1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2006, Intel Corporation.
5 * Copyright (C) 2006-2008 Intel Corporation
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
14 * These routines are used by both DMA-remapping and Interrupt-remapping
17 #define pr_fmt(fmt) "DMAR: " fmt
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
34 #include "../irq_remapping.h"
35 #include "../iommu-pages.h"
40 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
41 struct dmar_res_callback {
42 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
43 void *arg[ACPI_DMAR_TYPE_RESERVED];
44 bool ignore_unhandled;
50 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
51 * before IO devices managed by that unit.
52 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
53 * after IO devices managed by that unit.
54 * 3) Hotplug events are rare.
56 * Locking rules for DMA and interrupt remapping related global data structures:
57 * 1) Use dmar_global_lock in process context
58 * 2) Use RCU in interrupt context
60 DECLARE_RWSEM(dmar_global_lock);
61 LIST_HEAD(dmar_drhd_units);
63 struct acpi_table_header * __initdata dmar_tbl;
64 static int dmar_dev_scope_status = 1;
65 static DEFINE_IDA(dmar_seq_ids);
67 static int alloc_iommu(struct dmar_drhd_unit *drhd);
68 static void free_iommu(struct intel_iommu *iommu);
70 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
73 * add INCLUDE_ALL at the tail, so scan the list will find it at
76 if (drhd->include_all)
77 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
79 list_add_rcu(&drhd->list, &dmar_drhd_units);
82 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
84 struct acpi_dmar_device_scope *scope;
89 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
93 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
94 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
95 pr_warn("Unsupported device scope\n");
97 start += scope->length;
102 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
105 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
108 struct device *tmp_dev;
110 if (*devices && *cnt) {
111 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
120 /* Optimize out kzalloc()/kfree() for normal cases */
121 static char dmar_pci_notify_info_buf[64];
123 static struct dmar_pci_notify_info *
124 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
129 struct dmar_pci_notify_info *info;
132 * Ignore devices that have a domain number higher than what can
133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 if (pci_domain_nr(dev->bus) > U16_MAX)
138 /* Only generate path[] for device addition event */
139 if (event == BUS_NOTIFY_ADD_DEVICE)
140 for (tmp = dev; tmp; tmp = tmp->bus->self)
143 size = struct_size(info, path, level);
144 if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 info = kzalloc(size, GFP_KERNEL);
149 if (dmar_dev_scope_status == 0)
150 dmar_dev_scope_status = -ENOMEM;
157 info->seg = pci_domain_nr(dev->bus);
159 if (event == BUS_NOTIFY_ADD_DEVICE) {
160 for (tmp = dev; tmp; tmp = tmp->bus->self) {
162 info->path[level].bus = tmp->bus->number;
163 info->path[level].device = PCI_SLOT(tmp->devfn);
164 info->path[level].function = PCI_FUNC(tmp->devfn);
165 if (pci_is_root_bus(tmp->bus))
166 info->bus = tmp->bus->number;
173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
175 if ((void *)info != dmar_pci_notify_info_buf)
179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 struct acpi_dmar_pci_path *path, int count)
184 if (info->bus != bus)
186 if (info->level != count)
189 for (i = 0; i < count; i++) {
190 if (path[i].device != info->path[i].device ||
191 path[i].function != info->path[i].function)
203 if (bus == info->path[i].bus &&
204 path[0].device == info->path[i].device &&
205 path[0].function == info->path[i].function) {
206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 bus, path[0].device, path[0].function);
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 void *start, void*end, u16 segment,
217 struct dmar_dev_scope *devices,
221 struct device *tmp, *dev = &info->dev->dev;
222 struct acpi_dmar_device_scope *scope;
223 struct acpi_dmar_pci_path *path;
225 if (segment != info->seg)
228 for (; start < end; start += scope->length) {
230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
234 path = (struct acpi_dmar_pci_path *)(scope + 1);
235 level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 if (!dmar_match_pci_path(info, scope->bus, path, level))
240 * We expect devices with endpoint scope to have normal PCI
241 * headers, and devices with bridge scope to have bridge PCI
242 * headers. However PCI NTB devices may be listed in the
243 * DMAR table with bridge scope, even though they have a
244 * normal PCI header. NTB devices are identified by class
245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 * for this special case.
248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 pr_warn("Device scope type does not match for %s\n",
254 pci_name(info->dev));
258 for_each_dev_scope(devices, devices_cnt, i, tmp)
260 devices[i].bus = info->dev->bus->number;
261 devices[i].devfn = info->dev->devfn;
262 rcu_assign_pointer(devices[i].dev,
266 if (WARN_ON(i >= devices_cnt))
273 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
274 struct dmar_dev_scope *devices, int count)
279 if (info->seg != segment)
282 for_each_active_dev_scope(devices, count, index, tmp)
283 if (tmp == &info->dev->dev) {
284 RCU_INIT_POINTER(devices[index].dev, NULL);
293 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296 struct dmar_drhd_unit *dmaru;
297 struct acpi_dmar_hardware_unit *drhd;
299 for_each_drhd_unit(dmaru) {
300 if (dmaru->include_all)
303 drhd = container_of(dmaru->hdr,
304 struct acpi_dmar_hardware_unit, header);
305 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
306 ((void *)drhd) + drhd->header.length,
308 dmaru->devices, dmaru->devices_cnt);
313 ret = dmar_iommu_notify_scope_dev(info);
314 if (ret < 0 && dmar_dev_scope_status == 0)
315 dmar_dev_scope_status = ret;
318 intel_irq_remap_add_device(info);
323 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
325 struct dmar_drhd_unit *dmaru;
327 for_each_drhd_unit(dmaru)
328 if (dmar_remove_dev_scope(info, dmaru->segment,
329 dmaru->devices, dmaru->devices_cnt))
331 dmar_iommu_notify_scope_dev(info);
334 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
336 struct pci_dev *physfn = pci_physfn(pdev);
338 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
341 static int dmar_pci_bus_notifier(struct notifier_block *nb,
342 unsigned long action, void *data)
344 struct pci_dev *pdev = to_pci_dev(data);
345 struct dmar_pci_notify_info *info;
347 /* Only care about add/remove events for physical functions.
348 * For VFs we actually do the lookup based on the corresponding
349 * PF in device_to_iommu() anyway. */
350 if (pdev->is_virtfn) {
352 * Ensure that the VF device inherits the irq domain of the
353 * PF device. Ideally the device would inherit the domain
354 * from the bus, but DMAR can have multiple units per bus
355 * which makes this impossible. The VF 'bus' could inherit
356 * from the PF device, but that's yet another x86'sism to
357 * inflict on everybody else.
359 if (action == BUS_NOTIFY_ADD_DEVICE)
360 vf_inherit_msi_domain(pdev);
364 if (action != BUS_NOTIFY_ADD_DEVICE &&
365 action != BUS_NOTIFY_REMOVED_DEVICE)
368 info = dmar_alloc_pci_notify_info(pdev, action);
372 down_write(&dmar_global_lock);
373 if (action == BUS_NOTIFY_ADD_DEVICE)
374 dmar_pci_bus_add_dev(info);
375 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376 dmar_pci_bus_del_dev(info);
377 up_write(&dmar_global_lock);
379 dmar_free_pci_notify_info(info);
384 static struct notifier_block dmar_pci_bus_nb = {
385 .notifier_call = dmar_pci_bus_notifier,
389 static struct dmar_drhd_unit *
390 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
392 struct dmar_drhd_unit *dmaru;
394 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
396 if (dmaru->segment == drhd->segment &&
397 dmaru->reg_base_addr == drhd->address)
404 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
405 * structure which uniquely represent one DMA remapping hardware unit
406 * present in the platform
408 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
410 struct acpi_dmar_hardware_unit *drhd;
411 struct dmar_drhd_unit *dmaru;
414 drhd = (struct acpi_dmar_hardware_unit *)header;
415 dmaru = dmar_find_dmaru(drhd);
419 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
424 * If header is allocated from slab by ACPI _DSM method, we need to
425 * copy the content because the memory buffer will be freed on return.
427 dmaru->hdr = (void *)(dmaru + 1);
428 memcpy(dmaru->hdr, header, header->length);
429 dmaru->reg_base_addr = drhd->address;
430 dmaru->segment = drhd->segment;
431 /* The size of the register set is 2 ^ N 4 KB pages. */
432 dmaru->reg_size = 1UL << (drhd->size + 12);
433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 ((void *)drhd) + drhd->header.length,
436 &dmaru->devices_cnt);
437 if (dmaru->devices_cnt && dmaru->devices == NULL) {
442 ret = alloc_iommu(dmaru);
444 dmar_free_dev_scope(&dmaru->devices,
445 &dmaru->devices_cnt);
449 dmar_register_drhd_unit(dmaru);
458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
460 if (dmaru->devices && dmaru->devices_cnt)
461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
463 free_iommu(dmaru->iommu);
467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
470 struct acpi_dmar_andd *andd = (void *)header;
472 /* Check for NUL termination within the designated length */
473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 dmi_get_system_info(DMI_BIOS_VENDOR),
478 dmi_get_system_info(DMI_BIOS_VERSION),
479 dmi_get_system_info(DMI_PRODUCT_VERSION));
480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
483 pr_info("ANDD device: %x name: %s\n", andd->device_number,
489 #ifdef CONFIG_ACPI_NUMA
490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
492 struct acpi_dmar_rhsa *rhsa;
493 struct dmar_drhd_unit *drhd;
495 rhsa = (struct acpi_dmar_rhsa *)header;
496 for_each_drhd_unit(drhd) {
497 if (drhd->reg_base_addr == rhsa->base_address) {
498 int node = pxm_to_node(rhsa->proximity_domain);
500 if (node != NUMA_NO_NODE && !node_online(node))
502 drhd->iommu->node = node;
507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
510 dmi_get_system_info(DMI_BIOS_VENDOR),
511 dmi_get_system_info(DMI_BIOS_VERSION),
512 dmi_get_system_info(DMI_PRODUCT_VERSION));
513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
518 #define dmar_parse_one_rhsa dmar_res_noop
522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
524 struct acpi_dmar_hardware_unit *drhd;
525 struct acpi_dmar_reserved_memory *rmrr;
526 struct acpi_dmar_atsr *atsr;
527 struct acpi_dmar_rhsa *rhsa;
528 struct acpi_dmar_satc *satc;
530 switch (header->type) {
531 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532 drhd = container_of(header, struct acpi_dmar_hardware_unit,
534 pr_info("DRHD base: %#016Lx flags: %#x\n",
535 (unsigned long long)drhd->address, drhd->flags);
537 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
538 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
540 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
541 (unsigned long long)rmrr->base_address,
542 (unsigned long long)rmrr->end_address);
544 case ACPI_DMAR_TYPE_ROOT_ATS:
545 atsr = container_of(header, struct acpi_dmar_atsr, header);
546 pr_info("ATSR flags: %#x\n", atsr->flags);
548 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
549 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
550 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
551 (unsigned long long)rhsa->base_address,
552 rhsa->proximity_domain);
554 case ACPI_DMAR_TYPE_NAMESPACE:
555 /* We don't print this here because we need to sanity-check
556 it first. So print it in dmar_parse_one_andd() instead. */
558 case ACPI_DMAR_TYPE_SATC:
559 satc = container_of(header, struct acpi_dmar_satc, header);
560 pr_info("SATC flags: 0x%x\n", satc->flags);
566 * dmar_table_detect - checks to see if the platform supports DMAR devices
568 static int __init dmar_table_detect(void)
570 acpi_status status = AE_OK;
572 /* if we could find DMAR table, then there are DMAR devices */
573 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
575 if (ACPI_SUCCESS(status) && !dmar_tbl) {
576 pr_warn("Unable to map DMAR\n");
577 status = AE_NOT_FOUND;
580 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
583 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
584 size_t len, struct dmar_res_callback *cb)
586 struct acpi_dmar_header *iter, *next;
587 struct acpi_dmar_header *end = ((void *)start) + len;
589 for (iter = start; iter < end; iter = next) {
590 next = (void *)iter + iter->length;
591 if (iter->length == 0) {
592 /* Avoid looping forever on bad ACPI tables */
593 pr_debug(FW_BUG "Invalid 0-length structure\n");
595 } else if (next > end) {
596 /* Avoid passing table end */
597 pr_warn(FW_BUG "Record passes table end\n");
602 dmar_table_print_dmar_entry(iter);
604 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
605 /* continue for forward compatibility */
606 pr_debug("Unknown DMAR structure type %d\n",
608 } else if (cb->cb[iter->type]) {
611 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
614 } else if (!cb->ignore_unhandled) {
615 pr_warn("No handler for DMAR structure type %d\n",
624 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
625 struct dmar_res_callback *cb)
627 return dmar_walk_remapping_entries((void *)(dmar + 1),
628 dmar->header.length - sizeof(*dmar), cb);
632 * parse_dmar_table - parses the DMA reporting table
635 parse_dmar_table(void)
637 struct acpi_table_dmar *dmar;
640 struct dmar_res_callback cb = {
642 .ignore_unhandled = true,
643 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
644 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
645 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
646 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
647 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
648 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
649 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
653 * Do it again, earlier dmar_tbl mapping could be mapped with
659 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
660 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
662 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
664 dmar = (struct acpi_table_dmar *)dmar_tbl;
668 if (dmar->width < PAGE_SHIFT - 1) {
669 pr_warn("Invalid DMAR haw\n");
673 pr_info("Host address width %d\n", dmar->width + 1);
674 ret = dmar_walk_dmar_table(dmar, &cb);
675 if (ret == 0 && drhd_count == 0)
676 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
681 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
682 int cnt, struct pci_dev *dev)
688 for_each_active_dev_scope(devices, cnt, index, tmp)
689 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
692 /* Check our parent */
693 dev = dev->bus->self;
699 struct dmar_drhd_unit *
700 dmar_find_matched_drhd_unit(struct pci_dev *dev)
702 struct dmar_drhd_unit *dmaru;
703 struct acpi_dmar_hardware_unit *drhd;
705 dev = pci_physfn(dev);
708 for_each_drhd_unit(dmaru) {
709 drhd = container_of(dmaru->hdr,
710 struct acpi_dmar_hardware_unit,
713 if (dmaru->include_all &&
714 drhd->segment == pci_domain_nr(dev->bus))
717 if (dmar_pci_device_match(dmaru->devices,
718 dmaru->devices_cnt, dev))
728 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
729 struct acpi_device *adev)
731 struct dmar_drhd_unit *dmaru;
732 struct acpi_dmar_hardware_unit *drhd;
733 struct acpi_dmar_device_scope *scope;
736 struct acpi_dmar_pci_path *path;
738 for_each_drhd_unit(dmaru) {
739 drhd = container_of(dmaru->hdr,
740 struct acpi_dmar_hardware_unit,
743 for (scope = (void *)(drhd + 1);
744 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
745 scope = ((void *)scope) + scope->length) {
746 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
748 if (scope->enumeration_id != device_number)
751 path = (void *)(scope + 1);
752 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
753 dev_name(&adev->dev), dmaru->reg_base_addr,
754 scope->bus, path->device, path->function);
755 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
757 dmaru->devices[i].bus = scope->bus;
758 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
760 rcu_assign_pointer(dmaru->devices[i].dev,
761 get_device(&adev->dev));
764 BUG_ON(i >= dmaru->devices_cnt);
767 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
768 device_number, dev_name(&adev->dev));
771 static int __init dmar_acpi_dev_scope_init(void)
773 struct acpi_dmar_andd *andd;
775 if (dmar_tbl == NULL)
778 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
779 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
780 andd = ((void *)andd) + andd->header.length) {
781 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
783 struct acpi_device *adev;
785 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
788 pr_err("Failed to find handle for ACPI object %s\n",
792 adev = acpi_fetch_acpi_dev(h);
794 pr_err("Failed to get device for ACPI object %s\n",
798 dmar_acpi_insert_dev_scope(andd->device_number, adev);
804 int __init dmar_dev_scope_init(void)
806 struct pci_dev *dev = NULL;
807 struct dmar_pci_notify_info *info;
809 if (dmar_dev_scope_status != 1)
810 return dmar_dev_scope_status;
812 if (list_empty(&dmar_drhd_units)) {
813 dmar_dev_scope_status = -ENODEV;
815 dmar_dev_scope_status = 0;
817 dmar_acpi_dev_scope_init();
819 for_each_pci_dev(dev) {
823 info = dmar_alloc_pci_notify_info(dev,
824 BUS_NOTIFY_ADD_DEVICE);
827 return dmar_dev_scope_status;
829 dmar_pci_bus_add_dev(info);
830 dmar_free_pci_notify_info(info);
835 return dmar_dev_scope_status;
838 void __init dmar_register_bus_notifier(void)
840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
844 int __init dmar_table_init(void)
846 static int dmar_table_initialized;
849 if (dmar_table_initialized == 0) {
850 ret = parse_dmar_table();
853 pr_info("Parse DMAR table failure.\n");
854 } else if (list_empty(&dmar_drhd_units)) {
855 pr_info("No DMAR devices found\n");
860 dmar_table_initialized = ret;
862 dmar_table_initialized = 1;
865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
868 static void warn_invalid_dmar(u64 addr, const char *message)
871 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
874 dmi_get_system_info(DMI_BIOS_VENDOR),
875 dmi_get_system_info(DMI_BIOS_VERSION),
876 dmi_get_system_info(DMI_PRODUCT_VERSION));
877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
881 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
883 struct acpi_dmar_hardware_unit *drhd;
887 drhd = (void *)entry;
888 if (!drhd->address) {
889 warn_invalid_dmar(0, "");
894 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
902 cap = dmar_readq(addr + DMAR_CAP_REG);
903 ecap = dmar_readq(addr + DMAR_ECAP_REG);
908 early_iounmap(addr, VTD_PAGE_SIZE);
910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 warn_invalid_dmar(drhd->address, " returns all ones");
918 void __init detect_intel_iommu(void)
921 struct dmar_res_callback validate_drhd_cb = {
922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 .ignore_unhandled = true,
926 down_write(&dmar_global_lock);
927 ret = dmar_table_detect();
929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
931 if (!ret && !no_iommu && !iommu_detected &&
932 (!dmar_disabled || dmar_platform_optin())) {
934 /* Make sure ACS will be enabled */
940 x86_init.iommu.iommu_init = intel_iommu_init;
941 x86_platform.iommu_shutdown = intel_iommu_shutdown;
947 acpi_put_table(dmar_tbl);
950 up_write(&dmar_global_lock);
953 static void unmap_iommu(struct intel_iommu *iommu)
956 release_mem_region(iommu->reg_phys, iommu->reg_size);
960 * map_iommu: map the iommu's registers
961 * @iommu: the iommu to map
962 * @drhd: DMA remapping hardware definition structure
964 * Memory map the iommu's registers. Start w/ a single page, and
965 * possibly expand if that turns out to be insufficent.
967 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
969 u64 phys_addr = drhd->reg_base_addr;
972 iommu->reg_phys = phys_addr;
973 iommu->reg_size = drhd->reg_size;
975 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
976 pr_err("Can't reserve memory\n");
981 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
983 pr_err("Can't map the region\n");
988 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
989 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
991 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
993 warn_invalid_dmar(phys_addr, " returns all ones");
997 /* the registers might be more than one page */
998 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
999 cap_max_fault_reg_offset(iommu->cap));
1000 map_size = VTD_PAGE_ALIGN(map_size);
1001 if (map_size > iommu->reg_size) {
1002 iounmap(iommu->reg);
1003 release_mem_region(iommu->reg_phys, iommu->reg_size);
1004 iommu->reg_size = map_size;
1005 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1007 pr_err("Can't reserve memory\n");
1011 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1013 pr_err("Can't map the region\n");
1019 if (cap_ecmds(iommu->cap)) {
1022 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1023 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1024 i * DMA_ECMD_REG_STEP);
1032 iounmap(iommu->reg);
1034 release_mem_region(iommu->reg_phys, iommu->reg_size);
1039 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1041 struct intel_iommu *iommu;
1047 if (!drhd->reg_base_addr) {
1048 warn_invalid_dmar(0, "");
1052 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1056 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1057 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1058 if (iommu->seq_id < 0) {
1059 pr_err("Failed to allocate seq_id\n");
1060 err = iommu->seq_id;
1063 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1065 err = map_iommu(iommu, drhd);
1067 pr_err("Failed to map %s\n", iommu->name);
1068 goto error_free_seq_id;
1071 if (!cap_sagaw(iommu->cap) &&
1072 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1078 if (!drhd->ignored) {
1079 agaw = iommu_calculate_agaw(iommu);
1081 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1086 if (!drhd->ignored) {
1087 msagaw = iommu_calculate_max_sagaw(iommu);
1089 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1096 iommu->msagaw = msagaw;
1097 iommu->segment = drhd->segment;
1098 iommu->device_rbtree = RB_ROOT;
1099 spin_lock_init(&iommu->device_rbtree_lock);
1100 mutex_init(&iommu->iopf_lock);
1101 iommu->node = NUMA_NO_NODE;
1103 ver = readl(iommu->reg + DMAR_VER_REG);
1104 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1106 (unsigned long long)drhd->reg_base_addr,
1107 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108 (unsigned long long)iommu->cap,
1109 (unsigned long long)iommu->ecap);
1111 /* Reflect status in gcmd */
1112 sts = readl(iommu->reg + DMAR_GSTS_REG);
1113 if (sts & DMA_GSTS_IRES)
1114 iommu->gcmd |= DMA_GCMD_IRE;
1115 if (sts & DMA_GSTS_TES)
1116 iommu->gcmd |= DMA_GCMD_TE;
1117 if (sts & DMA_GSTS_QIES)
1118 iommu->gcmd |= DMA_GCMD_QIE;
1120 if (alloc_iommu_pmu(iommu))
1121 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1123 raw_spin_lock_init(&iommu->register_lock);
1126 * A value of N in PSS field of eCap register indicates hardware
1127 * supports PASID field of N+1 bits.
1129 if (pasid_supported(iommu))
1130 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1148 iommu_pmu_register(iommu);
1151 drhd->iommu = iommu;
1157 iommu_device_sysfs_remove(&iommu->iommu);
1159 free_iommu_pmu(iommu);
1162 ida_free(&dmar_seq_ids, iommu->seq_id);
1168 static void free_iommu(struct intel_iommu *iommu)
1170 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171 iommu_pmu_unregister(iommu);
1172 iommu_device_unregister(&iommu->iommu);
1173 iommu_device_sysfs_remove(&iommu->iommu);
1176 free_iommu_pmu(iommu);
1179 if (iommu->pr_irq) {
1180 free_irq(iommu->pr_irq, iommu);
1181 dmar_free_hwirq(iommu->pr_irq);
1184 free_irq(iommu->irq, iommu);
1185 dmar_free_hwirq(iommu->irq);
1190 iommu_free_page(iommu->qi->desc);
1191 kfree(iommu->qi->desc_status);
1198 ida_free(&dmar_seq_ids, iommu->seq_id);
1203 * Reclaim all the submitted descriptors which have completed its work.
1205 static inline void reclaim_free_desc(struct q_inval *qi)
1207 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1208 qi->desc_status[qi->free_tail] == QI_ABORT) {
1209 qi->desc_status[qi->free_tail] = QI_FREE;
1210 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1215 static const char *qi_type_string(u8 type)
1219 return "Context-cache Invalidation";
1221 return "IOTLB Invalidation";
1222 case QI_DIOTLB_TYPE:
1223 return "Device-TLB Invalidation";
1225 return "Interrupt Entry Cache Invalidation";
1227 return "Invalidation Wait";
1228 case QI_EIOTLB_TYPE:
1229 return "PASID-based IOTLB Invalidation";
1231 return "PASID-cache Invalidation";
1232 case QI_DEIOTLB_TYPE:
1233 return "PASID-based Device-TLB Invalidation";
1234 case QI_PGRP_RESP_TYPE:
1235 return "Page Group Response";
1241 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1243 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1244 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1245 struct qi_desc *desc = iommu->qi->desc + head;
1247 if (fault & DMA_FSTS_IQE)
1248 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1249 DMAR_IQER_REG_IQEI(iqe_err));
1250 if (fault & DMA_FSTS_ITE)
1251 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1252 DMAR_IQER_REG_ITESID(iqe_err));
1253 if (fault & DMA_FSTS_ICE)
1254 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1255 DMAR_IQER_REG_ICESID(iqe_err));
1257 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1258 qi_type_string(desc->qw0 & 0xf),
1259 (unsigned long long)desc->qw0,
1260 (unsigned long long)desc->qw1);
1262 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1263 head <<= qi_shift(iommu);
1264 desc = iommu->qi->desc + head;
1266 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1267 qi_type_string(desc->qw0 & 0xf),
1268 (unsigned long long)desc->qw0,
1269 (unsigned long long)desc->qw1);
1272 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1277 u64 iqe_err, ite_sid;
1278 struct q_inval *qi = iommu->qi;
1279 int shift = qi_shift(iommu);
1281 if (qi->desc_status[wait_index] == QI_ABORT)
1284 fault = readl(iommu->reg + DMAR_FSTS_REG);
1285 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1286 qi_dump_fault(iommu, fault);
1289 * If IQE happens, the head points to the descriptor associated
1290 * with the error. No new descriptors are fetched until the IQE
1293 if (fault & DMA_FSTS_IQE) {
1294 head = readl(iommu->reg + DMAR_IQH_REG);
1295 if ((head >> shift) == index) {
1296 struct qi_desc *desc = qi->desc + head;
1299 * desc->qw2 and desc->qw3 are either reserved or
1300 * used by software as private data. We won't print
1301 * out these two qw's for security consideration.
1303 memcpy(desc, qi->desc + (wait_index << shift),
1305 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1306 pr_info("Invalidation Queue Error (IQE) cleared\n");
1312 * If ITE happens, all pending wait_desc commands are aborted.
1313 * No new descriptors are fetched until the ITE is cleared.
1315 if (fault & DMA_FSTS_ITE) {
1316 head = readl(iommu->reg + DMAR_IQH_REG);
1317 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1319 tail = readl(iommu->reg + DMAR_IQT_REG);
1320 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1323 * SID field is valid only when the ITE field is Set in FSTS_REG
1324 * see Intel VT-d spec r4.1, section 11.4.9.9
1326 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1327 ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1329 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1330 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1333 if (qi->desc_status[head] == QI_IN_USE)
1334 qi->desc_status[head] = QI_ABORT;
1335 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1336 } while (head != tail);
1339 * If device was released or isn't present, no need to retry
1340 * the ATS invalidate request anymore.
1342 * 0 value of ite_sid means old VT-d device, no ite_sid value.
1343 * see Intel VT-d spec r4.1, section 11.4.9.9
1346 dev = device_rbtree_find(iommu, ite_sid);
1347 if (!dev || !dev_is_pci(dev) ||
1348 !pci_device_is_present(to_pci_dev(dev)))
1351 if (qi->desc_status[wait_index] == QI_ABORT)
1355 if (fault & DMA_FSTS_ICE) {
1356 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1357 pr_info("Invalidation Completion Error (ICE) cleared\n");
1364 * Function to submit invalidation descriptors of all types to the queued
1365 * invalidation interface(QI). Multiple descriptors can be submitted at a
1366 * time, a wait descriptor will be appended to each submission to ensure
1367 * hardware has completed the invalidation before return. Wait descriptors
1368 * can be part of the submission but it will not be polled for completion.
1370 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1371 unsigned int count, unsigned long options)
1373 struct q_inval *qi = iommu->qi;
1374 s64 devtlb_start_ktime = 0;
1375 s64 iotlb_start_ktime = 0;
1376 s64 iec_start_ktime = 0;
1377 struct qi_desc wait_desc;
1378 int wait_index, index;
1379 unsigned long flags;
1387 type = desc->qw0 & GENMASK_ULL(3, 0);
1389 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1390 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1391 iotlb_start_ktime = ktime_to_ns(ktime_get());
1393 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1394 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1395 devtlb_start_ktime = ktime_to_ns(ktime_get());
1397 if (type == QI_IEC_TYPE &&
1398 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1399 iec_start_ktime = ktime_to_ns(ktime_get());
1404 raw_spin_lock_irqsave(&qi->q_lock, flags);
1406 * Check if we have enough empty slots in the queue to submit,
1407 * the calculation is based on:
1408 * # of desc + 1 wait desc + 1 space between head and tail
1410 while (qi->free_cnt < count + 2) {
1411 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1413 raw_spin_lock_irqsave(&qi->q_lock, flags);
1416 index = qi->free_head;
1417 wait_index = (index + count) % QI_LENGTH;
1418 shift = qi_shift(iommu);
1420 for (i = 0; i < count; i++) {
1421 offset = ((index + i) % QI_LENGTH) << shift;
1422 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1423 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1424 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1425 desc[i].qw2, desc[i].qw3);
1427 qi->desc_status[wait_index] = QI_IN_USE;
1429 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1430 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1431 if (options & QI_OPT_WAIT_DRAIN)
1432 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1433 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1437 offset = wait_index << shift;
1438 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1440 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1441 qi->free_cnt -= count + 1;
1444 * update the HW tail register indicating the presence of
1447 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1449 while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) {
1451 * We will leave the interrupts disabled, to prevent interrupt
1452 * context to queue another cmd while a cmd is already submitted
1453 * and waiting for completion on this cpu. This is to avoid
1454 * a deadlock where the interrupt context can wait indefinitely
1455 * for free slots in the queue.
1457 rc = qi_check_fault(iommu, index, wait_index);
1461 raw_spin_unlock(&qi->q_lock);
1463 raw_spin_lock(&qi->q_lock);
1466 for (i = 0; i < count; i++)
1467 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1469 reclaim_free_desc(qi);
1470 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1475 if (iotlb_start_ktime)
1476 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1477 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1479 if (devtlb_start_ktime)
1480 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1481 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1483 if (iec_start_ktime)
1484 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1485 ktime_to_ns(ktime_get()) - iec_start_ktime);
1491 * Flush the global interrupt entry cache.
1493 void qi_global_iec(struct intel_iommu *iommu)
1495 struct qi_desc desc;
1497 desc.qw0 = QI_IEC_TYPE;
1502 /* should never fail */
1503 qi_submit_sync(iommu, &desc, 1, 0);
1506 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1509 struct qi_desc desc;
1511 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1512 | QI_CC_GRAN(type) | QI_CC_TYPE;
1517 qi_submit_sync(iommu, &desc, 1, 0);
1520 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1521 unsigned int size_order, u64 type)
1525 struct qi_desc desc;
1528 if (cap_write_drain(iommu->cap))
1531 if (cap_read_drain(iommu->cap))
1534 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1535 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1536 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1537 | QI_IOTLB_AM(size_order);
1541 qi_submit_sync(iommu, &desc, 1, 0);
1544 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1545 u16 qdep, u64 addr, unsigned mask)
1547 struct qi_desc desc;
1550 * VT-d spec, section 4.3:
1552 * Software is recommended to not submit any Device-TLB invalidation
1553 * requests while address remapping hardware is disabled.
1555 if (!(iommu->gcmd & DMA_GCMD_TE))
1559 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1560 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1562 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1564 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1567 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1568 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1572 qi_submit_sync(iommu, &desc, 1, 0);
1575 /* PASID-based IOTLB invalidation */
1576 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1577 unsigned long npages, bool ih)
1579 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1582 * npages == -1 means a PASID-selective invalidation, otherwise,
1583 * a positive value for Page-selective-within-PASID invalidation.
1584 * 0 is not a valid input.
1586 if (WARN_ON(!npages)) {
1587 pr_err("Invalid input npages = %ld\n", npages);
1592 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1593 QI_EIOTLB_DID(did) |
1594 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1598 int mask = ilog2(__roundup_pow_of_two(npages));
1599 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1601 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1602 addr = ALIGN_DOWN(addr, align);
1604 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1605 QI_EIOTLB_DID(did) |
1606 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1608 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1613 qi_submit_sync(iommu, &desc, 1, 0);
1616 /* PASID-based device IOTLB Invalidate */
1617 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1618 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1620 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1621 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1624 * VT-d spec, section 4.3:
1626 * Software is recommended to not submit any Device-TLB invalidation
1627 * requests while address remapping hardware is disabled.
1629 if (!(iommu->gcmd & DMA_GCMD_TE))
1632 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1633 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1634 QI_DEV_IOTLB_PFSID(pfsid);
1637 * If S bit is 0, we only flush a single page. If S bit is set,
1638 * The least significant zero bit indicates the invalidation address
1639 * range. VT-d spec 6.5.2.6.
1640 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1641 * size order = 0 is PAGE_SIZE 4KB
1642 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1645 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1646 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1649 /* Take page address */
1650 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1654 * Existing 0s in address below size_order may be the least
1655 * significant bit, we must set them to 1s to avoid having
1656 * smaller size than desired.
1658 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1660 /* Clear size_order bit to indicate size */
1662 /* Set the S bit to indicate flushing more than 1 page */
1663 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1666 qi_submit_sync(iommu, &desc, 1, 0);
1669 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1670 u64 granu, u32 pasid)
1672 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1674 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1675 QI_PC_GRAN(granu) | QI_PC_TYPE;
1676 qi_submit_sync(iommu, &desc, 1, 0);
1680 * Disable Queued Invalidation interface.
1682 void dmar_disable_qi(struct intel_iommu *iommu)
1684 unsigned long flags;
1686 cycles_t start_time = get_cycles();
1688 if (!ecap_qis(iommu->ecap))
1691 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1693 sts = readl(iommu->reg + DMAR_GSTS_REG);
1694 if (!(sts & DMA_GSTS_QIES))
1698 * Give a chance to HW to complete the pending invalidation requests.
1700 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1701 readl(iommu->reg + DMAR_IQH_REG)) &&
1702 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1705 iommu->gcmd &= ~DMA_GCMD_QIE;
1706 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1708 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1709 !(sts & DMA_GSTS_QIES), sts);
1711 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1715 * Enable queued invalidation.
1717 static void __dmar_enable_qi(struct intel_iommu *iommu)
1720 unsigned long flags;
1721 struct q_inval *qi = iommu->qi;
1722 u64 val = virt_to_phys(qi->desc);
1724 qi->free_head = qi->free_tail = 0;
1725 qi->free_cnt = QI_LENGTH;
1728 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1731 if (ecap_smts(iommu->ecap))
1732 val |= BIT_ULL(11) | BIT_ULL(0);
1734 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1736 /* write zero to the tail reg */
1737 writel(0, iommu->reg + DMAR_IQT_REG);
1739 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1741 iommu->gcmd |= DMA_GCMD_QIE;
1742 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1744 /* Make sure hardware complete it */
1745 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1747 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1751 * Enable Queued Invalidation interface. This is a must to support
1752 * interrupt-remapping. Also used by DMA-remapping, which replaces
1753 * register based IOTLB invalidation.
1755 int dmar_enable_qi(struct intel_iommu *iommu)
1761 if (!ecap_qis(iommu->ecap))
1765 * queued invalidation is already setup and enabled.
1770 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1777 * Need two pages to accommodate 256 descriptors of 256 bits each
1778 * if the remapping hardware supports scalable mode translation.
1780 order = ecap_smts(iommu->ecap) ? 1 : 0;
1781 desc = iommu_alloc_pages_node(iommu->node, GFP_ATOMIC, order);
1790 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1791 if (!qi->desc_status) {
1792 iommu_free_page(qi->desc);
1798 raw_spin_lock_init(&qi->q_lock);
1800 __dmar_enable_qi(iommu);
1805 /* iommu interrupt handling. Most stuff are MSI-like. */
1813 static const char *dma_remap_fault_reasons[] =
1816 "Present bit in root entry is clear",
1817 "Present bit in context entry is clear",
1818 "Invalid context entry",
1819 "Access beyond MGAW",
1820 "PTE Write access is not set",
1821 "PTE Read access is not set",
1822 "Next page table ptr is invalid",
1823 "Root table address invalid",
1824 "Context table ptr is invalid",
1825 "non-zero reserved fields in RTP",
1826 "non-zero reserved fields in CTP",
1827 "non-zero reserved fields in PTE",
1828 "PCE for translation request specifies blocking",
1831 static const char * const dma_remap_sm_fault_reasons[] = {
1832 "SM: Invalid Root Table Address",
1833 "SM: TTM 0 for request with PASID",
1834 "SM: TTM 0 for page group request",
1835 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1836 "SM: Error attempting to access Root Entry",
1837 "SM: Present bit in Root Entry is clear",
1838 "SM: Non-zero reserved field set in Root Entry",
1839 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1840 "SM: Error attempting to access Context Entry",
1841 "SM: Present bit in Context Entry is clear",
1842 "SM: Non-zero reserved field set in the Context Entry",
1843 "SM: Invalid Context Entry",
1844 "SM: DTE field in Context Entry is clear",
1845 "SM: PASID Enable field in Context Entry is clear",
1846 "SM: PASID is larger than the max in Context Entry",
1847 "SM: PRE field in Context-Entry is clear",
1848 "SM: RID_PASID field error in Context-Entry",
1849 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1850 "SM: Error attempting to access the PASID Directory Entry",
1851 "SM: Present bit in Directory Entry is clear",
1852 "SM: Non-zero reserved field set in PASID Directory Entry",
1853 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1854 "SM: Error attempting to access PASID Table Entry",
1855 "SM: Present bit in PASID Table Entry is clear",
1856 "SM: Non-zero reserved field set in PASID Table Entry",
1857 "SM: Invalid Scalable-Mode PASID Table Entry",
1858 "SM: ERE field is clear in PASID Table Entry",
1859 "SM: SRE field is clear in PASID Table Entry",
1860 "Unknown", "Unknown",/* 0x5E-0x5F */
1861 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1862 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1863 "SM: Error attempting to access first-level paging entry",
1864 "SM: Present bit in first-level paging entry is clear",
1865 "SM: Non-zero reserved field set in first-level paging entry",
1866 "SM: Error attempting to access FL-PML4 entry",
1867 "SM: First-level entry address beyond MGAW in Nested translation",
1868 "SM: Read permission error in FL-PML4 entry in Nested translation",
1869 "SM: Read permission error in first-level paging entry in Nested translation",
1870 "SM: Write permission error in first-level paging entry in Nested translation",
1871 "SM: Error attempting to access second-level paging entry",
1872 "SM: Read/Write permission error in second-level paging entry",
1873 "SM: Non-zero reserved field set in second-level paging entry",
1874 "SM: Invalid second-level page table pointer",
1875 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1876 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1877 "SM: Address in first-level translation is not canonical",
1878 "SM: U/S set 0 for first-level translation with user privilege",
1879 "SM: No execute permission for request with PASID and ER=1",
1880 "SM: Address beyond the DMA hardware max",
1881 "SM: Second-level entry address beyond the max",
1882 "SM: No write permission for Write/AtomicOp request",
1883 "SM: No read permission for Read/AtomicOp request",
1884 "SM: Invalid address-interrupt address",
1885 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1886 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1889 static const char *irq_remap_fault_reasons[] =
1891 "Detected reserved fields in the decoded interrupt-remapped request",
1892 "Interrupt index exceeded the interrupt-remapping table size",
1893 "Present field in the IRTE entry is clear",
1894 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1895 "Detected reserved fields in the IRTE entry",
1896 "Blocked a compatibility format interrupt request",
1897 "Blocked an interrupt request due to source-id verification failure",
1900 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1902 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1903 ARRAY_SIZE(irq_remap_fault_reasons))) {
1904 *fault_type = INTR_REMAP;
1905 return irq_remap_fault_reasons[fault_reason - 0x20];
1906 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1907 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1908 *fault_type = DMA_REMAP;
1909 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1910 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1911 *fault_type = DMA_REMAP;
1912 return dma_remap_fault_reasons[fault_reason];
1914 *fault_type = UNKNOWN;
1920 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1922 if (iommu->irq == irq)
1923 return DMAR_FECTL_REG;
1924 else if (iommu->pr_irq == irq)
1925 return DMAR_PECTL_REG;
1926 else if (iommu->perf_irq == irq)
1927 return DMAR_PERFINTRCTL_REG;
1932 void dmar_msi_unmask(struct irq_data *data)
1934 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1935 int reg = dmar_msi_reg(iommu, data->irq);
1939 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1940 writel(0, iommu->reg + reg);
1941 /* Read a reg to force flush the post write */
1942 readl(iommu->reg + reg);
1943 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1946 void dmar_msi_mask(struct irq_data *data)
1948 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1949 int reg = dmar_msi_reg(iommu, data->irq);
1953 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1954 writel(DMA_FECTL_IM, iommu->reg + reg);
1955 /* Read a reg to force flush the post write */
1956 readl(iommu->reg + reg);
1957 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1960 void dmar_msi_write(int irq, struct msi_msg *msg)
1962 struct intel_iommu *iommu = irq_get_handler_data(irq);
1963 int reg = dmar_msi_reg(iommu, irq);
1966 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1967 writel(msg->data, iommu->reg + reg + 4);
1968 writel(msg->address_lo, iommu->reg + reg + 8);
1969 writel(msg->address_hi, iommu->reg + reg + 12);
1970 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1973 void dmar_msi_read(int irq, struct msi_msg *msg)
1975 struct intel_iommu *iommu = irq_get_handler_data(irq);
1976 int reg = dmar_msi_reg(iommu, irq);
1979 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1980 msg->data = readl(iommu->reg + reg + 4);
1981 msg->address_lo = readl(iommu->reg + reg + 8);
1982 msg->address_hi = readl(iommu->reg + reg + 12);
1983 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1986 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1987 u8 fault_reason, u32 pasid, u16 source_id,
1988 unsigned long long addr)
1993 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1995 if (fault_type == INTR_REMAP) {
1996 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1997 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1998 PCI_FUNC(source_id & 0xFF), addr >> 48,
1999 fault_reason, reason);
2004 if (pasid == IOMMU_PASID_INVALID)
2005 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2006 type ? "DMA Read" : "DMA Write",
2007 source_id >> 8, PCI_SLOT(source_id & 0xFF),
2008 PCI_FUNC(source_id & 0xFF), addr,
2009 fault_reason, reason);
2011 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2012 type ? "DMA Read" : "DMA Write", pasid,
2013 source_id >> 8, PCI_SLOT(source_id & 0xFF),
2014 PCI_FUNC(source_id & 0xFF), addr,
2015 fault_reason, reason);
2017 dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
2022 #define PRIMARY_FAULT_REG_LEN (16)
2023 irqreturn_t dmar_fault(int irq, void *dev_id)
2025 struct intel_iommu *iommu = dev_id;
2026 int reg, fault_index;
2029 static DEFINE_RATELIMIT_STATE(rs,
2030 DEFAULT_RATELIMIT_INTERVAL,
2031 DEFAULT_RATELIMIT_BURST);
2033 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2034 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2035 if (fault_status && __ratelimit(&rs))
2036 pr_err("DRHD: handling fault status reg %x\n", fault_status);
2038 /* TBD: ignore advanced fault log currently */
2039 if (!(fault_status & DMA_FSTS_PPF))
2042 fault_index = dma_fsts_fault_record_index(fault_status);
2043 reg = cap_fault_reg_offset(iommu->cap);
2045 /* Disable printing, simply clear the fault when ratelimited */
2046 bool ratelimited = !__ratelimit(&rs);
2055 /* highest 32 bits */
2056 data = readl(iommu->reg + reg +
2057 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2058 if (!(data & DMA_FRCD_F))
2062 fault_reason = dma_frcd_fault_reason(data);
2063 type = dma_frcd_type(data);
2065 pasid = dma_frcd_pasid_value(data);
2066 data = readl(iommu->reg + reg +
2067 fault_index * PRIMARY_FAULT_REG_LEN + 8);
2068 source_id = dma_frcd_source_id(data);
2070 pasid_present = dma_frcd_pasid_present(data);
2071 guest_addr = dmar_readq(iommu->reg + reg +
2072 fault_index * PRIMARY_FAULT_REG_LEN);
2073 guest_addr = dma_frcd_page_addr(guest_addr);
2076 /* clear the fault */
2077 writel(DMA_FRCD_F, iommu->reg + reg +
2078 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2080 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2083 /* Using pasid -1 if pasid is not present */
2084 dmar_fault_do_one(iommu, type, fault_reason,
2085 pasid_present ? pasid : IOMMU_PASID_INVALID,
2086 source_id, guest_addr);
2089 if (fault_index >= cap_num_fault_regs(iommu->cap))
2091 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2094 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2095 iommu->reg + DMAR_FSTS_REG);
2098 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2102 int dmar_set_interrupt(struct intel_iommu *iommu)
2107 * Check if the fault interrupt is already initialized.
2112 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2116 pr_err("No free IRQ vectors\n");
2120 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2122 pr_err("Can't request irq\n");
2126 int enable_drhd_fault_handling(unsigned int cpu)
2128 struct dmar_drhd_unit *drhd;
2129 struct intel_iommu *iommu;
2132 * Enable fault control interrupt.
2134 for_each_iommu(iommu, drhd) {
2138 if (iommu->irq || iommu->node != cpu_to_node(cpu))
2141 ret = dmar_set_interrupt(iommu);
2144 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2145 (unsigned long long)drhd->reg_base_addr, ret);
2150 * Clear any previous faults.
2152 dmar_fault(iommu->irq, iommu);
2153 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2154 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2161 * Re-enable Queued Invalidation interface.
2163 int dmar_reenable_qi(struct intel_iommu *iommu)
2165 if (!ecap_qis(iommu->ecap))
2172 * First disable queued invalidation.
2174 dmar_disable_qi(iommu);
2176 * Then enable queued invalidation again. Since there is no pending
2177 * invalidation requests now, it's safe to re-enable queued
2180 __dmar_enable_qi(iommu);
2186 * Check interrupt remapping support in DMAR table description.
2188 int __init dmar_ir_support(void)
2190 struct acpi_table_dmar *dmar;
2191 dmar = (struct acpi_table_dmar *)dmar_tbl;
2194 return dmar->flags & 0x1;
2197 /* Check whether DMAR units are in use */
2198 static inline bool dmar_in_use(void)
2200 return irq_remapping_enabled || intel_iommu_enabled;
2203 static int __init dmar_free_unused_resources(void)
2205 struct dmar_drhd_unit *dmaru, *dmaru_n;
2210 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2211 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2213 down_write(&dmar_global_lock);
2214 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2215 list_del(&dmaru->list);
2216 dmar_free_drhd(dmaru);
2218 up_write(&dmar_global_lock);
2223 late_initcall(dmar_free_unused_resources);
2226 * DMAR Hotplug Support
2227 * For more details, please refer to Intel(R) Virtualization Technology
2228 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2229 * "Remapping Hardware Unit Hot Plug".
2231 static guid_t dmar_hp_guid =
2232 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2233 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2236 * Currently there's only one revision and BIOS will not check the revision id,
2237 * so use 0 for safety.
2239 #define DMAR_DSM_REV_ID 0
2240 #define DMAR_DSM_FUNC_DRHD 1
2241 #define DMAR_DSM_FUNC_ATSR 2
2242 #define DMAR_DSM_FUNC_RHSA 3
2243 #define DMAR_DSM_FUNC_SATC 4
2245 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2247 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2250 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2251 dmar_res_handler_t handler, void *arg)
2254 union acpi_object *obj;
2255 struct acpi_dmar_header *start;
2256 struct dmar_res_callback callback;
2257 static int res_type[] = {
2258 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2259 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2260 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2261 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2264 if (!dmar_detect_dsm(handle, func))
2267 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2268 func, NULL, ACPI_TYPE_BUFFER);
2272 memset(&callback, 0, sizeof(callback));
2273 callback.cb[res_type[func]] = handler;
2274 callback.arg[res_type[func]] = arg;
2275 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2276 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2283 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2286 struct dmar_drhd_unit *dmaru;
2288 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2292 ret = dmar_ir_hotplug(dmaru, true);
2294 ret = dmar_iommu_hotplug(dmaru, true);
2299 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2303 struct dmar_drhd_unit *dmaru;
2305 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2310 * All PCI devices managed by this unit should have been destroyed.
2312 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2313 for_each_active_dev_scope(dmaru->devices,
2314 dmaru->devices_cnt, i, dev)
2318 ret = dmar_ir_hotplug(dmaru, false);
2320 ret = dmar_iommu_hotplug(dmaru, false);
2325 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2327 struct dmar_drhd_unit *dmaru;
2329 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2331 list_del_rcu(&dmaru->list);
2333 dmar_free_drhd(dmaru);
2339 static int dmar_hotplug_insert(acpi_handle handle)
2344 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2345 &dmar_validate_one_drhd, (void *)1);
2349 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2350 &dmar_parse_one_drhd, (void *)&drhd_count);
2351 if (ret == 0 && drhd_count == 0) {
2352 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2358 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2359 &dmar_parse_one_rhsa, NULL);
2363 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2364 &dmar_parse_one_atsr, NULL);
2368 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2369 &dmar_hp_add_drhd, NULL);
2373 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2374 &dmar_hp_remove_drhd, NULL);
2376 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2377 &dmar_release_one_atsr, NULL);
2379 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2380 &dmar_hp_release_drhd, NULL);
2385 static int dmar_hotplug_remove(acpi_handle handle)
2389 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2390 &dmar_check_one_atsr, NULL);
2394 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2395 &dmar_hp_remove_drhd, NULL);
2397 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2398 &dmar_release_one_atsr, NULL));
2399 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2400 &dmar_hp_release_drhd, NULL));
2402 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2403 &dmar_hp_add_drhd, NULL);
2409 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2410 void *context, void **retval)
2412 acpi_handle *phdl = retval;
2414 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2416 return AE_CTRL_TERMINATE;
2422 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2425 acpi_handle tmp = NULL;
2431 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2434 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2436 dmar_get_dsm_handle,
2438 if (ACPI_FAILURE(status)) {
2439 pr_warn("Failed to locate _DSM method.\n");
2446 down_write(&dmar_global_lock);
2448 ret = dmar_hotplug_insert(tmp);
2450 ret = dmar_hotplug_remove(tmp);
2451 up_write(&dmar_global_lock);
2456 int dmar_device_add(acpi_handle handle)
2458 return dmar_device_hotplug(handle, true);
2461 int dmar_device_remove(acpi_handle handle)
2463 return dmar_device_hotplug(handle, false);
2467 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2469 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2470 * the ACPI DMAR table. This means that the platform boot firmware has made
2471 * sure no device can issue DMA outside of RMRR regions.
2473 bool dmar_platform_optin(void)
2475 struct acpi_table_dmar *dmar;
2479 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2480 (struct acpi_table_header **)&dmar);
2481 if (ACPI_FAILURE(status))
2484 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2485 acpi_put_table((struct acpi_table_header *)dmar);
2489 EXPORT_SYMBOL_GPL(dmar_platform_optin);