]> Git Repo - linux.git/blob - drivers/net/can/usb/ucan.c
dma-mapping: don't return errors from dma_set_max_seg_size
[linux.git] / drivers / net / can / usb / ucan.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Driver for Theobroma Systems UCAN devices, Protocol Version 3
4  *
5  * Copyright (C) 2018 Theobroma Systems Design und Consulting GmbH
6  *
7  *
8  * General Description:
9  *
10  * The USB Device uses three Endpoints:
11  *
12  *   CONTROL Endpoint: Is used the setup the device (start, stop,
13  *   info, configure).
14  *
15  *   IN Endpoint: The device sends CAN Frame Messages and Device
16  *   Information using the IN endpoint.
17  *
18  *   OUT Endpoint: The driver sends configuration requests, and CAN
19  *   Frames on the out endpoint.
20  *
21  * Error Handling:
22  *
23  *   If error reporting is turned on the device encodes error into CAN
24  *   error frames (see uapi/linux/can/error.h) and sends it using the
25  *   IN Endpoint. The driver updates statistics and forward it.
26  */
27
28 #include <linux/can.h>
29 #include <linux/can/dev.h>
30 #include <linux/can/error.h>
31 #include <linux/ethtool.h>
32 #include <linux/module.h>
33 #include <linux/netdevice.h>
34 #include <linux/signal.h>
35 #include <linux/skbuff.h>
36 #include <linux/slab.h>
37 #include <linux/usb.h>
38
39 #define UCAN_DRIVER_NAME "ucan"
40 #define UCAN_MAX_RX_URBS 8
41 /* the CAN controller needs a while to enable/disable the bus */
42 #define UCAN_USB_CTL_PIPE_TIMEOUT 1000
43 /* this driver currently supports protocol version 3 only */
44 #define UCAN_PROTOCOL_VERSION_MIN 3
45 #define UCAN_PROTOCOL_VERSION_MAX 3
46
47 /* UCAN Message Definitions
48  * ------------------------
49  *
50  *  ucan_message_out_t and ucan_message_in_t define the messages
51  *  transmitted on the OUT and IN endpoint.
52  *
53  *  Multibyte fields are transmitted with little endianness
54  *
55  *  INTR Endpoint: a single uint32_t storing the current space in the fifo
56  *
57  *  OUT Endpoint: single message of type ucan_message_out_t is
58  *    transmitted on the out endpoint
59  *
60  *  IN Endpoint: multiple messages ucan_message_in_t concateted in
61  *    the following way:
62  *
63  *      m[n].len <=> the length if message n(including the header in bytes)
64  *      m[n] is is aligned to a 4 byte boundary, hence
65  *        offset(m[0])   := 0;
66  *        offset(m[n+1]) := offset(m[n]) + (m[n].len + 3) & 3
67  *
68  *      this implies that
69  *        offset(m[n]) % 4 <=> 0
70  */
71
72 /* Device Global Commands */
73 enum {
74         UCAN_DEVICE_GET_FW_STRING = 0,
75 };
76
77 /* UCAN Commands */
78 enum {
79         /* start the can transceiver - val defines the operation mode */
80         UCAN_COMMAND_START = 0,
81         /* cancel pending transmissions and stop the can transceiver */
82         UCAN_COMMAND_STOP = 1,
83         /* send can transceiver into low-power sleep mode */
84         UCAN_COMMAND_SLEEP = 2,
85         /* wake up can transceiver from low-power sleep mode */
86         UCAN_COMMAND_WAKEUP = 3,
87         /* reset the can transceiver */
88         UCAN_COMMAND_RESET = 4,
89         /* get piece of info from the can transceiver - subcmd defines what
90          * piece
91          */
92         UCAN_COMMAND_GET = 5,
93         /* clear or disable hardware filter - subcmd defines which of the two */
94         UCAN_COMMAND_FILTER = 6,
95         /* Setup bittiming */
96         UCAN_COMMAND_SET_BITTIMING = 7,
97         /* recover from bus-off state */
98         UCAN_COMMAND_RESTART = 8,
99 };
100
101 /* UCAN_COMMAND_START and UCAN_COMMAND_GET_INFO operation modes (bitmap).
102  * Undefined bits must be set to 0.
103  */
104 enum {
105         UCAN_MODE_LOOPBACK = BIT(0),
106         UCAN_MODE_SILENT = BIT(1),
107         UCAN_MODE_3_SAMPLES = BIT(2),
108         UCAN_MODE_ONE_SHOT = BIT(3),
109         UCAN_MODE_BERR_REPORT = BIT(4),
110 };
111
112 /* UCAN_COMMAND_GET subcommands */
113 enum {
114         UCAN_COMMAND_GET_INFO = 0,
115         UCAN_COMMAND_GET_PROTOCOL_VERSION = 1,
116 };
117
118 /* UCAN_COMMAND_FILTER subcommands */
119 enum {
120         UCAN_FILTER_CLEAR = 0,
121         UCAN_FILTER_DISABLE = 1,
122         UCAN_FILTER_ENABLE = 2,
123 };
124
125 /* OUT endpoint message types */
126 enum {
127         UCAN_OUT_TX = 2,     /* transmit a CAN frame */
128 };
129
130 /* IN endpoint message types */
131 enum {
132         UCAN_IN_TX_COMPLETE = 1,  /* CAN frame transmission completed */
133         UCAN_IN_RX = 2,           /* CAN frame received */
134 };
135
136 struct ucan_ctl_cmd_start {
137         __le16 mode;         /* OR-ing any of UCAN_MODE_* */
138 } __packed;
139
140 struct ucan_ctl_cmd_set_bittiming {
141         __le32 tq;           /* Time quanta (TQ) in nanoseconds */
142         __le16 brp;          /* TQ Prescaler */
143         __le16 sample_point; /* Samplepoint on tenth percent */
144         u8 prop_seg;         /* Propagation segment in TQs */
145         u8 phase_seg1;       /* Phase buffer segment 1 in TQs */
146         u8 phase_seg2;       /* Phase buffer segment 2 in TQs */
147         u8 sjw;              /* Synchronisation jump width in TQs */
148 } __packed;
149
150 struct ucan_ctl_cmd_device_info {
151         __le32 freq;         /* Clock Frequency for tq generation */
152         u8 tx_fifo;          /* Size of the transmission fifo */
153         u8 sjw_max;          /* can_bittiming fields... */
154         u8 tseg1_min;
155         u8 tseg1_max;
156         u8 tseg2_min;
157         u8 tseg2_max;
158         __le16 brp_inc;
159         __le32 brp_min;
160         __le32 brp_max;      /* ...can_bittiming fields */
161         __le16 ctrlmodes;    /* supported control modes */
162         __le16 hwfilter;     /* Number of HW filter banks */
163         __le16 rxmboxes;     /* Number of receive Mailboxes */
164 } __packed;
165
166 struct ucan_ctl_cmd_get_protocol_version {
167         __le32 version;
168 } __packed;
169
170 union ucan_ctl_payload {
171         /* Setup Bittiming
172          * bmRequest == UCAN_COMMAND_START
173          */
174         struct ucan_ctl_cmd_start cmd_start;
175         /* Setup Bittiming
176          * bmRequest == UCAN_COMMAND_SET_BITTIMING
177          */
178         struct ucan_ctl_cmd_set_bittiming cmd_set_bittiming;
179         /* Get Device Information
180          * bmRequest == UCAN_COMMAND_GET; wValue = UCAN_COMMAND_GET_INFO
181          */
182         struct ucan_ctl_cmd_device_info cmd_get_device_info;
183         /* Get Protocol Version
184          * bmRequest == UCAN_COMMAND_GET;
185          * wValue = UCAN_COMMAND_GET_PROTOCOL_VERSION
186          */
187         struct ucan_ctl_cmd_get_protocol_version cmd_get_protocol_version;
188
189         u8 raw[128];
190 } __packed;
191
192 enum {
193         UCAN_TX_COMPLETE_SUCCESS = BIT(0),
194 };
195
196 /* Transmission Complete within ucan_message_in */
197 struct ucan_tx_complete_entry_t {
198         u8 echo_index;
199         u8 flags;
200 } __packed __aligned(0x2);
201
202 /* CAN Data message format within ucan_message_in/out */
203 struct ucan_can_msg {
204         /* note DLC is computed by
205          *    msg.len - sizeof (msg.len)
206          *            - sizeof (msg.type)
207          *            - sizeof (msg.can_msg.id)
208          */
209         __le32 id;
210
211         union {
212                 u8 data[CAN_MAX_DLEN];  /* Data of CAN frames */
213                 u8 dlc;                 /* RTR dlc */
214         };
215 } __packed;
216
217 /* OUT Endpoint, outbound messages */
218 struct ucan_message_out {
219         __le16 len; /* Length of the content include header */
220         u8 type;    /* UCAN_OUT_TX and friends */
221         u8 subtype; /* command sub type */
222
223         union {
224                 /* Transmit CAN frame
225                  * (type == UCAN_TX) && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
226                  * subtype stores the echo id
227                  */
228                 struct ucan_can_msg can_msg;
229         } msg;
230 } __packed __aligned(0x4);
231
232 /* IN Endpoint, inbound messages */
233 struct ucan_message_in {
234         __le16 len; /* Length of the content include header */
235         u8 type;    /* UCAN_IN_RX and friends */
236         u8 subtype; /* command sub type */
237
238         union {
239                 /* CAN Frame received
240                  * (type == UCAN_IN_RX)
241                  * && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
242                  */
243                 struct ucan_can_msg can_msg;
244
245                 /* CAN transmission complete
246                  * (type == UCAN_IN_TX_COMPLETE)
247                  */
248                 DECLARE_FLEX_ARRAY(struct ucan_tx_complete_entry_t,
249                                    can_tx_complete_msg);
250         } __aligned(0x4) msg;
251 } __packed __aligned(0x4);
252
253 /* Macros to calculate message lengths */
254 #define UCAN_OUT_HDR_SIZE offsetof(struct ucan_message_out, msg)
255
256 #define UCAN_IN_HDR_SIZE offsetof(struct ucan_message_in, msg)
257 #define UCAN_IN_LEN(member) (UCAN_OUT_HDR_SIZE + sizeof(member))
258
259 struct ucan_priv;
260
261 /* Context Information for transmission URBs */
262 struct ucan_urb_context {
263         struct ucan_priv *up;
264         bool allocated;
265 };
266
267 /* Information reported by the USB device */
268 struct ucan_device_info {
269         struct can_bittiming_const bittiming_const;
270         u8 tx_fifo;
271 };
272
273 /* Driver private data */
274 struct ucan_priv {
275         /* must be the first member */
276         struct can_priv can;
277
278         /* linux USB device structures */
279         struct usb_device *udev;
280         struct net_device *netdev;
281
282         /* lock for can->echo_skb (used around
283          * can_put/get/free_echo_skb
284          */
285         spinlock_t echo_skb_lock;
286
287         /* usb device information */
288         u8 intf_index;
289         u8 in_ep_addr;
290         u8 out_ep_addr;
291         u16 in_ep_size;
292
293         /* transmission and reception buffers */
294         struct usb_anchor rx_urbs;
295         struct usb_anchor tx_urbs;
296
297         union ucan_ctl_payload *ctl_msg_buffer;
298         struct ucan_device_info device_info;
299
300         /* transmission control information and locks */
301         spinlock_t context_lock;
302         unsigned int available_tx_urbs;
303         struct ucan_urb_context *context_array;
304 };
305
306 static u8 ucan_can_cc_dlc2len(struct ucan_can_msg *msg, u16 len)
307 {
308         if (le32_to_cpu(msg->id) & CAN_RTR_FLAG)
309                 return can_cc_dlc2len(msg->dlc);
310         else
311                 return can_cc_dlc2len(len - (UCAN_IN_HDR_SIZE + sizeof(msg->id)));
312 }
313
314 static void ucan_release_context_array(struct ucan_priv *up)
315 {
316         if (!up->context_array)
317                 return;
318
319         /* lock is not needed because, driver is currently opening or closing */
320         up->available_tx_urbs = 0;
321
322         kfree(up->context_array);
323         up->context_array = NULL;
324 }
325
326 static int ucan_alloc_context_array(struct ucan_priv *up)
327 {
328         int i;
329
330         /* release contexts if any */
331         ucan_release_context_array(up);
332
333         up->context_array = kcalloc(up->device_info.tx_fifo,
334                                     sizeof(*up->context_array),
335                                     GFP_KERNEL);
336         if (!up->context_array) {
337                 netdev_err(up->netdev,
338                            "Not enough memory to allocate tx contexts\n");
339                 return -ENOMEM;
340         }
341
342         for (i = 0; i < up->device_info.tx_fifo; i++) {
343                 up->context_array[i].allocated = false;
344                 up->context_array[i].up = up;
345         }
346
347         /* lock is not needed because, driver is currently opening */
348         up->available_tx_urbs = up->device_info.tx_fifo;
349
350         return 0;
351 }
352
353 static struct ucan_urb_context *ucan_alloc_context(struct ucan_priv *up)
354 {
355         int i;
356         unsigned long flags;
357         struct ucan_urb_context *ret = NULL;
358
359         if (WARN_ON_ONCE(!up->context_array))
360                 return NULL;
361
362         /* execute context operation atomically */
363         spin_lock_irqsave(&up->context_lock, flags);
364
365         for (i = 0; i < up->device_info.tx_fifo; i++) {
366                 if (!up->context_array[i].allocated) {
367                         /* update context */
368                         ret = &up->context_array[i];
369                         up->context_array[i].allocated = true;
370
371                         /* stop queue if necessary */
372                         up->available_tx_urbs--;
373                         if (!up->available_tx_urbs)
374                                 netif_stop_queue(up->netdev);
375
376                         break;
377                 }
378         }
379
380         spin_unlock_irqrestore(&up->context_lock, flags);
381         return ret;
382 }
383
384 static bool ucan_release_context(struct ucan_priv *up,
385                                  struct ucan_urb_context *ctx)
386 {
387         unsigned long flags;
388         bool ret = false;
389
390         if (WARN_ON_ONCE(!up->context_array))
391                 return false;
392
393         /* execute context operation atomically */
394         spin_lock_irqsave(&up->context_lock, flags);
395
396         /* context was not allocated, maybe the device sent garbage */
397         if (ctx->allocated) {
398                 ctx->allocated = false;
399
400                 /* check if the queue needs to be woken */
401                 if (!up->available_tx_urbs)
402                         netif_wake_queue(up->netdev);
403                 up->available_tx_urbs++;
404
405                 ret = true;
406         }
407
408         spin_unlock_irqrestore(&up->context_lock, flags);
409         return ret;
410 }
411
412 static int ucan_ctrl_command_out(struct ucan_priv *up,
413                                  u8 cmd, u16 subcmd, u16 datalen)
414 {
415         return usb_control_msg(up->udev,
416                                usb_sndctrlpipe(up->udev, 0),
417                                cmd,
418                                USB_DIR_OUT | USB_TYPE_VENDOR |
419                                                 USB_RECIP_INTERFACE,
420                                subcmd,
421                                up->intf_index,
422                                up->ctl_msg_buffer,
423                                datalen,
424                                UCAN_USB_CTL_PIPE_TIMEOUT);
425 }
426
427 static int ucan_device_request_in(struct ucan_priv *up,
428                                   u8 cmd, u16 subcmd, u16 datalen)
429 {
430         return usb_control_msg(up->udev,
431                                usb_rcvctrlpipe(up->udev, 0),
432                                cmd,
433                                USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
434                                subcmd,
435                                0,
436                                up->ctl_msg_buffer,
437                                datalen,
438                                UCAN_USB_CTL_PIPE_TIMEOUT);
439 }
440
441 /* Parse the device information structure reported by the device and
442  * setup private variables accordingly
443  */
444 static void ucan_parse_device_info(struct ucan_priv *up,
445                                    struct ucan_ctl_cmd_device_info *device_info)
446 {
447         struct can_bittiming_const *bittiming =
448                 &up->device_info.bittiming_const;
449         u16 ctrlmodes;
450
451         /* store the data */
452         up->can.clock.freq = le32_to_cpu(device_info->freq);
453         up->device_info.tx_fifo = device_info->tx_fifo;
454         strcpy(bittiming->name, "ucan");
455         bittiming->tseg1_min = device_info->tseg1_min;
456         bittiming->tseg1_max = device_info->tseg1_max;
457         bittiming->tseg2_min = device_info->tseg2_min;
458         bittiming->tseg2_max = device_info->tseg2_max;
459         bittiming->sjw_max = device_info->sjw_max;
460         bittiming->brp_min = le32_to_cpu(device_info->brp_min);
461         bittiming->brp_max = le32_to_cpu(device_info->brp_max);
462         bittiming->brp_inc = le16_to_cpu(device_info->brp_inc);
463
464         ctrlmodes = le16_to_cpu(device_info->ctrlmodes);
465
466         up->can.ctrlmode_supported = 0;
467
468         if (ctrlmodes & UCAN_MODE_LOOPBACK)
469                 up->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
470         if (ctrlmodes & UCAN_MODE_SILENT)
471                 up->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
472         if (ctrlmodes & UCAN_MODE_3_SAMPLES)
473                 up->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
474         if (ctrlmodes & UCAN_MODE_ONE_SHOT)
475                 up->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
476         if (ctrlmodes & UCAN_MODE_BERR_REPORT)
477                 up->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
478 }
479
480 /* Handle a CAN error frame that we have received from the device.
481  * Returns true if the can state has changed.
482  */
483 static bool ucan_handle_error_frame(struct ucan_priv *up,
484                                     struct ucan_message_in *m,
485                                     canid_t canid)
486 {
487         enum can_state new_state = up->can.state;
488         struct net_device_stats *net_stats = &up->netdev->stats;
489         struct can_device_stats *can_stats = &up->can.can_stats;
490
491         if (canid & CAN_ERR_LOSTARB)
492                 can_stats->arbitration_lost++;
493
494         if (canid & CAN_ERR_BUSERROR)
495                 can_stats->bus_error++;
496
497         if (canid & CAN_ERR_ACK)
498                 net_stats->tx_errors++;
499
500         if (canid & CAN_ERR_BUSOFF)
501                 new_state = CAN_STATE_BUS_OFF;
502
503         /* controller problems, details in data[1] */
504         if (canid & CAN_ERR_CRTL) {
505                 u8 d1 = m->msg.can_msg.data[1];
506
507                 if (d1 & CAN_ERR_CRTL_RX_OVERFLOW)
508                         net_stats->rx_over_errors++;
509
510                 /* controller state bits: if multiple are set the worst wins */
511                 if (d1 & CAN_ERR_CRTL_ACTIVE)
512                         new_state = CAN_STATE_ERROR_ACTIVE;
513
514                 if (d1 & (CAN_ERR_CRTL_RX_WARNING | CAN_ERR_CRTL_TX_WARNING))
515                         new_state = CAN_STATE_ERROR_WARNING;
516
517                 if (d1 & (CAN_ERR_CRTL_RX_PASSIVE | CAN_ERR_CRTL_TX_PASSIVE))
518                         new_state = CAN_STATE_ERROR_PASSIVE;
519         }
520
521         /* protocol error, details in data[2] */
522         if (canid & CAN_ERR_PROT) {
523                 u8 d2 = m->msg.can_msg.data[2];
524
525                 if (d2 & CAN_ERR_PROT_TX)
526                         net_stats->tx_errors++;
527                 else
528                         net_stats->rx_errors++;
529         }
530
531         /* no state change - we are done */
532         if (up->can.state == new_state)
533                 return false;
534
535         /* we switched into a better state */
536         if (up->can.state > new_state) {
537                 up->can.state = new_state;
538                 return true;
539         }
540
541         /* we switched into a worse state */
542         up->can.state = new_state;
543         switch (new_state) {
544         case CAN_STATE_BUS_OFF:
545                 can_stats->bus_off++;
546                 can_bus_off(up->netdev);
547                 break;
548         case CAN_STATE_ERROR_PASSIVE:
549                 can_stats->error_passive++;
550                 break;
551         case CAN_STATE_ERROR_WARNING:
552                 can_stats->error_warning++;
553                 break;
554         default:
555                 break;
556         }
557         return true;
558 }
559
560 /* Callback on reception of a can frame via the IN endpoint
561  *
562  * This function allocates an skb and transferres it to the Linux
563  * network stack
564  */
565 static void ucan_rx_can_msg(struct ucan_priv *up, struct ucan_message_in *m)
566 {
567         int len;
568         canid_t canid;
569         struct can_frame *cf;
570         struct sk_buff *skb;
571         struct net_device_stats *stats = &up->netdev->stats;
572
573         /* get the contents of the length field */
574         len = le16_to_cpu(m->len);
575
576         /* check sanity */
577         if (len < UCAN_IN_HDR_SIZE + sizeof(m->msg.can_msg.id)) {
578                 netdev_warn(up->netdev, "invalid input message len: %d\n", len);
579                 return;
580         }
581
582         /* handle error frames */
583         canid = le32_to_cpu(m->msg.can_msg.id);
584         if (canid & CAN_ERR_FLAG) {
585                 bool busstate_changed = ucan_handle_error_frame(up, m, canid);
586
587                 /* if berr-reporting is off only state changes get through */
588                 if (!(up->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
589                     !busstate_changed)
590                         return;
591         } else {
592                 canid_t canid_mask;
593                 /* compute the mask for canid */
594                 canid_mask = CAN_RTR_FLAG;
595                 if (canid & CAN_EFF_FLAG)
596                         canid_mask |= CAN_EFF_MASK | CAN_EFF_FLAG;
597                 else
598                         canid_mask |= CAN_SFF_MASK;
599
600                 if (canid & ~canid_mask)
601                         netdev_warn(up->netdev,
602                                     "unexpected bits set (canid %x, mask %x)",
603                                     canid, canid_mask);
604
605                 canid &= canid_mask;
606         }
607
608         /* allocate skb */
609         skb = alloc_can_skb(up->netdev, &cf);
610         if (!skb)
611                 return;
612
613         /* fill the can frame */
614         cf->can_id = canid;
615
616         /* compute DLC taking RTR_FLAG into account */
617         cf->len = ucan_can_cc_dlc2len(&m->msg.can_msg, len);
618
619         /* copy the payload of non RTR frames */
620         if (!(cf->can_id & CAN_RTR_FLAG) || (cf->can_id & CAN_ERR_FLAG))
621                 memcpy(cf->data, m->msg.can_msg.data, cf->len);
622
623         /* don't count error frames as real packets */
624         if (!(cf->can_id & CAN_ERR_FLAG)) {
625                 stats->rx_packets++;
626                 if (!(cf->can_id & CAN_RTR_FLAG))
627                         stats->rx_bytes += cf->len;
628         }
629
630         /* pass it to Linux */
631         netif_rx(skb);
632 }
633
634 /* callback indicating completed transmission */
635 static void ucan_tx_complete_msg(struct ucan_priv *up,
636                                  struct ucan_message_in *m)
637 {
638         unsigned long flags;
639         u16 count, i;
640         u8 echo_index;
641         u16 len = le16_to_cpu(m->len);
642
643         struct ucan_urb_context *context;
644
645         if (len < UCAN_IN_HDR_SIZE || (len % 2 != 0)) {
646                 netdev_err(up->netdev, "invalid tx complete length\n");
647                 return;
648         }
649
650         count = (len - UCAN_IN_HDR_SIZE) / 2;
651         for (i = 0; i < count; i++) {
652                 /* we did not submit such echo ids */
653                 echo_index = m->msg.can_tx_complete_msg[i].echo_index;
654                 if (echo_index >= up->device_info.tx_fifo) {
655                         up->netdev->stats.tx_errors++;
656                         netdev_err(up->netdev,
657                                    "invalid echo_index %d received\n",
658                                    echo_index);
659                         continue;
660                 }
661
662                 /* gather information from the context */
663                 context = &up->context_array[echo_index];
664
665                 /* Release context and restart queue if necessary.
666                  * Also check if the context was allocated
667                  */
668                 if (!ucan_release_context(up, context))
669                         continue;
670
671                 spin_lock_irqsave(&up->echo_skb_lock, flags);
672                 if (m->msg.can_tx_complete_msg[i].flags &
673                     UCAN_TX_COMPLETE_SUCCESS) {
674                         /* update statistics */
675                         up->netdev->stats.tx_packets++;
676                         up->netdev->stats.tx_bytes +=
677                                 can_get_echo_skb(up->netdev, echo_index, NULL);
678                 } else {
679                         up->netdev->stats.tx_dropped++;
680                         can_free_echo_skb(up->netdev, echo_index, NULL);
681                 }
682                 spin_unlock_irqrestore(&up->echo_skb_lock, flags);
683         }
684 }
685
686 /* callback on reception of a USB message */
687 static void ucan_read_bulk_callback(struct urb *urb)
688 {
689         int ret;
690         int pos;
691         struct ucan_priv *up = urb->context;
692         struct net_device *netdev = up->netdev;
693         struct ucan_message_in *m;
694
695         /* the device is not up and the driver should not receive any
696          * data on the bulk in pipe
697          */
698         if (WARN_ON(!up->context_array)) {
699                 usb_free_coherent(up->udev,
700                                   up->in_ep_size,
701                                   urb->transfer_buffer,
702                                   urb->transfer_dma);
703                 return;
704         }
705
706         /* check URB status */
707         switch (urb->status) {
708         case 0:
709                 break;
710         case -ENOENT:
711         case -EPIPE:
712         case -EPROTO:
713         case -ESHUTDOWN:
714         case -ETIME:
715                 /* urb is not resubmitted -> free dma data */
716                 usb_free_coherent(up->udev,
717                                   up->in_ep_size,
718                                   urb->transfer_buffer,
719                                   urb->transfer_dma);
720                 netdev_dbg(up->netdev, "not resubmitting urb; status: %d\n",
721                            urb->status);
722                 return;
723         default:
724                 goto resubmit;
725         }
726
727         /* sanity check */
728         if (!netif_device_present(netdev))
729                 return;
730
731         /* iterate over input */
732         pos = 0;
733         while (pos < urb->actual_length) {
734                 int len;
735
736                 /* check sanity (length of header) */
737                 if ((urb->actual_length - pos) < UCAN_IN_HDR_SIZE) {
738                         netdev_warn(up->netdev,
739                                     "invalid message (short; no hdr; l:%d)\n",
740                                     urb->actual_length);
741                         goto resubmit;
742                 }
743
744                 /* setup the message address */
745                 m = (struct ucan_message_in *)
746                         ((u8 *)urb->transfer_buffer + pos);
747                 len = le16_to_cpu(m->len);
748
749                 /* check sanity (length of content) */
750                 if (urb->actual_length - pos < len) {
751                         netdev_warn(up->netdev,
752                                     "invalid message (short; no data; l:%d)\n",
753                                     urb->actual_length);
754                         print_hex_dump(KERN_WARNING,
755                                        "raw data: ",
756                                        DUMP_PREFIX_ADDRESS,
757                                        16,
758                                        1,
759                                        urb->transfer_buffer,
760                                        urb->actual_length,
761                                        true);
762
763                         goto resubmit;
764                 }
765
766                 switch (m->type) {
767                 case UCAN_IN_RX:
768                         ucan_rx_can_msg(up, m);
769                         break;
770                 case UCAN_IN_TX_COMPLETE:
771                         ucan_tx_complete_msg(up, m);
772                         break;
773                 default:
774                         netdev_warn(up->netdev,
775                                     "invalid message (type; t:%d)\n",
776                                     m->type);
777                         break;
778                 }
779
780                 /* proceed to next message */
781                 pos += len;
782                 /* align to 4 byte boundary */
783                 pos = round_up(pos, 4);
784         }
785
786 resubmit:
787         /* resubmit urb when done */
788         usb_fill_bulk_urb(urb, up->udev,
789                           usb_rcvbulkpipe(up->udev,
790                                           up->in_ep_addr),
791                           urb->transfer_buffer,
792                           up->in_ep_size,
793                           ucan_read_bulk_callback,
794                           up);
795
796         usb_anchor_urb(urb, &up->rx_urbs);
797         ret = usb_submit_urb(urb, GFP_ATOMIC);
798
799         if (ret < 0) {
800                 netdev_err(up->netdev,
801                            "failed resubmitting read bulk urb: %d\n",
802                            ret);
803
804                 usb_unanchor_urb(urb);
805                 usb_free_coherent(up->udev,
806                                   up->in_ep_size,
807                                   urb->transfer_buffer,
808                                   urb->transfer_dma);
809
810                 if (ret == -ENODEV)
811                         netif_device_detach(netdev);
812         }
813 }
814
815 /* callback after transmission of a USB message */
816 static void ucan_write_bulk_callback(struct urb *urb)
817 {
818         unsigned long flags;
819         struct ucan_priv *up;
820         struct ucan_urb_context *context = urb->context;
821
822         /* get the urb context */
823         if (WARN_ON_ONCE(!context))
824                 return;
825
826         /* free up our allocated buffer */
827         usb_free_coherent(urb->dev,
828                           sizeof(struct ucan_message_out),
829                           urb->transfer_buffer,
830                           urb->transfer_dma);
831
832         up = context->up;
833         if (WARN_ON_ONCE(!up))
834                 return;
835
836         /* sanity check */
837         if (!netif_device_present(up->netdev))
838                 return;
839
840         /* transmission failed (USB - the device will not send a TX complete) */
841         if (urb->status) {
842                 netdev_warn(up->netdev,
843                             "failed to transmit USB message to device: %d\n",
844                              urb->status);
845
846                 /* update counters an cleanup */
847                 spin_lock_irqsave(&up->echo_skb_lock, flags);
848                 can_free_echo_skb(up->netdev, context - up->context_array, NULL);
849                 spin_unlock_irqrestore(&up->echo_skb_lock, flags);
850
851                 up->netdev->stats.tx_dropped++;
852
853                 /* release context and restart the queue if necessary */
854                 if (!ucan_release_context(up, context))
855                         netdev_err(up->netdev,
856                                    "urb failed, failed to release context\n");
857         }
858 }
859
860 static void ucan_cleanup_rx_urbs(struct ucan_priv *up, struct urb **urbs)
861 {
862         int i;
863
864         for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
865                 if (urbs[i]) {
866                         usb_unanchor_urb(urbs[i]);
867                         usb_free_coherent(up->udev,
868                                           up->in_ep_size,
869                                           urbs[i]->transfer_buffer,
870                                           urbs[i]->transfer_dma);
871                         usb_free_urb(urbs[i]);
872                 }
873         }
874
875         memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
876 }
877
878 static int ucan_prepare_and_anchor_rx_urbs(struct ucan_priv *up,
879                                            struct urb **urbs)
880 {
881         int i;
882
883         memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
884
885         for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
886                 void *buf;
887
888                 urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
889                 if (!urbs[i])
890                         goto err;
891
892                 buf = usb_alloc_coherent(up->udev,
893                                          up->in_ep_size,
894                                          GFP_KERNEL, &urbs[i]->transfer_dma);
895                 if (!buf) {
896                         /* cleanup this urb */
897                         usb_free_urb(urbs[i]);
898                         urbs[i] = NULL;
899                         goto err;
900                 }
901
902                 usb_fill_bulk_urb(urbs[i], up->udev,
903                                   usb_rcvbulkpipe(up->udev,
904                                                   up->in_ep_addr),
905                                   buf,
906                                   up->in_ep_size,
907                                   ucan_read_bulk_callback,
908                                   up);
909
910                 urbs[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
911
912                 usb_anchor_urb(urbs[i], &up->rx_urbs);
913         }
914         return 0;
915
916 err:
917         /* cleanup other unsubmitted urbs */
918         ucan_cleanup_rx_urbs(up, urbs);
919         return -ENOMEM;
920 }
921
922 /* Submits rx urbs with the semantic: Either submit all, or cleanup
923  * everything. I case of errors submitted urbs are killed and all urbs in
924  * the array are freed. I case of no errors every entry in the urb
925  * array is set to NULL.
926  */
927 static int ucan_submit_rx_urbs(struct ucan_priv *up, struct urb **urbs)
928 {
929         int i, ret;
930
931         /* Iterate over all urbs to submit. On success remove the urb
932          * from the list.
933          */
934         for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
935                 ret = usb_submit_urb(urbs[i], GFP_KERNEL);
936                 if (ret) {
937                         netdev_err(up->netdev,
938                                    "could not submit urb; code: %d\n",
939                                    ret);
940                         goto err;
941                 }
942
943                 /* Anchor URB and drop reference, USB core will take
944                  * care of freeing it
945                  */
946                 usb_free_urb(urbs[i]);
947                 urbs[i] = NULL;
948         }
949         return 0;
950
951 err:
952         /* Cleanup unsubmitted urbs */
953         ucan_cleanup_rx_urbs(up, urbs);
954
955         /* Kill urbs that are already submitted */
956         usb_kill_anchored_urbs(&up->rx_urbs);
957
958         return ret;
959 }
960
961 /* Open the network device */
962 static int ucan_open(struct net_device *netdev)
963 {
964         int ret, ret_cleanup;
965         u16 ctrlmode;
966         struct urb *urbs[UCAN_MAX_RX_URBS];
967         struct ucan_priv *up = netdev_priv(netdev);
968
969         ret = ucan_alloc_context_array(up);
970         if (ret)
971                 return ret;
972
973         /* Allocate and prepare IN URBS - allocated and anchored
974          * urbs are stored in urbs[] for clean
975          */
976         ret = ucan_prepare_and_anchor_rx_urbs(up, urbs);
977         if (ret)
978                 goto err_contexts;
979
980         /* Check the control mode */
981         ctrlmode = 0;
982         if (up->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
983                 ctrlmode |= UCAN_MODE_LOOPBACK;
984         if (up->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
985                 ctrlmode |= UCAN_MODE_SILENT;
986         if (up->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
987                 ctrlmode |= UCAN_MODE_3_SAMPLES;
988         if (up->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
989                 ctrlmode |= UCAN_MODE_ONE_SHOT;
990
991         /* Enable this in any case - filtering is down within the
992          * receive path
993          */
994         ctrlmode |= UCAN_MODE_BERR_REPORT;
995         up->ctl_msg_buffer->cmd_start.mode = cpu_to_le16(ctrlmode);
996
997         /* Driver is ready to receive data - start the USB device */
998         ret = ucan_ctrl_command_out(up, UCAN_COMMAND_START, 0, 2);
999         if (ret < 0) {
1000                 netdev_err(up->netdev,
1001                            "could not start device, code: %d\n",
1002                            ret);
1003                 goto err_reset;
1004         }
1005
1006         /* Call CAN layer open */
1007         ret = open_candev(netdev);
1008         if (ret)
1009                 goto err_stop;
1010
1011         /* Driver is ready to receive data. Submit RX URBS */
1012         ret = ucan_submit_rx_urbs(up, urbs);
1013         if (ret)
1014                 goto err_stop;
1015
1016         up->can.state = CAN_STATE_ERROR_ACTIVE;
1017
1018         /* Start the network queue */
1019         netif_start_queue(netdev);
1020
1021         return 0;
1022
1023 err_stop:
1024         /* The device have started already stop it */
1025         ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1026         if (ret_cleanup < 0)
1027                 netdev_err(up->netdev,
1028                            "could not stop device, code: %d\n",
1029                            ret_cleanup);
1030
1031 err_reset:
1032         /* The device might have received data, reset it for
1033          * consistent state
1034          */
1035         ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1036         if (ret_cleanup < 0)
1037                 netdev_err(up->netdev,
1038                            "could not reset device, code: %d\n",
1039                            ret_cleanup);
1040
1041         /* clean up unsubmitted urbs */
1042         ucan_cleanup_rx_urbs(up, urbs);
1043
1044 err_contexts:
1045         ucan_release_context_array(up);
1046         return ret;
1047 }
1048
1049 static struct urb *ucan_prepare_tx_urb(struct ucan_priv *up,
1050                                        struct ucan_urb_context *context,
1051                                        struct can_frame *cf,
1052                                        u8 echo_index)
1053 {
1054         int mlen;
1055         struct urb *urb;
1056         struct ucan_message_out *m;
1057
1058         /* create a URB, and a buffer for it, and copy the data to the URB */
1059         urb = usb_alloc_urb(0, GFP_ATOMIC);
1060         if (!urb) {
1061                 netdev_err(up->netdev, "no memory left for URBs\n");
1062                 return NULL;
1063         }
1064
1065         m = usb_alloc_coherent(up->udev,
1066                                sizeof(struct ucan_message_out),
1067                                GFP_ATOMIC,
1068                                &urb->transfer_dma);
1069         if (!m) {
1070                 netdev_err(up->netdev, "no memory left for USB buffer\n");
1071                 usb_free_urb(urb);
1072                 return NULL;
1073         }
1074
1075         /* build the USB message */
1076         m->type = UCAN_OUT_TX;
1077         m->msg.can_msg.id = cpu_to_le32(cf->can_id);
1078
1079         if (cf->can_id & CAN_RTR_FLAG) {
1080                 mlen = UCAN_OUT_HDR_SIZE +
1081                         offsetof(struct ucan_can_msg, dlc) +
1082                         sizeof(m->msg.can_msg.dlc);
1083                 m->msg.can_msg.dlc = cf->len;
1084         } else {
1085                 mlen = UCAN_OUT_HDR_SIZE +
1086                         sizeof(m->msg.can_msg.id) + cf->len;
1087                 memcpy(m->msg.can_msg.data, cf->data, cf->len);
1088         }
1089         m->len = cpu_to_le16(mlen);
1090
1091         m->subtype = echo_index;
1092
1093         /* build the urb */
1094         usb_fill_bulk_urb(urb, up->udev,
1095                           usb_sndbulkpipe(up->udev,
1096                                           up->out_ep_addr),
1097                           m, mlen, ucan_write_bulk_callback, context);
1098         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1099
1100         return urb;
1101 }
1102
1103 static void ucan_clean_up_tx_urb(struct ucan_priv *up, struct urb *urb)
1104 {
1105         usb_free_coherent(up->udev, sizeof(struct ucan_message_out),
1106                           urb->transfer_buffer, urb->transfer_dma);
1107         usb_free_urb(urb);
1108 }
1109
1110 /* callback when Linux needs to send a can frame */
1111 static netdev_tx_t ucan_start_xmit(struct sk_buff *skb,
1112                                    struct net_device *netdev)
1113 {
1114         unsigned long flags;
1115         int ret;
1116         u8 echo_index;
1117         struct urb *urb;
1118         struct ucan_urb_context *context;
1119         struct ucan_priv *up = netdev_priv(netdev);
1120         struct can_frame *cf = (struct can_frame *)skb->data;
1121
1122         /* check skb */
1123         if (can_dev_dropped_skb(netdev, skb))
1124                 return NETDEV_TX_OK;
1125
1126         /* allocate a context and slow down tx path, if fifo state is low */
1127         context = ucan_alloc_context(up);
1128         echo_index = context - up->context_array;
1129
1130         if (WARN_ON_ONCE(!context))
1131                 return NETDEV_TX_BUSY;
1132
1133         /* prepare urb for transmission */
1134         urb = ucan_prepare_tx_urb(up, context, cf, echo_index);
1135         if (!urb)
1136                 goto drop;
1137
1138         /* put the skb on can loopback stack */
1139         spin_lock_irqsave(&up->echo_skb_lock, flags);
1140         can_put_echo_skb(skb, up->netdev, echo_index, 0);
1141         spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1142
1143         /* transmit it */
1144         usb_anchor_urb(urb, &up->tx_urbs);
1145         ret = usb_submit_urb(urb, GFP_ATOMIC);
1146
1147         /* cleanup urb */
1148         if (ret) {
1149                 /* on error, clean up */
1150                 usb_unanchor_urb(urb);
1151                 ucan_clean_up_tx_urb(up, urb);
1152                 if (!ucan_release_context(up, context))
1153                         netdev_err(up->netdev,
1154                                    "xmit err: failed to release context\n");
1155
1156                 /* remove the skb from the echo stack - this also
1157                  * frees the skb
1158                  */
1159                 spin_lock_irqsave(&up->echo_skb_lock, flags);
1160                 can_free_echo_skb(up->netdev, echo_index, NULL);
1161                 spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1162
1163                 if (ret == -ENODEV) {
1164                         netif_device_detach(up->netdev);
1165                 } else {
1166                         netdev_warn(up->netdev,
1167                                     "xmit err: failed to submit urb %d\n",
1168                                     ret);
1169                         up->netdev->stats.tx_dropped++;
1170                 }
1171                 return NETDEV_TX_OK;
1172         }
1173
1174         netif_trans_update(netdev);
1175
1176         /* release ref, as we do not need the urb anymore */
1177         usb_free_urb(urb);
1178
1179         return NETDEV_TX_OK;
1180
1181 drop:
1182         if (!ucan_release_context(up, context))
1183                 netdev_err(up->netdev,
1184                            "xmit drop: failed to release context\n");
1185         dev_kfree_skb(skb);
1186         up->netdev->stats.tx_dropped++;
1187
1188         return NETDEV_TX_OK;
1189 }
1190
1191 /* Device goes down
1192  *
1193  * Clean up used resources
1194  */
1195 static int ucan_close(struct net_device *netdev)
1196 {
1197         int ret;
1198         struct ucan_priv *up = netdev_priv(netdev);
1199
1200         up->can.state = CAN_STATE_STOPPED;
1201
1202         /* stop sending data */
1203         usb_kill_anchored_urbs(&up->tx_urbs);
1204
1205         /* stop receiving data */
1206         usb_kill_anchored_urbs(&up->rx_urbs);
1207
1208         /* stop and reset can device */
1209         ret = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1210         if (ret < 0)
1211                 netdev_err(up->netdev,
1212                            "could not stop device, code: %d\n",
1213                            ret);
1214
1215         ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1216         if (ret < 0)
1217                 netdev_err(up->netdev,
1218                            "could not reset device, code: %d\n",
1219                            ret);
1220
1221         netif_stop_queue(netdev);
1222
1223         ucan_release_context_array(up);
1224
1225         close_candev(up->netdev);
1226         return 0;
1227 }
1228
1229 /* CAN driver callbacks */
1230 static const struct net_device_ops ucan_netdev_ops = {
1231         .ndo_open = ucan_open,
1232         .ndo_stop = ucan_close,
1233         .ndo_start_xmit = ucan_start_xmit,
1234         .ndo_change_mtu = can_change_mtu,
1235 };
1236
1237 static const struct ethtool_ops ucan_ethtool_ops = {
1238         .get_ts_info = ethtool_op_get_ts_info,
1239 };
1240
1241 /* Request to set bittiming
1242  *
1243  * This function generates an USB set bittiming message and transmits
1244  * it to the device
1245  */
1246 static int ucan_set_bittiming(struct net_device *netdev)
1247 {
1248         int ret;
1249         struct ucan_priv *up = netdev_priv(netdev);
1250         struct ucan_ctl_cmd_set_bittiming *cmd_set_bittiming;
1251
1252         cmd_set_bittiming = &up->ctl_msg_buffer->cmd_set_bittiming;
1253         cmd_set_bittiming->tq = cpu_to_le32(up->can.bittiming.tq);
1254         cmd_set_bittiming->brp = cpu_to_le16(up->can.bittiming.brp);
1255         cmd_set_bittiming->sample_point =
1256             cpu_to_le16(up->can.bittiming.sample_point);
1257         cmd_set_bittiming->prop_seg = up->can.bittiming.prop_seg;
1258         cmd_set_bittiming->phase_seg1 = up->can.bittiming.phase_seg1;
1259         cmd_set_bittiming->phase_seg2 = up->can.bittiming.phase_seg2;
1260         cmd_set_bittiming->sjw = up->can.bittiming.sjw;
1261
1262         ret = ucan_ctrl_command_out(up, UCAN_COMMAND_SET_BITTIMING, 0,
1263                                     sizeof(*cmd_set_bittiming));
1264         return (ret < 0) ? ret : 0;
1265 }
1266
1267 /* Restart the device to get it out of BUS-OFF state.
1268  * Called when the user runs "ip link set can1 type can restart".
1269  */
1270 static int ucan_set_mode(struct net_device *netdev, enum can_mode mode)
1271 {
1272         int ret;
1273         unsigned long flags;
1274         struct ucan_priv *up = netdev_priv(netdev);
1275
1276         switch (mode) {
1277         case CAN_MODE_START:
1278                 netdev_dbg(up->netdev, "restarting device\n");
1279
1280                 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESTART, 0, 0);
1281                 up->can.state = CAN_STATE_ERROR_ACTIVE;
1282
1283                 /* check if queue can be restarted,
1284                  * up->available_tx_urbs must be protected by the
1285                  * lock
1286                  */
1287                 spin_lock_irqsave(&up->context_lock, flags);
1288
1289                 if (up->available_tx_urbs > 0)
1290                         netif_wake_queue(up->netdev);
1291
1292                 spin_unlock_irqrestore(&up->context_lock, flags);
1293
1294                 return ret;
1295         default:
1296                 return -EOPNOTSUPP;
1297         }
1298 }
1299
1300 /* Probe the device, reset it and gather general device information */
1301 static int ucan_probe(struct usb_interface *intf,
1302                       const struct usb_device_id *id)
1303 {
1304         int ret;
1305         int i;
1306         u32 protocol_version;
1307         struct usb_device *udev;
1308         struct net_device *netdev;
1309         struct usb_host_interface *iface_desc;
1310         struct ucan_priv *up;
1311         struct usb_endpoint_descriptor *ep;
1312         u16 in_ep_size;
1313         u16 out_ep_size;
1314         u8 in_ep_addr;
1315         u8 out_ep_addr;
1316         union ucan_ctl_payload *ctl_msg_buffer;
1317         char firmware_str[sizeof(union ucan_ctl_payload) + 1];
1318
1319         udev = interface_to_usbdev(intf);
1320
1321         /* Stage 1 - Interface Parsing
1322          * ---------------------------
1323          *
1324          * Identifie the device USB interface descriptor and its
1325          * endpoints. Probing is aborted on errors.
1326          */
1327
1328         /* check if the interface is sane */
1329         iface_desc = intf->cur_altsetting;
1330         if (!iface_desc)
1331                 return -ENODEV;
1332
1333         dev_info(&udev->dev,
1334                  "%s: probing device on interface #%d\n",
1335                  UCAN_DRIVER_NAME,
1336                  iface_desc->desc.bInterfaceNumber);
1337
1338         /* interface sanity check */
1339         if (iface_desc->desc.bNumEndpoints != 2) {
1340                 dev_err(&udev->dev,
1341                         "%s: invalid EP count (%d)",
1342                         UCAN_DRIVER_NAME, iface_desc->desc.bNumEndpoints);
1343                 goto err_firmware_needs_update;
1344         }
1345
1346         /* check interface endpoints */
1347         in_ep_addr = 0;
1348         out_ep_addr = 0;
1349         in_ep_size = 0;
1350         out_ep_size = 0;
1351         for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) {
1352                 ep = &iface_desc->endpoint[i].desc;
1353
1354                 if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != 0) &&
1355                     ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1356                      USB_ENDPOINT_XFER_BULK)) {
1357                         /* In Endpoint */
1358                         in_ep_addr = ep->bEndpointAddress;
1359                         in_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1360                         in_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1361                 } else if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ==
1362                             0) &&
1363                            ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1364                             USB_ENDPOINT_XFER_BULK)) {
1365                         /* Out Endpoint */
1366                         out_ep_addr = ep->bEndpointAddress;
1367                         out_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1368                         out_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1369                 }
1370         }
1371
1372         /* check if interface is sane */
1373         if (!in_ep_addr || !out_ep_addr) {
1374                 dev_err(&udev->dev, "%s: invalid endpoint configuration\n",
1375                         UCAN_DRIVER_NAME);
1376                 goto err_firmware_needs_update;
1377         }
1378         if (in_ep_size < sizeof(struct ucan_message_in)) {
1379                 dev_err(&udev->dev, "%s: invalid in_ep MaxPacketSize\n",
1380                         UCAN_DRIVER_NAME);
1381                 goto err_firmware_needs_update;
1382         }
1383         if (out_ep_size < sizeof(struct ucan_message_out)) {
1384                 dev_err(&udev->dev, "%s: invalid out_ep MaxPacketSize\n",
1385                         UCAN_DRIVER_NAME);
1386                 goto err_firmware_needs_update;
1387         }
1388
1389         /* Stage 2 - Device Identification
1390          * -------------------------------
1391          *
1392          * The device interface seems to be a ucan device. Do further
1393          * compatibility checks. On error probing is aborted, on
1394          * success this stage leaves the ctl_msg_buffer with the
1395          * reported contents of a GET_INFO command (supported
1396          * bittimings, tx_fifo depth). This information is used in
1397          * Stage 3 for the final driver initialisation.
1398          */
1399
1400         /* Prepare Memory for control transfers */
1401         ctl_msg_buffer = devm_kzalloc(&udev->dev,
1402                                       sizeof(union ucan_ctl_payload),
1403                                       GFP_KERNEL);
1404         if (!ctl_msg_buffer) {
1405                 dev_err(&udev->dev,
1406                         "%s: failed to allocate control pipe memory\n",
1407                         UCAN_DRIVER_NAME);
1408                 return -ENOMEM;
1409         }
1410
1411         /* get protocol version
1412          *
1413          * note: ucan_ctrl_command_* wrappers cannot be used yet
1414          * because `up` is initialised in Stage 3
1415          */
1416         ret = usb_control_msg(udev,
1417                               usb_rcvctrlpipe(udev, 0),
1418                               UCAN_COMMAND_GET,
1419                               USB_DIR_IN | USB_TYPE_VENDOR |
1420                                         USB_RECIP_INTERFACE,
1421                               UCAN_COMMAND_GET_PROTOCOL_VERSION,
1422                               iface_desc->desc.bInterfaceNumber,
1423                               ctl_msg_buffer,
1424                               sizeof(union ucan_ctl_payload),
1425                               UCAN_USB_CTL_PIPE_TIMEOUT);
1426
1427         /* older firmware version do not support this command - those
1428          * are not supported by this drive
1429          */
1430         if (ret != 4) {
1431                 dev_err(&udev->dev,
1432                         "%s: could not read protocol version, ret=%d\n",
1433                         UCAN_DRIVER_NAME, ret);
1434                 if (ret >= 0)
1435                         ret = -EINVAL;
1436                 goto err_firmware_needs_update;
1437         }
1438
1439         /* this driver currently supports protocol version 3 only */
1440         protocol_version =
1441                 le32_to_cpu(ctl_msg_buffer->cmd_get_protocol_version.version);
1442         if (protocol_version < UCAN_PROTOCOL_VERSION_MIN ||
1443             protocol_version > UCAN_PROTOCOL_VERSION_MAX) {
1444                 dev_err(&udev->dev,
1445                         "%s: device protocol version %d is not supported\n",
1446                         UCAN_DRIVER_NAME, protocol_version);
1447                 goto err_firmware_needs_update;
1448         }
1449
1450         /* request the device information and store it in ctl_msg_buffer
1451          *
1452          * note: ucan_ctrl_command_* wrappers cannot be used yet
1453          * because `up` is initialised in Stage 3
1454          */
1455         ret = usb_control_msg(udev,
1456                               usb_rcvctrlpipe(udev, 0),
1457                               UCAN_COMMAND_GET,
1458                               USB_DIR_IN | USB_TYPE_VENDOR |
1459                                         USB_RECIP_INTERFACE,
1460                               UCAN_COMMAND_GET_INFO,
1461                               iface_desc->desc.bInterfaceNumber,
1462                               ctl_msg_buffer,
1463                               sizeof(ctl_msg_buffer->cmd_get_device_info),
1464                               UCAN_USB_CTL_PIPE_TIMEOUT);
1465
1466         if (ret < 0) {
1467                 dev_err(&udev->dev, "%s: failed to retrieve device info\n",
1468                         UCAN_DRIVER_NAME);
1469                 goto err_firmware_needs_update;
1470         }
1471         if (ret < sizeof(ctl_msg_buffer->cmd_get_device_info)) {
1472                 dev_err(&udev->dev, "%s: device reported invalid device info\n",
1473                         UCAN_DRIVER_NAME);
1474                 goto err_firmware_needs_update;
1475         }
1476         if (ctl_msg_buffer->cmd_get_device_info.tx_fifo == 0) {
1477                 dev_err(&udev->dev,
1478                         "%s: device reported invalid tx-fifo size\n",
1479                         UCAN_DRIVER_NAME);
1480                 goto err_firmware_needs_update;
1481         }
1482
1483         /* Stage 3 - Driver Initialisation
1484          * -------------------------------
1485          *
1486          * Register device to Linux, prepare private structures and
1487          * reset the device.
1488          */
1489
1490         /* allocate driver resources */
1491         netdev = alloc_candev(sizeof(struct ucan_priv),
1492                               ctl_msg_buffer->cmd_get_device_info.tx_fifo);
1493         if (!netdev) {
1494                 dev_err(&udev->dev,
1495                         "%s: cannot allocate candev\n", UCAN_DRIVER_NAME);
1496                 return -ENOMEM;
1497         }
1498
1499         up = netdev_priv(netdev);
1500
1501         /* initialize data */
1502         up->udev = udev;
1503         up->netdev = netdev;
1504         up->intf_index = iface_desc->desc.bInterfaceNumber;
1505         up->in_ep_addr = in_ep_addr;
1506         up->out_ep_addr = out_ep_addr;
1507         up->in_ep_size = in_ep_size;
1508         up->ctl_msg_buffer = ctl_msg_buffer;
1509         up->context_array = NULL;
1510         up->available_tx_urbs = 0;
1511
1512         up->can.state = CAN_STATE_STOPPED;
1513         up->can.bittiming_const = &up->device_info.bittiming_const;
1514         up->can.do_set_bittiming = ucan_set_bittiming;
1515         up->can.do_set_mode = &ucan_set_mode;
1516         spin_lock_init(&up->context_lock);
1517         spin_lock_init(&up->echo_skb_lock);
1518         netdev->netdev_ops = &ucan_netdev_ops;
1519         netdev->ethtool_ops = &ucan_ethtool_ops;
1520
1521         usb_set_intfdata(intf, up);
1522         SET_NETDEV_DEV(netdev, &intf->dev);
1523
1524         /* parse device information
1525          * the data retrieved in Stage 2 is still available in
1526          * up->ctl_msg_buffer
1527          */
1528         ucan_parse_device_info(up, &ctl_msg_buffer->cmd_get_device_info);
1529
1530         /* just print some device information - if available */
1531         ret = ucan_device_request_in(up, UCAN_DEVICE_GET_FW_STRING, 0,
1532                                      sizeof(union ucan_ctl_payload));
1533         if (ret > 0) {
1534                 /* copy string while ensuring zero termination */
1535                 strscpy(firmware_str, up->ctl_msg_buffer->raw,
1536                         sizeof(union ucan_ctl_payload) + 1);
1537         } else {
1538                 strcpy(firmware_str, "unknown");
1539         }
1540
1541         /* device is compatible, reset it */
1542         ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1543         if (ret < 0)
1544                 goto err_free_candev;
1545
1546         init_usb_anchor(&up->rx_urbs);
1547         init_usb_anchor(&up->tx_urbs);
1548
1549         up->can.state = CAN_STATE_STOPPED;
1550
1551         /* register the device */
1552         ret = register_candev(netdev);
1553         if (ret)
1554                 goto err_free_candev;
1555
1556         /* initialisation complete, log device info */
1557         netdev_info(up->netdev, "registered device\n");
1558         netdev_info(up->netdev, "firmware string: %s\n", firmware_str);
1559
1560         /* success */
1561         return 0;
1562
1563 err_free_candev:
1564         free_candev(netdev);
1565         return ret;
1566
1567 err_firmware_needs_update:
1568         dev_err(&udev->dev,
1569                 "%s: probe failed; try to update the device firmware\n",
1570                 UCAN_DRIVER_NAME);
1571         return -ENODEV;
1572 }
1573
1574 /* disconnect the device */
1575 static void ucan_disconnect(struct usb_interface *intf)
1576 {
1577         struct ucan_priv *up = usb_get_intfdata(intf);
1578
1579         usb_set_intfdata(intf, NULL);
1580
1581         if (up) {
1582                 unregister_candev(up->netdev);
1583                 free_candev(up->netdev);
1584         }
1585 }
1586
1587 static struct usb_device_id ucan_table[] = {
1588         /* Mule (soldered onto compute modules) */
1589         {USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425a, 0)},
1590         /* Seal (standalone USB stick) */
1591         {USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425b, 0)},
1592         {} /* Terminating entry */
1593 };
1594
1595 MODULE_DEVICE_TABLE(usb, ucan_table);
1596 /* driver callbacks */
1597 static struct usb_driver ucan_driver = {
1598         .name = UCAN_DRIVER_NAME,
1599         .probe = ucan_probe,
1600         .disconnect = ucan_disconnect,
1601         .id_table = ucan_table,
1602 };
1603
1604 module_usb_driver(ucan_driver);
1605
1606 MODULE_LICENSE("GPL v2");
1607 MODULE_AUTHOR("Martin Elshuber <[email protected]>");
1608 MODULE_AUTHOR("Jakob Unterwurzacher <[email protected]>");
1609 MODULE_DESCRIPTION("Driver for Theobroma Systems UCAN devices");
This page took 0.121982 seconds and 4 git commands to generate.