]> Git Repo - linux.git/blob - drivers/usb/host/xhci.c
dma-mapping: don't return errors from dma_set_max_seg_size
[linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, timeout_us);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86  * exit_state parameter, and bails out with an error immediately when xhc_state
87  * has exit_state flag set.
88  */
89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90                 u32 mask, u32 done, int usec, unsigned int exit_state)
91 {
92         u32     result;
93         int     ret;
94
95         ret = readl_poll_timeout_atomic(ptr, result,
96                                 (result & mask) == done ||
97                                 result == U32_MAX ||
98                                 xhci->xhc_state & exit_state,
99                                 1, usec);
100
101         if (result == U32_MAX || xhci->xhc_state & exit_state)
102                 return -ENODEV;
103
104         return ret;
105 }
106
107 /*
108  * Disable interrupts and begin the xHCI halting process.
109  */
110 void xhci_quiesce(struct xhci_hcd *xhci)
111 {
112         u32 halted;
113         u32 cmd;
114         u32 mask;
115
116         mask = ~(XHCI_IRQS);
117         halted = readl(&xhci->op_regs->status) & STS_HALT;
118         if (!halted)
119                 mask &= ~CMD_RUN;
120
121         cmd = readl(&xhci->op_regs->command);
122         cmd &= mask;
123         writel(cmd, &xhci->op_regs->command);
124 }
125
126 /*
127  * Force HC into halt state.
128  *
129  * Disable any IRQs and clear the run/stop bit.
130  * HC will complete any current and actively pipelined transactions, and
131  * should halt within 16 ms of the run/stop bit being cleared.
132  * Read HC Halted bit in the status register to see when the HC is finished.
133  */
134 int xhci_halt(struct xhci_hcd *xhci)
135 {
136         int ret;
137
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139         xhci_quiesce(xhci);
140
141         ret = xhci_handshake(&xhci->op_regs->status,
142                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143         if (ret) {
144                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
145                 return ret;
146         }
147
148         xhci->xhc_state |= XHCI_STATE_HALTED;
149         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150
151         return ret;
152 }
153
154 /*
155  * Set the run bit and wait for the host to be running.
156  */
157 int xhci_start(struct xhci_hcd *xhci)
158 {
159         u32 temp;
160         int ret;
161
162         temp = readl(&xhci->op_regs->command);
163         temp |= (CMD_RUN);
164         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165                         temp);
166         writel(temp, &xhci->op_regs->command);
167
168         /*
169          * Wait for the HCHalted Status bit to be 0 to indicate the host is
170          * running.
171          */
172         ret = xhci_handshake(&xhci->op_regs->status,
173                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
174         if (ret == -ETIMEDOUT)
175                 xhci_err(xhci, "Host took too long to start, "
176                                 "waited %u microseconds.\n",
177                                 XHCI_MAX_HALT_USEC);
178         if (!ret) {
179                 /* clear state flags. Including dying, halted or removing */
180                 xhci->xhc_state = 0;
181                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182         }
183
184         return ret;
185 }
186
187 /*
188  * Reset a halted HC.
189  *
190  * This resets pipelines, timers, counters, state machines, etc.
191  * Transactions will be terminated immediately, and operational registers
192  * will be set to their defaults.
193  */
194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195 {
196         u32 command;
197         u32 state;
198         int ret;
199
200         state = readl(&xhci->op_regs->status);
201
202         if (state == ~(u32)0) {
203                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
204                 return -ENODEV;
205         }
206
207         if ((state & STS_HALT) == 0) {
208                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209                 return 0;
210         }
211
212         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213         command = readl(&xhci->op_regs->command);
214         command |= CMD_RESET;
215         writel(command, &xhci->op_regs->command);
216
217         /* Existing Intel xHCI controllers require a delay of 1 mS,
218          * after setting the CMD_RESET bit, and before accessing any
219          * HC registers. This allows the HC to complete the
220          * reset operation and be ready for HC register access.
221          * Without this delay, the subsequent HC register access,
222          * may result in a system hang very rarely.
223          */
224         if (xhci->quirks & XHCI_INTEL_HOST)
225                 udelay(1000);
226
227         ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228                                 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229         if (ret)
230                 return ret;
231
232         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234
235         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236                          "Wait for controller to be ready for doorbell rings");
237         /*
238          * xHCI cannot write to any doorbells or operational registers other
239          * than status until the "Controller Not Ready" flag is cleared.
240          */
241         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242
243         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244         xhci->usb2_rhub.bus_state.suspended_ports = 0;
245         xhci->usb2_rhub.bus_state.resuming_ports = 0;
246         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247         xhci->usb3_rhub.bus_state.suspended_ports = 0;
248         xhci->usb3_rhub.bus_state.resuming_ports = 0;
249
250         return ret;
251 }
252
253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254 {
255         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256         struct iommu_domain *domain;
257         int err, i;
258         u64 val;
259         u32 intrs;
260
261         /*
262          * Some Renesas controllers get into a weird state if they are
263          * reset while programmed with 64bit addresses (they will preserve
264          * the top half of the address in internal, non visible
265          * registers). You end up with half the address coming from the
266          * kernel, and the other half coming from the firmware. Also,
267          * changing the programming leads to extra accesses even if the
268          * controller is supposed to be halted. The controller ends up with
269          * a fatal fault, and is then ripe for being properly reset.
270          *
271          * Special care is taken to only apply this if the device is behind
272          * an iommu. Doing anything when there is no iommu is definitely
273          * unsafe...
274          */
275         domain = iommu_get_domain_for_dev(dev);
276         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277             domain->type == IOMMU_DOMAIN_IDENTITY)
278                 return;
279
280         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281
282         /* Clear HSEIE so that faults do not get signaled */
283         val = readl(&xhci->op_regs->command);
284         val &= ~CMD_HSEIE;
285         writel(val, &xhci->op_regs->command);
286
287         /* Clear HSE (aka FATAL) */
288         val = readl(&xhci->op_regs->status);
289         val |= STS_FATAL;
290         writel(val, &xhci->op_regs->status);
291
292         /* Now zero the registers, and brace for impact */
293         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294         if (upper_32_bits(val))
295                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297         if (upper_32_bits(val))
298                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299
300         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301                       ARRAY_SIZE(xhci->run_regs->ir_set));
302
303         for (i = 0; i < intrs; i++) {
304                 struct xhci_intr_reg __iomem *ir;
305
306                 ir = &xhci->run_regs->ir_set[i];
307                 val = xhci_read_64(xhci, &ir->erst_base);
308                 if (upper_32_bits(val))
309                         xhci_write_64(xhci, 0, &ir->erst_base);
310                 val= xhci_read_64(xhci, &ir->erst_dequeue);
311                 if (upper_32_bits(val))
312                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
313         }
314
315         /* Wait for the fault to appear. It will be cleared on reset */
316         err = xhci_handshake(&xhci->op_regs->status,
317                              STS_FATAL, STS_FATAL,
318                              XHCI_MAX_HALT_USEC);
319         if (!err)
320                 xhci_info(xhci, "Fault detected\n");
321 }
322
323 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324 {
325         u32 iman;
326
327         if (!ir || !ir->ir_set)
328                 return -EINVAL;
329
330         iman = readl(&ir->ir_set->irq_pending);
331         writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332
333         return 0;
334 }
335
336 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337 {
338         u32 iman;
339
340         if (!ir || !ir->ir_set)
341                 return -EINVAL;
342
343         iman = readl(&ir->ir_set->irq_pending);
344         writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345
346         return 0;
347 }
348
349 /* interrupt moderation interval imod_interval in nanoseconds */
350 static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
351                                            u32 imod_interval)
352 {
353         u32 imod;
354
355         if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
356                 return -EINVAL;
357
358         imod = readl(&ir->ir_set->irq_control);
359         imod &= ~ER_IRQ_INTERVAL_MASK;
360         imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
361         writel(imod, &ir->ir_set->irq_control);
362
363         return 0;
364 }
365
366 static void compliance_mode_recovery(struct timer_list *t)
367 {
368         struct xhci_hcd *xhci;
369         struct usb_hcd *hcd;
370         struct xhci_hub *rhub;
371         u32 temp;
372         int i;
373
374         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
375         rhub = &xhci->usb3_rhub;
376         hcd = rhub->hcd;
377
378         if (!hcd)
379                 return;
380
381         for (i = 0; i < rhub->num_ports; i++) {
382                 temp = readl(rhub->ports[i]->addr);
383                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
384                         /*
385                          * Compliance Mode Detected. Letting USB Core
386                          * handle the Warm Reset
387                          */
388                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
389                                         "Compliance mode detected->port %d",
390                                         i + 1);
391                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
392                                         "Attempting compliance mode recovery");
393
394                         if (hcd->state == HC_STATE_SUSPENDED)
395                                 usb_hcd_resume_root_hub(hcd);
396
397                         usb_hcd_poll_rh_status(hcd);
398                 }
399         }
400
401         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
402                 mod_timer(&xhci->comp_mode_recovery_timer,
403                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
404 }
405
406 /*
407  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
408  * that causes ports behind that hardware to enter compliance mode sometimes.
409  * The quirk creates a timer that polls every 2 seconds the link state of
410  * each host controller's port and recovers it by issuing a Warm reset
411  * if Compliance mode is detected, otherwise the port will become "dead" (no
412  * device connections or disconnections will be detected anymore). Becasue no
413  * status event is generated when entering compliance mode (per xhci spec),
414  * this quirk is needed on systems that have the failing hardware installed.
415  */
416 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
417 {
418         xhci->port_status_u0 = 0;
419         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
420                     0);
421         xhci->comp_mode_recovery_timer.expires = jiffies +
422                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
423
424         add_timer(&xhci->comp_mode_recovery_timer);
425         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426                         "Compliance mode recovery timer initialized");
427 }
428
429 /*
430  * This function identifies the systems that have installed the SN65LVPE502CP
431  * USB3.0 re-driver and that need the Compliance Mode Quirk.
432  * Systems:
433  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
434  */
435 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
436 {
437         const char *dmi_product_name, *dmi_sys_vendor;
438
439         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
440         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
441         if (!dmi_product_name || !dmi_sys_vendor)
442                 return false;
443
444         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
445                 return false;
446
447         if (strstr(dmi_product_name, "Z420") ||
448                         strstr(dmi_product_name, "Z620") ||
449                         strstr(dmi_product_name, "Z820") ||
450                         strstr(dmi_product_name, "Z1 Workstation"))
451                 return true;
452
453         return false;
454 }
455
456 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
457 {
458         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
459 }
460
461
462 /*
463  * Initialize memory for HCD and xHC (one-time init).
464  *
465  * Program the PAGESIZE register, initialize the device context array, create
466  * device contexts (?), set up a command ring segment (or two?), create event
467  * ring (one for now).
468  */
469 static int xhci_init(struct usb_hcd *hcd)
470 {
471         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
472         int retval;
473
474         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
475         spin_lock_init(&xhci->lock);
476         if (xhci->hci_version == 0x95 && link_quirk) {
477                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
478                                 "QUIRK: Not clearing Link TRB chain bits.");
479                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
480         } else {
481                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
482                                 "xHCI doesn't need link TRB QUIRK");
483         }
484         retval = xhci_mem_init(xhci, GFP_KERNEL);
485         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
486
487         /* Initializing Compliance Mode Recovery Data If Needed */
488         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
489                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
490                 compliance_mode_recovery_timer_init(xhci);
491         }
492
493         return retval;
494 }
495
496 /*-------------------------------------------------------------------------*/
497
498 static int xhci_run_finished(struct xhci_hcd *xhci)
499 {
500         struct xhci_interrupter *ir = xhci->interrupters[0];
501         unsigned long   flags;
502         u32             temp;
503
504         /*
505          * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
506          * Protect the short window before host is running with a lock
507          */
508         spin_lock_irqsave(&xhci->lock, flags);
509
510         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
511         temp = readl(&xhci->op_regs->command);
512         temp |= (CMD_EIE);
513         writel(temp, &xhci->op_regs->command);
514
515         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
516         xhci_enable_interrupter(ir);
517
518         if (xhci_start(xhci)) {
519                 xhci_halt(xhci);
520                 spin_unlock_irqrestore(&xhci->lock, flags);
521                 return -ENODEV;
522         }
523
524         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
525
526         if (xhci->quirks & XHCI_NEC_HOST)
527                 xhci_ring_cmd_db(xhci);
528
529         spin_unlock_irqrestore(&xhci->lock, flags);
530
531         return 0;
532 }
533
534 /*
535  * Start the HC after it was halted.
536  *
537  * This function is called by the USB core when the HC driver is added.
538  * Its opposite is xhci_stop().
539  *
540  * xhci_init() must be called once before this function can be called.
541  * Reset the HC, enable device slot contexts, program DCBAAP, and
542  * set command ring pointer and event ring pointer.
543  *
544  * Setup MSI-X vectors and enable interrupts.
545  */
546 int xhci_run(struct usb_hcd *hcd)
547 {
548         u64 temp_64;
549         int ret;
550         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
551         struct xhci_interrupter *ir = xhci->interrupters[0];
552         /* Start the xHCI host controller running only after the USB 2.0 roothub
553          * is setup.
554          */
555
556         hcd->uses_new_polling = 1;
557         if (hcd->msi_enabled)
558                 ir->ip_autoclear = true;
559
560         if (!usb_hcd_is_primary_hcd(hcd))
561                 return xhci_run_finished(xhci);
562
563         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
564
565         temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
566         temp_64 &= ERST_PTR_MASK;
567         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
568                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
569
570         xhci_set_interrupter_moderation(ir, xhci->imod_interval);
571
572         if (xhci->quirks & XHCI_NEC_HOST) {
573                 struct xhci_command *command;
574
575                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
576                 if (!command)
577                         return -ENOMEM;
578
579                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
580                                 TRB_TYPE(TRB_NEC_GET_FW));
581                 if (ret)
582                         xhci_free_command(xhci, command);
583         }
584         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585                         "Finished %s for main hcd", __func__);
586
587         xhci_create_dbc_dev(xhci);
588
589         xhci_debugfs_init(xhci);
590
591         if (xhci_has_one_roothub(xhci))
592                 return xhci_run_finished(xhci);
593
594         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
595
596         return 0;
597 }
598 EXPORT_SYMBOL_GPL(xhci_run);
599
600 /*
601  * Stop xHCI driver.
602  *
603  * This function is called by the USB core when the HC driver is removed.
604  * Its opposite is xhci_run().
605  *
606  * Disable device contexts, disable IRQs, and quiesce the HC.
607  * Reset the HC, finish any completed transactions, and cleanup memory.
608  */
609 void xhci_stop(struct usb_hcd *hcd)
610 {
611         u32 temp;
612         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
613         struct xhci_interrupter *ir = xhci->interrupters[0];
614
615         mutex_lock(&xhci->mutex);
616
617         /* Only halt host and free memory after both hcds are removed */
618         if (!usb_hcd_is_primary_hcd(hcd)) {
619                 mutex_unlock(&xhci->mutex);
620                 return;
621         }
622
623         xhci_remove_dbc_dev(xhci);
624
625         spin_lock_irq(&xhci->lock);
626         xhci->xhc_state |= XHCI_STATE_HALTED;
627         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
628         xhci_halt(xhci);
629         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
630         spin_unlock_irq(&xhci->lock);
631
632         /* Deleting Compliance Mode Recovery Timer */
633         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
634                         (!(xhci_all_ports_seen_u0(xhci)))) {
635                 del_timer_sync(&xhci->comp_mode_recovery_timer);
636                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
637                                 "%s: compliance mode recovery timer deleted",
638                                 __func__);
639         }
640
641         if (xhci->quirks & XHCI_AMD_PLL_FIX)
642                 usb_amd_dev_put();
643
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "// Disabling event ring interrupts");
646         temp = readl(&xhci->op_regs->status);
647         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
648         xhci_disable_interrupter(ir);
649
650         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
651         xhci_mem_cleanup(xhci);
652         xhci_debugfs_exit(xhci);
653         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654                         "xhci_stop completed - status = %x",
655                         readl(&xhci->op_regs->status));
656         mutex_unlock(&xhci->mutex);
657 }
658 EXPORT_SYMBOL_GPL(xhci_stop);
659
660 /*
661  * Shutdown HC (not bus-specific)
662  *
663  * This is called when the machine is rebooting or halting.  We assume that the
664  * machine will be powered off, and the HC's internal state will be reset.
665  * Don't bother to free memory.
666  *
667  * This will only ever be called with the main usb_hcd (the USB3 roothub).
668  */
669 void xhci_shutdown(struct usb_hcd *hcd)
670 {
671         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672
673         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
674                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
675
676         /* Don't poll the roothubs after shutdown. */
677         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
678                         __func__, hcd->self.busnum);
679         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
680         del_timer_sync(&hcd->rh_timer);
681
682         if (xhci->shared_hcd) {
683                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
684                 del_timer_sync(&xhci->shared_hcd->rh_timer);
685         }
686
687         spin_lock_irq(&xhci->lock);
688         xhci_halt(xhci);
689
690         /*
691          * Workaround for spurious wakeps at shutdown with HSW, and for boot
692          * firmware delay in ADL-P PCH if port are left in U3 at shutdown
693          */
694         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
695             xhci->quirks & XHCI_RESET_TO_DEFAULT)
696                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
697
698         spin_unlock_irq(&xhci->lock);
699
700         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
701                         "xhci_shutdown completed - status = %x",
702                         readl(&xhci->op_regs->status));
703 }
704 EXPORT_SYMBOL_GPL(xhci_shutdown);
705
706 #ifdef CONFIG_PM
707 static void xhci_save_registers(struct xhci_hcd *xhci)
708 {
709         struct xhci_interrupter *ir;
710         unsigned int i;
711
712         xhci->s3.command = readl(&xhci->op_regs->command);
713         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
714         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
715         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
716
717         /* save both primary and all secondary interrupters */
718         /* fixme, shold we lock  to prevent race with remove secondary interrupter? */
719         for (i = 0; i < xhci->max_interrupters; i++) {
720                 ir = xhci->interrupters[i];
721                 if (!ir)
722                         continue;
723
724                 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
725                 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
726                 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
727                 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
728                 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
729         }
730 }
731
732 static void xhci_restore_registers(struct xhci_hcd *xhci)
733 {
734         struct xhci_interrupter *ir;
735         unsigned int i;
736
737         writel(xhci->s3.command, &xhci->op_regs->command);
738         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
739         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
740         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
741
742         /* FIXME should we lock to protect against freeing of interrupters */
743         for (i = 0; i < xhci->max_interrupters; i++) {
744                 ir = xhci->interrupters[i];
745                 if (!ir)
746                         continue;
747
748                 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
749                 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
750                 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
751                 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
752                 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
753         }
754 }
755
756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757 {
758         u64     val_64;
759
760         /* step 2: initialize command ring buffer */
761         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764                                       xhci->cmd_ring->dequeue) &
765                  (u64) ~CMD_RING_RSVD_BITS) |
766                 xhci->cmd_ring->cycle_state;
767         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768                         "// Setting command ring address to 0x%llx",
769                         (long unsigned long) val_64);
770         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771 }
772
773 /*
774  * The whole command ring must be cleared to zero when we suspend the host.
775  *
776  * The host doesn't save the command ring pointer in the suspend well, so we
777  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
778  * aligned, because of the reserved bits in the command ring dequeue pointer
779  * register.  Therefore, we can't just set the dequeue pointer back in the
780  * middle of the ring (TRBs are 16-byte aligned).
781  */
782 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783 {
784         struct xhci_ring *ring;
785         struct xhci_segment *seg;
786
787         ring = xhci->cmd_ring;
788         seg = ring->deq_seg;
789         do {
790                 memset(seg->trbs, 0,
791                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793                         cpu_to_le32(~TRB_CYCLE);
794                 seg = seg->next;
795         } while (seg != ring->deq_seg);
796
797         xhci_initialize_ring_info(ring, 1);
798         /*
799          * Reset the hardware dequeue pointer.
800          * Yes, this will need to be re-written after resume, but we're paranoid
801          * and want to make sure the hardware doesn't access bogus memory
802          * because, say, the BIOS or an SMI started the host without changing
803          * the command ring pointers.
804          */
805         xhci_set_cmd_ring_deq(xhci);
806 }
807
808 /*
809  * Disable port wake bits if do_wakeup is not set.
810  *
811  * Also clear a possible internal port wake state left hanging for ports that
812  * detected termination but never successfully enumerated (trained to 0U).
813  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
814  * at enumeration clears this wake, force one here as well for unconnected ports
815  */
816
817 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
818                                        struct xhci_hub *rhub,
819                                        bool do_wakeup)
820 {
821         unsigned long flags;
822         u32 t1, t2, portsc;
823         int i;
824
825         spin_lock_irqsave(&xhci->lock, flags);
826
827         for (i = 0; i < rhub->num_ports; i++) {
828                 portsc = readl(rhub->ports[i]->addr);
829                 t1 = xhci_port_state_to_neutral(portsc);
830                 t2 = t1;
831
832                 /* clear wake bits if do_wake is not set */
833                 if (!do_wakeup)
834                         t2 &= ~PORT_WAKE_BITS;
835
836                 /* Don't touch csc bit if connected or connect change is set */
837                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
838                         t2 |= PORT_CSC;
839
840                 if (t1 != t2) {
841                         writel(t2, rhub->ports[i]->addr);
842                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
843                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
844                 }
845         }
846         spin_unlock_irqrestore(&xhci->lock, flags);
847 }
848
849 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
850 {
851         struct xhci_port        **ports;
852         int                     port_index;
853         u32                     status;
854         u32                     portsc;
855
856         status = readl(&xhci->op_regs->status);
857         if (status & STS_EINT)
858                 return true;
859         /*
860          * Checking STS_EINT is not enough as there is a lag between a change
861          * bit being set and the Port Status Change Event that it generated
862          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
863          */
864
865         port_index = xhci->usb2_rhub.num_ports;
866         ports = xhci->usb2_rhub.ports;
867         while (port_index--) {
868                 portsc = readl(ports[port_index]->addr);
869                 if (portsc & PORT_CHANGE_MASK ||
870                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
871                         return true;
872         }
873         port_index = xhci->usb3_rhub.num_ports;
874         ports = xhci->usb3_rhub.ports;
875         while (port_index--) {
876                 portsc = readl(ports[port_index]->addr);
877                 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
878                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
879                         return true;
880         }
881         return false;
882 }
883
884 /*
885  * Stop HC (not bus-specific)
886  *
887  * This is called when the machine transition into S3/S4 mode.
888  *
889  */
890 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
891 {
892         int                     rc = 0;
893         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
894         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
895         u32                     command;
896         u32                     res;
897
898         if (!hcd->state)
899                 return 0;
900
901         if (hcd->state != HC_STATE_SUSPENDED ||
902             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
903                 return -EINVAL;
904
905         /* Clear root port wake on bits if wakeup not allowed. */
906         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
907         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
908
909         if (!HCD_HW_ACCESSIBLE(hcd))
910                 return 0;
911
912         xhci_dbc_suspend(xhci);
913
914         /* Don't poll the roothubs on bus suspend. */
915         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
916                  __func__, hcd->self.busnum);
917         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918         del_timer_sync(&hcd->rh_timer);
919         if (xhci->shared_hcd) {
920                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921                 del_timer_sync(&xhci->shared_hcd->rh_timer);
922         }
923
924         if (xhci->quirks & XHCI_SUSPEND_DELAY)
925                 usleep_range(1000, 1500);
926
927         spin_lock_irq(&xhci->lock);
928         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929         if (xhci->shared_hcd)
930                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
931         /* step 1: stop endpoint */
932         /* skipped assuming that port suspend has done */
933
934         /* step 2: clear Run/Stop bit */
935         command = readl(&xhci->op_regs->command);
936         command &= ~CMD_RUN;
937         writel(command, &xhci->op_regs->command);
938
939         /* Some chips from Fresco Logic need an extraordinary delay */
940         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
941
942         if (xhci_handshake(&xhci->op_regs->status,
943                       STS_HALT, STS_HALT, delay)) {
944                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
945                 spin_unlock_irq(&xhci->lock);
946                 return -ETIMEDOUT;
947         }
948         xhci_clear_command_ring(xhci);
949
950         /* step 3: save registers */
951         xhci_save_registers(xhci);
952
953         /* step 4: set CSS flag */
954         command = readl(&xhci->op_regs->command);
955         command |= CMD_CSS;
956         writel(command, &xhci->op_regs->command);
957         xhci->broken_suspend = 0;
958         if (xhci_handshake(&xhci->op_regs->status,
959                                 STS_SAVE, 0, 20 * 1000)) {
960         /*
961          * AMD SNPS xHC 3.0 occasionally does not clear the
962          * SSS bit of USBSTS and when driver tries to poll
963          * to see if the xHC clears BIT(8) which never happens
964          * and driver assumes that controller is not responding
965          * and times out. To workaround this, its good to check
966          * if SRE and HCE bits are not set (as per xhci
967          * Section 5.4.2) and bypass the timeout.
968          */
969                 res = readl(&xhci->op_regs->status);
970                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
971                     (((res & STS_SRE) == 0) &&
972                                 ((res & STS_HCE) == 0))) {
973                         xhci->broken_suspend = 1;
974                 } else {
975                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
976                         spin_unlock_irq(&xhci->lock);
977                         return -ETIMEDOUT;
978                 }
979         }
980         spin_unlock_irq(&xhci->lock);
981
982         /*
983          * Deleting Compliance Mode Recovery Timer because the xHCI Host
984          * is about to be suspended.
985          */
986         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
987                         (!(xhci_all_ports_seen_u0(xhci)))) {
988                 del_timer_sync(&xhci->comp_mode_recovery_timer);
989                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
990                                 "%s: compliance mode recovery timer deleted",
991                                 __func__);
992         }
993
994         return rc;
995 }
996 EXPORT_SYMBOL_GPL(xhci_suspend);
997
998 /*
999  * start xHC (not bus-specific)
1000  *
1001  * This is called when the machine transition from S3/S4 mode.
1002  *
1003  */
1004 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1005 {
1006         bool                    hibernated = (msg.event == PM_EVENT_RESTORE);
1007         u32                     command, temp = 0;
1008         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1009         int                     retval = 0;
1010         bool                    comp_timer_running = false;
1011         bool                    pending_portevent = false;
1012         bool                    suspended_usb3_devs = false;
1013         bool                    reinit_xhc = false;
1014
1015         if (!hcd->state)
1016                 return 0;
1017
1018         /* Wait a bit if either of the roothubs need to settle from the
1019          * transition into bus suspend.
1020          */
1021
1022         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1023             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1024                 msleep(100);
1025
1026         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027         if (xhci->shared_hcd)
1028                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029
1030         spin_lock_irq(&xhci->lock);
1031
1032         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1033                 reinit_xhc = true;
1034
1035         if (!reinit_xhc) {
1036                 /*
1037                  * Some controllers might lose power during suspend, so wait
1038                  * for controller not ready bit to clear, just as in xHC init.
1039                  */
1040                 retval = xhci_handshake(&xhci->op_regs->status,
1041                                         STS_CNR, 0, 10 * 1000 * 1000);
1042                 if (retval) {
1043                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1044                                   retval);
1045                         spin_unlock_irq(&xhci->lock);
1046                         return retval;
1047                 }
1048                 /* step 1: restore register */
1049                 xhci_restore_registers(xhci);
1050                 /* step 2: initialize command ring buffer */
1051                 xhci_set_cmd_ring_deq(xhci);
1052                 /* step 3: restore state and start state*/
1053                 /* step 3: set CRS flag */
1054                 command = readl(&xhci->op_regs->command);
1055                 command |= CMD_CRS;
1056                 writel(command, &xhci->op_regs->command);
1057                 /*
1058                  * Some controllers take up to 55+ ms to complete the controller
1059                  * restore so setting the timeout to 100ms. Xhci specification
1060                  * doesn't mention any timeout value.
1061                  */
1062                 if (xhci_handshake(&xhci->op_regs->status,
1063                               STS_RESTORE, 0, 100 * 1000)) {
1064                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1065                         spin_unlock_irq(&xhci->lock);
1066                         return -ETIMEDOUT;
1067                 }
1068         }
1069
1070         temp = readl(&xhci->op_regs->status);
1071
1072         /* re-initialize the HC on Restore Error, or Host Controller Error */
1073         if ((temp & (STS_SRE | STS_HCE)) &&
1074             !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1075                 reinit_xhc = true;
1076                 if (!xhci->broken_suspend)
1077                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1078         }
1079
1080         if (reinit_xhc) {
1081                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082                                 !(xhci_all_ports_seen_u0(xhci))) {
1083                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1084                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085                                 "Compliance Mode Recovery Timer deleted!");
1086                 }
1087
1088                 /* Let the USB core know _both_ roothubs lost power. */
1089                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1090                 if (xhci->shared_hcd)
1091                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1092
1093                 xhci_dbg(xhci, "Stop HCD\n");
1094                 xhci_halt(xhci);
1095                 xhci_zero_64b_regs(xhci);
1096                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1097                 spin_unlock_irq(&xhci->lock);
1098                 if (retval)
1099                         return retval;
1100
1101                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102                 temp = readl(&xhci->op_regs->status);
1103                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1104                 xhci_disable_interrupter(xhci->interrupters[0]);
1105
1106                 xhci_dbg(xhci, "cleaning up memory\n");
1107                 xhci_mem_cleanup(xhci);
1108                 xhci_debugfs_exit(xhci);
1109                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110                             readl(&xhci->op_regs->status));
1111
1112                 /* USB core calls the PCI reinit and start functions twice:
1113                  * first with the primary HCD, and then with the secondary HCD.
1114                  * If we don't do the same, the host will never be started.
1115                  */
1116                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1117                 retval = xhci_init(hcd);
1118                 if (retval)
1119                         return retval;
1120                 comp_timer_running = true;
1121
1122                 xhci_dbg(xhci, "Start the primary HCD\n");
1123                 retval = xhci_run(hcd);
1124                 if (!retval && xhci->shared_hcd) {
1125                         xhci_dbg(xhci, "Start the secondary HCD\n");
1126                         retval = xhci_run(xhci->shared_hcd);
1127                 }
1128                 if (retval)
1129                         return retval;
1130                 /*
1131                  * Resume roothubs unconditionally as PORTSC change bits are not
1132                  * immediately visible after xHC reset
1133                  */
1134                 hcd->state = HC_STATE_SUSPENDED;
1135
1136                 if (xhci->shared_hcd) {
1137                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1138                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1139                 }
1140                 usb_hcd_resume_root_hub(hcd);
1141
1142                 goto done;
1143         }
1144
1145         /* step 4: set Run/Stop bit */
1146         command = readl(&xhci->op_regs->command);
1147         command |= CMD_RUN;
1148         writel(command, &xhci->op_regs->command);
1149         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1150                   0, 250 * 1000);
1151
1152         /* step 5: walk topology and initialize portsc,
1153          * portpmsc and portli
1154          */
1155         /* this is done in bus_resume */
1156
1157         /* step 6: restart each of the previously
1158          * Running endpoints by ringing their doorbells
1159          */
1160
1161         spin_unlock_irq(&xhci->lock);
1162
1163         xhci_dbc_resume(xhci);
1164
1165         if (retval == 0) {
1166                 /*
1167                  * Resume roothubs only if there are pending events.
1168                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1169                  * the first wake signalling failed, give it that chance if
1170                  * there are suspended USB 3 devices.
1171                  */
1172                 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1173                     xhci->usb3_rhub.bus_state.bus_suspended)
1174                         suspended_usb3_devs = true;
1175
1176                 pending_portevent = xhci_pending_portevent(xhci);
1177
1178                 if (suspended_usb3_devs && !pending_portevent &&
1179                     msg.event == PM_EVENT_AUTO_RESUME) {
1180                         msleep(120);
1181                         pending_portevent = xhci_pending_portevent(xhci);
1182                 }
1183
1184                 if (pending_portevent) {
1185                         if (xhci->shared_hcd)
1186                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1187                         usb_hcd_resume_root_hub(hcd);
1188                 }
1189         }
1190 done:
1191         /*
1192          * If system is subject to the Quirk, Compliance Mode Timer needs to
1193          * be re-initialized Always after a system resume. Ports are subject
1194          * to suffer the Compliance Mode issue again. It doesn't matter if
1195          * ports have entered previously to U0 before system's suspension.
1196          */
1197         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1198                 compliance_mode_recovery_timer_init(xhci);
1199
1200         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1201                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1202
1203         /* Re-enable port polling. */
1204         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1205                  __func__, hcd->self.busnum);
1206         if (xhci->shared_hcd) {
1207                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1208                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1209         }
1210         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1211         usb_hcd_poll_rh_status(hcd);
1212
1213         return retval;
1214 }
1215 EXPORT_SYMBOL_GPL(xhci_resume);
1216 #endif  /* CONFIG_PM */
1217
1218 /*-------------------------------------------------------------------------*/
1219
1220 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1221 {
1222         void *temp;
1223         int ret = 0;
1224         unsigned int buf_len;
1225         enum dma_data_direction dir;
1226
1227         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1228         buf_len = urb->transfer_buffer_length;
1229
1230         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1231                             dev_to_node(hcd->self.sysdev));
1232         if (!temp)
1233                 return -ENOMEM;
1234
1235         if (usb_urb_dir_out(urb))
1236                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1237                                    temp, buf_len, 0);
1238
1239         urb->transfer_buffer = temp;
1240         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1241                                            urb->transfer_buffer,
1242                                            urb->transfer_buffer_length,
1243                                            dir);
1244
1245         if (dma_mapping_error(hcd->self.sysdev,
1246                               urb->transfer_dma)) {
1247                 ret = -EAGAIN;
1248                 kfree(temp);
1249         } else {
1250                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1251         }
1252
1253         return ret;
1254 }
1255
1256 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1257                                           struct urb *urb)
1258 {
1259         bool ret = false;
1260         unsigned int i;
1261         unsigned int len = 0;
1262         unsigned int trb_size;
1263         unsigned int max_pkt;
1264         struct scatterlist *sg;
1265         struct scatterlist *tail_sg;
1266
1267         tail_sg = urb->sg;
1268         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1269
1270         if (!urb->num_sgs)
1271                 return ret;
1272
1273         if (urb->dev->speed >= USB_SPEED_SUPER)
1274                 trb_size = TRB_CACHE_SIZE_SS;
1275         else
1276                 trb_size = TRB_CACHE_SIZE_HS;
1277
1278         if (urb->transfer_buffer_length != 0 &&
1279             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1280                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1281                         len = len + sg->length;
1282                         if (i > trb_size - 2) {
1283                                 len = len - tail_sg->length;
1284                                 if (len < max_pkt) {
1285                                         ret = true;
1286                                         break;
1287                                 }
1288
1289                                 tail_sg = sg_next(tail_sg);
1290                         }
1291                 }
1292         }
1293         return ret;
1294 }
1295
1296 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1297 {
1298         unsigned int len;
1299         unsigned int buf_len;
1300         enum dma_data_direction dir;
1301
1302         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1303
1304         buf_len = urb->transfer_buffer_length;
1305
1306         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1307             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1308                 dma_unmap_single(hcd->self.sysdev,
1309                                  urb->transfer_dma,
1310                                  urb->transfer_buffer_length,
1311                                  dir);
1312
1313         if (usb_urb_dir_in(urb)) {
1314                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1315                                            urb->transfer_buffer,
1316                                            buf_len,
1317                                            0);
1318                 if (len != buf_len) {
1319                         xhci_dbg(hcd_to_xhci(hcd),
1320                                  "Copy from tmp buf to urb sg list failed\n");
1321                         urb->actual_length = len;
1322                 }
1323         }
1324         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1325         kfree(urb->transfer_buffer);
1326         urb->transfer_buffer = NULL;
1327 }
1328
1329 /*
1330  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1331  * we'll copy the actual data into the TRB address register. This is limited to
1332  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1333  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1334  */
1335 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1336                                 gfp_t mem_flags)
1337 {
1338         struct xhci_hcd *xhci;
1339
1340         xhci = hcd_to_xhci(hcd);
1341
1342         if (xhci_urb_suitable_for_idt(urb))
1343                 return 0;
1344
1345         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1346                 if (xhci_urb_temp_buffer_required(hcd, urb))
1347                         return xhci_map_temp_buffer(hcd, urb);
1348         }
1349         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1350 }
1351
1352 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353 {
1354         struct xhci_hcd *xhci;
1355         bool unmap_temp_buf = false;
1356
1357         xhci = hcd_to_xhci(hcd);
1358
1359         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360                 unmap_temp_buf = true;
1361
1362         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1363                 xhci_unmap_temp_buf(hcd, urb);
1364         else
1365                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1366 }
1367
1368 /**
1369  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1370  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1371  * value to right shift 1 for the bitmask.
1372  *
1373  * Index  = (epnum * 2) + direction - 1,
1374  * where direction = 0 for OUT, 1 for IN.
1375  * For control endpoints, the IN index is used (OUT index is unused), so
1376  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1377  */
1378 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1379 {
1380         unsigned int index;
1381         if (usb_endpoint_xfer_control(desc))
1382                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1383         else
1384                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1385                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1386         return index;
1387 }
1388 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1389
1390 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1391  * address from the XHCI endpoint index.
1392  */
1393 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1394 {
1395         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1396         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1397         return direction | number;
1398 }
1399
1400 /* Find the flag for this endpoint (for use in the control context).  Use the
1401  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1402  * bit 1, etc.
1403  */
1404 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1405 {
1406         return 1 << (xhci_get_endpoint_index(desc) + 1);
1407 }
1408
1409 /* Compute the last valid endpoint context index.  Basically, this is the
1410  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1411  * we find the most significant bit set in the added contexts flags.
1412  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1413  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1414  */
1415 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1416 {
1417         return fls(added_ctxs) - 1;
1418 }
1419
1420 /* Returns 1 if the arguments are OK;
1421  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1422  */
1423 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1424                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1425                 const char *func) {
1426         struct xhci_hcd *xhci;
1427         struct xhci_virt_device *virt_dev;
1428
1429         if (!hcd || (check_ep && !ep) || !udev) {
1430                 pr_debug("xHCI %s called with invalid args\n", func);
1431                 return -EINVAL;
1432         }
1433         if (!udev->parent) {
1434                 pr_debug("xHCI %s called for root hub\n", func);
1435                 return 0;
1436         }
1437
1438         xhci = hcd_to_xhci(hcd);
1439         if (check_virt_dev) {
1440                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1441                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1442                                         func);
1443                         return -EINVAL;
1444                 }
1445
1446                 virt_dev = xhci->devs[udev->slot_id];
1447                 if (virt_dev->udev != udev) {
1448                         xhci_dbg(xhci, "xHCI %s called with udev and "
1449                                           "virt_dev does not match\n", func);
1450                         return -EINVAL;
1451                 }
1452         }
1453
1454         if (xhci->xhc_state & XHCI_STATE_HALTED)
1455                 return -ENODEV;
1456
1457         return 1;
1458 }
1459
1460 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1461                 struct usb_device *udev, struct xhci_command *command,
1462                 bool ctx_change, bool must_succeed);
1463
1464 /*
1465  * Full speed devices may have a max packet size greater than 8 bytes, but the
1466  * USB core doesn't know that until it reads the first 8 bytes of the
1467  * descriptor.  If the usb_device's max packet size changes after that point,
1468  * we need to issue an evaluate context command and wait on it.
1469  */
1470 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1471 {
1472         struct xhci_input_control_ctx *ctrl_ctx;
1473         struct xhci_ep_ctx *ep_ctx;
1474         struct xhci_command *command;
1475         int max_packet_size;
1476         int hw_max_packet_size;
1477         int ret = 0;
1478
1479         ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1480         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1481         max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1482
1483         if (hw_max_packet_size == max_packet_size)
1484                 return 0;
1485
1486         switch (max_packet_size) {
1487         case 8: case 16: case 32: case 64: case 9:
1488                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1489                                 "Max Packet Size for ep 0 changed.");
1490                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1491                                 "Max packet size in usb_device = %d",
1492                                 max_packet_size);
1493                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1494                                 "Max packet size in xHCI HW = %d",
1495                                 hw_max_packet_size);
1496                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1497                                 "Issuing evaluate context command.");
1498
1499                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1500                 if (!command)
1501                         return -ENOMEM;
1502
1503                 command->in_ctx = vdev->in_ctx;
1504                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1505                 if (!ctrl_ctx) {
1506                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1507                                         __func__);
1508                         ret = -ENOMEM;
1509                         break;
1510                 }
1511                 /* Set up the modified control endpoint 0 */
1512                 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1513
1514                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1515                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1516                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1517                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1518
1519                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1520                 ctrl_ctx->drop_flags = 0;
1521
1522                 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1523                                               true, false);
1524                 /* Clean up the input context for later use by bandwidth functions */
1525                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1526                 break;
1527         default:
1528                 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1529                         max_packet_size);
1530                 return -EINVAL;
1531         }
1532
1533         kfree(command->completion);
1534         kfree(command);
1535
1536         return ret;
1537 }
1538
1539 /*
1540  * non-error returns are a promise to giveback() the urb later
1541  * we drop ownership so next owner (or urb unlink) can get it
1542  */
1543 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1544 {
1545         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1546         unsigned long flags;
1547         int ret = 0;
1548         unsigned int slot_id, ep_index;
1549         unsigned int *ep_state;
1550         struct urb_priv *urb_priv;
1551         int num_tds;
1552
1553         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1554
1555         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1556                 num_tds = urb->number_of_packets;
1557         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1558             urb->transfer_buffer_length > 0 &&
1559             urb->transfer_flags & URB_ZERO_PACKET &&
1560             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1561                 num_tds = 2;
1562         else
1563                 num_tds = 1;
1564
1565         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1566         if (!urb_priv)
1567                 return -ENOMEM;
1568
1569         urb_priv->num_tds = num_tds;
1570         urb_priv->num_tds_done = 0;
1571         urb->hcpriv = urb_priv;
1572
1573         trace_xhci_urb_enqueue(urb);
1574
1575         spin_lock_irqsave(&xhci->lock, flags);
1576
1577         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1578                               true, true, __func__);
1579         if (ret <= 0) {
1580                 ret = ret ? ret : -EINVAL;
1581                 goto free_priv;
1582         }
1583
1584         slot_id = urb->dev->slot_id;
1585
1586         if (!HCD_HW_ACCESSIBLE(hcd)) {
1587                 ret = -ESHUTDOWN;
1588                 goto free_priv;
1589         }
1590
1591         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1592                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1593                 ret = -ENODEV;
1594                 goto free_priv;
1595         }
1596
1597         if (xhci->xhc_state & XHCI_STATE_DYING) {
1598                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1599                          urb->ep->desc.bEndpointAddress, urb);
1600                 ret = -ESHUTDOWN;
1601                 goto free_priv;
1602         }
1603
1604         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1605
1606         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1607                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1608                           *ep_state);
1609                 ret = -EINVAL;
1610                 goto free_priv;
1611         }
1612         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1613                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1614                 ret = -EINVAL;
1615                 goto free_priv;
1616         }
1617
1618         switch (usb_endpoint_type(&urb->ep->desc)) {
1619
1620         case USB_ENDPOINT_XFER_CONTROL:
1621                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1622                                          slot_id, ep_index);
1623                 break;
1624         case USB_ENDPOINT_XFER_BULK:
1625                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1626                                          slot_id, ep_index);
1627                 break;
1628         case USB_ENDPOINT_XFER_INT:
1629                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1630                                 slot_id, ep_index);
1631                 break;
1632         case USB_ENDPOINT_XFER_ISOC:
1633                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1634                                 slot_id, ep_index);
1635         }
1636
1637         if (ret) {
1638 free_priv:
1639                 xhci_urb_free_priv(urb_priv);
1640                 urb->hcpriv = NULL;
1641         }
1642         spin_unlock_irqrestore(&xhci->lock, flags);
1643         return ret;
1644 }
1645
1646 /*
1647  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1648  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1649  * should pick up where it left off in the TD, unless a Set Transfer Ring
1650  * Dequeue Pointer is issued.
1651  *
1652  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1653  * the ring.  Since the ring is a contiguous structure, they can't be physically
1654  * removed.  Instead, there are two options:
1655  *
1656  *  1) If the HC is in the middle of processing the URB to be canceled, we
1657  *     simply move the ring's dequeue pointer past those TRBs using the Set
1658  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1659  *     when drivers timeout on the last submitted URB and attempt to cancel.
1660  *
1661  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1662  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1663  *     HC will need to invalidate the any TRBs it has cached after the stop
1664  *     endpoint command, as noted in the xHCI 0.95 errata.
1665  *
1666  *  3) The TD may have completed by the time the Stop Endpoint Command
1667  *     completes, so software needs to handle that case too.
1668  *
1669  * This function should protect against the TD enqueueing code ringing the
1670  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1671  * It also needs to account for multiple cancellations on happening at the same
1672  * time for the same endpoint.
1673  *
1674  * Note that this function can be called in any context, or so says
1675  * usb_hcd_unlink_urb()
1676  */
1677 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1678 {
1679         unsigned long flags;
1680         int ret, i;
1681         u32 temp;
1682         struct xhci_hcd *xhci;
1683         struct urb_priv *urb_priv;
1684         struct xhci_td *td;
1685         unsigned int ep_index;
1686         struct xhci_ring *ep_ring;
1687         struct xhci_virt_ep *ep;
1688         struct xhci_command *command;
1689         struct xhci_virt_device *vdev;
1690
1691         xhci = hcd_to_xhci(hcd);
1692         spin_lock_irqsave(&xhci->lock, flags);
1693
1694         trace_xhci_urb_dequeue(urb);
1695
1696         /* Make sure the URB hasn't completed or been unlinked already */
1697         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1698         if (ret)
1699                 goto done;
1700
1701         /* give back URB now if we can't queue it for cancel */
1702         vdev = xhci->devs[urb->dev->slot_id];
1703         urb_priv = urb->hcpriv;
1704         if (!vdev || !urb_priv)
1705                 goto err_giveback;
1706
1707         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1708         ep = &vdev->eps[ep_index];
1709         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1710         if (!ep || !ep_ring)
1711                 goto err_giveback;
1712
1713         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1714         temp = readl(&xhci->op_regs->status);
1715         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1716                 xhci_hc_died(xhci);
1717                 goto done;
1718         }
1719
1720         /*
1721          * check ring is not re-allocated since URB was enqueued. If it is, then
1722          * make sure none of the ring related pointers in this URB private data
1723          * are touched, such as td_list, otherwise we overwrite freed data
1724          */
1725         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1726                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1727                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1728                         td = &urb_priv->td[i];
1729                         if (!list_empty(&td->cancelled_td_list))
1730                                 list_del_init(&td->cancelled_td_list);
1731                 }
1732                 goto err_giveback;
1733         }
1734
1735         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1736                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1737                                 "HC halted, freeing TD manually.");
1738                 for (i = urb_priv->num_tds_done;
1739                      i < urb_priv->num_tds;
1740                      i++) {
1741                         td = &urb_priv->td[i];
1742                         if (!list_empty(&td->td_list))
1743                                 list_del_init(&td->td_list);
1744                         if (!list_empty(&td->cancelled_td_list))
1745                                 list_del_init(&td->cancelled_td_list);
1746                 }
1747                 goto err_giveback;
1748         }
1749
1750         i = urb_priv->num_tds_done;
1751         if (i < urb_priv->num_tds)
1752                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1753                                 "Cancel URB %p, dev %s, ep 0x%x, "
1754                                 "starting at offset 0x%llx",
1755                                 urb, urb->dev->devpath,
1756                                 urb->ep->desc.bEndpointAddress,
1757                                 (unsigned long long) xhci_trb_virt_to_dma(
1758                                         urb_priv->td[i].start_seg,
1759                                         urb_priv->td[i].first_trb));
1760
1761         for (; i < urb_priv->num_tds; i++) {
1762                 td = &urb_priv->td[i];
1763                 /* TD can already be on cancelled list if ep halted on it */
1764                 if (list_empty(&td->cancelled_td_list)) {
1765                         td->cancel_status = TD_DIRTY;
1766                         list_add_tail(&td->cancelled_td_list,
1767                                       &ep->cancelled_td_list);
1768                 }
1769         }
1770
1771         /* Queue a stop endpoint command, but only if this is
1772          * the first cancellation to be handled.
1773          */
1774         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1775                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1776                 if (!command) {
1777                         ret = -ENOMEM;
1778                         goto done;
1779                 }
1780                 ep->ep_state |= EP_STOP_CMD_PENDING;
1781                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1782                                          ep_index, 0);
1783                 xhci_ring_cmd_db(xhci);
1784         }
1785 done:
1786         spin_unlock_irqrestore(&xhci->lock, flags);
1787         return ret;
1788
1789 err_giveback:
1790         if (urb_priv)
1791                 xhci_urb_free_priv(urb_priv);
1792         usb_hcd_unlink_urb_from_ep(hcd, urb);
1793         spin_unlock_irqrestore(&xhci->lock, flags);
1794         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1795         return ret;
1796 }
1797
1798 /* Drop an endpoint from a new bandwidth configuration for this device.
1799  * Only one call to this function is allowed per endpoint before
1800  * check_bandwidth() or reset_bandwidth() must be called.
1801  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1802  * add the endpoint to the schedule with possibly new parameters denoted by a
1803  * different endpoint descriptor in usb_host_endpoint.
1804  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1805  * not allowed.
1806  *
1807  * The USB core will not allow URBs to be queued to an endpoint that is being
1808  * disabled, so there's no need for mutual exclusion to protect
1809  * the xhci->devs[slot_id] structure.
1810  */
1811 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1812                        struct usb_host_endpoint *ep)
1813 {
1814         struct xhci_hcd *xhci;
1815         struct xhci_container_ctx *in_ctx, *out_ctx;
1816         struct xhci_input_control_ctx *ctrl_ctx;
1817         unsigned int ep_index;
1818         struct xhci_ep_ctx *ep_ctx;
1819         u32 drop_flag;
1820         u32 new_add_flags, new_drop_flags;
1821         int ret;
1822
1823         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1824         if (ret <= 0)
1825                 return ret;
1826         xhci = hcd_to_xhci(hcd);
1827         if (xhci->xhc_state & XHCI_STATE_DYING)
1828                 return -ENODEV;
1829
1830         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1831         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1832         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1833                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1834                                 __func__, drop_flag);
1835                 return 0;
1836         }
1837
1838         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1839         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1840         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1841         if (!ctrl_ctx) {
1842                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1843                                 __func__);
1844                 return 0;
1845         }
1846
1847         ep_index = xhci_get_endpoint_index(&ep->desc);
1848         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1849         /* If the HC already knows the endpoint is disabled,
1850          * or the HCD has noted it is disabled, ignore this request
1851          */
1852         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1853             le32_to_cpu(ctrl_ctx->drop_flags) &
1854             xhci_get_endpoint_flag(&ep->desc)) {
1855                 /* Do not warn when called after a usb_device_reset */
1856                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1857                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1858                                   __func__, ep);
1859                 return 0;
1860         }
1861
1862         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1863         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1864
1865         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1866         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1867
1868         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1869
1870         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1871
1872         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1873                         (unsigned int) ep->desc.bEndpointAddress,
1874                         udev->slot_id,
1875                         (unsigned int) new_drop_flags,
1876                         (unsigned int) new_add_flags);
1877         return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1880
1881 /* Add an endpoint to a new possible bandwidth configuration for this device.
1882  * Only one call to this function is allowed per endpoint before
1883  * check_bandwidth() or reset_bandwidth() must be called.
1884  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1885  * add the endpoint to the schedule with possibly new parameters denoted by a
1886  * different endpoint descriptor in usb_host_endpoint.
1887  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1888  * not allowed.
1889  *
1890  * The USB core will not allow URBs to be queued to an endpoint until the
1891  * configuration or alt setting is installed in the device, so there's no need
1892  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1893  */
1894 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1895                       struct usb_host_endpoint *ep)
1896 {
1897         struct xhci_hcd *xhci;
1898         struct xhci_container_ctx *in_ctx;
1899         unsigned int ep_index;
1900         struct xhci_input_control_ctx *ctrl_ctx;
1901         struct xhci_ep_ctx *ep_ctx;
1902         u32 added_ctxs;
1903         u32 new_add_flags, new_drop_flags;
1904         struct xhci_virt_device *virt_dev;
1905         int ret = 0;
1906
1907         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1908         if (ret <= 0) {
1909                 /* So we won't queue a reset ep command for a root hub */
1910                 ep->hcpriv = NULL;
1911                 return ret;
1912         }
1913         xhci = hcd_to_xhci(hcd);
1914         if (xhci->xhc_state & XHCI_STATE_DYING)
1915                 return -ENODEV;
1916
1917         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1918         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1919                 /* FIXME when we have to issue an evaluate endpoint command to
1920                  * deal with ep0 max packet size changing once we get the
1921                  * descriptors
1922                  */
1923                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1924                                 __func__, added_ctxs);
1925                 return 0;
1926         }
1927
1928         virt_dev = xhci->devs[udev->slot_id];
1929         in_ctx = virt_dev->in_ctx;
1930         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1931         if (!ctrl_ctx) {
1932                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1933                                 __func__);
1934                 return 0;
1935         }
1936
1937         ep_index = xhci_get_endpoint_index(&ep->desc);
1938         /* If this endpoint is already in use, and the upper layers are trying
1939          * to add it again without dropping it, reject the addition.
1940          */
1941         if (virt_dev->eps[ep_index].ring &&
1942                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1943                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1944                                 "without dropping it.\n",
1945                                 (unsigned int) ep->desc.bEndpointAddress);
1946                 return -EINVAL;
1947         }
1948
1949         /* If the HCD has already noted the endpoint is enabled,
1950          * ignore this request.
1951          */
1952         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1953                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1954                                 __func__, ep);
1955                 return 0;
1956         }
1957
1958         /*
1959          * Configuration and alternate setting changes must be done in
1960          * process context, not interrupt context (or so documenation
1961          * for usb_set_interface() and usb_set_configuration() claim).
1962          */
1963         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1964                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1965                                 __func__, ep->desc.bEndpointAddress);
1966                 return -ENOMEM;
1967         }
1968
1969         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1970         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1971
1972         /* If xhci_endpoint_disable() was called for this endpoint, but the
1973          * xHC hasn't been notified yet through the check_bandwidth() call,
1974          * this re-adds a new state for the endpoint from the new endpoint
1975          * descriptors.  We must drop and re-add this endpoint, so we leave the
1976          * drop flags alone.
1977          */
1978         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1979
1980         /* Store the usb_device pointer for later use */
1981         ep->hcpriv = udev;
1982
1983         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1984         trace_xhci_add_endpoint(ep_ctx);
1985
1986         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1987                         (unsigned int) ep->desc.bEndpointAddress,
1988                         udev->slot_id,
1989                         (unsigned int) new_drop_flags,
1990                         (unsigned int) new_add_flags);
1991         return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1994
1995 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1996 {
1997         struct xhci_input_control_ctx *ctrl_ctx;
1998         struct xhci_ep_ctx *ep_ctx;
1999         struct xhci_slot_ctx *slot_ctx;
2000         int i;
2001
2002         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2003         if (!ctrl_ctx) {
2004                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2005                                 __func__);
2006                 return;
2007         }
2008
2009         /* When a device's add flag and drop flag are zero, any subsequent
2010          * configure endpoint command will leave that endpoint's state
2011          * untouched.  Make sure we don't leave any old state in the input
2012          * endpoint contexts.
2013          */
2014         ctrl_ctx->drop_flags = 0;
2015         ctrl_ctx->add_flags = 0;
2016         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2017         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2018         /* Endpoint 0 is always valid */
2019         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2020         for (i = 1; i < 31; i++) {
2021                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2022                 ep_ctx->ep_info = 0;
2023                 ep_ctx->ep_info2 = 0;
2024                 ep_ctx->deq = 0;
2025                 ep_ctx->tx_info = 0;
2026         }
2027 }
2028
2029 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2030                 struct usb_device *udev, u32 *cmd_status)
2031 {
2032         int ret;
2033
2034         switch (*cmd_status) {
2035         case COMP_COMMAND_ABORTED:
2036         case COMP_COMMAND_RING_STOPPED:
2037                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2038                 ret = -ETIME;
2039                 break;
2040         case COMP_RESOURCE_ERROR:
2041                 dev_warn(&udev->dev,
2042                          "Not enough host controller resources for new device state.\n");
2043                 ret = -ENOMEM;
2044                 /* FIXME: can we allocate more resources for the HC? */
2045                 break;
2046         case COMP_BANDWIDTH_ERROR:
2047         case COMP_SECONDARY_BANDWIDTH_ERROR:
2048                 dev_warn(&udev->dev,
2049                          "Not enough bandwidth for new device state.\n");
2050                 ret = -ENOSPC;
2051                 /* FIXME: can we go back to the old state? */
2052                 break;
2053         case COMP_TRB_ERROR:
2054                 /* the HCD set up something wrong */
2055                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2056                                 "add flag = 1, "
2057                                 "and endpoint is not disabled.\n");
2058                 ret = -EINVAL;
2059                 break;
2060         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2061                 dev_warn(&udev->dev,
2062                          "ERROR: Incompatible device for endpoint configure command.\n");
2063                 ret = -ENODEV;
2064                 break;
2065         case COMP_SUCCESS:
2066                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2067                                 "Successful Endpoint Configure command");
2068                 ret = 0;
2069                 break;
2070         default:
2071                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2072                                 *cmd_status);
2073                 ret = -EINVAL;
2074                 break;
2075         }
2076         return ret;
2077 }
2078
2079 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2080                 struct usb_device *udev, u32 *cmd_status)
2081 {
2082         int ret;
2083
2084         switch (*cmd_status) {
2085         case COMP_COMMAND_ABORTED:
2086         case COMP_COMMAND_RING_STOPPED:
2087                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2088                 ret = -ETIME;
2089                 break;
2090         case COMP_PARAMETER_ERROR:
2091                 dev_warn(&udev->dev,
2092                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2093                 ret = -EINVAL;
2094                 break;
2095         case COMP_SLOT_NOT_ENABLED_ERROR:
2096                 dev_warn(&udev->dev,
2097                         "WARN: slot not enabled for evaluate context command.\n");
2098                 ret = -EINVAL;
2099                 break;
2100         case COMP_CONTEXT_STATE_ERROR:
2101                 dev_warn(&udev->dev,
2102                         "WARN: invalid context state for evaluate context command.\n");
2103                 ret = -EINVAL;
2104                 break;
2105         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2106                 dev_warn(&udev->dev,
2107                         "ERROR: Incompatible device for evaluate context command.\n");
2108                 ret = -ENODEV;
2109                 break;
2110         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2111                 /* Max Exit Latency too large error */
2112                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2113                 ret = -EINVAL;
2114                 break;
2115         case COMP_SUCCESS:
2116                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2117                                 "Successful evaluate context command");
2118                 ret = 0;
2119                 break;
2120         default:
2121                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2122                         *cmd_status);
2123                 ret = -EINVAL;
2124                 break;
2125         }
2126         return ret;
2127 }
2128
2129 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2130                 struct xhci_input_control_ctx *ctrl_ctx)
2131 {
2132         u32 valid_add_flags;
2133         u32 valid_drop_flags;
2134
2135         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2136          * (bit 1).  The default control endpoint is added during the Address
2137          * Device command and is never removed until the slot is disabled.
2138          */
2139         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2140         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2141
2142         /* Use hweight32 to count the number of ones in the add flags, or
2143          * number of endpoints added.  Don't count endpoints that are changed
2144          * (both added and dropped).
2145          */
2146         return hweight32(valid_add_flags) -
2147                 hweight32(valid_add_flags & valid_drop_flags);
2148 }
2149
2150 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2151                 struct xhci_input_control_ctx *ctrl_ctx)
2152 {
2153         u32 valid_add_flags;
2154         u32 valid_drop_flags;
2155
2156         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2157         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2158
2159         return hweight32(valid_drop_flags) -
2160                 hweight32(valid_add_flags & valid_drop_flags);
2161 }
2162
2163 /*
2164  * We need to reserve the new number of endpoints before the configure endpoint
2165  * command completes.  We can't subtract the dropped endpoints from the number
2166  * of active endpoints until the command completes because we can oversubscribe
2167  * the host in this case:
2168  *
2169  *  - the first configure endpoint command drops more endpoints than it adds
2170  *  - a second configure endpoint command that adds more endpoints is queued
2171  *  - the first configure endpoint command fails, so the config is unchanged
2172  *  - the second command may succeed, even though there isn't enough resources
2173  *
2174  * Must be called with xhci->lock held.
2175  */
2176 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2177                 struct xhci_input_control_ctx *ctrl_ctx)
2178 {
2179         u32 added_eps;
2180
2181         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2182         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2183                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2184                                 "Not enough ep ctxs: "
2185                                 "%u active, need to add %u, limit is %u.",
2186                                 xhci->num_active_eps, added_eps,
2187                                 xhci->limit_active_eps);
2188                 return -ENOMEM;
2189         }
2190         xhci->num_active_eps += added_eps;
2191         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2192                         "Adding %u ep ctxs, %u now active.", added_eps,
2193                         xhci->num_active_eps);
2194         return 0;
2195 }
2196
2197 /*
2198  * The configure endpoint was failed by the xHC for some other reason, so we
2199  * need to revert the resources that failed configuration would have used.
2200  *
2201  * Must be called with xhci->lock held.
2202  */
2203 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2204                 struct xhci_input_control_ctx *ctrl_ctx)
2205 {
2206         u32 num_failed_eps;
2207
2208         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2209         xhci->num_active_eps -= num_failed_eps;
2210         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211                         "Removing %u failed ep ctxs, %u now active.",
2212                         num_failed_eps,
2213                         xhci->num_active_eps);
2214 }
2215
2216 /*
2217  * Now that the command has completed, clean up the active endpoint count by
2218  * subtracting out the endpoints that were dropped (but not changed).
2219  *
2220  * Must be called with xhci->lock held.
2221  */
2222 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2223                 struct xhci_input_control_ctx *ctrl_ctx)
2224 {
2225         u32 num_dropped_eps;
2226
2227         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2228         xhci->num_active_eps -= num_dropped_eps;
2229         if (num_dropped_eps)
2230                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231                                 "Removing %u dropped ep ctxs, %u now active.",
2232                                 num_dropped_eps,
2233                                 xhci->num_active_eps);
2234 }
2235
2236 static unsigned int xhci_get_block_size(struct usb_device *udev)
2237 {
2238         switch (udev->speed) {
2239         case USB_SPEED_LOW:
2240         case USB_SPEED_FULL:
2241                 return FS_BLOCK;
2242         case USB_SPEED_HIGH:
2243                 return HS_BLOCK;
2244         case USB_SPEED_SUPER:
2245         case USB_SPEED_SUPER_PLUS:
2246                 return SS_BLOCK;
2247         case USB_SPEED_UNKNOWN:
2248         default:
2249                 /* Should never happen */
2250                 return 1;
2251         }
2252 }
2253
2254 static unsigned int
2255 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2256 {
2257         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2258                 return LS_OVERHEAD;
2259         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2260                 return FS_OVERHEAD;
2261         return HS_OVERHEAD;
2262 }
2263
2264 /* If we are changing a LS/FS device under a HS hub,
2265  * make sure (if we are activating a new TT) that the HS bus has enough
2266  * bandwidth for this new TT.
2267  */
2268 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2269                 struct xhci_virt_device *virt_dev,
2270                 int old_active_eps)
2271 {
2272         struct xhci_interval_bw_table *bw_table;
2273         struct xhci_tt_bw_info *tt_info;
2274
2275         /* Find the bandwidth table for the root port this TT is attached to. */
2276         bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2277         tt_info = virt_dev->tt_info;
2278         /* If this TT already had active endpoints, the bandwidth for this TT
2279          * has already been added.  Removing all periodic endpoints (and thus
2280          * making the TT enactive) will only decrease the bandwidth used.
2281          */
2282         if (old_active_eps)
2283                 return 0;
2284         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2285                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2286                         return -ENOMEM;
2287                 return 0;
2288         }
2289         /* Not sure why we would have no new active endpoints...
2290          *
2291          * Maybe because of an Evaluate Context change for a hub update or a
2292          * control endpoint 0 max packet size change?
2293          * FIXME: skip the bandwidth calculation in that case.
2294          */
2295         return 0;
2296 }
2297
2298 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2299                 struct xhci_virt_device *virt_dev)
2300 {
2301         unsigned int bw_reserved;
2302
2303         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2304         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2305                 return -ENOMEM;
2306
2307         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2308         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2309                 return -ENOMEM;
2310
2311         return 0;
2312 }
2313
2314 /*
2315  * This algorithm is a very conservative estimate of the worst-case scheduling
2316  * scenario for any one interval.  The hardware dynamically schedules the
2317  * packets, so we can't tell which microframe could be the limiting factor in
2318  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2319  *
2320  * Obviously, we can't solve an NP complete problem to find the minimum worst
2321  * case scenario.  Instead, we come up with an estimate that is no less than
2322  * the worst case bandwidth used for any one microframe, but may be an
2323  * over-estimate.
2324  *
2325  * We walk the requirements for each endpoint by interval, starting with the
2326  * smallest interval, and place packets in the schedule where there is only one
2327  * possible way to schedule packets for that interval.  In order to simplify
2328  * this algorithm, we record the largest max packet size for each interval, and
2329  * assume all packets will be that size.
2330  *
2331  * For interval 0, we obviously must schedule all packets for each interval.
2332  * The bandwidth for interval 0 is just the amount of data to be transmitted
2333  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2334  * the number of packets).
2335  *
2336  * For interval 1, we have two possible microframes to schedule those packets
2337  * in.  For this algorithm, if we can schedule the same number of packets for
2338  * each possible scheduling opportunity (each microframe), we will do so.  The
2339  * remaining number of packets will be saved to be transmitted in the gaps in
2340  * the next interval's scheduling sequence.
2341  *
2342  * As we move those remaining packets to be scheduled with interval 2 packets,
2343  * we have to double the number of remaining packets to transmit.  This is
2344  * because the intervals are actually powers of 2, and we would be transmitting
2345  * the previous interval's packets twice in this interval.  We also have to be
2346  * sure that when we look at the largest max packet size for this interval, we
2347  * also look at the largest max packet size for the remaining packets and take
2348  * the greater of the two.
2349  *
2350  * The algorithm continues to evenly distribute packets in each scheduling
2351  * opportunity, and push the remaining packets out, until we get to the last
2352  * interval.  Then those packets and their associated overhead are just added
2353  * to the bandwidth used.
2354  */
2355 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2356                 struct xhci_virt_device *virt_dev,
2357                 int old_active_eps)
2358 {
2359         unsigned int bw_reserved;
2360         unsigned int max_bandwidth;
2361         unsigned int bw_used;
2362         unsigned int block_size;
2363         struct xhci_interval_bw_table *bw_table;
2364         unsigned int packet_size = 0;
2365         unsigned int overhead = 0;
2366         unsigned int packets_transmitted = 0;
2367         unsigned int packets_remaining = 0;
2368         unsigned int i;
2369
2370         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2371                 return xhci_check_ss_bw(xhci, virt_dev);
2372
2373         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2374                 max_bandwidth = HS_BW_LIMIT;
2375                 /* Convert percent of bus BW reserved to blocks reserved */
2376                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2377         } else {
2378                 max_bandwidth = FS_BW_LIMIT;
2379                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2380         }
2381
2382         bw_table = virt_dev->bw_table;
2383         /* We need to translate the max packet size and max ESIT payloads into
2384          * the units the hardware uses.
2385          */
2386         block_size = xhci_get_block_size(virt_dev->udev);
2387
2388         /* If we are manipulating a LS/FS device under a HS hub, double check
2389          * that the HS bus has enough bandwidth if we are activing a new TT.
2390          */
2391         if (virt_dev->tt_info) {
2392                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2393                                 "Recalculating BW for rootport %u",
2394                                 virt_dev->rhub_port->hw_portnum + 1);
2395                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2396                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2397                                         "newly activated TT.\n");
2398                         return -ENOMEM;
2399                 }
2400                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2401                                 "Recalculating BW for TT slot %u port %u",
2402                                 virt_dev->tt_info->slot_id,
2403                                 virt_dev->tt_info->ttport);
2404         } else {
2405                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2406                                 "Recalculating BW for rootport %u",
2407                                 virt_dev->rhub_port->hw_portnum + 1);
2408         }
2409
2410         /* Add in how much bandwidth will be used for interval zero, or the
2411          * rounded max ESIT payload + number of packets * largest overhead.
2412          */
2413         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2414                 bw_table->interval_bw[0].num_packets *
2415                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2416
2417         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2418                 unsigned int bw_added;
2419                 unsigned int largest_mps;
2420                 unsigned int interval_overhead;
2421
2422                 /*
2423                  * How many packets could we transmit in this interval?
2424                  * If packets didn't fit in the previous interval, we will need
2425                  * to transmit that many packets twice within this interval.
2426                  */
2427                 packets_remaining = 2 * packets_remaining +
2428                         bw_table->interval_bw[i].num_packets;
2429
2430                 /* Find the largest max packet size of this or the previous
2431                  * interval.
2432                  */
2433                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2434                         largest_mps = 0;
2435                 else {
2436                         struct xhci_virt_ep *virt_ep;
2437                         struct list_head *ep_entry;
2438
2439                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2440                         virt_ep = list_entry(ep_entry,
2441                                         struct xhci_virt_ep, bw_endpoint_list);
2442                         /* Convert to blocks, rounding up */
2443                         largest_mps = DIV_ROUND_UP(
2444                                         virt_ep->bw_info.max_packet_size,
2445                                         block_size);
2446                 }
2447                 if (largest_mps > packet_size)
2448                         packet_size = largest_mps;
2449
2450                 /* Use the larger overhead of this or the previous interval. */
2451                 interval_overhead = xhci_get_largest_overhead(
2452                                 &bw_table->interval_bw[i]);
2453                 if (interval_overhead > overhead)
2454                         overhead = interval_overhead;
2455
2456                 /* How many packets can we evenly distribute across
2457                  * (1 << (i + 1)) possible scheduling opportunities?
2458                  */
2459                 packets_transmitted = packets_remaining >> (i + 1);
2460
2461                 /* Add in the bandwidth used for those scheduled packets */
2462                 bw_added = packets_transmitted * (overhead + packet_size);
2463
2464                 /* How many packets do we have remaining to transmit? */
2465                 packets_remaining = packets_remaining % (1 << (i + 1));
2466
2467                 /* What largest max packet size should those packets have? */
2468                 /* If we've transmitted all packets, don't carry over the
2469                  * largest packet size.
2470                  */
2471                 if (packets_remaining == 0) {
2472                         packet_size = 0;
2473                         overhead = 0;
2474                 } else if (packets_transmitted > 0) {
2475                         /* Otherwise if we do have remaining packets, and we've
2476                          * scheduled some packets in this interval, take the
2477                          * largest max packet size from endpoints with this
2478                          * interval.
2479                          */
2480                         packet_size = largest_mps;
2481                         overhead = interval_overhead;
2482                 }
2483                 /* Otherwise carry over packet_size and overhead from the last
2484                  * time we had a remainder.
2485                  */
2486                 bw_used += bw_added;
2487                 if (bw_used > max_bandwidth) {
2488                         xhci_warn(xhci, "Not enough bandwidth. "
2489                                         "Proposed: %u, Max: %u\n",
2490                                 bw_used, max_bandwidth);
2491                         return -ENOMEM;
2492                 }
2493         }
2494         /*
2495          * Ok, we know we have some packets left over after even-handedly
2496          * scheduling interval 15.  We don't know which microframes they will
2497          * fit into, so we over-schedule and say they will be scheduled every
2498          * microframe.
2499          */
2500         if (packets_remaining > 0)
2501                 bw_used += overhead + packet_size;
2502
2503         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2504                 /* OK, we're manipulating a HS device attached to a
2505                  * root port bandwidth domain.  Include the number of active TTs
2506                  * in the bandwidth used.
2507                  */
2508                 bw_used += TT_HS_OVERHEAD *
2509                         xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2510         }
2511
2512         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2513                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2514                 "Available: %u " "percent",
2515                 bw_used, max_bandwidth, bw_reserved,
2516                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2517                 max_bandwidth);
2518
2519         bw_used += bw_reserved;
2520         if (bw_used > max_bandwidth) {
2521                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2522                                 bw_used, max_bandwidth);
2523                 return -ENOMEM;
2524         }
2525
2526         bw_table->bw_used = bw_used;
2527         return 0;
2528 }
2529
2530 static bool xhci_is_async_ep(unsigned int ep_type)
2531 {
2532         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2533                                         ep_type != ISOC_IN_EP &&
2534                                         ep_type != INT_IN_EP);
2535 }
2536
2537 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2538 {
2539         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2540 }
2541
2542 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2543 {
2544         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2545
2546         if (ep_bw->ep_interval == 0)
2547                 return SS_OVERHEAD_BURST +
2548                         (ep_bw->mult * ep_bw->num_packets *
2549                                         (SS_OVERHEAD + mps));
2550         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2551                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2552                                 1 << ep_bw->ep_interval);
2553
2554 }
2555
2556 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2557                 struct xhci_bw_info *ep_bw,
2558                 struct xhci_interval_bw_table *bw_table,
2559                 struct usb_device *udev,
2560                 struct xhci_virt_ep *virt_ep,
2561                 struct xhci_tt_bw_info *tt_info)
2562 {
2563         struct xhci_interval_bw *interval_bw;
2564         int normalized_interval;
2565
2566         if (xhci_is_async_ep(ep_bw->type))
2567                 return;
2568
2569         if (udev->speed >= USB_SPEED_SUPER) {
2570                 if (xhci_is_sync_in_ep(ep_bw->type))
2571                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2572                                 xhci_get_ss_bw_consumed(ep_bw);
2573                 else
2574                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2575                                 xhci_get_ss_bw_consumed(ep_bw);
2576                 return;
2577         }
2578
2579         /* SuperSpeed endpoints never get added to intervals in the table, so
2580          * this check is only valid for HS/FS/LS devices.
2581          */
2582         if (list_empty(&virt_ep->bw_endpoint_list))
2583                 return;
2584         /* For LS/FS devices, we need to translate the interval expressed in
2585          * microframes to frames.
2586          */
2587         if (udev->speed == USB_SPEED_HIGH)
2588                 normalized_interval = ep_bw->ep_interval;
2589         else
2590                 normalized_interval = ep_bw->ep_interval - 3;
2591
2592         if (normalized_interval == 0)
2593                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2594         interval_bw = &bw_table->interval_bw[normalized_interval];
2595         interval_bw->num_packets -= ep_bw->num_packets;
2596         switch (udev->speed) {
2597         case USB_SPEED_LOW:
2598                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2599                 break;
2600         case USB_SPEED_FULL:
2601                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2602                 break;
2603         case USB_SPEED_HIGH:
2604                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2605                 break;
2606         default:
2607                 /* Should never happen because only LS/FS/HS endpoints will get
2608                  * added to the endpoint list.
2609                  */
2610                 return;
2611         }
2612         if (tt_info)
2613                 tt_info->active_eps -= 1;
2614         list_del_init(&virt_ep->bw_endpoint_list);
2615 }
2616
2617 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2618                 struct xhci_bw_info *ep_bw,
2619                 struct xhci_interval_bw_table *bw_table,
2620                 struct usb_device *udev,
2621                 struct xhci_virt_ep *virt_ep,
2622                 struct xhci_tt_bw_info *tt_info)
2623 {
2624         struct xhci_interval_bw *interval_bw;
2625         struct xhci_virt_ep *smaller_ep;
2626         int normalized_interval;
2627
2628         if (xhci_is_async_ep(ep_bw->type))
2629                 return;
2630
2631         if (udev->speed == USB_SPEED_SUPER) {
2632                 if (xhci_is_sync_in_ep(ep_bw->type))
2633                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2634                                 xhci_get_ss_bw_consumed(ep_bw);
2635                 else
2636                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2637                                 xhci_get_ss_bw_consumed(ep_bw);
2638                 return;
2639         }
2640
2641         /* For LS/FS devices, we need to translate the interval expressed in
2642          * microframes to frames.
2643          */
2644         if (udev->speed == USB_SPEED_HIGH)
2645                 normalized_interval = ep_bw->ep_interval;
2646         else
2647                 normalized_interval = ep_bw->ep_interval - 3;
2648
2649         if (normalized_interval == 0)
2650                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2651         interval_bw = &bw_table->interval_bw[normalized_interval];
2652         interval_bw->num_packets += ep_bw->num_packets;
2653         switch (udev->speed) {
2654         case USB_SPEED_LOW:
2655                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2656                 break;
2657         case USB_SPEED_FULL:
2658                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2659                 break;
2660         case USB_SPEED_HIGH:
2661                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2662                 break;
2663         default:
2664                 /* Should never happen because only LS/FS/HS endpoints will get
2665                  * added to the endpoint list.
2666                  */
2667                 return;
2668         }
2669
2670         if (tt_info)
2671                 tt_info->active_eps += 1;
2672         /* Insert the endpoint into the list, largest max packet size first. */
2673         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2674                         bw_endpoint_list) {
2675                 if (ep_bw->max_packet_size >=
2676                                 smaller_ep->bw_info.max_packet_size) {
2677                         /* Add the new ep before the smaller endpoint */
2678                         list_add_tail(&virt_ep->bw_endpoint_list,
2679                                         &smaller_ep->bw_endpoint_list);
2680                         return;
2681                 }
2682         }
2683         /* Add the new endpoint at the end of the list. */
2684         list_add_tail(&virt_ep->bw_endpoint_list,
2685                         &interval_bw->endpoints);
2686 }
2687
2688 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2689                 struct xhci_virt_device *virt_dev,
2690                 int old_active_eps)
2691 {
2692         struct xhci_root_port_bw_info *rh_bw_info;
2693         if (!virt_dev->tt_info)
2694                 return;
2695
2696         rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2697         if (old_active_eps == 0 &&
2698                                 virt_dev->tt_info->active_eps != 0) {
2699                 rh_bw_info->num_active_tts += 1;
2700                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2701         } else if (old_active_eps != 0 &&
2702                                 virt_dev->tt_info->active_eps == 0) {
2703                 rh_bw_info->num_active_tts -= 1;
2704                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2705         }
2706 }
2707
2708 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2709                 struct xhci_virt_device *virt_dev,
2710                 struct xhci_container_ctx *in_ctx)
2711 {
2712         struct xhci_bw_info ep_bw_info[31];
2713         int i;
2714         struct xhci_input_control_ctx *ctrl_ctx;
2715         int old_active_eps = 0;
2716
2717         if (virt_dev->tt_info)
2718                 old_active_eps = virt_dev->tt_info->active_eps;
2719
2720         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2721         if (!ctrl_ctx) {
2722                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2723                                 __func__);
2724                 return -ENOMEM;
2725         }
2726
2727         for (i = 0; i < 31; i++) {
2728                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2729                         continue;
2730
2731                 /* Make a copy of the BW info in case we need to revert this */
2732                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2733                                 sizeof(ep_bw_info[i]));
2734                 /* Drop the endpoint from the interval table if the endpoint is
2735                  * being dropped or changed.
2736                  */
2737                 if (EP_IS_DROPPED(ctrl_ctx, i))
2738                         xhci_drop_ep_from_interval_table(xhci,
2739                                         &virt_dev->eps[i].bw_info,
2740                                         virt_dev->bw_table,
2741                                         virt_dev->udev,
2742                                         &virt_dev->eps[i],
2743                                         virt_dev->tt_info);
2744         }
2745         /* Overwrite the information stored in the endpoints' bw_info */
2746         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2747         for (i = 0; i < 31; i++) {
2748                 /* Add any changed or added endpoints to the interval table */
2749                 if (EP_IS_ADDED(ctrl_ctx, i))
2750                         xhci_add_ep_to_interval_table(xhci,
2751                                         &virt_dev->eps[i].bw_info,
2752                                         virt_dev->bw_table,
2753                                         virt_dev->udev,
2754                                         &virt_dev->eps[i],
2755                                         virt_dev->tt_info);
2756         }
2757
2758         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2759                 /* Ok, this fits in the bandwidth we have.
2760                  * Update the number of active TTs.
2761                  */
2762                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2763                 return 0;
2764         }
2765
2766         /* We don't have enough bandwidth for this, revert the stored info. */
2767         for (i = 0; i < 31; i++) {
2768                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2769                         continue;
2770
2771                 /* Drop the new copies of any added or changed endpoints from
2772                  * the interval table.
2773                  */
2774                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2775                         xhci_drop_ep_from_interval_table(xhci,
2776                                         &virt_dev->eps[i].bw_info,
2777                                         virt_dev->bw_table,
2778                                         virt_dev->udev,
2779                                         &virt_dev->eps[i],
2780                                         virt_dev->tt_info);
2781                 }
2782                 /* Revert the endpoint back to its old information */
2783                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2784                                 sizeof(ep_bw_info[i]));
2785                 /* Add any changed or dropped endpoints back into the table */
2786                 if (EP_IS_DROPPED(ctrl_ctx, i))
2787                         xhci_add_ep_to_interval_table(xhci,
2788                                         &virt_dev->eps[i].bw_info,
2789                                         virt_dev->bw_table,
2790                                         virt_dev->udev,
2791                                         &virt_dev->eps[i],
2792                                         virt_dev->tt_info);
2793         }
2794         return -ENOMEM;
2795 }
2796
2797
2798 /* Issue a configure endpoint command or evaluate context command
2799  * and wait for it to finish.
2800  */
2801 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2802                 struct usb_device *udev,
2803                 struct xhci_command *command,
2804                 bool ctx_change, bool must_succeed)
2805 {
2806         int ret;
2807         unsigned long flags;
2808         struct xhci_input_control_ctx *ctrl_ctx;
2809         struct xhci_virt_device *virt_dev;
2810         struct xhci_slot_ctx *slot_ctx;
2811
2812         if (!command)
2813                 return -EINVAL;
2814
2815         spin_lock_irqsave(&xhci->lock, flags);
2816
2817         if (xhci->xhc_state & XHCI_STATE_DYING) {
2818                 spin_unlock_irqrestore(&xhci->lock, flags);
2819                 return -ESHUTDOWN;
2820         }
2821
2822         virt_dev = xhci->devs[udev->slot_id];
2823
2824         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2825         if (!ctrl_ctx) {
2826                 spin_unlock_irqrestore(&xhci->lock, flags);
2827                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2828                                 __func__);
2829                 return -ENOMEM;
2830         }
2831
2832         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2833                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2834                 spin_unlock_irqrestore(&xhci->lock, flags);
2835                 xhci_warn(xhci, "Not enough host resources, "
2836                                 "active endpoint contexts = %u\n",
2837                                 xhci->num_active_eps);
2838                 return -ENOMEM;
2839         }
2840         if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2841             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2842                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2843                         xhci_free_host_resources(xhci, ctrl_ctx);
2844                 spin_unlock_irqrestore(&xhci->lock, flags);
2845                 xhci_warn(xhci, "Not enough bandwidth\n");
2846                 return -ENOMEM;
2847         }
2848
2849         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2850
2851         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2852         trace_xhci_configure_endpoint(slot_ctx);
2853
2854         if (!ctx_change)
2855                 ret = xhci_queue_configure_endpoint(xhci, command,
2856                                 command->in_ctx->dma,
2857                                 udev->slot_id, must_succeed);
2858         else
2859                 ret = xhci_queue_evaluate_context(xhci, command,
2860                                 command->in_ctx->dma,
2861                                 udev->slot_id, must_succeed);
2862         if (ret < 0) {
2863                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2864                         xhci_free_host_resources(xhci, ctrl_ctx);
2865                 spin_unlock_irqrestore(&xhci->lock, flags);
2866                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2867                                 "FIXME allocate a new ring segment");
2868                 return -ENOMEM;
2869         }
2870         xhci_ring_cmd_db(xhci);
2871         spin_unlock_irqrestore(&xhci->lock, flags);
2872
2873         /* Wait for the configure endpoint command to complete */
2874         wait_for_completion(command->completion);
2875
2876         if (!ctx_change)
2877                 ret = xhci_configure_endpoint_result(xhci, udev,
2878                                                      &command->status);
2879         else
2880                 ret = xhci_evaluate_context_result(xhci, udev,
2881                                                    &command->status);
2882
2883         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2884                 spin_lock_irqsave(&xhci->lock, flags);
2885                 /* If the command failed, remove the reserved resources.
2886                  * Otherwise, clean up the estimate to include dropped eps.
2887                  */
2888                 if (ret)
2889                         xhci_free_host_resources(xhci, ctrl_ctx);
2890                 else
2891                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2892                 spin_unlock_irqrestore(&xhci->lock, flags);
2893         }
2894         return ret;
2895 }
2896
2897 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2898         struct xhci_virt_device *vdev, int i)
2899 {
2900         struct xhci_virt_ep *ep = &vdev->eps[i];
2901
2902         if (ep->ep_state & EP_HAS_STREAMS) {
2903                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2904                                 xhci_get_endpoint_address(i));
2905                 xhci_free_stream_info(xhci, ep->stream_info);
2906                 ep->stream_info = NULL;
2907                 ep->ep_state &= ~EP_HAS_STREAMS;
2908         }
2909 }
2910
2911 /* Called after one or more calls to xhci_add_endpoint() or
2912  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2913  * to call xhci_reset_bandwidth().
2914  *
2915  * Since we are in the middle of changing either configuration or
2916  * installing a new alt setting, the USB core won't allow URBs to be
2917  * enqueued for any endpoint on the old config or interface.  Nothing
2918  * else should be touching the xhci->devs[slot_id] structure, so we
2919  * don't need to take the xhci->lock for manipulating that.
2920  */
2921 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2922 {
2923         int i;
2924         int ret = 0;
2925         struct xhci_hcd *xhci;
2926         struct xhci_virt_device *virt_dev;
2927         struct xhci_input_control_ctx *ctrl_ctx;
2928         struct xhci_slot_ctx *slot_ctx;
2929         struct xhci_command *command;
2930
2931         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2932         if (ret <= 0)
2933                 return ret;
2934         xhci = hcd_to_xhci(hcd);
2935         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2936                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2937                 return -ENODEV;
2938
2939         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2940         virt_dev = xhci->devs[udev->slot_id];
2941
2942         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2943         if (!command)
2944                 return -ENOMEM;
2945
2946         command->in_ctx = virt_dev->in_ctx;
2947
2948         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2949         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2950         if (!ctrl_ctx) {
2951                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2952                                 __func__);
2953                 ret = -ENOMEM;
2954                 goto command_cleanup;
2955         }
2956         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2957         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2958         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2959
2960         /* Don't issue the command if there's no endpoints to update. */
2961         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2962             ctrl_ctx->drop_flags == 0) {
2963                 ret = 0;
2964                 goto command_cleanup;
2965         }
2966         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2967         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2968         for (i = 31; i >= 1; i--) {
2969                 __le32 le32 = cpu_to_le32(BIT(i));
2970
2971                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2972                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2973                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2974                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2975                         break;
2976                 }
2977         }
2978
2979         ret = xhci_configure_endpoint(xhci, udev, command,
2980                         false, false);
2981         if (ret)
2982                 /* Callee should call reset_bandwidth() */
2983                 goto command_cleanup;
2984
2985         /* Free any rings that were dropped, but not changed. */
2986         for (i = 1; i < 31; i++) {
2987                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2988                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2989                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2990                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2991                 }
2992         }
2993         xhci_zero_in_ctx(xhci, virt_dev);
2994         /*
2995          * Install any rings for completely new endpoints or changed endpoints,
2996          * and free any old rings from changed endpoints.
2997          */
2998         for (i = 1; i < 31; i++) {
2999                 if (!virt_dev->eps[i].new_ring)
3000                         continue;
3001                 /* Only free the old ring if it exists.
3002                  * It may not if this is the first add of an endpoint.
3003                  */
3004                 if (virt_dev->eps[i].ring) {
3005                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3006                 }
3007                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3008                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3009                 virt_dev->eps[i].new_ring = NULL;
3010                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3011         }
3012 command_cleanup:
3013         kfree(command->completion);
3014         kfree(command);
3015
3016         return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3019
3020 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3021 {
3022         struct xhci_hcd *xhci;
3023         struct xhci_virt_device *virt_dev;
3024         int i, ret;
3025
3026         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3027         if (ret <= 0)
3028                 return;
3029         xhci = hcd_to_xhci(hcd);
3030
3031         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3032         virt_dev = xhci->devs[udev->slot_id];
3033         /* Free any rings allocated for added endpoints */
3034         for (i = 0; i < 31; i++) {
3035                 if (virt_dev->eps[i].new_ring) {
3036                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3037                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3038                         virt_dev->eps[i].new_ring = NULL;
3039                 }
3040         }
3041         xhci_zero_in_ctx(xhci, virt_dev);
3042 }
3043 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3044
3045 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3046                 struct xhci_container_ctx *in_ctx,
3047                 struct xhci_container_ctx *out_ctx,
3048                 struct xhci_input_control_ctx *ctrl_ctx,
3049                 u32 add_flags, u32 drop_flags)
3050 {
3051         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3052         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3053         xhci_slot_copy(xhci, in_ctx, out_ctx);
3054         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3055 }
3056
3057 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3058                                   struct usb_host_endpoint *host_ep)
3059 {
3060         struct xhci_hcd         *xhci;
3061         struct xhci_virt_device *vdev;
3062         struct xhci_virt_ep     *ep;
3063         struct usb_device       *udev;
3064         unsigned long           flags;
3065         unsigned int            ep_index;
3066
3067         xhci = hcd_to_xhci(hcd);
3068 rescan:
3069         spin_lock_irqsave(&xhci->lock, flags);
3070
3071         udev = (struct usb_device *)host_ep->hcpriv;
3072         if (!udev || !udev->slot_id)
3073                 goto done;
3074
3075         vdev = xhci->devs[udev->slot_id];
3076         if (!vdev)
3077                 goto done;
3078
3079         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3080         ep = &vdev->eps[ep_index];
3081
3082         /* wait for hub_tt_work to finish clearing hub TT */
3083         if (ep->ep_state & EP_CLEARING_TT) {
3084                 spin_unlock_irqrestore(&xhci->lock, flags);
3085                 schedule_timeout_uninterruptible(1);
3086                 goto rescan;
3087         }
3088
3089         if (ep->ep_state)
3090                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3091                          ep->ep_state);
3092 done:
3093         host_ep->hcpriv = NULL;
3094         spin_unlock_irqrestore(&xhci->lock, flags);
3095 }
3096
3097 /*
3098  * Called after usb core issues a clear halt control message.
3099  * The host side of the halt should already be cleared by a reset endpoint
3100  * command issued when the STALL event was received.
3101  *
3102  * The reset endpoint command may only be issued to endpoints in the halted
3103  * state. For software that wishes to reset the data toggle or sequence number
3104  * of an endpoint that isn't in the halted state this function will issue a
3105  * configure endpoint command with the Drop and Add bits set for the target
3106  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3107  *
3108  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3109  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3110  */
3111
3112 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3113                 struct usb_host_endpoint *host_ep)
3114 {
3115         struct xhci_hcd *xhci;
3116         struct usb_device *udev;
3117         struct xhci_virt_device *vdev;
3118         struct xhci_virt_ep *ep;
3119         struct xhci_input_control_ctx *ctrl_ctx;
3120         struct xhci_command *stop_cmd, *cfg_cmd;
3121         unsigned int ep_index;
3122         unsigned long flags;
3123         u32 ep_flag;
3124         int err;
3125
3126         xhci = hcd_to_xhci(hcd);
3127         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3128
3129         /*
3130          * Usb core assumes a max packet value for ep0 on FS devices until the
3131          * real value is read from the descriptor. Core resets Ep0 if values
3132          * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3133          */
3134         if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3135
3136                 udev = container_of(host_ep, struct usb_device, ep0);
3137                 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3138                         return;
3139
3140                 vdev = xhci->devs[udev->slot_id];
3141                 if (!vdev || vdev->udev != udev)
3142                         return;
3143
3144                 xhci_check_ep0_maxpacket(xhci, vdev);
3145
3146                 /* Nothing else should be done here for ep0 during ep reset */
3147                 return;
3148         }
3149
3150         if (!host_ep->hcpriv)
3151                 return;
3152         udev = (struct usb_device *) host_ep->hcpriv;
3153         vdev = xhci->devs[udev->slot_id];
3154
3155         if (!udev->slot_id || !vdev)
3156                 return;
3157
3158         ep = &vdev->eps[ep_index];
3159
3160         /* Bail out if toggle is already being cleared by a endpoint reset */
3161         spin_lock_irqsave(&xhci->lock, flags);
3162         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3163                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3164                 spin_unlock_irqrestore(&xhci->lock, flags);
3165                 return;
3166         }
3167         spin_unlock_irqrestore(&xhci->lock, flags);
3168         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3169         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3170             usb_endpoint_xfer_isoc(&host_ep->desc))
3171                 return;
3172
3173         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3174
3175         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3176                 return;
3177
3178         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3179         if (!stop_cmd)
3180                 return;
3181
3182         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3183         if (!cfg_cmd)
3184                 goto cleanup;
3185
3186         spin_lock_irqsave(&xhci->lock, flags);
3187
3188         /* block queuing new trbs and ringing ep doorbell */
3189         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3190
3191         /*
3192          * Make sure endpoint ring is empty before resetting the toggle/seq.
3193          * Driver is required to synchronously cancel all transfer request.
3194          * Stop the endpoint to force xHC to update the output context
3195          */
3196
3197         if (!list_empty(&ep->ring->td_list)) {
3198                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3199                 spin_unlock_irqrestore(&xhci->lock, flags);
3200                 xhci_free_command(xhci, cfg_cmd);
3201                 goto cleanup;
3202         }
3203
3204         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3205                                         ep_index, 0);
3206         if (err < 0) {
3207                 spin_unlock_irqrestore(&xhci->lock, flags);
3208                 xhci_free_command(xhci, cfg_cmd);
3209                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3210                                 __func__, err);
3211                 goto cleanup;
3212         }
3213
3214         xhci_ring_cmd_db(xhci);
3215         spin_unlock_irqrestore(&xhci->lock, flags);
3216
3217         wait_for_completion(stop_cmd->completion);
3218
3219         spin_lock_irqsave(&xhci->lock, flags);
3220
3221         /* config ep command clears toggle if add and drop ep flags are set */
3222         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3223         if (!ctrl_ctx) {
3224                 spin_unlock_irqrestore(&xhci->lock, flags);
3225                 xhci_free_command(xhci, cfg_cmd);
3226                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3227                                 __func__);
3228                 goto cleanup;
3229         }
3230
3231         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3232                                            ctrl_ctx, ep_flag, ep_flag);
3233         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3234
3235         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3236                                       udev->slot_id, false);
3237         if (err < 0) {
3238                 spin_unlock_irqrestore(&xhci->lock, flags);
3239                 xhci_free_command(xhci, cfg_cmd);
3240                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3241                                 __func__, err);
3242                 goto cleanup;
3243         }
3244
3245         xhci_ring_cmd_db(xhci);
3246         spin_unlock_irqrestore(&xhci->lock, flags);
3247
3248         wait_for_completion(cfg_cmd->completion);
3249
3250         xhci_free_command(xhci, cfg_cmd);
3251 cleanup:
3252         xhci_free_command(xhci, stop_cmd);
3253         spin_lock_irqsave(&xhci->lock, flags);
3254         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3255                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3256         spin_unlock_irqrestore(&xhci->lock, flags);
3257 }
3258
3259 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3260                 struct usb_device *udev, struct usb_host_endpoint *ep,
3261                 unsigned int slot_id)
3262 {
3263         int ret;
3264         unsigned int ep_index;
3265         unsigned int ep_state;
3266
3267         if (!ep)
3268                 return -EINVAL;
3269         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3270         if (ret <= 0)
3271                 return ret ? ret : -EINVAL;
3272         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3273                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3274                                 " descriptor for ep 0x%x does not support streams\n",
3275                                 ep->desc.bEndpointAddress);
3276                 return -EINVAL;
3277         }
3278
3279         ep_index = xhci_get_endpoint_index(&ep->desc);
3280         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3281         if (ep_state & EP_HAS_STREAMS ||
3282                         ep_state & EP_GETTING_STREAMS) {
3283                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3284                                 "already has streams set up.\n",
3285                                 ep->desc.bEndpointAddress);
3286                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3287                                 "dynamic stream context array reallocation.\n");
3288                 return -EINVAL;
3289         }
3290         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3291                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3292                                 "endpoint 0x%x; URBs are pending.\n",
3293                                 ep->desc.bEndpointAddress);
3294                 return -EINVAL;
3295         }
3296         return 0;
3297 }
3298
3299 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3300                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3301 {
3302         unsigned int max_streams;
3303
3304         /* The stream context array size must be a power of two */
3305         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3306         /*
3307          * Find out how many primary stream array entries the host controller
3308          * supports.  Later we may use secondary stream arrays (similar to 2nd
3309          * level page entries), but that's an optional feature for xHCI host
3310          * controllers. xHCs must support at least 4 stream IDs.
3311          */
3312         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3313         if (*num_stream_ctxs > max_streams) {
3314                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3315                                 max_streams);
3316                 *num_stream_ctxs = max_streams;
3317                 *num_streams = max_streams;
3318         }
3319 }
3320
3321 /* Returns an error code if one of the endpoint already has streams.
3322  * This does not change any data structures, it only checks and gathers
3323  * information.
3324  */
3325 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3326                 struct usb_device *udev,
3327                 struct usb_host_endpoint **eps, unsigned int num_eps,
3328                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3329 {
3330         unsigned int max_streams;
3331         unsigned int endpoint_flag;
3332         int i;
3333         int ret;
3334
3335         for (i = 0; i < num_eps; i++) {
3336                 ret = xhci_check_streams_endpoint(xhci, udev,
3337                                 eps[i], udev->slot_id);
3338                 if (ret < 0)
3339                         return ret;
3340
3341                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3342                 if (max_streams < (*num_streams - 1)) {
3343                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3344                                         eps[i]->desc.bEndpointAddress,
3345                                         max_streams);
3346                         *num_streams = max_streams+1;
3347                 }
3348
3349                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3350                 if (*changed_ep_bitmask & endpoint_flag)
3351                         return -EINVAL;
3352                 *changed_ep_bitmask |= endpoint_flag;
3353         }
3354         return 0;
3355 }
3356
3357 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3358                 struct usb_device *udev,
3359                 struct usb_host_endpoint **eps, unsigned int num_eps)
3360 {
3361         u32 changed_ep_bitmask = 0;
3362         unsigned int slot_id;
3363         unsigned int ep_index;
3364         unsigned int ep_state;
3365         int i;
3366
3367         slot_id = udev->slot_id;
3368         if (!xhci->devs[slot_id])
3369                 return 0;
3370
3371         for (i = 0; i < num_eps; i++) {
3372                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3374                 /* Are streams already being freed for the endpoint? */
3375                 if (ep_state & EP_GETTING_NO_STREAMS) {
3376                         xhci_warn(xhci, "WARN Can't disable streams for "
3377                                         "endpoint 0x%x, "
3378                                         "streams are being disabled already\n",
3379                                         eps[i]->desc.bEndpointAddress);
3380                         return 0;
3381                 }
3382                 /* Are there actually any streams to free? */
3383                 if (!(ep_state & EP_HAS_STREAMS) &&
3384                                 !(ep_state & EP_GETTING_STREAMS)) {
3385                         xhci_warn(xhci, "WARN Can't disable streams for "
3386                                         "endpoint 0x%x, "
3387                                         "streams are already disabled!\n",
3388                                         eps[i]->desc.bEndpointAddress);
3389                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3390                                         "with non-streams endpoint\n");
3391                         return 0;
3392                 }
3393                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3394         }
3395         return changed_ep_bitmask;
3396 }
3397
3398 /*
3399  * The USB device drivers use this function (through the HCD interface in USB
3400  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3401  * coordinate mass storage command queueing across multiple endpoints (basically
3402  * a stream ID == a task ID).
3403  *
3404  * Setting up streams involves allocating the same size stream context array
3405  * for each endpoint and issuing a configure endpoint command for all endpoints.
3406  *
3407  * Don't allow the call to succeed if one endpoint only supports one stream
3408  * (which means it doesn't support streams at all).
3409  *
3410  * Drivers may get less stream IDs than they asked for, if the host controller
3411  * hardware or endpoints claim they can't support the number of requested
3412  * stream IDs.
3413  */
3414 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3415                 struct usb_host_endpoint **eps, unsigned int num_eps,
3416                 unsigned int num_streams, gfp_t mem_flags)
3417 {
3418         int i, ret;
3419         struct xhci_hcd *xhci;
3420         struct xhci_virt_device *vdev;
3421         struct xhci_command *config_cmd;
3422         struct xhci_input_control_ctx *ctrl_ctx;
3423         unsigned int ep_index;
3424         unsigned int num_stream_ctxs;
3425         unsigned int max_packet;
3426         unsigned long flags;
3427         u32 changed_ep_bitmask = 0;
3428
3429         if (!eps)
3430                 return -EINVAL;
3431
3432         /* Add one to the number of streams requested to account for
3433          * stream 0 that is reserved for xHCI usage.
3434          */
3435         num_streams += 1;
3436         xhci = hcd_to_xhci(hcd);
3437         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3438                         num_streams);
3439
3440         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3441         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3442                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3443                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3444                 return -ENOSYS;
3445         }
3446
3447         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3448         if (!config_cmd)
3449                 return -ENOMEM;
3450
3451         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3452         if (!ctrl_ctx) {
3453                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3454                                 __func__);
3455                 xhci_free_command(xhci, config_cmd);
3456                 return -ENOMEM;
3457         }
3458
3459         /* Check to make sure all endpoints are not already configured for
3460          * streams.  While we're at it, find the maximum number of streams that
3461          * all the endpoints will support and check for duplicate endpoints.
3462          */
3463         spin_lock_irqsave(&xhci->lock, flags);
3464         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3465                         num_eps, &num_streams, &changed_ep_bitmask);
3466         if (ret < 0) {
3467                 xhci_free_command(xhci, config_cmd);
3468                 spin_unlock_irqrestore(&xhci->lock, flags);
3469                 return ret;
3470         }
3471         if (num_streams <= 1) {
3472                 xhci_warn(xhci, "WARN: endpoints can't handle "
3473                                 "more than one stream.\n");
3474                 xhci_free_command(xhci, config_cmd);
3475                 spin_unlock_irqrestore(&xhci->lock, flags);
3476                 return -EINVAL;
3477         }
3478         vdev = xhci->devs[udev->slot_id];
3479         /* Mark each endpoint as being in transition, so
3480          * xhci_urb_enqueue() will reject all URBs.
3481          */
3482         for (i = 0; i < num_eps; i++) {
3483                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3485         }
3486         spin_unlock_irqrestore(&xhci->lock, flags);
3487
3488         /* Setup internal data structures and allocate HW data structures for
3489          * streams (but don't install the HW structures in the input context
3490          * until we're sure all memory allocation succeeded).
3491          */
3492         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3493         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3494                         num_stream_ctxs, num_streams);
3495
3496         for (i = 0; i < num_eps; i++) {
3497                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3498                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3499                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3500                                 num_stream_ctxs,
3501                                 num_streams,
3502                                 max_packet, mem_flags);
3503                 if (!vdev->eps[ep_index].stream_info)
3504                         goto cleanup;
3505                 /* Set maxPstreams in endpoint context and update deq ptr to
3506                  * point to stream context array. FIXME
3507                  */
3508         }
3509
3510         /* Set up the input context for a configure endpoint command. */
3511         for (i = 0; i < num_eps; i++) {
3512                 struct xhci_ep_ctx *ep_ctx;
3513
3514                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3515                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3516
3517                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3518                                 vdev->out_ctx, ep_index);
3519                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3520                                 vdev->eps[ep_index].stream_info);
3521         }
3522         /* Tell the HW to drop its old copy of the endpoint context info
3523          * and add the updated copy from the input context.
3524          */
3525         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3526                         vdev->out_ctx, ctrl_ctx,
3527                         changed_ep_bitmask, changed_ep_bitmask);
3528
3529         /* Issue and wait for the configure endpoint command */
3530         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3531                         false, false);
3532
3533         /* xHC rejected the configure endpoint command for some reason, so we
3534          * leave the old ring intact and free our internal streams data
3535          * structure.
3536          */
3537         if (ret < 0)
3538                 goto cleanup;
3539
3540         spin_lock_irqsave(&xhci->lock, flags);
3541         for (i = 0; i < num_eps; i++) {
3542                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3544                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3545                          udev->slot_id, ep_index);
3546                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3547         }
3548         xhci_free_command(xhci, config_cmd);
3549         spin_unlock_irqrestore(&xhci->lock, flags);
3550
3551         for (i = 0; i < num_eps; i++) {
3552                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3553                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3554         }
3555         /* Subtract 1 for stream 0, which drivers can't use */
3556         return num_streams - 1;
3557
3558 cleanup:
3559         /* If it didn't work, free the streams! */
3560         for (i = 0; i < num_eps; i++) {
3561                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3562                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3563                 vdev->eps[ep_index].stream_info = NULL;
3564                 /* FIXME Unset maxPstreams in endpoint context and
3565                  * update deq ptr to point to normal string ring.
3566                  */
3567                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3568                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3569                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3570         }
3571         xhci_free_command(xhci, config_cmd);
3572         return -ENOMEM;
3573 }
3574
3575 /* Transition the endpoint from using streams to being a "normal" endpoint
3576  * without streams.
3577  *
3578  * Modify the endpoint context state, submit a configure endpoint command,
3579  * and free all endpoint rings for streams if that completes successfully.
3580  */
3581 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3582                 struct usb_host_endpoint **eps, unsigned int num_eps,
3583                 gfp_t mem_flags)
3584 {
3585         int i, ret;
3586         struct xhci_hcd *xhci;
3587         struct xhci_virt_device *vdev;
3588         struct xhci_command *command;
3589         struct xhci_input_control_ctx *ctrl_ctx;
3590         unsigned int ep_index;
3591         unsigned long flags;
3592         u32 changed_ep_bitmask;
3593
3594         xhci = hcd_to_xhci(hcd);
3595         vdev = xhci->devs[udev->slot_id];
3596
3597         /* Set up a configure endpoint command to remove the streams rings */
3598         spin_lock_irqsave(&xhci->lock, flags);
3599         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3600                         udev, eps, num_eps);
3601         if (changed_ep_bitmask == 0) {
3602                 spin_unlock_irqrestore(&xhci->lock, flags);
3603                 return -EINVAL;
3604         }
3605
3606         /* Use the xhci_command structure from the first endpoint.  We may have
3607          * allocated too many, but the driver may call xhci_free_streams() for
3608          * each endpoint it grouped into one call to xhci_alloc_streams().
3609          */
3610         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3611         command = vdev->eps[ep_index].stream_info->free_streams_command;
3612         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3613         if (!ctrl_ctx) {
3614                 spin_unlock_irqrestore(&xhci->lock, flags);
3615                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3616                                 __func__);
3617                 return -EINVAL;
3618         }
3619
3620         for (i = 0; i < num_eps; i++) {
3621                 struct xhci_ep_ctx *ep_ctx;
3622
3623                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3624                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3625                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3626                         EP_GETTING_NO_STREAMS;
3627
3628                 xhci_endpoint_copy(xhci, command->in_ctx,
3629                                 vdev->out_ctx, ep_index);
3630                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3631                                 &vdev->eps[ep_index]);
3632         }
3633         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3634                         vdev->out_ctx, ctrl_ctx,
3635                         changed_ep_bitmask, changed_ep_bitmask);
3636         spin_unlock_irqrestore(&xhci->lock, flags);
3637
3638         /* Issue and wait for the configure endpoint command,
3639          * which must succeed.
3640          */
3641         ret = xhci_configure_endpoint(xhci, udev, command,
3642                         false, true);
3643
3644         /* xHC rejected the configure endpoint command for some reason, so we
3645          * leave the streams rings intact.
3646          */
3647         if (ret < 0)
3648                 return ret;
3649
3650         spin_lock_irqsave(&xhci->lock, flags);
3651         for (i = 0; i < num_eps; i++) {
3652                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3653                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3654                 vdev->eps[ep_index].stream_info = NULL;
3655                 /* FIXME Unset maxPstreams in endpoint context and
3656                  * update deq ptr to point to normal string ring.
3657                  */
3658                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3659                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3660         }
3661         spin_unlock_irqrestore(&xhci->lock, flags);
3662
3663         return 0;
3664 }
3665
3666 /*
3667  * Deletes endpoint resources for endpoints that were active before a Reset
3668  * Device command, or a Disable Slot command.  The Reset Device command leaves
3669  * the control endpoint intact, whereas the Disable Slot command deletes it.
3670  *
3671  * Must be called with xhci->lock held.
3672  */
3673 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3674         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3675 {
3676         int i;
3677         unsigned int num_dropped_eps = 0;
3678         unsigned int drop_flags = 0;
3679
3680         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3681                 if (virt_dev->eps[i].ring) {
3682                         drop_flags |= 1 << i;
3683                         num_dropped_eps++;
3684                 }
3685         }
3686         xhci->num_active_eps -= num_dropped_eps;
3687         if (num_dropped_eps)
3688                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3689                                 "Dropped %u ep ctxs, flags = 0x%x, "
3690                                 "%u now active.",
3691                                 num_dropped_eps, drop_flags,
3692                                 xhci->num_active_eps);
3693 }
3694
3695 /*
3696  * This submits a Reset Device Command, which will set the device state to 0,
3697  * set the device address to 0, and disable all the endpoints except the default
3698  * control endpoint.  The USB core should come back and call
3699  * xhci_address_device(), and then re-set up the configuration.  If this is
3700  * called because of a usb_reset_and_verify_device(), then the old alternate
3701  * settings will be re-installed through the normal bandwidth allocation
3702  * functions.
3703  *
3704  * Wait for the Reset Device command to finish.  Remove all structures
3705  * associated with the endpoints that were disabled.  Clear the input device
3706  * structure? Reset the control endpoint 0 max packet size?
3707  *
3708  * If the virt_dev to be reset does not exist or does not match the udev,
3709  * it means the device is lost, possibly due to the xHC restore error and
3710  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3711  * re-allocate the device.
3712  */
3713 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3714                 struct usb_device *udev)
3715 {
3716         int ret, i;
3717         unsigned long flags;
3718         struct xhci_hcd *xhci;
3719         unsigned int slot_id;
3720         struct xhci_virt_device *virt_dev;
3721         struct xhci_command *reset_device_cmd;
3722         struct xhci_slot_ctx *slot_ctx;
3723         int old_active_eps = 0;
3724
3725         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3726         if (ret <= 0)
3727                 return ret;
3728         xhci = hcd_to_xhci(hcd);
3729         slot_id = udev->slot_id;
3730         virt_dev = xhci->devs[slot_id];
3731         if (!virt_dev) {
3732                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3733                                 "not exist. Re-allocate the device\n", slot_id);
3734                 ret = xhci_alloc_dev(hcd, udev);
3735                 if (ret == 1)
3736                         return 0;
3737                 else
3738                         return -EINVAL;
3739         }
3740
3741         if (virt_dev->tt_info)
3742                 old_active_eps = virt_dev->tt_info->active_eps;
3743
3744         if (virt_dev->udev != udev) {
3745                 /* If the virt_dev and the udev does not match, this virt_dev
3746                  * may belong to another udev.
3747                  * Re-allocate the device.
3748                  */
3749                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3750                                 "not match the udev. Re-allocate the device\n",
3751                                 slot_id);
3752                 ret = xhci_alloc_dev(hcd, udev);
3753                 if (ret == 1)
3754                         return 0;
3755                 else
3756                         return -EINVAL;
3757         }
3758
3759         /* If device is not setup, there is no point in resetting it */
3760         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3761         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3762                                                 SLOT_STATE_DISABLED)
3763                 return 0;
3764
3765         trace_xhci_discover_or_reset_device(slot_ctx);
3766
3767         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3768         /* Allocate the command structure that holds the struct completion.
3769          * Assume we're in process context, since the normal device reset
3770          * process has to wait for the device anyway.  Storage devices are
3771          * reset as part of error handling, so use GFP_NOIO instead of
3772          * GFP_KERNEL.
3773          */
3774         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3775         if (!reset_device_cmd) {
3776                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3777                 return -ENOMEM;
3778         }
3779
3780         /* Attempt to submit the Reset Device command to the command ring */
3781         spin_lock_irqsave(&xhci->lock, flags);
3782
3783         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3784         if (ret) {
3785                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3786                 spin_unlock_irqrestore(&xhci->lock, flags);
3787                 goto command_cleanup;
3788         }
3789         xhci_ring_cmd_db(xhci);
3790         spin_unlock_irqrestore(&xhci->lock, flags);
3791
3792         /* Wait for the Reset Device command to finish */
3793         wait_for_completion(reset_device_cmd->completion);
3794
3795         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3796          * unless we tried to reset a slot ID that wasn't enabled,
3797          * or the device wasn't in the addressed or configured state.
3798          */
3799         ret = reset_device_cmd->status;
3800         switch (ret) {
3801         case COMP_COMMAND_ABORTED:
3802         case COMP_COMMAND_RING_STOPPED:
3803                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3804                 ret = -ETIME;
3805                 goto command_cleanup;
3806         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3807         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3808                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3809                                 slot_id,
3810                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3811                 xhci_dbg(xhci, "Not freeing device rings.\n");
3812                 /* Don't treat this as an error.  May change my mind later. */
3813                 ret = 0;
3814                 goto command_cleanup;
3815         case COMP_SUCCESS:
3816                 xhci_dbg(xhci, "Successful reset device command.\n");
3817                 break;
3818         default:
3819                 if (xhci_is_vendor_info_code(xhci, ret))
3820                         break;
3821                 xhci_warn(xhci, "Unknown completion code %u for "
3822                                 "reset device command.\n", ret);
3823                 ret = -EINVAL;
3824                 goto command_cleanup;
3825         }
3826
3827         /* Free up host controller endpoint resources */
3828         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3829                 spin_lock_irqsave(&xhci->lock, flags);
3830                 /* Don't delete the default control endpoint resources */
3831                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3832                 spin_unlock_irqrestore(&xhci->lock, flags);
3833         }
3834
3835         /* Everything but endpoint 0 is disabled, so free the rings. */
3836         for (i = 1; i < 31; i++) {
3837                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3838
3839                 if (ep->ep_state & EP_HAS_STREAMS) {
3840                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3841                                         xhci_get_endpoint_address(i));
3842                         xhci_free_stream_info(xhci, ep->stream_info);
3843                         ep->stream_info = NULL;
3844                         ep->ep_state &= ~EP_HAS_STREAMS;
3845                 }
3846
3847                 if (ep->ring) {
3848                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3849                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3850                 }
3851                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3852                         xhci_drop_ep_from_interval_table(xhci,
3853                                         &virt_dev->eps[i].bw_info,
3854                                         virt_dev->bw_table,
3855                                         udev,
3856                                         &virt_dev->eps[i],
3857                                         virt_dev->tt_info);
3858                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3859         }
3860         /* If necessary, update the number of active TTs on this root port */
3861         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3862         virt_dev->flags = 0;
3863         ret = 0;
3864
3865 command_cleanup:
3866         xhci_free_command(xhci, reset_device_cmd);
3867         return ret;
3868 }
3869
3870 /*
3871  * At this point, the struct usb_device is about to go away, the device has
3872  * disconnected, and all traffic has been stopped and the endpoints have been
3873  * disabled.  Free any HC data structures associated with that device.
3874  */
3875 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3876 {
3877         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3878         struct xhci_virt_device *virt_dev;
3879         struct xhci_slot_ctx *slot_ctx;
3880         unsigned long flags;
3881         int i, ret;
3882
3883         /*
3884          * We called pm_runtime_get_noresume when the device was attached.
3885          * Decrement the counter here to allow controller to runtime suspend
3886          * if no devices remain.
3887          */
3888         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3889                 pm_runtime_put_noidle(hcd->self.controller);
3890
3891         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3892         /* If the host is halted due to driver unload, we still need to free the
3893          * device.
3894          */
3895         if (ret <= 0 && ret != -ENODEV)
3896                 return;
3897
3898         virt_dev = xhci->devs[udev->slot_id];
3899         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3900         trace_xhci_free_dev(slot_ctx);
3901
3902         /* Stop any wayward timer functions (which may grab the lock) */
3903         for (i = 0; i < 31; i++)
3904                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3905         virt_dev->udev = NULL;
3906         xhci_disable_slot(xhci, udev->slot_id);
3907
3908         spin_lock_irqsave(&xhci->lock, flags);
3909         xhci_free_virt_device(xhci, udev->slot_id);
3910         spin_unlock_irqrestore(&xhci->lock, flags);
3911
3912 }
3913
3914 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3915 {
3916         struct xhci_command *command;
3917         unsigned long flags;
3918         u32 state;
3919         int ret;
3920
3921         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3922         if (!command)
3923                 return -ENOMEM;
3924
3925         xhci_debugfs_remove_slot(xhci, slot_id);
3926
3927         spin_lock_irqsave(&xhci->lock, flags);
3928         /* Don't disable the slot if the host controller is dead. */
3929         state = readl(&xhci->op_regs->status);
3930         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3931                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3932                 spin_unlock_irqrestore(&xhci->lock, flags);
3933                 kfree(command);
3934                 return -ENODEV;
3935         }
3936
3937         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3938                                 slot_id);
3939         if (ret) {
3940                 spin_unlock_irqrestore(&xhci->lock, flags);
3941                 kfree(command);
3942                 return ret;
3943         }
3944         xhci_ring_cmd_db(xhci);
3945         spin_unlock_irqrestore(&xhci->lock, flags);
3946
3947         wait_for_completion(command->completion);
3948
3949         if (command->status != COMP_SUCCESS)
3950                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3951                           slot_id, command->status);
3952
3953         xhci_free_command(xhci, command);
3954
3955         return 0;
3956 }
3957
3958 /*
3959  * Checks if we have enough host controller resources for the default control
3960  * endpoint.
3961  *
3962  * Must be called with xhci->lock held.
3963  */
3964 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3965 {
3966         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3967                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3968                                 "Not enough ep ctxs: "
3969                                 "%u active, need to add 1, limit is %u.",
3970                                 xhci->num_active_eps, xhci->limit_active_eps);
3971                 return -ENOMEM;
3972         }
3973         xhci->num_active_eps += 1;
3974         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3975                         "Adding 1 ep ctx, %u now active.",
3976                         xhci->num_active_eps);
3977         return 0;
3978 }
3979
3980
3981 /*
3982  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3983  * timed out, or allocating memory failed.  Returns 1 on success.
3984  */
3985 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3988         struct xhci_virt_device *vdev;
3989         struct xhci_slot_ctx *slot_ctx;
3990         unsigned long flags;
3991         int ret, slot_id;
3992         struct xhci_command *command;
3993
3994         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3995         if (!command)
3996                 return 0;
3997
3998         spin_lock_irqsave(&xhci->lock, flags);
3999         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4000         if (ret) {
4001                 spin_unlock_irqrestore(&xhci->lock, flags);
4002                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4003                 xhci_free_command(xhci, command);
4004                 return 0;
4005         }
4006         xhci_ring_cmd_db(xhci);
4007         spin_unlock_irqrestore(&xhci->lock, flags);
4008
4009         wait_for_completion(command->completion);
4010         slot_id = command->slot_id;
4011
4012         if (!slot_id || command->status != COMP_SUCCESS) {
4013                 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4014                          xhci_trb_comp_code_string(command->status));
4015                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4016                                 HCS_MAX_SLOTS(
4017                                         readl(&xhci->cap_regs->hcs_params1)));
4018                 xhci_free_command(xhci, command);
4019                 return 0;
4020         }
4021
4022         xhci_free_command(xhci, command);
4023
4024         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4025                 spin_lock_irqsave(&xhci->lock, flags);
4026                 ret = xhci_reserve_host_control_ep_resources(xhci);
4027                 if (ret) {
4028                         spin_unlock_irqrestore(&xhci->lock, flags);
4029                         xhci_warn(xhci, "Not enough host resources, "
4030                                         "active endpoint contexts = %u\n",
4031                                         xhci->num_active_eps);
4032                         goto disable_slot;
4033                 }
4034                 spin_unlock_irqrestore(&xhci->lock, flags);
4035         }
4036         /* Use GFP_NOIO, since this function can be called from
4037          * xhci_discover_or_reset_device(), which may be called as part of
4038          * mass storage driver error handling.
4039          */
4040         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4041                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4042                 goto disable_slot;
4043         }
4044         vdev = xhci->devs[slot_id];
4045         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4046         trace_xhci_alloc_dev(slot_ctx);
4047
4048         udev->slot_id = slot_id;
4049
4050         xhci_debugfs_create_slot(xhci, slot_id);
4051
4052         /*
4053          * If resetting upon resume, we can't put the controller into runtime
4054          * suspend if there is a device attached.
4055          */
4056         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4057                 pm_runtime_get_noresume(hcd->self.controller);
4058
4059         /* Is this a LS or FS device under a HS hub? */
4060         /* Hub or peripherial? */
4061         return 1;
4062
4063 disable_slot:
4064         xhci_disable_slot(xhci, udev->slot_id);
4065         xhci_free_virt_device(xhci, udev->slot_id);
4066
4067         return 0;
4068 }
4069
4070 /**
4071  * xhci_setup_device - issues an Address Device command to assign a unique
4072  *                      USB bus address.
4073  * @hcd: USB host controller data structure.
4074  * @udev: USB dev structure representing the connected device.
4075  * @setup: Enum specifying setup mode: address only or with context.
4076  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4077  *
4078  * Return: 0 if successful; otherwise, negative error code.
4079  */
4080 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4081                              enum xhci_setup_dev setup, unsigned int timeout_ms)
4082 {
4083         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4084         unsigned long flags;
4085         struct xhci_virt_device *virt_dev;
4086         int ret = 0;
4087         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4088         struct xhci_slot_ctx *slot_ctx;
4089         struct xhci_input_control_ctx *ctrl_ctx;
4090         u64 temp_64;
4091         struct xhci_command *command = NULL;
4092
4093         mutex_lock(&xhci->mutex);
4094
4095         if (xhci->xhc_state) {  /* dying, removing or halted */
4096                 ret = -ESHUTDOWN;
4097                 goto out;
4098         }
4099
4100         if (!udev->slot_id) {
4101                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4102                                 "Bad Slot ID %d", udev->slot_id);
4103                 ret = -EINVAL;
4104                 goto out;
4105         }
4106
4107         virt_dev = xhci->devs[udev->slot_id];
4108
4109         if (WARN_ON(!virt_dev)) {
4110                 /*
4111                  * In plug/unplug torture test with an NEC controller,
4112                  * a zero-dereference was observed once due to virt_dev = 0.
4113                  * Print useful debug rather than crash if it is observed again!
4114                  */
4115                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4116                         udev->slot_id);
4117                 ret = -EINVAL;
4118                 goto out;
4119         }
4120         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4121         trace_xhci_setup_device_slot(slot_ctx);
4122
4123         if (setup == SETUP_CONTEXT_ONLY) {
4124                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4125                     SLOT_STATE_DEFAULT) {
4126                         xhci_dbg(xhci, "Slot already in default state\n");
4127                         goto out;
4128                 }
4129         }
4130
4131         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4132         if (!command) {
4133                 ret = -ENOMEM;
4134                 goto out;
4135         }
4136
4137         command->in_ctx = virt_dev->in_ctx;
4138         command->timeout_ms = timeout_ms;
4139
4140         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4141         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4142         if (!ctrl_ctx) {
4143                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4144                                 __func__);
4145                 ret = -EINVAL;
4146                 goto out;
4147         }
4148         /*
4149          * If this is the first Set Address since device plug-in or
4150          * virt_device realloaction after a resume with an xHCI power loss,
4151          * then set up the slot context.
4152          */
4153         if (!slot_ctx->dev_info)
4154                 xhci_setup_addressable_virt_dev(xhci, udev);
4155         /* Otherwise, update the control endpoint ring enqueue pointer. */
4156         else
4157                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4158         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4159         ctrl_ctx->drop_flags = 0;
4160
4161         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4162                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4163
4164         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4165         spin_lock_irqsave(&xhci->lock, flags);
4166         trace_xhci_setup_device(virt_dev);
4167         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4168                                         udev->slot_id, setup);
4169         if (ret) {
4170                 spin_unlock_irqrestore(&xhci->lock, flags);
4171                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4172                                 "FIXME: allocate a command ring segment");
4173                 goto out;
4174         }
4175         xhci_ring_cmd_db(xhci);
4176         spin_unlock_irqrestore(&xhci->lock, flags);
4177
4178         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4179         wait_for_completion(command->completion);
4180
4181         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4182          * the SetAddress() "recovery interval" required by USB and aborting the
4183          * command on a timeout.
4184          */
4185         switch (command->status) {
4186         case COMP_COMMAND_ABORTED:
4187         case COMP_COMMAND_RING_STOPPED:
4188                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4189                 ret = -ETIME;
4190                 break;
4191         case COMP_CONTEXT_STATE_ERROR:
4192         case COMP_SLOT_NOT_ENABLED_ERROR:
4193                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4194                          act, udev->slot_id);
4195                 ret = -EINVAL;
4196                 break;
4197         case COMP_USB_TRANSACTION_ERROR:
4198                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4199
4200                 mutex_unlock(&xhci->mutex);
4201                 ret = xhci_disable_slot(xhci, udev->slot_id);
4202                 xhci_free_virt_device(xhci, udev->slot_id);
4203                 if (!ret) {
4204                         if (xhci_alloc_dev(hcd, udev) == 1)
4205                                 xhci_setup_addressable_virt_dev(xhci, udev);
4206                 }
4207                 kfree(command->completion);
4208                 kfree(command);
4209                 return -EPROTO;
4210         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4211                 dev_warn(&udev->dev,
4212                          "ERROR: Incompatible device for setup %s command\n", act);
4213                 ret = -ENODEV;
4214                 break;
4215         case COMP_SUCCESS:
4216                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4217                                "Successful setup %s command", act);
4218                 break;
4219         default:
4220                 xhci_err(xhci,
4221                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4222                          act, command->status);
4223                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4224                 ret = -EINVAL;
4225                 break;
4226         }
4227         if (ret)
4228                 goto out;
4229         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4230         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4231                         "Op regs DCBAA ptr = %#016llx", temp_64);
4232         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4233                 "Slot ID %d dcbaa entry @%p = %#016llx",
4234                 udev->slot_id,
4235                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4236                 (unsigned long long)
4237                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4238         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4239                         "Output Context DMA address = %#08llx",
4240                         (unsigned long long)virt_dev->out_ctx->dma);
4241         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4242                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4243         /*
4244          * USB core uses address 1 for the roothubs, so we add one to the
4245          * address given back to us by the HC.
4246          */
4247         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4248                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4249         /* Zero the input context control for later use */
4250         ctrl_ctx->add_flags = 0;
4251         ctrl_ctx->drop_flags = 0;
4252         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4253         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4254
4255         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4256                        "Internal device address = %d",
4257                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4258 out:
4259         mutex_unlock(&xhci->mutex);
4260         if (command) {
4261                 kfree(command->completion);
4262                 kfree(command);
4263         }
4264         return ret;
4265 }
4266
4267 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4268                                unsigned int timeout_ms)
4269 {
4270         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4271 }
4272
4273 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4274 {
4275         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4276                                  XHCI_CMD_DEFAULT_TIMEOUT);
4277 }
4278
4279 /*
4280  * Transfer the port index into real index in the HW port status
4281  * registers. Caculate offset between the port's PORTSC register
4282  * and port status base. Divide the number of per port register
4283  * to get the real index. The raw port number bases 1.
4284  */
4285 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4286 {
4287         struct xhci_hub *rhub;
4288
4289         rhub = xhci_get_rhub(hcd);
4290         return rhub->ports[port1 - 1]->hw_portnum + 1;
4291 }
4292
4293 /*
4294  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4295  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4296  */
4297 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4298                         struct usb_device *udev, u16 max_exit_latency)
4299 {
4300         struct xhci_virt_device *virt_dev;
4301         struct xhci_command *command;
4302         struct xhci_input_control_ctx *ctrl_ctx;
4303         struct xhci_slot_ctx *slot_ctx;
4304         unsigned long flags;
4305         int ret;
4306
4307         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4308         if (!command)
4309                 return -ENOMEM;
4310
4311         spin_lock_irqsave(&xhci->lock, flags);
4312
4313         virt_dev = xhci->devs[udev->slot_id];
4314
4315         /*
4316          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4317          * xHC was re-initialized. Exit latency will be set later after
4318          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4319          */
4320
4321         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4322                 spin_unlock_irqrestore(&xhci->lock, flags);
4323                 xhci_free_command(xhci, command);
4324                 return 0;
4325         }
4326
4327         /* Attempt to issue an Evaluate Context command to change the MEL. */
4328         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4329         if (!ctrl_ctx) {
4330                 spin_unlock_irqrestore(&xhci->lock, flags);
4331                 xhci_free_command(xhci, command);
4332                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4333                                 __func__);
4334                 return -ENOMEM;
4335         }
4336
4337         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4338         spin_unlock_irqrestore(&xhci->lock, flags);
4339
4340         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4341         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4342         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4343         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4344         slot_ctx->dev_state = 0;
4345
4346         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4347                         "Set up evaluate context for LPM MEL change.");
4348
4349         /* Issue and wait for the evaluate context command. */
4350         ret = xhci_configure_endpoint(xhci, udev, command,
4351                         true, true);
4352
4353         if (!ret) {
4354                 spin_lock_irqsave(&xhci->lock, flags);
4355                 virt_dev->current_mel = max_exit_latency;
4356                 spin_unlock_irqrestore(&xhci->lock, flags);
4357         }
4358
4359         xhci_free_command(xhci, command);
4360
4361         return ret;
4362 }
4363
4364 #ifdef CONFIG_PM
4365
4366 /* BESL to HIRD Encoding array for USB2 LPM */
4367 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4368         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4369
4370 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4371 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4372                                         struct usb_device *udev)
4373 {
4374         int u2del, besl, besl_host;
4375         int besl_device = 0;
4376         u32 field;
4377
4378         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4379         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4380
4381         if (field & USB_BESL_SUPPORT) {
4382                 for (besl_host = 0; besl_host < 16; besl_host++) {
4383                         if (xhci_besl_encoding[besl_host] >= u2del)
4384                                 break;
4385                 }
4386                 /* Use baseline BESL value as default */
4387                 if (field & USB_BESL_BASELINE_VALID)
4388                         besl_device = USB_GET_BESL_BASELINE(field);
4389                 else if (field & USB_BESL_DEEP_VALID)
4390                         besl_device = USB_GET_BESL_DEEP(field);
4391         } else {
4392                 if (u2del <= 50)
4393                         besl_host = 0;
4394                 else
4395                         besl_host = (u2del - 51) / 75 + 1;
4396         }
4397
4398         besl = besl_host + besl_device;
4399         if (besl > 15)
4400                 besl = 15;
4401
4402         return besl;
4403 }
4404
4405 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4406 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4407 {
4408         u32 field;
4409         int l1;
4410         int besld = 0;
4411         int hirdm = 0;
4412
4413         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4414
4415         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4416         l1 = udev->l1_params.timeout / 256;
4417
4418         /* device has preferred BESLD */
4419         if (field & USB_BESL_DEEP_VALID) {
4420                 besld = USB_GET_BESL_DEEP(field);
4421                 hirdm = 1;
4422         }
4423
4424         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4425 }
4426
4427 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4428                         struct usb_device *udev, int enable)
4429 {
4430         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4431         struct xhci_port **ports;
4432         __le32 __iomem  *pm_addr, *hlpm_addr;
4433         u32             pm_val, hlpm_val, field;
4434         unsigned int    port_num;
4435         unsigned long   flags;
4436         int             hird, exit_latency;
4437         int             ret;
4438
4439         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4440                 return -EPERM;
4441
4442         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4443                         !udev->lpm_capable)
4444                 return -EPERM;
4445
4446         if (!udev->parent || udev->parent->parent ||
4447                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4448                 return -EPERM;
4449
4450         if (udev->usb2_hw_lpm_capable != 1)
4451                 return -EPERM;
4452
4453         spin_lock_irqsave(&xhci->lock, flags);
4454
4455         ports = xhci->usb2_rhub.ports;
4456         port_num = udev->portnum - 1;
4457         pm_addr = ports[port_num]->addr + PORTPMSC;
4458         pm_val = readl(pm_addr);
4459         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4460
4461         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4462                         enable ? "enable" : "disable", port_num + 1);
4463
4464         if (enable) {
4465                 /* Host supports BESL timeout instead of HIRD */
4466                 if (udev->usb2_hw_lpm_besl_capable) {
4467                         /* if device doesn't have a preferred BESL value use a
4468                          * default one which works with mixed HIRD and BESL
4469                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4470                          */
4471                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4472                         if ((field & USB_BESL_SUPPORT) &&
4473                             (field & USB_BESL_BASELINE_VALID))
4474                                 hird = USB_GET_BESL_BASELINE(field);
4475                         else
4476                                 hird = udev->l1_params.besl;
4477
4478                         exit_latency = xhci_besl_encoding[hird];
4479                         spin_unlock_irqrestore(&xhci->lock, flags);
4480
4481                         ret = xhci_change_max_exit_latency(xhci, udev,
4482                                                            exit_latency);
4483                         if (ret < 0)
4484                                 return ret;
4485                         spin_lock_irqsave(&xhci->lock, flags);
4486
4487                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4488                         writel(hlpm_val, hlpm_addr);
4489                         /* flush write */
4490                         readl(hlpm_addr);
4491                 } else {
4492                         hird = xhci_calculate_hird_besl(xhci, udev);
4493                 }
4494
4495                 pm_val &= ~PORT_HIRD_MASK;
4496                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4497                 writel(pm_val, pm_addr);
4498                 pm_val = readl(pm_addr);
4499                 pm_val |= PORT_HLE;
4500                 writel(pm_val, pm_addr);
4501                 /* flush write */
4502                 readl(pm_addr);
4503         } else {
4504                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4505                 writel(pm_val, pm_addr);
4506                 /* flush write */
4507                 readl(pm_addr);
4508                 if (udev->usb2_hw_lpm_besl_capable) {
4509                         spin_unlock_irqrestore(&xhci->lock, flags);
4510                         xhci_change_max_exit_latency(xhci, udev, 0);
4511                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4512                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4513                                            100, 10000);
4514                         return 0;
4515                 }
4516         }
4517
4518         spin_unlock_irqrestore(&xhci->lock, flags);
4519         return 0;
4520 }
4521
4522 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4523 {
4524         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4525         struct xhci_port *port;
4526         u32 capability;
4527
4528         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4529                 return 0;
4530
4531         /* we only support lpm for non-hub device connected to root hub yet */
4532         if (!udev->parent || udev->parent->parent ||
4533                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4534                 return 0;
4535
4536         port = xhci->usb2_rhub.ports[udev->portnum - 1];
4537         capability = port->port_cap->protocol_caps;
4538
4539         if (capability & XHCI_HLC) {
4540                 udev->usb2_hw_lpm_capable = 1;
4541                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4542                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4543                 if (capability & XHCI_BLC)
4544                         udev->usb2_hw_lpm_besl_capable = 1;
4545         }
4546
4547         return 0;
4548 }
4549
4550 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4551
4552 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4553 static unsigned long long xhci_service_interval_to_ns(
4554                 struct usb_endpoint_descriptor *desc)
4555 {
4556         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4557 }
4558
4559 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4560                 enum usb3_link_state state)
4561 {
4562         unsigned long long sel;
4563         unsigned long long pel;
4564         unsigned int max_sel_pel;
4565         char *state_name;
4566
4567         switch (state) {
4568         case USB3_LPM_U1:
4569                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4570                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4571                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4572                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4573                 state_name = "U1";
4574                 break;
4575         case USB3_LPM_U2:
4576                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4577                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4578                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4579                 state_name = "U2";
4580                 break;
4581         default:
4582                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4583                                 __func__);
4584                 return USB3_LPM_DISABLED;
4585         }
4586
4587         if (sel <= max_sel_pel && pel <= max_sel_pel)
4588                 return USB3_LPM_DEVICE_INITIATED;
4589
4590         if (sel > max_sel_pel)
4591                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4592                                 "due to long SEL %llu ms\n",
4593                                 state_name, sel);
4594         else
4595                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4596                                 "due to long PEL %llu ms\n",
4597                                 state_name, pel);
4598         return USB3_LPM_DISABLED;
4599 }
4600
4601 /* The U1 timeout should be the maximum of the following values:
4602  *  - For control endpoints, U1 system exit latency (SEL) * 3
4603  *  - For bulk endpoints, U1 SEL * 5
4604  *  - For interrupt endpoints:
4605  *    - Notification EPs, U1 SEL * 3
4606  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4607  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4608  */
4609 static unsigned long long xhci_calculate_intel_u1_timeout(
4610                 struct usb_device *udev,
4611                 struct usb_endpoint_descriptor *desc)
4612 {
4613         unsigned long long timeout_ns;
4614         int ep_type;
4615         int intr_type;
4616
4617         ep_type = usb_endpoint_type(desc);
4618         switch (ep_type) {
4619         case USB_ENDPOINT_XFER_CONTROL:
4620                 timeout_ns = udev->u1_params.sel * 3;
4621                 break;
4622         case USB_ENDPOINT_XFER_BULK:
4623                 timeout_ns = udev->u1_params.sel * 5;
4624                 break;
4625         case USB_ENDPOINT_XFER_INT:
4626                 intr_type = usb_endpoint_interrupt_type(desc);
4627                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4628                         timeout_ns = udev->u1_params.sel * 3;
4629                         break;
4630                 }
4631                 /* Otherwise the calculation is the same as isoc eps */
4632                 fallthrough;
4633         case USB_ENDPOINT_XFER_ISOC:
4634                 timeout_ns = xhci_service_interval_to_ns(desc);
4635                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4636                 if (timeout_ns < udev->u1_params.sel * 2)
4637                         timeout_ns = udev->u1_params.sel * 2;
4638                 break;
4639         default:
4640                 return 0;
4641         }
4642
4643         return timeout_ns;
4644 }
4645
4646 /* Returns the hub-encoded U1 timeout value. */
4647 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4648                 struct usb_device *udev,
4649                 struct usb_endpoint_descriptor *desc)
4650 {
4651         unsigned long long timeout_ns;
4652
4653         /* Prevent U1 if service interval is shorter than U1 exit latency */
4654         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4655                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4656                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4657                         return USB3_LPM_DISABLED;
4658                 }
4659         }
4660
4661         if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4662                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4663         else
4664                 timeout_ns = udev->u1_params.sel;
4665
4666         /* The U1 timeout is encoded in 1us intervals.
4667          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4668          */
4669         if (timeout_ns == USB3_LPM_DISABLED)
4670                 timeout_ns = 1;
4671         else
4672                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4673
4674         /* If the necessary timeout value is bigger than what we can set in the
4675          * USB 3.0 hub, we have to disable hub-initiated U1.
4676          */
4677         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4678                 return timeout_ns;
4679         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4680                         "due to long timeout %llu ms\n", timeout_ns);
4681         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4682 }
4683
4684 /* The U2 timeout should be the maximum of:
4685  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4686  *  - largest bInterval of any active periodic endpoint (to avoid going
4687  *    into lower power link states between intervals).
4688  *  - the U2 Exit Latency of the device
4689  */
4690 static unsigned long long xhci_calculate_intel_u2_timeout(
4691                 struct usb_device *udev,
4692                 struct usb_endpoint_descriptor *desc)
4693 {
4694         unsigned long long timeout_ns;
4695         unsigned long long u2_del_ns;
4696
4697         timeout_ns = 10 * 1000 * 1000;
4698
4699         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4700                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4701                 timeout_ns = xhci_service_interval_to_ns(desc);
4702
4703         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4704         if (u2_del_ns > timeout_ns)
4705                 timeout_ns = u2_del_ns;
4706
4707         return timeout_ns;
4708 }
4709
4710 /* Returns the hub-encoded U2 timeout value. */
4711 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4712                 struct usb_device *udev,
4713                 struct usb_endpoint_descriptor *desc)
4714 {
4715         unsigned long long timeout_ns;
4716
4717         /* Prevent U2 if service interval is shorter than U2 exit latency */
4718         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4719                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4720                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4721                         return USB3_LPM_DISABLED;
4722                 }
4723         }
4724
4725         if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4726                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4727         else
4728                 timeout_ns = udev->u2_params.sel;
4729
4730         /* The U2 timeout is encoded in 256us intervals */
4731         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4732         /* If the necessary timeout value is bigger than what we can set in the
4733          * USB 3.0 hub, we have to disable hub-initiated U2.
4734          */
4735         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4736                 return timeout_ns;
4737         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4738                         "due to long timeout %llu ms\n", timeout_ns);
4739         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4740 }
4741
4742 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4743                 struct usb_device *udev,
4744                 struct usb_endpoint_descriptor *desc,
4745                 enum usb3_link_state state,
4746                 u16 *timeout)
4747 {
4748         if (state == USB3_LPM_U1)
4749                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4750         else if (state == USB3_LPM_U2)
4751                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4752
4753         return USB3_LPM_DISABLED;
4754 }
4755
4756 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4757                 struct usb_device *udev,
4758                 struct usb_endpoint_descriptor *desc,
4759                 enum usb3_link_state state,
4760                 u16 *timeout)
4761 {
4762         u16 alt_timeout;
4763
4764         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4765                 desc, state, timeout);
4766
4767         /* If we found we can't enable hub-initiated LPM, and
4768          * the U1 or U2 exit latency was too high to allow
4769          * device-initiated LPM as well, then we will disable LPM
4770          * for this device, so stop searching any further.
4771          */
4772         if (alt_timeout == USB3_LPM_DISABLED) {
4773                 *timeout = alt_timeout;
4774                 return -E2BIG;
4775         }
4776         if (alt_timeout > *timeout)
4777                 *timeout = alt_timeout;
4778         return 0;
4779 }
4780
4781 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4782                 struct usb_device *udev,
4783                 struct usb_host_interface *alt,
4784                 enum usb3_link_state state,
4785                 u16 *timeout)
4786 {
4787         int j;
4788
4789         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4790                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4791                                         &alt->endpoint[j].desc, state, timeout))
4792                         return -E2BIG;
4793         }
4794         return 0;
4795 }
4796
4797 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4798                 struct usb_device *udev,
4799                 enum usb3_link_state state)
4800 {
4801         struct usb_device *parent = udev->parent;
4802         int tier = 1; /* roothub is tier1 */
4803
4804         while (parent) {
4805                 parent = parent->parent;
4806                 tier++;
4807         }
4808
4809         if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4810                 goto fail;
4811         if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4812                 goto fail;
4813
4814         return 0;
4815 fail:
4816         dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4817                         tier);
4818         return -E2BIG;
4819 }
4820
4821 /* Returns the U1 or U2 timeout that should be enabled.
4822  * If the tier check or timeout setting functions return with a non-zero exit
4823  * code, that means the timeout value has been finalized and we shouldn't look
4824  * at any more endpoints.
4825  */
4826 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4827                         struct usb_device *udev, enum usb3_link_state state)
4828 {
4829         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4830         struct usb_host_config *config;
4831         char *state_name;
4832         int i;
4833         u16 timeout = USB3_LPM_DISABLED;
4834
4835         if (state == USB3_LPM_U1)
4836                 state_name = "U1";
4837         else if (state == USB3_LPM_U2)
4838                 state_name = "U2";
4839         else {
4840                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4841                                 state);
4842                 return timeout;
4843         }
4844
4845         /* Gather some information about the currently installed configuration
4846          * and alternate interface settings.
4847          */
4848         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4849                         state, &timeout))
4850                 return timeout;
4851
4852         config = udev->actconfig;
4853         if (!config)
4854                 return timeout;
4855
4856         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4857                 struct usb_driver *driver;
4858                 struct usb_interface *intf = config->interface[i];
4859
4860                 if (!intf)
4861                         continue;
4862
4863                 /* Check if any currently bound drivers want hub-initiated LPM
4864                  * disabled.
4865                  */
4866                 if (intf->dev.driver) {
4867                         driver = to_usb_driver(intf->dev.driver);
4868                         if (driver && driver->disable_hub_initiated_lpm) {
4869                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4870                                         state_name, driver->name);
4871                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4872                                                                       state);
4873                                 if (timeout == USB3_LPM_DISABLED)
4874                                         return timeout;
4875                         }
4876                 }
4877
4878                 /* Not sure how this could happen... */
4879                 if (!intf->cur_altsetting)
4880                         continue;
4881
4882                 if (xhci_update_timeout_for_interface(xhci, udev,
4883                                         intf->cur_altsetting,
4884                                         state, &timeout))
4885                         return timeout;
4886         }
4887         return timeout;
4888 }
4889
4890 static int calculate_max_exit_latency(struct usb_device *udev,
4891                 enum usb3_link_state state_changed,
4892                 u16 hub_encoded_timeout)
4893 {
4894         unsigned long long u1_mel_us = 0;
4895         unsigned long long u2_mel_us = 0;
4896         unsigned long long mel_us = 0;
4897         bool disabling_u1;
4898         bool disabling_u2;
4899         bool enabling_u1;
4900         bool enabling_u2;
4901
4902         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4903                         hub_encoded_timeout == USB3_LPM_DISABLED);
4904         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4905                         hub_encoded_timeout == USB3_LPM_DISABLED);
4906
4907         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4908                         hub_encoded_timeout != USB3_LPM_DISABLED);
4909         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4910                         hub_encoded_timeout != USB3_LPM_DISABLED);
4911
4912         /* If U1 was already enabled and we're not disabling it,
4913          * or we're going to enable U1, account for the U1 max exit latency.
4914          */
4915         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4916                         enabling_u1)
4917                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4918         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4919                         enabling_u2)
4920                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4921
4922         mel_us = max(u1_mel_us, u2_mel_us);
4923
4924         /* xHCI host controller max exit latency field is only 16 bits wide. */
4925         if (mel_us > MAX_EXIT) {
4926                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4927                                 "is too big.\n", mel_us);
4928                 return -E2BIG;
4929         }
4930         return mel_us;
4931 }
4932
4933 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4934 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4935                         struct usb_device *udev, enum usb3_link_state state)
4936 {
4937         struct xhci_hcd *xhci;
4938         struct xhci_port *port;
4939         u16 hub_encoded_timeout;
4940         int mel;
4941         int ret;
4942
4943         xhci = hcd_to_xhci(hcd);
4944         /* The LPM timeout values are pretty host-controller specific, so don't
4945          * enable hub-initiated timeouts unless the vendor has provided
4946          * information about their timeout algorithm.
4947          */
4948         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4949                         !xhci->devs[udev->slot_id])
4950                 return USB3_LPM_DISABLED;
4951
4952         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4953                 return USB3_LPM_DISABLED;
4954
4955         /* If connected to root port then check port can handle lpm */
4956         if (udev->parent && !udev->parent->parent) {
4957                 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4958                 if (port->lpm_incapable)
4959                         return USB3_LPM_DISABLED;
4960         }
4961
4962         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4963         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4964         if (mel < 0) {
4965                 /* Max Exit Latency is too big, disable LPM. */
4966                 hub_encoded_timeout = USB3_LPM_DISABLED;
4967                 mel = 0;
4968         }
4969
4970         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4971         if (ret)
4972                 return ret;
4973         return hub_encoded_timeout;
4974 }
4975
4976 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4977                         struct usb_device *udev, enum usb3_link_state state)
4978 {
4979         struct xhci_hcd *xhci;
4980         u16 mel;
4981
4982         xhci = hcd_to_xhci(hcd);
4983         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4984                         !xhci->devs[udev->slot_id])
4985                 return 0;
4986
4987         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4988         return xhci_change_max_exit_latency(xhci, udev, mel);
4989 }
4990 #else /* CONFIG_PM */
4991
4992 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4993                                 struct usb_device *udev, int enable)
4994 {
4995         return 0;
4996 }
4997
4998 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4999 {
5000         return 0;
5001 }
5002
5003 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5004                         struct usb_device *udev, enum usb3_link_state state)
5005 {
5006         return USB3_LPM_DISABLED;
5007 }
5008
5009 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5010                         struct usb_device *udev, enum usb3_link_state state)
5011 {
5012         return 0;
5013 }
5014 #endif  /* CONFIG_PM */
5015
5016 /*-------------------------------------------------------------------------*/
5017
5018 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5019  * internal data structures for the device.
5020  */
5021 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5022                         struct usb_tt *tt, gfp_t mem_flags)
5023 {
5024         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5025         struct xhci_virt_device *vdev;
5026         struct xhci_command *config_cmd;
5027         struct xhci_input_control_ctx *ctrl_ctx;
5028         struct xhci_slot_ctx *slot_ctx;
5029         unsigned long flags;
5030         unsigned think_time;
5031         int ret;
5032
5033         /* Ignore root hubs */
5034         if (!hdev->parent)
5035                 return 0;
5036
5037         vdev = xhci->devs[hdev->slot_id];
5038         if (!vdev) {
5039                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5040                 return -EINVAL;
5041         }
5042
5043         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5044         if (!config_cmd)
5045                 return -ENOMEM;
5046
5047         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5048         if (!ctrl_ctx) {
5049                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5050                                 __func__);
5051                 xhci_free_command(xhci, config_cmd);
5052                 return -ENOMEM;
5053         }
5054
5055         spin_lock_irqsave(&xhci->lock, flags);
5056         if (hdev->speed == USB_SPEED_HIGH &&
5057                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5058                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5059                 xhci_free_command(xhci, config_cmd);
5060                 spin_unlock_irqrestore(&xhci->lock, flags);
5061                 return -ENOMEM;
5062         }
5063
5064         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5065         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5066         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5067         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5068         /*
5069          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5070          * but it may be already set to 1 when setup an xHCI virtual
5071          * device, so clear it anyway.
5072          */
5073         if (tt->multi)
5074                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5075         else if (hdev->speed == USB_SPEED_FULL)
5076                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5077
5078         if (xhci->hci_version > 0x95) {
5079                 xhci_dbg(xhci, "xHCI version %x needs hub "
5080                                 "TT think time and number of ports\n",
5081                                 (unsigned int) xhci->hci_version);
5082                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5083                 /* Set TT think time - convert from ns to FS bit times.
5084                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5085                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5086                  *
5087                  * xHCI 1.0: this field shall be 0 if the device is not a
5088                  * High-spped hub.
5089                  */
5090                 think_time = tt->think_time;
5091                 if (think_time != 0)
5092                         think_time = (think_time / 666) - 1;
5093                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5094                         slot_ctx->tt_info |=
5095                                 cpu_to_le32(TT_THINK_TIME(think_time));
5096         } else {
5097                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5098                                 "TT think time or number of ports\n",
5099                                 (unsigned int) xhci->hci_version);
5100         }
5101         slot_ctx->dev_state = 0;
5102         spin_unlock_irqrestore(&xhci->lock, flags);
5103
5104         xhci_dbg(xhci, "Set up %s for hub device.\n",
5105                         (xhci->hci_version > 0x95) ?
5106                         "configure endpoint" : "evaluate context");
5107
5108         /* Issue and wait for the configure endpoint or
5109          * evaluate context command.
5110          */
5111         if (xhci->hci_version > 0x95)
5112                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5113                                 false, false);
5114         else
5115                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5116                                 true, false);
5117
5118         xhci_free_command(xhci, config_cmd);
5119         return ret;
5120 }
5121 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5122
5123 static int xhci_get_frame(struct usb_hcd *hcd)
5124 {
5125         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5126         /* EHCI mods by the periodic size.  Why? */
5127         return readl(&xhci->run_regs->microframe_index) >> 3;
5128 }
5129
5130 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5131 {
5132         xhci->usb2_rhub.hcd = hcd;
5133         hcd->speed = HCD_USB2;
5134         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5135         /*
5136          * USB 2.0 roothub under xHCI has an integrated TT,
5137          * (rate matching hub) as opposed to having an OHCI/UHCI
5138          * companion controller.
5139          */
5140         hcd->has_tt = 1;
5141 }
5142
5143 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5144 {
5145         unsigned int minor_rev;
5146
5147         /*
5148          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5149          * should return 0x31 for sbrn, or that the minor revision
5150          * is a two digit BCD containig minor and sub-minor numbers.
5151          * This was later clarified in xHCI 1.2.
5152          *
5153          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5154          * minor revision set to 0x1 instead of 0x10.
5155          */
5156         if (xhci->usb3_rhub.min_rev == 0x1)
5157                 minor_rev = 1;
5158         else
5159                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5160
5161         switch (minor_rev) {
5162         case 2:
5163                 hcd->speed = HCD_USB32;
5164                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5165                 hcd->self.root_hub->rx_lanes = 2;
5166                 hcd->self.root_hub->tx_lanes = 2;
5167                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5168                 break;
5169         case 1:
5170                 hcd->speed = HCD_USB31;
5171                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5172                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5173                 break;
5174         }
5175         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5176                   minor_rev, minor_rev ? "Enhanced " : "");
5177
5178         xhci->usb3_rhub.hcd = hcd;
5179 }
5180
5181 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5182 {
5183         struct xhci_hcd         *xhci;
5184         /*
5185          * TODO: Check with DWC3 clients for sysdev according to
5186          * quirks
5187          */
5188         struct device           *dev = hcd->self.sysdev;
5189         int                     retval;
5190
5191         /* Accept arbitrarily long scatter-gather lists */
5192         hcd->self.sg_tablesize = ~0;
5193
5194         /* support to build packet from discontinuous buffers */
5195         hcd->self.no_sg_constraint = 1;
5196
5197         /* XHCI controllers don't stop the ep queue on short packets :| */
5198         hcd->self.no_stop_on_short = 1;
5199
5200         xhci = hcd_to_xhci(hcd);
5201
5202         if (!usb_hcd_is_primary_hcd(hcd)) {
5203                 xhci_hcd_init_usb3_data(xhci, hcd);
5204                 return 0;
5205         }
5206
5207         mutex_init(&xhci->mutex);
5208         xhci->main_hcd = hcd;
5209         xhci->cap_regs = hcd->regs;
5210         xhci->op_regs = hcd->regs +
5211                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5212         xhci->run_regs = hcd->regs +
5213                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5214         /* Cache read-only capability registers */
5215         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5216         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5217         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5218         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5219         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5220         if (xhci->hci_version > 0x100)
5221                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5222
5223         /* xhci-plat or xhci-pci might have set max_interrupters already */
5224         if ((!xhci->max_interrupters) ||
5225             xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5226                 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5227
5228         xhci->quirks |= quirks;
5229
5230         if (get_quirks)
5231                 get_quirks(dev, xhci);
5232
5233         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5234          * success event after a short transfer. This quirk will ignore such
5235          * spurious event.
5236          */
5237         if (xhci->hci_version > 0x96)
5238                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5239
5240         /* Make sure the HC is halted. */
5241         retval = xhci_halt(xhci);
5242         if (retval)
5243                 return retval;
5244
5245         xhci_zero_64b_regs(xhci);
5246
5247         xhci_dbg(xhci, "Resetting HCD\n");
5248         /* Reset the internal HC memory state and registers. */
5249         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5250         if (retval)
5251                 return retval;
5252         xhci_dbg(xhci, "Reset complete\n");
5253
5254         /*
5255          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5256          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5257          * address memory pointers actually. So, this driver clears the AC64
5258          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5259          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5260          */
5261         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5262                 xhci->hcc_params &= ~BIT(0);
5263
5264         /* Set dma_mask and coherent_dma_mask to 64-bits,
5265          * if xHC supports 64-bit addressing */
5266         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5267                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5268                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5269                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5270         } else {
5271                 /*
5272                  * This is to avoid error in cases where a 32-bit USB
5273                  * controller is used on a 64-bit capable system.
5274                  */
5275                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5276                 if (retval)
5277                         return retval;
5278                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5279                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5280         }
5281
5282         xhci_dbg(xhci, "Calling HCD init\n");
5283         /* Initialize HCD and host controller data structures. */
5284         retval = xhci_init(hcd);
5285         if (retval)
5286                 return retval;
5287         xhci_dbg(xhci, "Called HCD init\n");
5288
5289         if (xhci_hcd_is_usb3(hcd))
5290                 xhci_hcd_init_usb3_data(xhci, hcd);
5291         else
5292                 xhci_hcd_init_usb2_data(xhci, hcd);
5293
5294         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5295                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5296
5297         return 0;
5298 }
5299 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5300
5301 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5302                 struct usb_host_endpoint *ep)
5303 {
5304         struct xhci_hcd *xhci;
5305         struct usb_device *udev;
5306         unsigned int slot_id;
5307         unsigned int ep_index;
5308         unsigned long flags;
5309
5310         xhci = hcd_to_xhci(hcd);
5311
5312         spin_lock_irqsave(&xhci->lock, flags);
5313         udev = (struct usb_device *)ep->hcpriv;
5314         slot_id = udev->slot_id;
5315         ep_index = xhci_get_endpoint_index(&ep->desc);
5316
5317         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5318         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5319         spin_unlock_irqrestore(&xhci->lock, flags);
5320 }
5321
5322 static const struct hc_driver xhci_hc_driver = {
5323         .description =          "xhci-hcd",
5324         .product_desc =         "xHCI Host Controller",
5325         .hcd_priv_size =        sizeof(struct xhci_hcd),
5326
5327         /*
5328          * generic hardware linkage
5329          */
5330         .irq =                  xhci_irq,
5331         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5332                                 HCD_BH,
5333
5334         /*
5335          * basic lifecycle operations
5336          */
5337         .reset =                NULL, /* set in xhci_init_driver() */
5338         .start =                xhci_run,
5339         .stop =                 xhci_stop,
5340         .shutdown =             xhci_shutdown,
5341
5342         /*
5343          * managing i/o requests and associated device resources
5344          */
5345         .map_urb_for_dma =      xhci_map_urb_for_dma,
5346         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5347         .urb_enqueue =          xhci_urb_enqueue,
5348         .urb_dequeue =          xhci_urb_dequeue,
5349         .alloc_dev =            xhci_alloc_dev,
5350         .free_dev =             xhci_free_dev,
5351         .alloc_streams =        xhci_alloc_streams,
5352         .free_streams =         xhci_free_streams,
5353         .add_endpoint =         xhci_add_endpoint,
5354         .drop_endpoint =        xhci_drop_endpoint,
5355         .endpoint_disable =     xhci_endpoint_disable,
5356         .endpoint_reset =       xhci_endpoint_reset,
5357         .check_bandwidth =      xhci_check_bandwidth,
5358         .reset_bandwidth =      xhci_reset_bandwidth,
5359         .address_device =       xhci_address_device,
5360         .enable_device =        xhci_enable_device,
5361         .update_hub_device =    xhci_update_hub_device,
5362         .reset_device =         xhci_discover_or_reset_device,
5363
5364         /*
5365          * scheduling support
5366          */
5367         .get_frame_number =     xhci_get_frame,
5368
5369         /*
5370          * root hub support
5371          */
5372         .hub_control =          xhci_hub_control,
5373         .hub_status_data =      xhci_hub_status_data,
5374         .bus_suspend =          xhci_bus_suspend,
5375         .bus_resume =           xhci_bus_resume,
5376         .get_resuming_ports =   xhci_get_resuming_ports,
5377
5378         /*
5379          * call back when device connected and addressed
5380          */
5381         .update_device =        xhci_update_device,
5382         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5383         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5384         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5385         .find_raw_port_number = xhci_find_raw_port_number,
5386         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5387 };
5388
5389 void xhci_init_driver(struct hc_driver *drv,
5390                       const struct xhci_driver_overrides *over)
5391 {
5392         BUG_ON(!over);
5393
5394         /* Copy the generic table to drv then apply the overrides */
5395         *drv = xhci_hc_driver;
5396
5397         if (over) {
5398                 drv->hcd_priv_size += over->extra_priv_size;
5399                 if (over->reset)
5400                         drv->reset = over->reset;
5401                 if (over->start)
5402                         drv->start = over->start;
5403                 if (over->add_endpoint)
5404                         drv->add_endpoint = over->add_endpoint;
5405                 if (over->drop_endpoint)
5406                         drv->drop_endpoint = over->drop_endpoint;
5407                 if (over->check_bandwidth)
5408                         drv->check_bandwidth = over->check_bandwidth;
5409                 if (over->reset_bandwidth)
5410                         drv->reset_bandwidth = over->reset_bandwidth;
5411                 if (over->update_hub_device)
5412                         drv->update_hub_device = over->update_hub_device;
5413                 if (over->hub_control)
5414                         drv->hub_control = over->hub_control;
5415         }
5416 }
5417 EXPORT_SYMBOL_GPL(xhci_init_driver);
5418
5419 MODULE_DESCRIPTION(DRIVER_DESC);
5420 MODULE_AUTHOR(DRIVER_AUTHOR);
5421 MODULE_LICENSE("GPL");
5422
5423 static int __init xhci_hcd_init(void)
5424 {
5425         /*
5426          * Check the compiler generated sizes of structures that must be laid
5427          * out in specific ways for hardware access.
5428          */
5429         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5430         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5431         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5432         /* xhci_device_control has eight fields, and also
5433          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5434          */
5435         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5436         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5437         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5438         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5439         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5440         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5441         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5442
5443         if (usb_disabled())
5444                 return -ENODEV;
5445
5446         xhci_debugfs_create_root();
5447         xhci_dbc_init();
5448
5449         return 0;
5450 }
5451
5452 /*
5453  * If an init function is provided, an exit function must also be provided
5454  * to allow module unload.
5455  */
5456 static void __exit xhci_hcd_fini(void)
5457 {
5458         xhci_debugfs_remove_root();
5459         xhci_dbc_exit();
5460 }
5461
5462 module_init(xhci_hcd_init);
5463 module_exit(xhci_hcd_fini);
This page took 0.352878 seconds and 4 git commands to generate.