buffer destructor for prefetch/receive path where reference count may
2602 * not be held, e.g. for listen sockets.
2605 void sock_pfree(struct sk_buff *skb)
2607 struct sock *sk = skb->sk;
2609 if (!sk_is_refcounted(sk))
2612 if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2613 inet_reqsk(sk)->rsk_listener = NULL;
2614 reqsk_free(inet_reqsk(sk));
2620 EXPORT_SYMBOL(sock_pfree);
2621 #endif /* CONFIG_INET */
2623 kuid_t sock_i_uid(struct sock *sk)
2627 read_lock_bh(&sk->sk_callback_lock);
2628 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2629 read_unlock_bh(&sk->sk_callback_lock);
2632 EXPORT_SYMBOL(sock_i_uid);
2634 unsigned long __sock_i_ino(struct sock *sk)
2638 read_lock(&sk->sk_callback_lock);
2639 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2640 read_unlock(&sk->sk_callback_lock);
2643 EXPORT_SYMBOL(__sock_i_ino);
2645 unsigned long sock_i_ino(struct sock *sk)
2650 ino = __sock_i_ino(sk);
2654 EXPORT_SYMBOL(sock_i_ino);
2657 * Allocate a skb from the socket's send buffer.
2659 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2663 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2664 struct sk_buff *skb = alloc_skb(size, priority);
2667 skb_set_owner_w(skb, sk);
2673 EXPORT_SYMBOL(sock_wmalloc);
2675 static void sock_ofree(struct sk_buff *skb)
2677 struct sock *sk = skb->sk;
2679 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2682 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2685 struct sk_buff *skb;
2687 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2688 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2689 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2692 skb = alloc_skb(size, priority);
2696 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2698 skb->destructor = sock_ofree;
2703 * Allocate a memory block from the socket's option memory buffer.
2705 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2707 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2709 if ((unsigned int)size <= optmem_max &&
2710 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2712 /* First do the add, to avoid the race if kmalloc
2715 atomic_add(size, &sk->sk_omem_alloc);
2716 mem = kmalloc(size, priority);
2719 atomic_sub(size, &sk->sk_omem_alloc);
2723 EXPORT_SYMBOL(sock_kmalloc);
2725 /* Free an option memory block. Note, we actually want the inline
2726 * here as this allows gcc to detect the nullify and fold away the
2727 * condition entirely.
2729 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2732 if (WARN_ON_ONCE(!mem))
2735 kfree_sensitive(mem);
2738 atomic_sub(size, &sk->sk_omem_alloc);
2741 void sock_kfree_s(struct sock *sk, void *mem, int size)
2743 __sock_kfree_s(sk, mem, size, false);
2745 EXPORT_SYMBOL(sock_kfree_s);
2747 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2749 __sock_kfree_s(sk, mem, size, true);
2751 EXPORT_SYMBOL(sock_kzfree_s);
2753 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2754 I think, these locks should be removed for datagram sockets.
2756 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2760 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2764 if (signal_pending(current))
2766 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2767 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2768 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2770 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2772 if (READ_ONCE(sk->sk_err))
2774 timeo = schedule_timeout(timeo);
2776 finish_wait(sk_sleep(sk), &wait);
2782 * Generic send/receive buffer handlers
2785 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2786 unsigned long data_len, int noblock,
2787 int *errcode, int max_page_order)
2789 struct sk_buff *skb;
2793 timeo = sock_sndtimeo(sk, noblock);
2795 err = sock_error(sk);
2800 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2803 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2806 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2807 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2811 if (signal_pending(current))
2813 timeo = sock_wait_for_wmem(sk, timeo);
2815 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2816 errcode, sk->sk_allocation);
2818 skb_set_owner_w(skb, sk);
2822 err = sock_intr_errno(timeo);
2827 EXPORT_SYMBOL(sock_alloc_send_pskb);
2829 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2830 struct sockcm_cookie *sockc)
2834 switch (cmsg->cmsg_type) {
2836 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2837 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2839 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2841 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2843 case SO_TIMESTAMPING_OLD:
2844 case SO_TIMESTAMPING_NEW:
2845 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2848 tsflags = *(u32 *)CMSG_DATA(cmsg);
2849 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2852 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2853 sockc->tsflags |= tsflags;
2856 if (!sock_flag(sk, SOCK_TXTIME))
2858 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2860 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2862 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2864 case SCM_CREDENTIALS:
2871 EXPORT_SYMBOL(__sock_cmsg_send);
2873 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2874 struct sockcm_cookie *sockc)
2876 struct cmsghdr *cmsg;
2879 for_each_cmsghdr(cmsg, msg) {
2880 if (!CMSG_OK(msg, cmsg))
2882 if (cmsg->cmsg_level != SOL_SOCKET)
2884 ret = __sock_cmsg_send(sk, cmsg, sockc);
2890 EXPORT_SYMBOL(sock_cmsg_send);
2892 static void sk_enter_memory_pressure(struct sock *sk)
2894 if (!sk->sk_prot->enter_memory_pressure)
2897 sk->sk_prot->enter_memory_pressure(sk);
2900 static void sk_leave_memory_pressure(struct sock *sk)
2902 if (sk->sk_prot->leave_memory_pressure) {
2903 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2904 tcp_leave_memory_pressure, sk);
2906 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2908 if (memory_pressure && READ_ONCE(*memory_pressure))
2909 WRITE_ONCE(*memory_pressure, 0);
2913 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2916 * skb_page_frag_refill - check that a page_frag contains enough room
2917 * @sz: minimum size of the fragment we want to get
2918 * @pfrag: pointer to page_frag
2919 * @gfp: priority for memory allocation
2921 * Note: While this allocator tries to use high order pages, there is
2922 * no guarantee that allocations succeed. Therefore, @sz MUST be
2923 * less or equal than PAGE_SIZE.
2925 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2928 if (page_ref_count(pfrag->page) == 1) {
2932 if (pfrag->offset + sz <= pfrag->size)
2934 put_page(pfrag->page);
2938 if (SKB_FRAG_PAGE_ORDER &&
2939 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2940 /* Avoid direct reclaim but allow kswapd to wake */
2941 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2942 __GFP_COMP | __GFP_NOWARN |
2944 SKB_FRAG_PAGE_ORDER);
2945 if (likely(pfrag->page)) {
2946 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2950 pfrag->page = alloc_page(gfp);
2951 if (likely(pfrag->page)) {
2952 pfrag->size = PAGE_SIZE;
2957 EXPORT_SYMBOL(skb_page_frag_refill);
2959 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2961 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2964 sk_enter_memory_pressure(sk);
2965 sk_stream_moderate_sndbuf(sk);
2968 EXPORT_SYMBOL(sk_page_frag_refill);
2970 void __lock_sock(struct sock *sk)
2971 __releases(&sk->sk_lock.slock)
2972 __acquires(&sk->sk_lock.slock)
2977 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2978 TASK_UNINTERRUPTIBLE);
2979 spin_unlock_bh(&sk->sk_lock.slock);
2981 spin_lock_bh(&sk->sk_lock.slock);
2982 if (!sock_owned_by_user(sk))
2985 finish_wait(&sk->sk_lock.wq, &wait);
2988 void __release_sock(struct sock *sk)
2989 __releases(&sk->sk_lock.slock)
2990 __acquires(&sk->sk_lock.slock)
2992 struct sk_buff *skb, *next;
2994 while ((skb = sk->sk_backlog.head) != NULL) {
2995 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2997 spin_unlock_bh(&sk->sk_lock.slock);
3002 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3003 skb_mark_not_on_list(skb);
3004 sk_backlog_rcv(sk, skb);
3009 } while (skb != NULL);
3011 spin_lock_bh(&sk->sk_lock.slock);
3015 * Doing the zeroing here guarantee we can not loop forever
3016 * while a wild producer attempts to flood us.
3018 sk->sk_backlog.len = 0;
3021 void __sk_flush_backlog(struct sock *sk)
3023 spin_lock_bh(&sk->sk_lock.slock);
3026 if (sk->sk_prot->release_cb)
3027 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3028 tcp_release_cb, sk);
3030 spin_unlock_bh(&sk->sk_lock.slock);
3032 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3035 * sk_wait_data - wait for data to arrive at sk_receive_queue
3036 * @sk: sock to wait on
3037 * @timeo: for how long
3038 * @skb: last skb seen on sk_receive_queue
3040 * Now socket state including sk->sk_err is changed only under lock,
3041 * hence we may omit checks after joining wait queue.
3042 * We check receive queue before schedule() only as optimization;
3043 * it is very likely that release_sock() added new data.
3045 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3047 DEFINE_WAIT_FUNC(wait, woken_wake_function);
3050 add_wait_queue(sk_sleep(sk), &wait);
3051 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3052 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3053 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3054 remove_wait_queue(sk_sleep(sk), &wait);
3057 EXPORT_SYMBOL(sk_wait_data);
3060 * __sk_mem_raise_allocated - increase memory_allocated
3062 * @size: memory size to allocate
3063 * @amt: pages to allocate
3064 * @kind: allocation type
3066 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3068 * Unlike the globally shared limits among the sockets under same protocol,
3069 * consuming the budget of a memcg won't have direct effect on other ones.
3070 * So be optimistic about memcg's tolerance, and leave the callers to decide
3071 * whether or not to raise allocated through sk_under_memory_pressure() or
3074 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3076 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3077 struct proto *prot = sk->sk_prot;
3078 bool charged = false;
3081 sk_memory_allocated_add(sk, amt);
3082 allocated = sk_memory_allocated(sk);
3085 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3086 goto suppress_allocation;
3091 if (allocated <= sk_prot_mem_limits(sk, 0)) {
3092 sk_leave_memory_pressure(sk);
3096 /* Under pressure. */
3097 if (allocated > sk_prot_mem_limits(sk, 1))
3098 sk_enter_memory_pressure(sk);
3100 /* Over hard limit. */
3101 if (allocated > sk_prot_mem_limits(sk, 2))
3102 goto suppress_allocation;
3104 /* Guarantee minimum buffer size under pressure (either global
3105 * or memcg) to make sure features described in RFC 7323 (TCP
3106 * Extensions for High Performance) work properly.
3108 * This rule does NOT stand when exceeds global or memcg's hard
3109 * limit, or else a DoS attack can be taken place by spawning
3110 * lots of sockets whose usage are under minimum buffer size.
3112 if (kind == SK_MEM_RECV) {
3113 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3116 } else { /* SK_MEM_SEND */
3117 int wmem0 = sk_get_wmem0(sk, prot);
3119 if (sk->sk_type == SOCK_STREAM) {
3120 if (sk->sk_wmem_queued < wmem0)
3122 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3127 if (sk_has_memory_pressure(sk)) {
3130 /* The following 'average' heuristic is within the
3131 * scope of global accounting, so it only makes
3132 * sense for global memory pressure.
3134 if (!sk_under_global_memory_pressure(sk))
3137 /* Try to be fair among all the sockets under global
3138 * pressure by allowing the ones that below average
3141 alloc = sk_sockets_allocated_read_positive(sk);
3142 if (sk_prot_mem_limits(sk, 2) > alloc *
3143 sk_mem_pages(sk->sk_wmem_queued +
3144 atomic_read(&sk->sk_rmem_alloc) +
3145 sk->sk_forward_alloc))
3149 suppress_allocation:
3151 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3152 sk_stream_moderate_sndbuf(sk);
3154 /* Fail only if socket is _under_ its sndbuf.
3155 * In this case we cannot block, so that we have to fail.
3157 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3158 /* Force charge with __GFP_NOFAIL */
3159 if (memcg && !charged) {
3160 mem_cgroup_charge_skmem(memcg, amt,
3161 gfp_memcg_charge() | __GFP_NOFAIL);
3167 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3168 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3170 sk_memory_allocated_sub(sk, amt);
3173 mem_cgroup_uncharge_skmem(memcg, amt);
3179 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3181 * @size: memory size to allocate
3182 * @kind: allocation type
3184 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3185 * rmem allocation. This function assumes that protocols which have
3186 * memory_pressure use sk_wmem_queued as write buffer accounting.
3188 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3190 int ret, amt = sk_mem_pages(size);
3192 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3193 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3195 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3198 EXPORT_SYMBOL(__sk_mem_schedule);
3201 * __sk_mem_reduce_allocated - reclaim memory_allocated
3203 * @amount: number of quanta
3205 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3207 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3209 sk_memory_allocated_sub(sk, amount);
3211 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3212 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3214 if (sk_under_global_memory_pressure(sk) &&
3215 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3216 sk_leave_memory_pressure(sk);
3220 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3222 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3224 void __sk_mem_reclaim(struct sock *sk, int amount)
3226 amount >>= PAGE_SHIFT;
3227 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3228 __sk_mem_reduce_allocated(sk, amount);
3230 EXPORT_SYMBOL(__sk_mem_reclaim);
3232 int sk_set_peek_off(struct sock *sk, int val)
3234 WRITE_ONCE(sk->sk_peek_off, val);
3237 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3240 * Set of default routines for initialising struct proto_ops when
3241 * the protocol does not support a particular function. In certain
3242 * cases where it makes no sense for a protocol to have a "do nothing"
3243 * function, some default processing is provided.
3246 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3250 EXPORT_SYMBOL(sock_no_bind);
3252 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3257 EXPORT_SYMBOL(sock_no_connect);
3259 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3263 EXPORT_SYMBOL(sock_no_socketpair);
3265 int sock_no_accept(struct socket *sock, struct socket *newsock,
3266 struct proto_accept_arg *arg)
3270 EXPORT_SYMBOL(sock_no_accept);
3272 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3277 EXPORT_SYMBOL(sock_no_getname);
3279 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3283 EXPORT_SYMBOL(sock_no_ioctl);
3285 int sock_no_listen(struct socket *sock, int backlog)
3289 EXPORT_SYMBOL(sock_no_listen);
3291 int sock_no_shutdown(struct socket *sock, int how)
3295 EXPORT_SYMBOL(sock_no_shutdown);
3297 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3301 EXPORT_SYMBOL(sock_no_sendmsg);
3303 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3307 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3309 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3314 EXPORT_SYMBOL(sock_no_recvmsg);
3316 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3318 /* Mirror missing mmap method error code */
3321 EXPORT_SYMBOL(sock_no_mmap);
3324 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3325 * various sock-based usage counts.
3327 void __receive_sock(struct file *file)
3329 struct socket *sock;
3331 sock = sock_from_file(file);
3333 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3334 sock_update_classid(&sock->sk->sk_cgrp_data);
3339 * Default Socket Callbacks
3342 static void sock_def_wakeup(struct sock *sk)
3344 struct socket_wq *wq;
3347 wq = rcu_dereference(sk->sk_wq);
3348 if (skwq_has_sleeper(wq))
3349 wake_up_interruptible_all(&wq->wait);
3353 static void sock_def_error_report(struct sock *sk)
3355 struct socket_wq *wq;
3358 wq = rcu_dereference(sk->sk_wq);
3359 if (skwq_has_sleeper(wq))
3360 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3361 sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3365 void sock_def_readable(struct sock *sk)
3367 struct socket_wq *wq;
3369 trace_sk_data_ready(sk);
3372 wq = rcu_dereference(sk->sk_wq);
3373 if (skwq_has_sleeper(wq))
3374 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3375 EPOLLRDNORM | EPOLLRDBAND);
3376 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3380 static void sock_def_write_space(struct sock *sk)
3382 struct socket_wq *wq;
3386 /* Do not wake up a writer until he can make "significant"
3389 if (sock_writeable(sk)) {
3390 wq = rcu_dereference(sk->sk_wq);
3391 if (skwq_has_sleeper(wq))
3392 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3393 EPOLLWRNORM | EPOLLWRBAND);
3395 /* Should agree with poll, otherwise some programs break */
3396 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3402 /* An optimised version of sock_def_write_space(), should only be called
3403 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3406 static void sock_def_write_space_wfree(struct sock *sk)
3408 /* Do not wake up a writer until he can make "significant"
3411 if (sock_writeable(sk)) {
3412 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3414 /* rely on refcount_sub from sock_wfree() */
3415 smp_mb__after_atomic();
3416 if (wq && waitqueue_active(&wq->wait))
3417 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3418 EPOLLWRNORM | EPOLLWRBAND);
3420 /* Should agree with poll, otherwise some programs break */
3421 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3425 static void sock_def_destruct(struct sock *sk)
3429 void sk_send_sigurg(struct sock *sk)
3431 if (sk->sk_socket && sk->sk_socket->file)
3432 if (send_sigurg(&sk->sk_socket->file->f_owner))
3433 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3435 EXPORT_SYMBOL(sk_send_sigurg);
3437 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3438 unsigned long expires)
3440 if (!mod_timer(timer, expires))
3443 EXPORT_SYMBOL(sk_reset_timer);
3445 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3447 if (del_timer(timer))
3450 EXPORT_SYMBOL(sk_stop_timer);
3452 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3454 if (del_timer_sync(timer))
3457 EXPORT_SYMBOL(sk_stop_timer_sync);
3459 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3462 sk->sk_send_head = NULL;
3464 timer_setup(&sk->sk_timer, NULL, 0);
3466 sk->sk_allocation = GFP_KERNEL;
3467 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3468 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3469 sk->sk_state = TCP_CLOSE;
3470 sk->sk_use_task_frag = true;
3471 sk_set_socket(sk, sock);
3473 sock_set_flag(sk, SOCK_ZAPPED);
3476 sk->sk_type = sock->type;
3477 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3480 RCU_INIT_POINTER(sk->sk_wq, NULL);
3484 sk->sk_state_change = sock_def_wakeup;
3485 sk->sk_data_ready = sock_def_readable;
3486 sk->sk_write_space = sock_def_write_space;
3487 sk->sk_error_report = sock_def_error_report;
3488 sk->sk_destruct = sock_def_destruct;
3490 sk->sk_frag.page = NULL;
3491 sk->sk_frag.offset = 0;
3492 sk->sk_peek_off = -1;
3494 sk->sk_peer_pid = NULL;
3495 sk->sk_peer_cred = NULL;
3496 spin_lock_init(&sk->sk_peer_lock);
3498 sk->sk_write_pending = 0;
3499 sk->sk_rcvlowat = 1;
3500 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3501 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3503 sk->sk_stamp = SK_DEFAULT_STAMP;
3504 #if BITS_PER_LONG==32
3505 seqlock_init(&sk->sk_stamp_seq);
3507 atomic_set(&sk->sk_zckey, 0);
3509 #ifdef CONFIG_NET_RX_BUSY_POLL
3511 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3514 sk->sk_max_pacing_rate = ~0UL;
3515 sk->sk_pacing_rate = ~0UL;
3516 WRITE_ONCE(sk->sk_pacing_shift, 10);
3517 sk->sk_incoming_cpu = -1;
3519 sk_rx_queue_clear(sk);
3521 * Before updating sk_refcnt, we must commit prior changes to memory
3522 * (Documentation/RCU/rculist_nulls.rst for details)
3525 refcount_set(&sk->sk_refcnt, 1);
3526 atomic_set(&sk->sk_drops, 0);
3528 EXPORT_SYMBOL(sock_init_data_uid);
3530 void sock_init_data(struct socket *sock, struct sock *sk)
3533 SOCK_INODE(sock)->i_uid :
3534 make_kuid(sock_net(sk)->user_ns, 0);
3536 sock_init_data_uid(sock, sk, uid);
3538 EXPORT_SYMBOL(sock_init_data);
3540 void lock_sock_nested(struct sock *sk, int subclass)
3542 /* The sk_lock has mutex_lock() semantics here. */
3543 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3546 spin_lock_bh(&sk->sk_lock.slock);
3547 if (sock_owned_by_user_nocheck(sk))
3549 sk->sk_lock.owned = 1;
3550 spin_unlock_bh(&sk->sk_lock.slock);
3552 EXPORT_SYMBOL(lock_sock_nested);
3554 void release_sock(struct sock *sk)
3556 spin_lock_bh(&sk->sk_lock.slock);
3557 if (sk->sk_backlog.tail)
3560 if (sk->sk_prot->release_cb)
3561 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3562 tcp_release_cb, sk);
3564 sock_release_ownership(sk);
3565 if (waitqueue_active(&sk->sk_lock.wq))
3566 wake_up(&sk->sk_lock.wq);
3567 spin_unlock_bh(&sk->sk_lock.slock);
3569 EXPORT_SYMBOL(release_sock);
3571 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3574 spin_lock_bh(&sk->sk_lock.slock);
3576 if (!sock_owned_by_user_nocheck(sk)) {
3578 * Fast path return with bottom halves disabled and
3579 * sock::sk_lock.slock held.
3581 * The 'mutex' is not contended and holding
3582 * sock::sk_lock.slock prevents all other lockers to
3583 * proceed so the corresponding unlock_sock_fast() can
3584 * avoid the slow path of release_sock() completely and
3585 * just release slock.
3587 * From a semantical POV this is equivalent to 'acquiring'
3588 * the 'mutex', hence the corresponding lockdep
3589 * mutex_release() has to happen in the fast path of
3590 * unlock_sock_fast().
3596 sk->sk_lock.owned = 1;
3597 __acquire(&sk->sk_lock.slock);
3598 spin_unlock_bh(&sk->sk_lock.slock);
3601 EXPORT_SYMBOL(__lock_sock_fast);
3603 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3604 bool timeval, bool time32)
3606 struct sock *sk = sock->sk;
3607 struct timespec64 ts;
3609 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3610 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3611 if (ts.tv_sec == -1)
3613 if (ts.tv_sec == 0) {
3614 ktime_t kt = ktime_get_real();
3615 sock_write_timestamp(sk, kt);
3616 ts = ktime_to_timespec64(kt);
3622 #ifdef CONFIG_COMPAT_32BIT_TIME
3624 return put_old_timespec32(&ts, userstamp);
3626 #ifdef CONFIG_SPARC64
3627 /* beware of padding in sparc64 timeval */
3628 if (timeval && !in_compat_syscall()) {
3629 struct __kernel_old_timeval __user tv = {
3630 .tv_sec = ts.tv_sec,
3631 .tv_usec = ts.tv_nsec,
3633 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3638 return put_timespec64(&ts, userstamp);
3640 EXPORT_SYMBOL(sock_gettstamp);
3642 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3644 if (!sock_flag(sk, flag)) {
3645 unsigned long previous_flags = sk->sk_flags;
3647 sock_set_flag(sk, flag);
3649 * we just set one of the two flags which require net
3650 * time stamping, but time stamping might have been on
3651 * already because of the other one
3653 if (sock_needs_netstamp(sk) &&
3654 !(previous_flags & SK_FLAGS_TIMESTAMP))
3655 net_enable_timestamp();
3659 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3660 int level, int type)
3662 struct sock_exterr_skb *serr;
3663 struct sk_buff *skb;
3667 skb = sock_dequeue_err_skb(sk);
3673 msg->msg_flags |= MSG_TRUNC;
3676 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3680 sock_recv_timestamp(msg, sk, skb);
3682 serr = SKB_EXT_ERR(skb);
3683 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3685 msg->msg_flags |= MSG_ERRQUEUE;
3693 EXPORT_SYMBOL(sock_recv_errqueue);
3696 * Get a socket option on an socket.
3698 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3699 * asynchronous errors should be reported by getsockopt. We assume
3700 * this means if you specify SO_ERROR (otherwise whats the point of it).
3702 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3703 char __user *optval, int __user *optlen)
3705 struct sock *sk = sock->sk;
3707 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3708 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3710 EXPORT_SYMBOL(sock_common_getsockopt);
3712 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3715 struct sock *sk = sock->sk;
3719 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3721 msg->msg_namelen = addr_len;
3724 EXPORT_SYMBOL(sock_common_recvmsg);
3727 * Set socket options on an inet socket.
3729 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3730 sockptr_t optval, unsigned int optlen)
3732 struct sock *sk = sock->sk;
3734 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3735 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3737 EXPORT_SYMBOL(sock_common_setsockopt);
3739 void sk_common_release(struct sock *sk)
3741 if (sk->sk_prot->destroy)
3742 sk->sk_prot->destroy(sk);
3745 * Observation: when sk_common_release is called, processes have
3746 * no access to socket. But net still has.
3747 * Step one, detach it from networking:
3749 * A. Remove from hash tables.
3752 sk->sk_prot->unhash(sk);
3755 sk->sk_socket->sk = NULL;
3758 * In this point socket cannot receive new packets, but it is possible
3759 * that some packets are in flight because some CPU runs receiver and
3760 * did hash table lookup before we unhashed socket. They will achieve
3761 * receive queue and will be purged by socket destructor.
3763 * Also we still have packets pending on receive queue and probably,
3764 * our own packets waiting in device queues. sock_destroy will drain
3765 * receive queue, but transmitted packets will delay socket destruction
3766 * until the last reference will be released.
3771 xfrm_sk_free_policy(sk);
3775 EXPORT_SYMBOL(sk_common_release);
3777 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3779 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3781 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3782 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3783 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3784 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3785 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3786 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3787 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3788 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3789 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3792 #ifdef CONFIG_PROC_FS
3793 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3795 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3797 int cpu, idx = prot->inuse_idx;
3800 for_each_possible_cpu(cpu)
3801 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3803 return res >= 0 ? res : 0;
3805 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3807 int sock_inuse_get(struct net *net)
3811 for_each_possible_cpu(cpu)
3812 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3817 EXPORT_SYMBOL_GPL(sock_inuse_get);
3819 static int __net_init sock_inuse_init_net(struct net *net)
3821 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3822 if (net->core.prot_inuse == NULL)
3827 static void __net_exit sock_inuse_exit_net(struct net *net)
3829 free_percpu(net->core.prot_inuse);
3832 static struct pernet_operations net_inuse_ops = {
3833 .init = sock_inuse_init_net,
3834 .exit = sock_inuse_exit_net,
3837 static __init int net_inuse_init(void)
3839 if (register_pernet_subsys(&net_inuse_ops))
3840 panic("Cannot initialize net inuse counters");
3845 core_initcall(net_inuse_init);
3847 static int assign_proto_idx(struct proto *prot)
3849 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3851 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3852 pr_err("PROTO_INUSE_NR exhausted\n");
3856 set_bit(prot->inuse_idx, proto_inuse_idx);
3860 static void release_proto_idx(struct proto *prot)
3862 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3863 clear_bit(prot->inuse_idx, proto_inuse_idx);
3866 static inline int assign_proto_idx(struct proto *prot)
3871 static inline void release_proto_idx(struct proto *prot)
3877 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3881 kfree(twsk_prot->twsk_slab_name);
3882 twsk_prot->twsk_slab_name = NULL;
3883 kmem_cache_destroy(twsk_prot->twsk_slab);
3884 twsk_prot->twsk_slab = NULL;
3887 static int tw_prot_init(const struct proto *prot)
3889 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3894 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3896 if (!twsk_prot->twsk_slab_name)
3899 twsk_prot->twsk_slab =
3900 kmem_cache_create(twsk_prot->twsk_slab_name,
3901 twsk_prot->twsk_obj_size, 0,
3902 SLAB_ACCOUNT | prot->slab_flags,
3904 if (!twsk_prot->twsk_slab) {
3905 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3913 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3917 kfree(rsk_prot->slab_name);
3918 rsk_prot->slab_name = NULL;
3919 kmem_cache_destroy(rsk_prot->slab);
3920 rsk_prot->slab = NULL;
3923 static int req_prot_init(const struct proto *prot)
3925 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3930 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3932 if (!rsk_prot->slab_name)
3935 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3936 rsk_prot->obj_size, 0,
3937 SLAB_ACCOUNT | prot->slab_flags,
3940 if (!rsk_prot->slab) {
3941 pr_crit("%s: Can't create request sock SLAB cache!\n",
3948 int proto_register(struct proto *prot, int alloc_slab)
3952 if (prot->memory_allocated && !prot->sysctl_mem) {
3953 pr_err("%s: missing sysctl_mem\n", prot->name);
3956 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3957 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3961 prot->slab = kmem_cache_create_usercopy(prot->name,
3963 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3965 prot->useroffset, prot->usersize,
3968 if (prot->slab == NULL) {
3969 pr_crit("%s: Can't create sock SLAB cache!\n",
3974 if (req_prot_init(prot))
3975 goto out_free_request_sock_slab;
3977 if (tw_prot_init(prot))
3978 goto out_free_timewait_sock_slab;
3981 mutex_lock(&proto_list_mutex);
3982 ret = assign_proto_idx(prot);
3984 mutex_unlock(&proto_list_mutex);
3985 goto out_free_timewait_sock_slab;
3987 list_add(&prot->node, &proto_list);
3988 mutex_unlock(&proto_list_mutex);
3991 out_free_timewait_sock_slab:
3993 tw_prot_cleanup(prot->twsk_prot);
3994 out_free_request_sock_slab:
3996 req_prot_cleanup(prot->rsk_prot);
3998 kmem_cache_destroy(prot->slab);
4004 EXPORT_SYMBOL(proto_register);
4006 void proto_unregister(struct proto *prot)
4008 mutex_lock(&proto_list_mutex);
4009 release_proto_idx(prot);
4010 list_del(&prot->node);
4011 mutex_unlock(&proto_list_mutex);
4013 kmem_cache_destroy(prot->slab);
4016 req_prot_cleanup(prot->rsk_prot);
4017 tw_prot_cleanup(prot->twsk_prot);
4019 EXPORT_SYMBOL(proto_unregister);
4021 int sock_load_diag_module(int family, int protocol)
4024 if (!sock_is_registered(family))
4027 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4028 NETLINK_SOCK_DIAG, family);
4032 if (family == AF_INET &&
4033 protocol != IPPROTO_RAW &&
4034 protocol < MAX_INET_PROTOS &&
4035 !rcu_access_pointer(inet_protos[protocol]))
4039 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4040 NETLINK_SOCK_DIAG, family, protocol);
4042 EXPORT_SYMBOL(sock_load_diag_module);
4044 #ifdef CONFIG_PROC_FS
4045 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4046 __acquires(proto_list_mutex)
4048 mutex_lock(&proto_list_mutex);
4049 return seq_list_start_head(&proto_list, *pos);
4052 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4054 return seq_list_next(v, &proto_list, pos);
4057 static void proto_seq_stop(struct seq_file *seq, void *v)
4058 __releases(proto_list_mutex)
4060 mutex_unlock(&proto_list_mutex);
4063 static char proto_method_implemented(const void *method)
4065 return method == NULL ? 'n' : 'y';
4067 static long sock_prot_memory_allocated(struct proto *proto)
4069 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4072 static const char *sock_prot_memory_pressure(struct proto *proto)
4074 return proto->memory_pressure != NULL ?
4075 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4078 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4081 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4082 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4085 sock_prot_inuse_get(seq_file_net(seq), proto),
4086 sock_prot_memory_allocated(proto),
4087 sock_prot_memory_pressure(proto),
4089 proto->slab == NULL ? "no" : "yes",
4090 module_name(proto->owner),
4091 proto_method_implemented(proto->close),
4092 proto_method_implemented(proto->connect),
4093 proto_method_implemented(proto->disconnect),
4094 proto_method_implemented(proto->accept),
4095 proto_method_implemented(proto->ioctl),
4096 proto_method_implemented(proto->init),
4097 proto_method_implemented(proto->destroy),
4098 proto_method_implemented(proto->shutdown),
4099 proto_method_implemented(proto->setsockopt),
4100 proto_method_implemented(proto->getsockopt),
4101 proto_method_implemented(proto->sendmsg),
4102 proto_method_implemented(proto->recvmsg),
4103 proto_method_implemented(proto->bind),
4104 proto_method_implemented(proto->backlog_rcv),
4105 proto_method_implemented(proto->hash),
4106 proto_method_implemented(proto->unhash),
4107 proto_method_implemented(proto->get_port),
4108 proto_method_implemented(proto->enter_memory_pressure));
4111 static int proto_seq_show(struct seq_file *seq, void *v)
4113 if (v == &proto_list)
4114 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4123 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4125 proto_seq_printf(seq, list_entry(v, struct proto, node));
4129 static const struct seq_operations proto_seq_ops = {
4130 .start = proto_seq_start,
4131 .next = proto_seq_next,
4132 .stop = proto_seq_stop,
4133 .show = proto_seq_show,
4136 static __net_init int proto_init_net(struct net *net)
4138 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4139 sizeof(struct seq_net_private)))
4145 static __net_exit void proto_exit_net(struct net *net)
4147 remove_proc_entry("protocols", net->proc_net);
4151 static __net_initdata struct pernet_operations proto_net_ops = {
4152 .init = proto_init_net,
4153 .exit = proto_exit_net,
4156 static int __init proto_init(void)
4158 return register_pernet_subsys(&proto_net_ops);
4161 subsys_initcall(proto_init);
4163 #endif /* PROC_FS */
4165 #ifdef CONFIG_NET_RX_BUSY_POLL
4166 bool sk_busy_loop_end(void *p, unsigned long start_time)
4168 struct sock *sk = p;
4170 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4173 if (sk_is_udp(sk) &&
4174 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4177 return sk_busy_loop_timeout(sk, start_time);
4179 EXPORT_SYMBOL(sk_busy_loop_end);
4180 #endif /* CONFIG_NET_RX_BUSY_POLL */
4182 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4184 if (!sk->sk_prot->bind_add)
4186 return sk->sk_prot->bind_add(sk, addr, addr_len);
4188 EXPORT_SYMBOL(sock_bind_add);
4190 /* Copy 'size' bytes from userspace and return `size` back to userspace */
4191 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4192 void __user *arg, void *karg, size_t size)
4196 if (copy_from_user(karg, arg, size))
4199 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4203 if (copy_to_user(arg, karg, size))
4208 EXPORT_SYMBOL(sock_ioctl_inout);
4210 /* This is the most common ioctl prep function, where the result (4 bytes) is
4211 * copied back to userspace if the ioctl() returns successfully. No input is
4212 * copied from userspace as input argument.
4214 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4218 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4222 return put_user(karg, (int __user *)arg);
4225 /* A wrapper around sock ioctls, which copies the data from userspace
4226 * (depending on the protocol/ioctl), and copies back the result to userspace.
4227 * The main motivation for this function is to pass kernel memory to the
4228 * protocol ioctl callbacks, instead of userspace memory.
4230 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4234 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4235 rc = ipmr_sk_ioctl(sk, cmd, arg);
4236 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4237 rc = ip6mr_sk_ioctl(sk, cmd, arg);
4238 else if (sk_is_phonet(sk))
4239 rc = phonet_sk_ioctl(sk, cmd, arg);
4241 /* If ioctl was processed, returns its value */
4245 /* Otherwise call the default handler */
4246 return sock_ioctl_out(sk, cmd, arg);
4248 EXPORT_SYMBOL(sk_ioctl);
4250 static int __init sock_struct_check(void)
4252 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4253 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4254 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4255 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4256 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4258 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4259 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4260 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4261 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4262 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4263 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4264 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4265 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4266 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4268 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4269 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4270 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4272 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4273 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4274 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4275 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4277 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4278 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4279 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4280 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4281 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4282 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4283 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4284 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4285 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4286 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4287 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4288 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4289 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4290 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4291 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4292 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4294 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4295 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4296 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4297 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4298 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4299 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4300 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4301 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4302 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4303 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4304 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4305 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4306 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4310 core_initcall(sock_struct_check);