1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
27 struct nvme_tcp_queue;
29 /* Define the socket priority to use for connections were it is desirable
30 * that the NIC consider performing optimized packet processing or filtering.
31 * A non-zero value being sufficient to indicate general consideration of any
32 * possible optimization. Making it a module param allows for alternative
33 * values that may be unique for some NIC implementations.
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
40 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
48 * TLS handshake timeout
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 "nvme TLS handshake timeout in seconds (default 10)");
57 #ifdef CONFIG_DEBUG_LOCK_ALLOC
58 /* lockdep can detect a circular dependency of the form
59 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
60 * because dependencies are tracked for both nvme-tcp and user contexts. Using
61 * a separate class prevents lockdep from conflating nvme-tcp socket use with
62 * user-space socket API use.
64 static struct lock_class_key nvme_tcp_sk_key[2];
65 static struct lock_class_key nvme_tcp_slock_key[2];
67 static void nvme_tcp_reclassify_socket(struct socket *sock)
69 struct sock *sk = sock->sk;
71 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
74 switch (sk->sk_family) {
76 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
77 &nvme_tcp_slock_key[0],
78 "sk_lock-AF_INET-NVME",
82 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
83 &nvme_tcp_slock_key[1],
84 "sk_lock-AF_INET6-NVME",
92 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
95 enum nvme_tcp_send_state {
96 NVME_TCP_SEND_CMD_PDU = 0,
97 NVME_TCP_SEND_H2C_PDU,
102 struct nvme_tcp_request {
103 struct nvme_request req;
105 struct nvme_tcp_queue *queue;
113 struct list_head entry;
114 struct llist_node lentry;
117 struct bio *curr_bio;
118 struct iov_iter iter;
123 enum nvme_tcp_send_state state;
126 enum nvme_tcp_queue_flags {
127 NVME_TCP_Q_ALLOCATED = 0,
129 NVME_TCP_Q_POLLING = 2,
132 enum nvme_tcp_recv_state {
133 NVME_TCP_RECV_PDU = 0,
138 struct nvme_tcp_ctrl;
139 struct nvme_tcp_queue {
141 struct work_struct io_work;
144 struct mutex queue_lock;
145 struct mutex send_mutex;
146 struct llist_head req_list;
147 struct list_head send_list;
153 size_t data_remaining;
154 size_t ddgst_remaining;
158 struct nvme_tcp_request *request;
161 size_t cmnd_capsule_len;
162 struct nvme_tcp_ctrl *ctrl;
168 struct ahash_request *rcv_hash;
169 struct ahash_request *snd_hash;
172 struct completion tls_complete;
174 struct page_frag_cache pf_cache;
176 void (*state_change)(struct sock *);
177 void (*data_ready)(struct sock *);
178 void (*write_space)(struct sock *);
181 struct nvme_tcp_ctrl {
182 /* read only in the hot path */
183 struct nvme_tcp_queue *queues;
184 struct blk_mq_tag_set tag_set;
186 /* other member variables */
187 struct list_head list;
188 struct blk_mq_tag_set admin_tag_set;
189 struct sockaddr_storage addr;
190 struct sockaddr_storage src_addr;
191 struct nvme_ctrl ctrl;
193 struct work_struct err_work;
194 struct delayed_work connect_work;
195 struct nvme_tcp_request async_req;
196 u32 io_queues[HCTX_MAX_TYPES];
199 static LIST_HEAD(nvme_tcp_ctrl_list);
200 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
201 static struct workqueue_struct *nvme_tcp_wq;
202 static const struct blk_mq_ops nvme_tcp_mq_ops;
203 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
204 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
206 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
208 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
211 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
213 return queue - queue->ctrl->queues;
216 static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl)
218 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
221 return ctrl->opts->tls;
224 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
226 u32 queue_idx = nvme_tcp_queue_id(queue);
229 return queue->ctrl->admin_tag_set.tags[queue_idx];
230 return queue->ctrl->tag_set.tags[queue_idx - 1];
233 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
235 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
238 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
240 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
243 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
248 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
250 /* use the pdu space in the back for the data pdu */
251 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
252 sizeof(struct nvme_tcp_data_pdu);
255 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
257 if (nvme_is_fabrics(req->req.cmd))
258 return NVME_TCP_ADMIN_CCSZ;
259 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
262 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
264 return req == &req->queue->ctrl->async_req;
267 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
271 if (unlikely(nvme_tcp_async_req(req)))
272 return false; /* async events don't have a request */
274 rq = blk_mq_rq_from_pdu(req);
276 return rq_data_dir(rq) == WRITE && req->data_len &&
277 req->data_len <= nvme_tcp_inline_data_size(req);
280 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
282 return req->iter.bvec->bv_page;
285 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
287 return req->iter.bvec->bv_offset + req->iter.iov_offset;
290 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
292 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
293 req->pdu_len - req->pdu_sent);
296 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
298 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
299 req->pdu_len - req->pdu_sent : 0;
302 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
305 return nvme_tcp_pdu_data_left(req) <= len;
308 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
311 struct request *rq = blk_mq_rq_from_pdu(req);
317 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
318 vec = &rq->special_vec;
320 size = blk_rq_payload_bytes(rq);
323 struct bio *bio = req->curr_bio;
327 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
329 bio_for_each_bvec(bv, bio, bi) {
332 size = bio->bi_iter.bi_size;
333 offset = bio->bi_iter.bi_bvec_done;
336 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
337 req->iter.iov_offset = offset;
340 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
343 req->data_sent += len;
344 req->pdu_sent += len;
345 iov_iter_advance(&req->iter, len);
346 if (!iov_iter_count(&req->iter) &&
347 req->data_sent < req->data_len) {
348 req->curr_bio = req->curr_bio->bi_next;
349 nvme_tcp_init_iter(req, ITER_SOURCE);
353 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
357 /* drain the send queue as much as we can... */
359 ret = nvme_tcp_try_send(queue);
363 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
365 return !list_empty(&queue->send_list) ||
366 !llist_empty(&queue->req_list);
369 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
371 return !nvme_tcp_tls(&queue->ctrl->ctrl) &&
372 nvme_tcp_queue_has_pending(queue);
375 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
376 bool sync, bool last)
378 struct nvme_tcp_queue *queue = req->queue;
381 empty = llist_add(&req->lentry, &queue->req_list) &&
382 list_empty(&queue->send_list) && !queue->request;
385 * if we're the first on the send_list and we can try to send
386 * directly, otherwise queue io_work. Also, only do that if we
387 * are on the same cpu, so we don't introduce contention.
389 if (queue->io_cpu == raw_smp_processor_id() &&
390 sync && empty && mutex_trylock(&queue->send_mutex)) {
391 nvme_tcp_send_all(queue);
392 mutex_unlock(&queue->send_mutex);
395 if (last && nvme_tcp_queue_has_pending(queue))
396 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
399 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
401 struct nvme_tcp_request *req;
402 struct llist_node *node;
404 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
405 req = llist_entry(node, struct nvme_tcp_request, lentry);
406 list_add(&req->entry, &queue->send_list);
410 static inline struct nvme_tcp_request *
411 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
413 struct nvme_tcp_request *req;
415 req = list_first_entry_or_null(&queue->send_list,
416 struct nvme_tcp_request, entry);
418 nvme_tcp_process_req_list(queue);
419 req = list_first_entry_or_null(&queue->send_list,
420 struct nvme_tcp_request, entry);
425 list_del(&req->entry);
429 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
432 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
433 crypto_ahash_final(hash);
436 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
437 struct page *page, off_t off, size_t len)
439 struct scatterlist sg;
441 sg_init_table(&sg, 1);
442 sg_set_page(&sg, page, len, off);
443 ahash_request_set_crypt(hash, &sg, NULL, len);
444 crypto_ahash_update(hash);
447 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
448 void *pdu, size_t len)
450 struct scatterlist sg;
452 sg_init_one(&sg, pdu, len);
453 ahash_request_set_crypt(hash, &sg, pdu + len, len);
454 crypto_ahash_digest(hash);
457 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
458 void *pdu, size_t pdu_len)
460 struct nvme_tcp_hdr *hdr = pdu;
464 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
465 dev_err(queue->ctrl->ctrl.device,
466 "queue %d: header digest flag is cleared\n",
467 nvme_tcp_queue_id(queue));
471 recv_digest = *(__le32 *)(pdu + hdr->hlen);
472 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
473 exp_digest = *(__le32 *)(pdu + hdr->hlen);
474 if (recv_digest != exp_digest) {
475 dev_err(queue->ctrl->ctrl.device,
476 "header digest error: recv %#x expected %#x\n",
477 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
484 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
486 struct nvme_tcp_hdr *hdr = pdu;
487 u8 digest_len = nvme_tcp_hdgst_len(queue);
490 len = le32_to_cpu(hdr->plen) - hdr->hlen -
491 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
493 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
494 dev_err(queue->ctrl->ctrl.device,
495 "queue %d: data digest flag is cleared\n",
496 nvme_tcp_queue_id(queue));
499 crypto_ahash_init(queue->rcv_hash);
504 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
505 struct request *rq, unsigned int hctx_idx)
507 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
509 page_frag_free(req->pdu);
512 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
513 struct request *rq, unsigned int hctx_idx,
514 unsigned int numa_node)
516 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
517 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
518 struct nvme_tcp_cmd_pdu *pdu;
519 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
520 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
521 u8 hdgst = nvme_tcp_hdgst_len(queue);
523 req->pdu = page_frag_alloc(&queue->pf_cache,
524 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
525 GFP_KERNEL | __GFP_ZERO);
531 nvme_req(rq)->ctrl = &ctrl->ctrl;
532 nvme_req(rq)->cmd = &pdu->cmd;
537 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
538 unsigned int hctx_idx)
540 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
541 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
543 hctx->driver_data = queue;
547 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
548 unsigned int hctx_idx)
550 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
551 struct nvme_tcp_queue *queue = &ctrl->queues[0];
553 hctx->driver_data = queue;
557 static enum nvme_tcp_recv_state
558 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
560 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
561 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
565 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
567 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
568 nvme_tcp_hdgst_len(queue);
569 queue->pdu_offset = 0;
570 queue->data_remaining = -1;
571 queue->ddgst_remaining = 0;
574 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
576 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
579 dev_warn(ctrl->device, "starting error recovery\n");
580 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
583 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
584 struct nvme_completion *cqe)
586 struct nvme_tcp_request *req;
589 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
591 dev_err(queue->ctrl->ctrl.device,
592 "got bad cqe.command_id %#x on queue %d\n",
593 cqe->command_id, nvme_tcp_queue_id(queue));
594 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
598 req = blk_mq_rq_to_pdu(rq);
599 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
600 req->status = cqe->status;
602 if (!nvme_try_complete_req(rq, req->status, cqe->result))
603 nvme_complete_rq(rq);
609 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
610 struct nvme_tcp_data_pdu *pdu)
614 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
616 dev_err(queue->ctrl->ctrl.device,
617 "got bad c2hdata.command_id %#x on queue %d\n",
618 pdu->command_id, nvme_tcp_queue_id(queue));
622 if (!blk_rq_payload_bytes(rq)) {
623 dev_err(queue->ctrl->ctrl.device,
624 "queue %d tag %#x unexpected data\n",
625 nvme_tcp_queue_id(queue), rq->tag);
629 queue->data_remaining = le32_to_cpu(pdu->data_length);
631 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
632 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
633 dev_err(queue->ctrl->ctrl.device,
634 "queue %d tag %#x SUCCESS set but not last PDU\n",
635 nvme_tcp_queue_id(queue), rq->tag);
636 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
643 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
644 struct nvme_tcp_rsp_pdu *pdu)
646 struct nvme_completion *cqe = &pdu->cqe;
650 * AEN requests are special as they don't time out and can
651 * survive any kind of queue freeze and often don't respond to
652 * aborts. We don't even bother to allocate a struct request
653 * for them but rather special case them here.
655 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
657 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
660 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
665 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
667 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
668 struct nvme_tcp_queue *queue = req->queue;
669 struct request *rq = blk_mq_rq_from_pdu(req);
670 u32 h2cdata_sent = req->pdu_len;
671 u8 hdgst = nvme_tcp_hdgst_len(queue);
672 u8 ddgst = nvme_tcp_ddgst_len(queue);
674 req->state = NVME_TCP_SEND_H2C_PDU;
676 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
678 req->h2cdata_left -= req->pdu_len;
679 req->h2cdata_offset += h2cdata_sent;
681 memset(data, 0, sizeof(*data));
682 data->hdr.type = nvme_tcp_h2c_data;
683 if (!req->h2cdata_left)
684 data->hdr.flags = NVME_TCP_F_DATA_LAST;
685 if (queue->hdr_digest)
686 data->hdr.flags |= NVME_TCP_F_HDGST;
687 if (queue->data_digest)
688 data->hdr.flags |= NVME_TCP_F_DDGST;
689 data->hdr.hlen = sizeof(*data);
690 data->hdr.pdo = data->hdr.hlen + hdgst;
692 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
693 data->ttag = req->ttag;
694 data->command_id = nvme_cid(rq);
695 data->data_offset = cpu_to_le32(req->h2cdata_offset);
696 data->data_length = cpu_to_le32(req->pdu_len);
699 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
700 struct nvme_tcp_r2t_pdu *pdu)
702 struct nvme_tcp_request *req;
704 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
705 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
707 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
709 dev_err(queue->ctrl->ctrl.device,
710 "got bad r2t.command_id %#x on queue %d\n",
711 pdu->command_id, nvme_tcp_queue_id(queue));
714 req = blk_mq_rq_to_pdu(rq);
716 if (unlikely(!r2t_length)) {
717 dev_err(queue->ctrl->ctrl.device,
718 "req %d r2t len is %u, probably a bug...\n",
719 rq->tag, r2t_length);
723 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
724 dev_err(queue->ctrl->ctrl.device,
725 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
726 rq->tag, r2t_length, req->data_len, req->data_sent);
730 if (unlikely(r2t_offset < req->data_sent)) {
731 dev_err(queue->ctrl->ctrl.device,
732 "req %d unexpected r2t offset %u (expected %zu)\n",
733 rq->tag, r2t_offset, req->data_sent);
738 req->h2cdata_left = r2t_length;
739 req->h2cdata_offset = r2t_offset;
740 req->ttag = pdu->ttag;
742 nvme_tcp_setup_h2c_data_pdu(req);
743 nvme_tcp_queue_request(req, false, true);
748 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
749 unsigned int *offset, size_t *len)
751 struct nvme_tcp_hdr *hdr;
752 char *pdu = queue->pdu;
753 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
756 ret = skb_copy_bits(skb, *offset,
757 &pdu[queue->pdu_offset], rcv_len);
761 queue->pdu_remaining -= rcv_len;
762 queue->pdu_offset += rcv_len;
765 if (queue->pdu_remaining)
769 if (queue->hdr_digest) {
770 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
776 if (queue->data_digest) {
777 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
783 case nvme_tcp_c2h_data:
784 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
786 nvme_tcp_init_recv_ctx(queue);
787 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
789 nvme_tcp_init_recv_ctx(queue);
790 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
792 dev_err(queue->ctrl->ctrl.device,
793 "unsupported pdu type (%d)\n", hdr->type);
798 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
800 union nvme_result res = {};
802 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
803 nvme_complete_rq(rq);
806 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
807 unsigned int *offset, size_t *len)
809 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
811 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
812 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
817 recv_len = min_t(size_t, *len, queue->data_remaining);
821 if (!iov_iter_count(&req->iter)) {
822 req->curr_bio = req->curr_bio->bi_next;
825 * If we don`t have any bios it means that controller
826 * sent more data than we requested, hence error
828 if (!req->curr_bio) {
829 dev_err(queue->ctrl->ctrl.device,
830 "queue %d no space in request %#x",
831 nvme_tcp_queue_id(queue), rq->tag);
832 nvme_tcp_init_recv_ctx(queue);
835 nvme_tcp_init_iter(req, ITER_DEST);
838 /* we can read only from what is left in this bio */
839 recv_len = min_t(size_t, recv_len,
840 iov_iter_count(&req->iter));
842 if (queue->data_digest)
843 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
844 &req->iter, recv_len, queue->rcv_hash);
846 ret = skb_copy_datagram_iter(skb, *offset,
847 &req->iter, recv_len);
849 dev_err(queue->ctrl->ctrl.device,
850 "queue %d failed to copy request %#x data",
851 nvme_tcp_queue_id(queue), rq->tag);
857 queue->data_remaining -= recv_len;
860 if (!queue->data_remaining) {
861 if (queue->data_digest) {
862 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
863 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
865 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
866 nvme_tcp_end_request(rq,
867 le16_to_cpu(req->status));
870 nvme_tcp_init_recv_ctx(queue);
877 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
878 struct sk_buff *skb, unsigned int *offset, size_t *len)
880 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
881 char *ddgst = (char *)&queue->recv_ddgst;
882 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
883 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
886 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
890 queue->ddgst_remaining -= recv_len;
893 if (queue->ddgst_remaining)
896 if (queue->recv_ddgst != queue->exp_ddgst) {
897 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
899 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
901 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
903 dev_err(queue->ctrl->ctrl.device,
904 "data digest error: recv %#x expected %#x\n",
905 le32_to_cpu(queue->recv_ddgst),
906 le32_to_cpu(queue->exp_ddgst));
909 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
910 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
912 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
914 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
918 nvme_tcp_init_recv_ctx(queue);
922 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
923 unsigned int offset, size_t len)
925 struct nvme_tcp_queue *queue = desc->arg.data;
926 size_t consumed = len;
929 if (unlikely(!queue->rd_enabled))
933 switch (nvme_tcp_recv_state(queue)) {
934 case NVME_TCP_RECV_PDU:
935 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
937 case NVME_TCP_RECV_DATA:
938 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
940 case NVME_TCP_RECV_DDGST:
941 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
947 dev_err(queue->ctrl->ctrl.device,
948 "receive failed: %d\n", result);
949 queue->rd_enabled = false;
950 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
958 static void nvme_tcp_data_ready(struct sock *sk)
960 struct nvme_tcp_queue *queue;
962 trace_sk_data_ready(sk);
964 read_lock_bh(&sk->sk_callback_lock);
965 queue = sk->sk_user_data;
966 if (likely(queue && queue->rd_enabled) &&
967 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
968 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
969 read_unlock_bh(&sk->sk_callback_lock);
972 static void nvme_tcp_write_space(struct sock *sk)
974 struct nvme_tcp_queue *queue;
976 read_lock_bh(&sk->sk_callback_lock);
977 queue = sk->sk_user_data;
978 if (likely(queue && sk_stream_is_writeable(sk))) {
979 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
980 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
982 read_unlock_bh(&sk->sk_callback_lock);
985 static void nvme_tcp_state_change(struct sock *sk)
987 struct nvme_tcp_queue *queue;
989 read_lock_bh(&sk->sk_callback_lock);
990 queue = sk->sk_user_data;
994 switch (sk->sk_state) {
1000 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1003 dev_info(queue->ctrl->ctrl.device,
1004 "queue %d socket state %d\n",
1005 nvme_tcp_queue_id(queue), sk->sk_state);
1008 queue->state_change(sk);
1010 read_unlock_bh(&sk->sk_callback_lock);
1013 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1015 queue->request = NULL;
1018 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1020 if (nvme_tcp_async_req(req)) {
1021 union nvme_result res = {};
1023 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1024 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1026 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1027 NVME_SC_HOST_PATH_ERROR);
1031 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1033 struct nvme_tcp_queue *queue = req->queue;
1034 int req_data_len = req->data_len;
1035 u32 h2cdata_left = req->h2cdata_left;
1038 struct bio_vec bvec;
1039 struct msghdr msg = {
1040 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1042 struct page *page = nvme_tcp_req_cur_page(req);
1043 size_t offset = nvme_tcp_req_cur_offset(req);
1044 size_t len = nvme_tcp_req_cur_length(req);
1045 bool last = nvme_tcp_pdu_last_send(req, len);
1046 int req_data_sent = req->data_sent;
1049 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1050 msg.msg_flags |= MSG_EOR;
1052 msg.msg_flags |= MSG_MORE;
1054 if (!sendpage_ok(page))
1055 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1057 bvec_set_page(&bvec, page, len, offset);
1058 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1059 ret = sock_sendmsg(queue->sock, &msg);
1063 if (queue->data_digest)
1064 nvme_tcp_ddgst_update(queue->snd_hash, page,
1068 * update the request iterator except for the last payload send
1069 * in the request where we don't want to modify it as we may
1070 * compete with the RX path completing the request.
1072 if (req_data_sent + ret < req_data_len)
1073 nvme_tcp_advance_req(req, ret);
1075 /* fully successful last send in current PDU */
1076 if (last && ret == len) {
1077 if (queue->data_digest) {
1078 nvme_tcp_ddgst_final(queue->snd_hash,
1080 req->state = NVME_TCP_SEND_DDGST;
1084 nvme_tcp_setup_h2c_data_pdu(req);
1086 nvme_tcp_done_send_req(queue);
1094 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1096 struct nvme_tcp_queue *queue = req->queue;
1097 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1098 struct bio_vec bvec;
1099 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1100 bool inline_data = nvme_tcp_has_inline_data(req);
1101 u8 hdgst = nvme_tcp_hdgst_len(queue);
1102 int len = sizeof(*pdu) + hdgst - req->offset;
1105 if (inline_data || nvme_tcp_queue_more(queue))
1106 msg.msg_flags |= MSG_MORE;
1108 msg.msg_flags |= MSG_EOR;
1110 if (queue->hdr_digest && !req->offset)
1111 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1113 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1114 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1115 ret = sock_sendmsg(queue->sock, &msg);
1116 if (unlikely(ret <= 0))
1122 req->state = NVME_TCP_SEND_DATA;
1123 if (queue->data_digest)
1124 crypto_ahash_init(queue->snd_hash);
1126 nvme_tcp_done_send_req(queue);
1135 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1137 struct nvme_tcp_queue *queue = req->queue;
1138 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1139 struct bio_vec bvec;
1140 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1141 u8 hdgst = nvme_tcp_hdgst_len(queue);
1142 int len = sizeof(*pdu) - req->offset + hdgst;
1145 if (queue->hdr_digest && !req->offset)
1146 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1148 if (!req->h2cdata_left)
1149 msg.msg_flags |= MSG_SPLICE_PAGES;
1151 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1152 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1153 ret = sock_sendmsg(queue->sock, &msg);
1154 if (unlikely(ret <= 0))
1159 req->state = NVME_TCP_SEND_DATA;
1160 if (queue->data_digest)
1161 crypto_ahash_init(queue->snd_hash);
1169 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1171 struct nvme_tcp_queue *queue = req->queue;
1172 size_t offset = req->offset;
1173 u32 h2cdata_left = req->h2cdata_left;
1175 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1177 .iov_base = (u8 *)&req->ddgst + req->offset,
1178 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1181 if (nvme_tcp_queue_more(queue))
1182 msg.msg_flags |= MSG_MORE;
1184 msg.msg_flags |= MSG_EOR;
1186 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1187 if (unlikely(ret <= 0))
1190 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1192 nvme_tcp_setup_h2c_data_pdu(req);
1194 nvme_tcp_done_send_req(queue);
1202 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1204 struct nvme_tcp_request *req;
1205 unsigned int noreclaim_flag;
1208 if (!queue->request) {
1209 queue->request = nvme_tcp_fetch_request(queue);
1210 if (!queue->request)
1213 req = queue->request;
1215 noreclaim_flag = memalloc_noreclaim_save();
1216 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1217 ret = nvme_tcp_try_send_cmd_pdu(req);
1220 if (!nvme_tcp_has_inline_data(req))
1224 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1225 ret = nvme_tcp_try_send_data_pdu(req);
1230 if (req->state == NVME_TCP_SEND_DATA) {
1231 ret = nvme_tcp_try_send_data(req);
1236 if (req->state == NVME_TCP_SEND_DDGST)
1237 ret = nvme_tcp_try_send_ddgst(req);
1239 if (ret == -EAGAIN) {
1241 } else if (ret < 0) {
1242 dev_err(queue->ctrl->ctrl.device,
1243 "failed to send request %d\n", ret);
1244 nvme_tcp_fail_request(queue->request);
1245 nvme_tcp_done_send_req(queue);
1248 memalloc_noreclaim_restore(noreclaim_flag);
1252 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1254 struct socket *sock = queue->sock;
1255 struct sock *sk = sock->sk;
1256 read_descriptor_t rd_desc;
1259 rd_desc.arg.data = queue;
1263 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1268 static void nvme_tcp_io_work(struct work_struct *w)
1270 struct nvme_tcp_queue *queue =
1271 container_of(w, struct nvme_tcp_queue, io_work);
1272 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1275 bool pending = false;
1278 if (mutex_trylock(&queue->send_mutex)) {
1279 result = nvme_tcp_try_send(queue);
1280 mutex_unlock(&queue->send_mutex);
1283 else if (unlikely(result < 0))
1287 result = nvme_tcp_try_recv(queue);
1290 else if (unlikely(result < 0))
1293 if (!pending || !queue->rd_enabled)
1296 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1298 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1301 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1303 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1305 ahash_request_free(queue->rcv_hash);
1306 ahash_request_free(queue->snd_hash);
1307 crypto_free_ahash(tfm);
1310 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1312 struct crypto_ahash *tfm;
1314 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1316 return PTR_ERR(tfm);
1318 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1319 if (!queue->snd_hash)
1321 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1323 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1324 if (!queue->rcv_hash)
1326 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1330 ahash_request_free(queue->snd_hash);
1332 crypto_free_ahash(tfm);
1336 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1338 struct nvme_tcp_request *async = &ctrl->async_req;
1340 page_frag_free(async->pdu);
1343 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1345 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1346 struct nvme_tcp_request *async = &ctrl->async_req;
1347 u8 hdgst = nvme_tcp_hdgst_len(queue);
1349 async->pdu = page_frag_alloc(&queue->pf_cache,
1350 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1351 GFP_KERNEL | __GFP_ZERO);
1355 async->queue = &ctrl->queues[0];
1359 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1361 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1362 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1363 unsigned int noreclaim_flag;
1365 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1368 if (queue->hdr_digest || queue->data_digest)
1369 nvme_tcp_free_crypto(queue);
1371 page_frag_cache_drain(&queue->pf_cache);
1373 noreclaim_flag = memalloc_noreclaim_save();
1374 /* ->sock will be released by fput() */
1375 fput(queue->sock->file);
1377 memalloc_noreclaim_restore(noreclaim_flag);
1380 mutex_destroy(&queue->send_mutex);
1381 mutex_destroy(&queue->queue_lock);
1384 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1386 struct nvme_tcp_icreq_pdu *icreq;
1387 struct nvme_tcp_icresp_pdu *icresp;
1388 char cbuf[CMSG_LEN(sizeof(char))] = {};
1390 struct msghdr msg = {};
1392 bool ctrl_hdgst, ctrl_ddgst;
1396 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1400 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1406 icreq->hdr.type = nvme_tcp_icreq;
1407 icreq->hdr.hlen = sizeof(*icreq);
1409 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1410 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1411 icreq->maxr2t = 0; /* single inflight r2t supported */
1412 icreq->hpda = 0; /* no alignment constraint */
1413 if (queue->hdr_digest)
1414 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1415 if (queue->data_digest)
1416 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1418 iov.iov_base = icreq;
1419 iov.iov_len = sizeof(*icreq);
1420 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1422 pr_warn("queue %d: failed to send icreq, error %d\n",
1423 nvme_tcp_queue_id(queue), ret);
1427 memset(&msg, 0, sizeof(msg));
1428 iov.iov_base = icresp;
1429 iov.iov_len = sizeof(*icresp);
1430 if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1431 msg.msg_control = cbuf;
1432 msg.msg_controllen = sizeof(cbuf);
1434 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1435 iov.iov_len, msg.msg_flags);
1437 pr_warn("queue %d: failed to receive icresp, error %d\n",
1438 nvme_tcp_queue_id(queue), ret);
1442 if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1443 ctype = tls_get_record_type(queue->sock->sk,
1444 (struct cmsghdr *)cbuf);
1445 if (ctype != TLS_RECORD_TYPE_DATA) {
1446 pr_err("queue %d: unhandled TLS record %d\n",
1447 nvme_tcp_queue_id(queue), ctype);
1452 if (icresp->hdr.type != nvme_tcp_icresp) {
1453 pr_err("queue %d: bad type returned %d\n",
1454 nvme_tcp_queue_id(queue), icresp->hdr.type);
1458 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1459 pr_err("queue %d: bad pdu length returned %d\n",
1460 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1464 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1465 pr_err("queue %d: bad pfv returned %d\n",
1466 nvme_tcp_queue_id(queue), icresp->pfv);
1470 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1471 if ((queue->data_digest && !ctrl_ddgst) ||
1472 (!queue->data_digest && ctrl_ddgst)) {
1473 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1474 nvme_tcp_queue_id(queue),
1475 queue->data_digest ? "enabled" : "disabled",
1476 ctrl_ddgst ? "enabled" : "disabled");
1480 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1481 if ((queue->hdr_digest && !ctrl_hdgst) ||
1482 (!queue->hdr_digest && ctrl_hdgst)) {
1483 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1484 nvme_tcp_queue_id(queue),
1485 queue->hdr_digest ? "enabled" : "disabled",
1486 ctrl_hdgst ? "enabled" : "disabled");
1490 if (icresp->cpda != 0) {
1491 pr_err("queue %d: unsupported cpda returned %d\n",
1492 nvme_tcp_queue_id(queue), icresp->cpda);
1496 maxh2cdata = le32_to_cpu(icresp->maxdata);
1497 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1498 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1499 nvme_tcp_queue_id(queue), maxh2cdata);
1502 queue->maxh2cdata = maxh2cdata;
1512 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1514 return nvme_tcp_queue_id(queue) == 0;
1517 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1519 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1520 int qid = nvme_tcp_queue_id(queue);
1522 return !nvme_tcp_admin_queue(queue) &&
1523 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1526 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1528 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1529 int qid = nvme_tcp_queue_id(queue);
1531 return !nvme_tcp_admin_queue(queue) &&
1532 !nvme_tcp_default_queue(queue) &&
1533 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1534 ctrl->io_queues[HCTX_TYPE_READ];
1537 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1539 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1540 int qid = nvme_tcp_queue_id(queue);
1542 return !nvme_tcp_admin_queue(queue) &&
1543 !nvme_tcp_default_queue(queue) &&
1544 !nvme_tcp_read_queue(queue) &&
1545 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1546 ctrl->io_queues[HCTX_TYPE_READ] +
1547 ctrl->io_queues[HCTX_TYPE_POLL];
1550 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1552 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1553 int qid = nvme_tcp_queue_id(queue);
1556 if (nvme_tcp_default_queue(queue))
1558 else if (nvme_tcp_read_queue(queue))
1559 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1560 else if (nvme_tcp_poll_queue(queue))
1561 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1562 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1564 queue->io_cpu = WORK_CPU_UNBOUND;
1566 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1569 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1571 struct nvme_tcp_queue *queue = data;
1572 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1573 int qid = nvme_tcp_queue_id(queue);
1574 struct key *tls_key;
1576 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1577 qid, pskid, status);
1580 queue->tls_err = -status;
1584 tls_key = key_lookup(pskid);
1585 if (IS_ERR(tls_key)) {
1586 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1588 queue->tls_err = -ENOKEY;
1590 ctrl->ctrl.tls_key = tls_key;
1595 complete(&queue->tls_complete);
1598 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1599 struct nvme_tcp_queue *queue,
1602 int qid = nvme_tcp_queue_id(queue);
1604 struct tls_handshake_args args;
1605 unsigned long tmo = tls_handshake_timeout * HZ;
1606 key_serial_t keyring = nvme_keyring_id();
1608 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1610 memset(&args, 0, sizeof(args));
1611 args.ta_sock = queue->sock;
1612 args.ta_done = nvme_tcp_tls_done;
1613 args.ta_data = queue;
1614 args.ta_my_peerids[0] = pskid;
1615 args.ta_num_peerids = 1;
1616 if (nctrl->opts->keyring)
1617 keyring = key_serial(nctrl->opts->keyring);
1618 args.ta_keyring = keyring;
1619 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1620 queue->tls_err = -EOPNOTSUPP;
1621 init_completion(&queue->tls_complete);
1622 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1624 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1628 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1633 dev_err(nctrl->device,
1634 "queue %d: TLS handshake failed, error %d\n",
1636 tls_handshake_cancel(queue->sock->sk);
1638 dev_dbg(nctrl->device,
1639 "queue %d: TLS handshake complete, error %d\n",
1640 qid, queue->tls_err);
1641 ret = queue->tls_err;
1646 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1649 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1650 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1651 int ret, rcv_pdu_size;
1652 struct file *sock_file;
1654 mutex_init(&queue->queue_lock);
1656 init_llist_head(&queue->req_list);
1657 INIT_LIST_HEAD(&queue->send_list);
1658 mutex_init(&queue->send_mutex);
1659 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1662 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1664 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1665 NVME_TCP_ADMIN_CCSZ;
1667 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1668 IPPROTO_TCP, &queue->sock);
1670 dev_err(nctrl->device,
1671 "failed to create socket: %d\n", ret);
1672 goto err_destroy_mutex;
1675 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1676 if (IS_ERR(sock_file)) {
1677 ret = PTR_ERR(sock_file);
1678 goto err_destroy_mutex;
1680 nvme_tcp_reclassify_socket(queue->sock);
1682 /* Single syn retry */
1683 tcp_sock_set_syncnt(queue->sock->sk, 1);
1685 /* Set TCP no delay */
1686 tcp_sock_set_nodelay(queue->sock->sk);
1689 * Cleanup whatever is sitting in the TCP transmit queue on socket
1690 * close. This is done to prevent stale data from being sent should
1691 * the network connection be restored before TCP times out.
1693 sock_no_linger(queue->sock->sk);
1695 if (so_priority > 0)
1696 sock_set_priority(queue->sock->sk, so_priority);
1698 /* Set socket type of service */
1699 if (nctrl->opts->tos >= 0)
1700 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1702 /* Set 10 seconds timeout for icresp recvmsg */
1703 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1705 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1706 queue->sock->sk->sk_use_task_frag = false;
1707 nvme_tcp_set_queue_io_cpu(queue);
1708 queue->request = NULL;
1709 queue->data_remaining = 0;
1710 queue->ddgst_remaining = 0;
1711 queue->pdu_remaining = 0;
1712 queue->pdu_offset = 0;
1713 sk_set_memalloc(queue->sock->sk);
1715 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1716 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1717 sizeof(ctrl->src_addr));
1719 dev_err(nctrl->device,
1720 "failed to bind queue %d socket %d\n",
1726 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1727 char *iface = nctrl->opts->host_iface;
1728 sockptr_t optval = KERNEL_SOCKPTR(iface);
1730 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1731 optval, strlen(iface));
1733 dev_err(nctrl->device,
1734 "failed to bind to interface %s queue %d err %d\n",
1740 queue->hdr_digest = nctrl->opts->hdr_digest;
1741 queue->data_digest = nctrl->opts->data_digest;
1742 if (queue->hdr_digest || queue->data_digest) {
1743 ret = nvme_tcp_alloc_crypto(queue);
1745 dev_err(nctrl->device,
1746 "failed to allocate queue %d crypto\n", qid);
1751 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1752 nvme_tcp_hdgst_len(queue);
1753 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1759 dev_dbg(nctrl->device, "connecting queue %d\n",
1760 nvme_tcp_queue_id(queue));
1762 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1763 sizeof(ctrl->addr), 0);
1765 dev_err(nctrl->device,
1766 "failed to connect socket: %d\n", ret);
1770 /* If PSKs are configured try to start TLS */
1771 if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) {
1772 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1774 goto err_init_connect;
1777 ret = nvme_tcp_init_connection(queue);
1779 goto err_init_connect;
1781 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1786 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1790 if (queue->hdr_digest || queue->data_digest)
1791 nvme_tcp_free_crypto(queue);
1793 /* ->sock will be released by fput() */
1794 fput(queue->sock->file);
1797 mutex_destroy(&queue->send_mutex);
1798 mutex_destroy(&queue->queue_lock);
1802 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1804 struct socket *sock = queue->sock;
1806 write_lock_bh(&sock->sk->sk_callback_lock);
1807 sock->sk->sk_user_data = NULL;
1808 sock->sk->sk_data_ready = queue->data_ready;
1809 sock->sk->sk_state_change = queue->state_change;
1810 sock->sk->sk_write_space = queue->write_space;
1811 write_unlock_bh(&sock->sk->sk_callback_lock);
1814 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1816 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1817 nvme_tcp_restore_sock_ops(queue);
1818 cancel_work_sync(&queue->io_work);
1821 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1823 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1824 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1826 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1829 mutex_lock(&queue->queue_lock);
1830 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1831 __nvme_tcp_stop_queue(queue);
1832 mutex_unlock(&queue->queue_lock);
1835 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1837 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1838 queue->sock->sk->sk_user_data = queue;
1839 queue->state_change = queue->sock->sk->sk_state_change;
1840 queue->data_ready = queue->sock->sk->sk_data_ready;
1841 queue->write_space = queue->sock->sk->sk_write_space;
1842 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1843 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1844 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1845 #ifdef CONFIG_NET_RX_BUSY_POLL
1846 queue->sock->sk->sk_ll_usec = 1;
1848 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1851 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1853 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1854 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1857 queue->rd_enabled = true;
1858 nvme_tcp_init_recv_ctx(queue);
1859 nvme_tcp_setup_sock_ops(queue);
1862 ret = nvmf_connect_io_queue(nctrl, idx);
1864 ret = nvmf_connect_admin_queue(nctrl);
1867 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1869 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1870 __nvme_tcp_stop_queue(queue);
1871 dev_err(nctrl->device,
1872 "failed to connect queue: %d ret=%d\n", idx, ret);
1877 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1879 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1880 cancel_work_sync(&ctrl->async_event_work);
1881 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1882 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1885 nvme_tcp_free_queue(ctrl, 0);
1888 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1892 for (i = 1; i < ctrl->queue_count; i++)
1893 nvme_tcp_free_queue(ctrl, i);
1896 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1900 for (i = 1; i < ctrl->queue_count; i++)
1901 nvme_tcp_stop_queue(ctrl, i);
1904 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1905 int first, int last)
1909 for (i = first; i < last; i++) {
1910 ret = nvme_tcp_start_queue(ctrl, i);
1912 goto out_stop_queues;
1918 for (i--; i >= first; i--)
1919 nvme_tcp_stop_queue(ctrl, i);
1923 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1926 key_serial_t pskid = 0;
1928 if (nvme_tcp_tls(ctrl)) {
1929 if (ctrl->opts->tls_key)
1930 pskid = key_serial(ctrl->opts->tls_key);
1932 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1933 ctrl->opts->host->nqn,
1934 ctrl->opts->subsysnqn);
1936 dev_err(ctrl->device, "no valid PSK found\n");
1941 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1945 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1947 goto out_free_queue;
1952 nvme_tcp_free_queue(ctrl, 0);
1956 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1960 if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) {
1961 dev_err(ctrl->device, "no PSK negotiated\n");
1964 for (i = 1; i < ctrl->queue_count; i++) {
1965 ret = nvme_tcp_alloc_queue(ctrl, i,
1966 key_serial(ctrl->tls_key));
1968 goto out_free_queues;
1974 for (i--; i >= 1; i--)
1975 nvme_tcp_free_queue(ctrl, i);
1980 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1982 unsigned int nr_io_queues;
1985 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1986 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1990 if (nr_io_queues == 0) {
1991 dev_err(ctrl->device,
1992 "unable to set any I/O queues\n");
1996 ctrl->queue_count = nr_io_queues + 1;
1997 dev_info(ctrl->device,
1998 "creating %d I/O queues.\n", nr_io_queues);
2000 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2001 to_tcp_ctrl(ctrl)->io_queues);
2002 return __nvme_tcp_alloc_io_queues(ctrl);
2005 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
2007 nvme_tcp_stop_io_queues(ctrl);
2009 nvme_remove_io_tag_set(ctrl);
2010 nvme_tcp_free_io_queues(ctrl);
2013 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2017 ret = nvme_tcp_alloc_io_queues(ctrl);
2022 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2024 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2025 sizeof(struct nvme_tcp_request));
2027 goto out_free_io_queues;
2031 * Only start IO queues for which we have allocated the tagset
2032 * and limitted it to the available queues. On reconnects, the
2033 * queue number might have changed.
2035 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2036 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2038 goto out_cleanup_connect_q;
2041 nvme_start_freeze(ctrl);
2042 nvme_unquiesce_io_queues(ctrl);
2043 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2045 * If we timed out waiting for freeze we are likely to
2046 * be stuck. Fail the controller initialization just
2050 nvme_unfreeze(ctrl);
2051 goto out_wait_freeze_timed_out;
2053 blk_mq_update_nr_hw_queues(ctrl->tagset,
2054 ctrl->queue_count - 1);
2055 nvme_unfreeze(ctrl);
2059 * If the number of queues has increased (reconnect case)
2060 * start all new queues now.
2062 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2063 ctrl->tagset->nr_hw_queues + 1);
2065 goto out_wait_freeze_timed_out;
2069 out_wait_freeze_timed_out:
2070 nvme_quiesce_io_queues(ctrl);
2071 nvme_sync_io_queues(ctrl);
2072 nvme_tcp_stop_io_queues(ctrl);
2073 out_cleanup_connect_q:
2074 nvme_cancel_tagset(ctrl);
2076 nvme_remove_io_tag_set(ctrl);
2078 nvme_tcp_free_io_queues(ctrl);
2082 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2084 nvme_tcp_stop_queue(ctrl, 0);
2086 nvme_remove_admin_tag_set(ctrl);
2087 nvme_tcp_free_admin_queue(ctrl);
2090 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2094 error = nvme_tcp_alloc_admin_queue(ctrl);
2099 error = nvme_alloc_admin_tag_set(ctrl,
2100 &to_tcp_ctrl(ctrl)->admin_tag_set,
2101 &nvme_tcp_admin_mq_ops,
2102 sizeof(struct nvme_tcp_request));
2104 goto out_free_queue;
2107 error = nvme_tcp_start_queue(ctrl, 0);
2109 goto out_cleanup_tagset;
2111 error = nvme_enable_ctrl(ctrl);
2113 goto out_stop_queue;
2115 nvme_unquiesce_admin_queue(ctrl);
2117 error = nvme_init_ctrl_finish(ctrl, false);
2119 goto out_quiesce_queue;
2124 nvme_quiesce_admin_queue(ctrl);
2125 blk_sync_queue(ctrl->admin_q);
2127 nvme_tcp_stop_queue(ctrl, 0);
2128 nvme_cancel_admin_tagset(ctrl);
2131 nvme_remove_admin_tag_set(ctrl);
2133 nvme_tcp_free_admin_queue(ctrl);
2137 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2140 nvme_quiesce_admin_queue(ctrl);
2141 blk_sync_queue(ctrl->admin_q);
2142 nvme_tcp_stop_queue(ctrl, 0);
2143 nvme_cancel_admin_tagset(ctrl);
2145 nvme_unquiesce_admin_queue(ctrl);
2146 nvme_tcp_destroy_admin_queue(ctrl, remove);
2149 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2152 if (ctrl->queue_count <= 1)
2154 nvme_quiesce_admin_queue(ctrl);
2155 nvme_quiesce_io_queues(ctrl);
2156 nvme_sync_io_queues(ctrl);
2157 nvme_tcp_stop_io_queues(ctrl);
2158 nvme_cancel_tagset(ctrl);
2160 nvme_unquiesce_io_queues(ctrl);
2161 nvme_tcp_destroy_io_queues(ctrl, remove);
2164 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2167 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2169 /* If we are resetting/deleting then do nothing */
2170 if (state != NVME_CTRL_CONNECTING) {
2171 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2175 if (nvmf_should_reconnect(ctrl, status)) {
2176 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2177 ctrl->opts->reconnect_delay);
2178 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2179 ctrl->opts->reconnect_delay * HZ);
2181 dev_info(ctrl->device, "Removing controller (%d)...\n",
2183 nvme_delete_ctrl(ctrl);
2187 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2189 struct nvmf_ctrl_options *opts = ctrl->opts;
2192 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2198 dev_err(ctrl->device, "icdoff is not supported!\n");
2202 if (!nvme_ctrl_sgl_supported(ctrl)) {
2204 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2208 if (opts->queue_size > ctrl->sqsize + 1)
2209 dev_warn(ctrl->device,
2210 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2211 opts->queue_size, ctrl->sqsize + 1);
2213 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2214 dev_warn(ctrl->device,
2215 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2216 ctrl->sqsize + 1, ctrl->maxcmd);
2217 ctrl->sqsize = ctrl->maxcmd - 1;
2220 if (ctrl->queue_count > 1) {
2221 ret = nvme_tcp_configure_io_queues(ctrl, new);
2226 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2228 * state change failure is ok if we started ctrl delete,
2229 * unless we're during creation of a new controller to
2230 * avoid races with teardown flow.
2232 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2234 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2235 state != NVME_CTRL_DELETING_NOIO);
2241 nvme_start_ctrl(ctrl);
2245 if (ctrl->queue_count > 1) {
2246 nvme_quiesce_io_queues(ctrl);
2247 nvme_sync_io_queues(ctrl);
2248 nvme_tcp_stop_io_queues(ctrl);
2249 nvme_cancel_tagset(ctrl);
2250 nvme_tcp_destroy_io_queues(ctrl, new);
2253 nvme_stop_keep_alive(ctrl);
2254 nvme_tcp_teardown_admin_queue(ctrl, false);
2258 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2260 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2261 struct nvme_tcp_ctrl, connect_work);
2262 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2265 ++ctrl->nr_reconnects;
2267 ret = nvme_tcp_setup_ctrl(ctrl, false);
2271 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2272 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2274 ctrl->nr_reconnects = 0;
2279 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2280 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2281 nvme_tcp_reconnect_or_remove(ctrl, ret);
2284 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2286 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2287 struct nvme_tcp_ctrl, err_work);
2288 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2290 nvme_stop_keep_alive(ctrl);
2291 flush_work(&ctrl->async_event_work);
2292 nvme_tcp_teardown_io_queues(ctrl, false);
2293 /* unquiesce to fail fast pending requests */
2294 nvme_unquiesce_io_queues(ctrl);
2295 nvme_tcp_teardown_admin_queue(ctrl, false);
2296 nvme_unquiesce_admin_queue(ctrl);
2297 nvme_auth_stop(ctrl);
2299 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2300 /* state change failure is ok if we started ctrl delete */
2301 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2303 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2304 state != NVME_CTRL_DELETING_NOIO);
2308 nvme_tcp_reconnect_or_remove(ctrl, 0);
2311 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2313 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2314 nvme_quiesce_admin_queue(ctrl);
2315 nvme_disable_ctrl(ctrl, shutdown);
2316 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2319 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2321 nvme_tcp_teardown_ctrl(ctrl, true);
2324 static void nvme_reset_ctrl_work(struct work_struct *work)
2326 struct nvme_ctrl *ctrl =
2327 container_of(work, struct nvme_ctrl, reset_work);
2330 nvme_stop_ctrl(ctrl);
2331 nvme_tcp_teardown_ctrl(ctrl, false);
2333 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2334 /* state change failure is ok if we started ctrl delete */
2335 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2337 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2338 state != NVME_CTRL_DELETING_NOIO);
2342 ret = nvme_tcp_setup_ctrl(ctrl, false);
2349 ++ctrl->nr_reconnects;
2350 nvme_tcp_reconnect_or_remove(ctrl, ret);
2353 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2355 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2356 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2359 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2361 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2363 if (list_empty(&ctrl->list))
2366 mutex_lock(&nvme_tcp_ctrl_mutex);
2367 list_del(&ctrl->list);
2368 mutex_unlock(&nvme_tcp_ctrl_mutex);
2370 nvmf_free_options(nctrl->opts);
2372 kfree(ctrl->queues);
2376 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2378 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2382 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2383 NVME_SGL_FMT_TRANSPORT_A;
2386 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2387 struct nvme_command *c, u32 data_len)
2389 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2391 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2392 sg->length = cpu_to_le32(data_len);
2393 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2396 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2399 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2402 sg->length = cpu_to_le32(data_len);
2403 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2404 NVME_SGL_FMT_TRANSPORT_A;
2407 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2409 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2410 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2411 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2412 struct nvme_command *cmd = &pdu->cmd;
2413 u8 hdgst = nvme_tcp_hdgst_len(queue);
2415 memset(pdu, 0, sizeof(*pdu));
2416 pdu->hdr.type = nvme_tcp_cmd;
2417 if (queue->hdr_digest)
2418 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2419 pdu->hdr.hlen = sizeof(*pdu);
2420 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2422 cmd->common.opcode = nvme_admin_async_event;
2423 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2424 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2425 nvme_tcp_set_sg_null(cmd);
2427 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2428 ctrl->async_req.offset = 0;
2429 ctrl->async_req.curr_bio = NULL;
2430 ctrl->async_req.data_len = 0;
2432 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2435 static void nvme_tcp_complete_timed_out(struct request *rq)
2437 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2438 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2440 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2441 nvmf_complete_timed_out_request(rq);
2444 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2446 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2447 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2448 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2449 struct nvme_command *cmd = &pdu->cmd;
2450 int qid = nvme_tcp_queue_id(req->queue);
2452 dev_warn(ctrl->device,
2453 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2454 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2455 nvme_fabrics_opcode_str(qid, cmd), qid);
2457 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2459 * If we are resetting, connecting or deleting we should
2460 * complete immediately because we may block controller
2461 * teardown or setup sequence
2462 * - ctrl disable/shutdown fabrics requests
2463 * - connect requests
2464 * - initialization admin requests
2465 * - I/O requests that entered after unquiescing and
2466 * the controller stopped responding
2468 * All other requests should be cancelled by the error
2469 * recovery work, so it's fine that we fail it here.
2471 nvme_tcp_complete_timed_out(rq);
2476 * LIVE state should trigger the normal error recovery which will
2477 * handle completing this request.
2479 nvme_tcp_error_recovery(ctrl);
2480 return BLK_EH_RESET_TIMER;
2483 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2486 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2487 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2488 struct nvme_command *c = &pdu->cmd;
2490 c->common.flags |= NVME_CMD_SGL_METABUF;
2492 if (!blk_rq_nr_phys_segments(rq))
2493 nvme_tcp_set_sg_null(c);
2494 else if (rq_data_dir(rq) == WRITE &&
2495 req->data_len <= nvme_tcp_inline_data_size(req))
2496 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2498 nvme_tcp_set_sg_host_data(c, req->data_len);
2503 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2506 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2507 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2508 struct nvme_tcp_queue *queue = req->queue;
2509 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2512 ret = nvme_setup_cmd(ns, rq);
2516 req->state = NVME_TCP_SEND_CMD_PDU;
2517 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2522 req->h2cdata_left = 0;
2523 req->data_len = blk_rq_nr_phys_segments(rq) ?
2524 blk_rq_payload_bytes(rq) : 0;
2525 req->curr_bio = rq->bio;
2526 if (req->curr_bio && req->data_len)
2527 nvme_tcp_init_iter(req, rq_data_dir(rq));
2529 if (rq_data_dir(rq) == WRITE &&
2530 req->data_len <= nvme_tcp_inline_data_size(req))
2531 req->pdu_len = req->data_len;
2533 pdu->hdr.type = nvme_tcp_cmd;
2535 if (queue->hdr_digest)
2536 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2537 if (queue->data_digest && req->pdu_len) {
2538 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2539 ddgst = nvme_tcp_ddgst_len(queue);
2541 pdu->hdr.hlen = sizeof(*pdu);
2542 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2544 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2546 ret = nvme_tcp_map_data(queue, rq);
2547 if (unlikely(ret)) {
2548 nvme_cleanup_cmd(rq);
2549 dev_err(queue->ctrl->ctrl.device,
2550 "Failed to map data (%d)\n", ret);
2557 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2559 struct nvme_tcp_queue *queue = hctx->driver_data;
2561 if (!llist_empty(&queue->req_list))
2562 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2565 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2566 const struct blk_mq_queue_data *bd)
2568 struct nvme_ns *ns = hctx->queue->queuedata;
2569 struct nvme_tcp_queue *queue = hctx->driver_data;
2570 struct request *rq = bd->rq;
2571 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2572 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2575 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2576 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2578 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2582 nvme_start_request(rq);
2584 nvme_tcp_queue_request(req, true, bd->last);
2589 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2591 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2593 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2596 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2598 struct nvme_tcp_queue *queue = hctx->driver_data;
2599 struct sock *sk = queue->sock->sk;
2601 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2604 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2605 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2606 sk_busy_loop(sk, true);
2607 nvme_tcp_try_recv(queue);
2608 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2609 return queue->nr_cqe;
2612 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2614 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2615 struct sockaddr_storage src_addr;
2618 len = nvmf_get_address(ctrl, buf, size);
2620 mutex_lock(&queue->queue_lock);
2622 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2624 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2627 len--; /* strip trailing newline */
2628 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2629 (len) ? "," : "", &src_addr);
2632 mutex_unlock(&queue->queue_lock);
2637 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2638 .queue_rq = nvme_tcp_queue_rq,
2639 .commit_rqs = nvme_tcp_commit_rqs,
2640 .complete = nvme_complete_rq,
2641 .init_request = nvme_tcp_init_request,
2642 .exit_request = nvme_tcp_exit_request,
2643 .init_hctx = nvme_tcp_init_hctx,
2644 .timeout = nvme_tcp_timeout,
2645 .map_queues = nvme_tcp_map_queues,
2646 .poll = nvme_tcp_poll,
2649 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2650 .queue_rq = nvme_tcp_queue_rq,
2651 .complete = nvme_complete_rq,
2652 .init_request = nvme_tcp_init_request,
2653 .exit_request = nvme_tcp_exit_request,
2654 .init_hctx = nvme_tcp_init_admin_hctx,
2655 .timeout = nvme_tcp_timeout,
2658 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2660 .module = THIS_MODULE,
2661 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2662 .reg_read32 = nvmf_reg_read32,
2663 .reg_read64 = nvmf_reg_read64,
2664 .reg_write32 = nvmf_reg_write32,
2665 .subsystem_reset = nvmf_subsystem_reset,
2666 .free_ctrl = nvme_tcp_free_ctrl,
2667 .submit_async_event = nvme_tcp_submit_async_event,
2668 .delete_ctrl = nvme_tcp_delete_ctrl,
2669 .get_address = nvme_tcp_get_address,
2670 .stop_ctrl = nvme_tcp_stop_ctrl,
2674 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2676 struct nvme_tcp_ctrl *ctrl;
2679 mutex_lock(&nvme_tcp_ctrl_mutex);
2680 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2681 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2685 mutex_unlock(&nvme_tcp_ctrl_mutex);
2690 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2691 struct nvmf_ctrl_options *opts)
2693 struct nvme_tcp_ctrl *ctrl;
2696 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2698 return ERR_PTR(-ENOMEM);
2700 INIT_LIST_HEAD(&ctrl->list);
2701 ctrl->ctrl.opts = opts;
2702 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2703 opts->nr_poll_queues + 1;
2704 ctrl->ctrl.sqsize = opts->queue_size - 1;
2705 ctrl->ctrl.kato = opts->kato;
2707 INIT_DELAYED_WORK(&ctrl->connect_work,
2708 nvme_tcp_reconnect_ctrl_work);
2709 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2710 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2712 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2714 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2715 if (!opts->trsvcid) {
2719 opts->mask |= NVMF_OPT_TRSVCID;
2722 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2723 opts->traddr, opts->trsvcid, &ctrl->addr);
2725 pr_err("malformed address passed: %s:%s\n",
2726 opts->traddr, opts->trsvcid);
2730 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2731 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2732 opts->host_traddr, NULL, &ctrl->src_addr);
2734 pr_err("malformed src address passed: %s\n",
2740 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2741 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2742 pr_err("invalid interface passed: %s\n",
2749 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2754 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2756 if (!ctrl->queues) {
2761 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2763 goto out_kfree_queues;
2767 kfree(ctrl->queues);
2770 return ERR_PTR(ret);
2773 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2774 struct nvmf_ctrl_options *opts)
2776 struct nvme_tcp_ctrl *ctrl;
2779 ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2781 return ERR_CAST(ctrl);
2783 ret = nvme_add_ctrl(&ctrl->ctrl);
2787 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2790 goto out_uninit_ctrl;
2793 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2795 goto out_uninit_ctrl;
2797 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2798 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2800 mutex_lock(&nvme_tcp_ctrl_mutex);
2801 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2802 mutex_unlock(&nvme_tcp_ctrl_mutex);
2807 nvme_uninit_ctrl(&ctrl->ctrl);
2809 nvme_put_ctrl(&ctrl->ctrl);
2812 return ERR_PTR(ret);
2815 static struct nvmf_transport_ops nvme_tcp_transport = {
2817 .module = THIS_MODULE,
2818 .required_opts = NVMF_OPT_TRADDR,
2819 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2820 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2821 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2822 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2823 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2824 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2825 .create_ctrl = nvme_tcp_create_ctrl,
2828 static int __init nvme_tcp_init_module(void)
2830 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2832 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2833 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2834 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2835 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2836 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2837 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2838 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2839 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2842 wq_flags |= WQ_UNBOUND;
2844 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2848 nvmf_register_transport(&nvme_tcp_transport);
2852 static void __exit nvme_tcp_cleanup_module(void)
2854 struct nvme_tcp_ctrl *ctrl;
2856 nvmf_unregister_transport(&nvme_tcp_transport);
2858 mutex_lock(&nvme_tcp_ctrl_mutex);
2859 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2860 nvme_delete_ctrl(&ctrl->ctrl);
2861 mutex_unlock(&nvme_tcp_ctrl_mutex);
2862 flush_workqueue(nvme_delete_wq);
2864 destroy_workqueue(nvme_tcp_wq);
2867 module_init(nvme_tcp_init_module);
2868 module_exit(nvme_tcp_cleanup_module);
2870 MODULE_DESCRIPTION("NVMe host TCP transport driver");
2871 MODULE_LICENSE("GPL v2");