1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
28 #include <linux/nvme-auth.h>
30 #define CREATE_TRACE_POINTS
33 #define NVME_MINORS (1U << MINORBITS)
36 struct nvme_ns_ids ids;
46 unsigned int admin_timeout = 60;
47 module_param(admin_timeout, uint, 0644);
48 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
49 EXPORT_SYMBOL_GPL(admin_timeout);
51 unsigned int nvme_io_timeout = 30;
52 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
53 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
54 EXPORT_SYMBOL_GPL(nvme_io_timeout);
56 static unsigned char shutdown_timeout = 5;
57 module_param(shutdown_timeout, byte, 0644);
58 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
60 static u8 nvme_max_retries = 5;
61 module_param_named(max_retries, nvme_max_retries, byte, 0644);
62 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
64 static unsigned long default_ps_max_latency_us = 100000;
65 module_param(default_ps_max_latency_us, ulong, 0644);
66 MODULE_PARM_DESC(default_ps_max_latency_us,
67 "max power saving latency for new devices; use PM QOS to change per device");
69 static bool force_apst;
70 module_param(force_apst, bool, 0644);
71 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
73 static unsigned long apst_primary_timeout_ms = 100;
74 module_param(apst_primary_timeout_ms, ulong, 0644);
75 MODULE_PARM_DESC(apst_primary_timeout_ms,
76 "primary APST timeout in ms");
78 static unsigned long apst_secondary_timeout_ms = 2000;
79 module_param(apst_secondary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_secondary_timeout_ms,
81 "secondary APST timeout in ms");
83 static unsigned long apst_primary_latency_tol_us = 15000;
84 module_param(apst_primary_latency_tol_us, ulong, 0644);
85 MODULE_PARM_DESC(apst_primary_latency_tol_us,
86 "primary APST latency tolerance in us");
88 static unsigned long apst_secondary_latency_tol_us = 100000;
89 module_param(apst_secondary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
91 "secondary APST latency tolerance in us");
94 * nvme_wq - hosts nvme related works that are not reset or delete
95 * nvme_reset_wq - hosts nvme reset works
96 * nvme_delete_wq - hosts nvme delete works
98 * nvme_wq will host works such as scan, aen handling, fw activation,
99 * keep-alive, periodic reconnects etc. nvme_reset_wq
100 * runs reset works which also flush works hosted on nvme_wq for
101 * serialization purposes. nvme_delete_wq host controller deletion
102 * works which flush reset works for serialization.
104 struct workqueue_struct *nvme_wq;
105 EXPORT_SYMBOL_GPL(nvme_wq);
107 struct workqueue_struct *nvme_reset_wq;
108 EXPORT_SYMBOL_GPL(nvme_reset_wq);
110 struct workqueue_struct *nvme_delete_wq;
111 EXPORT_SYMBOL_GPL(nvme_delete_wq);
113 static LIST_HEAD(nvme_subsystems);
114 DEFINE_MUTEX(nvme_subsystems_lock);
116 static DEFINE_IDA(nvme_instance_ida);
117 static dev_t nvme_ctrl_base_chr_devt;
118 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
119 static const struct class nvme_class = {
121 .dev_uevent = nvme_class_uevent,
124 static const struct class nvme_subsys_class = {
125 .name = "nvme-subsystem",
128 static DEFINE_IDA(nvme_ns_chr_minor_ida);
129 static dev_t nvme_ns_chr_devt;
130 static const struct class nvme_ns_chr_class = {
131 .name = "nvme-generic",
134 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
135 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
137 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
138 struct nvme_command *cmd);
140 void nvme_queue_scan(struct nvme_ctrl *ctrl)
143 * Only new queue scan work when admin and IO queues are both alive
145 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
146 queue_work(nvme_wq, &ctrl->scan_work);
150 * Use this function to proceed with scheduling reset_work for a controller
151 * that had previously been set to the resetting state. This is intended for
152 * code paths that can't be interrupted by other reset attempts. A hot removal
153 * may prevent this from succeeding.
155 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
157 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
159 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
163 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
165 static void nvme_failfast_work(struct work_struct *work)
167 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
168 struct nvme_ctrl, failfast_work);
170 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
173 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
174 dev_info(ctrl->device, "failfast expired\n");
175 nvme_kick_requeue_lists(ctrl);
178 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
180 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
183 schedule_delayed_work(&ctrl->failfast_work,
184 ctrl->opts->fast_io_fail_tmo * HZ);
187 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
192 cancel_delayed_work_sync(&ctrl->failfast_work);
193 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
197 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
199 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
201 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
205 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
207 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
211 ret = nvme_reset_ctrl(ctrl);
213 flush_work(&ctrl->reset_work);
214 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
221 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
223 dev_info(ctrl->device,
224 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
226 flush_work(&ctrl->reset_work);
227 nvme_stop_ctrl(ctrl);
228 nvme_remove_namespaces(ctrl);
229 ctrl->ops->delete_ctrl(ctrl);
230 nvme_uninit_ctrl(ctrl);
233 static void nvme_delete_ctrl_work(struct work_struct *work)
235 struct nvme_ctrl *ctrl =
236 container_of(work, struct nvme_ctrl, delete_work);
238 nvme_do_delete_ctrl(ctrl);
241 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
243 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
245 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
249 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
251 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
254 * Keep a reference until nvme_do_delete_ctrl() complete,
255 * since ->delete_ctrl can free the controller.
258 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
259 nvme_do_delete_ctrl(ctrl);
263 static blk_status_t nvme_error_status(u16 status)
265 switch (status & NVME_SCT_SC_MASK) {
266 case NVME_SC_SUCCESS:
268 case NVME_SC_CAP_EXCEEDED:
269 return BLK_STS_NOSPC;
270 case NVME_SC_LBA_RANGE:
271 case NVME_SC_CMD_INTERRUPTED:
272 case NVME_SC_NS_NOT_READY:
273 return BLK_STS_TARGET;
274 case NVME_SC_BAD_ATTRIBUTES:
275 case NVME_SC_ONCS_NOT_SUPPORTED:
276 case NVME_SC_INVALID_OPCODE:
277 case NVME_SC_INVALID_FIELD:
278 case NVME_SC_INVALID_NS:
279 return BLK_STS_NOTSUPP;
280 case NVME_SC_WRITE_FAULT:
281 case NVME_SC_READ_ERROR:
282 case NVME_SC_UNWRITTEN_BLOCK:
283 case NVME_SC_ACCESS_DENIED:
284 case NVME_SC_READ_ONLY:
285 case NVME_SC_COMPARE_FAILED:
286 return BLK_STS_MEDIUM;
287 case NVME_SC_GUARD_CHECK:
288 case NVME_SC_APPTAG_CHECK:
289 case NVME_SC_REFTAG_CHECK:
290 case NVME_SC_INVALID_PI:
291 return BLK_STS_PROTECTION;
292 case NVME_SC_RESERVATION_CONFLICT:
293 return BLK_STS_RESV_CONFLICT;
294 case NVME_SC_HOST_PATH_ERROR:
295 return BLK_STS_TRANSPORT;
296 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
297 return BLK_STS_ZONE_ACTIVE_RESOURCE;
298 case NVME_SC_ZONE_TOO_MANY_OPEN:
299 return BLK_STS_ZONE_OPEN_RESOURCE;
301 return BLK_STS_IOERR;
305 static void nvme_retry_req(struct request *req)
307 unsigned long delay = 0;
310 /* The mask and shift result must be <= 3 */
311 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
313 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
315 nvme_req(req)->retries++;
316 blk_mq_requeue_request(req, false);
317 blk_mq_delay_kick_requeue_list(req->q, delay);
320 static void nvme_log_error(struct request *req)
322 struct nvme_ns *ns = req->q->queuedata;
323 struct nvme_request *nr = nvme_req(req);
326 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
327 ns->disk ? ns->disk->disk_name : "?",
328 nvme_get_opcode_str(nr->cmd->common.opcode),
329 nr->cmd->common.opcode,
330 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
331 blk_rq_bytes(req) >> ns->head->lba_shift,
332 nvme_get_error_status_str(nr->status),
333 NVME_SCT(nr->status), /* Status Code Type */
334 nr->status & NVME_SC_MASK, /* Status Code */
335 nr->status & NVME_STATUS_MORE ? "MORE " : "",
336 nr->status & NVME_STATUS_DNR ? "DNR " : "");
340 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
341 dev_name(nr->ctrl->device),
342 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
343 nr->cmd->common.opcode,
344 nvme_get_error_status_str(nr->status),
345 NVME_SCT(nr->status), /* Status Code Type */
346 nr->status & NVME_SC_MASK, /* Status Code */
347 nr->status & NVME_STATUS_MORE ? "MORE " : "",
348 nr->status & NVME_STATUS_DNR ? "DNR " : "");
351 static void nvme_log_err_passthru(struct request *req)
353 struct nvme_ns *ns = req->q->queuedata;
354 struct nvme_request *nr = nvme_req(req);
356 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
357 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
358 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
359 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
360 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
361 nr->cmd->common.opcode,
362 nvme_get_error_status_str(nr->status),
363 NVME_SCT(nr->status), /* Status Code Type */
364 nr->status & NVME_SC_MASK, /* Status Code */
365 nr->status & NVME_STATUS_MORE ? "MORE " : "",
366 nr->status & NVME_STATUS_DNR ? "DNR " : "",
367 nr->cmd->common.cdw10,
368 nr->cmd->common.cdw11,
369 nr->cmd->common.cdw12,
370 nr->cmd->common.cdw13,
371 nr->cmd->common.cdw14,
372 nr->cmd->common.cdw14);
375 enum nvme_disposition {
382 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
384 if (likely(nvme_req(req)->status == 0))
387 if (blk_noretry_request(req) ||
388 (nvme_req(req)->status & NVME_STATUS_DNR) ||
389 nvme_req(req)->retries >= nvme_max_retries)
392 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
395 if (req->cmd_flags & REQ_NVME_MPATH) {
396 if (nvme_is_path_error(nvme_req(req)->status) ||
397 blk_queue_dying(req->q))
400 if (blk_queue_dying(req->q))
407 static inline void nvme_end_req_zoned(struct request *req)
409 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
410 req_op(req) == REQ_OP_ZONE_APPEND) {
411 struct nvme_ns *ns = req->q->queuedata;
413 req->__sector = nvme_lba_to_sect(ns->head,
414 le64_to_cpu(nvme_req(req)->result.u64));
418 static inline void __nvme_end_req(struct request *req)
420 nvme_end_req_zoned(req);
421 nvme_trace_bio_complete(req);
422 if (req->cmd_flags & REQ_NVME_MPATH)
423 nvme_mpath_end_request(req);
426 void nvme_end_req(struct request *req)
428 blk_status_t status = nvme_error_status(nvme_req(req)->status);
430 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
431 if (blk_rq_is_passthrough(req))
432 nvme_log_err_passthru(req);
437 blk_mq_end_request(req, status);
440 void nvme_complete_rq(struct request *req)
442 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
444 trace_nvme_complete_rq(req);
445 nvme_cleanup_cmd(req);
448 * Completions of long-running commands should not be able to
449 * defer sending of periodic keep alives, since the controller
450 * may have completed processing such commands a long time ago
451 * (arbitrarily close to command submission time).
452 * req->deadline - req->timeout is the command submission time
456 req->deadline - req->timeout >= ctrl->ka_last_check_time)
457 ctrl->comp_seen = true;
459 switch (nvme_decide_disposition(req)) {
467 nvme_failover_req(req);
470 #ifdef CONFIG_NVME_HOST_AUTH
471 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
479 EXPORT_SYMBOL_GPL(nvme_complete_rq);
481 void nvme_complete_batch_req(struct request *req)
483 trace_nvme_complete_rq(req);
484 nvme_cleanup_cmd(req);
487 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
490 * Called to unwind from ->queue_rq on a failed command submission so that the
491 * multipathing code gets called to potentially failover to another path.
492 * The caller needs to unwind all transport specific resource allocations and
493 * must return propagate the return value.
495 blk_status_t nvme_host_path_error(struct request *req)
497 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
498 blk_mq_set_request_complete(req);
499 nvme_complete_rq(req);
502 EXPORT_SYMBOL_GPL(nvme_host_path_error);
504 bool nvme_cancel_request(struct request *req, void *data)
506 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
507 "Cancelling I/O %d", req->tag);
509 /* don't abort one completed or idle request */
510 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
513 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
514 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
515 blk_mq_complete_request(req);
518 EXPORT_SYMBOL_GPL(nvme_cancel_request);
520 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
523 blk_mq_tagset_busy_iter(ctrl->tagset,
524 nvme_cancel_request, ctrl);
525 blk_mq_tagset_wait_completed_request(ctrl->tagset);
528 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
530 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
532 if (ctrl->admin_tagset) {
533 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
534 nvme_cancel_request, ctrl);
535 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
538 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
540 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
541 enum nvme_ctrl_state new_state)
543 enum nvme_ctrl_state old_state;
545 bool changed = false;
547 spin_lock_irqsave(&ctrl->lock, flags);
549 old_state = nvme_ctrl_state(ctrl);
554 case NVME_CTRL_RESETTING:
555 case NVME_CTRL_CONNECTING:
562 case NVME_CTRL_RESETTING:
572 case NVME_CTRL_CONNECTING:
575 case NVME_CTRL_RESETTING:
582 case NVME_CTRL_DELETING:
585 case NVME_CTRL_RESETTING:
586 case NVME_CTRL_CONNECTING:
593 case NVME_CTRL_DELETING_NOIO:
595 case NVME_CTRL_DELETING:
605 case NVME_CTRL_DELETING:
617 WRITE_ONCE(ctrl->state, new_state);
618 wake_up_all(&ctrl->state_wq);
621 spin_unlock_irqrestore(&ctrl->lock, flags);
625 if (new_state == NVME_CTRL_LIVE) {
626 if (old_state == NVME_CTRL_CONNECTING)
627 nvme_stop_failfast_work(ctrl);
628 nvme_kick_requeue_lists(ctrl);
629 } else if (new_state == NVME_CTRL_CONNECTING &&
630 old_state == NVME_CTRL_RESETTING) {
631 nvme_start_failfast_work(ctrl);
635 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
638 * Waits for the controller state to be resetting, or returns false if it is
639 * not possible to ever transition to that state.
641 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
643 wait_event(ctrl->state_wq,
644 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
645 nvme_state_terminal(ctrl));
646 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
648 EXPORT_SYMBOL_GPL(nvme_wait_reset);
650 static void nvme_free_ns_head(struct kref *ref)
652 struct nvme_ns_head *head =
653 container_of(ref, struct nvme_ns_head, ref);
655 nvme_mpath_remove_disk(head);
656 ida_free(&head->subsys->ns_ida, head->instance);
657 cleanup_srcu_struct(&head->srcu);
658 nvme_put_subsystem(head->subsys);
662 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
664 return kref_get_unless_zero(&head->ref);
667 void nvme_put_ns_head(struct nvme_ns_head *head)
669 kref_put(&head->ref, nvme_free_ns_head);
672 static void nvme_free_ns(struct kref *kref)
674 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
677 nvme_put_ns_head(ns->head);
678 nvme_put_ctrl(ns->ctrl);
682 bool nvme_get_ns(struct nvme_ns *ns)
684 return kref_get_unless_zero(&ns->kref);
687 void nvme_put_ns(struct nvme_ns *ns)
689 kref_put(&ns->kref, nvme_free_ns);
691 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
693 static inline void nvme_clear_nvme_request(struct request *req)
695 nvme_req(req)->status = 0;
696 nvme_req(req)->retries = 0;
697 nvme_req(req)->flags = 0;
698 req->rq_flags |= RQF_DONTPREP;
701 /* initialize a passthrough request */
702 void nvme_init_request(struct request *req, struct nvme_command *cmd)
704 struct nvme_request *nr = nvme_req(req);
705 bool logging_enabled;
707 if (req->q->queuedata) {
708 struct nvme_ns *ns = req->q->disk->private_data;
710 logging_enabled = ns->head->passthru_err_log_enabled;
711 req->timeout = NVME_IO_TIMEOUT;
712 } else { /* no queuedata implies admin queue */
713 logging_enabled = nr->ctrl->passthru_err_log_enabled;
714 req->timeout = NVME_ADMIN_TIMEOUT;
717 if (!logging_enabled)
718 req->rq_flags |= RQF_QUIET;
720 /* passthru commands should let the driver set the SGL flags */
721 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
723 req->cmd_flags |= REQ_FAILFAST_DRIVER;
724 if (req->mq_hctx->type == HCTX_TYPE_POLL)
725 req->cmd_flags |= REQ_POLLED;
726 nvme_clear_nvme_request(req);
727 memcpy(nr->cmd, cmd, sizeof(*cmd));
729 EXPORT_SYMBOL_GPL(nvme_init_request);
732 * For something we're not in a state to send to the device the default action
733 * is to busy it and retry it after the controller state is recovered. However,
734 * if the controller is deleting or if anything is marked for failfast or
735 * nvme multipath it is immediately failed.
737 * Note: commands used to initialize the controller will be marked for failfast.
738 * Note: nvme cli/ioctl commands are marked for failfast.
740 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
743 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
745 if (state != NVME_CTRL_DELETING_NOIO &&
746 state != NVME_CTRL_DELETING &&
747 state != NVME_CTRL_DEAD &&
748 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
749 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
750 return BLK_STS_RESOURCE;
751 return nvme_host_path_error(rq);
753 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
755 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
756 bool queue_live, enum nvme_ctrl_state state)
758 struct nvme_request *req = nvme_req(rq);
761 * currently we have a problem sending passthru commands
762 * on the admin_q if the controller is not LIVE because we can't
763 * make sure that they are going out after the admin connect,
764 * controller enable and/or other commands in the initialization
765 * sequence. until the controller will be LIVE, fail with
766 * BLK_STS_RESOURCE so that they will be rescheduled.
768 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
771 if (ctrl->ops->flags & NVME_F_FABRICS) {
773 * Only allow commands on a live queue, except for the connect
774 * command, which is require to set the queue live in the
775 * appropinquate states.
778 case NVME_CTRL_CONNECTING:
779 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
780 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
781 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
782 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
794 EXPORT_SYMBOL_GPL(__nvme_check_ready);
796 static inline void nvme_setup_flush(struct nvme_ns *ns,
797 struct nvme_command *cmnd)
799 memset(cmnd, 0, sizeof(*cmnd));
800 cmnd->common.opcode = nvme_cmd_flush;
801 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
804 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
805 struct nvme_command *cmnd)
807 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
808 struct nvme_dsm_range *range;
812 * Some devices do not consider the DSM 'Number of Ranges' field when
813 * determining how much data to DMA. Always allocate memory for maximum
814 * number of segments to prevent device reading beyond end of buffer.
816 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
818 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
821 * If we fail allocation our range, fallback to the controller
822 * discard page. If that's also busy, it's safe to return
823 * busy, as we know we can make progress once that's freed.
825 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
826 return BLK_STS_RESOURCE;
828 range = page_address(ns->ctrl->discard_page);
831 if (queue_max_discard_segments(req->q) == 1) {
832 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
833 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
835 range[0].cattr = cpu_to_le32(0);
836 range[0].nlb = cpu_to_le32(nlb);
837 range[0].slba = cpu_to_le64(slba);
840 __rq_for_each_bio(bio, req) {
841 u64 slba = nvme_sect_to_lba(ns->head,
842 bio->bi_iter.bi_sector);
843 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
846 range[n].cattr = cpu_to_le32(0);
847 range[n].nlb = cpu_to_le32(nlb);
848 range[n].slba = cpu_to_le64(slba);
854 if (WARN_ON_ONCE(n != segments)) {
855 if (virt_to_page(range) == ns->ctrl->discard_page)
856 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
859 return BLK_STS_IOERR;
862 memset(cmnd, 0, sizeof(*cmnd));
863 cmnd->dsm.opcode = nvme_cmd_dsm;
864 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
865 cmnd->dsm.nr = cpu_to_le32(segments - 1);
866 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
868 bvec_set_virt(&req->special_vec, range, alloc_size);
869 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
874 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
880 /* both rw and write zeroes share the same reftag format */
881 switch (ns->head->guard_type) {
882 case NVME_NVM_NS_16B_GUARD:
883 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
885 case NVME_NVM_NS_64B_GUARD:
886 ref48 = ext_pi_ref_tag(req);
887 lower = lower_32_bits(ref48);
888 upper = upper_32_bits(ref48);
890 cmnd->rw.reftag = cpu_to_le32(lower);
891 cmnd->rw.cdw3 = cpu_to_le32(upper);
898 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
899 struct request *req, struct nvme_command *cmnd)
901 memset(cmnd, 0, sizeof(*cmnd));
903 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
904 return nvme_setup_discard(ns, req, cmnd);
906 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
907 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
908 cmnd->write_zeroes.slba =
909 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
910 cmnd->write_zeroes.length =
911 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
913 if (!(req->cmd_flags & REQ_NOUNMAP) &&
914 (ns->head->features & NVME_NS_DEAC))
915 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
917 if (nvme_ns_has_pi(ns->head)) {
918 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
920 switch (ns->head->pi_type) {
921 case NVME_NS_DPS_PI_TYPE1:
922 case NVME_NS_DPS_PI_TYPE2:
923 nvme_set_ref_tag(ns, cmnd, req);
932 * NVMe does not support a dedicated command to issue an atomic write. A write
933 * which does adhere to the device atomic limits will silently be executed
934 * non-atomically. The request issuer should ensure that the write is within
935 * the queue atomic writes limits, but just validate this in case it is not.
937 static bool nvme_valid_atomic_write(struct request *req)
939 struct request_queue *q = req->q;
940 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
942 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
945 if (boundary_bytes) {
946 u64 mask = boundary_bytes - 1, imask = ~mask;
947 u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
948 u64 end = start + blk_rq_bytes(req) - 1;
950 /* If greater then must be crossing a boundary */
951 if (blk_rq_bytes(req) > boundary_bytes)
954 if ((start & imask) != (end & imask))
961 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
962 struct request *req, struct nvme_command *cmnd,
968 if (req->cmd_flags & REQ_FUA)
969 control |= NVME_RW_FUA;
970 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
971 control |= NVME_RW_LR;
973 if (req->cmd_flags & REQ_RAHEAD)
974 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
976 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
977 return BLK_STS_INVAL;
979 cmnd->rw.opcode = op;
981 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
984 cmnd->rw.metadata = 0;
986 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
988 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
991 cmnd->rw.appmask = 0;
995 * If formated with metadata, the block layer always provides a
996 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
997 * we enable the PRACT bit for protection information or set the
998 * namespace capacity to zero to prevent any I/O.
1000 if (!blk_integrity_rq(req)) {
1001 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1002 return BLK_STS_NOTSUPP;
1003 control |= NVME_RW_PRINFO_PRACT;
1006 switch (ns->head->pi_type) {
1007 case NVME_NS_DPS_PI_TYPE3:
1008 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1010 case NVME_NS_DPS_PI_TYPE1:
1011 case NVME_NS_DPS_PI_TYPE2:
1012 control |= NVME_RW_PRINFO_PRCHK_GUARD |
1013 NVME_RW_PRINFO_PRCHK_REF;
1014 if (op == nvme_cmd_zone_append)
1015 control |= NVME_RW_APPEND_PIREMAP;
1016 nvme_set_ref_tag(ns, cmnd, req);
1021 cmnd->rw.control = cpu_to_le16(control);
1022 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1026 void nvme_cleanup_cmd(struct request *req)
1028 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1029 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1031 if (req->special_vec.bv_page == ctrl->discard_page)
1032 clear_bit_unlock(0, &ctrl->discard_page_busy);
1034 kfree(bvec_virt(&req->special_vec));
1035 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1038 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1040 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1042 struct nvme_command *cmd = nvme_req(req)->cmd;
1043 blk_status_t ret = BLK_STS_OK;
1045 if (!(req->rq_flags & RQF_DONTPREP))
1046 nvme_clear_nvme_request(req);
1048 switch (req_op(req)) {
1050 case REQ_OP_DRV_OUT:
1051 /* these are setup prior to execution in nvme_init_request() */
1054 nvme_setup_flush(ns, cmd);
1056 case REQ_OP_ZONE_RESET_ALL:
1057 case REQ_OP_ZONE_RESET:
1058 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1060 case REQ_OP_ZONE_OPEN:
1061 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1063 case REQ_OP_ZONE_CLOSE:
1064 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1066 case REQ_OP_ZONE_FINISH:
1067 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1069 case REQ_OP_WRITE_ZEROES:
1070 ret = nvme_setup_write_zeroes(ns, req, cmd);
1072 case REQ_OP_DISCARD:
1073 ret = nvme_setup_discard(ns, req, cmd);
1076 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1079 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1081 case REQ_OP_ZONE_APPEND:
1082 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1086 return BLK_STS_IOERR;
1089 cmd->common.command_id = nvme_cid(req);
1090 trace_nvme_setup_cmd(req, cmd);
1093 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1098 * >0: nvme controller's cqe status response
1099 * <0: kernel error in lieu of controller response
1101 int nvme_execute_rq(struct request *rq, bool at_head)
1103 blk_status_t status;
1105 status = blk_execute_rq(rq, at_head);
1106 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1108 if (nvme_req(rq)->status)
1109 return nvme_req(rq)->status;
1110 return blk_status_to_errno(status);
1112 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1115 * Returns 0 on success. If the result is negative, it's a Linux error code;
1116 * if the result is positive, it's an NVM Express status code
1118 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1119 union nvme_result *result, void *buffer, unsigned bufflen,
1120 int qid, nvme_submit_flags_t flags)
1122 struct request *req;
1124 blk_mq_req_flags_t blk_flags = 0;
1126 if (flags & NVME_SUBMIT_NOWAIT)
1127 blk_flags |= BLK_MQ_REQ_NOWAIT;
1128 if (flags & NVME_SUBMIT_RESERVED)
1129 blk_flags |= BLK_MQ_REQ_RESERVED;
1130 if (qid == NVME_QID_ANY)
1131 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1133 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1137 return PTR_ERR(req);
1138 nvme_init_request(req, cmd);
1139 if (flags & NVME_SUBMIT_RETRY)
1140 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1142 if (buffer && bufflen) {
1143 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1148 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1149 if (result && ret >= 0)
1150 *result = nvme_req(req)->result;
1152 blk_mq_free_request(req);
1155 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1157 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1158 void *buffer, unsigned bufflen)
1160 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1163 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1165 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1170 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1171 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1172 dev_warn_once(ctrl->device,
1173 "IO command:%02x has unusual effects:%08x\n",
1177 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1178 * which would deadlock when done on an I/O command. Note that
1179 * We already warn about an unusual effect above.
1181 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1183 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1185 /* Ignore execution restrictions if any relaxation bits are set */
1186 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1187 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1192 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1194 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1196 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1199 * For simplicity, IO to all namespaces is quiesced even if the command
1200 * effects say only one namespace is affected.
1202 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1203 mutex_lock(&ctrl->scan_lock);
1204 mutex_lock(&ctrl->subsys->lock);
1205 nvme_mpath_start_freeze(ctrl->subsys);
1206 nvme_mpath_wait_freeze(ctrl->subsys);
1207 nvme_start_freeze(ctrl);
1208 nvme_wait_freeze(ctrl);
1212 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1214 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1215 struct nvme_command *cmd, int status)
1217 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1218 nvme_unfreeze(ctrl);
1219 nvme_mpath_unfreeze(ctrl->subsys);
1220 mutex_unlock(&ctrl->subsys->lock);
1221 mutex_unlock(&ctrl->scan_lock);
1223 if (effects & NVME_CMD_EFFECTS_CCC) {
1224 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1226 dev_info(ctrl->device,
1227 "controller capabilities changed, reset may be required to take effect.\n");
1230 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1231 nvme_queue_scan(ctrl);
1232 flush_work(&ctrl->scan_work);
1237 switch (cmd->common.opcode) {
1238 case nvme_admin_set_features:
1239 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1240 case NVME_FEAT_KATO:
1242 * Keep alive commands interval on the host should be
1243 * updated when KATO is modified by Set Features
1247 nvme_update_keep_alive(ctrl, cmd);
1257 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1260 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1262 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1263 * accounting for transport roundtrip times [..].
1265 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1267 unsigned long delay = ctrl->kato * HZ / 2;
1270 * When using Traffic Based Keep Alive, we need to run
1271 * nvme_keep_alive_work at twice the normal frequency, as one
1272 * command completion can postpone sending a keep alive command
1273 * by up to twice the delay between runs.
1275 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1280 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1282 unsigned long now = jiffies;
1283 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1284 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1286 if (time_after(now, ka_next_check_tm))
1289 delay = ka_next_check_tm - now;
1291 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1294 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1295 blk_status_t status)
1297 struct nvme_ctrl *ctrl = rq->end_io_data;
1298 unsigned long flags;
1299 bool startka = false;
1300 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1301 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1304 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1305 * at the desired frequency.
1310 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1311 jiffies_to_msecs(rtt));
1315 blk_mq_free_request(rq);
1318 dev_err(ctrl->device,
1319 "failed nvme_keep_alive_end_io error=%d\n",
1321 return RQ_END_IO_NONE;
1324 ctrl->ka_last_check_time = jiffies;
1325 ctrl->comp_seen = false;
1326 spin_lock_irqsave(&ctrl->lock, flags);
1327 if (ctrl->state == NVME_CTRL_LIVE ||
1328 ctrl->state == NVME_CTRL_CONNECTING)
1330 spin_unlock_irqrestore(&ctrl->lock, flags);
1332 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1333 return RQ_END_IO_NONE;
1336 static void nvme_keep_alive_work(struct work_struct *work)
1338 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1339 struct nvme_ctrl, ka_work);
1340 bool comp_seen = ctrl->comp_seen;
1343 ctrl->ka_last_check_time = jiffies;
1345 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1346 dev_dbg(ctrl->device,
1347 "reschedule traffic based keep-alive timer\n");
1348 ctrl->comp_seen = false;
1349 nvme_queue_keep_alive_work(ctrl);
1353 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1354 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1356 /* allocation failure, reset the controller */
1357 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1358 nvme_reset_ctrl(ctrl);
1361 nvme_init_request(rq, &ctrl->ka_cmd);
1363 rq->timeout = ctrl->kato * HZ;
1364 rq->end_io = nvme_keep_alive_end_io;
1365 rq->end_io_data = ctrl;
1366 blk_execute_rq_nowait(rq, false);
1369 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1371 if (unlikely(ctrl->kato == 0))
1374 nvme_queue_keep_alive_work(ctrl);
1377 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1379 if (unlikely(ctrl->kato == 0))
1382 cancel_delayed_work_sync(&ctrl->ka_work);
1384 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1386 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1387 struct nvme_command *cmd)
1389 unsigned int new_kato =
1390 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1392 dev_info(ctrl->device,
1393 "keep alive interval updated from %u ms to %u ms\n",
1394 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1396 nvme_stop_keep_alive(ctrl);
1397 ctrl->kato = new_kato;
1398 nvme_start_keep_alive(ctrl);
1402 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1403 * flag, thus sending any new CNS opcodes has a big chance of not working.
1404 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1405 * (but not for any later version).
1407 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1409 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1410 return ctrl->vs < NVME_VS(1, 2, 0);
1411 return ctrl->vs < NVME_VS(1, 1, 0);
1414 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1416 struct nvme_command c = { };
1419 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1420 c.identify.opcode = nvme_admin_identify;
1421 c.identify.cns = NVME_ID_CNS_CTRL;
1423 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1427 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1428 sizeof(struct nvme_id_ctrl));
1436 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1437 struct nvme_ns_id_desc *cur, bool *csi_seen)
1439 const char *warn_str = "ctrl returned bogus length:";
1442 switch (cur->nidt) {
1443 case NVME_NIDT_EUI64:
1444 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1445 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1446 warn_str, cur->nidl);
1449 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1450 return NVME_NIDT_EUI64_LEN;
1451 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1452 return NVME_NIDT_EUI64_LEN;
1453 case NVME_NIDT_NGUID:
1454 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1455 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1456 warn_str, cur->nidl);
1459 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1460 return NVME_NIDT_NGUID_LEN;
1461 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1462 return NVME_NIDT_NGUID_LEN;
1463 case NVME_NIDT_UUID:
1464 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1465 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1466 warn_str, cur->nidl);
1469 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1470 return NVME_NIDT_UUID_LEN;
1471 uuid_copy(&ids->uuid, data + sizeof(*cur));
1472 return NVME_NIDT_UUID_LEN;
1474 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1475 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1476 warn_str, cur->nidl);
1479 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1481 return NVME_NIDT_CSI_LEN;
1483 /* Skip unknown types */
1488 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1489 struct nvme_ns_info *info)
1491 struct nvme_command c = { };
1492 bool csi_seen = false;
1493 int status, pos, len;
1496 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1498 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1501 c.identify.opcode = nvme_admin_identify;
1502 c.identify.nsid = cpu_to_le32(info->nsid);
1503 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1505 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1509 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1510 NVME_IDENTIFY_DATA_SIZE);
1512 dev_warn(ctrl->device,
1513 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1514 info->nsid, status);
1518 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1519 struct nvme_ns_id_desc *cur = data + pos;
1524 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1528 len += sizeof(*cur);
1531 if (nvme_multi_css(ctrl) && !csi_seen) {
1532 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1542 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1543 struct nvme_id_ns **id)
1545 struct nvme_command c = { };
1548 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1549 c.identify.opcode = nvme_admin_identify;
1550 c.identify.nsid = cpu_to_le32(nsid);
1551 c.identify.cns = NVME_ID_CNS_NS;
1553 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1557 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1559 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1566 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1567 struct nvme_ns_info *info)
1569 struct nvme_ns_ids *ids = &info->ids;
1570 struct nvme_id_ns *id;
1573 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1577 if (id->ncap == 0) {
1578 /* namespace not allocated or attached */
1579 info->is_removed = true;
1584 info->anagrpid = id->anagrpid;
1585 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1586 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1587 info->is_ready = true;
1588 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1589 dev_info(ctrl->device,
1590 "Ignoring bogus Namespace Identifiers\n");
1592 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1593 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1594 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1595 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1596 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1597 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1605 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1606 struct nvme_ns_info *info)
1608 struct nvme_id_ns_cs_indep *id;
1609 struct nvme_command c = {
1610 .identify.opcode = nvme_admin_identify,
1611 .identify.nsid = cpu_to_le32(info->nsid),
1612 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1616 id = kmalloc(sizeof(*id), GFP_KERNEL);
1620 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1622 info->anagrpid = id->anagrpid;
1623 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1624 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1625 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1631 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1632 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1634 union nvme_result res = { 0 };
1635 struct nvme_command c = { };
1638 c.features.opcode = op;
1639 c.features.fid = cpu_to_le32(fid);
1640 c.features.dword11 = cpu_to_le32(dword11);
1642 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1643 buffer, buflen, NVME_QID_ANY, 0);
1644 if (ret >= 0 && result)
1645 *result = le32_to_cpu(res.u32);
1649 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1650 unsigned int dword11, void *buffer, size_t buflen,
1653 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1656 EXPORT_SYMBOL_GPL(nvme_set_features);
1658 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1659 unsigned int dword11, void *buffer, size_t buflen,
1662 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1665 EXPORT_SYMBOL_GPL(nvme_get_features);
1667 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1669 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1671 int status, nr_io_queues;
1673 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1679 * Degraded controllers might return an error when setting the queue
1680 * count. We still want to be able to bring them online and offer
1681 * access to the admin queue, as that might be only way to fix them up.
1684 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1687 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1688 *count = min(*count, nr_io_queues);
1693 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1695 #define NVME_AEN_SUPPORTED \
1696 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1697 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1699 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1701 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1704 if (!supported_aens)
1707 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1710 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1713 queue_work(nvme_wq, &ctrl->async_event_work);
1716 static int nvme_ns_open(struct nvme_ns *ns)
1719 /* should never be called due to GENHD_FL_HIDDEN */
1720 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1722 if (!nvme_get_ns(ns))
1724 if (!try_module_get(ns->ctrl->ops->module))
1735 static void nvme_ns_release(struct nvme_ns *ns)
1738 module_put(ns->ctrl->ops->module);
1742 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1744 return nvme_ns_open(disk->private_data);
1747 static void nvme_release(struct gendisk *disk)
1749 nvme_ns_release(disk->private_data);
1752 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1754 /* some standard values */
1755 geo->heads = 1 << 6;
1756 geo->sectors = 1 << 5;
1757 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1761 static bool nvme_init_integrity(struct nvme_ns_head *head,
1762 struct queue_limits *lim, struct nvme_ns_info *info)
1764 struct blk_integrity *bi = &lim->integrity;
1766 memset(bi, 0, sizeof(*bi));
1772 * PI can always be supported as we can ask the controller to simply
1773 * insert/strip it, which is not possible for other kinds of metadata.
1775 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1776 !(head->features & NVME_NS_METADATA_SUPPORTED))
1777 return nvme_ns_has_pi(head);
1779 switch (head->pi_type) {
1780 case NVME_NS_DPS_PI_TYPE3:
1781 switch (head->guard_type) {
1782 case NVME_NVM_NS_16B_GUARD:
1783 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1784 bi->tag_size = sizeof(u16) + sizeof(u32);
1785 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1787 case NVME_NVM_NS_64B_GUARD:
1788 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1789 bi->tag_size = sizeof(u16) + 6;
1790 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1796 case NVME_NS_DPS_PI_TYPE1:
1797 case NVME_NS_DPS_PI_TYPE2:
1798 switch (head->guard_type) {
1799 case NVME_NVM_NS_16B_GUARD:
1800 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1801 bi->tag_size = sizeof(u16);
1802 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1803 BLK_INTEGRITY_REF_TAG;
1805 case NVME_NVM_NS_64B_GUARD:
1806 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1807 bi->tag_size = sizeof(u16);
1808 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1809 BLK_INTEGRITY_REF_TAG;
1819 bi->tuple_size = head->ms;
1820 bi->pi_offset = info->pi_offset;
1824 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1826 struct nvme_ctrl *ctrl = ns->ctrl;
1828 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1829 lim->max_hw_discard_sectors =
1830 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1831 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1832 lim->max_hw_discard_sectors = UINT_MAX;
1834 lim->max_hw_discard_sectors = 0;
1836 lim->discard_granularity = lim->logical_block_size;
1839 lim->max_discard_segments = ctrl->dmrl;
1841 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1844 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1846 return uuid_equal(&a->uuid, &b->uuid) &&
1847 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1848 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1852 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1853 struct nvme_id_ns_nvm **nvmp)
1855 struct nvme_command c = {
1856 .identify.opcode = nvme_admin_identify,
1857 .identify.nsid = cpu_to_le32(nsid),
1858 .identify.cns = NVME_ID_CNS_CS_NS,
1859 .identify.csi = NVME_CSI_NVM,
1861 struct nvme_id_ns_nvm *nvm;
1864 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1868 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1876 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1877 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1879 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1882 /* no support for storage tag formats right now */
1883 if (nvme_elbaf_sts(elbaf))
1886 guard_type = nvme_elbaf_guard_type(elbaf);
1887 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1888 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1889 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1891 head->guard_type = guard_type;
1892 switch (head->guard_type) {
1893 case NVME_NVM_NS_64B_GUARD:
1894 head->pi_size = sizeof(struct crc64_pi_tuple);
1896 case NVME_NVM_NS_16B_GUARD:
1897 head->pi_size = sizeof(struct t10_pi_tuple);
1904 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1905 struct nvme_ns_head *head, struct nvme_id_ns *id,
1906 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1908 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1911 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1912 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1915 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1916 nvme_configure_pi_elbas(head, id, nvm);
1918 head->pi_size = sizeof(struct t10_pi_tuple);
1919 head->guard_type = NVME_NVM_NS_16B_GUARD;
1922 if (head->pi_size && head->ms >= head->pi_size)
1923 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1924 if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1925 info->pi_offset = head->ms - head->pi_size;
1927 if (ctrl->ops->flags & NVME_F_FABRICS) {
1929 * The NVMe over Fabrics specification only supports metadata as
1930 * part of the extended data LBA. We rely on HCA/HBA support to
1931 * remap the separate metadata buffer from the block layer.
1933 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1936 head->features |= NVME_NS_EXT_LBAS;
1939 * The current fabrics transport drivers support namespace
1940 * metadata formats only if nvme_ns_has_pi() returns true.
1941 * Suppress support for all other formats so the namespace will
1942 * have a 0 capacity and not be usable through the block stack.
1944 * Note, this check will need to be modified if any drivers
1945 * gain the ability to use other metadata formats.
1947 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1948 head->features |= NVME_NS_METADATA_SUPPORTED;
1951 * For PCIe controllers, we can't easily remap the separate
1952 * metadata buffer from the block layer and thus require a
1953 * separate metadata buffer for block layer metadata/PI support.
1954 * We allow extended LBAs for the passthrough interface, though.
1956 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1957 head->features |= NVME_NS_EXT_LBAS;
1959 head->features |= NVME_NS_METADATA_SUPPORTED;
1964 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1965 struct nvme_id_ns *id, struct queue_limits *lim,
1966 u32 bs, u32 atomic_bs)
1968 unsigned int boundary = 0;
1970 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1971 if (le16_to_cpu(id->nabspf))
1972 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1974 lim->atomic_write_hw_max = atomic_bs;
1975 lim->atomic_write_hw_boundary = boundary;
1976 lim->atomic_write_hw_unit_min = bs;
1977 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1980 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1982 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1985 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1986 struct queue_limits *lim)
1988 lim->max_hw_sectors = ctrl->max_hw_sectors;
1989 lim->max_segments = min_t(u32, USHRT_MAX,
1990 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1991 lim->max_integrity_segments = ctrl->max_integrity_segments;
1992 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1993 lim->max_segment_size = UINT_MAX;
1994 lim->dma_alignment = 3;
1997 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1998 struct queue_limits *lim)
2000 struct nvme_ns_head *head = ns->head;
2001 u32 bs = 1U << head->lba_shift;
2002 u32 atomic_bs, phys_bs, io_opt = 0;
2006 * The block layer can't support LBA sizes larger than the page size
2007 * or smaller than a sector size yet, so catch this early and don't
2010 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2015 atomic_bs = phys_bs = bs;
2016 if (id->nabo == 0) {
2018 * Bit 1 indicates whether NAWUPF is defined for this namespace
2019 * and whether it should be used instead of AWUPF. If NAWUPF ==
2020 * 0 then AWUPF must be used instead.
2022 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2023 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2025 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2027 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2030 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2031 /* NPWG = Namespace Preferred Write Granularity */
2032 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2033 /* NOWS = Namespace Optimal Write Size */
2035 io_opt = bs * (1 + le16_to_cpu(id->nows));
2039 * Linux filesystems assume writing a single physical block is
2040 * an atomic operation. Hence limit the physical block size to the
2041 * value of the Atomic Write Unit Power Fail parameter.
2043 lim->logical_block_size = bs;
2044 lim->physical_block_size = min(phys_bs, atomic_bs);
2045 lim->io_min = phys_bs;
2046 lim->io_opt = io_opt;
2047 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2048 lim->max_write_zeroes_sectors = UINT_MAX;
2050 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2054 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2056 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2059 static inline bool nvme_first_scan(struct gendisk *disk)
2061 /* nvme_alloc_ns() scans the disk prior to adding it */
2062 return !disk_live(disk);
2065 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2066 struct queue_limits *lim)
2068 struct nvme_ctrl *ctrl = ns->ctrl;
2071 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2072 is_power_of_2(ctrl->max_hw_sectors))
2073 iob = ctrl->max_hw_sectors;
2075 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2080 if (!is_power_of_2(iob)) {
2081 if (nvme_first_scan(ns->disk))
2082 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2083 ns->disk->disk_name, iob);
2087 if (blk_queue_is_zoned(ns->disk->queue)) {
2088 if (nvme_first_scan(ns->disk))
2089 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2090 ns->disk->disk_name);
2094 lim->chunk_sectors = iob;
2097 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2098 struct nvme_ns_info *info)
2100 struct queue_limits lim;
2103 blk_mq_freeze_queue(ns->disk->queue);
2104 lim = queue_limits_start_update(ns->disk->queue);
2105 nvme_set_ctrl_limits(ns->ctrl, &lim);
2106 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2107 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2108 blk_mq_unfreeze_queue(ns->disk->queue);
2110 /* Hide the block-interface for these devices */
2116 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2117 struct nvme_ns_info *info)
2119 struct queue_limits lim;
2120 struct nvme_id_ns_nvm *nvm = NULL;
2121 struct nvme_zone_info zi = {};
2122 struct nvme_id_ns *id;
2127 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2131 if (id->ncap == 0) {
2132 /* namespace not allocated or attached */
2133 info->is_removed = true;
2137 lbaf = nvme_lbaf_index(id->flbas);
2139 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2140 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2145 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2146 ns->head->ids.csi == NVME_CSI_ZNS) {
2147 ret = nvme_query_zone_info(ns, lbaf, &zi);
2152 blk_mq_freeze_queue(ns->disk->queue);
2153 ns->head->lba_shift = id->lbaf[lbaf].ds;
2154 ns->head->nuse = le64_to_cpu(id->nuse);
2155 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2157 lim = queue_limits_start_update(ns->disk->queue);
2158 nvme_set_ctrl_limits(ns->ctrl, &lim);
2159 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2160 nvme_set_chunk_sectors(ns, id, &lim);
2161 if (!nvme_update_disk_info(ns, id, &lim))
2163 nvme_config_discard(ns, &lim);
2164 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2165 ns->head->ids.csi == NVME_CSI_ZNS)
2166 nvme_update_zone_info(ns, &lim, &zi);
2168 if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2169 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2171 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2174 * Register a metadata profile for PI, or the plain non-integrity NVMe
2175 * metadata masquerading as Type 0 if supported, otherwise reject block
2176 * I/O to namespaces with metadata except when the namespace supports
2177 * PI, as it can strip/insert in that case.
2179 if (!nvme_init_integrity(ns->head, &lim, info))
2182 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2184 blk_mq_unfreeze_queue(ns->disk->queue);
2188 set_capacity_and_notify(ns->disk, capacity);
2191 * Only set the DEAC bit if the device guarantees that reads from
2192 * deallocated data return zeroes. While the DEAC bit does not
2193 * require that, it must be a no-op if reads from deallocated data
2194 * do not return zeroes.
2196 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2197 ns->head->features |= NVME_NS_DEAC;
2198 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2199 set_bit(NVME_NS_READY, &ns->flags);
2200 blk_mq_unfreeze_queue(ns->disk->queue);
2202 if (blk_queue_is_zoned(ns->queue)) {
2203 ret = blk_revalidate_disk_zones(ns->disk);
2204 if (ret && !nvme_first_scan(ns->disk))
2215 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2217 bool unsupported = false;
2220 switch (info->ids.csi) {
2222 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2223 dev_info(ns->ctrl->device,
2224 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2226 ret = nvme_update_ns_info_generic(ns, info);
2229 ret = nvme_update_ns_info_block(ns, info);
2232 ret = nvme_update_ns_info_block(ns, info);
2235 dev_info(ns->ctrl->device,
2236 "block device for nsid %u not supported (csi %u)\n",
2237 info->nsid, info->ids.csi);
2238 ret = nvme_update_ns_info_generic(ns, info);
2243 * If probing fails due an unsupported feature, hide the block device,
2244 * but still allow other access.
2246 if (ret == -ENODEV) {
2247 ns->disk->flags |= GENHD_FL_HIDDEN;
2248 set_bit(NVME_NS_READY, &ns->flags);
2253 if (!ret && nvme_ns_head_multipath(ns->head)) {
2254 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2255 struct queue_limits lim;
2257 blk_mq_freeze_queue(ns->head->disk->queue);
2259 * queue_limits mixes values that are the hardware limitations
2260 * for bio splitting with what is the device configuration.
2262 * For NVMe the device configuration can change after e.g. a
2263 * Format command, and we really want to pick up the new format
2264 * value here. But we must still stack the queue limits to the
2265 * least common denominator for multipathing to split the bios
2268 * To work around this, we explicitly set the device
2269 * configuration to those that we just queried, but only stack
2270 * the splitting limits in to make sure we still obey possibly
2271 * lower limitations of other controllers.
2273 lim = queue_limits_start_update(ns->head->disk->queue);
2274 lim.logical_block_size = ns_lim->logical_block_size;
2275 lim.physical_block_size = ns_lim->physical_block_size;
2276 lim.io_min = ns_lim->io_min;
2277 lim.io_opt = ns_lim->io_opt;
2278 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2279 ns->head->disk->disk_name);
2281 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2283 nvme_init_integrity(ns->head, &lim, info);
2284 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2286 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2287 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2288 nvme_mpath_revalidate_paths(ns);
2290 blk_mq_unfreeze_queue(ns->head->disk->queue);
2296 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2297 enum blk_unique_id type)
2299 struct nvme_ns_ids *ids = &ns->head->ids;
2301 if (type != BLK_UID_EUI64)
2304 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2305 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2306 return sizeof(ids->nguid);
2308 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2309 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2310 return sizeof(ids->eui64);
2316 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2317 enum blk_unique_id type)
2319 return nvme_ns_get_unique_id(disk->private_data, id, type);
2322 #ifdef CONFIG_BLK_SED_OPAL
2323 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2326 struct nvme_ctrl *ctrl = data;
2327 struct nvme_command cmd = { };
2330 cmd.common.opcode = nvme_admin_security_send;
2332 cmd.common.opcode = nvme_admin_security_recv;
2333 cmd.common.nsid = 0;
2334 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2335 cmd.common.cdw11 = cpu_to_le32(len);
2337 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2338 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2341 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2343 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2344 if (!ctrl->opal_dev)
2345 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2346 else if (was_suspended)
2347 opal_unlock_from_suspend(ctrl->opal_dev);
2349 free_opal_dev(ctrl->opal_dev);
2350 ctrl->opal_dev = NULL;
2354 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2357 #endif /* CONFIG_BLK_SED_OPAL */
2359 #ifdef CONFIG_BLK_DEV_ZONED
2360 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2361 unsigned int nr_zones, report_zones_cb cb, void *data)
2363 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2367 #define nvme_report_zones NULL
2368 #endif /* CONFIG_BLK_DEV_ZONED */
2370 const struct block_device_operations nvme_bdev_ops = {
2371 .owner = THIS_MODULE,
2372 .ioctl = nvme_ioctl,
2373 .compat_ioctl = blkdev_compat_ptr_ioctl,
2375 .release = nvme_release,
2376 .getgeo = nvme_getgeo,
2377 .get_unique_id = nvme_get_unique_id,
2378 .report_zones = nvme_report_zones,
2379 .pr_ops = &nvme_pr_ops,
2382 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2383 u32 timeout, const char *op)
2385 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2389 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2392 if ((csts & mask) == val)
2395 usleep_range(1000, 2000);
2396 if (fatal_signal_pending(current))
2398 if (time_after(jiffies, timeout_jiffies)) {
2399 dev_err(ctrl->device,
2400 "Device not ready; aborting %s, CSTS=0x%x\n",
2409 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2413 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2415 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2417 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2419 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2424 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2425 NVME_CSTS_SHST_CMPLT,
2426 ctrl->shutdown_timeout, "shutdown");
2428 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2429 msleep(NVME_QUIRK_DELAY_AMOUNT);
2430 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2431 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2433 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2435 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2437 unsigned dev_page_min;
2441 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2443 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2446 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2448 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2449 dev_err(ctrl->device,
2450 "Minimum device page size %u too large for host (%u)\n",
2451 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2455 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2456 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2458 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2460 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2461 ctrl->ctrl_config |= NVME_CC_CRIME;
2463 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2464 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2465 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2466 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2470 /* Flush write to device (required if transport is PCI) */
2471 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2475 /* CAP value may change after initial CC write */
2476 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2480 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2481 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2482 u32 crto, ready_timeout;
2484 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2486 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2492 * CRTO should always be greater or equal to CAP.TO, but some
2493 * devices are known to get this wrong. Use the larger of the
2496 if (ctrl->ctrl_config & NVME_CC_CRIME)
2497 ready_timeout = NVME_CRTO_CRIMT(crto);
2499 ready_timeout = NVME_CRTO_CRWMT(crto);
2501 if (ready_timeout < timeout)
2502 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2505 timeout = ready_timeout;
2508 ctrl->ctrl_config |= NVME_CC_ENABLE;
2509 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2512 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2513 (timeout + 1) / 2, "initialisation");
2515 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2517 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2522 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2525 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2526 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2529 dev_warn_once(ctrl->device,
2530 "could not set timestamp (%d)\n", ret);
2534 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2536 struct nvme_feat_host_behavior *host;
2537 u8 acre = 0, lbafee = 0;
2540 /* Don't bother enabling the feature if retry delay is not reported */
2542 acre = NVME_ENABLE_ACRE;
2543 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2544 lbafee = NVME_ENABLE_LBAFEE;
2546 if (!acre && !lbafee)
2549 host = kzalloc(sizeof(*host), GFP_KERNEL);
2554 host->lbafee = lbafee;
2555 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2556 host, sizeof(*host), NULL);
2562 * The function checks whether the given total (exlat + enlat) latency of
2563 * a power state allows the latter to be used as an APST transition target.
2564 * It does so by comparing the latency to the primary and secondary latency
2565 * tolerances defined by module params. If there's a match, the corresponding
2566 * timeout value is returned and the matching tolerance index (1 or 2) is
2569 static bool nvme_apst_get_transition_time(u64 total_latency,
2570 u64 *transition_time, unsigned *last_index)
2572 if (total_latency <= apst_primary_latency_tol_us) {
2573 if (*last_index == 1)
2576 *transition_time = apst_primary_timeout_ms;
2579 if (apst_secondary_timeout_ms &&
2580 total_latency <= apst_secondary_latency_tol_us) {
2581 if (*last_index <= 2)
2584 *transition_time = apst_secondary_timeout_ms;
2591 * APST (Autonomous Power State Transition) lets us program a table of power
2592 * state transitions that the controller will perform automatically.
2594 * Depending on module params, one of the two supported techniques will be used:
2596 * - If the parameters provide explicit timeouts and tolerances, they will be
2597 * used to build a table with up to 2 non-operational states to transition to.
2598 * The default parameter values were selected based on the values used by
2599 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2600 * regeneration of the APST table in the event of switching between external
2601 * and battery power, the timeouts and tolerances reflect a compromise
2602 * between values used by Microsoft for AC and battery scenarios.
2603 * - If not, we'll configure the table with a simple heuristic: we are willing
2604 * to spend at most 2% of the time transitioning between power states.
2605 * Therefore, when running in any given state, we will enter the next
2606 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2607 * microseconds, as long as that state's exit latency is under the requested
2610 * We will not autonomously enter any non-operational state for which the total
2611 * latency exceeds ps_max_latency_us.
2613 * Users can set ps_max_latency_us to zero to turn off APST.
2615 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2617 struct nvme_feat_auto_pst *table;
2624 unsigned last_lt_index = UINT_MAX;
2627 * If APST isn't supported or if we haven't been initialized yet,
2628 * then don't do anything.
2633 if (ctrl->npss > 31) {
2634 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2638 table = kzalloc(sizeof(*table), GFP_KERNEL);
2642 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2643 /* Turn off APST. */
2644 dev_dbg(ctrl->device, "APST disabled\n");
2649 * Walk through all states from lowest- to highest-power.
2650 * According to the spec, lower-numbered states use more power. NPSS,
2651 * despite the name, is the index of the lowest-power state, not the
2654 for (state = (int)ctrl->npss; state >= 0; state--) {
2655 u64 total_latency_us, exit_latency_us, transition_ms;
2658 table->entries[state] = target;
2661 * Don't allow transitions to the deepest state if it's quirked
2664 if (state == ctrl->npss &&
2665 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2669 * Is this state a useful non-operational state for higher-power
2670 * states to autonomously transition to?
2672 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2675 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2676 if (exit_latency_us > ctrl->ps_max_latency_us)
2679 total_latency_us = exit_latency_us +
2680 le32_to_cpu(ctrl->psd[state].entry_lat);
2683 * This state is good. It can be used as the APST idle target
2684 * for higher power states.
2686 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2687 if (!nvme_apst_get_transition_time(total_latency_us,
2688 &transition_ms, &last_lt_index))
2691 transition_ms = total_latency_us + 19;
2692 do_div(transition_ms, 20);
2693 if (transition_ms > (1 << 24) - 1)
2694 transition_ms = (1 << 24) - 1;
2697 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2700 if (total_latency_us > max_lat_us)
2701 max_lat_us = total_latency_us;
2705 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2707 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2708 max_ps, max_lat_us, (int)sizeof(*table), table);
2712 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2713 table, sizeof(*table), NULL);
2715 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2720 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2722 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2726 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2727 case PM_QOS_LATENCY_ANY:
2735 if (ctrl->ps_max_latency_us != latency) {
2736 ctrl->ps_max_latency_us = latency;
2737 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2738 nvme_configure_apst(ctrl);
2742 struct nvme_core_quirk_entry {
2744 * NVMe model and firmware strings are padded with spaces. For
2745 * simplicity, strings in the quirk table are padded with NULLs
2751 unsigned long quirks;
2754 static const struct nvme_core_quirk_entry core_quirks[] = {
2757 * This Toshiba device seems to die using any APST states. See:
2758 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2761 .mn = "THNSF5256GPUK TOSHIBA",
2762 .quirks = NVME_QUIRK_NO_APST,
2766 * This LiteON CL1-3D*-Q11 firmware version has a race
2767 * condition associated with actions related to suspend to idle
2768 * LiteON has resolved the problem in future firmware
2772 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2776 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2777 * aborts I/O during any load, but more easily reproducible
2778 * with discards (fstrim).
2780 * The device is left in a state where it is also not possible
2781 * to use "nvme set-feature" to disable APST, but booting with
2782 * nvme_core.default_ps_max_latency=0 works.
2785 .mn = "KCD6XVUL6T40",
2786 .quirks = NVME_QUIRK_NO_APST,
2790 * The external Samsung X5 SSD fails initialization without a
2791 * delay before checking if it is ready and has a whole set of
2792 * other problems. To make this even more interesting, it
2793 * shares the PCI ID with internal Samsung 970 Evo Plus that
2794 * does not need or want these quirks.
2797 .mn = "Samsung Portable SSD X5",
2798 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2799 NVME_QUIRK_NO_DEEPEST_PS |
2800 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2804 /* match is null-terminated but idstr is space-padded. */
2805 static bool string_matches(const char *idstr, const char *match, size_t len)
2812 matchlen = strlen(match);
2813 WARN_ON_ONCE(matchlen > len);
2815 if (memcmp(idstr, match, matchlen))
2818 for (; matchlen < len; matchlen++)
2819 if (idstr[matchlen] != ' ')
2825 static bool quirk_matches(const struct nvme_id_ctrl *id,
2826 const struct nvme_core_quirk_entry *q)
2828 return q->vid == le16_to_cpu(id->vid) &&
2829 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2830 string_matches(id->fr, q->fr, sizeof(id->fr));
2833 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2834 struct nvme_id_ctrl *id)
2839 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2840 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2841 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2842 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2846 if (ctrl->vs >= NVME_VS(1, 2, 1))
2847 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2851 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2852 * Base Specification 2.0. It is slightly different from the format
2853 * specified there due to historic reasons, and we can't change it now.
2855 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2856 "nqn.2014.08.org.nvmexpress:%04x%04x",
2857 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2858 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2859 off += sizeof(id->sn);
2860 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2861 off += sizeof(id->mn);
2862 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2865 static void nvme_release_subsystem(struct device *dev)
2867 struct nvme_subsystem *subsys =
2868 container_of(dev, struct nvme_subsystem, dev);
2870 if (subsys->instance >= 0)
2871 ida_free(&nvme_instance_ida, subsys->instance);
2875 static void nvme_destroy_subsystem(struct kref *ref)
2877 struct nvme_subsystem *subsys =
2878 container_of(ref, struct nvme_subsystem, ref);
2880 mutex_lock(&nvme_subsystems_lock);
2881 list_del(&subsys->entry);
2882 mutex_unlock(&nvme_subsystems_lock);
2884 ida_destroy(&subsys->ns_ida);
2885 device_del(&subsys->dev);
2886 put_device(&subsys->dev);
2889 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2891 kref_put(&subsys->ref, nvme_destroy_subsystem);
2894 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2896 struct nvme_subsystem *subsys;
2898 lockdep_assert_held(&nvme_subsystems_lock);
2901 * Fail matches for discovery subsystems. This results
2902 * in each discovery controller bound to a unique subsystem.
2903 * This avoids issues with validating controller values
2904 * that can only be true when there is a single unique subsystem.
2905 * There may be multiple and completely independent entities
2906 * that provide discovery controllers.
2908 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2911 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2912 if (strcmp(subsys->subnqn, subsysnqn))
2914 if (!kref_get_unless_zero(&subsys->ref))
2922 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2924 return ctrl->opts && ctrl->opts->discovery_nqn;
2927 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2928 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2930 struct nvme_ctrl *tmp;
2932 lockdep_assert_held(&nvme_subsystems_lock);
2934 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2935 if (nvme_state_terminal(tmp))
2938 if (tmp->cntlid == ctrl->cntlid) {
2939 dev_err(ctrl->device,
2940 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2941 ctrl->cntlid, dev_name(tmp->device),
2946 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2947 nvme_discovery_ctrl(ctrl))
2950 dev_err(ctrl->device,
2951 "Subsystem does not support multiple controllers\n");
2958 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2960 struct nvme_subsystem *subsys, *found;
2963 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2967 subsys->instance = -1;
2968 mutex_init(&subsys->lock);
2969 kref_init(&subsys->ref);
2970 INIT_LIST_HEAD(&subsys->ctrls);
2971 INIT_LIST_HEAD(&subsys->nsheads);
2972 nvme_init_subnqn(subsys, ctrl, id);
2973 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2974 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2975 subsys->vendor_id = le16_to_cpu(id->vid);
2976 subsys->cmic = id->cmic;
2978 /* Versions prior to 1.4 don't necessarily report a valid type */
2979 if (id->cntrltype == NVME_CTRL_DISC ||
2980 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2981 subsys->subtype = NVME_NQN_DISC;
2983 subsys->subtype = NVME_NQN_NVME;
2985 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2986 dev_err(ctrl->device,
2987 "Subsystem %s is not a discovery controller",
2992 subsys->awupf = le16_to_cpu(id->awupf);
2993 nvme_mpath_default_iopolicy(subsys);
2995 subsys->dev.class = &nvme_subsys_class;
2996 subsys->dev.release = nvme_release_subsystem;
2997 subsys->dev.groups = nvme_subsys_attrs_groups;
2998 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2999 device_initialize(&subsys->dev);
3001 mutex_lock(&nvme_subsystems_lock);
3002 found = __nvme_find_get_subsystem(subsys->subnqn);
3004 put_device(&subsys->dev);
3007 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3009 goto out_put_subsystem;
3012 ret = device_add(&subsys->dev);
3014 dev_err(ctrl->device,
3015 "failed to register subsystem device.\n");
3016 put_device(&subsys->dev);
3019 ida_init(&subsys->ns_ida);
3020 list_add_tail(&subsys->entry, &nvme_subsystems);
3023 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3024 dev_name(ctrl->device));
3026 dev_err(ctrl->device,
3027 "failed to create sysfs link from subsystem.\n");
3028 goto out_put_subsystem;
3032 subsys->instance = ctrl->instance;
3033 ctrl->subsys = subsys;
3034 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3035 mutex_unlock(&nvme_subsystems_lock);
3039 nvme_put_subsystem(subsys);
3041 mutex_unlock(&nvme_subsystems_lock);
3045 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3046 void *log, size_t size, u64 offset)
3048 struct nvme_command c = { };
3049 u32 dwlen = nvme_bytes_to_numd(size);
3051 c.get_log_page.opcode = nvme_admin_get_log_page;
3052 c.get_log_page.nsid = cpu_to_le32(nsid);
3053 c.get_log_page.lid = log_page;
3054 c.get_log_page.lsp = lsp;
3055 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3056 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3057 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3058 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3059 c.get_log_page.csi = csi;
3061 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3064 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3065 struct nvme_effects_log **log)
3067 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3073 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3077 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3078 cel, sizeof(*cel), 0);
3084 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3090 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3092 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3094 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3099 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3101 struct nvme_command c = { };
3102 struct nvme_id_ctrl_nvm *id;
3106 * Even though NVMe spec explicitly states that MDTS is not applicable
3107 * to the write-zeroes, we are cautious and limit the size to the
3108 * controllers max_hw_sectors value, which is based on the MDTS field
3109 * and possibly other limiting factors.
3111 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3112 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3113 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3115 ctrl->max_zeroes_sectors = 0;
3117 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3118 nvme_ctrl_limited_cns(ctrl) ||
3119 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3122 id = kzalloc(sizeof(*id), GFP_KERNEL);
3126 c.identify.opcode = nvme_admin_identify;
3127 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3128 c.identify.csi = NVME_CSI_NVM;
3130 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3134 ctrl->dmrl = id->dmrl;
3135 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3137 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3141 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3146 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3148 struct nvme_effects_log *log = ctrl->effects;
3150 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3151 NVME_CMD_EFFECTS_NCC |
3152 NVME_CMD_EFFECTS_CSE_MASK);
3153 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3154 NVME_CMD_EFFECTS_CSE_MASK);
3157 * The spec says the result of a security receive command depends on
3158 * the previous security send command. As such, many vendors log this
3159 * command as one to submitted only when no other commands to the same
3160 * namespace are outstanding. The intention is to tell the host to
3161 * prevent mixing security send and receive.
3163 * This driver can only enforce such exclusive access against IO
3164 * queues, though. We are not readily able to enforce such a rule for
3165 * two commands to the admin queue, which is the only queue that
3166 * matters for this command.
3168 * Rather than blindly freezing the IO queues for this effect that
3169 * doesn't even apply to IO, mask it off.
3171 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3173 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3174 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3175 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3178 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3185 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3186 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3191 if (!ctrl->effects) {
3192 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3195 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3198 nvme_init_known_nvm_effects(ctrl);
3202 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3205 * In fabrics we need to verify the cntlid matches the
3208 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3209 dev_err(ctrl->device,
3210 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3211 ctrl->cntlid, le16_to_cpu(id->cntlid));
3215 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3216 dev_err(ctrl->device,
3217 "keep-alive support is mandatory for fabrics\n");
3221 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3222 dev_err(ctrl->device,
3223 "I/O queue command capsule supported size %d < 4\n",
3228 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3229 dev_err(ctrl->device,
3230 "I/O queue response capsule supported size %d < 1\n",
3235 if (!ctrl->maxcmd) {
3236 dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3243 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3245 struct queue_limits lim;
3246 struct nvme_id_ctrl *id;
3248 bool prev_apst_enabled;
3251 ret = nvme_identify_ctrl(ctrl, &id);
3253 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3257 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3258 ctrl->cntlid = le16_to_cpu(id->cntlid);
3260 if (!ctrl->identified) {
3264 * Check for quirks. Quirk can depend on firmware version,
3265 * so, in principle, the set of quirks present can change
3266 * across a reset. As a possible future enhancement, we
3267 * could re-scan for quirks every time we reinitialize
3268 * the device, but we'd have to make sure that the driver
3269 * behaves intelligently if the quirks change.
3271 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3272 if (quirk_matches(id, &core_quirks[i]))
3273 ctrl->quirks |= core_quirks[i].quirks;
3276 ret = nvme_init_subsystem(ctrl, id);
3280 ret = nvme_init_effects(ctrl, id);
3284 memcpy(ctrl->subsys->firmware_rev, id->fr,
3285 sizeof(ctrl->subsys->firmware_rev));
3287 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3288 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3289 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3292 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3293 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3294 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3296 ctrl->oacs = le16_to_cpu(id->oacs);
3297 ctrl->oncs = le16_to_cpu(id->oncs);
3298 ctrl->mtfa = le16_to_cpu(id->mtfa);
3299 ctrl->oaes = le32_to_cpu(id->oaes);
3300 ctrl->wctemp = le16_to_cpu(id->wctemp);
3301 ctrl->cctemp = le16_to_cpu(id->cctemp);
3303 atomic_set(&ctrl->abort_limit, id->acl + 1);
3304 ctrl->vwc = id->vwc;
3306 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3308 max_hw_sectors = UINT_MAX;
3309 ctrl->max_hw_sectors =
3310 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3312 lim = queue_limits_start_update(ctrl->admin_q);
3313 nvme_set_ctrl_limits(ctrl, &lim);
3314 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3318 ctrl->sgls = le32_to_cpu(id->sgls);
3319 ctrl->kas = le16_to_cpu(id->kas);
3320 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3321 ctrl->ctratt = le32_to_cpu(id->ctratt);
3323 ctrl->cntrltype = id->cntrltype;
3324 ctrl->dctype = id->dctype;
3328 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3330 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3331 shutdown_timeout, 60);
3333 if (ctrl->shutdown_timeout != shutdown_timeout)
3334 dev_info(ctrl->device,
3335 "D3 entry latency set to %u seconds\n",
3336 ctrl->shutdown_timeout);
3338 ctrl->shutdown_timeout = shutdown_timeout;
3340 ctrl->npss = id->npss;
3341 ctrl->apsta = id->apsta;
3342 prev_apst_enabled = ctrl->apst_enabled;
3343 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3344 if (force_apst && id->apsta) {
3345 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3346 ctrl->apst_enabled = true;
3348 ctrl->apst_enabled = false;
3351 ctrl->apst_enabled = id->apsta;
3353 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3355 if (ctrl->ops->flags & NVME_F_FABRICS) {
3356 ctrl->icdoff = le16_to_cpu(id->icdoff);
3357 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3358 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3359 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3361 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3365 ctrl->hmpre = le32_to_cpu(id->hmpre);
3366 ctrl->hmmin = le32_to_cpu(id->hmmin);
3367 ctrl->hmminds = le32_to_cpu(id->hmminds);
3368 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3371 ret = nvme_mpath_init_identify(ctrl, id);
3375 if (ctrl->apst_enabled && !prev_apst_enabled)
3376 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3377 else if (!ctrl->apst_enabled && prev_apst_enabled)
3378 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3386 * Initialize the cached copies of the Identify data and various controller
3387 * register in our nvme_ctrl structure. This should be called as soon as
3388 * the admin queue is fully up and running.
3390 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3394 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3396 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3400 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3402 if (ctrl->vs >= NVME_VS(1, 1, 0))
3403 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3405 ret = nvme_init_identify(ctrl);
3409 ret = nvme_configure_apst(ctrl);
3413 ret = nvme_configure_timestamp(ctrl);
3417 ret = nvme_configure_host_options(ctrl);
3421 nvme_configure_opal(ctrl, was_suspended);
3423 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3425 * Do not return errors unless we are in a controller reset,
3426 * the controller works perfectly fine without hwmon.
3428 ret = nvme_hwmon_init(ctrl);
3433 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3434 ctrl->identified = true;
3436 nvme_start_keep_alive(ctrl);
3440 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3442 static int nvme_dev_open(struct inode *inode, struct file *file)
3444 struct nvme_ctrl *ctrl =
3445 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3447 switch (nvme_ctrl_state(ctrl)) {
3448 case NVME_CTRL_LIVE:
3451 return -EWOULDBLOCK;
3454 nvme_get_ctrl(ctrl);
3455 if (!try_module_get(ctrl->ops->module)) {
3456 nvme_put_ctrl(ctrl);
3460 file->private_data = ctrl;
3464 static int nvme_dev_release(struct inode *inode, struct file *file)
3466 struct nvme_ctrl *ctrl =
3467 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3469 module_put(ctrl->ops->module);
3470 nvme_put_ctrl(ctrl);
3474 static const struct file_operations nvme_dev_fops = {
3475 .owner = THIS_MODULE,
3476 .open = nvme_dev_open,
3477 .release = nvme_dev_release,
3478 .unlocked_ioctl = nvme_dev_ioctl,
3479 .compat_ioctl = compat_ptr_ioctl,
3480 .uring_cmd = nvme_dev_uring_cmd,
3483 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3486 struct nvme_ns_head *h;
3488 lockdep_assert_held(&ctrl->subsys->lock);
3490 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3492 * Private namespaces can share NSIDs under some conditions.
3493 * In that case we can't use the same ns_head for namespaces
3494 * with the same NSID.
3496 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3498 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3505 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3506 struct nvme_ns_ids *ids)
3508 bool has_uuid = !uuid_is_null(&ids->uuid);
3509 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3510 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3511 struct nvme_ns_head *h;
3513 lockdep_assert_held(&subsys->lock);
3515 list_for_each_entry(h, &subsys->nsheads, entry) {
3516 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3519 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3522 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3529 static void nvme_cdev_rel(struct device *dev)
3531 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3534 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3536 cdev_device_del(cdev, cdev_device);
3537 put_device(cdev_device);
3540 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3541 const struct file_operations *fops, struct module *owner)
3545 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3548 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3549 cdev_device->class = &nvme_ns_chr_class;
3550 cdev_device->release = nvme_cdev_rel;
3551 device_initialize(cdev_device);
3552 cdev_init(cdev, fops);
3553 cdev->owner = owner;
3554 ret = cdev_device_add(cdev, cdev_device);
3556 put_device(cdev_device);
3561 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3563 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3566 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3568 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3572 static const struct file_operations nvme_ns_chr_fops = {
3573 .owner = THIS_MODULE,
3574 .open = nvme_ns_chr_open,
3575 .release = nvme_ns_chr_release,
3576 .unlocked_ioctl = nvme_ns_chr_ioctl,
3577 .compat_ioctl = compat_ptr_ioctl,
3578 .uring_cmd = nvme_ns_chr_uring_cmd,
3579 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3582 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3586 ns->cdev_device.parent = ns->ctrl->device;
3587 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3588 ns->ctrl->instance, ns->head->instance);
3592 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3593 ns->ctrl->ops->module);
3596 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3597 struct nvme_ns_info *info)
3599 struct nvme_ns_head *head;
3600 size_t size = sizeof(*head);
3603 #ifdef CONFIG_NVME_MULTIPATH
3604 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3607 head = kzalloc(size, GFP_KERNEL);
3610 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3613 head->instance = ret;
3614 INIT_LIST_HEAD(&head->list);
3615 ret = init_srcu_struct(&head->srcu);
3617 goto out_ida_remove;
3618 head->subsys = ctrl->subsys;
3619 head->ns_id = info->nsid;
3620 head->ids = info->ids;
3621 head->shared = info->is_shared;
3622 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3623 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3624 kref_init(&head->ref);
3626 if (head->ids.csi) {
3627 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3629 goto out_cleanup_srcu;
3631 head->effects = ctrl->effects;
3633 ret = nvme_mpath_alloc_disk(ctrl, head);
3635 goto out_cleanup_srcu;
3637 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3639 kref_get(&ctrl->subsys->ref);
3643 cleanup_srcu_struct(&head->srcu);
3645 ida_free(&ctrl->subsys->ns_ida, head->instance);
3650 ret = blk_status_to_errno(nvme_error_status(ret));
3651 return ERR_PTR(ret);
3654 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3655 struct nvme_ns_ids *ids)
3657 struct nvme_subsystem *s;
3661 * Note that this check is racy as we try to avoid holding the global
3662 * lock over the whole ns_head creation. But it is only intended as
3663 * a sanity check anyway.
3665 mutex_lock(&nvme_subsystems_lock);
3666 list_for_each_entry(s, &nvme_subsystems, entry) {
3669 mutex_lock(&s->lock);
3670 ret = nvme_subsys_check_duplicate_ids(s, ids);
3671 mutex_unlock(&s->lock);
3675 mutex_unlock(&nvme_subsystems_lock);
3680 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3682 struct nvme_ctrl *ctrl = ns->ctrl;
3683 struct nvme_ns_head *head = NULL;
3686 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3689 * We've found two different namespaces on two different
3690 * subsystems that report the same ID. This is pretty nasty
3691 * for anything that actually requires unique device
3692 * identification. In the kernel we need this for multipathing,
3693 * and in user space the /dev/disk/by-id/ links rely on it.
3695 * If the device also claims to be multi-path capable back off
3696 * here now and refuse the probe the second device as this is a
3697 * recipe for data corruption. If not this is probably a
3698 * cheap consumer device if on the PCIe bus, so let the user
3699 * proceed and use the shiny toy, but warn that with changing
3700 * probing order (which due to our async probing could just be
3701 * device taking longer to startup) the other device could show
3704 nvme_print_device_info(ctrl);
3705 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3706 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3708 dev_err(ctrl->device,
3709 "ignoring nsid %d because of duplicate IDs\n",
3714 dev_err(ctrl->device,
3715 "clearing duplicate IDs for nsid %d\n", info->nsid);
3716 dev_err(ctrl->device,
3717 "use of /dev/disk/by-id/ may cause data corruption\n");
3718 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3719 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3720 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3721 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3724 mutex_lock(&ctrl->subsys->lock);
3725 head = nvme_find_ns_head(ctrl, info->nsid);
3727 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3729 dev_err(ctrl->device,
3730 "duplicate IDs in subsystem for nsid %d\n",
3734 head = nvme_alloc_ns_head(ctrl, info);
3736 ret = PTR_ERR(head);
3741 if (!info->is_shared || !head->shared) {
3742 dev_err(ctrl->device,
3743 "Duplicate unshared namespace %d\n",
3745 goto out_put_ns_head;
3747 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3748 dev_err(ctrl->device,
3749 "IDs don't match for shared namespace %d\n",
3751 goto out_put_ns_head;
3755 dev_warn(ctrl->device,
3756 "Found shared namespace %d, but multipathing not supported.\n",
3758 dev_warn_once(ctrl->device,
3759 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3763 list_add_tail_rcu(&ns->siblings, &head->list);
3765 mutex_unlock(&ctrl->subsys->lock);
3769 nvme_put_ns_head(head);
3771 mutex_unlock(&ctrl->subsys->lock);
3775 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3777 struct nvme_ns *ns, *ret = NULL;
3780 srcu_idx = srcu_read_lock(&ctrl->srcu);
3781 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3782 if (ns->head->ns_id == nsid) {
3783 if (!nvme_get_ns(ns))
3788 if (ns->head->ns_id > nsid)
3791 srcu_read_unlock(&ctrl->srcu, srcu_idx);
3794 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3797 * Add the namespace to the controller list while keeping the list ordered.
3799 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3801 struct nvme_ns *tmp;
3803 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3804 if (tmp->head->ns_id < ns->head->ns_id) {
3805 list_add_rcu(&ns->list, &tmp->list);
3809 list_add(&ns->list, &ns->ctrl->namespaces);
3812 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3814 struct queue_limits lim = { };
3816 struct gendisk *disk;
3817 int node = ctrl->numa_node;
3819 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3823 if (ctrl->opts && ctrl->opts->data_digest)
3824 lim.features |= BLK_FEAT_STABLE_WRITES;
3825 if (ctrl->ops->supports_pci_p2pdma &&
3826 ctrl->ops->supports_pci_p2pdma(ctrl))
3827 lim.features |= BLK_FEAT_PCI_P2PDMA;
3829 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3832 disk->fops = &nvme_bdev_ops;
3833 disk->private_data = ns;
3836 ns->queue = disk->queue;
3838 kref_init(&ns->kref);
3840 if (nvme_init_ns_head(ns, info))
3841 goto out_cleanup_disk;
3844 * If multipathing is enabled, the device name for all disks and not
3845 * just those that represent shared namespaces needs to be based on the
3846 * subsystem instance. Using the controller instance for private
3847 * namespaces could lead to naming collisions between shared and private
3848 * namespaces if they don't use a common numbering scheme.
3850 * If multipathing is not enabled, disk names must use the controller
3851 * instance as shared namespaces will show up as multiple block
3854 if (nvme_ns_head_multipath(ns->head)) {
3855 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3856 ctrl->instance, ns->head->instance);
3857 disk->flags |= GENHD_FL_HIDDEN;
3858 } else if (multipath) {
3859 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3860 ns->head->instance);
3862 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3863 ns->head->instance);
3866 if (nvme_update_ns_info(ns, info))
3869 mutex_lock(&ctrl->namespaces_lock);
3871 * Ensure that no namespaces are added to the ctrl list after the queues
3872 * are frozen, thereby avoiding a deadlock between scan and reset.
3874 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3875 mutex_unlock(&ctrl->namespaces_lock);
3878 nvme_ns_add_to_ctrl_list(ns);
3879 mutex_unlock(&ctrl->namespaces_lock);
3880 synchronize_srcu(&ctrl->srcu);
3881 nvme_get_ctrl(ctrl);
3883 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3884 goto out_cleanup_ns_from_list;
3886 if (!nvme_ns_head_multipath(ns->head))
3887 nvme_add_ns_cdev(ns);
3889 nvme_mpath_add_disk(ns, info->anagrpid);
3890 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3893 * Set ns->disk->device->driver_data to ns so we can access
3894 * ns->head->passthru_err_log_enabled in
3895 * nvme_io_passthru_err_log_enabled_[store | show]().
3897 dev_set_drvdata(disk_to_dev(ns->disk), ns);
3901 out_cleanup_ns_from_list:
3902 nvme_put_ctrl(ctrl);
3903 mutex_lock(&ctrl->namespaces_lock);
3904 list_del_rcu(&ns->list);
3905 mutex_unlock(&ctrl->namespaces_lock);
3906 synchronize_srcu(&ctrl->srcu);
3908 mutex_lock(&ctrl->subsys->lock);
3909 list_del_rcu(&ns->siblings);
3910 if (list_empty(&ns->head->list))
3911 list_del_init(&ns->head->entry);
3912 mutex_unlock(&ctrl->subsys->lock);
3913 nvme_put_ns_head(ns->head);
3920 static void nvme_ns_remove(struct nvme_ns *ns)
3922 bool last_path = false;
3924 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3927 clear_bit(NVME_NS_READY, &ns->flags);
3928 set_capacity(ns->disk, 0);
3929 nvme_fault_inject_fini(&ns->fault_inject);
3932 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3933 * this ns going back into current_path.
3935 synchronize_srcu(&ns->head->srcu);
3937 /* wait for concurrent submissions */
3938 if (nvme_mpath_clear_current_path(ns))
3939 synchronize_srcu(&ns->head->srcu);
3941 mutex_lock(&ns->ctrl->subsys->lock);
3942 list_del_rcu(&ns->siblings);
3943 if (list_empty(&ns->head->list)) {
3944 list_del_init(&ns->head->entry);
3947 mutex_unlock(&ns->ctrl->subsys->lock);
3949 /* guarantee not available in head->list */
3950 synchronize_srcu(&ns->head->srcu);
3952 if (!nvme_ns_head_multipath(ns->head))
3953 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3954 del_gendisk(ns->disk);
3956 mutex_lock(&ns->ctrl->namespaces_lock);
3957 list_del_rcu(&ns->list);
3958 mutex_unlock(&ns->ctrl->namespaces_lock);
3959 synchronize_srcu(&ns->ctrl->srcu);
3962 nvme_mpath_shutdown_disk(ns->head);
3966 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3968 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3976 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3978 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
3980 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3981 dev_err(ns->ctrl->device,
3982 "identifiers changed for nsid %d\n", ns->head->ns_id);
3986 ret = nvme_update_ns_info(ns, info);
3989 * Only remove the namespace if we got a fatal error back from the
3990 * device, otherwise ignore the error and just move on.
3992 * TODO: we should probably schedule a delayed retry here.
3994 if (ret > 0 && (ret & NVME_STATUS_DNR))
3998 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4000 struct nvme_ns_info info = { .nsid = nsid };
4004 if (nvme_identify_ns_descs(ctrl, &info))
4007 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4008 dev_warn(ctrl->device,
4009 "command set not reported for nsid: %d\n", nsid);
4014 * If available try to use the Command Set Idependent Identify Namespace
4015 * data structure to find all the generic information that is needed to
4016 * set up a namespace. If not fall back to the legacy version.
4018 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4019 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4020 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4022 ret = nvme_ns_info_from_identify(ctrl, &info);
4024 if (info.is_removed)
4025 nvme_ns_remove_by_nsid(ctrl, nsid);
4028 * Ignore the namespace if it is not ready. We will get an AEN once it
4029 * becomes ready and restart the scan.
4031 if (ret || !info.is_ready)
4034 ns = nvme_find_get_ns(ctrl, nsid);
4036 nvme_validate_ns(ns, &info);
4039 nvme_alloc_ns(ctrl, &info);
4043 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4046 struct nvme_ns *ns, *next;
4049 mutex_lock(&ctrl->namespaces_lock);
4050 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4051 if (ns->head->ns_id > nsid) {
4052 list_del_rcu(&ns->list);
4053 synchronize_srcu(&ctrl->srcu);
4054 list_add_tail_rcu(&ns->list, &rm_list);
4057 mutex_unlock(&ctrl->namespaces_lock);
4059 list_for_each_entry_safe(ns, next, &rm_list, list)
4063 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4065 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4070 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4075 struct nvme_command cmd = {
4076 .identify.opcode = nvme_admin_identify,
4077 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4078 .identify.nsid = cpu_to_le32(prev),
4081 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4082 NVME_IDENTIFY_DATA_SIZE);
4084 dev_warn(ctrl->device,
4085 "Identify NS List failed (status=0x%x)\n", ret);
4089 for (i = 0; i < nr_entries; i++) {
4090 u32 nsid = le32_to_cpu(ns_list[i]);
4092 if (!nsid) /* end of the list? */
4094 nvme_scan_ns(ctrl, nsid);
4095 while (++prev < nsid)
4096 nvme_ns_remove_by_nsid(ctrl, prev);
4100 nvme_remove_invalid_namespaces(ctrl, prev);
4106 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4108 struct nvme_id_ctrl *id;
4111 if (nvme_identify_ctrl(ctrl, &id))
4113 nn = le32_to_cpu(id->nn);
4116 for (i = 1; i <= nn; i++)
4117 nvme_scan_ns(ctrl, i);
4119 nvme_remove_invalid_namespaces(ctrl, nn);
4122 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4124 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4128 log = kzalloc(log_size, GFP_KERNEL);
4133 * We need to read the log to clear the AEN, but we don't want to rely
4134 * on it for the changed namespace information as userspace could have
4135 * raced with us in reading the log page, which could cause us to miss
4138 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4139 NVME_CSI_NVM, log, log_size, 0);
4141 dev_warn(ctrl->device,
4142 "reading changed ns log failed: %d\n", error);
4147 static void nvme_scan_work(struct work_struct *work)
4149 struct nvme_ctrl *ctrl =
4150 container_of(work, struct nvme_ctrl, scan_work);
4153 /* No tagset on a live ctrl means IO queues could not created */
4154 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4158 * Identify controller limits can change at controller reset due to
4159 * new firmware download, even though it is not common we cannot ignore
4160 * such scenario. Controller's non-mdts limits are reported in the unit
4161 * of logical blocks that is dependent on the format of attached
4162 * namespace. Hence re-read the limits at the time of ns allocation.
4164 ret = nvme_init_non_mdts_limits(ctrl);
4166 dev_warn(ctrl->device,
4167 "reading non-mdts-limits failed: %d\n", ret);
4171 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4172 dev_info(ctrl->device, "rescanning namespaces.\n");
4173 nvme_clear_changed_ns_log(ctrl);
4176 mutex_lock(&ctrl->scan_lock);
4177 if (nvme_ctrl_limited_cns(ctrl)) {
4178 nvme_scan_ns_sequential(ctrl);
4181 * Fall back to sequential scan if DNR is set to handle broken
4182 * devices which should support Identify NS List (as per the VS
4183 * they report) but don't actually support it.
4185 ret = nvme_scan_ns_list(ctrl);
4186 if (ret > 0 && ret & NVME_STATUS_DNR)
4187 nvme_scan_ns_sequential(ctrl);
4189 mutex_unlock(&ctrl->scan_lock);
4193 * This function iterates the namespace list unlocked to allow recovery from
4194 * controller failure. It is up to the caller to ensure the namespace list is
4195 * not modified by scan work while this function is executing.
4197 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4199 struct nvme_ns *ns, *next;
4203 * make sure to requeue I/O to all namespaces as these
4204 * might result from the scan itself and must complete
4205 * for the scan_work to make progress
4207 nvme_mpath_clear_ctrl_paths(ctrl);
4210 * Unquiesce io queues so any pending IO won't hang, especially
4211 * those submitted from scan work
4213 nvme_unquiesce_io_queues(ctrl);
4215 /* prevent racing with ns scanning */
4216 flush_work(&ctrl->scan_work);
4219 * The dead states indicates the controller was not gracefully
4220 * disconnected. In that case, we won't be able to flush any data while
4221 * removing the namespaces' disks; fail all the queues now to avoid
4222 * potentially having to clean up the failed sync later.
4224 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4225 nvme_mark_namespaces_dead(ctrl);
4227 /* this is a no-op when called from the controller reset handler */
4228 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4230 mutex_lock(&ctrl->namespaces_lock);
4231 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4232 mutex_unlock(&ctrl->namespaces_lock);
4233 synchronize_srcu(&ctrl->srcu);
4235 list_for_each_entry_safe(ns, next, &ns_list, list)
4238 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4240 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4242 const struct nvme_ctrl *ctrl =
4243 container_of(dev, struct nvme_ctrl, ctrl_device);
4244 struct nvmf_ctrl_options *opts = ctrl->opts;
4247 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4252 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4256 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4257 opts->trsvcid ?: "none");
4261 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4262 opts->host_traddr ?: "none");
4266 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4267 opts->host_iface ?: "none");
4272 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4274 char *envp[2] = { envdata, NULL };
4276 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4279 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4281 char *envp[2] = { NULL, NULL };
4282 u32 aen_result = ctrl->aen_result;
4284 ctrl->aen_result = 0;
4288 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4291 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4295 static void nvme_async_event_work(struct work_struct *work)
4297 struct nvme_ctrl *ctrl =
4298 container_of(work, struct nvme_ctrl, async_event_work);
4300 nvme_aen_uevent(ctrl);
4303 * The transport drivers must guarantee AER submission here is safe by
4304 * flushing ctrl async_event_work after changing the controller state
4305 * from LIVE and before freeing the admin queue.
4307 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4308 ctrl->ops->submit_async_event(ctrl);
4311 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4316 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4322 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4325 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4327 struct nvme_fw_slot_info_log *log;
4328 u8 next_fw_slot, cur_fw_slot;
4330 log = kmalloc(sizeof(*log), GFP_KERNEL);
4334 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4335 log, sizeof(*log), 0)) {
4336 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4340 cur_fw_slot = log->afi & 0x7;
4341 next_fw_slot = (log->afi & 0x70) >> 4;
4342 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4343 dev_info(ctrl->device,
4344 "Firmware is activated after next Controller Level Reset\n");
4348 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4349 sizeof(ctrl->subsys->firmware_rev));
4355 static void nvme_fw_act_work(struct work_struct *work)
4357 struct nvme_ctrl *ctrl = container_of(work,
4358 struct nvme_ctrl, fw_act_work);
4359 unsigned long fw_act_timeout;
4361 nvme_auth_stop(ctrl);
4364 fw_act_timeout = jiffies +
4365 msecs_to_jiffies(ctrl->mtfa * 100);
4367 fw_act_timeout = jiffies +
4368 msecs_to_jiffies(admin_timeout * 1000);
4370 nvme_quiesce_io_queues(ctrl);
4371 while (nvme_ctrl_pp_status(ctrl)) {
4372 if (time_after(jiffies, fw_act_timeout)) {
4373 dev_warn(ctrl->device,
4374 "Fw activation timeout, reset controller\n");
4375 nvme_try_sched_reset(ctrl);
4381 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4384 nvme_unquiesce_io_queues(ctrl);
4385 /* read FW slot information to clear the AER */
4386 nvme_get_fw_slot_info(ctrl);
4388 queue_work(nvme_wq, &ctrl->async_event_work);
4391 static u32 nvme_aer_type(u32 result)
4393 return result & 0x7;
4396 static u32 nvme_aer_subtype(u32 result)
4398 return (result & 0xff00) >> 8;
4401 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4403 u32 aer_notice_type = nvme_aer_subtype(result);
4404 bool requeue = true;
4406 switch (aer_notice_type) {
4407 case NVME_AER_NOTICE_NS_CHANGED:
4408 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4409 nvme_queue_scan(ctrl);
4411 case NVME_AER_NOTICE_FW_ACT_STARTING:
4413 * We are (ab)using the RESETTING state to prevent subsequent
4414 * recovery actions from interfering with the controller's
4415 * firmware activation.
4417 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4419 queue_work(nvme_wq, &ctrl->fw_act_work);
4422 #ifdef CONFIG_NVME_MULTIPATH
4423 case NVME_AER_NOTICE_ANA:
4424 if (!ctrl->ana_log_buf)
4426 queue_work(nvme_wq, &ctrl->ana_work);
4429 case NVME_AER_NOTICE_DISC_CHANGED:
4430 ctrl->aen_result = result;
4433 dev_warn(ctrl->device, "async event result %08x\n", result);
4438 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4440 dev_warn(ctrl->device, "resetting controller due to AER\n");
4441 nvme_reset_ctrl(ctrl);
4444 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4445 volatile union nvme_result *res)
4447 u32 result = le32_to_cpu(res->u32);
4448 u32 aer_type = nvme_aer_type(result);
4449 u32 aer_subtype = nvme_aer_subtype(result);
4450 bool requeue = true;
4452 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4455 trace_nvme_async_event(ctrl, result);
4457 case NVME_AER_NOTICE:
4458 requeue = nvme_handle_aen_notice(ctrl, result);
4460 case NVME_AER_ERROR:
4462 * For a persistent internal error, don't run async_event_work
4463 * to submit a new AER. The controller reset will do it.
4465 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4466 nvme_handle_aer_persistent_error(ctrl);
4470 case NVME_AER_SMART:
4473 ctrl->aen_result = result;
4480 queue_work(nvme_wq, &ctrl->async_event_work);
4482 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4484 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4485 const struct blk_mq_ops *ops, unsigned int cmd_size)
4487 struct queue_limits lim = {};
4490 memset(set, 0, sizeof(*set));
4492 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4493 if (ctrl->ops->flags & NVME_F_FABRICS)
4494 /* Reserved for fabric connect and keep alive */
4495 set->reserved_tags = 2;
4496 set->numa_node = ctrl->numa_node;
4497 set->flags = BLK_MQ_F_NO_SCHED;
4498 if (ctrl->ops->flags & NVME_F_BLOCKING)
4499 set->flags |= BLK_MQ_F_BLOCKING;
4500 set->cmd_size = cmd_size;
4501 set->driver_data = ctrl;
4502 set->nr_hw_queues = 1;
4503 set->timeout = NVME_ADMIN_TIMEOUT;
4504 ret = blk_mq_alloc_tag_set(set);
4508 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4509 if (IS_ERR(ctrl->admin_q)) {
4510 ret = PTR_ERR(ctrl->admin_q);
4511 goto out_free_tagset;
4514 if (ctrl->ops->flags & NVME_F_FABRICS) {
4515 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4516 if (IS_ERR(ctrl->fabrics_q)) {
4517 ret = PTR_ERR(ctrl->fabrics_q);
4518 goto out_cleanup_admin_q;
4522 ctrl->admin_tagset = set;
4525 out_cleanup_admin_q:
4526 blk_mq_destroy_queue(ctrl->admin_q);
4527 blk_put_queue(ctrl->admin_q);
4529 blk_mq_free_tag_set(set);
4530 ctrl->admin_q = NULL;
4531 ctrl->fabrics_q = NULL;
4534 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4536 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4538 blk_mq_destroy_queue(ctrl->admin_q);
4539 blk_put_queue(ctrl->admin_q);
4540 if (ctrl->ops->flags & NVME_F_FABRICS) {
4541 blk_mq_destroy_queue(ctrl->fabrics_q);
4542 blk_put_queue(ctrl->fabrics_q);
4544 blk_mq_free_tag_set(ctrl->admin_tagset);
4546 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4548 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4549 const struct blk_mq_ops *ops, unsigned int nr_maps,
4550 unsigned int cmd_size)
4554 memset(set, 0, sizeof(*set));
4556 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4558 * Some Apple controllers requires tags to be unique across admin and
4559 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4561 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4562 set->reserved_tags = NVME_AQ_DEPTH;
4563 else if (ctrl->ops->flags & NVME_F_FABRICS)
4564 /* Reserved for fabric connect */
4565 set->reserved_tags = 1;
4566 set->numa_node = ctrl->numa_node;
4567 set->flags = BLK_MQ_F_SHOULD_MERGE;
4568 if (ctrl->ops->flags & NVME_F_BLOCKING)
4569 set->flags |= BLK_MQ_F_BLOCKING;
4570 set->cmd_size = cmd_size,
4571 set->driver_data = ctrl;
4572 set->nr_hw_queues = ctrl->queue_count - 1;
4573 set->timeout = NVME_IO_TIMEOUT;
4574 set->nr_maps = nr_maps;
4575 ret = blk_mq_alloc_tag_set(set);
4579 if (ctrl->ops->flags & NVME_F_FABRICS) {
4580 struct queue_limits lim = {
4581 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4584 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4585 if (IS_ERR(ctrl->connect_q)) {
4586 ret = PTR_ERR(ctrl->connect_q);
4587 goto out_free_tag_set;
4595 blk_mq_free_tag_set(set);
4596 ctrl->connect_q = NULL;
4599 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4601 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4603 if (ctrl->ops->flags & NVME_F_FABRICS) {
4604 blk_mq_destroy_queue(ctrl->connect_q);
4605 blk_put_queue(ctrl->connect_q);
4607 blk_mq_free_tag_set(ctrl->tagset);
4609 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4611 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4613 nvme_mpath_stop(ctrl);
4614 nvme_auth_stop(ctrl);
4615 nvme_stop_keep_alive(ctrl);
4616 nvme_stop_failfast_work(ctrl);
4617 flush_work(&ctrl->async_event_work);
4618 cancel_work_sync(&ctrl->fw_act_work);
4619 if (ctrl->ops->stop_ctrl)
4620 ctrl->ops->stop_ctrl(ctrl);
4622 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4624 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4626 nvme_enable_aen(ctrl);
4629 * persistent discovery controllers need to send indication to userspace
4630 * to re-read the discovery log page to learn about possible changes
4631 * that were missed. We identify persistent discovery controllers by
4632 * checking that they started once before, hence are reconnecting back.
4634 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4635 nvme_discovery_ctrl(ctrl))
4636 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4638 if (ctrl->queue_count > 1) {
4639 nvme_queue_scan(ctrl);
4640 nvme_unquiesce_io_queues(ctrl);
4641 nvme_mpath_update(ctrl);
4644 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4645 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4647 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4649 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4651 nvme_hwmon_exit(ctrl);
4652 nvme_fault_inject_fini(&ctrl->fault_inject);
4653 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4654 cdev_device_del(&ctrl->cdev, ctrl->device);
4655 nvme_put_ctrl(ctrl);
4657 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4659 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4661 struct nvme_effects_log *cel;
4664 xa_for_each(&ctrl->cels, i, cel) {
4665 xa_erase(&ctrl->cels, i);
4669 xa_destroy(&ctrl->cels);
4672 static void nvme_free_ctrl(struct device *dev)
4674 struct nvme_ctrl *ctrl =
4675 container_of(dev, struct nvme_ctrl, ctrl_device);
4676 struct nvme_subsystem *subsys = ctrl->subsys;
4678 if (!subsys || ctrl->instance != subsys->instance)
4679 ida_free(&nvme_instance_ida, ctrl->instance);
4680 key_put(ctrl->tls_key);
4681 nvme_free_cels(ctrl);
4682 nvme_mpath_uninit(ctrl);
4683 cleanup_srcu_struct(&ctrl->srcu);
4684 nvme_auth_stop(ctrl);
4685 nvme_auth_free(ctrl);
4686 __free_page(ctrl->discard_page);
4687 free_opal_dev(ctrl->opal_dev);
4690 mutex_lock(&nvme_subsystems_lock);
4691 list_del(&ctrl->subsys_entry);
4692 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4693 mutex_unlock(&nvme_subsystems_lock);
4696 ctrl->ops->free_ctrl(ctrl);
4699 nvme_put_subsystem(subsys);
4703 * Initialize a NVMe controller structures. This needs to be called during
4704 * earliest initialization so that we have the initialized structured around
4707 * On success, the caller must use the nvme_put_ctrl() to release this when
4708 * needed, which also invokes the ops->free_ctrl() callback.
4710 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4711 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4715 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4716 ctrl->passthru_err_log_enabled = false;
4717 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4718 spin_lock_init(&ctrl->lock);
4719 mutex_init(&ctrl->namespaces_lock);
4721 ret = init_srcu_struct(&ctrl->srcu);
4725 mutex_init(&ctrl->scan_lock);
4726 INIT_LIST_HEAD(&ctrl->namespaces);
4727 xa_init(&ctrl->cels);
4730 ctrl->quirks = quirks;
4731 ctrl->numa_node = NUMA_NO_NODE;
4732 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4733 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4734 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4735 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4736 init_waitqueue_head(&ctrl->state_wq);
4738 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4739 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4740 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4741 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4742 ctrl->ka_last_check_time = jiffies;
4744 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4746 ctrl->discard_page = alloc_page(GFP_KERNEL);
4747 if (!ctrl->discard_page) {
4752 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4755 ctrl->instance = ret;
4757 ret = nvme_auth_init_ctrl(ctrl);
4759 goto out_release_instance;
4761 nvme_mpath_init_ctrl(ctrl);
4763 device_initialize(&ctrl->ctrl_device);
4764 ctrl->device = &ctrl->ctrl_device;
4765 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4767 ctrl->device->class = &nvme_class;
4768 ctrl->device->parent = ctrl->dev;
4769 if (ops->dev_attr_groups)
4770 ctrl->device->groups = ops->dev_attr_groups;
4772 ctrl->device->groups = nvme_dev_attr_groups;
4773 ctrl->device->release = nvme_free_ctrl;
4774 dev_set_drvdata(ctrl->device, ctrl);
4778 out_release_instance:
4779 ida_free(&nvme_instance_ida, ctrl->instance);
4781 if (ctrl->discard_page)
4782 __free_page(ctrl->discard_page);
4783 cleanup_srcu_struct(&ctrl->srcu);
4786 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4789 * On success, returns with an elevated controller reference and caller must
4790 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4792 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4796 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4800 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4801 ctrl->cdev.owner = ctrl->ops->module;
4802 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4807 * Initialize latency tolerance controls. The sysfs files won't
4808 * be visible to userspace unless the device actually supports APST.
4810 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4811 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4812 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4814 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4815 nvme_get_ctrl(ctrl);
4819 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4821 /* let I/O to all namespaces fail in preparation for surprise removal */
4822 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4827 srcu_idx = srcu_read_lock(&ctrl->srcu);
4828 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4829 blk_mark_disk_dead(ns->disk);
4830 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4832 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4834 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4839 srcu_idx = srcu_read_lock(&ctrl->srcu);
4840 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4841 blk_mq_unfreeze_queue(ns->queue);
4842 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4843 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4845 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4847 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4852 srcu_idx = srcu_read_lock(&ctrl->srcu);
4853 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4854 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4858 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4861 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4863 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4868 srcu_idx = srcu_read_lock(&ctrl->srcu);
4869 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4870 blk_mq_freeze_queue_wait(ns->queue);
4871 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4873 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4875 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4880 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4881 srcu_idx = srcu_read_lock(&ctrl->srcu);
4882 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4883 blk_freeze_queue_start(ns->queue);
4884 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4886 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4888 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4892 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4893 blk_mq_quiesce_tagset(ctrl->tagset);
4895 blk_mq_wait_quiesce_done(ctrl->tagset);
4897 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4899 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4903 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4904 blk_mq_unquiesce_tagset(ctrl->tagset);
4906 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4908 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4910 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4911 blk_mq_quiesce_queue(ctrl->admin_q);
4913 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4915 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4917 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4919 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4920 blk_mq_unquiesce_queue(ctrl->admin_q);
4922 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4924 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4929 srcu_idx = srcu_read_lock(&ctrl->srcu);
4930 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4931 blk_sync_queue(ns->queue);
4932 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4934 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4936 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4938 nvme_sync_io_queues(ctrl);
4940 blk_sync_queue(ctrl->admin_q);
4942 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4944 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4946 if (file->f_op != &nvme_dev_fops)
4948 return file->private_data;
4950 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4953 * Check we didn't inadvertently grow the command structure sizes:
4955 static inline void _nvme_check_size(void)
4957 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4958 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4959 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4960 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4961 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4962 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4963 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4964 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4965 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4966 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4967 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4968 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4969 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4970 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4971 NVME_IDENTIFY_DATA_SIZE);
4972 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4973 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4974 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4975 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4976 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4977 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4978 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4979 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4980 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4984 static int __init nvme_core_init(void)
4986 int result = -ENOMEM;
4990 nvme_wq = alloc_workqueue("nvme-wq",
4991 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4995 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4996 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5000 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5001 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5002 if (!nvme_delete_wq)
5003 goto destroy_reset_wq;
5005 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5006 NVME_MINORS, "nvme");
5008 goto destroy_delete_wq;
5010 result = class_register(&nvme_class);
5012 goto unregister_chrdev;
5014 result = class_register(&nvme_subsys_class);
5018 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5021 goto destroy_subsys_class;
5023 result = class_register(&nvme_ns_chr_class);
5025 goto unregister_generic_ns;
5027 result = nvme_init_auth();
5029 goto destroy_ns_chr;
5033 class_unregister(&nvme_ns_chr_class);
5034 unregister_generic_ns:
5035 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5036 destroy_subsys_class:
5037 class_unregister(&nvme_subsys_class);
5039 class_unregister(&nvme_class);
5041 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5043 destroy_workqueue(nvme_delete_wq);
5045 destroy_workqueue(nvme_reset_wq);
5047 destroy_workqueue(nvme_wq);
5052 static void __exit nvme_core_exit(void)
5055 class_unregister(&nvme_ns_chr_class);
5056 class_unregister(&nvme_subsys_class);
5057 class_unregister(&nvme_class);
5058 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5059 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5060 destroy_workqueue(nvme_delete_wq);
5061 destroy_workqueue(nvme_reset_wq);
5062 destroy_workqueue(nvme_wq);
5063 ida_destroy(&nvme_ns_chr_minor_ida);
5064 ida_destroy(&nvme_instance_ida);
5067 MODULE_LICENSE("GPL");
5068 MODULE_VERSION("1.0");
5069 MODULE_DESCRIPTION("NVMe host core framework");
5070 module_init(nvme_core_init);
5071 module_exit(nvme_core_exit);