]> Git Repo - linux.git/blob - drivers/counter/stm32-timer-cnt.c
dma-mapping: don't return errors from dma_set_max_seg_size
[linux.git] / drivers / counter / stm32-timer-cnt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2018
6  *
7  * Author: Benjamin Gaignard <[email protected]>
8  *
9  */
10 #include <linux/counter.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/types.h>
19
20 #define TIM_CCMR_CCXS   (BIT(8) | BIT(0))
21 #define TIM_CCMR_MASK   (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
22                          TIM_CCMR_IC1F | TIM_CCMR_IC2F)
23 #define TIM_CCER_MASK   (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
24                          TIM_CCER_CC2P | TIM_CCER_CC2NP)
25
26 #define STM32_CH1_SIG           0
27 #define STM32_CH2_SIG           1
28 #define STM32_CLOCK_SIG         2
29 #define STM32_CH3_SIG           3
30 #define STM32_CH4_SIG           4
31
32 struct stm32_timer_regs {
33         u32 cr1;
34         u32 cnt;
35         u32 smcr;
36         u32 arr;
37 };
38
39 struct stm32_timer_cnt {
40         struct regmap *regmap;
41         struct clk *clk;
42         u32 max_arr;
43         bool enabled;
44         struct stm32_timer_regs bak;
45         bool has_encoder;
46         unsigned int nchannels;
47         unsigned int nr_irqs;
48         spinlock_t lock; /* protects nb_ovf */
49         u64 nb_ovf;
50 };
51
52 static const enum counter_function stm32_count_functions[] = {
53         COUNTER_FUNCTION_INCREASE,
54         COUNTER_FUNCTION_QUADRATURE_X2_A,
55         COUNTER_FUNCTION_QUADRATURE_X2_B,
56         COUNTER_FUNCTION_QUADRATURE_X4,
57 };
58
59 static int stm32_count_read(struct counter_device *counter,
60                             struct counter_count *count, u64 *val)
61 {
62         struct stm32_timer_cnt *const priv = counter_priv(counter);
63         u32 cnt;
64
65         regmap_read(priv->regmap, TIM_CNT, &cnt);
66         *val = cnt;
67
68         return 0;
69 }
70
71 static int stm32_count_write(struct counter_device *counter,
72                              struct counter_count *count, const u64 val)
73 {
74         struct stm32_timer_cnt *const priv = counter_priv(counter);
75         u32 ceiling;
76
77         regmap_read(priv->regmap, TIM_ARR, &ceiling);
78         if (val > ceiling)
79                 return -EINVAL;
80
81         return regmap_write(priv->regmap, TIM_CNT, val);
82 }
83
84 static int stm32_count_function_read(struct counter_device *counter,
85                                      struct counter_count *count,
86                                      enum counter_function *function)
87 {
88         struct stm32_timer_cnt *const priv = counter_priv(counter);
89         u32 smcr;
90
91         regmap_read(priv->regmap, TIM_SMCR, &smcr);
92
93         switch (smcr & TIM_SMCR_SMS) {
94         case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
95                 *function = COUNTER_FUNCTION_INCREASE;
96                 return 0;
97         case TIM_SMCR_SMS_ENCODER_MODE_1:
98                 *function = COUNTER_FUNCTION_QUADRATURE_X2_A;
99                 return 0;
100         case TIM_SMCR_SMS_ENCODER_MODE_2:
101                 *function = COUNTER_FUNCTION_QUADRATURE_X2_B;
102                 return 0;
103         case TIM_SMCR_SMS_ENCODER_MODE_3:
104                 *function = COUNTER_FUNCTION_QUADRATURE_X4;
105                 return 0;
106         default:
107                 return -EINVAL;
108         }
109 }
110
111 static int stm32_count_function_write(struct counter_device *counter,
112                                       struct counter_count *count,
113                                       enum counter_function function)
114 {
115         struct stm32_timer_cnt *const priv = counter_priv(counter);
116         u32 cr1, sms;
117
118         switch (function) {
119         case COUNTER_FUNCTION_INCREASE:
120                 sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
121                 break;
122         case COUNTER_FUNCTION_QUADRATURE_X2_A:
123                 if (!priv->has_encoder)
124                         return -EOPNOTSUPP;
125                 sms = TIM_SMCR_SMS_ENCODER_MODE_1;
126                 break;
127         case COUNTER_FUNCTION_QUADRATURE_X2_B:
128                 if (!priv->has_encoder)
129                         return -EOPNOTSUPP;
130                 sms = TIM_SMCR_SMS_ENCODER_MODE_2;
131                 break;
132         case COUNTER_FUNCTION_QUADRATURE_X4:
133                 if (!priv->has_encoder)
134                         return -EOPNOTSUPP;
135                 sms = TIM_SMCR_SMS_ENCODER_MODE_3;
136                 break;
137         default:
138                 return -EINVAL;
139         }
140
141         /* Store enable status */
142         regmap_read(priv->regmap, TIM_CR1, &cr1);
143
144         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
145
146         regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
147
148         /* Make sure that registers are updated */
149         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
150
151         /* Restore the enable status */
152         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
153
154         return 0;
155 }
156
157 static int stm32_count_direction_read(struct counter_device *counter,
158                                       struct counter_count *count,
159                                       enum counter_count_direction *direction)
160 {
161         struct stm32_timer_cnt *const priv = counter_priv(counter);
162         u32 cr1;
163
164         regmap_read(priv->regmap, TIM_CR1, &cr1);
165         *direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
166                 COUNTER_COUNT_DIRECTION_FORWARD;
167
168         return 0;
169 }
170
171 static int stm32_count_ceiling_read(struct counter_device *counter,
172                                     struct counter_count *count, u64 *ceiling)
173 {
174         struct stm32_timer_cnt *const priv = counter_priv(counter);
175         u32 arr;
176
177         regmap_read(priv->regmap, TIM_ARR, &arr);
178
179         *ceiling = arr;
180
181         return 0;
182 }
183
184 static int stm32_count_ceiling_write(struct counter_device *counter,
185                                      struct counter_count *count, u64 ceiling)
186 {
187         struct stm32_timer_cnt *const priv = counter_priv(counter);
188
189         if (ceiling > priv->max_arr)
190                 return -ERANGE;
191
192         /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
193         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
194         regmap_write(priv->regmap, TIM_ARR, ceiling);
195
196         return 0;
197 }
198
199 static int stm32_count_enable_read(struct counter_device *counter,
200                                    struct counter_count *count, u8 *enable)
201 {
202         struct stm32_timer_cnt *const priv = counter_priv(counter);
203         u32 cr1;
204
205         regmap_read(priv->regmap, TIM_CR1, &cr1);
206
207         *enable = cr1 & TIM_CR1_CEN;
208
209         return 0;
210 }
211
212 static int stm32_count_enable_write(struct counter_device *counter,
213                                     struct counter_count *count, u8 enable)
214 {
215         struct stm32_timer_cnt *const priv = counter_priv(counter);
216         u32 cr1;
217
218         if (enable) {
219                 regmap_read(priv->regmap, TIM_CR1, &cr1);
220                 if (!(cr1 & TIM_CR1_CEN))
221                         clk_enable(priv->clk);
222
223                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
224                                    TIM_CR1_CEN);
225         } else {
226                 regmap_read(priv->regmap, TIM_CR1, &cr1);
227                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
228                 if (cr1 & TIM_CR1_CEN)
229                         clk_disable(priv->clk);
230         }
231
232         /* Keep enabled state to properly handle low power states */
233         priv->enabled = enable;
234
235         return 0;
236 }
237
238 static int stm32_count_prescaler_read(struct counter_device *counter,
239                                       struct counter_count *count, u64 *prescaler)
240 {
241         struct stm32_timer_cnt *const priv = counter_priv(counter);
242         u32 psc;
243
244         regmap_read(priv->regmap, TIM_PSC, &psc);
245
246         *prescaler = psc + 1;
247
248         return 0;
249 }
250
251 static int stm32_count_prescaler_write(struct counter_device *counter,
252                                        struct counter_count *count, u64 prescaler)
253 {
254         struct stm32_timer_cnt *const priv = counter_priv(counter);
255         u32 psc;
256
257         if (!prescaler || prescaler > MAX_TIM_PSC + 1)
258                 return -ERANGE;
259
260         psc = prescaler - 1;
261
262         return regmap_write(priv->regmap, TIM_PSC, psc);
263 }
264
265 static int stm32_count_cap_read(struct counter_device *counter,
266                                 struct counter_count *count,
267                                 size_t ch, u64 *cap)
268 {
269         struct stm32_timer_cnt *const priv = counter_priv(counter);
270         u32 ccrx;
271
272         if (ch >= priv->nchannels)
273                 return -EOPNOTSUPP;
274
275         switch (ch) {
276         case 0:
277                 regmap_read(priv->regmap, TIM_CCR1, &ccrx);
278                 break;
279         case 1:
280                 regmap_read(priv->regmap, TIM_CCR2, &ccrx);
281                 break;
282         case 2:
283                 regmap_read(priv->regmap, TIM_CCR3, &ccrx);
284                 break;
285         case 3:
286                 regmap_read(priv->regmap, TIM_CCR4, &ccrx);
287                 break;
288         default:
289                 return -EINVAL;
290         }
291
292         dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
293
294         *cap = ccrx;
295
296         return 0;
297 }
298
299 static int stm32_count_nb_ovf_read(struct counter_device *counter,
300                                    struct counter_count *count, u64 *val)
301 {
302         struct stm32_timer_cnt *const priv = counter_priv(counter);
303         unsigned long irqflags;
304
305         spin_lock_irqsave(&priv->lock, irqflags);
306         *val = priv->nb_ovf;
307         spin_unlock_irqrestore(&priv->lock, irqflags);
308
309         return 0;
310 }
311
312 static int stm32_count_nb_ovf_write(struct counter_device *counter,
313                                     struct counter_count *count, u64 val)
314 {
315         struct stm32_timer_cnt *const priv = counter_priv(counter);
316         unsigned long irqflags;
317
318         spin_lock_irqsave(&priv->lock, irqflags);
319         priv->nb_ovf = val;
320         spin_unlock_irqrestore(&priv->lock, irqflags);
321
322         return 0;
323 }
324
325 static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
326
327 static struct counter_comp stm32_count_ext[] = {
328         COUNTER_COMP_DIRECTION(stm32_count_direction_read),
329         COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
330         COUNTER_COMP_CEILING(stm32_count_ceiling_read,
331                              stm32_count_ceiling_write),
332         COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
333                                stm32_count_prescaler_write),
334         COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
335         COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
336 };
337
338 static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
339         COUNTER_SYNAPSE_ACTION_RISING_EDGE,
340 };
341
342 static const enum counter_synapse_action stm32_synapse_actions[] = {
343         COUNTER_SYNAPSE_ACTION_NONE,
344         COUNTER_SYNAPSE_ACTION_BOTH_EDGES
345 };
346
347 static int stm32_action_read(struct counter_device *counter,
348                              struct counter_count *count,
349                              struct counter_synapse *synapse,
350                              enum counter_synapse_action *action)
351 {
352         enum counter_function function;
353         int err;
354
355         err = stm32_count_function_read(counter, count, &function);
356         if (err)
357                 return err;
358
359         switch (function) {
360         case COUNTER_FUNCTION_INCREASE:
361                 /* counts on internal clock when CEN=1 */
362                 if (synapse->signal->id == STM32_CLOCK_SIG)
363                         *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
364                 else
365                         *action = COUNTER_SYNAPSE_ACTION_NONE;
366                 return 0;
367         case COUNTER_FUNCTION_QUADRATURE_X2_A:
368                 /* counts up/down on TI1FP1 edge depending on TI2FP2 level */
369                 if (synapse->signal->id == STM32_CH1_SIG)
370                         *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
371                 else
372                         *action = COUNTER_SYNAPSE_ACTION_NONE;
373                 return 0;
374         case COUNTER_FUNCTION_QUADRATURE_X2_B:
375                 /* counts up/down on TI2FP2 edge depending on TI1FP1 level */
376                 if (synapse->signal->id == STM32_CH2_SIG)
377                         *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
378                 else
379                         *action = COUNTER_SYNAPSE_ACTION_NONE;
380                 return 0;
381         case COUNTER_FUNCTION_QUADRATURE_X4:
382                 /* counts up/down on both TI1FP1 and TI2FP2 edges */
383                 if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
384                         *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
385                 else
386                         *action = COUNTER_SYNAPSE_ACTION_NONE;
387                 return 0;
388         default:
389                 return -EINVAL;
390         }
391 }
392
393 struct stm32_count_cc_regs {
394         u32 ccmr_reg;
395         u32 ccmr_mask;
396         u32 ccmr_bits;
397         u32 ccer_bits;
398 };
399
400 static const struct stm32_count_cc_regs stm32_cc[] = {
401         { TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
402                 TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
403         { TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
404                 TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
405         { TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
406                 TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
407         { TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
408                 TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
409 };
410
411 static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
412                                          bool enable)
413 {
414         struct stm32_timer_cnt *const priv = counter_priv(counter);
415         const struct stm32_count_cc_regs *cc;
416         u32 ccmr, ccer;
417
418         if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
419                 dev_err(counter->parent, "invalid ch: %d\n", ch);
420                 return -EINVAL;
421         }
422
423         cc = &stm32_cc[ch];
424
425         /*
426          * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
427          * Select both edges / non-inverted to trigger a capture.
428          */
429         if (enable) {
430                 /* first clear possibly latched capture flag upon enabling */
431                 if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
432                         regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
433                 regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
434                                    cc->ccmr_bits);
435                 regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
436         } else {
437                 regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
438                 regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
439         }
440
441         regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
442         regmap_read(priv->regmap, TIM_CCER, &ccer);
443         dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
444                 ch, ccmr, ccer);
445
446         return 0;
447 }
448
449 static int stm32_count_events_configure(struct counter_device *counter)
450 {
451         struct stm32_timer_cnt *const priv = counter_priv(counter);
452         struct counter_event_node *event_node;
453         u32 dier = 0;
454         int i, ret;
455
456         list_for_each_entry(event_node, &counter->events_list, l) {
457                 switch (event_node->event) {
458                 case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
459                         /* first clear possibly latched UIF before enabling */
460                         if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
461                                 regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
462                         dier |= TIM_DIER_UIE;
463                         break;
464                 case COUNTER_EVENT_CAPTURE:
465                         ret = stm32_count_capture_configure(counter, event_node->channel, true);
466                         if (ret)
467                                 return ret;
468                         dier |= TIM_DIER_CCxIE(event_node->channel + 1);
469                         break;
470                 default:
471                         /* should never reach this path */
472                         return -EINVAL;
473                 }
474         }
475
476         /* Enable / disable all events at once, from events_list, so write all DIER bits */
477         regmap_write(priv->regmap, TIM_DIER, dier);
478
479         /* check for disabled capture events */
480         for (i = 0 ; i < priv->nchannels; i++) {
481                 if (!(dier & TIM_DIER_CCxIE(i + 1))) {
482                         ret = stm32_count_capture_configure(counter, i, false);
483                         if (ret)
484                                 return ret;
485                 }
486         }
487
488         return 0;
489 }
490
491 static int stm32_count_watch_validate(struct counter_device *counter,
492                                       const struct counter_watch *watch)
493 {
494         struct stm32_timer_cnt *const priv = counter_priv(counter);
495
496         /* Interrupts are optional */
497         if (!priv->nr_irqs)
498                 return -EOPNOTSUPP;
499
500         switch (watch->event) {
501         case COUNTER_EVENT_CAPTURE:
502                 if (watch->channel >= priv->nchannels) {
503                         dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
504                         return -EINVAL;
505                 }
506                 return 0;
507         case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
508                 return 0;
509         default:
510                 return -EINVAL;
511         }
512 }
513
514 static const struct counter_ops stm32_timer_cnt_ops = {
515         .count_read = stm32_count_read,
516         .count_write = stm32_count_write,
517         .function_read = stm32_count_function_read,
518         .function_write = stm32_count_function_write,
519         .action_read = stm32_action_read,
520         .events_configure = stm32_count_events_configure,
521         .watch_validate = stm32_count_watch_validate,
522 };
523
524 static int stm32_count_clk_get_freq(struct counter_device *counter,
525                                     struct counter_signal *signal, u64 *freq)
526 {
527         struct stm32_timer_cnt *const priv = counter_priv(counter);
528
529         *freq = clk_get_rate(priv->clk);
530
531         return 0;
532 }
533
534 static struct counter_comp stm32_count_clock_ext[] = {
535         COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
536 };
537
538 static struct counter_signal stm32_signals[] = {
539         /*
540          * Need to declare all the signals as a static array, and keep the signals order here,
541          * even if they're unused or unexisting on some timer instances. It's an abstraction,
542          * e.g. high level view of the counter features.
543          *
544          * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
545          * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
546          * to indicate that a signal doesn't affect the counter.
547          */
548         {
549                 .id = STM32_CH1_SIG,
550                 .name = "Channel 1"
551         },
552         {
553                 .id = STM32_CH2_SIG,
554                 .name = "Channel 2"
555         },
556         {
557                 .id = STM32_CLOCK_SIG,
558                 .name = "Clock",
559                 .ext = stm32_count_clock_ext,
560                 .num_ext = ARRAY_SIZE(stm32_count_clock_ext),
561         },
562         {
563                 .id = STM32_CH3_SIG,
564                 .name = "Channel 3"
565         },
566         {
567                 .id = STM32_CH4_SIG,
568                 .name = "Channel 4"
569         },
570 };
571
572 static struct counter_synapse stm32_count_synapses[] = {
573         {
574                 .actions_list = stm32_synapse_actions,
575                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
576                 .signal = &stm32_signals[STM32_CH1_SIG]
577         },
578         {
579                 .actions_list = stm32_synapse_actions,
580                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
581                 .signal = &stm32_signals[STM32_CH2_SIG]
582         },
583         {
584                 .actions_list = stm32_clock_synapse_actions,
585                 .num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
586                 .signal = &stm32_signals[STM32_CLOCK_SIG]
587         },
588         {
589                 .actions_list = stm32_synapse_actions,
590                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
591                 .signal = &stm32_signals[STM32_CH3_SIG]
592         },
593         {
594                 .actions_list = stm32_synapse_actions,
595                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
596                 .signal = &stm32_signals[STM32_CH4_SIG]
597         },
598 };
599
600 static struct counter_count stm32_counts = {
601         .id = 0,
602         .name = "STM32 Timer Counter",
603         .functions_list = stm32_count_functions,
604         .num_functions = ARRAY_SIZE(stm32_count_functions),
605         .synapses = stm32_count_synapses,
606         .num_synapses = ARRAY_SIZE(stm32_count_synapses),
607         .ext = stm32_count_ext,
608         .num_ext = ARRAY_SIZE(stm32_count_ext)
609 };
610
611 static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
612 {
613         struct counter_device *counter = ptr;
614         struct stm32_timer_cnt *const priv = counter_priv(counter);
615         u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
616         u32 sr, dier;
617         int i;
618
619         regmap_read(priv->regmap, TIM_SR, &sr);
620         regmap_read(priv->regmap, TIM_DIER, &dier);
621         /*
622          * Some status bits in SR don't match with the enable bits in DIER. Only take care of
623          * the possibly enabled bits in DIER (that matches in between SR and DIER).
624          */
625         dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
626         sr &= dier;
627
628         if (sr & TIM_SR_UIF) {
629                 spin_lock(&priv->lock);
630                 priv->nb_ovf++;
631                 spin_unlock(&priv->lock);
632                 counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
633                 dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
634                 /* SR flags can be cleared by writing 0, only clear relevant flag */
635                 clr &= ~TIM_SR_UIF;
636         }
637
638         /* Check capture events */
639         for (i = 0 ; i < priv->nchannels; i++) {
640                 if (sr & TIM_SR_CC_IF(i)) {
641                         counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
642                         clr &= ~TIM_SR_CC_IF(i);
643                         dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
644                 }
645         }
646
647         regmap_write(priv->regmap, TIM_SR, clr);
648
649         return IRQ_HANDLED;
650 };
651
652 static void stm32_timer_cnt_detect_channels(struct device *dev,
653                                             struct stm32_timer_cnt *priv)
654 {
655         u32 ccer, ccer_backup;
656
657         regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
658         regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
659         regmap_read(priv->regmap, TIM_CCER, &ccer);
660         regmap_write(priv->regmap, TIM_CCER, ccer_backup);
661         priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
662
663         dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
664 }
665
666 /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
667 #define STM32_TIM_ENCODER_SUPPORTED     (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
668
669 static const char * const stm32_timer_trigger_compat[] = {
670         "st,stm32-timer-trigger",
671         "st,stm32h7-timer-trigger",
672 };
673
674 static int stm32_timer_cnt_probe_encoder(struct device *dev,
675                                          struct stm32_timer_cnt *priv)
676 {
677         struct device *parent = dev->parent;
678         struct device_node *tnode = NULL, *pnode = parent->of_node;
679         int i, ret;
680         u32 idx;
681
682         /*
683          * Need to retrieve the trigger node index from DT, to be able
684          * to determine if the counter supports encoder mode. It also
685          * enforce backward compatibility, and allow to support other
686          * counter modes in this driver (when the timer doesn't support
687          * encoder).
688          */
689         for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
690                 tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
691         if (!tnode) {
692                 dev_err(dev, "Can't find trigger node\n");
693                 return -ENODATA;
694         }
695
696         ret = of_property_read_u32(tnode, "reg", &idx);
697         if (ret) {
698                 dev_err(dev, "Can't get index (%d)\n", ret);
699                 return ret;
700         }
701
702         priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
703
704         dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
705
706         return 0;
707 }
708
709 static int stm32_timer_cnt_probe(struct platform_device *pdev)
710 {
711         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
712         struct device *dev = &pdev->dev;
713         struct stm32_timer_cnt *priv;
714         struct counter_device *counter;
715         int i, ret;
716
717         if (IS_ERR_OR_NULL(ddata))
718                 return -EINVAL;
719
720         counter = devm_counter_alloc(dev, sizeof(*priv));
721         if (!counter)
722                 return -ENOMEM;
723
724         priv = counter_priv(counter);
725
726         priv->regmap = ddata->regmap;
727         priv->clk = ddata->clk;
728         priv->max_arr = ddata->max_arr;
729         priv->nr_irqs = ddata->nr_irqs;
730
731         ret = stm32_timer_cnt_probe_encoder(dev, priv);
732         if (ret)
733                 return ret;
734
735         stm32_timer_cnt_detect_channels(dev, priv);
736
737         counter->name = dev_name(dev);
738         counter->parent = dev;
739         counter->ops = &stm32_timer_cnt_ops;
740         counter->counts = &stm32_counts;
741         counter->num_counts = 1;
742         counter->signals = stm32_signals;
743         counter->num_signals = ARRAY_SIZE(stm32_signals);
744
745         spin_lock_init(&priv->lock);
746
747         platform_set_drvdata(pdev, priv);
748
749         /* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
750         if (priv->nr_irqs == 1) {
751                 /* All events reported through the global interrupt */
752                 ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
753                                        0, dev_name(dev), counter);
754                 if (ret) {
755                         dev_err(dev, "Failed to request irq %d (err %d)\n",
756                                 ddata->irq[0], ret);
757                         return ret;
758                 }
759         } else {
760                 for (i = 0; i < priv->nr_irqs; i++) {
761                         /*
762                          * Only take care of update IRQ for overflow events, and cc for
763                          * capture events.
764                          */
765                         if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
766                                 continue;
767
768                         ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
769                                                0, dev_name(dev), counter);
770                         if (ret) {
771                                 dev_err(dev, "Failed to request irq %d (err %d)\n",
772                                         ddata->irq[i], ret);
773                                 return ret;
774                         }
775                 }
776         }
777
778         /* Reset input selector to its default input */
779         regmap_write(priv->regmap, TIM_TISEL, 0x0);
780
781         /* Register Counter device */
782         ret = devm_counter_add(dev, counter);
783         if (ret < 0)
784                 dev_err_probe(dev, ret, "Failed to add counter\n");
785
786         return ret;
787 }
788
789 static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
790 {
791         struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
792
793         /* Only take care of enabled counter: don't disturb other MFD child */
794         if (priv->enabled) {
795                 /* Backup registers that may get lost in low power mode */
796                 regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
797                 regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
798                 regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
799                 regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
800
801                 /* Disable the counter */
802                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
803                 clk_disable(priv->clk);
804         }
805
806         return pinctrl_pm_select_sleep_state(dev);
807 }
808
809 static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
810 {
811         struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
812         int ret;
813
814         ret = pinctrl_pm_select_default_state(dev);
815         if (ret)
816                 return ret;
817
818         if (priv->enabled) {
819                 clk_enable(priv->clk);
820
821                 /* Restore registers that may have been lost */
822                 regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
823                 regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
824                 regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
825
826                 /* Also re-enables the counter */
827                 regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
828         }
829
830         return 0;
831 }
832
833 static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
834                          stm32_timer_cnt_resume);
835
836 static const struct of_device_id stm32_timer_cnt_of_match[] = {
837         { .compatible = "st,stm32-timer-counter", },
838         {},
839 };
840 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
841
842 static struct platform_driver stm32_timer_cnt_driver = {
843         .probe = stm32_timer_cnt_probe,
844         .driver = {
845                 .name = "stm32-timer-counter",
846                 .of_match_table = stm32_timer_cnt_of_match,
847                 .pm = &stm32_timer_cnt_pm_ops,
848         },
849 };
850 module_platform_driver(stm32_timer_cnt_driver);
851
852 MODULE_AUTHOR("Benjamin Gaignard <[email protected]>");
853 MODULE_ALIAS("platform:stm32-timer-counter");
854 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
855 MODULE_LICENSE("GPL v2");
856 MODULE_IMPORT_NS(COUNTER);
This page took 0.082529 seconds and 4 git commands to generate.