1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
44 #define NVME_MAX_KB_SZ 8192
45 #define NVME_MAX_SEGS 128
46 #define NVME_MAX_NR_ALLOCATIONS 5
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
86 return param_set_uint(val, kp);
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
141 struct nvme_ctrl ctrl;
145 mempool_t *iod_mempool;
147 /* shadow doorbell buffer support: */
149 dma_addr_t dbbuf_dbs_dma_addr;
151 dma_addr_t dbbuf_eis_dma_addr;
153 /* host memory buffer support: */
155 u32 nr_host_mem_descs;
156 dma_addr_t host_mem_descs_dma;
157 struct nvme_host_mem_buf_desc *host_mem_descs;
158 void **host_mem_desc_bufs;
159 unsigned int nr_allocated_queues;
160 unsigned int nr_write_queues;
161 unsigned int nr_poll_queues;
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 NVME_PCI_MAX_QUEUE_SIZE);
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 return qid * 2 * stride;
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 return (qid * 2 + 1) * stride;
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 return container_of(ctrl, struct nvme_dev, ctrl);
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
190 struct nvme_dev *dev;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
208 #define NVMEQ_ENABLED 0
209 #define NVMEQ_SQ_CMB 1
210 #define NVMEQ_DELETE_ERROR 2
211 #define NVMEQ_POLLED 3
216 struct completion delete_done;
219 union nvme_descriptor {
220 struct nvme_sgl_desc *sg_list;
225 * The nvme_iod describes the data in an I/O.
227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228 * to the actual struct scatterlist.
231 struct nvme_request req;
232 struct nvme_command cmd;
234 s8 nr_allocations; /* PRP list pool allocations. 0 means small
236 unsigned int dma_len; /* length of single DMA segment mapping */
237 dma_addr_t first_dma;
240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
245 return dev->nr_allocated_queues * 8 * dev->db_stride;
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
250 unsigned int mem_size = nvme_dbbuf_size(dev);
252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
255 if (dev->dbbuf_dbs) {
257 * Clear the dbbuf memory so the driver doesn't observe stale
258 * values from the previous instantiation.
260 memset(dev->dbbuf_dbs, 0, mem_size);
261 memset(dev->dbbuf_eis, 0, mem_size);
265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 &dev->dbbuf_dbs_dma_addr,
270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 &dev->dbbuf_eis_dma_addr,
274 goto fail_free_dbbuf_dbs;
278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 dev->dbbuf_dbs_dma_addr);
280 dev->dbbuf_dbs = NULL;
282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287 unsigned int mem_size = nvme_dbbuf_size(dev);
289 if (dev->dbbuf_dbs) {
290 dma_free_coherent(dev->dev, mem_size,
291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 dev->dbbuf_dbs = NULL;
294 if (dev->dbbuf_eis) {
295 dma_free_coherent(dev->dev, mem_size,
296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 dev->dbbuf_eis = NULL;
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 struct nvme_queue *nvmeq, int qid)
304 if (!dev->dbbuf_dbs || !qid)
307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
318 nvmeq->dbbuf_sq_db = NULL;
319 nvmeq->dbbuf_cq_db = NULL;
320 nvmeq->dbbuf_sq_ei = NULL;
321 nvmeq->dbbuf_cq_ei = NULL;
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 struct nvme_command c = { };
332 c.dbbuf.opcode = nvme_admin_dbbuf;
333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 /* Free memory and continue on */
339 nvme_dbbuf_dma_free(dev);
341 for (i = 1; i <= dev->online_queues; i++)
342 nvme_dbbuf_free(&dev->queues[i]);
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 volatile __le32 *dbbuf_ei)
356 u16 old_value, event_idx;
359 * Ensure that the queue is written before updating
360 * the doorbell in memory
364 old_value = le32_to_cpu(*dbbuf_db);
365 *dbbuf_db = cpu_to_le32(value);
368 * Ensure that the doorbell is updated before reading the event
369 * index from memory. The controller needs to provide similar
370 * ordering to ensure the envent index is updated before reading
375 event_idx = le32_to_cpu(*dbbuf_ei);
376 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
384 * Will slightly overestimate the number of pages needed. This is OK
385 * as it only leads to a small amount of wasted memory for the lifetime of
388 static int nvme_pci_npages_prp(void)
390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
398 struct nvme_dev *dev = to_nvme_dev(data);
399 struct nvme_queue *nvmeq = &dev->queues[0];
401 WARN_ON(hctx_idx != 0);
402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404 hctx->driver_data = nvmeq;
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 unsigned int hctx_idx)
411 struct nvme_dev *dev = to_nvme_dev(data);
412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 hctx->driver_data = nvmeq;
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 struct request *req, unsigned int hctx_idx,
421 unsigned int numa_node)
423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425 nvme_req(req)->ctrl = set->driver_data;
426 nvme_req(req)->cmd = &iod->cmd;
430 static int queue_irq_offset(struct nvme_dev *dev)
432 /* if we have more than 1 vec, admin queue offsets us by 1 */
433 if (dev->num_vecs > 1)
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
441 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
444 offset = queue_irq_offset(dev);
445 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 struct blk_mq_queue_map *map = &set->map[i];
448 map->nr_queues = dev->io_queues[i];
449 if (!map->nr_queues) {
450 BUG_ON(i == HCTX_TYPE_DEFAULT);
455 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 * affinity), so use the regular blk-mq cpu mapping
458 map->queue_offset = qoff;
459 if (i != HCTX_TYPE_POLL && offset)
460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 blk_mq_map_queues(map);
463 qoff += map->nr_queues;
464 offset += map->nr_queues;
469 * Write sq tail if we are asked to, or if the next command would wrap.
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
474 u16 next_tail = nvmeq->sq_tail + 1;
476 if (next_tail == nvmeq->q_depth)
478 if (next_tail != nvmeq->last_sq_tail)
482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 writel(nvmeq->sq_tail, nvmeq->q_db);
485 nvmeq->last_sq_tail = nvmeq->sq_tail;
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 struct nvme_command *cmd)
491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 absolute_pointer(cmd), sizeof(*cmd));
493 if (++nvmeq->sq_tail == nvmeq->q_depth)
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 struct nvme_queue *nvmeq = hctx->driver_data;
501 spin_lock(&nvmeq->sq_lock);
502 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 nvme_write_sq_db(nvmeq, true);
504 spin_unlock(&nvmeq->sq_lock);
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 unsigned int avg_seg_size;
513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
515 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
519 if (!sgl_threshold || avg_seg_size < sgl_threshold)
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 dma_addr_t dma_addr = iod->first_dma;
531 for (i = 0; i < iod->nr_allocations; i++) {
532 __le64 *prp_list = iod->list[i].prp_list;
533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 dma_addr = next_dma_addr;
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
550 WARN_ON_ONCE(!iod->sgt.nents);
552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
554 if (iod->nr_allocations == 0)
555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
557 else if (iod->nr_allocations == 1)
558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
561 nvme_free_prps(dev, req);
562 mempool_free(iod->sgt.sgl, dev->iod_mempool);
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
568 struct scatterlist *sg;
570 for_each_sg(sgl, sg, nents, i) {
571 dma_addr_t phys = sg_phys(sg);
572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 "dma_address:%pad dma_length:%d\n",
574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 struct request *req, struct nvme_rw_command *cmnd)
582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 struct dma_pool *pool;
584 int length = blk_rq_payload_bytes(req);
585 struct scatterlist *sg = iod->sgt.sgl;
586 int dma_len = sg_dma_len(sg);
587 u64 dma_addr = sg_dma_address(sg);
588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
593 length -= (NVME_CTRL_PAGE_SIZE - offset);
599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
604 dma_addr = sg_dma_address(sg);
605 dma_len = sg_dma_len(sg);
608 if (length <= NVME_CTRL_PAGE_SIZE) {
609 iod->first_dma = dma_addr;
613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 if (nprps <= (256 / 8)) {
615 pool = dev->prp_small_pool;
616 iod->nr_allocations = 0;
618 pool = dev->prp_page_pool;
619 iod->nr_allocations = 1;
622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
624 iod->nr_allocations = -1;
625 return BLK_STS_RESOURCE;
627 iod->list[0].prp_list = prp_list;
628 iod->first_dma = prp_dma;
631 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 __le64 *old_prp_list = prp_list;
633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
636 iod->list[iod->nr_allocations++].prp_list = prp_list;
637 prp_list[0] = old_prp_list[i - 1];
638 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
641 prp_list[i++] = cpu_to_le64(dma_addr);
642 dma_len -= NVME_CTRL_PAGE_SIZE;
643 dma_addr += NVME_CTRL_PAGE_SIZE;
644 length -= NVME_CTRL_PAGE_SIZE;
649 if (unlikely(dma_len < 0))
652 dma_addr = sg_dma_address(sg);
653 dma_len = sg_dma_len(sg);
656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
660 nvme_free_prps(dev, req);
661 return BLK_STS_RESOURCE;
663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 "Invalid SGL for payload:%d nents:%d\n",
665 blk_rq_payload_bytes(req), iod->sgt.nents);
666 return BLK_STS_IOERR;
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 struct scatterlist *sg)
672 sge->addr = cpu_to_le64(sg_dma_address(sg));
673 sge->length = cpu_to_le32(sg_dma_len(sg));
674 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 dma_addr_t dma_addr, int entries)
680 sge->addr = cpu_to_le64(dma_addr);
681 sge->length = cpu_to_le32(entries * sizeof(*sge));
682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 struct request *req, struct nvme_rw_command *cmd)
688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 struct dma_pool *pool;
690 struct nvme_sgl_desc *sg_list;
691 struct scatterlist *sg = iod->sgt.sgl;
692 unsigned int entries = iod->sgt.nents;
696 /* setting the transfer type as SGL */
697 cmd->flags = NVME_CMD_SGL_METABUF;
700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 pool = dev->prp_small_pool;
706 iod->nr_allocations = 0;
708 pool = dev->prp_page_pool;
709 iod->nr_allocations = 1;
712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 iod->nr_allocations = -1;
715 return BLK_STS_RESOURCE;
718 iod->list[0].sg_list = sg_list;
719 iod->first_dma = sgl_dma;
721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
723 nvme_pci_sgl_set_data(&sg_list[i++], sg);
725 } while (--entries > 0);
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 struct request *req, struct nvme_rw_command *cmnd,
734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 if (dma_mapping_error(dev->dev, iod->first_dma))
740 return BLK_STS_RESOURCE;
741 iod->dma_len = bv->bv_len;
743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 if (bv->bv_len > first_prp_len)
745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 struct request *req, struct nvme_rw_command *cmnd,
755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 if (dma_mapping_error(dev->dev, iod->first_dma))
759 return BLK_STS_RESOURCE;
760 iod->dma_len = bv->bv_len;
762 cmnd->flags = NVME_CMD_SGL_METABUF;
763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 struct nvme_command *cmnd)
772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 blk_status_t ret = BLK_STS_RESOURCE;
776 if (blk_rq_nr_phys_segments(req) == 1) {
777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 struct bio_vec bv = req_bvec(req);
780 if (!is_pci_p2pdma_page(bv.bv_page)) {
781 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
782 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
783 return nvme_setup_prp_simple(dev, req,
786 if (nvmeq->qid && sgl_threshold &&
787 nvme_ctrl_sgl_supported(&dev->ctrl))
788 return nvme_setup_sgl_simple(dev, req,
794 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 return BLK_STS_RESOURCE;
797 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
798 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
799 if (!iod->sgt.orig_nents)
802 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
805 if (rc == -EREMOTEIO)
806 ret = BLK_STS_TARGET;
810 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
811 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
813 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
814 if (ret != BLK_STS_OK)
819 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
821 mempool_free(iod->sgt.sgl, dev->iod_mempool);
825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
826 struct nvme_command *cmnd)
828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829 struct bio_vec bv = rq_integrity_vec(req);
831 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
832 if (dma_mapping_error(dev->dev, iod->meta_dma))
833 return BLK_STS_IOERR;
834 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843 iod->aborted = false;
844 iod->nr_allocations = -1;
847 ret = nvme_setup_cmd(req->q->queuedata, req);
851 if (blk_rq_nr_phys_segments(req)) {
852 ret = nvme_map_data(dev, req, &iod->cmd);
857 if (blk_integrity_rq(req)) {
858 ret = nvme_map_metadata(dev, req, &iod->cmd);
863 nvme_start_request(req);
866 if (blk_rq_nr_phys_segments(req))
867 nvme_unmap_data(dev, req);
869 nvme_cleanup_cmd(req);
874 * NOTE: ns is NULL when called on the admin queue.
876 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
877 const struct blk_mq_queue_data *bd)
879 struct nvme_queue *nvmeq = hctx->driver_data;
880 struct nvme_dev *dev = nvmeq->dev;
881 struct request *req = bd->rq;
882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
886 * We should not need to do this, but we're still using this to
887 * ensure we can drain requests on a dying queue.
889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
890 return BLK_STS_IOERR;
892 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
893 return nvme_fail_nonready_command(&dev->ctrl, req);
895 ret = nvme_prep_rq(dev, req);
898 spin_lock(&nvmeq->sq_lock);
899 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
900 nvme_write_sq_db(nvmeq, bd->last);
901 spin_unlock(&nvmeq->sq_lock);
905 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
907 spin_lock(&nvmeq->sq_lock);
908 while (!rq_list_empty(*rqlist)) {
909 struct request *req = rq_list_pop(rqlist);
910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
914 nvme_write_sq_db(nvmeq, true);
915 spin_unlock(&nvmeq->sq_lock);
918 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
921 * We should not need to do this, but we're still using this to
922 * ensure we can drain requests on a dying queue.
924 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
926 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
929 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
932 static void nvme_queue_rqs(struct request **rqlist)
934 struct request *req, *next, *prev = NULL;
935 struct request *requeue_list = NULL;
937 rq_list_for_each_safe(rqlist, req, next) {
938 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
940 if (!nvme_prep_rq_batch(nvmeq, req)) {
941 /* detach 'req' and add to remainder list */
942 rq_list_move(rqlist, &requeue_list, req, prev);
949 if (!next || req->mq_hctx != next->mq_hctx) {
950 /* detach rest of list, and submit */
952 nvme_submit_cmds(nvmeq, rqlist);
959 *rqlist = requeue_list;
962 static __always_inline void nvme_pci_unmap_rq(struct request *req)
964 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
965 struct nvme_dev *dev = nvmeq->dev;
967 if (blk_integrity_rq(req)) {
968 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
970 dma_unmap_page(dev->dev, iod->meta_dma,
971 rq_integrity_vec(req).bv_len, rq_dma_dir(req));
974 if (blk_rq_nr_phys_segments(req))
975 nvme_unmap_data(dev, req);
978 static void nvme_pci_complete_rq(struct request *req)
980 nvme_pci_unmap_rq(req);
981 nvme_complete_rq(req);
984 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
986 nvme_complete_batch(iob, nvme_pci_unmap_rq);
989 /* We read the CQE phase first to check if the rest of the entry is valid */
990 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
992 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
994 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
997 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
999 u16 head = nvmeq->cq_head;
1001 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1002 nvmeq->dbbuf_cq_ei))
1003 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1006 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1009 return nvmeq->dev->admin_tagset.tags[0];
1010 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1013 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1014 struct io_comp_batch *iob, u16 idx)
1016 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1017 __u16 command_id = READ_ONCE(cqe->command_id);
1018 struct request *req;
1021 * AEN requests are special as they don't time out and can
1022 * survive any kind of queue freeze and often don't respond to
1023 * aborts. We don't even bother to allocate a struct request
1024 * for them but rather special case them here.
1026 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1027 nvme_complete_async_event(&nvmeq->dev->ctrl,
1028 cqe->status, &cqe->result);
1032 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1033 if (unlikely(!req)) {
1034 dev_warn(nvmeq->dev->ctrl.device,
1035 "invalid id %d completed on queue %d\n",
1036 command_id, le16_to_cpu(cqe->sq_id));
1040 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1041 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1042 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1043 nvme_pci_complete_batch))
1044 nvme_pci_complete_rq(req);
1047 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1049 u32 tmp = nvmeq->cq_head + 1;
1051 if (tmp == nvmeq->q_depth) {
1053 nvmeq->cq_phase ^= 1;
1055 nvmeq->cq_head = tmp;
1059 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1060 struct io_comp_batch *iob)
1064 while (nvme_cqe_pending(nvmeq)) {
1067 * load-load control dependency between phase and the rest of
1068 * the cqe requires a full read memory barrier
1071 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1072 nvme_update_cq_head(nvmeq);
1076 nvme_ring_cq_doorbell(nvmeq);
1080 static irqreturn_t nvme_irq(int irq, void *data)
1082 struct nvme_queue *nvmeq = data;
1083 DEFINE_IO_COMP_BATCH(iob);
1085 if (nvme_poll_cq(nvmeq, &iob)) {
1086 if (!rq_list_empty(iob.req_list))
1087 nvme_pci_complete_batch(&iob);
1093 static irqreturn_t nvme_irq_check(int irq, void *data)
1095 struct nvme_queue *nvmeq = data;
1097 if (nvme_cqe_pending(nvmeq))
1098 return IRQ_WAKE_THREAD;
1103 * Poll for completions for any interrupt driven queue
1104 * Can be called from any context.
1106 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1108 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1110 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1112 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1113 nvme_poll_cq(nvmeq, NULL);
1114 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1117 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1119 struct nvme_queue *nvmeq = hctx->driver_data;
1122 if (!nvme_cqe_pending(nvmeq))
1125 spin_lock(&nvmeq->cq_poll_lock);
1126 found = nvme_poll_cq(nvmeq, iob);
1127 spin_unlock(&nvmeq->cq_poll_lock);
1132 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1134 struct nvme_dev *dev = to_nvme_dev(ctrl);
1135 struct nvme_queue *nvmeq = &dev->queues[0];
1136 struct nvme_command c = { };
1138 c.common.opcode = nvme_admin_async_event;
1139 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1141 spin_lock(&nvmeq->sq_lock);
1142 nvme_sq_copy_cmd(nvmeq, &c);
1143 nvme_write_sq_db(nvmeq, true);
1144 spin_unlock(&nvmeq->sq_lock);
1147 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1149 struct nvme_dev *dev = to_nvme_dev(ctrl);
1153 * Taking the shutdown_lock ensures the BAR mapping is not being
1154 * altered by reset_work. Holding this lock before the RESETTING state
1155 * change, if successful, also ensures nvme_remove won't be able to
1156 * proceed to iounmap until we're done.
1158 mutex_lock(&dev->shutdown_lock);
1159 if (!dev->bar_mapped_size) {
1164 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1169 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1170 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1173 * Read controller status to flush the previous write and trigger a
1176 readl(dev->bar + NVME_REG_CSTS);
1178 mutex_unlock(&dev->shutdown_lock);
1182 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1184 struct nvme_command c = { };
1186 c.delete_queue.opcode = opcode;
1187 c.delete_queue.qid = cpu_to_le16(id);
1189 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1192 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1193 struct nvme_queue *nvmeq, s16 vector)
1195 struct nvme_command c = { };
1196 int flags = NVME_QUEUE_PHYS_CONTIG;
1198 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1199 flags |= NVME_CQ_IRQ_ENABLED;
1202 * Note: we (ab)use the fact that the prp fields survive if no data
1203 * is attached to the request.
1205 c.create_cq.opcode = nvme_admin_create_cq;
1206 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1207 c.create_cq.cqid = cpu_to_le16(qid);
1208 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1209 c.create_cq.cq_flags = cpu_to_le16(flags);
1210 c.create_cq.irq_vector = cpu_to_le16(vector);
1212 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1215 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1216 struct nvme_queue *nvmeq)
1218 struct nvme_ctrl *ctrl = &dev->ctrl;
1219 struct nvme_command c = { };
1220 int flags = NVME_QUEUE_PHYS_CONTIG;
1223 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1224 * set. Since URGENT priority is zeroes, it makes all queues
1227 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1228 flags |= NVME_SQ_PRIO_MEDIUM;
1231 * Note: we (ab)use the fact that the prp fields survive if no data
1232 * is attached to the request.
1234 c.create_sq.opcode = nvme_admin_create_sq;
1235 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1236 c.create_sq.sqid = cpu_to_le16(qid);
1237 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1238 c.create_sq.sq_flags = cpu_to_le16(flags);
1239 c.create_sq.cqid = cpu_to_le16(qid);
1241 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1244 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1246 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1249 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1251 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1254 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1256 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1258 dev_warn(nvmeq->dev->ctrl.device,
1259 "Abort status: 0x%x", nvme_req(req)->status);
1260 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1261 blk_mq_free_request(req);
1262 return RQ_END_IO_NONE;
1265 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1267 /* If true, indicates loss of adapter communication, possibly by a
1268 * NVMe Subsystem reset.
1270 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1272 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1273 switch (nvme_ctrl_state(&dev->ctrl)) {
1274 case NVME_CTRL_RESETTING:
1275 case NVME_CTRL_CONNECTING:
1281 /* We shouldn't reset unless the controller is on fatal error state
1282 * _or_ if we lost the communication with it.
1284 if (!(csts & NVME_CSTS_CFS) && !nssro)
1290 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1292 /* Read a config register to help see what died. */
1296 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1298 if (result == PCIBIOS_SUCCESSFUL)
1299 dev_warn(dev->ctrl.device,
1300 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1303 dev_warn(dev->ctrl.device,
1304 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1310 dev_warn(dev->ctrl.device,
1311 "Does your device have a faulty power saving mode enabled?\n");
1312 dev_warn(dev->ctrl.device,
1313 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1316 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1318 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1319 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1320 struct nvme_dev *dev = nvmeq->dev;
1321 struct request *abort_req;
1322 struct nvme_command cmd = { };
1323 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1326 if (nvme_state_terminal(&dev->ctrl))
1329 /* If PCI error recovery process is happening, we cannot reset or
1330 * the recovery mechanism will surely fail.
1333 if (pci_channel_offline(to_pci_dev(dev->dev)))
1334 return BLK_EH_RESET_TIMER;
1337 * Reset immediately if the controller is failed
1339 if (nvme_should_reset(dev, csts)) {
1340 nvme_warn_reset(dev, csts);
1345 * Did we miss an interrupt?
1347 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1348 nvme_poll(req->mq_hctx, NULL);
1350 nvme_poll_irqdisable(nvmeq);
1352 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1353 dev_warn(dev->ctrl.device,
1354 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1355 req->tag, nvme_cid(req), nvmeq->qid);
1360 * Shutdown immediately if controller times out while starting. The
1361 * reset work will see the pci device disabled when it gets the forced
1362 * cancellation error. All outstanding requests are completed on
1363 * shutdown, so we return BLK_EH_DONE.
1365 switch (nvme_ctrl_state(&dev->ctrl)) {
1366 case NVME_CTRL_CONNECTING:
1367 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1369 case NVME_CTRL_DELETING:
1370 dev_warn_ratelimited(dev->ctrl.device,
1371 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1372 req->tag, nvme_cid(req), nvmeq->qid);
1373 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1374 nvme_dev_disable(dev, true);
1376 case NVME_CTRL_RESETTING:
1377 return BLK_EH_RESET_TIMER;
1383 * Shutdown the controller immediately and schedule a reset if the
1384 * command was already aborted once before and still hasn't been
1385 * returned to the driver, or if this is the admin queue.
1387 opcode = nvme_req(req)->cmd->common.opcode;
1388 if (!nvmeq->qid || iod->aborted) {
1389 dev_warn(dev->ctrl.device,
1390 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1391 req->tag, nvme_cid(req), opcode,
1392 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1393 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1397 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1398 atomic_inc(&dev->ctrl.abort_limit);
1399 return BLK_EH_RESET_TIMER;
1401 iod->aborted = true;
1403 cmd.abort.opcode = nvme_admin_abort_cmd;
1404 cmd.abort.cid = nvme_cid(req);
1405 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1407 dev_warn(nvmeq->dev->ctrl.device,
1408 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1409 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1410 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1413 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1415 if (IS_ERR(abort_req)) {
1416 atomic_inc(&dev->ctrl.abort_limit);
1417 return BLK_EH_RESET_TIMER;
1419 nvme_init_request(abort_req, &cmd);
1421 abort_req->end_io = abort_endio;
1422 abort_req->end_io_data = NULL;
1423 blk_execute_rq_nowait(abort_req, false);
1426 * The aborted req will be completed on receiving the abort req.
1427 * We enable the timer again. If hit twice, it'll cause a device reset,
1428 * as the device then is in a faulty state.
1430 return BLK_EH_RESET_TIMER;
1433 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1434 if (nvme_state_terminal(&dev->ctrl))
1435 nvme_dev_disable(dev, true);
1439 nvme_dev_disable(dev, false);
1440 if (nvme_try_sched_reset(&dev->ctrl))
1441 nvme_unquiesce_io_queues(&dev->ctrl);
1445 static void nvme_free_queue(struct nvme_queue *nvmeq)
1447 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1448 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1449 if (!nvmeq->sq_cmds)
1452 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1453 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1454 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1456 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1457 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1461 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1465 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1466 dev->ctrl.queue_count--;
1467 nvme_free_queue(&dev->queues[i]);
1471 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1473 struct nvme_queue *nvmeq = &dev->queues[qid];
1475 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1478 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1481 nvmeq->dev->online_queues--;
1482 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1483 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1484 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1485 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1488 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1492 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1493 nvme_suspend_queue(dev, i);
1497 * Called only on a device that has been disabled and after all other threads
1498 * that can check this device's completion queues have synced, except
1499 * nvme_poll(). This is the last chance for the driver to see a natural
1500 * completion before nvme_cancel_request() terminates all incomplete requests.
1502 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1506 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1507 spin_lock(&dev->queues[i].cq_poll_lock);
1508 nvme_poll_cq(&dev->queues[i], NULL);
1509 spin_unlock(&dev->queues[i].cq_poll_lock);
1513 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1516 int q_depth = dev->q_depth;
1517 unsigned q_size_aligned = roundup(q_depth * entry_size,
1518 NVME_CTRL_PAGE_SIZE);
1520 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1521 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1523 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1524 q_depth = div_u64(mem_per_q, entry_size);
1527 * Ensure the reduced q_depth is above some threshold where it
1528 * would be better to map queues in system memory with the
1538 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1541 struct pci_dev *pdev = to_pci_dev(dev->dev);
1543 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1544 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1545 if (nvmeq->sq_cmds) {
1546 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1548 if (nvmeq->sq_dma_addr) {
1549 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1553 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1557 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1558 &nvmeq->sq_dma_addr, GFP_KERNEL);
1559 if (!nvmeq->sq_cmds)
1564 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1566 struct nvme_queue *nvmeq = &dev->queues[qid];
1568 if (dev->ctrl.queue_count > qid)
1571 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1572 nvmeq->q_depth = depth;
1573 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1574 &nvmeq->cq_dma_addr, GFP_KERNEL);
1578 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1582 spin_lock_init(&nvmeq->sq_lock);
1583 spin_lock_init(&nvmeq->cq_poll_lock);
1585 nvmeq->cq_phase = 1;
1586 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1588 dev->ctrl.queue_count++;
1593 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1594 nvmeq->cq_dma_addr);
1599 static int queue_request_irq(struct nvme_queue *nvmeq)
1601 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1602 int nr = nvmeq->dev->ctrl.instance;
1604 if (use_threaded_interrupts) {
1605 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1606 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1608 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1609 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1613 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1615 struct nvme_dev *dev = nvmeq->dev;
1618 nvmeq->last_sq_tail = 0;
1620 nvmeq->cq_phase = 1;
1621 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1622 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1623 nvme_dbbuf_init(dev, nvmeq, qid);
1624 dev->online_queues++;
1625 wmb(); /* ensure the first interrupt sees the initialization */
1629 * Try getting shutdown_lock while setting up IO queues.
1631 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1634 * Give up if the lock is being held by nvme_dev_disable.
1636 if (!mutex_trylock(&dev->shutdown_lock))
1640 * Controller is in wrong state, fail early.
1642 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1643 mutex_unlock(&dev->shutdown_lock);
1650 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1652 struct nvme_dev *dev = nvmeq->dev;
1656 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1659 * A queue's vector matches the queue identifier unless the controller
1660 * has only one vector available.
1663 vector = dev->num_vecs == 1 ? 0 : qid;
1665 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1667 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1671 result = adapter_alloc_sq(dev, qid, nvmeq);
1677 nvmeq->cq_vector = vector;
1679 result = nvme_setup_io_queues_trylock(dev);
1682 nvme_init_queue(nvmeq, qid);
1684 result = queue_request_irq(nvmeq);
1689 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1690 mutex_unlock(&dev->shutdown_lock);
1694 dev->online_queues--;
1695 mutex_unlock(&dev->shutdown_lock);
1696 adapter_delete_sq(dev, qid);
1698 adapter_delete_cq(dev, qid);
1702 static const struct blk_mq_ops nvme_mq_admin_ops = {
1703 .queue_rq = nvme_queue_rq,
1704 .complete = nvme_pci_complete_rq,
1705 .init_hctx = nvme_admin_init_hctx,
1706 .init_request = nvme_pci_init_request,
1707 .timeout = nvme_timeout,
1710 static const struct blk_mq_ops nvme_mq_ops = {
1711 .queue_rq = nvme_queue_rq,
1712 .queue_rqs = nvme_queue_rqs,
1713 .complete = nvme_pci_complete_rq,
1714 .commit_rqs = nvme_commit_rqs,
1715 .init_hctx = nvme_init_hctx,
1716 .init_request = nvme_pci_init_request,
1717 .map_queues = nvme_pci_map_queues,
1718 .timeout = nvme_timeout,
1722 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1724 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1726 * If the controller was reset during removal, it's possible
1727 * user requests may be waiting on a stopped queue. Start the
1728 * queue to flush these to completion.
1730 nvme_unquiesce_admin_queue(&dev->ctrl);
1731 nvme_remove_admin_tag_set(&dev->ctrl);
1735 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1737 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1740 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1742 struct pci_dev *pdev = to_pci_dev(dev->dev);
1744 if (size <= dev->bar_mapped_size)
1746 if (size > pci_resource_len(pdev, 0))
1750 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1752 dev->bar_mapped_size = 0;
1755 dev->bar_mapped_size = size;
1756 dev->dbs = dev->bar + NVME_REG_DBS;
1761 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1765 struct nvme_queue *nvmeq;
1767 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1771 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1772 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1774 if (dev->subsystem &&
1775 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1776 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1779 * If the device has been passed off to us in an enabled state, just
1780 * clear the enabled bit. The spec says we should set the 'shutdown
1781 * notification bits', but doing so may cause the device to complete
1782 * commands to the admin queue ... and we don't know what memory that
1783 * might be pointing at!
1785 result = nvme_disable_ctrl(&dev->ctrl, false);
1789 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1793 dev->ctrl.numa_node = dev_to_node(dev->dev);
1795 nvmeq = &dev->queues[0];
1796 aqa = nvmeq->q_depth - 1;
1799 writel(aqa, dev->bar + NVME_REG_AQA);
1800 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1801 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1803 result = nvme_enable_ctrl(&dev->ctrl);
1807 nvmeq->cq_vector = 0;
1808 nvme_init_queue(nvmeq, 0);
1809 result = queue_request_irq(nvmeq);
1811 dev->online_queues--;
1815 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1819 static int nvme_create_io_queues(struct nvme_dev *dev)
1821 unsigned i, max, rw_queues;
1824 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1825 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1831 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1832 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1833 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1834 dev->io_queues[HCTX_TYPE_READ];
1839 for (i = dev->online_queues; i <= max; i++) {
1840 bool polled = i > rw_queues;
1842 ret = nvme_create_queue(&dev->queues[i], i, polled);
1848 * Ignore failing Create SQ/CQ commands, we can continue with less
1849 * than the desired amount of queues, and even a controller without
1850 * I/O queues can still be used to issue admin commands. This might
1851 * be useful to upgrade a buggy firmware for example.
1853 return ret >= 0 ? 0 : ret;
1856 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1858 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1860 return 1ULL << (12 + 4 * szu);
1863 static u32 nvme_cmb_size(struct nvme_dev *dev)
1865 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1868 static void nvme_map_cmb(struct nvme_dev *dev)
1871 resource_size_t bar_size;
1872 struct pci_dev *pdev = to_pci_dev(dev->dev);
1878 if (NVME_CAP_CMBS(dev->ctrl.cap))
1879 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1881 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1884 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1886 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1887 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1888 bar = NVME_CMB_BIR(dev->cmbloc);
1889 bar_size = pci_resource_len(pdev, bar);
1891 if (offset > bar_size)
1895 * Tell the controller about the host side address mapping the CMB,
1896 * and enable CMB decoding for the NVMe 1.4+ scheme:
1898 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1899 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1900 (pci_bus_address(pdev, bar) + offset),
1901 dev->bar + NVME_REG_CMBMSC);
1905 * Controllers may support a CMB size larger than their BAR,
1906 * for example, due to being behind a bridge. Reduce the CMB to
1907 * the reported size of the BAR
1909 if (size > bar_size - offset)
1910 size = bar_size - offset;
1912 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1913 dev_warn(dev->ctrl.device,
1914 "failed to register the CMB\n");
1918 dev->cmb_size = size;
1919 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1921 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1922 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1923 pci_p2pmem_publish(pdev, true);
1925 nvme_update_attrs(dev);
1928 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1930 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1931 u64 dma_addr = dev->host_mem_descs_dma;
1932 struct nvme_command c = { };
1935 c.features.opcode = nvme_admin_set_features;
1936 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1937 c.features.dword11 = cpu_to_le32(bits);
1938 c.features.dword12 = cpu_to_le32(host_mem_size);
1939 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1940 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1941 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1943 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1945 dev_warn(dev->ctrl.device,
1946 "failed to set host mem (err %d, flags %#x).\n",
1949 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1954 static void nvme_free_host_mem(struct nvme_dev *dev)
1958 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1959 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1960 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1962 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1963 le64_to_cpu(desc->addr),
1964 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1967 kfree(dev->host_mem_desc_bufs);
1968 dev->host_mem_desc_bufs = NULL;
1969 dma_free_coherent(dev->dev,
1970 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1971 dev->host_mem_descs, dev->host_mem_descs_dma);
1972 dev->host_mem_descs = NULL;
1973 dev->nr_host_mem_descs = 0;
1976 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1979 struct nvme_host_mem_buf_desc *descs;
1980 u32 max_entries, len;
1981 dma_addr_t descs_dma;
1986 tmp = (preferred + chunk_size - 1);
1987 do_div(tmp, chunk_size);
1990 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1991 max_entries = dev->ctrl.hmmaxd;
1993 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1994 &descs_dma, GFP_KERNEL);
1998 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2000 goto out_free_descs;
2002 for (size = 0; size < preferred && i < max_entries; size += len) {
2003 dma_addr_t dma_addr;
2005 len = min_t(u64, chunk_size, preferred - size);
2006 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2007 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2011 descs[i].addr = cpu_to_le64(dma_addr);
2012 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2019 dev->nr_host_mem_descs = i;
2020 dev->host_mem_size = size;
2021 dev->host_mem_descs = descs;
2022 dev->host_mem_descs_dma = descs_dma;
2023 dev->host_mem_desc_bufs = bufs;
2028 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2030 dma_free_attrs(dev->dev, size, bufs[i],
2031 le64_to_cpu(descs[i].addr),
2032 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2037 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2040 dev->host_mem_descs = NULL;
2044 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2046 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2047 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2050 /* start big and work our way down */
2051 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2052 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2053 if (!min || dev->host_mem_size >= min)
2055 nvme_free_host_mem(dev);
2062 static int nvme_setup_host_mem(struct nvme_dev *dev)
2064 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2065 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2066 u64 min = (u64)dev->ctrl.hmmin * 4096;
2067 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2070 if (!dev->ctrl.hmpre)
2073 preferred = min(preferred, max);
2075 dev_warn(dev->ctrl.device,
2076 "min host memory (%lld MiB) above limit (%d MiB).\n",
2077 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2078 nvme_free_host_mem(dev);
2083 * If we already have a buffer allocated check if we can reuse it.
2085 if (dev->host_mem_descs) {
2086 if (dev->host_mem_size >= min)
2087 enable_bits |= NVME_HOST_MEM_RETURN;
2089 nvme_free_host_mem(dev);
2092 if (!dev->host_mem_descs) {
2093 if (nvme_alloc_host_mem(dev, min, preferred)) {
2094 dev_warn(dev->ctrl.device,
2095 "failed to allocate host memory buffer.\n");
2096 return 0; /* controller must work without HMB */
2099 dev_info(dev->ctrl.device,
2100 "allocated %lld MiB host memory buffer.\n",
2101 dev->host_mem_size >> ilog2(SZ_1M));
2104 ret = nvme_set_host_mem(dev, enable_bits);
2106 nvme_free_host_mem(dev);
2110 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2113 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2115 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2116 ndev->cmbloc, ndev->cmbsz);
2118 static DEVICE_ATTR_RO(cmb);
2120 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2123 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2125 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2127 static DEVICE_ATTR_RO(cmbloc);
2129 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2132 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2134 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2136 static DEVICE_ATTR_RO(cmbsz);
2138 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2141 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2143 return sysfs_emit(buf, "%d\n", ndev->hmb);
2146 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2147 const char *buf, size_t count)
2149 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2153 if (kstrtobool(buf, &new) < 0)
2156 if (new == ndev->hmb)
2160 ret = nvme_setup_host_mem(ndev);
2162 ret = nvme_set_host_mem(ndev, 0);
2164 nvme_free_host_mem(ndev);
2172 static DEVICE_ATTR_RW(hmb);
2174 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2175 struct attribute *a, int n)
2177 struct nvme_ctrl *ctrl =
2178 dev_get_drvdata(container_of(kobj, struct device, kobj));
2179 struct nvme_dev *dev = to_nvme_dev(ctrl);
2181 if (a == &dev_attr_cmb.attr ||
2182 a == &dev_attr_cmbloc.attr ||
2183 a == &dev_attr_cmbsz.attr) {
2187 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2193 static struct attribute *nvme_pci_attrs[] = {
2195 &dev_attr_cmbloc.attr,
2196 &dev_attr_cmbsz.attr,
2201 static const struct attribute_group nvme_pci_dev_attrs_group = {
2202 .attrs = nvme_pci_attrs,
2203 .is_visible = nvme_pci_attrs_are_visible,
2206 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2207 &nvme_dev_attrs_group,
2208 &nvme_pci_dev_attrs_group,
2212 static void nvme_update_attrs(struct nvme_dev *dev)
2214 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2218 * nirqs is the number of interrupts available for write and read
2219 * queues. The core already reserved an interrupt for the admin queue.
2221 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2223 struct nvme_dev *dev = affd->priv;
2224 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2227 * If there is no interrupt available for queues, ensure that
2228 * the default queue is set to 1. The affinity set size is
2229 * also set to one, but the irq core ignores it for this case.
2231 * If only one interrupt is available or 'write_queue' == 0, combine
2232 * write and read queues.
2234 * If 'write_queues' > 0, ensure it leaves room for at least one read
2240 } else if (nrirqs == 1 || !nr_write_queues) {
2242 } else if (nr_write_queues >= nrirqs) {
2245 nr_read_queues = nrirqs - nr_write_queues;
2248 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2249 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2250 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2251 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2252 affd->nr_sets = nr_read_queues ? 2 : 1;
2255 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2257 struct pci_dev *pdev = to_pci_dev(dev->dev);
2258 struct irq_affinity affd = {
2260 .calc_sets = nvme_calc_irq_sets,
2263 unsigned int irq_queues, poll_queues;
2264 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2267 * Poll queues don't need interrupts, but we need at least one I/O queue
2268 * left over for non-polled I/O.
2270 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2271 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2274 * Initialize for the single interrupt case, will be updated in
2275 * nvme_calc_irq_sets().
2277 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2278 dev->io_queues[HCTX_TYPE_READ] = 0;
2281 * We need interrupts for the admin queue and each non-polled I/O queue,
2282 * but some Apple controllers require all queues to use the first
2286 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2287 irq_queues += (nr_io_queues - poll_queues);
2288 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2289 flags &= ~PCI_IRQ_MSI;
2290 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2294 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2297 * If tags are shared with admin queue (Apple bug), then
2298 * make sure we only use one IO queue.
2300 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2302 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2305 static int nvme_setup_io_queues(struct nvme_dev *dev)
2307 struct nvme_queue *adminq = &dev->queues[0];
2308 struct pci_dev *pdev = to_pci_dev(dev->dev);
2309 unsigned int nr_io_queues;
2314 * Sample the module parameters once at reset time so that we have
2315 * stable values to work with.
2317 dev->nr_write_queues = write_queues;
2318 dev->nr_poll_queues = poll_queues;
2320 nr_io_queues = dev->nr_allocated_queues - 1;
2321 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2325 if (nr_io_queues == 0)
2329 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2330 * from set to unset. If there is a window to it is truely freed,
2331 * pci_free_irq_vectors() jumping into this window will crash.
2332 * And take lock to avoid racing with pci_free_irq_vectors() in
2333 * nvme_dev_disable() path.
2335 result = nvme_setup_io_queues_trylock(dev);
2338 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2339 pci_free_irq(pdev, 0, adminq);
2341 if (dev->cmb_use_sqes) {
2342 result = nvme_cmb_qdepth(dev, nr_io_queues,
2343 sizeof(struct nvme_command));
2345 dev->q_depth = result;
2346 dev->ctrl.sqsize = result - 1;
2348 dev->cmb_use_sqes = false;
2353 size = db_bar_size(dev, nr_io_queues);
2354 result = nvme_remap_bar(dev, size);
2357 if (!--nr_io_queues) {
2362 adminq->q_db = dev->dbs;
2365 /* Deregister the admin queue's interrupt */
2366 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2367 pci_free_irq(pdev, 0, adminq);
2370 * If we enable msix early due to not intx, disable it again before
2371 * setting up the full range we need.
2373 pci_free_irq_vectors(pdev);
2375 result = nvme_setup_irqs(dev, nr_io_queues);
2381 dev->num_vecs = result;
2382 result = max(result - 1, 1);
2383 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2386 * Should investigate if there's a performance win from allocating
2387 * more queues than interrupt vectors; it might allow the submission
2388 * path to scale better, even if the receive path is limited by the
2389 * number of interrupts.
2391 result = queue_request_irq(adminq);
2394 set_bit(NVMEQ_ENABLED, &adminq->flags);
2395 mutex_unlock(&dev->shutdown_lock);
2397 result = nvme_create_io_queues(dev);
2398 if (result || dev->online_queues < 2)
2401 if (dev->online_queues - 1 < dev->max_qid) {
2402 nr_io_queues = dev->online_queues - 1;
2403 nvme_delete_io_queues(dev);
2404 result = nvme_setup_io_queues_trylock(dev);
2407 nvme_suspend_io_queues(dev);
2410 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2411 dev->io_queues[HCTX_TYPE_DEFAULT],
2412 dev->io_queues[HCTX_TYPE_READ],
2413 dev->io_queues[HCTX_TYPE_POLL]);
2416 mutex_unlock(&dev->shutdown_lock);
2420 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2423 struct nvme_queue *nvmeq = req->end_io_data;
2425 blk_mq_free_request(req);
2426 complete(&nvmeq->delete_done);
2427 return RQ_END_IO_NONE;
2430 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2433 struct nvme_queue *nvmeq = req->end_io_data;
2436 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2438 return nvme_del_queue_end(req, error);
2441 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2443 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2444 struct request *req;
2445 struct nvme_command cmd = { };
2447 cmd.delete_queue.opcode = opcode;
2448 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2450 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2452 return PTR_ERR(req);
2453 nvme_init_request(req, &cmd);
2455 if (opcode == nvme_admin_delete_cq)
2456 req->end_io = nvme_del_cq_end;
2458 req->end_io = nvme_del_queue_end;
2459 req->end_io_data = nvmeq;
2461 init_completion(&nvmeq->delete_done);
2462 blk_execute_rq_nowait(req, false);
2466 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2468 int nr_queues = dev->online_queues - 1, sent = 0;
2469 unsigned long timeout;
2472 timeout = NVME_ADMIN_TIMEOUT;
2473 while (nr_queues > 0) {
2474 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2480 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2482 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2494 static void nvme_delete_io_queues(struct nvme_dev *dev)
2496 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2497 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2500 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2502 if (dev->io_queues[HCTX_TYPE_POLL])
2504 if (dev->io_queues[HCTX_TYPE_READ])
2509 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2511 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2512 /* free previously allocated queues that are no longer usable */
2513 nvme_free_queues(dev, dev->online_queues);
2516 static int nvme_pci_enable(struct nvme_dev *dev)
2518 int result = -ENOMEM;
2519 struct pci_dev *pdev = to_pci_dev(dev->dev);
2520 unsigned int flags = PCI_IRQ_ALL_TYPES;
2522 if (pci_enable_device_mem(pdev))
2525 pci_set_master(pdev);
2527 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2533 * Some devices and/or platforms don't advertise or work with INTx
2534 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2535 * adjust this later.
2537 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2538 flags &= ~PCI_IRQ_MSI;
2539 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2543 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2545 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2547 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2548 dev->dbs = dev->bar + 4096;
2551 * Some Apple controllers require a non-standard SQE size.
2552 * Interestingly they also seem to ignore the CC:IOSQES register
2553 * so we don't bother updating it here.
2555 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2558 dev->io_sqes = NVME_NVM_IOSQES;
2561 * Temporary fix for the Apple controller found in the MacBook8,1 and
2562 * some MacBook7,1 to avoid controller resets and data loss.
2564 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2566 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2567 "set queue depth=%u to work around controller resets\n",
2569 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2570 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2571 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2573 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2574 "set queue depth=%u\n", dev->q_depth);
2578 * Controllers with the shared tags quirk need the IO queue to be
2579 * big enough so that we get 32 tags for the admin queue
2581 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2582 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2583 dev->q_depth = NVME_AQ_DEPTH + 2;
2584 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2587 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2591 pci_save_state(pdev);
2593 result = nvme_pci_configure_admin_queue(dev);
2599 pci_free_irq_vectors(pdev);
2601 pci_disable_device(pdev);
2605 static void nvme_dev_unmap(struct nvme_dev *dev)
2609 pci_release_mem_regions(to_pci_dev(dev->dev));
2612 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2614 struct pci_dev *pdev = to_pci_dev(dev->dev);
2617 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2619 if (pdev->error_state != pci_channel_io_normal)
2622 csts = readl(dev->bar + NVME_REG_CSTS);
2623 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2626 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2628 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2629 struct pci_dev *pdev = to_pci_dev(dev->dev);
2632 mutex_lock(&dev->shutdown_lock);
2633 dead = nvme_pci_ctrl_is_dead(dev);
2634 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2635 if (pci_is_enabled(pdev))
2636 nvme_start_freeze(&dev->ctrl);
2638 * Give the controller a chance to complete all entered requests
2639 * if doing a safe shutdown.
2641 if (!dead && shutdown)
2642 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2645 nvme_quiesce_io_queues(&dev->ctrl);
2647 if (!dead && dev->ctrl.queue_count > 0) {
2648 nvme_delete_io_queues(dev);
2649 nvme_disable_ctrl(&dev->ctrl, shutdown);
2650 nvme_poll_irqdisable(&dev->queues[0]);
2652 nvme_suspend_io_queues(dev);
2653 nvme_suspend_queue(dev, 0);
2654 pci_free_irq_vectors(pdev);
2655 if (pci_is_enabled(pdev))
2656 pci_disable_device(pdev);
2657 nvme_reap_pending_cqes(dev);
2659 nvme_cancel_tagset(&dev->ctrl);
2660 nvme_cancel_admin_tagset(&dev->ctrl);
2663 * The driver will not be starting up queues again if shutting down so
2664 * must flush all entered requests to their failed completion to avoid
2665 * deadlocking blk-mq hot-cpu notifier.
2668 nvme_unquiesce_io_queues(&dev->ctrl);
2669 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2670 nvme_unquiesce_admin_queue(&dev->ctrl);
2672 mutex_unlock(&dev->shutdown_lock);
2675 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2677 if (!nvme_wait_reset(&dev->ctrl))
2679 nvme_dev_disable(dev, shutdown);
2683 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2685 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2686 NVME_CTRL_PAGE_SIZE,
2687 NVME_CTRL_PAGE_SIZE, 0);
2688 if (!dev->prp_page_pool)
2691 /* Optimisation for I/Os between 4k and 128k */
2692 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2694 if (!dev->prp_small_pool) {
2695 dma_pool_destroy(dev->prp_page_pool);
2701 static void nvme_release_prp_pools(struct nvme_dev *dev)
2703 dma_pool_destroy(dev->prp_page_pool);
2704 dma_pool_destroy(dev->prp_small_pool);
2707 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2709 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2711 dev->iod_mempool = mempool_create_node(1,
2712 mempool_kmalloc, mempool_kfree,
2713 (void *)alloc_size, GFP_KERNEL,
2714 dev_to_node(dev->dev));
2715 if (!dev->iod_mempool)
2720 static void nvme_free_tagset(struct nvme_dev *dev)
2722 if (dev->tagset.tags)
2723 nvme_remove_io_tag_set(&dev->ctrl);
2724 dev->ctrl.tagset = NULL;
2727 /* pairs with nvme_pci_alloc_dev */
2728 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2730 struct nvme_dev *dev = to_nvme_dev(ctrl);
2732 nvme_free_tagset(dev);
2733 put_device(dev->dev);
2738 static void nvme_reset_work(struct work_struct *work)
2740 struct nvme_dev *dev =
2741 container_of(work, struct nvme_dev, ctrl.reset_work);
2742 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2745 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2746 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2753 * If we're called to reset a live controller first shut it down before
2756 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2757 nvme_dev_disable(dev, false);
2758 nvme_sync_queues(&dev->ctrl);
2760 mutex_lock(&dev->shutdown_lock);
2761 result = nvme_pci_enable(dev);
2764 nvme_unquiesce_admin_queue(&dev->ctrl);
2765 mutex_unlock(&dev->shutdown_lock);
2768 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2769 * initializing procedure here.
2771 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2772 dev_warn(dev->ctrl.device,
2773 "failed to mark controller CONNECTING\n");
2778 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2782 nvme_dbbuf_dma_alloc(dev);
2784 result = nvme_setup_host_mem(dev);
2788 result = nvme_setup_io_queues(dev);
2793 * Freeze and update the number of I/O queues as thos might have
2794 * changed. If there are no I/O queues left after this reset, keep the
2795 * controller around but remove all namespaces.
2797 if (dev->online_queues > 1) {
2798 nvme_dbbuf_set(dev);
2799 nvme_unquiesce_io_queues(&dev->ctrl);
2800 nvme_wait_freeze(&dev->ctrl);
2801 nvme_pci_update_nr_queues(dev);
2802 nvme_unfreeze(&dev->ctrl);
2804 dev_warn(dev->ctrl.device, "IO queues lost\n");
2805 nvme_mark_namespaces_dead(&dev->ctrl);
2806 nvme_unquiesce_io_queues(&dev->ctrl);
2807 nvme_remove_namespaces(&dev->ctrl);
2808 nvme_free_tagset(dev);
2812 * If only admin queue live, keep it to do further investigation or
2815 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2816 dev_warn(dev->ctrl.device,
2817 "failed to mark controller live state\n");
2822 nvme_start_ctrl(&dev->ctrl);
2826 mutex_unlock(&dev->shutdown_lock);
2829 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2830 * may be holding this pci_dev's device lock.
2832 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2834 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2835 nvme_dev_disable(dev, true);
2836 nvme_sync_queues(&dev->ctrl);
2837 nvme_mark_namespaces_dead(&dev->ctrl);
2838 nvme_unquiesce_io_queues(&dev->ctrl);
2839 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2842 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2844 *val = readl(to_nvme_dev(ctrl)->bar + off);
2848 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2850 writel(val, to_nvme_dev(ctrl)->bar + off);
2854 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2856 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2860 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2862 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2864 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2867 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2869 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2870 struct nvme_subsystem *subsys = ctrl->subsys;
2872 dev_err(ctrl->device,
2873 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2874 pdev->vendor, pdev->device,
2875 nvme_strlen(subsys->model, sizeof(subsys->model)),
2876 subsys->model, nvme_strlen(subsys->firmware_rev,
2877 sizeof(subsys->firmware_rev)),
2878 subsys->firmware_rev);
2881 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2883 struct nvme_dev *dev = to_nvme_dev(ctrl);
2885 return dma_pci_p2pdma_supported(dev->dev);
2888 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2890 .module = THIS_MODULE,
2891 .flags = NVME_F_METADATA_SUPPORTED,
2892 .dev_attr_groups = nvme_pci_dev_attr_groups,
2893 .reg_read32 = nvme_pci_reg_read32,
2894 .reg_write32 = nvme_pci_reg_write32,
2895 .reg_read64 = nvme_pci_reg_read64,
2896 .free_ctrl = nvme_pci_free_ctrl,
2897 .submit_async_event = nvme_pci_submit_async_event,
2898 .subsystem_reset = nvme_pci_subsystem_reset,
2899 .get_address = nvme_pci_get_address,
2900 .print_device_info = nvme_pci_print_device_info,
2901 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
2904 static int nvme_dev_map(struct nvme_dev *dev)
2906 struct pci_dev *pdev = to_pci_dev(dev->dev);
2908 if (pci_request_mem_regions(pdev, "nvme"))
2911 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2916 pci_release_mem_regions(pdev);
2920 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2922 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2924 * Several Samsung devices seem to drop off the PCIe bus
2925 * randomly when APST is on and uses the deepest sleep state.
2926 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2927 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2928 * 950 PRO 256GB", but it seems to be restricted to two Dell
2931 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2932 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2933 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2934 return NVME_QUIRK_NO_DEEPEST_PS;
2935 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2937 * Samsung SSD 960 EVO drops off the PCIe bus after system
2938 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2939 * within few minutes after bootup on a Coffee Lake board -
2942 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2943 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2944 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2945 return NVME_QUIRK_NO_APST;
2946 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2947 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2948 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2950 * Forcing to use host managed nvme power settings for
2951 * lowest idle power with quick resume latency on
2952 * Samsung and Toshiba SSDs based on suspend behavior
2953 * on Coffee Lake board for LENOVO C640
2955 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2956 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2957 return NVME_QUIRK_SIMPLE_SUSPEND;
2958 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2959 pdev->device == 0x500f)) {
2961 * Exclude some Kingston NV1 and A2000 devices from
2962 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2963 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2965 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2966 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2967 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2968 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2969 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2973 * NVMe SSD drops off the PCIe bus after system idle
2974 * for 10 hours on a Lenovo N60z board.
2976 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
2977 return NVME_QUIRK_NO_APST;
2982 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2983 const struct pci_device_id *id)
2985 unsigned long quirks = id->driver_data;
2986 int node = dev_to_node(&pdev->dev);
2987 struct nvme_dev *dev;
2990 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2992 return ERR_PTR(-ENOMEM);
2993 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2994 mutex_init(&dev->shutdown_lock);
2996 dev->nr_write_queues = write_queues;
2997 dev->nr_poll_queues = poll_queues;
2998 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2999 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3000 sizeof(struct nvme_queue), GFP_KERNEL, node);
3004 dev->dev = get_device(&pdev->dev);
3006 quirks |= check_vendor_combination_bug(pdev);
3008 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3009 acpi_storage_d3(&pdev->dev)) {
3011 * Some systems use a bios work around to ask for D3 on
3012 * platforms that support kernel managed suspend.
3014 dev_info(&pdev->dev,
3015 "platform quirk: setting simple suspend\n");
3016 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3018 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3021 goto out_put_device;
3023 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3024 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3026 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3027 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3028 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3031 * Limit the max command size to prevent iod->sg allocations going
3032 * over a single page.
3034 dev->ctrl.max_hw_sectors = min_t(u32,
3035 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3036 dev->ctrl.max_segments = NVME_MAX_SEGS;
3039 * There is no support for SGLs for metadata (yet), so we are limited to
3040 * a single integrity segment for the separate metadata pointer.
3042 dev->ctrl.max_integrity_segments = 1;
3046 put_device(dev->dev);
3050 return ERR_PTR(ret);
3053 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3055 struct nvme_dev *dev;
3056 int result = -ENOMEM;
3058 dev = nvme_pci_alloc_dev(pdev, id);
3060 return PTR_ERR(dev);
3062 result = nvme_add_ctrl(&dev->ctrl);
3066 result = nvme_dev_map(dev);
3068 goto out_uninit_ctrl;
3070 result = nvme_setup_prp_pools(dev);
3074 result = nvme_pci_alloc_iod_mempool(dev);
3076 goto out_release_prp_pools;
3078 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3080 result = nvme_pci_enable(dev);
3082 goto out_release_iod_mempool;
3084 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3085 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3090 * Mark the controller as connecting before sending admin commands to
3091 * allow the timeout handler to do the right thing.
3093 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3094 dev_warn(dev->ctrl.device,
3095 "failed to mark controller CONNECTING\n");
3100 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3104 nvme_dbbuf_dma_alloc(dev);
3106 result = nvme_setup_host_mem(dev);
3110 result = nvme_setup_io_queues(dev);
3114 if (dev->online_queues > 1) {
3115 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3116 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3117 nvme_dbbuf_set(dev);
3120 if (!dev->ctrl.tagset)
3121 dev_warn(dev->ctrl.device, "IO queues not created\n");
3123 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3124 dev_warn(dev->ctrl.device,
3125 "failed to mark controller live state\n");
3130 pci_set_drvdata(pdev, dev);
3132 nvme_start_ctrl(&dev->ctrl);
3133 nvme_put_ctrl(&dev->ctrl);
3134 flush_work(&dev->ctrl.scan_work);
3138 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3139 nvme_dev_disable(dev, true);
3140 nvme_free_host_mem(dev);
3141 nvme_dev_remove_admin(dev);
3142 nvme_dbbuf_dma_free(dev);
3143 nvme_free_queues(dev, 0);
3144 out_release_iod_mempool:
3145 mempool_destroy(dev->iod_mempool);
3146 out_release_prp_pools:
3147 nvme_release_prp_pools(dev);
3149 nvme_dev_unmap(dev);
3151 nvme_uninit_ctrl(&dev->ctrl);
3153 nvme_put_ctrl(&dev->ctrl);
3157 static void nvme_reset_prepare(struct pci_dev *pdev)
3159 struct nvme_dev *dev = pci_get_drvdata(pdev);
3162 * We don't need to check the return value from waiting for the reset
3163 * state as pci_dev device lock is held, making it impossible to race
3166 nvme_disable_prepare_reset(dev, false);
3167 nvme_sync_queues(&dev->ctrl);
3170 static void nvme_reset_done(struct pci_dev *pdev)
3172 struct nvme_dev *dev = pci_get_drvdata(pdev);
3174 if (!nvme_try_sched_reset(&dev->ctrl))
3175 flush_work(&dev->ctrl.reset_work);
3178 static void nvme_shutdown(struct pci_dev *pdev)
3180 struct nvme_dev *dev = pci_get_drvdata(pdev);
3182 nvme_disable_prepare_reset(dev, true);
3186 * The driver's remove may be called on a device in a partially initialized
3187 * state. This function must not have any dependencies on the device state in
3190 static void nvme_remove(struct pci_dev *pdev)
3192 struct nvme_dev *dev = pci_get_drvdata(pdev);
3194 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3195 pci_set_drvdata(pdev, NULL);
3197 if (!pci_device_is_present(pdev)) {
3198 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3199 nvme_dev_disable(dev, true);
3202 flush_work(&dev->ctrl.reset_work);
3203 nvme_stop_ctrl(&dev->ctrl);
3204 nvme_remove_namespaces(&dev->ctrl);
3205 nvme_dev_disable(dev, true);
3206 nvme_free_host_mem(dev);
3207 nvme_dev_remove_admin(dev);
3208 nvme_dbbuf_dma_free(dev);
3209 nvme_free_queues(dev, 0);
3210 mempool_destroy(dev->iod_mempool);
3211 nvme_release_prp_pools(dev);
3212 nvme_dev_unmap(dev);
3213 nvme_uninit_ctrl(&dev->ctrl);
3216 #ifdef CONFIG_PM_SLEEP
3217 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3219 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3222 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3224 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3227 static int nvme_resume(struct device *dev)
3229 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3230 struct nvme_ctrl *ctrl = &ndev->ctrl;
3232 if (ndev->last_ps == U32_MAX ||
3233 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3235 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3240 return nvme_try_sched_reset(ctrl);
3243 static int nvme_suspend(struct device *dev)
3245 struct pci_dev *pdev = to_pci_dev(dev);
3246 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3247 struct nvme_ctrl *ctrl = &ndev->ctrl;
3250 ndev->last_ps = U32_MAX;
3253 * The platform does not remove power for a kernel managed suspend so
3254 * use host managed nvme power settings for lowest idle power if
3255 * possible. This should have quicker resume latency than a full device
3256 * shutdown. But if the firmware is involved after the suspend or the
3257 * device does not support any non-default power states, shut down the
3260 * If ASPM is not enabled for the device, shut down the device and allow
3261 * the PCI bus layer to put it into D3 in order to take the PCIe link
3262 * down, so as to allow the platform to achieve its minimum low-power
3263 * state (which may not be possible if the link is up).
3265 if (pm_suspend_via_firmware() || !ctrl->npss ||
3266 !pcie_aspm_enabled(pdev) ||
3267 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3268 return nvme_disable_prepare_reset(ndev, true);
3270 nvme_start_freeze(ctrl);
3271 nvme_wait_freeze(ctrl);
3272 nvme_sync_queues(ctrl);
3274 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3278 * Host memory access may not be successful in a system suspend state,
3279 * but the specification allows the controller to access memory in a
3280 * non-operational power state.
3283 ret = nvme_set_host_mem(ndev, 0);
3288 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3293 * A saved state prevents pci pm from generically controlling the
3294 * device's power. If we're using protocol specific settings, we don't
3295 * want pci interfering.
3297 pci_save_state(pdev);
3299 ret = nvme_set_power_state(ctrl, ctrl->npss);
3304 /* discard the saved state */
3305 pci_load_saved_state(pdev, NULL);
3308 * Clearing npss forces a controller reset on resume. The
3309 * correct value will be rediscovered then.
3311 ret = nvme_disable_prepare_reset(ndev, true);
3315 nvme_unfreeze(ctrl);
3319 static int nvme_simple_suspend(struct device *dev)
3321 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3323 return nvme_disable_prepare_reset(ndev, true);
3326 static int nvme_simple_resume(struct device *dev)
3328 struct pci_dev *pdev = to_pci_dev(dev);
3329 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3331 return nvme_try_sched_reset(&ndev->ctrl);
3334 static const struct dev_pm_ops nvme_dev_pm_ops = {
3335 .suspend = nvme_suspend,
3336 .resume = nvme_resume,
3337 .freeze = nvme_simple_suspend,
3338 .thaw = nvme_simple_resume,
3339 .poweroff = nvme_simple_suspend,
3340 .restore = nvme_simple_resume,
3342 #endif /* CONFIG_PM_SLEEP */
3344 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3345 pci_channel_state_t state)
3347 struct nvme_dev *dev = pci_get_drvdata(pdev);
3350 * A frozen channel requires a reset. When detected, this method will
3351 * shutdown the controller to quiesce. The controller will be restarted
3352 * after the slot reset through driver's slot_reset callback.
3355 case pci_channel_io_normal:
3356 return PCI_ERS_RESULT_CAN_RECOVER;
3357 case pci_channel_io_frozen:
3358 dev_warn(dev->ctrl.device,
3359 "frozen state error detected, reset controller\n");
3360 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3361 nvme_dev_disable(dev, true);
3362 return PCI_ERS_RESULT_DISCONNECT;
3364 nvme_dev_disable(dev, false);
3365 return PCI_ERS_RESULT_NEED_RESET;
3366 case pci_channel_io_perm_failure:
3367 dev_warn(dev->ctrl.device,
3368 "failure state error detected, request disconnect\n");
3369 return PCI_ERS_RESULT_DISCONNECT;
3371 return PCI_ERS_RESULT_NEED_RESET;
3374 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3376 struct nvme_dev *dev = pci_get_drvdata(pdev);
3378 dev_info(dev->ctrl.device, "restart after slot reset\n");
3379 pci_restore_state(pdev);
3380 if (!nvme_try_sched_reset(&dev->ctrl))
3381 nvme_unquiesce_io_queues(&dev->ctrl);
3382 return PCI_ERS_RESULT_RECOVERED;
3385 static void nvme_error_resume(struct pci_dev *pdev)
3387 struct nvme_dev *dev = pci_get_drvdata(pdev);
3389 flush_work(&dev->ctrl.reset_work);
3392 static const struct pci_error_handlers nvme_err_handler = {
3393 .error_detected = nvme_error_detected,
3394 .slot_reset = nvme_slot_reset,
3395 .resume = nvme_error_resume,
3396 .reset_prepare = nvme_reset_prepare,
3397 .reset_done = nvme_reset_done,
3400 static const struct pci_device_id nvme_id_table[] = {
3401 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3402 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3403 NVME_QUIRK_DEALLOCATE_ZEROES, },
3404 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3405 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3406 NVME_QUIRK_DEALLOCATE_ZEROES, },
3407 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3408 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3409 NVME_QUIRK_DEALLOCATE_ZEROES |
3410 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3411 NVME_QUIRK_BOGUS_NID, },
3412 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3413 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3414 NVME_QUIRK_DEALLOCATE_ZEROES, },
3415 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3416 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3417 NVME_QUIRK_MEDIUM_PRIO_SQ |
3418 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3419 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3420 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3421 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3422 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3423 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3424 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3425 NVME_QUIRK_BOGUS_NID, },
3426 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3427 .driver_data = NVME_QUIRK_BOGUS_NID, },
3428 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3429 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3430 NVME_QUIRK_BOGUS_NID, },
3431 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3432 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3433 NVME_QUIRK_BOGUS_NID, },
3434 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3435 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3436 NVME_QUIRK_NO_NS_DESC_LIST, },
3437 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3438 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3439 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3440 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3441 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3442 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3443 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3444 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3445 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3446 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3447 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3448 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3449 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3450 .driver_data = NVME_QUIRK_BROKEN_MSI },
3451 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3452 .driver_data = NVME_QUIRK_BOGUS_NID, },
3453 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3454 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3455 NVME_QUIRK_BOGUS_NID, },
3456 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3457 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3458 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3459 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3460 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3461 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3462 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3463 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3464 .driver_data = NVME_QUIRK_BOGUS_NID, },
3465 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3466 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3467 NVME_QUIRK_BOGUS_NID, },
3468 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3469 .driver_data = NVME_QUIRK_BOGUS_NID, },
3470 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3471 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3472 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3473 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3474 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3475 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3476 .driver_data = NVME_QUIRK_BOGUS_NID, },
3477 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3478 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3479 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3480 .driver_data = NVME_QUIRK_BOGUS_NID, },
3481 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3482 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3483 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3484 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3485 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3486 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3487 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3488 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3489 NVME_QUIRK_BOGUS_NID, },
3490 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3491 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3493 .driver_data = NVME_QUIRK_BOGUS_NID, },
3494 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3495 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3497 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3499 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3500 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3501 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3502 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3503 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3504 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3505 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3507 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3509 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3510 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3511 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3513 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3514 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3515 .driver_data = NVME_QUIRK_BOGUS_NID, },
3516 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3517 .driver_data = NVME_QUIRK_BOGUS_NID, },
3518 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3519 .driver_data = NVME_QUIRK_BOGUS_NID, },
3520 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3521 .driver_data = NVME_QUIRK_BOGUS_NID, },
3522 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3523 .driver_data = NVME_QUIRK_BOGUS_NID, },
3524 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3525 .driver_data = NVME_QUIRK_BOGUS_NID, },
3526 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3527 .driver_data = NVME_QUIRK_BOGUS_NID, },
3528 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3529 .driver_data = NVME_QUIRK_BOGUS_NID, },
3530 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3531 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3532 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3533 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3534 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3535 .driver_data = NVME_QUIRK_BOGUS_NID, },
3536 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3537 .driver_data = NVME_QUIRK_BOGUS_NID, },
3538 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3539 .driver_data = NVME_QUIRK_BOGUS_NID, },
3540 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3541 .driver_data = NVME_QUIRK_BOGUS_NID |
3542 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3543 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3544 .driver_data = NVME_QUIRK_BOGUS_NID, },
3545 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3546 .driver_data = NVME_QUIRK_BOGUS_NID, },
3547 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3548 .driver_data = NVME_QUIRK_BOGUS_NID, },
3549 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3550 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3551 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3552 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3553 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3554 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3555 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3556 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3557 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3558 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3559 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3560 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3561 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3562 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3563 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3564 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3565 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3566 NVME_QUIRK_128_BYTES_SQES |
3567 NVME_QUIRK_SHARED_TAGS |
3568 NVME_QUIRK_SKIP_CID_GEN |
3569 NVME_QUIRK_IDENTIFY_CNS },
3570 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3573 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3575 static struct pci_driver nvme_driver = {
3577 .id_table = nvme_id_table,
3578 .probe = nvme_probe,
3579 .remove = nvme_remove,
3580 .shutdown = nvme_shutdown,
3582 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3583 #ifdef CONFIG_PM_SLEEP
3584 .pm = &nvme_dev_pm_ops,
3587 .sriov_configure = pci_sriov_configure_simple,
3588 .err_handler = &nvme_err_handler,
3591 static int __init nvme_init(void)
3593 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3594 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3595 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3596 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3597 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3598 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3599 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3601 return pci_register_driver(&nvme_driver);
3604 static void __exit nvme_exit(void)
3606 pci_unregister_driver(&nvme_driver);
3607 flush_workqueue(nvme_wq);
3611 MODULE_LICENSE("GPL");
3612 MODULE_VERSION("1.0");
3613 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3614 module_init(nvme_init);
3615 module_exit(nvme_exit);