]> Git Repo - linux.git/blob - drivers/nvme/target/core.c
dma-mapping: don't return errors from dma_set_max_seg_size
[linux.git] / drivers / nvme / target / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #include <generated/utsrelease.h>
14
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17
18 #include "nvmet.h"
19 #include "debugfs.h"
20
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29
30 /*
31  * This read/write semaphore is used to synchronize access to configuration
32  * information on a target system that will result in discovery log page
33  * information change for at least one host.
34  * The full list of resources to protected by this semaphore is:
35  *
36  *  - subsystems list
37  *  - per-subsystem allowed hosts list
38  *  - allow_any_host subsystem attribute
39  *  - nvmet_genctr
40  *  - the nvmet_transports array
41  *
42  * When updating any of those lists/structures write lock should be obtained,
43  * while when reading (popolating discovery log page or checking host-subsystem
44  * link) read lock is obtained to allow concurrent reads.
45  */
46 DECLARE_RWSEM(nvmet_config_sem);
47
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51
52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54         switch (errno) {
55         case 0:
56                 return NVME_SC_SUCCESS;
57         case -ENOSPC:
58                 req->error_loc = offsetof(struct nvme_rw_command, length);
59                 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60         case -EREMOTEIO:
61                 req->error_loc = offsetof(struct nvme_rw_command, slba);
62                 return  NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63         case -EOPNOTSUPP:
64                 req->error_loc = offsetof(struct nvme_common_command, opcode);
65                 switch (req->cmd->common.opcode) {
66                 case nvme_cmd_dsm:
67                 case nvme_cmd_write_zeroes:
68                         return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69                 default:
70                         return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
71                 }
72                 break;
73         case -ENODATA:
74                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
75                 return NVME_SC_ACCESS_DENIED;
76         case -EIO:
77                 fallthrough;
78         default:
79                 req->error_loc = offsetof(struct nvme_common_command, opcode);
80                 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
81         }
82 }
83
84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
85 {
86         pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87                  req->sq->qid);
88
89         req->error_loc = offsetof(struct nvme_common_command, opcode);
90         return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
91 }
92
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94                 const char *subsysnqn);
95
96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97                 size_t len)
98 {
99         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100                 req->error_loc = offsetof(struct nvme_common_command, dptr);
101                 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
102         }
103         return 0;
104 }
105
106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
107 {
108         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109                 req->error_loc = offsetof(struct nvme_common_command, dptr);
110                 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
111         }
112         return 0;
113 }
114
115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
116 {
117         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118                 req->error_loc = offsetof(struct nvme_common_command, dptr);
119                 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
120         }
121         return 0;
122 }
123
124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
125 {
126         struct nvmet_ns *cur;
127         unsigned long idx;
128         u32 nsid = 0;
129
130         xa_for_each(&subsys->namespaces, idx, cur)
131                 nsid = cur->nsid;
132
133         return nsid;
134 }
135
136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
137 {
138         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
139 }
140
141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
142 {
143         struct nvmet_req *req;
144
145         mutex_lock(&ctrl->lock);
146         while (ctrl->nr_async_event_cmds) {
147                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148                 mutex_unlock(&ctrl->lock);
149                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150                 mutex_lock(&ctrl->lock);
151         }
152         mutex_unlock(&ctrl->lock);
153 }
154
155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
156 {
157         struct nvmet_async_event *aen;
158         struct nvmet_req *req;
159
160         mutex_lock(&ctrl->lock);
161         while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162                 aen = list_first_entry(&ctrl->async_events,
163                                        struct nvmet_async_event, entry);
164                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165                 nvmet_set_result(req, nvmet_async_event_result(aen));
166
167                 list_del(&aen->entry);
168                 kfree(aen);
169
170                 mutex_unlock(&ctrl->lock);
171                 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172                 nvmet_req_complete(req, 0);
173                 mutex_lock(&ctrl->lock);
174         }
175         mutex_unlock(&ctrl->lock);
176 }
177
178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
179 {
180         struct nvmet_async_event *aen, *tmp;
181
182         mutex_lock(&ctrl->lock);
183         list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184                 list_del(&aen->entry);
185                 kfree(aen);
186         }
187         mutex_unlock(&ctrl->lock);
188 }
189
190 static void nvmet_async_event_work(struct work_struct *work)
191 {
192         struct nvmet_ctrl *ctrl =
193                 container_of(work, struct nvmet_ctrl, async_event_work);
194
195         nvmet_async_events_process(ctrl);
196 }
197
198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199                 u8 event_info, u8 log_page)
200 {
201         struct nvmet_async_event *aen;
202
203         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204         if (!aen)
205                 return;
206
207         aen->event_type = event_type;
208         aen->event_info = event_info;
209         aen->log_page = log_page;
210
211         mutex_lock(&ctrl->lock);
212         list_add_tail(&aen->entry, &ctrl->async_events);
213         mutex_unlock(&ctrl->lock);
214
215         queue_work(nvmet_wq, &ctrl->async_event_work);
216 }
217
218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
219 {
220         u32 i;
221
222         mutex_lock(&ctrl->lock);
223         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224                 goto out_unlock;
225
226         for (i = 0; i < ctrl->nr_changed_ns; i++) {
227                 if (ctrl->changed_ns_list[i] == nsid)
228                         goto out_unlock;
229         }
230
231         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233                 ctrl->nr_changed_ns = U32_MAX;
234                 goto out_unlock;
235         }
236
237         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239         mutex_unlock(&ctrl->lock);
240 }
241
242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
243 {
244         struct nvmet_ctrl *ctrl;
245
246         lockdep_assert_held(&subsys->lock);
247
248         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251                         continue;
252                 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253                                 NVME_AER_NOTICE_NS_CHANGED,
254                                 NVME_LOG_CHANGED_NS);
255         }
256 }
257
258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259                 struct nvmet_port *port)
260 {
261         struct nvmet_ctrl *ctrl;
262
263         mutex_lock(&subsys->lock);
264         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265                 if (port && ctrl->port != port)
266                         continue;
267                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268                         continue;
269                 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
271         }
272         mutex_unlock(&subsys->lock);
273 }
274
275 void nvmet_port_send_ana_event(struct nvmet_port *port)
276 {
277         struct nvmet_subsys_link *p;
278
279         down_read(&nvmet_config_sem);
280         list_for_each_entry(p, &port->subsystems, entry)
281                 nvmet_send_ana_event(p->subsys, port);
282         up_read(&nvmet_config_sem);
283 }
284
285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
286 {
287         int ret = 0;
288
289         down_write(&nvmet_config_sem);
290         if (nvmet_transports[ops->type])
291                 ret = -EINVAL;
292         else
293                 nvmet_transports[ops->type] = ops;
294         up_write(&nvmet_config_sem);
295
296         return ret;
297 }
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
299
300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
301 {
302         down_write(&nvmet_config_sem);
303         nvmet_transports[ops->type] = NULL;
304         up_write(&nvmet_config_sem);
305 }
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
307
308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
309 {
310         struct nvmet_ctrl *ctrl;
311
312         mutex_lock(&subsys->lock);
313         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314                 if (ctrl->port == port)
315                         ctrl->ops->delete_ctrl(ctrl);
316         }
317         mutex_unlock(&subsys->lock);
318 }
319
320 int nvmet_enable_port(struct nvmet_port *port)
321 {
322         const struct nvmet_fabrics_ops *ops;
323         int ret;
324
325         lockdep_assert_held(&nvmet_config_sem);
326
327         ops = nvmet_transports[port->disc_addr.trtype];
328         if (!ops) {
329                 up_write(&nvmet_config_sem);
330                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
331                 down_write(&nvmet_config_sem);
332                 ops = nvmet_transports[port->disc_addr.trtype];
333                 if (!ops) {
334                         pr_err("transport type %d not supported\n",
335                                 port->disc_addr.trtype);
336                         return -EINVAL;
337                 }
338         }
339
340         if (!try_module_get(ops->owner))
341                 return -EINVAL;
342
343         /*
344          * If the user requested PI support and the transport isn't pi capable,
345          * don't enable the port.
346          */
347         if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348                 pr_err("T10-PI is not supported by transport type %d\n",
349                        port->disc_addr.trtype);
350                 ret = -EINVAL;
351                 goto out_put;
352         }
353
354         ret = ops->add_port(port);
355         if (ret)
356                 goto out_put;
357
358         /* If the transport didn't set inline_data_size, then disable it. */
359         if (port->inline_data_size < 0)
360                 port->inline_data_size = 0;
361
362         /*
363          * If the transport didn't set the max_queue_size properly, then clamp
364          * it to the target limits. Also set default values in case the
365          * transport didn't set it at all.
366          */
367         if (port->max_queue_size < 0)
368                 port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
369         else
370                 port->max_queue_size = clamp_t(int, port->max_queue_size,
371                                                NVMET_MIN_QUEUE_SIZE,
372                                                NVMET_MAX_QUEUE_SIZE);
373
374         port->enabled = true;
375         port->tr_ops = ops;
376         return 0;
377
378 out_put:
379         module_put(ops->owner);
380         return ret;
381 }
382
383 void nvmet_disable_port(struct nvmet_port *port)
384 {
385         const struct nvmet_fabrics_ops *ops;
386
387         lockdep_assert_held(&nvmet_config_sem);
388
389         port->enabled = false;
390         port->tr_ops = NULL;
391
392         ops = nvmet_transports[port->disc_addr.trtype];
393         ops->remove_port(port);
394         module_put(ops->owner);
395 }
396
397 static void nvmet_keep_alive_timer(struct work_struct *work)
398 {
399         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400                         struct nvmet_ctrl, ka_work);
401         bool reset_tbkas = ctrl->reset_tbkas;
402
403         ctrl->reset_tbkas = false;
404         if (reset_tbkas) {
405                 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
406                         ctrl->cntlid);
407                 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
408                 return;
409         }
410
411         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412                 ctrl->cntlid, ctrl->kato);
413
414         nvmet_ctrl_fatal_error(ctrl);
415 }
416
417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
418 {
419         if (unlikely(ctrl->kato == 0))
420                 return;
421
422         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423                 ctrl->cntlid, ctrl->kato);
424
425         queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
426 }
427
428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
429 {
430         if (unlikely(ctrl->kato == 0))
431                 return;
432
433         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
434
435         cancel_delayed_work_sync(&ctrl->ka_work);
436 }
437
438 u16 nvmet_req_find_ns(struct nvmet_req *req)
439 {
440         u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441         struct nvmet_subsys *subsys = nvmet_req_subsys(req);
442
443         req->ns = xa_load(&subsys->namespaces, nsid);
444         if (unlikely(!req->ns)) {
445                 req->error_loc = offsetof(struct nvme_common_command, nsid);
446                 if (nvmet_subsys_nsid_exists(subsys, nsid))
447                         return NVME_SC_INTERNAL_PATH_ERROR;
448                 return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
449         }
450
451         percpu_ref_get(&req->ns->ref);
452         return NVME_SC_SUCCESS;
453 }
454
455 static void nvmet_destroy_namespace(struct percpu_ref *ref)
456 {
457         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
458
459         complete(&ns->disable_done);
460 }
461
462 void nvmet_put_namespace(struct nvmet_ns *ns)
463 {
464         percpu_ref_put(&ns->ref);
465 }
466
467 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
468 {
469         nvmet_bdev_ns_disable(ns);
470         nvmet_file_ns_disable(ns);
471 }
472
473 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
474 {
475         int ret;
476         struct pci_dev *p2p_dev;
477
478         if (!ns->use_p2pmem)
479                 return 0;
480
481         if (!ns->bdev) {
482                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
483                 return -EINVAL;
484         }
485
486         if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
487                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
488                        ns->device_path);
489                 return -EINVAL;
490         }
491
492         if (ns->p2p_dev) {
493                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
494                 if (ret < 0)
495                         return -EINVAL;
496         } else {
497                 /*
498                  * Right now we just check that there is p2pmem available so
499                  * we can report an error to the user right away if there
500                  * is not. We'll find the actual device to use once we
501                  * setup the controller when the port's device is available.
502                  */
503
504                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
505                 if (!p2p_dev) {
506                         pr_err("no peer-to-peer memory is available for %s\n",
507                                ns->device_path);
508                         return -EINVAL;
509                 }
510
511                 pci_dev_put(p2p_dev);
512         }
513
514         return 0;
515 }
516
517 /*
518  * Note: ctrl->subsys->lock should be held when calling this function
519  */
520 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
521                                     struct nvmet_ns *ns)
522 {
523         struct device *clients[2];
524         struct pci_dev *p2p_dev;
525         int ret;
526
527         if (!ctrl->p2p_client || !ns->use_p2pmem)
528                 return;
529
530         if (ns->p2p_dev) {
531                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
532                 if (ret < 0)
533                         return;
534
535                 p2p_dev = pci_dev_get(ns->p2p_dev);
536         } else {
537                 clients[0] = ctrl->p2p_client;
538                 clients[1] = nvmet_ns_dev(ns);
539
540                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
541                 if (!p2p_dev) {
542                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
543                                dev_name(ctrl->p2p_client), ns->device_path);
544                         return;
545                 }
546         }
547
548         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
549         if (ret < 0)
550                 pci_dev_put(p2p_dev);
551
552         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
553                 ns->nsid);
554 }
555
556 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
557 {
558         loff_t oldsize = ns->size;
559
560         if (ns->bdev)
561                 nvmet_bdev_ns_revalidate(ns);
562         else
563                 nvmet_file_ns_revalidate(ns);
564
565         return oldsize != ns->size;
566 }
567
568 int nvmet_ns_enable(struct nvmet_ns *ns)
569 {
570         struct nvmet_subsys *subsys = ns->subsys;
571         struct nvmet_ctrl *ctrl;
572         int ret;
573
574         mutex_lock(&subsys->lock);
575         ret = 0;
576
577         if (nvmet_is_passthru_subsys(subsys)) {
578                 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
579                 goto out_unlock;
580         }
581
582         if (ns->enabled)
583                 goto out_unlock;
584
585         ret = -EMFILE;
586         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
587                 goto out_unlock;
588
589         ret = nvmet_bdev_ns_enable(ns);
590         if (ret == -ENOTBLK)
591                 ret = nvmet_file_ns_enable(ns);
592         if (ret)
593                 goto out_unlock;
594
595         ret = nvmet_p2pmem_ns_enable(ns);
596         if (ret)
597                 goto out_dev_disable;
598
599         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
600                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
601
602         ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
603                                 0, GFP_KERNEL);
604         if (ret)
605                 goto out_dev_put;
606
607         if (ns->nsid > subsys->max_nsid)
608                 subsys->max_nsid = ns->nsid;
609
610         ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
611         if (ret)
612                 goto out_restore_subsys_maxnsid;
613
614         subsys->nr_namespaces++;
615
616         nvmet_ns_changed(subsys, ns->nsid);
617         ns->enabled = true;
618         ret = 0;
619 out_unlock:
620         mutex_unlock(&subsys->lock);
621         return ret;
622
623 out_restore_subsys_maxnsid:
624         subsys->max_nsid = nvmet_max_nsid(subsys);
625         percpu_ref_exit(&ns->ref);
626 out_dev_put:
627         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
628                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
629 out_dev_disable:
630         nvmet_ns_dev_disable(ns);
631         goto out_unlock;
632 }
633
634 void nvmet_ns_disable(struct nvmet_ns *ns)
635 {
636         struct nvmet_subsys *subsys = ns->subsys;
637         struct nvmet_ctrl *ctrl;
638
639         mutex_lock(&subsys->lock);
640         if (!ns->enabled)
641                 goto out_unlock;
642
643         ns->enabled = false;
644         xa_erase(&ns->subsys->namespaces, ns->nsid);
645         if (ns->nsid == subsys->max_nsid)
646                 subsys->max_nsid = nvmet_max_nsid(subsys);
647
648         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
649                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
650
651         mutex_unlock(&subsys->lock);
652
653         /*
654          * Now that we removed the namespaces from the lookup list, we
655          * can kill the per_cpu ref and wait for any remaining references
656          * to be dropped, as well as a RCU grace period for anyone only
657          * using the namepace under rcu_read_lock().  Note that we can't
658          * use call_rcu here as we need to ensure the namespaces have
659          * been fully destroyed before unloading the module.
660          */
661         percpu_ref_kill(&ns->ref);
662         synchronize_rcu();
663         wait_for_completion(&ns->disable_done);
664         percpu_ref_exit(&ns->ref);
665
666         mutex_lock(&subsys->lock);
667
668         subsys->nr_namespaces--;
669         nvmet_ns_changed(subsys, ns->nsid);
670         nvmet_ns_dev_disable(ns);
671 out_unlock:
672         mutex_unlock(&subsys->lock);
673 }
674
675 void nvmet_ns_free(struct nvmet_ns *ns)
676 {
677         nvmet_ns_disable(ns);
678
679         down_write(&nvmet_ana_sem);
680         nvmet_ana_group_enabled[ns->anagrpid]--;
681         up_write(&nvmet_ana_sem);
682
683         kfree(ns->device_path);
684         kfree(ns);
685 }
686
687 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
688 {
689         struct nvmet_ns *ns;
690
691         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
692         if (!ns)
693                 return NULL;
694
695         init_completion(&ns->disable_done);
696
697         ns->nsid = nsid;
698         ns->subsys = subsys;
699
700         down_write(&nvmet_ana_sem);
701         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
702         nvmet_ana_group_enabled[ns->anagrpid]++;
703         up_write(&nvmet_ana_sem);
704
705         uuid_gen(&ns->uuid);
706         ns->buffered_io = false;
707         ns->csi = NVME_CSI_NVM;
708
709         return ns;
710 }
711
712 static void nvmet_update_sq_head(struct nvmet_req *req)
713 {
714         if (req->sq->size) {
715                 u32 old_sqhd, new_sqhd;
716
717                 old_sqhd = READ_ONCE(req->sq->sqhd);
718                 do {
719                         new_sqhd = (old_sqhd + 1) % req->sq->size;
720                 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
721         }
722         req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
723 }
724
725 static void nvmet_set_error(struct nvmet_req *req, u16 status)
726 {
727         struct nvmet_ctrl *ctrl = req->sq->ctrl;
728         struct nvme_error_slot *new_error_slot;
729         unsigned long flags;
730
731         req->cqe->status = cpu_to_le16(status << 1);
732
733         if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
734                 return;
735
736         spin_lock_irqsave(&ctrl->error_lock, flags);
737         ctrl->err_counter++;
738         new_error_slot =
739                 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
740
741         new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
742         new_error_slot->sqid = cpu_to_le16(req->sq->qid);
743         new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
744         new_error_slot->status_field = cpu_to_le16(status << 1);
745         new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
746         new_error_slot->lba = cpu_to_le64(req->error_slba);
747         new_error_slot->nsid = req->cmd->common.nsid;
748         spin_unlock_irqrestore(&ctrl->error_lock, flags);
749
750         /* set the more bit for this request */
751         req->cqe->status |= cpu_to_le16(1 << 14);
752 }
753
754 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
755 {
756         struct nvmet_ns *ns = req->ns;
757
758         if (!req->sq->sqhd_disabled)
759                 nvmet_update_sq_head(req);
760         req->cqe->sq_id = cpu_to_le16(req->sq->qid);
761         req->cqe->command_id = req->cmd->common.command_id;
762
763         if (unlikely(status))
764                 nvmet_set_error(req, status);
765
766         trace_nvmet_req_complete(req);
767
768         req->ops->queue_response(req);
769         if (ns)
770                 nvmet_put_namespace(ns);
771 }
772
773 void nvmet_req_complete(struct nvmet_req *req, u16 status)
774 {
775         struct nvmet_sq *sq = req->sq;
776
777         __nvmet_req_complete(req, status);
778         percpu_ref_put(&sq->ref);
779 }
780 EXPORT_SYMBOL_GPL(nvmet_req_complete);
781
782 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
783                 u16 qid, u16 size)
784 {
785         cq->qid = qid;
786         cq->size = size;
787 }
788
789 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
790                 u16 qid, u16 size)
791 {
792         sq->sqhd = 0;
793         sq->qid = qid;
794         sq->size = size;
795
796         ctrl->sqs[qid] = sq;
797 }
798
799 static void nvmet_confirm_sq(struct percpu_ref *ref)
800 {
801         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
802
803         complete(&sq->confirm_done);
804 }
805
806 void nvmet_sq_destroy(struct nvmet_sq *sq)
807 {
808         struct nvmet_ctrl *ctrl = sq->ctrl;
809
810         /*
811          * If this is the admin queue, complete all AERs so that our
812          * queue doesn't have outstanding requests on it.
813          */
814         if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
815                 nvmet_async_events_failall(ctrl);
816         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
817         wait_for_completion(&sq->confirm_done);
818         wait_for_completion(&sq->free_done);
819         percpu_ref_exit(&sq->ref);
820         nvmet_auth_sq_free(sq);
821
822         /*
823          * we must reference the ctrl again after waiting for inflight IO
824          * to complete. Because admin connect may have sneaked in after we
825          * store sq->ctrl locally, but before we killed the percpu_ref. the
826          * admin connect allocates and assigns sq->ctrl, which now needs a
827          * final ref put, as this ctrl is going away.
828          */
829         ctrl = sq->ctrl;
830
831         if (ctrl) {
832                 /*
833                  * The teardown flow may take some time, and the host may not
834                  * send us keep-alive during this period, hence reset the
835                  * traffic based keep-alive timer so we don't trigger a
836                  * controller teardown as a result of a keep-alive expiration.
837                  */
838                 ctrl->reset_tbkas = true;
839                 sq->ctrl->sqs[sq->qid] = NULL;
840                 nvmet_ctrl_put(ctrl);
841                 sq->ctrl = NULL; /* allows reusing the queue later */
842         }
843 }
844 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
845
846 static void nvmet_sq_free(struct percpu_ref *ref)
847 {
848         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
849
850         complete(&sq->free_done);
851 }
852
853 int nvmet_sq_init(struct nvmet_sq *sq)
854 {
855         int ret;
856
857         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
858         if (ret) {
859                 pr_err("percpu_ref init failed!\n");
860                 return ret;
861         }
862         init_completion(&sq->free_done);
863         init_completion(&sq->confirm_done);
864         nvmet_auth_sq_init(sq);
865
866         return 0;
867 }
868 EXPORT_SYMBOL_GPL(nvmet_sq_init);
869
870 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
871                 struct nvmet_ns *ns)
872 {
873         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
874
875         if (unlikely(state == NVME_ANA_INACCESSIBLE))
876                 return NVME_SC_ANA_INACCESSIBLE;
877         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
878                 return NVME_SC_ANA_PERSISTENT_LOSS;
879         if (unlikely(state == NVME_ANA_CHANGE))
880                 return NVME_SC_ANA_TRANSITION;
881         return 0;
882 }
883
884 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
885 {
886         if (unlikely(req->ns->readonly)) {
887                 switch (req->cmd->common.opcode) {
888                 case nvme_cmd_read:
889                 case nvme_cmd_flush:
890                         break;
891                 default:
892                         return NVME_SC_NS_WRITE_PROTECTED;
893                 }
894         }
895
896         return 0;
897 }
898
899 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
900 {
901         struct nvme_command *cmd = req->cmd;
902         u16 ret;
903
904         if (nvme_is_fabrics(cmd))
905                 return nvmet_parse_fabrics_io_cmd(req);
906
907         if (unlikely(!nvmet_check_auth_status(req)))
908                 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
909
910         ret = nvmet_check_ctrl_status(req);
911         if (unlikely(ret))
912                 return ret;
913
914         if (nvmet_is_passthru_req(req))
915                 return nvmet_parse_passthru_io_cmd(req);
916
917         ret = nvmet_req_find_ns(req);
918         if (unlikely(ret))
919                 return ret;
920
921         ret = nvmet_check_ana_state(req->port, req->ns);
922         if (unlikely(ret)) {
923                 req->error_loc = offsetof(struct nvme_common_command, nsid);
924                 return ret;
925         }
926         ret = nvmet_io_cmd_check_access(req);
927         if (unlikely(ret)) {
928                 req->error_loc = offsetof(struct nvme_common_command, nsid);
929                 return ret;
930         }
931
932         switch (req->ns->csi) {
933         case NVME_CSI_NVM:
934                 if (req->ns->file)
935                         return nvmet_file_parse_io_cmd(req);
936                 return nvmet_bdev_parse_io_cmd(req);
937         case NVME_CSI_ZNS:
938                 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
939                         return nvmet_bdev_zns_parse_io_cmd(req);
940                 return NVME_SC_INVALID_IO_CMD_SET;
941         default:
942                 return NVME_SC_INVALID_IO_CMD_SET;
943         }
944 }
945
946 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
947                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
948 {
949         u8 flags = req->cmd->common.flags;
950         u16 status;
951
952         req->cq = cq;
953         req->sq = sq;
954         req->ops = ops;
955         req->sg = NULL;
956         req->metadata_sg = NULL;
957         req->sg_cnt = 0;
958         req->metadata_sg_cnt = 0;
959         req->transfer_len = 0;
960         req->metadata_len = 0;
961         req->cqe->result.u64 = 0;
962         req->cqe->status = 0;
963         req->cqe->sq_head = 0;
964         req->ns = NULL;
965         req->error_loc = NVMET_NO_ERROR_LOC;
966         req->error_slba = 0;
967
968         /* no support for fused commands yet */
969         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
970                 req->error_loc = offsetof(struct nvme_common_command, flags);
971                 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
972                 goto fail;
973         }
974
975         /*
976          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
977          * contains an address of a single contiguous physical buffer that is
978          * byte aligned.
979          */
980         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
981                 req->error_loc = offsetof(struct nvme_common_command, flags);
982                 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
983                 goto fail;
984         }
985
986         if (unlikely(!req->sq->ctrl))
987                 /* will return an error for any non-connect command: */
988                 status = nvmet_parse_connect_cmd(req);
989         else if (likely(req->sq->qid != 0))
990                 status = nvmet_parse_io_cmd(req);
991         else
992                 status = nvmet_parse_admin_cmd(req);
993
994         if (status)
995                 goto fail;
996
997         trace_nvmet_req_init(req, req->cmd);
998
999         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1000                 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1001                 goto fail;
1002         }
1003
1004         if (sq->ctrl)
1005                 sq->ctrl->reset_tbkas = true;
1006
1007         return true;
1008
1009 fail:
1010         __nvmet_req_complete(req, status);
1011         return false;
1012 }
1013 EXPORT_SYMBOL_GPL(nvmet_req_init);
1014
1015 void nvmet_req_uninit(struct nvmet_req *req)
1016 {
1017         percpu_ref_put(&req->sq->ref);
1018         if (req->ns)
1019                 nvmet_put_namespace(req->ns);
1020 }
1021 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1022
1023 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1024 {
1025         if (unlikely(len != req->transfer_len)) {
1026                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1027                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1028                 return false;
1029         }
1030
1031         return true;
1032 }
1033 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1034
1035 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1036 {
1037         if (unlikely(data_len > req->transfer_len)) {
1038                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1039                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1040                 return false;
1041         }
1042
1043         return true;
1044 }
1045
1046 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1047 {
1048         return req->transfer_len - req->metadata_len;
1049 }
1050
1051 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1052                 struct nvmet_req *req)
1053 {
1054         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1055                         nvmet_data_transfer_len(req));
1056         if (!req->sg)
1057                 goto out_err;
1058
1059         if (req->metadata_len) {
1060                 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1061                                 &req->metadata_sg_cnt, req->metadata_len);
1062                 if (!req->metadata_sg)
1063                         goto out_free_sg;
1064         }
1065
1066         req->p2p_dev = p2p_dev;
1067
1068         return 0;
1069 out_free_sg:
1070         pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1071 out_err:
1072         return -ENOMEM;
1073 }
1074
1075 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1076 {
1077         if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1078             !req->sq->ctrl || !req->sq->qid || !req->ns)
1079                 return NULL;
1080         return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1081 }
1082
1083 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1084 {
1085         struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1086
1087         if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1088                 return 0;
1089
1090         req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1091                             &req->sg_cnt);
1092         if (unlikely(!req->sg))
1093                 goto out;
1094
1095         if (req->metadata_len) {
1096                 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1097                                              &req->metadata_sg_cnt);
1098                 if (unlikely(!req->metadata_sg))
1099                         goto out_free;
1100         }
1101
1102         return 0;
1103 out_free:
1104         sgl_free(req->sg);
1105 out:
1106         return -ENOMEM;
1107 }
1108 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1109
1110 void nvmet_req_free_sgls(struct nvmet_req *req)
1111 {
1112         if (req->p2p_dev) {
1113                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1114                 if (req->metadata_sg)
1115                         pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1116                 req->p2p_dev = NULL;
1117         } else {
1118                 sgl_free(req->sg);
1119                 if (req->metadata_sg)
1120                         sgl_free(req->metadata_sg);
1121         }
1122
1123         req->sg = NULL;
1124         req->metadata_sg = NULL;
1125         req->sg_cnt = 0;
1126         req->metadata_sg_cnt = 0;
1127 }
1128 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1129
1130 static inline bool nvmet_cc_en(u32 cc)
1131 {
1132         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1133 }
1134
1135 static inline u8 nvmet_cc_css(u32 cc)
1136 {
1137         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1138 }
1139
1140 static inline u8 nvmet_cc_mps(u32 cc)
1141 {
1142         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1143 }
1144
1145 static inline u8 nvmet_cc_ams(u32 cc)
1146 {
1147         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1148 }
1149
1150 static inline u8 nvmet_cc_shn(u32 cc)
1151 {
1152         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1153 }
1154
1155 static inline u8 nvmet_cc_iosqes(u32 cc)
1156 {
1157         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1158 }
1159
1160 static inline u8 nvmet_cc_iocqes(u32 cc)
1161 {
1162         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1163 }
1164
1165 static inline bool nvmet_css_supported(u8 cc_css)
1166 {
1167         switch (cc_css << NVME_CC_CSS_SHIFT) {
1168         case NVME_CC_CSS_NVM:
1169         case NVME_CC_CSS_CSI:
1170                 return true;
1171         default:
1172                 return false;
1173         }
1174 }
1175
1176 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1177 {
1178         lockdep_assert_held(&ctrl->lock);
1179
1180         /*
1181          * Only I/O controllers should verify iosqes,iocqes.
1182          * Strictly speaking, the spec says a discovery controller
1183          * should verify iosqes,iocqes are zeroed, however that
1184          * would break backwards compatibility, so don't enforce it.
1185          */
1186         if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1187             (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1188              nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1189                 ctrl->csts = NVME_CSTS_CFS;
1190                 return;
1191         }
1192
1193         if (nvmet_cc_mps(ctrl->cc) != 0 ||
1194             nvmet_cc_ams(ctrl->cc) != 0 ||
1195             !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1196                 ctrl->csts = NVME_CSTS_CFS;
1197                 return;
1198         }
1199
1200         ctrl->csts = NVME_CSTS_RDY;
1201
1202         /*
1203          * Controllers that are not yet enabled should not really enforce the
1204          * keep alive timeout, but we still want to track a timeout and cleanup
1205          * in case a host died before it enabled the controller.  Hence, simply
1206          * reset the keep alive timer when the controller is enabled.
1207          */
1208         if (ctrl->kato)
1209                 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1210 }
1211
1212 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1213 {
1214         lockdep_assert_held(&ctrl->lock);
1215
1216         /* XXX: tear down queues? */
1217         ctrl->csts &= ~NVME_CSTS_RDY;
1218         ctrl->cc = 0;
1219 }
1220
1221 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1222 {
1223         u32 old;
1224
1225         mutex_lock(&ctrl->lock);
1226         old = ctrl->cc;
1227         ctrl->cc = new;
1228
1229         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1230                 nvmet_start_ctrl(ctrl);
1231         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1232                 nvmet_clear_ctrl(ctrl);
1233         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1234                 nvmet_clear_ctrl(ctrl);
1235                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1236         }
1237         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1238                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1239         mutex_unlock(&ctrl->lock);
1240 }
1241
1242 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1243 {
1244         /* command sets supported: NVMe command set: */
1245         ctrl->cap = (1ULL << 37);
1246         /* Controller supports one or more I/O Command Sets */
1247         ctrl->cap |= (1ULL << 43);
1248         /* CC.EN timeout in 500msec units: */
1249         ctrl->cap |= (15ULL << 24);
1250         /* maximum queue entries supported: */
1251         if (ctrl->ops->get_max_queue_size)
1252                 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1253                                    ctrl->port->max_queue_size) - 1;
1254         else
1255                 ctrl->cap |= ctrl->port->max_queue_size - 1;
1256
1257         if (nvmet_is_passthru_subsys(ctrl->subsys))
1258                 nvmet_passthrough_override_cap(ctrl);
1259 }
1260
1261 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1262                                        const char *hostnqn, u16 cntlid,
1263                                        struct nvmet_req *req)
1264 {
1265         struct nvmet_ctrl *ctrl = NULL;
1266         struct nvmet_subsys *subsys;
1267
1268         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1269         if (!subsys) {
1270                 pr_warn("connect request for invalid subsystem %s!\n",
1271                         subsysnqn);
1272                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1273                 goto out;
1274         }
1275
1276         mutex_lock(&subsys->lock);
1277         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1278                 if (ctrl->cntlid == cntlid) {
1279                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1280                                 pr_warn("hostnqn mismatch.\n");
1281                                 continue;
1282                         }
1283                         if (!kref_get_unless_zero(&ctrl->ref))
1284                                 continue;
1285
1286                         /* ctrl found */
1287                         goto found;
1288                 }
1289         }
1290
1291         ctrl = NULL; /* ctrl not found */
1292         pr_warn("could not find controller %d for subsys %s / host %s\n",
1293                 cntlid, subsysnqn, hostnqn);
1294         req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1295
1296 found:
1297         mutex_unlock(&subsys->lock);
1298         nvmet_subsys_put(subsys);
1299 out:
1300         return ctrl;
1301 }
1302
1303 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1304 {
1305         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1306                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1307                        req->cmd->common.opcode, req->sq->qid);
1308                 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1309         }
1310
1311         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1312                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1313                        req->cmd->common.opcode, req->sq->qid);
1314                 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1315         }
1316
1317         if (unlikely(!nvmet_check_auth_status(req))) {
1318                 pr_warn("qid %d not authenticated\n", req->sq->qid);
1319                 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1320         }
1321         return 0;
1322 }
1323
1324 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1325 {
1326         struct nvmet_host_link *p;
1327
1328         lockdep_assert_held(&nvmet_config_sem);
1329
1330         if (subsys->allow_any_host)
1331                 return true;
1332
1333         if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1334                 return true;
1335
1336         list_for_each_entry(p, &subsys->hosts, entry) {
1337                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1338                         return true;
1339         }
1340
1341         return false;
1342 }
1343
1344 /*
1345  * Note: ctrl->subsys->lock should be held when calling this function
1346  */
1347 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1348                 struct nvmet_req *req)
1349 {
1350         struct nvmet_ns *ns;
1351         unsigned long idx;
1352
1353         if (!req->p2p_client)
1354                 return;
1355
1356         ctrl->p2p_client = get_device(req->p2p_client);
1357
1358         xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1359                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1360 }
1361
1362 /*
1363  * Note: ctrl->subsys->lock should be held when calling this function
1364  */
1365 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1366 {
1367         struct radix_tree_iter iter;
1368         void __rcu **slot;
1369
1370         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1371                 pci_dev_put(radix_tree_deref_slot(slot));
1372
1373         put_device(ctrl->p2p_client);
1374 }
1375
1376 static void nvmet_fatal_error_handler(struct work_struct *work)
1377 {
1378         struct nvmet_ctrl *ctrl =
1379                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1380
1381         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1382         ctrl->ops->delete_ctrl(ctrl);
1383 }
1384
1385 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1386                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1387 {
1388         struct nvmet_subsys *subsys;
1389         struct nvmet_ctrl *ctrl;
1390         int ret;
1391         u16 status;
1392
1393         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1394         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1395         if (!subsys) {
1396                 pr_warn("connect request for invalid subsystem %s!\n",
1397                         subsysnqn);
1398                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1399                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1400                 goto out;
1401         }
1402
1403         down_read(&nvmet_config_sem);
1404         if (!nvmet_host_allowed(subsys, hostnqn)) {
1405                 pr_info("connect by host %s for subsystem %s not allowed\n",
1406                         hostnqn, subsysnqn);
1407                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1408                 up_read(&nvmet_config_sem);
1409                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1410                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1411                 goto out_put_subsystem;
1412         }
1413         up_read(&nvmet_config_sem);
1414
1415         status = NVME_SC_INTERNAL;
1416         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1417         if (!ctrl)
1418                 goto out_put_subsystem;
1419         mutex_init(&ctrl->lock);
1420
1421         ctrl->port = req->port;
1422         ctrl->ops = req->ops;
1423
1424 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1425         /* By default, set loop targets to clear IDS by default */
1426         if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1427                 subsys->clear_ids = 1;
1428 #endif
1429
1430         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1431         INIT_LIST_HEAD(&ctrl->async_events);
1432         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1433         INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1434         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1435
1436         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1437         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1438
1439         kref_init(&ctrl->ref);
1440         ctrl->subsys = subsys;
1441         ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1442         nvmet_init_cap(ctrl);
1443         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1444
1445         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1446                         sizeof(__le32), GFP_KERNEL);
1447         if (!ctrl->changed_ns_list)
1448                 goto out_free_ctrl;
1449
1450         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1451                         sizeof(struct nvmet_sq *),
1452                         GFP_KERNEL);
1453         if (!ctrl->sqs)
1454                 goto out_free_changed_ns_list;
1455
1456         ret = ida_alloc_range(&cntlid_ida,
1457                              subsys->cntlid_min, subsys->cntlid_max,
1458                              GFP_KERNEL);
1459         if (ret < 0) {
1460                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1461                 goto out_free_sqs;
1462         }
1463         ctrl->cntlid = ret;
1464
1465         /*
1466          * Discovery controllers may use some arbitrary high value
1467          * in order to cleanup stale discovery sessions
1468          */
1469         if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1470                 kato = NVMET_DISC_KATO_MS;
1471
1472         /* keep-alive timeout in seconds */
1473         ctrl->kato = DIV_ROUND_UP(kato, 1000);
1474
1475         ctrl->err_counter = 0;
1476         spin_lock_init(&ctrl->error_lock);
1477
1478         nvmet_start_keep_alive_timer(ctrl);
1479
1480         mutex_lock(&subsys->lock);
1481         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1482         nvmet_setup_p2p_ns_map(ctrl, req);
1483         nvmet_debugfs_ctrl_setup(ctrl);
1484         mutex_unlock(&subsys->lock);
1485
1486         *ctrlp = ctrl;
1487         return 0;
1488
1489 out_free_sqs:
1490         kfree(ctrl->sqs);
1491 out_free_changed_ns_list:
1492         kfree(ctrl->changed_ns_list);
1493 out_free_ctrl:
1494         kfree(ctrl);
1495 out_put_subsystem:
1496         nvmet_subsys_put(subsys);
1497 out:
1498         return status;
1499 }
1500
1501 static void nvmet_ctrl_free(struct kref *ref)
1502 {
1503         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1504         struct nvmet_subsys *subsys = ctrl->subsys;
1505
1506         mutex_lock(&subsys->lock);
1507         nvmet_release_p2p_ns_map(ctrl);
1508         list_del(&ctrl->subsys_entry);
1509         mutex_unlock(&subsys->lock);
1510
1511         nvmet_stop_keep_alive_timer(ctrl);
1512
1513         flush_work(&ctrl->async_event_work);
1514         cancel_work_sync(&ctrl->fatal_err_work);
1515
1516         nvmet_destroy_auth(ctrl);
1517
1518         nvmet_debugfs_ctrl_free(ctrl);
1519
1520         ida_free(&cntlid_ida, ctrl->cntlid);
1521
1522         nvmet_async_events_free(ctrl);
1523         kfree(ctrl->sqs);
1524         kfree(ctrl->changed_ns_list);
1525         kfree(ctrl);
1526
1527         nvmet_subsys_put(subsys);
1528 }
1529
1530 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1531 {
1532         kref_put(&ctrl->ref, nvmet_ctrl_free);
1533 }
1534
1535 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1536 {
1537         mutex_lock(&ctrl->lock);
1538         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1539                 ctrl->csts |= NVME_CSTS_CFS;
1540                 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1541         }
1542         mutex_unlock(&ctrl->lock);
1543 }
1544 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1545
1546 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1547                 char *traddr, size_t traddr_len)
1548 {
1549         if (!ctrl->ops->host_traddr)
1550                 return -EOPNOTSUPP;
1551         return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1552 }
1553
1554 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1555                 const char *subsysnqn)
1556 {
1557         struct nvmet_subsys_link *p;
1558
1559         if (!port)
1560                 return NULL;
1561
1562         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1563                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1564                         return NULL;
1565                 return nvmet_disc_subsys;
1566         }
1567
1568         down_read(&nvmet_config_sem);
1569         if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1570                                 NVMF_NQN_SIZE)) {
1571                 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1572                         up_read(&nvmet_config_sem);
1573                         return nvmet_disc_subsys;
1574                 }
1575         }
1576         list_for_each_entry(p, &port->subsystems, entry) {
1577                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1578                                 NVMF_NQN_SIZE)) {
1579                         if (!kref_get_unless_zero(&p->subsys->ref))
1580                                 break;
1581                         up_read(&nvmet_config_sem);
1582                         return p->subsys;
1583                 }
1584         }
1585         up_read(&nvmet_config_sem);
1586         return NULL;
1587 }
1588
1589 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1590                 enum nvme_subsys_type type)
1591 {
1592         struct nvmet_subsys *subsys;
1593         char serial[NVMET_SN_MAX_SIZE / 2];
1594         int ret;
1595
1596         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1597         if (!subsys)
1598                 return ERR_PTR(-ENOMEM);
1599
1600         subsys->ver = NVMET_DEFAULT_VS;
1601         /* generate a random serial number as our controllers are ephemeral: */
1602         get_random_bytes(&serial, sizeof(serial));
1603         bin2hex(subsys->serial, &serial, sizeof(serial));
1604
1605         subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1606         if (!subsys->model_number) {
1607                 ret = -ENOMEM;
1608                 goto free_subsys;
1609         }
1610
1611         subsys->ieee_oui = 0;
1612
1613         subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1614         if (!subsys->firmware_rev) {
1615                 ret = -ENOMEM;
1616                 goto free_mn;
1617         }
1618
1619         switch (type) {
1620         case NVME_NQN_NVME:
1621                 subsys->max_qid = NVMET_NR_QUEUES;
1622                 break;
1623         case NVME_NQN_DISC:
1624         case NVME_NQN_CURR:
1625                 subsys->max_qid = 0;
1626                 break;
1627         default:
1628                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1629                 ret = -EINVAL;
1630                 goto free_fr;
1631         }
1632         subsys->type = type;
1633         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1634                         GFP_KERNEL);
1635         if (!subsys->subsysnqn) {
1636                 ret = -ENOMEM;
1637                 goto free_fr;
1638         }
1639         subsys->cntlid_min = NVME_CNTLID_MIN;
1640         subsys->cntlid_max = NVME_CNTLID_MAX;
1641         kref_init(&subsys->ref);
1642
1643         mutex_init(&subsys->lock);
1644         xa_init(&subsys->namespaces);
1645         INIT_LIST_HEAD(&subsys->ctrls);
1646         INIT_LIST_HEAD(&subsys->hosts);
1647
1648         ret = nvmet_debugfs_subsys_setup(subsys);
1649         if (ret)
1650                 goto free_subsysnqn;
1651
1652         return subsys;
1653
1654 free_subsysnqn:
1655         kfree(subsys->subsysnqn);
1656 free_fr:
1657         kfree(subsys->firmware_rev);
1658 free_mn:
1659         kfree(subsys->model_number);
1660 free_subsys:
1661         kfree(subsys);
1662         return ERR_PTR(ret);
1663 }
1664
1665 static void nvmet_subsys_free(struct kref *ref)
1666 {
1667         struct nvmet_subsys *subsys =
1668                 container_of(ref, struct nvmet_subsys, ref);
1669
1670         WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1671
1672         nvmet_debugfs_subsys_free(subsys);
1673
1674         xa_destroy(&subsys->namespaces);
1675         nvmet_passthru_subsys_free(subsys);
1676
1677         kfree(subsys->subsysnqn);
1678         kfree(subsys->model_number);
1679         kfree(subsys->firmware_rev);
1680         kfree(subsys);
1681 }
1682
1683 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1684 {
1685         struct nvmet_ctrl *ctrl;
1686
1687         mutex_lock(&subsys->lock);
1688         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1689                 ctrl->ops->delete_ctrl(ctrl);
1690         mutex_unlock(&subsys->lock);
1691 }
1692
1693 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1694 {
1695         kref_put(&subsys->ref, nvmet_subsys_free);
1696 }
1697
1698 static int __init nvmet_init(void)
1699 {
1700         int error = -ENOMEM;
1701
1702         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1703
1704         nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1705                         NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1706                         SLAB_HWCACHE_ALIGN, NULL);
1707         if (!nvmet_bvec_cache)
1708                 return -ENOMEM;
1709
1710         zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1711         if (!zbd_wq)
1712                 goto out_destroy_bvec_cache;
1713
1714         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1715                         WQ_MEM_RECLAIM, 0);
1716         if (!buffered_io_wq)
1717                 goto out_free_zbd_work_queue;
1718
1719         nvmet_wq = alloc_workqueue("nvmet-wq",
1720                         WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1721         if (!nvmet_wq)
1722                 goto out_free_buffered_work_queue;
1723
1724         error = nvmet_init_discovery();
1725         if (error)
1726                 goto out_free_nvmet_work_queue;
1727
1728         error = nvmet_init_debugfs();
1729         if (error)
1730                 goto out_exit_discovery;
1731
1732         error = nvmet_init_configfs();
1733         if (error)
1734                 goto out_exit_debugfs;
1735
1736         return 0;
1737
1738 out_exit_debugfs:
1739         nvmet_exit_debugfs();
1740 out_exit_discovery:
1741         nvmet_exit_discovery();
1742 out_free_nvmet_work_queue:
1743         destroy_workqueue(nvmet_wq);
1744 out_free_buffered_work_queue:
1745         destroy_workqueue(buffered_io_wq);
1746 out_free_zbd_work_queue:
1747         destroy_workqueue(zbd_wq);
1748 out_destroy_bvec_cache:
1749         kmem_cache_destroy(nvmet_bvec_cache);
1750         return error;
1751 }
1752
1753 static void __exit nvmet_exit(void)
1754 {
1755         nvmet_exit_configfs();
1756         nvmet_exit_debugfs();
1757         nvmet_exit_discovery();
1758         ida_destroy(&cntlid_ida);
1759         destroy_workqueue(nvmet_wq);
1760         destroy_workqueue(buffered_io_wq);
1761         destroy_workqueue(zbd_wq);
1762         kmem_cache_destroy(nvmet_bvec_cache);
1763
1764         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1765         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1766 }
1767
1768 module_init(nvmet_init);
1769 module_exit(nvmet_exit);
1770
1771 MODULE_DESCRIPTION("NVMe target core framework");
1772 MODULE_LICENSE("GPL v2");
This page took 0.129191 seconds and 4 git commands to generate.