1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
106 static vm_fault_t do_fault(struct vm_fault *vmf);
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
116 EXPORT_SYMBOL(high_memory);
119 * Randomize the address space (stacks, mmaps, brk, etc.).
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
143 static int __init disable_randmaps(char *s)
145 randomize_va_space = 0;
148 __setup("norandmaps", disable_randmaps);
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
153 unsigned long highest_memmap_pfn __read_mostly;
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
158 static int __init init_zero_pfn(void)
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
163 early_initcall(init_zero_pfn);
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
167 trace_rss_stat(mm, member);
171 * Note: this doesn't free the actual pages themselves. That
172 * has been handled earlier when unmapping all the memory regions.
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
177 pgtable_t token = pmd_pgtable(*pmd);
179 pte_free_tlb(tlb, token, addr);
180 mm_dec_nr_ptes(tlb->mm);
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 unsigned long addr, unsigned long end,
185 unsigned long floor, unsigned long ceiling)
192 pmd = pmd_offset(pud, addr);
194 next = pmd_addr_end(addr, end);
195 if (pmd_none_or_clear_bad(pmd))
197 free_pte_range(tlb, pmd, addr);
198 } while (pmd++, addr = next, addr != end);
208 if (end - 1 > ceiling - 1)
211 pmd = pmd_offset(pud, start);
213 pmd_free_tlb(tlb, pmd, start);
214 mm_dec_nr_pmds(tlb->mm);
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
226 pud = pud_offset(p4d, addr);
228 next = pud_addr_end(addr, end);
229 if (pud_none_or_clear_bad(pud))
231 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232 } while (pud++, addr = next, addr != end);
242 if (end - 1 > ceiling - 1)
245 pud = pud_offset(p4d, start);
247 pud_free_tlb(tlb, pud, start);
248 mm_dec_nr_puds(tlb->mm);
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 unsigned long addr, unsigned long end,
253 unsigned long floor, unsigned long ceiling)
260 p4d = p4d_offset(pgd, addr);
262 next = p4d_addr_end(addr, end);
263 if (p4d_none_or_clear_bad(p4d))
265 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 } while (p4d++, addr = next, addr != end);
272 ceiling &= PGDIR_MASK;
276 if (end - 1 > ceiling - 1)
279 p4d = p4d_offset(pgd, start);
281 p4d_free_tlb(tlb, p4d, start);
285 * This function frees user-level page tables of a process.
287 void free_pgd_range(struct mmu_gather *tlb,
288 unsigned long addr, unsigned long end,
289 unsigned long floor, unsigned long ceiling)
295 * The next few lines have given us lots of grief...
297 * Why are we testing PMD* at this top level? Because often
298 * there will be no work to do at all, and we'd prefer not to
299 * go all the way down to the bottom just to discover that.
301 * Why all these "- 1"s? Because 0 represents both the bottom
302 * of the address space and the top of it (using -1 for the
303 * top wouldn't help much: the masks would do the wrong thing).
304 * The rule is that addr 0 and floor 0 refer to the bottom of
305 * the address space, but end 0 and ceiling 0 refer to the top
306 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 * that end 0 case should be mythical).
309 * Wherever addr is brought up or ceiling brought down, we must
310 * be careful to reject "the opposite 0" before it confuses the
311 * subsequent tests. But what about where end is brought down
312 * by PMD_SIZE below? no, end can't go down to 0 there.
314 * Whereas we round start (addr) and ceiling down, by different
315 * masks at different levels, in order to test whether a table
316 * now has no other vmas using it, so can be freed, we don't
317 * bother to round floor or end up - the tests don't need that.
331 if (end - 1 > ceiling - 1)
336 * We add page table cache pages with PAGE_SIZE,
337 * (see pte_free_tlb()), flush the tlb if we need
339 tlb_change_page_size(tlb, PAGE_SIZE);
340 pgd = pgd_offset(tlb->mm, addr);
342 next = pgd_addr_end(addr, end);
343 if (pgd_none_or_clear_bad(pgd))
345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346 } while (pgd++, addr = next, addr != end);
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 struct vm_area_struct *vma, unsigned long floor,
351 unsigned long ceiling)
353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
356 unsigned long addr = vma->vm_start;
357 struct vm_area_struct *next;
360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 * be 0. This will underflow and is okay.
363 next = mas_find(&mas, ceiling - 1);
366 * Hide vma from rmap and truncate_pagecache before freeing
369 unlink_anon_vmas(vma);
370 unlink_file_vma(vma);
372 if (is_vm_hugetlb_page(vma)) {
373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374 floor, next ? next->vm_start : ceiling);
377 * Optimization: gather nearby vmas into one call down
379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380 && !is_vm_hugetlb_page(next)) {
382 next = mas_find(&mas, ceiling - 1);
383 unlink_anon_vmas(vma);
384 unlink_file_vma(vma);
386 free_pgd_range(tlb, addr, vma->vm_end,
387 floor, next ? next->vm_start : ceiling);
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
395 spinlock_t *ptl = pmd_lock(mm, pmd);
397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
400 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 * visible before the pte is made visible to other CPUs by being
402 * put into page tables.
404 * The other side of the story is the pointer chasing in the page
405 * table walking code (when walking the page table without locking;
406 * ie. most of the time). Fortunately, these data accesses consist
407 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 * being the notable exception) will already guarantee loads are
409 * seen in-order. See the alpha page table accessors for the
410 * smp_rmb() barriers in page table walking code.
412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413 pmd_populate(mm, pmd, *pte);
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
421 pgtable_t new = pte_alloc_one(mm);
425 pmd_install(mm, pmd, &new);
431 int __pte_alloc_kernel(pmd_t *pmd)
433 pte_t *new = pte_alloc_one_kernel(&init_mm);
437 spin_lock(&init_mm.page_table_lock);
438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
439 smp_wmb(); /* See comment in pmd_install() */
440 pmd_populate_kernel(&init_mm, pmd, new);
443 spin_unlock(&init_mm.page_table_lock);
445 pte_free_kernel(&init_mm, new);
449 static inline void init_rss_vec(int *rss)
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 if (current->mm == mm)
460 for (i = 0; i < NR_MM_COUNTERS; i++)
462 add_mm_counter(mm, i, rss[i]);
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
470 * The calling function must still handle the error.
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 p4d_t *p4d = p4d_offset(pgd, addr);
477 pud_t *pud = pud_offset(p4d, addr);
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
495 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
502 resume = jiffies + 60 * HZ;
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
509 (long long)pte_val(pte), (long long)pmd_val(*pmd));
511 dump_page(page, "bad pte");
512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
516 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518 mapping ? mapping->a_ops->read_folio : NULL);
520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
526 * "Special" mappings do not wish to be associated with a "struct page" (either
527 * it doesn't exist, or it exists but they don't want to touch it). In this
528 * case, NULL is returned here. "Normal" mappings do have a struct page.
530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531 * pte bit, in which case this function is trivial. Secondly, an architecture
532 * may not have a spare pte bit, which requires a more complicated scheme,
535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536 * special mapping (even if there are underlying and valid "struct pages").
537 * COWed pages of a VM_PFNMAP are always normal.
539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542 * mapping will always honor the rule
544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
546 * And for normal mappings this is false.
548 * This restricts such mappings to be a linear translation from virtual address
549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
550 * as the vma is not a COW mapping; in that case, we know that all ptes are
551 * special (because none can have been COWed).
554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557 * page" backing, however the difference is that _all_ pages with a struct
558 * page (that is, those where pfn_valid is true) are refcounted and considered
559 * normal pages by the VM. The disadvantage is that pages are refcounted
560 * (which can be slower and simply not an option for some PFNMAP users). The
561 * advantage is that we don't have to follow the strict linearity rule of
562 * PFNMAP mappings in order to support COWable mappings.
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
568 unsigned long pfn = pte_pfn(pte);
570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571 if (likely(!pte_special(pte)))
573 if (vma->vm_ops && vma->vm_ops->find_special_page)
574 return vma->vm_ops->find_special_page(vma, addr);
575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
577 if (is_zero_pfn(pfn))
581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 * and will have refcounts incremented on their struct pages
583 * when they are inserted into PTEs, thus they are safe to
584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
590 print_bad_pte(vma, addr, pte, NULL);
594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 if (vma->vm_flags & VM_MIXEDMAP) {
603 off = (addr - vma->vm_start) >> PAGE_SHIFT;
604 if (pfn == vma->vm_pgoff + off)
606 if (!is_cow_mapping(vma->vm_flags))
611 if (is_zero_pfn(pfn))
615 if (unlikely(pfn > highest_memmap_pfn)) {
616 print_bad_pte(vma, addr, pte, NULL);
621 * NOTE! We still have PageReserved() pages in the page tables.
622 * eg. VDSO mappings can cause them to exist.
625 return pfn_to_page(pfn);
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
632 unsigned long pfn = pmd_pfn(pmd);
635 * There is no pmd_special() but there may be special pmds, e.g.
636 * in a direct-access (dax) mapping, so let's just replicate the
637 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640 if (vma->vm_flags & VM_MIXEDMAP) {
646 off = (addr - vma->vm_start) >> PAGE_SHIFT;
647 if (pfn == vma->vm_pgoff + off)
649 if (!is_cow_mapping(vma->vm_flags))
656 if (is_huge_zero_pmd(pmd))
658 if (unlikely(pfn > highest_memmap_pfn))
662 * NOTE! We still have PageReserved() pages in the page tables.
663 * eg. VDSO mappings can cause them to exist.
666 return pfn_to_page(pfn);
670 static void restore_exclusive_pte(struct vm_area_struct *vma,
671 struct page *page, unsigned long address,
677 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678 if (pte_swp_soft_dirty(*ptep))
679 pte = pte_mksoft_dirty(pte);
681 entry = pte_to_swp_entry(*ptep);
682 if (pte_swp_uffd_wp(*ptep))
683 pte = pte_mkuffd_wp(pte);
684 else if (is_writable_device_exclusive_entry(entry))
685 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
687 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
690 * No need to take a page reference as one was already
691 * created when the swap entry was made.
694 page_add_anon_rmap(page, vma, address, RMAP_NONE);
697 * Currently device exclusive access only supports anonymous
698 * memory so the entry shouldn't point to a filebacked page.
702 set_pte_at(vma->vm_mm, address, ptep, pte);
705 * No need to invalidate - it was non-present before. However
706 * secondary CPUs may have mappings that need invalidating.
708 update_mmu_cache(vma, address, ptep);
712 * Tries to restore an exclusive pte if the page lock can be acquired without
716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
719 swp_entry_t entry = pte_to_swp_entry(*src_pte);
720 struct page *page = pfn_swap_entry_to_page(entry);
722 if (trylock_page(page)) {
723 restore_exclusive_pte(vma, page, addr, src_pte);
732 * copy one vm_area from one task to the other. Assumes the page tables
733 * already present in the new task to be cleared in the whole range
734 * covered by this vma.
738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
742 unsigned long vm_flags = dst_vma->vm_flags;
743 pte_t pte = *src_pte;
745 swp_entry_t entry = pte_to_swp_entry(pte);
747 if (likely(!non_swap_entry(entry))) {
748 if (swap_duplicate(entry) < 0)
751 /* make sure dst_mm is on swapoff's mmlist. */
752 if (unlikely(list_empty(&dst_mm->mmlist))) {
753 spin_lock(&mmlist_lock);
754 if (list_empty(&dst_mm->mmlist))
755 list_add(&dst_mm->mmlist,
757 spin_unlock(&mmlist_lock);
759 /* Mark the swap entry as shared. */
760 if (pte_swp_exclusive(*src_pte)) {
761 pte = pte_swp_clear_exclusive(*src_pte);
762 set_pte_at(src_mm, addr, src_pte, pte);
765 } else if (is_migration_entry(entry)) {
766 page = pfn_swap_entry_to_page(entry);
768 rss[mm_counter(page)]++;
770 if (!is_readable_migration_entry(entry) &&
771 is_cow_mapping(vm_flags)) {
773 * COW mappings require pages in both parent and child
774 * to be set to read. A previously exclusive entry is
777 entry = make_readable_migration_entry(
779 pte = swp_entry_to_pte(entry);
780 if (pte_swp_soft_dirty(*src_pte))
781 pte = pte_swp_mksoft_dirty(pte);
782 if (pte_swp_uffd_wp(*src_pte))
783 pte = pte_swp_mkuffd_wp(pte);
784 set_pte_at(src_mm, addr, src_pte, pte);
786 } else if (is_device_private_entry(entry)) {
787 page = pfn_swap_entry_to_page(entry);
790 * Update rss count even for unaddressable pages, as
791 * they should treated just like normal pages in this
794 * We will likely want to have some new rss counters
795 * for unaddressable pages, at some point. But for now
796 * keep things as they are.
799 rss[mm_counter(page)]++;
800 /* Cannot fail as these pages cannot get pinned. */
801 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
804 * We do not preserve soft-dirty information, because so
805 * far, checkpoint/restore is the only feature that
806 * requires that. And checkpoint/restore does not work
807 * when a device driver is involved (you cannot easily
808 * save and restore device driver state).
810 if (is_writable_device_private_entry(entry) &&
811 is_cow_mapping(vm_flags)) {
812 entry = make_readable_device_private_entry(
814 pte = swp_entry_to_pte(entry);
815 if (pte_swp_uffd_wp(*src_pte))
816 pte = pte_swp_mkuffd_wp(pte);
817 set_pte_at(src_mm, addr, src_pte, pte);
819 } else if (is_device_exclusive_entry(entry)) {
821 * Make device exclusive entries present by restoring the
822 * original entry then copying as for a present pte. Device
823 * exclusive entries currently only support private writable
824 * (ie. COW) mappings.
826 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
830 } else if (is_pte_marker_entry(entry)) {
831 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
832 set_pte_at(dst_mm, addr, dst_pte, pte);
835 if (!userfaultfd_wp(dst_vma))
836 pte = pte_swp_clear_uffd_wp(pte);
837 set_pte_at(dst_mm, addr, dst_pte, pte);
842 * Copy a present and normal page.
844 * NOTE! The usual case is that this isn't required;
845 * instead, the caller can just increase the page refcount
846 * and re-use the pte the traditional way.
848 * And if we need a pre-allocated page but don't yet have
849 * one, return a negative error to let the preallocation
850 * code know so that it can do so outside the page table
854 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
855 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
856 struct page **prealloc, struct page *page)
858 struct page *new_page;
861 new_page = *prealloc;
866 * We have a prealloc page, all good! Take it
867 * over and copy the page & arm it.
870 copy_user_highpage(new_page, page, addr, src_vma);
871 __SetPageUptodate(new_page);
872 page_add_new_anon_rmap(new_page, dst_vma, addr);
873 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
874 rss[mm_counter(new_page)]++;
876 /* All done, just insert the new page copy in the child */
877 pte = mk_pte(new_page, dst_vma->vm_page_prot);
878 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
879 if (userfaultfd_pte_wp(dst_vma, *src_pte))
880 /* Uffd-wp needs to be delivered to dest pte as well */
881 pte = pte_wrprotect(pte_mkuffd_wp(pte));
882 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
887 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
888 * is required to copy this pte.
891 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
892 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
893 struct page **prealloc)
895 struct mm_struct *src_mm = src_vma->vm_mm;
896 unsigned long vm_flags = src_vma->vm_flags;
897 pte_t pte = *src_pte;
900 page = vm_normal_page(src_vma, addr, pte);
901 if (page && PageAnon(page)) {
903 * If this page may have been pinned by the parent process,
904 * copy the page immediately for the child so that we'll always
905 * guarantee the pinned page won't be randomly replaced in the
909 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
910 /* Page maybe pinned, we have to copy. */
912 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
913 addr, rss, prealloc, page);
915 rss[mm_counter(page)]++;
918 page_dup_file_rmap(page, false);
919 rss[mm_counter(page)]++;
923 * If it's a COW mapping, write protect it both
924 * in the parent and the child
926 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
927 ptep_set_wrprotect(src_mm, addr, src_pte);
928 pte = pte_wrprotect(pte);
930 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
933 * If it's a shared mapping, mark it clean in
936 if (vm_flags & VM_SHARED)
937 pte = pte_mkclean(pte);
938 pte = pte_mkold(pte);
940 if (!userfaultfd_wp(dst_vma))
941 pte = pte_clear_uffd_wp(pte);
943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
947 static inline struct page *
948 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
951 struct page *new_page;
953 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
957 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
961 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
967 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
968 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
971 struct mm_struct *dst_mm = dst_vma->vm_mm;
972 struct mm_struct *src_mm = src_vma->vm_mm;
973 pte_t *orig_src_pte, *orig_dst_pte;
974 pte_t *src_pte, *dst_pte;
975 spinlock_t *src_ptl, *dst_ptl;
976 int progress, ret = 0;
977 int rss[NR_MM_COUNTERS];
978 swp_entry_t entry = (swp_entry_t){0};
979 struct page *prealloc = NULL;
985 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
990 src_pte = pte_offset_map(src_pmd, addr);
991 src_ptl = pte_lockptr(src_mm, src_pmd);
992 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
993 orig_src_pte = src_pte;
994 orig_dst_pte = dst_pte;
995 arch_enter_lazy_mmu_mode();
999 * We are holding two locks at this point - either of them
1000 * could generate latencies in another task on another CPU.
1002 if (progress >= 32) {
1004 if (need_resched() ||
1005 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1008 if (pte_none(*src_pte)) {
1012 if (unlikely(!pte_present(*src_pte))) {
1013 ret = copy_nonpresent_pte(dst_mm, src_mm,
1018 entry = pte_to_swp_entry(*src_pte);
1020 } else if (ret == -EBUSY) {
1028 * Device exclusive entry restored, continue by copying
1029 * the now present pte.
1031 WARN_ON_ONCE(ret != -ENOENT);
1033 /* copy_present_pte() will clear `*prealloc' if consumed */
1034 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1035 addr, rss, &prealloc);
1037 * If we need a pre-allocated page for this pte, drop the
1038 * locks, allocate, and try again.
1040 if (unlikely(ret == -EAGAIN))
1042 if (unlikely(prealloc)) {
1044 * pre-alloc page cannot be reused by next time so as
1045 * to strictly follow mempolicy (e.g., alloc_page_vma()
1046 * will allocate page according to address). This
1047 * could only happen if one pinned pte changed.
1053 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1055 arch_leave_lazy_mmu_mode();
1056 spin_unlock(src_ptl);
1057 pte_unmap(orig_src_pte);
1058 add_mm_rss_vec(dst_mm, rss);
1059 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1063 VM_WARN_ON_ONCE(!entry.val);
1064 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1069 } else if (ret == -EBUSY) {
1071 } else if (ret == -EAGAIN) {
1072 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1079 /* We've captured and resolved the error. Reset, try again. */
1085 if (unlikely(prealloc))
1091 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1092 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1095 struct mm_struct *dst_mm = dst_vma->vm_mm;
1096 struct mm_struct *src_mm = src_vma->vm_mm;
1097 pmd_t *src_pmd, *dst_pmd;
1100 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1103 src_pmd = pmd_offset(src_pud, addr);
1105 next = pmd_addr_end(addr, end);
1106 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1107 || pmd_devmap(*src_pmd)) {
1109 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1110 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1111 addr, dst_vma, src_vma);
1118 if (pmd_none_or_clear_bad(src_pmd))
1120 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1123 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1128 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1132 struct mm_struct *dst_mm = dst_vma->vm_mm;
1133 struct mm_struct *src_mm = src_vma->vm_mm;
1134 pud_t *src_pud, *dst_pud;
1137 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1140 src_pud = pud_offset(src_p4d, addr);
1142 next = pud_addr_end(addr, end);
1143 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1146 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1147 err = copy_huge_pud(dst_mm, src_mm,
1148 dst_pud, src_pud, addr, src_vma);
1155 if (pud_none_or_clear_bad(src_pud))
1157 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1160 } while (dst_pud++, src_pud++, addr = next, addr != end);
1165 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1169 struct mm_struct *dst_mm = dst_vma->vm_mm;
1170 p4d_t *src_p4d, *dst_p4d;
1173 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1176 src_p4d = p4d_offset(src_pgd, addr);
1178 next = p4d_addr_end(addr, end);
1179 if (p4d_none_or_clear_bad(src_p4d))
1181 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1184 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1189 * Return true if the vma needs to copy the pgtable during this fork(). Return
1190 * false when we can speed up fork() by allowing lazy page faults later until
1191 * when the child accesses the memory range.
1194 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1197 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1198 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1199 * contains uffd-wp protection information, that's something we can't
1200 * retrieve from page cache, and skip copying will lose those info.
1202 if (userfaultfd_wp(dst_vma))
1205 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1208 if (src_vma->anon_vma)
1212 * Don't copy ptes where a page fault will fill them correctly. Fork
1213 * becomes much lighter when there are big shared or private readonly
1214 * mappings. The tradeoff is that copy_page_range is more efficient
1221 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1223 pgd_t *src_pgd, *dst_pgd;
1225 unsigned long addr = src_vma->vm_start;
1226 unsigned long end = src_vma->vm_end;
1227 struct mm_struct *dst_mm = dst_vma->vm_mm;
1228 struct mm_struct *src_mm = src_vma->vm_mm;
1229 struct mmu_notifier_range range;
1233 if (!vma_needs_copy(dst_vma, src_vma))
1236 if (is_vm_hugetlb_page(src_vma))
1237 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1239 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1241 * We do not free on error cases below as remove_vma
1242 * gets called on error from higher level routine
1244 ret = track_pfn_copy(src_vma);
1250 * We need to invalidate the secondary MMU mappings only when
1251 * there could be a permission downgrade on the ptes of the
1252 * parent mm. And a permission downgrade will only happen if
1253 * is_cow_mapping() returns true.
1255 is_cow = is_cow_mapping(src_vma->vm_flags);
1258 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1259 0, src_vma, src_mm, addr, end);
1260 mmu_notifier_invalidate_range_start(&range);
1262 * Disabling preemption is not needed for the write side, as
1263 * the read side doesn't spin, but goes to the mmap_lock.
1265 * Use the raw variant of the seqcount_t write API to avoid
1266 * lockdep complaining about preemptibility.
1268 mmap_assert_write_locked(src_mm);
1269 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1273 dst_pgd = pgd_offset(dst_mm, addr);
1274 src_pgd = pgd_offset(src_mm, addr);
1276 next = pgd_addr_end(addr, end);
1277 if (pgd_none_or_clear_bad(src_pgd))
1279 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1284 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1287 raw_write_seqcount_end(&src_mm->write_protect_seq);
1288 mmu_notifier_invalidate_range_end(&range);
1293 /* Whether we should zap all COWed (private) pages too */
1294 static inline bool should_zap_cows(struct zap_details *details)
1296 /* By default, zap all pages */
1300 /* Or, we zap COWed pages only if the caller wants to */
1301 return details->even_cows;
1304 /* Decides whether we should zap this page with the page pointer specified */
1305 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1307 /* If we can make a decision without *page.. */
1308 if (should_zap_cows(details))
1311 /* E.g. the caller passes NULL for the case of a zero page */
1315 /* Otherwise we should only zap non-anon pages */
1316 return !PageAnon(page);
1319 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1324 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1328 * This function makes sure that we'll replace the none pte with an uffd-wp
1329 * swap special pte marker when necessary. Must be with the pgtable lock held.
1332 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1333 unsigned long addr, pte_t *pte,
1334 struct zap_details *details, pte_t pteval)
1336 if (zap_drop_file_uffd_wp(details))
1339 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1342 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1343 struct vm_area_struct *vma, pmd_t *pmd,
1344 unsigned long addr, unsigned long end,
1345 struct zap_details *details)
1347 struct mm_struct *mm = tlb->mm;
1348 int force_flush = 0;
1349 int rss[NR_MM_COUNTERS];
1355 tlb_change_page_size(tlb, PAGE_SIZE);
1358 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1360 flush_tlb_batched_pending(mm);
1361 arch_enter_lazy_mmu_mode();
1366 if (pte_none(ptent))
1372 if (pte_present(ptent)) {
1373 unsigned int delay_rmap;
1375 page = vm_normal_page(vma, addr, ptent);
1376 if (unlikely(!should_zap_page(details, page)))
1378 ptent = ptep_get_and_clear_full(mm, addr, pte,
1380 tlb_remove_tlb_entry(tlb, pte, addr);
1381 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1383 if (unlikely(!page))
1387 if (!PageAnon(page)) {
1388 if (pte_dirty(ptent)) {
1389 set_page_dirty(page);
1390 if (tlb_delay_rmap(tlb)) {
1395 if (pte_young(ptent) &&
1396 likely(!(vma->vm_flags & VM_SEQ_READ)))
1397 mark_page_accessed(page);
1399 rss[mm_counter(page)]--;
1401 page_remove_rmap(page, vma, false);
1402 if (unlikely(page_mapcount(page) < 0))
1403 print_bad_pte(vma, addr, ptent, page);
1405 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1413 entry = pte_to_swp_entry(ptent);
1414 if (is_device_private_entry(entry) ||
1415 is_device_exclusive_entry(entry)) {
1416 page = pfn_swap_entry_to_page(entry);
1417 if (unlikely(!should_zap_page(details, page)))
1420 * Both device private/exclusive mappings should only
1421 * work with anonymous page so far, so we don't need to
1422 * consider uffd-wp bit when zap. For more information,
1423 * see zap_install_uffd_wp_if_needed().
1425 WARN_ON_ONCE(!vma_is_anonymous(vma));
1426 rss[mm_counter(page)]--;
1427 if (is_device_private_entry(entry))
1428 page_remove_rmap(page, vma, false);
1430 } else if (!non_swap_entry(entry)) {
1431 /* Genuine swap entry, hence a private anon page */
1432 if (!should_zap_cows(details))
1435 if (unlikely(!free_swap_and_cache(entry)))
1436 print_bad_pte(vma, addr, ptent, NULL);
1437 } else if (is_migration_entry(entry)) {
1438 page = pfn_swap_entry_to_page(entry);
1439 if (!should_zap_page(details, page))
1441 rss[mm_counter(page)]--;
1442 } else if (pte_marker_entry_uffd_wp(entry)) {
1443 /* Only drop the uffd-wp marker if explicitly requested */
1444 if (!zap_drop_file_uffd_wp(details))
1446 } else if (is_hwpoison_entry(entry) ||
1447 is_swapin_error_entry(entry)) {
1448 if (!should_zap_cows(details))
1451 /* We should have covered all the swap entry types */
1454 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1455 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1456 } while (pte++, addr += PAGE_SIZE, addr != end);
1458 add_mm_rss_vec(mm, rss);
1459 arch_leave_lazy_mmu_mode();
1461 /* Do the actual TLB flush before dropping ptl */
1463 tlb_flush_mmu_tlbonly(tlb);
1464 tlb_flush_rmaps(tlb, vma);
1466 pte_unmap_unlock(start_pte, ptl);
1469 * If we forced a TLB flush (either due to running out of
1470 * batch buffers or because we needed to flush dirty TLB
1471 * entries before releasing the ptl), free the batched
1472 * memory too. Restart if we didn't do everything.
1487 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1488 struct vm_area_struct *vma, pud_t *pud,
1489 unsigned long addr, unsigned long end,
1490 struct zap_details *details)
1495 pmd = pmd_offset(pud, addr);
1497 next = pmd_addr_end(addr, end);
1498 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1499 if (next - addr != HPAGE_PMD_SIZE)
1500 __split_huge_pmd(vma, pmd, addr, false, NULL);
1501 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1504 } else if (details && details->single_folio &&
1505 folio_test_pmd_mappable(details->single_folio) &&
1506 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1507 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1509 * Take and drop THP pmd lock so that we cannot return
1510 * prematurely, while zap_huge_pmd() has cleared *pmd,
1511 * but not yet decremented compound_mapcount().
1517 * Here there can be other concurrent MADV_DONTNEED or
1518 * trans huge page faults running, and if the pmd is
1519 * none or trans huge it can change under us. This is
1520 * because MADV_DONTNEED holds the mmap_lock in read
1523 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1525 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1528 } while (pmd++, addr = next, addr != end);
1533 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1534 struct vm_area_struct *vma, p4d_t *p4d,
1535 unsigned long addr, unsigned long end,
1536 struct zap_details *details)
1541 pud = pud_offset(p4d, addr);
1543 next = pud_addr_end(addr, end);
1544 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1545 if (next - addr != HPAGE_PUD_SIZE) {
1546 mmap_assert_locked(tlb->mm);
1547 split_huge_pud(vma, pud, addr);
1548 } else if (zap_huge_pud(tlb, vma, pud, addr))
1552 if (pud_none_or_clear_bad(pud))
1554 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1557 } while (pud++, addr = next, addr != end);
1562 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1563 struct vm_area_struct *vma, pgd_t *pgd,
1564 unsigned long addr, unsigned long end,
1565 struct zap_details *details)
1570 p4d = p4d_offset(pgd, addr);
1572 next = p4d_addr_end(addr, end);
1573 if (p4d_none_or_clear_bad(p4d))
1575 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1576 } while (p4d++, addr = next, addr != end);
1581 void unmap_page_range(struct mmu_gather *tlb,
1582 struct vm_area_struct *vma,
1583 unsigned long addr, unsigned long end,
1584 struct zap_details *details)
1589 BUG_ON(addr >= end);
1590 tlb_start_vma(tlb, vma);
1591 pgd = pgd_offset(vma->vm_mm, addr);
1593 next = pgd_addr_end(addr, end);
1594 if (pgd_none_or_clear_bad(pgd))
1596 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1597 } while (pgd++, addr = next, addr != end);
1598 tlb_end_vma(tlb, vma);
1602 static void unmap_single_vma(struct mmu_gather *tlb,
1603 struct vm_area_struct *vma, unsigned long start_addr,
1604 unsigned long end_addr,
1605 struct zap_details *details)
1607 unsigned long start = max(vma->vm_start, start_addr);
1610 if (start >= vma->vm_end)
1612 end = min(vma->vm_end, end_addr);
1613 if (end <= vma->vm_start)
1617 uprobe_munmap(vma, start, end);
1619 if (unlikely(vma->vm_flags & VM_PFNMAP))
1620 untrack_pfn(vma, 0, 0);
1623 if (unlikely(is_vm_hugetlb_page(vma))) {
1625 * It is undesirable to test vma->vm_file as it
1626 * should be non-null for valid hugetlb area.
1627 * However, vm_file will be NULL in the error
1628 * cleanup path of mmap_region. When
1629 * hugetlbfs ->mmap method fails,
1630 * mmap_region() nullifies vma->vm_file
1631 * before calling this function to clean up.
1632 * Since no pte has actually been setup, it is
1633 * safe to do nothing in this case.
1636 zap_flags_t zap_flags = details ?
1637 details->zap_flags : 0;
1638 __unmap_hugepage_range_final(tlb, vma, start, end,
1642 unmap_page_range(tlb, vma, start, end, details);
1647 * unmap_vmas - unmap a range of memory covered by a list of vma's
1648 * @tlb: address of the caller's struct mmu_gather
1649 * @mt: the maple tree
1650 * @vma: the starting vma
1651 * @start_addr: virtual address at which to start unmapping
1652 * @end_addr: virtual address at which to end unmapping
1654 * Unmap all pages in the vma list.
1656 * Only addresses between `start' and `end' will be unmapped.
1658 * The VMA list must be sorted in ascending virtual address order.
1660 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1661 * range after unmap_vmas() returns. So the only responsibility here is to
1662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1663 * drops the lock and schedules.
1665 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1666 struct vm_area_struct *vma, unsigned long start_addr,
1667 unsigned long end_addr)
1669 struct mmu_notifier_range range;
1670 struct zap_details details = {
1671 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1672 /* Careful - we need to zap private pages too! */
1675 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1677 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1678 start_addr, end_addr);
1679 mmu_notifier_invalidate_range_start(&range);
1681 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1682 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1683 mmu_notifier_invalidate_range_end(&range);
1687 * zap_page_range - remove user pages in a given range
1688 * @vma: vm_area_struct holding the applicable pages
1689 * @start: starting address of pages to zap
1690 * @size: number of bytes to zap
1692 * Caller must protect the VMA list
1694 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1697 struct maple_tree *mt = &vma->vm_mm->mm_mt;
1698 unsigned long end = start + size;
1699 struct mmu_notifier_range range;
1700 struct mmu_gather tlb;
1701 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1704 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1705 start, start + size);
1706 tlb_gather_mmu(&tlb, vma->vm_mm);
1707 update_hiwater_rss(vma->vm_mm);
1708 mmu_notifier_invalidate_range_start(&range);
1710 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1711 } while ((vma = mas_find(&mas, end - 1)) != NULL);
1712 mmu_notifier_invalidate_range_end(&range);
1713 tlb_finish_mmu(&tlb);
1717 * zap_page_range_single - remove user pages in a given range
1718 * @vma: vm_area_struct holding the applicable pages
1719 * @address: starting address of pages to zap
1720 * @size: number of bytes to zap
1721 * @details: details of shared cache invalidation
1723 * The range must fit into one VMA.
1725 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1726 unsigned long size, struct zap_details *details)
1728 const unsigned long end = address + size;
1729 struct mmu_notifier_range range;
1730 struct mmu_gather tlb;
1733 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1735 if (is_vm_hugetlb_page(vma))
1736 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1738 tlb_gather_mmu(&tlb, vma->vm_mm);
1739 update_hiwater_rss(vma->vm_mm);
1740 mmu_notifier_invalidate_range_start(&range);
1742 * unmap 'address-end' not 'range.start-range.end' as range
1743 * could have been expanded for hugetlb pmd sharing.
1745 unmap_single_vma(&tlb, vma, address, end, details);
1746 mmu_notifier_invalidate_range_end(&range);
1747 tlb_finish_mmu(&tlb);
1751 * zap_vma_ptes - remove ptes mapping the vma
1752 * @vma: vm_area_struct holding ptes to be zapped
1753 * @address: starting address of pages to zap
1754 * @size: number of bytes to zap
1756 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1758 * The entire address range must be fully contained within the vma.
1761 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1764 if (!range_in_vma(vma, address, address + size) ||
1765 !(vma->vm_flags & VM_PFNMAP))
1768 zap_page_range_single(vma, address, size, NULL);
1770 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1772 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1779 pgd = pgd_offset(mm, addr);
1780 p4d = p4d_alloc(mm, pgd, addr);
1783 pud = pud_alloc(mm, p4d, addr);
1786 pmd = pmd_alloc(mm, pud, addr);
1790 VM_BUG_ON(pmd_trans_huge(*pmd));
1794 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1797 pmd_t *pmd = walk_to_pmd(mm, addr);
1801 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1804 static int validate_page_before_insert(struct page *page)
1806 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1808 flush_dcache_page(page);
1812 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1813 unsigned long addr, struct page *page, pgprot_t prot)
1815 if (!pte_none(*pte))
1817 /* Ok, finally just insert the thing.. */
1819 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1820 page_add_file_rmap(page, vma, false);
1821 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1826 * This is the old fallback for page remapping.
1828 * For historical reasons, it only allows reserved pages. Only
1829 * old drivers should use this, and they needed to mark their
1830 * pages reserved for the old functions anyway.
1832 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1833 struct page *page, pgprot_t prot)
1839 retval = validate_page_before_insert(page);
1843 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1846 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1847 pte_unmap_unlock(pte, ptl);
1853 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1854 unsigned long addr, struct page *page, pgprot_t prot)
1858 if (!page_count(page))
1860 err = validate_page_before_insert(page);
1863 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1866 /* insert_pages() amortizes the cost of spinlock operations
1867 * when inserting pages in a loop. Arch *must* define pte_index.
1869 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1870 struct page **pages, unsigned long *num, pgprot_t prot)
1873 pte_t *start_pte, *pte;
1874 spinlock_t *pte_lock;
1875 struct mm_struct *const mm = vma->vm_mm;
1876 unsigned long curr_page_idx = 0;
1877 unsigned long remaining_pages_total = *num;
1878 unsigned long pages_to_write_in_pmd;
1882 pmd = walk_to_pmd(mm, addr);
1886 pages_to_write_in_pmd = min_t(unsigned long,
1887 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1889 /* Allocate the PTE if necessary; takes PMD lock once only. */
1891 if (pte_alloc(mm, pmd))
1894 while (pages_to_write_in_pmd) {
1896 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1898 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1899 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1900 int err = insert_page_in_batch_locked(vma, pte,
1901 addr, pages[curr_page_idx], prot);
1902 if (unlikely(err)) {
1903 pte_unmap_unlock(start_pte, pte_lock);
1905 remaining_pages_total -= pte_idx;
1911 pte_unmap_unlock(start_pte, pte_lock);
1912 pages_to_write_in_pmd -= batch_size;
1913 remaining_pages_total -= batch_size;
1915 if (remaining_pages_total)
1919 *num = remaining_pages_total;
1922 #endif /* ifdef pte_index */
1925 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1926 * @vma: user vma to map to
1927 * @addr: target start user address of these pages
1928 * @pages: source kernel pages
1929 * @num: in: number of pages to map. out: number of pages that were *not*
1930 * mapped. (0 means all pages were successfully mapped).
1932 * Preferred over vm_insert_page() when inserting multiple pages.
1934 * In case of error, we may have mapped a subset of the provided
1935 * pages. It is the caller's responsibility to account for this case.
1937 * The same restrictions apply as in vm_insert_page().
1939 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1940 struct page **pages, unsigned long *num)
1943 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1945 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1947 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1948 BUG_ON(mmap_read_trylock(vma->vm_mm));
1949 BUG_ON(vma->vm_flags & VM_PFNMAP);
1950 vma->vm_flags |= VM_MIXEDMAP;
1952 /* Defer page refcount checking till we're about to map that page. */
1953 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1955 unsigned long idx = 0, pgcount = *num;
1958 for (; idx < pgcount; ++idx) {
1959 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1963 *num = pgcount - idx;
1965 #endif /* ifdef pte_index */
1967 EXPORT_SYMBOL(vm_insert_pages);
1970 * vm_insert_page - insert single page into user vma
1971 * @vma: user vma to map to
1972 * @addr: target user address of this page
1973 * @page: source kernel page
1975 * This allows drivers to insert individual pages they've allocated
1978 * The page has to be a nice clean _individual_ kernel allocation.
1979 * If you allocate a compound page, you need to have marked it as
1980 * such (__GFP_COMP), or manually just split the page up yourself
1981 * (see split_page()).
1983 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1984 * took an arbitrary page protection parameter. This doesn't allow
1985 * that. Your vma protection will have to be set up correctly, which
1986 * means that if you want a shared writable mapping, you'd better
1987 * ask for a shared writable mapping!
1989 * The page does not need to be reserved.
1991 * Usually this function is called from f_op->mmap() handler
1992 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1993 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1994 * function from other places, for example from page-fault handler.
1996 * Return: %0 on success, negative error code otherwise.
1998 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2001 if (addr < vma->vm_start || addr >= vma->vm_end)
2003 if (!page_count(page))
2005 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2006 BUG_ON(mmap_read_trylock(vma->vm_mm));
2007 BUG_ON(vma->vm_flags & VM_PFNMAP);
2008 vma->vm_flags |= VM_MIXEDMAP;
2010 return insert_page(vma, addr, page, vma->vm_page_prot);
2012 EXPORT_SYMBOL(vm_insert_page);
2015 * __vm_map_pages - maps range of kernel pages into user vma
2016 * @vma: user vma to map to
2017 * @pages: pointer to array of source kernel pages
2018 * @num: number of pages in page array
2019 * @offset: user's requested vm_pgoff
2021 * This allows drivers to map range of kernel pages into a user vma.
2023 * Return: 0 on success and error code otherwise.
2025 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2026 unsigned long num, unsigned long offset)
2028 unsigned long count = vma_pages(vma);
2029 unsigned long uaddr = vma->vm_start;
2032 /* Fail if the user requested offset is beyond the end of the object */
2036 /* Fail if the user requested size exceeds available object size */
2037 if (count > num - offset)
2040 for (i = 0; i < count; i++) {
2041 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2051 * vm_map_pages - maps range of kernel pages starts with non zero offset
2052 * @vma: user vma to map to
2053 * @pages: pointer to array of source kernel pages
2054 * @num: number of pages in page array
2056 * Maps an object consisting of @num pages, catering for the user's
2057 * requested vm_pgoff
2059 * If we fail to insert any page into the vma, the function will return
2060 * immediately leaving any previously inserted pages present. Callers
2061 * from the mmap handler may immediately return the error as their caller
2062 * will destroy the vma, removing any successfully inserted pages. Other
2063 * callers should make their own arrangements for calling unmap_region().
2065 * Context: Process context. Called by mmap handlers.
2066 * Return: 0 on success and error code otherwise.
2068 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2071 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2073 EXPORT_SYMBOL(vm_map_pages);
2076 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2077 * @vma: user vma to map to
2078 * @pages: pointer to array of source kernel pages
2079 * @num: number of pages in page array
2081 * Similar to vm_map_pages(), except that it explicitly sets the offset
2082 * to 0. This function is intended for the drivers that did not consider
2085 * Context: Process context. Called by mmap handlers.
2086 * Return: 0 on success and error code otherwise.
2088 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2091 return __vm_map_pages(vma, pages, num, 0);
2093 EXPORT_SYMBOL(vm_map_pages_zero);
2095 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2096 pfn_t pfn, pgprot_t prot, bool mkwrite)
2098 struct mm_struct *mm = vma->vm_mm;
2102 pte = get_locked_pte(mm, addr, &ptl);
2104 return VM_FAULT_OOM;
2105 if (!pte_none(*pte)) {
2108 * For read faults on private mappings the PFN passed
2109 * in may not match the PFN we have mapped if the
2110 * mapped PFN is a writeable COW page. In the mkwrite
2111 * case we are creating a writable PTE for a shared
2112 * mapping and we expect the PFNs to match. If they
2113 * don't match, we are likely racing with block
2114 * allocation and mapping invalidation so just skip the
2117 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2118 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2121 entry = pte_mkyoung(*pte);
2122 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2123 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2124 update_mmu_cache(vma, addr, pte);
2129 /* Ok, finally just insert the thing.. */
2130 if (pfn_t_devmap(pfn))
2131 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2133 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2136 entry = pte_mkyoung(entry);
2137 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2140 set_pte_at(mm, addr, pte, entry);
2141 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2144 pte_unmap_unlock(pte, ptl);
2145 return VM_FAULT_NOPAGE;
2149 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2150 * @vma: user vma to map to
2151 * @addr: target user address of this page
2152 * @pfn: source kernel pfn
2153 * @pgprot: pgprot flags for the inserted page
2155 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2156 * to override pgprot on a per-page basis.
2158 * This only makes sense for IO mappings, and it makes no sense for
2159 * COW mappings. In general, using multiple vmas is preferable;
2160 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2163 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2164 * a value of @pgprot different from that of @vma->vm_page_prot.
2166 * Context: Process context. May allocate using %GFP_KERNEL.
2167 * Return: vm_fault_t value.
2169 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2170 unsigned long pfn, pgprot_t pgprot)
2173 * Technically, architectures with pte_special can avoid all these
2174 * restrictions (same for remap_pfn_range). However we would like
2175 * consistency in testing and feature parity among all, so we should
2176 * try to keep these invariants in place for everybody.
2178 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2179 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2180 (VM_PFNMAP|VM_MIXEDMAP));
2181 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2182 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2184 if (addr < vma->vm_start || addr >= vma->vm_end)
2185 return VM_FAULT_SIGBUS;
2187 if (!pfn_modify_allowed(pfn, pgprot))
2188 return VM_FAULT_SIGBUS;
2190 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2192 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2195 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2198 * vmf_insert_pfn - insert single pfn into user vma
2199 * @vma: user vma to map to
2200 * @addr: target user address of this page
2201 * @pfn: source kernel pfn
2203 * Similar to vm_insert_page, this allows drivers to insert individual pages
2204 * they've allocated into a user vma. Same comments apply.
2206 * This function should only be called from a vm_ops->fault handler, and
2207 * in that case the handler should return the result of this function.
2209 * vma cannot be a COW mapping.
2211 * As this is called only for pages that do not currently exist, we
2212 * do not need to flush old virtual caches or the TLB.
2214 * Context: Process context. May allocate using %GFP_KERNEL.
2215 * Return: vm_fault_t value.
2217 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2220 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2222 EXPORT_SYMBOL(vmf_insert_pfn);
2224 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2226 /* these checks mirror the abort conditions in vm_normal_page */
2227 if (vma->vm_flags & VM_MIXEDMAP)
2229 if (pfn_t_devmap(pfn))
2231 if (pfn_t_special(pfn))
2233 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2238 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2239 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2244 BUG_ON(!vm_mixed_ok(vma, pfn));
2246 if (addr < vma->vm_start || addr >= vma->vm_end)
2247 return VM_FAULT_SIGBUS;
2249 track_pfn_insert(vma, &pgprot, pfn);
2251 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2252 return VM_FAULT_SIGBUS;
2255 * If we don't have pte special, then we have to use the pfn_valid()
2256 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2257 * refcount the page if pfn_valid is true (hence insert_page rather
2258 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2259 * without pte special, it would there be refcounted as a normal page.
2261 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2262 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2266 * At this point we are committed to insert_page()
2267 * regardless of whether the caller specified flags that
2268 * result in pfn_t_has_page() == false.
2270 page = pfn_to_page(pfn_t_to_pfn(pfn));
2271 err = insert_page(vma, addr, page, pgprot);
2273 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2277 return VM_FAULT_OOM;
2278 if (err < 0 && err != -EBUSY)
2279 return VM_FAULT_SIGBUS;
2281 return VM_FAULT_NOPAGE;
2285 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2286 * @vma: user vma to map to
2287 * @addr: target user address of this page
2288 * @pfn: source kernel pfn
2289 * @pgprot: pgprot flags for the inserted page
2291 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2292 * to override pgprot on a per-page basis.
2294 * Typically this function should be used by drivers to set caching- and
2295 * encryption bits different than those of @vma->vm_page_prot, because
2296 * the caching- or encryption mode may not be known at mmap() time.
2297 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2298 * to set caching and encryption bits for those vmas (except for COW pages).
2299 * This is ensured by core vm only modifying these page table entries using
2300 * functions that don't touch caching- or encryption bits, using pte_modify()
2301 * if needed. (See for example mprotect()).
2302 * Also when new page-table entries are created, this is only done using the
2303 * fault() callback, and never using the value of vma->vm_page_prot,
2304 * except for page-table entries that point to anonymous pages as the result
2307 * Context: Process context. May allocate using %GFP_KERNEL.
2308 * Return: vm_fault_t value.
2310 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2311 pfn_t pfn, pgprot_t pgprot)
2313 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2315 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2317 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2320 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2322 EXPORT_SYMBOL(vmf_insert_mixed);
2325 * If the insertion of PTE failed because someone else already added a
2326 * different entry in the mean time, we treat that as success as we assume
2327 * the same entry was actually inserted.
2329 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330 unsigned long addr, pfn_t pfn)
2332 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2334 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2337 * maps a range of physical memory into the requested pages. the old
2338 * mappings are removed. any references to nonexistent pages results
2339 * in null mappings (currently treated as "copy-on-access")
2341 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342 unsigned long addr, unsigned long end,
2343 unsigned long pfn, pgprot_t prot)
2345 pte_t *pte, *mapped_pte;
2349 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2352 arch_enter_lazy_mmu_mode();
2354 BUG_ON(!pte_none(*pte));
2355 if (!pfn_modify_allowed(pfn, prot)) {
2359 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2361 } while (pte++, addr += PAGE_SIZE, addr != end);
2362 arch_leave_lazy_mmu_mode();
2363 pte_unmap_unlock(mapped_pte, ptl);
2367 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368 unsigned long addr, unsigned long end,
2369 unsigned long pfn, pgprot_t prot)
2375 pfn -= addr >> PAGE_SHIFT;
2376 pmd = pmd_alloc(mm, pud, addr);
2379 VM_BUG_ON(pmd_trans_huge(*pmd));
2381 next = pmd_addr_end(addr, end);
2382 err = remap_pte_range(mm, pmd, addr, next,
2383 pfn + (addr >> PAGE_SHIFT), prot);
2386 } while (pmd++, addr = next, addr != end);
2390 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391 unsigned long addr, unsigned long end,
2392 unsigned long pfn, pgprot_t prot)
2398 pfn -= addr >> PAGE_SHIFT;
2399 pud = pud_alloc(mm, p4d, addr);
2403 next = pud_addr_end(addr, end);
2404 err = remap_pmd_range(mm, pud, addr, next,
2405 pfn + (addr >> PAGE_SHIFT), prot);
2408 } while (pud++, addr = next, addr != end);
2412 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413 unsigned long addr, unsigned long end,
2414 unsigned long pfn, pgprot_t prot)
2420 pfn -= addr >> PAGE_SHIFT;
2421 p4d = p4d_alloc(mm, pgd, addr);
2425 next = p4d_addr_end(addr, end);
2426 err = remap_pud_range(mm, p4d, addr, next,
2427 pfn + (addr >> PAGE_SHIFT), prot);
2430 } while (p4d++, addr = next, addr != end);
2435 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2436 * must have pre-validated the caching bits of the pgprot_t.
2438 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439 unsigned long pfn, unsigned long size, pgprot_t prot)
2443 unsigned long end = addr + PAGE_ALIGN(size);
2444 struct mm_struct *mm = vma->vm_mm;
2447 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2451 * Physically remapped pages are special. Tell the
2452 * rest of the world about it:
2453 * VM_IO tells people not to look at these pages
2454 * (accesses can have side effects).
2455 * VM_PFNMAP tells the core MM that the base pages are just
2456 * raw PFN mappings, and do not have a "struct page" associated
2459 * Disable vma merging and expanding with mremap().
2461 * Omit vma from core dump, even when VM_IO turned off.
2463 * There's a horrible special case to handle copy-on-write
2464 * behaviour that some programs depend on. We mark the "original"
2465 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466 * See vm_normal_page() for details.
2468 if (is_cow_mapping(vma->vm_flags)) {
2469 if (addr != vma->vm_start || end != vma->vm_end)
2471 vma->vm_pgoff = pfn;
2474 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2476 BUG_ON(addr >= end);
2477 pfn -= addr >> PAGE_SHIFT;
2478 pgd = pgd_offset(mm, addr);
2479 flush_cache_range(vma, addr, end);
2481 next = pgd_addr_end(addr, end);
2482 err = remap_p4d_range(mm, pgd, addr, next,
2483 pfn + (addr >> PAGE_SHIFT), prot);
2486 } while (pgd++, addr = next, addr != end);
2492 * remap_pfn_range - remap kernel memory to userspace
2493 * @vma: user vma to map to
2494 * @addr: target page aligned user address to start at
2495 * @pfn: page frame number of kernel physical memory address
2496 * @size: size of mapping area
2497 * @prot: page protection flags for this mapping
2499 * Note: this is only safe if the mm semaphore is held when called.
2501 * Return: %0 on success, negative error code otherwise.
2503 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504 unsigned long pfn, unsigned long size, pgprot_t prot)
2508 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2512 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2514 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2517 EXPORT_SYMBOL(remap_pfn_range);
2520 * vm_iomap_memory - remap memory to userspace
2521 * @vma: user vma to map to
2522 * @start: start of the physical memory to be mapped
2523 * @len: size of area
2525 * This is a simplified io_remap_pfn_range() for common driver use. The
2526 * driver just needs to give us the physical memory range to be mapped,
2527 * we'll figure out the rest from the vma information.
2529 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530 * whatever write-combining details or similar.
2532 * Return: %0 on success, negative error code otherwise.
2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2536 unsigned long vm_len, pfn, pages;
2538 /* Check that the physical memory area passed in looks valid */
2539 if (start + len < start)
2542 * You *really* shouldn't map things that aren't page-aligned,
2543 * but we've historically allowed it because IO memory might
2544 * just have smaller alignment.
2546 len += start & ~PAGE_MASK;
2547 pfn = start >> PAGE_SHIFT;
2548 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549 if (pfn + pages < pfn)
2552 /* We start the mapping 'vm_pgoff' pages into the area */
2553 if (vma->vm_pgoff > pages)
2555 pfn += vma->vm_pgoff;
2556 pages -= vma->vm_pgoff;
2558 /* Can we fit all of the mapping? */
2559 vm_len = vma->vm_end - vma->vm_start;
2560 if (vm_len >> PAGE_SHIFT > pages)
2563 /* Ok, let it rip */
2564 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2566 EXPORT_SYMBOL(vm_iomap_memory);
2568 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569 unsigned long addr, unsigned long end,
2570 pte_fn_t fn, void *data, bool create,
2571 pgtbl_mod_mask *mask)
2573 pte_t *pte, *mapped_pte;
2578 mapped_pte = pte = (mm == &init_mm) ?
2579 pte_alloc_kernel_track(pmd, addr, mask) :
2580 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2584 mapped_pte = pte = (mm == &init_mm) ?
2585 pte_offset_kernel(pmd, addr) :
2586 pte_offset_map_lock(mm, pmd, addr, &ptl);
2589 BUG_ON(pmd_huge(*pmd));
2591 arch_enter_lazy_mmu_mode();
2595 if (create || !pte_none(*pte)) {
2596 err = fn(pte++, addr, data);
2600 } while (addr += PAGE_SIZE, addr != end);
2602 *mask |= PGTBL_PTE_MODIFIED;
2604 arch_leave_lazy_mmu_mode();
2607 pte_unmap_unlock(mapped_pte, ptl);
2611 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612 unsigned long addr, unsigned long end,
2613 pte_fn_t fn, void *data, bool create,
2614 pgtbl_mod_mask *mask)
2620 BUG_ON(pud_huge(*pud));
2623 pmd = pmd_alloc_track(mm, pud, addr, mask);
2627 pmd = pmd_offset(pud, addr);
2630 next = pmd_addr_end(addr, end);
2631 if (pmd_none(*pmd) && !create)
2633 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2635 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640 err = apply_to_pte_range(mm, pmd, addr, next,
2641 fn, data, create, mask);
2644 } while (pmd++, addr = next, addr != end);
2649 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650 unsigned long addr, unsigned long end,
2651 pte_fn_t fn, void *data, bool create,
2652 pgtbl_mod_mask *mask)
2659 pud = pud_alloc_track(mm, p4d, addr, mask);
2663 pud = pud_offset(p4d, addr);
2666 next = pud_addr_end(addr, end);
2667 if (pud_none(*pud) && !create)
2669 if (WARN_ON_ONCE(pud_leaf(*pud)))
2671 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676 err = apply_to_pmd_range(mm, pud, addr, next,
2677 fn, data, create, mask);
2680 } while (pud++, addr = next, addr != end);
2685 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686 unsigned long addr, unsigned long end,
2687 pte_fn_t fn, void *data, bool create,
2688 pgtbl_mod_mask *mask)
2695 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2699 p4d = p4d_offset(pgd, addr);
2702 next = p4d_addr_end(addr, end);
2703 if (p4d_none(*p4d) && !create)
2705 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2707 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712 err = apply_to_pud_range(mm, p4d, addr, next,
2713 fn, data, create, mask);
2716 } while (p4d++, addr = next, addr != end);
2721 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722 unsigned long size, pte_fn_t fn,
2723 void *data, bool create)
2726 unsigned long start = addr, next;
2727 unsigned long end = addr + size;
2728 pgtbl_mod_mask mask = 0;
2731 if (WARN_ON(addr >= end))
2734 pgd = pgd_offset(mm, addr);
2736 next = pgd_addr_end(addr, end);
2737 if (pgd_none(*pgd) && !create)
2739 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2741 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746 err = apply_to_p4d_range(mm, pgd, addr, next,
2747 fn, data, create, &mask);
2750 } while (pgd++, addr = next, addr != end);
2752 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753 arch_sync_kernel_mappings(start, start + size);
2759 * Scan a region of virtual memory, filling in page tables as necessary
2760 * and calling a provided function on each leaf page table.
2762 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763 unsigned long size, pte_fn_t fn, void *data)
2765 return __apply_to_page_range(mm, addr, size, fn, data, true);
2767 EXPORT_SYMBOL_GPL(apply_to_page_range);
2770 * Scan a region of virtual memory, calling a provided function on
2771 * each leaf page table where it exists.
2773 * Unlike apply_to_page_range, this does _not_ fill in page tables
2774 * where they are absent.
2776 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777 unsigned long size, pte_fn_t fn, void *data)
2779 return __apply_to_page_range(mm, addr, size, fn, data, false);
2781 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2784 * handle_pte_fault chooses page fault handler according to an entry which was
2785 * read non-atomically. Before making any commitment, on those architectures
2786 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787 * parts, do_swap_page must check under lock before unmapping the pte and
2788 * proceeding (but do_wp_page is only called after already making such a check;
2789 * and do_anonymous_page can safely check later on).
2791 static inline int pte_unmap_same(struct vm_fault *vmf)
2794 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795 if (sizeof(pte_t) > sizeof(unsigned long)) {
2796 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2798 same = pte_same(*vmf->pte, vmf->orig_pte);
2802 pte_unmap(vmf->pte);
2809 * 0: copied succeeded
2810 * -EHWPOISON: copy failed due to hwpoison in source page
2811 * -EAGAIN: copied failed (some other reason)
2813 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2814 struct vm_fault *vmf)
2819 bool locked = false;
2820 struct vm_area_struct *vma = vmf->vma;
2821 struct mm_struct *mm = vma->vm_mm;
2822 unsigned long addr = vmf->address;
2825 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2826 memory_failure_queue(page_to_pfn(src), 0);
2833 * If the source page was a PFN mapping, we don't have
2834 * a "struct page" for it. We do a best-effort copy by
2835 * just copying from the original user address. If that
2836 * fails, we just zero-fill it. Live with it.
2838 kaddr = kmap_atomic(dst);
2839 uaddr = (void __user *)(addr & PAGE_MASK);
2842 * On architectures with software "accessed" bits, we would
2843 * take a double page fault, so mark it accessed here.
2845 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2848 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2850 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2852 * Other thread has already handled the fault
2853 * and update local tlb only
2855 update_mmu_tlb(vma, addr, vmf->pte);
2860 entry = pte_mkyoung(vmf->orig_pte);
2861 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2862 update_mmu_cache(vma, addr, vmf->pte);
2866 * This really shouldn't fail, because the page is there
2867 * in the page tables. But it might just be unreadable,
2868 * in which case we just give up and fill the result with
2871 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2875 /* Re-validate under PTL if the page is still mapped */
2876 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2878 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2879 /* The PTE changed under us, update local tlb */
2880 update_mmu_tlb(vma, addr, vmf->pte);
2886 * The same page can be mapped back since last copy attempt.
2887 * Try to copy again under PTL.
2889 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2891 * Give a warn in case there can be some obscure
2904 pte_unmap_unlock(vmf->pte, vmf->ptl);
2905 kunmap_atomic(kaddr);
2906 flush_dcache_page(dst);
2911 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2913 struct file *vm_file = vma->vm_file;
2916 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2919 * Special mappings (e.g. VDSO) do not have any file so fake
2920 * a default GFP_KERNEL for them.
2926 * Notify the address space that the page is about to become writable so that
2927 * it can prohibit this or wait for the page to get into an appropriate state.
2929 * We do this without the lock held, so that it can sleep if it needs to.
2931 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2934 struct page *page = vmf->page;
2935 unsigned int old_flags = vmf->flags;
2937 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2939 if (vmf->vma->vm_file &&
2940 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2941 return VM_FAULT_SIGBUS;
2943 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2944 /* Restore original flags so that caller is not surprised */
2945 vmf->flags = old_flags;
2946 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2948 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2950 if (!page->mapping) {
2952 return 0; /* retry */
2954 ret |= VM_FAULT_LOCKED;
2956 VM_BUG_ON_PAGE(!PageLocked(page), page);
2961 * Handle dirtying of a page in shared file mapping on a write fault.
2963 * The function expects the page to be locked and unlocks it.
2965 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2967 struct vm_area_struct *vma = vmf->vma;
2968 struct address_space *mapping;
2969 struct page *page = vmf->page;
2971 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2973 dirtied = set_page_dirty(page);
2974 VM_BUG_ON_PAGE(PageAnon(page), page);
2976 * Take a local copy of the address_space - page.mapping may be zeroed
2977 * by truncate after unlock_page(). The address_space itself remains
2978 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2979 * release semantics to prevent the compiler from undoing this copying.
2981 mapping = page_rmapping(page);
2985 file_update_time(vma->vm_file);
2988 * Throttle page dirtying rate down to writeback speed.
2990 * mapping may be NULL here because some device drivers do not
2991 * set page.mapping but still dirty their pages
2993 * Drop the mmap_lock before waiting on IO, if we can. The file
2994 * is pinning the mapping, as per above.
2996 if ((dirtied || page_mkwrite) && mapping) {
2999 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3000 balance_dirty_pages_ratelimited(mapping);
3003 return VM_FAULT_COMPLETED;
3011 * Handle write page faults for pages that can be reused in the current vma
3013 * This can happen either due to the mapping being with the VM_SHARED flag,
3014 * or due to us being the last reference standing to the page. In either
3015 * case, all we need to do here is to mark the page as writable and update
3016 * any related book-keeping.
3018 static inline void wp_page_reuse(struct vm_fault *vmf)
3019 __releases(vmf->ptl)
3021 struct vm_area_struct *vma = vmf->vma;
3022 struct page *page = vmf->page;
3025 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3026 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3029 * Clear the pages cpupid information as the existing
3030 * information potentially belongs to a now completely
3031 * unrelated process.
3034 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3036 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3037 entry = pte_mkyoung(vmf->orig_pte);
3038 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3039 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3040 update_mmu_cache(vma, vmf->address, vmf->pte);
3041 pte_unmap_unlock(vmf->pte, vmf->ptl);
3042 count_vm_event(PGREUSE);
3046 * Handle the case of a page which we actually need to copy to a new page,
3047 * either due to COW or unsharing.
3049 * Called with mmap_lock locked and the old page referenced, but
3050 * without the ptl held.
3052 * High level logic flow:
3054 * - Allocate a page, copy the content of the old page to the new one.
3055 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3056 * - Take the PTL. If the pte changed, bail out and release the allocated page
3057 * - If the pte is still the way we remember it, update the page table and all
3058 * relevant references. This includes dropping the reference the page-table
3059 * held to the old page, as well as updating the rmap.
3060 * - In any case, unlock the PTL and drop the reference we took to the old page.
3062 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3064 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3065 struct vm_area_struct *vma = vmf->vma;
3066 struct mm_struct *mm = vma->vm_mm;
3067 struct page *old_page = vmf->page;
3068 struct page *new_page = NULL;
3070 int page_copied = 0;
3071 struct mmu_notifier_range range;
3074 delayacct_wpcopy_start();
3076 if (unlikely(anon_vma_prepare(vma)))
3079 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3080 new_page = alloc_zeroed_user_highpage_movable(vma,
3085 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3090 ret = __wp_page_copy_user(new_page, old_page, vmf);
3093 * COW failed, if the fault was solved by other,
3094 * it's fine. If not, userspace would re-fault on
3095 * the same address and we will handle the fault
3096 * from the second attempt.
3097 * The -EHWPOISON case will not be retried.
3103 delayacct_wpcopy_end();
3104 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3106 kmsan_copy_page_meta(new_page, old_page);
3109 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3111 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3113 __SetPageUptodate(new_page);
3115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3116 vmf->address & PAGE_MASK,
3117 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3118 mmu_notifier_invalidate_range_start(&range);
3121 * Re-check the pte - we dropped the lock
3123 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3126 if (!PageAnon(old_page)) {
3127 dec_mm_counter(mm, mm_counter_file(old_page));
3128 inc_mm_counter(mm, MM_ANONPAGES);
3131 inc_mm_counter(mm, MM_ANONPAGES);
3133 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134 entry = mk_pte(new_page, vma->vm_page_prot);
3135 entry = pte_sw_mkyoung(entry);
3136 if (unlikely(unshare)) {
3137 if (pte_soft_dirty(vmf->orig_pte))
3138 entry = pte_mksoft_dirty(entry);
3139 if (pte_uffd_wp(vmf->orig_pte))
3140 entry = pte_mkuffd_wp(entry);
3142 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3146 * Clear the pte entry and flush it first, before updating the
3147 * pte with the new entry, to keep TLBs on different CPUs in
3148 * sync. This code used to set the new PTE then flush TLBs, but
3149 * that left a window where the new PTE could be loaded into
3150 * some TLBs while the old PTE remains in others.
3152 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153 page_add_new_anon_rmap(new_page, vma, vmf->address);
3154 lru_cache_add_inactive_or_unevictable(new_page, vma);
3156 * We call the notify macro here because, when using secondary
3157 * mmu page tables (such as kvm shadow page tables), we want the
3158 * new page to be mapped directly into the secondary page table.
3160 BUG_ON(unshare && pte_write(entry));
3161 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162 update_mmu_cache(vma, vmf->address, vmf->pte);
3165 * Only after switching the pte to the new page may
3166 * we remove the mapcount here. Otherwise another
3167 * process may come and find the rmap count decremented
3168 * before the pte is switched to the new page, and
3169 * "reuse" the old page writing into it while our pte
3170 * here still points into it and can be read by other
3173 * The critical issue is to order this
3174 * page_remove_rmap with the ptp_clear_flush above.
3175 * Those stores are ordered by (if nothing else,)
3176 * the barrier present in the atomic_add_negative
3177 * in page_remove_rmap.
3179 * Then the TLB flush in ptep_clear_flush ensures that
3180 * no process can access the old page before the
3181 * decremented mapcount is visible. And the old page
3182 * cannot be reused until after the decremented
3183 * mapcount is visible. So transitively, TLBs to
3184 * old page will be flushed before it can be reused.
3186 page_remove_rmap(old_page, vma, false);
3189 /* Free the old page.. */
3190 new_page = old_page;
3193 update_mmu_tlb(vma, vmf->address, vmf->pte);
3199 pte_unmap_unlock(vmf->pte, vmf->ptl);
3201 * No need to double call mmu_notifier->invalidate_range() callback as
3202 * the above ptep_clear_flush_notify() did already call it.
3204 mmu_notifier_invalidate_range_only_end(&range);
3207 free_swap_cache(old_page);
3211 delayacct_wpcopy_end();
3219 delayacct_wpcopy_end();
3220 return VM_FAULT_OOM;
3224 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3225 * writeable once the page is prepared
3227 * @vmf: structure describing the fault
3229 * This function handles all that is needed to finish a write page fault in a
3230 * shared mapping due to PTE being read-only once the mapped page is prepared.
3231 * It handles locking of PTE and modifying it.
3233 * The function expects the page to be locked or other protection against
3234 * concurrent faults / writeback (such as DAX radix tree locks).
3236 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3237 * we acquired PTE lock.
3239 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3241 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3242 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3245 * We might have raced with another page fault while we released the
3246 * pte_offset_map_lock.
3248 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3249 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3250 pte_unmap_unlock(vmf->pte, vmf->ptl);
3251 return VM_FAULT_NOPAGE;
3258 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3261 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3263 struct vm_area_struct *vma = vmf->vma;
3265 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3268 pte_unmap_unlock(vmf->pte, vmf->ptl);
3269 vmf->flags |= FAULT_FLAG_MKWRITE;
3270 ret = vma->vm_ops->pfn_mkwrite(vmf);
3271 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3273 return finish_mkwrite_fault(vmf);
3279 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3280 __releases(vmf->ptl)
3282 struct vm_area_struct *vma = vmf->vma;
3285 get_page(vmf->page);
3287 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3290 pte_unmap_unlock(vmf->pte, vmf->ptl);
3291 tmp = do_page_mkwrite(vmf);
3292 if (unlikely(!tmp || (tmp &
3293 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3294 put_page(vmf->page);
3297 tmp = finish_mkwrite_fault(vmf);
3298 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3299 unlock_page(vmf->page);
3300 put_page(vmf->page);
3305 lock_page(vmf->page);
3307 ret |= fault_dirty_shared_page(vmf);
3308 put_page(vmf->page);
3314 * This routine handles present pages, when
3315 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3316 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3317 * (FAULT_FLAG_UNSHARE)
3319 * It is done by copying the page to a new address and decrementing the
3320 * shared-page counter for the old page.
3322 * Note that this routine assumes that the protection checks have been
3323 * done by the caller (the low-level page fault routine in most cases).
3324 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3325 * done any necessary COW.
3327 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3328 * though the page will change only once the write actually happens. This
3329 * avoids a few races, and potentially makes it more efficient.
3331 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3332 * but allow concurrent faults), with pte both mapped and locked.
3333 * We return with mmap_lock still held, but pte unmapped and unlocked.
3335 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3336 __releases(vmf->ptl)
3338 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3339 struct vm_area_struct *vma = vmf->vma;
3340 struct folio *folio = NULL;
3342 if (likely(!unshare)) {
3343 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3344 pte_unmap_unlock(vmf->pte, vmf->ptl);
3345 return handle_userfault(vmf, VM_UFFD_WP);
3349 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3350 * is flushed in this case before copying.
3352 if (unlikely(userfaultfd_wp(vmf->vma) &&
3353 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3354 flush_tlb_page(vmf->vma, vmf->address);
3357 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3360 * Shared mapping: we are guaranteed to have VM_WRITE and
3361 * FAULT_FLAG_WRITE set at this point.
3363 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3365 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3368 * We should not cow pages in a shared writeable mapping.
3369 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3372 return wp_pfn_shared(vmf);
3373 return wp_page_shared(vmf);
3377 folio = page_folio(vmf->page);
3380 * Private mapping: create an exclusive anonymous page copy if reuse
3381 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3383 if (folio && folio_test_anon(folio)) {
3385 * If the page is exclusive to this process we must reuse the
3386 * page without further checks.
3388 if (PageAnonExclusive(vmf->page))
3392 * We have to verify under folio lock: these early checks are
3393 * just an optimization to avoid locking the folio and freeing
3394 * the swapcache if there is little hope that we can reuse.
3396 * KSM doesn't necessarily raise the folio refcount.
3398 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3400 if (!folio_test_lru(folio))
3402 * Note: We cannot easily detect+handle references from
3403 * remote LRU pagevecs or references to LRU folios.
3406 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3408 if (!folio_trylock(folio))
3410 if (folio_test_swapcache(folio))
3411 folio_free_swap(folio);
3412 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3413 folio_unlock(folio);
3417 * Ok, we've got the only folio reference from our mapping
3418 * and the folio is locked, it's dark out, and we're wearing
3419 * sunglasses. Hit it.
3421 page_move_anon_rmap(vmf->page, vma);
3422 folio_unlock(folio);
3424 if (unlikely(unshare)) {
3425 pte_unmap_unlock(vmf->pte, vmf->ptl);
3433 * Ok, we need to copy. Oh, well..
3438 pte_unmap_unlock(vmf->pte, vmf->ptl);
3440 if (folio && folio_test_ksm(folio))
3441 count_vm_event(COW_KSM);
3443 return wp_page_copy(vmf);
3446 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3447 unsigned long start_addr, unsigned long end_addr,
3448 struct zap_details *details)
3450 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3453 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3454 pgoff_t first_index,
3456 struct zap_details *details)
3458 struct vm_area_struct *vma;
3459 pgoff_t vba, vea, zba, zea;
3461 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3462 vba = vma->vm_pgoff;
3463 vea = vba + vma_pages(vma) - 1;
3464 zba = max(first_index, vba);
3465 zea = min(last_index, vea);
3467 unmap_mapping_range_vma(vma,
3468 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3469 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3475 * unmap_mapping_folio() - Unmap single folio from processes.
3476 * @folio: The locked folio to be unmapped.
3478 * Unmap this folio from any userspace process which still has it mmaped.
3479 * Typically, for efficiency, the range of nearby pages has already been
3480 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3481 * truncation or invalidation holds the lock on a folio, it may find that
3482 * the page has been remapped again: and then uses unmap_mapping_folio()
3483 * to unmap it finally.
3485 void unmap_mapping_folio(struct folio *folio)
3487 struct address_space *mapping = folio->mapping;
3488 struct zap_details details = { };
3489 pgoff_t first_index;
3492 VM_BUG_ON(!folio_test_locked(folio));
3494 first_index = folio->index;
3495 last_index = folio->index + folio_nr_pages(folio) - 1;
3497 details.even_cows = false;
3498 details.single_folio = folio;
3499 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3501 i_mmap_lock_read(mapping);
3502 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3503 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3504 last_index, &details);
3505 i_mmap_unlock_read(mapping);
3509 * unmap_mapping_pages() - Unmap pages from processes.
3510 * @mapping: The address space containing pages to be unmapped.
3511 * @start: Index of first page to be unmapped.
3512 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3513 * @even_cows: Whether to unmap even private COWed pages.
3515 * Unmap the pages in this address space from any userspace process which
3516 * has them mmaped. Generally, you want to remove COWed pages as well when
3517 * a file is being truncated, but not when invalidating pages from the page
3520 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3521 pgoff_t nr, bool even_cows)
3523 struct zap_details details = { };
3524 pgoff_t first_index = start;
3525 pgoff_t last_index = start + nr - 1;
3527 details.even_cows = even_cows;
3528 if (last_index < first_index)
3529 last_index = ULONG_MAX;
3531 i_mmap_lock_read(mapping);
3532 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3533 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3534 last_index, &details);
3535 i_mmap_unlock_read(mapping);
3537 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3540 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3541 * address_space corresponding to the specified byte range in the underlying
3544 * @mapping: the address space containing mmaps to be unmapped.
3545 * @holebegin: byte in first page to unmap, relative to the start of
3546 * the underlying file. This will be rounded down to a PAGE_SIZE
3547 * boundary. Note that this is different from truncate_pagecache(), which
3548 * must keep the partial page. In contrast, we must get rid of
3550 * @holelen: size of prospective hole in bytes. This will be rounded
3551 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3553 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3554 * but 0 when invalidating pagecache, don't throw away private data.
3556 void unmap_mapping_range(struct address_space *mapping,
3557 loff_t const holebegin, loff_t const holelen, int even_cows)
3559 pgoff_t hba = holebegin >> PAGE_SHIFT;
3560 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3562 /* Check for overflow. */
3563 if (sizeof(holelen) > sizeof(hlen)) {
3565 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3566 if (holeend & ~(long long)ULONG_MAX)
3567 hlen = ULONG_MAX - hba + 1;
3570 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3572 EXPORT_SYMBOL(unmap_mapping_range);
3575 * Restore a potential device exclusive pte to a working pte entry
3577 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3579 struct folio *folio = page_folio(vmf->page);
3580 struct vm_area_struct *vma = vmf->vma;
3581 struct mmu_notifier_range range;
3583 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3584 return VM_FAULT_RETRY;
3585 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3586 vma->vm_mm, vmf->address & PAGE_MASK,
3587 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3588 mmu_notifier_invalidate_range_start(&range);
3590 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3592 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3593 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3595 pte_unmap_unlock(vmf->pte, vmf->ptl);
3596 folio_unlock(folio);
3598 mmu_notifier_invalidate_range_end(&range);
3602 static inline bool should_try_to_free_swap(struct folio *folio,
3603 struct vm_area_struct *vma,
3604 unsigned int fault_flags)
3606 if (!folio_test_swapcache(folio))
3608 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3609 folio_test_mlocked(folio))
3612 * If we want to map a page that's in the swapcache writable, we
3613 * have to detect via the refcount if we're really the exclusive
3614 * user. Try freeing the swapcache to get rid of the swapcache
3615 * reference only in case it's likely that we'll be the exlusive user.
3617 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3618 folio_ref_count(folio) == 2;
3621 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3623 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3624 vmf->address, &vmf->ptl);
3626 * Be careful so that we will only recover a special uffd-wp pte into a
3627 * none pte. Otherwise it means the pte could have changed, so retry.
3629 * This should also cover the case where e.g. the pte changed
3630 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3631 * So is_pte_marker() check is not enough to safely drop the pte.
3633 if (pte_same(vmf->orig_pte, *vmf->pte))
3634 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3635 pte_unmap_unlock(vmf->pte, vmf->ptl);
3640 * This is actually a page-missing access, but with uffd-wp special pte
3641 * installed. It means this pte was wr-protected before being unmapped.
3643 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3646 * Just in case there're leftover special ptes even after the region
3647 * got unregistered - we can simply clear them. We can also do that
3648 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3649 * ranges, but it should be more efficient to be done lazily here.
3651 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3652 return pte_marker_clear(vmf);
3654 /* do_fault() can handle pte markers too like none pte */
3655 return do_fault(vmf);
3658 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3660 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3661 unsigned long marker = pte_marker_get(entry);
3664 * PTE markers should never be empty. If anything weird happened,
3665 * the best thing to do is to kill the process along with its mm.
3667 if (WARN_ON_ONCE(!marker))
3668 return VM_FAULT_SIGBUS;
3670 /* Higher priority than uffd-wp when data corrupted */
3671 if (marker & PTE_MARKER_SWAPIN_ERROR)
3672 return VM_FAULT_SIGBUS;
3674 if (pte_marker_entry_uffd_wp(entry))
3675 return pte_marker_handle_uffd_wp(vmf);
3677 /* This is an unknown pte marker */
3678 return VM_FAULT_SIGBUS;
3682 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3683 * but allow concurrent faults), and pte mapped but not yet locked.
3684 * We return with pte unmapped and unlocked.
3686 * We return with the mmap_lock locked or unlocked in the same cases
3687 * as does filemap_fault().
3689 vm_fault_t do_swap_page(struct vm_fault *vmf)
3691 struct vm_area_struct *vma = vmf->vma;
3692 struct folio *swapcache, *folio = NULL;
3694 struct swap_info_struct *si = NULL;
3695 rmap_t rmap_flags = RMAP_NONE;
3696 bool exclusive = false;
3701 void *shadow = NULL;
3703 if (!pte_unmap_same(vmf))
3706 entry = pte_to_swp_entry(vmf->orig_pte);
3707 if (unlikely(non_swap_entry(entry))) {
3708 if (is_migration_entry(entry)) {
3709 migration_entry_wait(vma->vm_mm, vmf->pmd,
3711 } else if (is_device_exclusive_entry(entry)) {
3712 vmf->page = pfn_swap_entry_to_page(entry);
3713 ret = remove_device_exclusive_entry(vmf);
3714 } else if (is_device_private_entry(entry)) {
3715 vmf->page = pfn_swap_entry_to_page(entry);
3716 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3717 vmf->address, &vmf->ptl);
3718 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3719 spin_unlock(vmf->ptl);
3724 * Get a page reference while we know the page can't be
3727 get_page(vmf->page);
3728 pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3730 put_page(vmf->page);
3731 } else if (is_hwpoison_entry(entry)) {
3732 ret = VM_FAULT_HWPOISON;
3733 } else if (is_pte_marker_entry(entry)) {
3734 ret = handle_pte_marker(vmf);
3736 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3737 ret = VM_FAULT_SIGBUS;
3742 /* Prevent swapoff from happening to us. */
3743 si = get_swap_device(entry);
3747 folio = swap_cache_get_folio(entry, vma, vmf->address);
3749 page = folio_file_page(folio, swp_offset(entry));
3753 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3754 __swap_count(entry) == 1) {
3755 /* skip swapcache */
3756 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3757 vma, vmf->address, false);
3758 page = &folio->page;
3760 __folio_set_locked(folio);
3761 __folio_set_swapbacked(folio);
3763 if (mem_cgroup_swapin_charge_folio(folio,
3764 vma->vm_mm, GFP_KERNEL,
3769 mem_cgroup_swapin_uncharge_swap(entry);
3771 shadow = get_shadow_from_swap_cache(entry);
3773 workingset_refault(folio, shadow);
3775 folio_add_lru(folio);
3777 /* To provide entry to swap_readpage() */
3778 folio_set_swap_entry(folio, entry);
3779 swap_readpage(page, true, NULL);
3780 folio->private = NULL;
3783 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3786 folio = page_folio(page);
3792 * Back out if somebody else faulted in this pte
3793 * while we released the pte lock.
3795 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3796 vmf->address, &vmf->ptl);
3797 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3802 /* Had to read the page from swap area: Major fault */
3803 ret = VM_FAULT_MAJOR;
3804 count_vm_event(PGMAJFAULT);
3805 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3806 } else if (PageHWPoison(page)) {
3808 * hwpoisoned dirty swapcache pages are kept for killing
3809 * owner processes (which may be unknown at hwpoison time)
3811 ret = VM_FAULT_HWPOISON;
3815 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3818 ret |= VM_FAULT_RETRY;
3824 * Make sure folio_free_swap() or swapoff did not release the
3825 * swapcache from under us. The page pin, and pte_same test
3826 * below, are not enough to exclude that. Even if it is still
3827 * swapcache, we need to check that the page's swap has not
3830 if (unlikely(!folio_test_swapcache(folio) ||
3831 page_private(page) != entry.val))
3835 * KSM sometimes has to copy on read faults, for example, if
3836 * page->index of !PageKSM() pages would be nonlinear inside the
3837 * anon VMA -- PageKSM() is lost on actual swapout.
3839 page = ksm_might_need_to_copy(page, vma, vmf->address);
3840 if (unlikely(!page)) {
3843 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3844 ret = VM_FAULT_HWPOISON;
3847 folio = page_folio(page);
3850 * If we want to map a page that's in the swapcache writable, we
3851 * have to detect via the refcount if we're really the exclusive
3852 * owner. Try removing the extra reference from the local LRU
3853 * pagevecs if required.
3855 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3856 !folio_test_ksm(folio) && !folio_test_lru(folio))
3860 cgroup_throttle_swaprate(page, GFP_KERNEL);
3863 * Back out if somebody else already faulted in this pte.
3865 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3867 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3870 if (unlikely(!folio_test_uptodate(folio))) {
3871 ret = VM_FAULT_SIGBUS;
3876 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3877 * must never point at an anonymous page in the swapcache that is
3878 * PG_anon_exclusive. Sanity check that this holds and especially, that
3879 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3880 * check after taking the PT lock and making sure that nobody
3881 * concurrently faulted in this page and set PG_anon_exclusive.
3883 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3884 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3887 * Check under PT lock (to protect against concurrent fork() sharing
3888 * the swap entry concurrently) for certainly exclusive pages.
3890 if (!folio_test_ksm(folio)) {
3892 * Note that pte_swp_exclusive() == false for architectures
3893 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3895 exclusive = pte_swp_exclusive(vmf->orig_pte);
3896 if (folio != swapcache) {
3898 * We have a fresh page that is not exposed to the
3899 * swapcache -> certainly exclusive.
3902 } else if (exclusive && folio_test_writeback(folio) &&
3903 data_race(si->flags & SWP_STABLE_WRITES)) {
3905 * This is tricky: not all swap backends support
3906 * concurrent page modifications while under writeback.
3908 * So if we stumble over such a page in the swapcache
3909 * we must not set the page exclusive, otherwise we can
3910 * map it writable without further checks and modify it
3911 * while still under writeback.
3913 * For these problematic swap backends, simply drop the
3914 * exclusive marker: this is perfectly fine as we start
3915 * writeback only if we fully unmapped the page and
3916 * there are no unexpected references on the page after
3917 * unmapping succeeded. After fully unmapped, no
3918 * further GUP references (FOLL_GET and FOLL_PIN) can
3919 * appear, so dropping the exclusive marker and mapping
3920 * it only R/O is fine.
3927 * Remove the swap entry and conditionally try to free up the swapcache.
3928 * We're already holding a reference on the page but haven't mapped it
3932 if (should_try_to_free_swap(folio, vma, vmf->flags))
3933 folio_free_swap(folio);
3935 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3936 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3937 pte = mk_pte(page, vma->vm_page_prot);
3940 * Same logic as in do_wp_page(); however, optimize for pages that are
3941 * certainly not shared either because we just allocated them without
3942 * exposing them to the swapcache or because the swap entry indicates
3945 if (!folio_test_ksm(folio) &&
3946 (exclusive || folio_ref_count(folio) == 1)) {
3947 if (vmf->flags & FAULT_FLAG_WRITE) {
3948 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3949 vmf->flags &= ~FAULT_FLAG_WRITE;
3951 rmap_flags |= RMAP_EXCLUSIVE;
3953 flush_icache_page(vma, page);
3954 if (pte_swp_soft_dirty(vmf->orig_pte))
3955 pte = pte_mksoft_dirty(pte);
3956 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3957 pte = pte_mkuffd_wp(pte);
3958 pte = pte_wrprotect(pte);
3960 vmf->orig_pte = pte;
3962 /* ksm created a completely new copy */
3963 if (unlikely(folio != swapcache && swapcache)) {
3964 page_add_new_anon_rmap(page, vma, vmf->address);
3965 folio_add_lru_vma(folio, vma);
3967 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3970 VM_BUG_ON(!folio_test_anon(folio) ||
3971 (pte_write(pte) && !PageAnonExclusive(page)));
3972 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3973 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3975 folio_unlock(folio);
3976 if (folio != swapcache && swapcache) {
3978 * Hold the lock to avoid the swap entry to be reused
3979 * until we take the PT lock for the pte_same() check
3980 * (to avoid false positives from pte_same). For
3981 * further safety release the lock after the swap_free
3982 * so that the swap count won't change under a
3983 * parallel locked swapcache.
3985 folio_unlock(swapcache);
3986 folio_put(swapcache);
3989 if (vmf->flags & FAULT_FLAG_WRITE) {
3990 ret |= do_wp_page(vmf);
3991 if (ret & VM_FAULT_ERROR)
3992 ret &= VM_FAULT_ERROR;
3996 /* No need to invalidate - it was non-present before */
3997 update_mmu_cache(vma, vmf->address, vmf->pte);
3999 pte_unmap_unlock(vmf->pte, vmf->ptl);
4002 put_swap_device(si);
4005 pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 folio_unlock(folio);
4010 if (folio != swapcache && swapcache) {
4011 folio_unlock(swapcache);
4012 folio_put(swapcache);
4015 put_swap_device(si);
4020 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4021 * but allow concurrent faults), and pte mapped but not yet locked.
4022 * We return with mmap_lock still held, but pte unmapped and unlocked.
4024 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4026 struct vm_area_struct *vma = vmf->vma;
4031 /* File mapping without ->vm_ops ? */
4032 if (vma->vm_flags & VM_SHARED)
4033 return VM_FAULT_SIGBUS;
4036 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4037 * pte_offset_map() on pmds where a huge pmd might be created
4038 * from a different thread.
4040 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4041 * parallel threads are excluded by other means.
4043 * Here we only have mmap_read_lock(mm).
4045 if (pte_alloc(vma->vm_mm, vmf->pmd))
4046 return VM_FAULT_OOM;
4048 /* See comment in handle_pte_fault() */
4049 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4052 /* Use the zero-page for reads */
4053 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4054 !mm_forbids_zeropage(vma->vm_mm)) {
4055 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4056 vma->vm_page_prot));
4057 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4058 vmf->address, &vmf->ptl);
4059 if (!pte_none(*vmf->pte)) {
4060 update_mmu_tlb(vma, vmf->address, vmf->pte);
4063 ret = check_stable_address_space(vma->vm_mm);
4066 /* Deliver the page fault to userland, check inside PT lock */
4067 if (userfaultfd_missing(vma)) {
4068 pte_unmap_unlock(vmf->pte, vmf->ptl);
4069 return handle_userfault(vmf, VM_UFFD_MISSING);
4074 /* Allocate our own private page. */
4075 if (unlikely(anon_vma_prepare(vma)))
4077 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4081 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4083 cgroup_throttle_swaprate(page, GFP_KERNEL);
4086 * The memory barrier inside __SetPageUptodate makes sure that
4087 * preceding stores to the page contents become visible before
4088 * the set_pte_at() write.
4090 __SetPageUptodate(page);
4092 entry = mk_pte(page, vma->vm_page_prot);
4093 entry = pte_sw_mkyoung(entry);
4094 if (vma->vm_flags & VM_WRITE)
4095 entry = pte_mkwrite(pte_mkdirty(entry));
4097 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4099 if (!pte_none(*vmf->pte)) {
4100 update_mmu_tlb(vma, vmf->address, vmf->pte);
4104 ret = check_stable_address_space(vma->vm_mm);
4108 /* Deliver the page fault to userland, check inside PT lock */
4109 if (userfaultfd_missing(vma)) {
4110 pte_unmap_unlock(vmf->pte, vmf->ptl);
4112 return handle_userfault(vmf, VM_UFFD_MISSING);
4115 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4116 page_add_new_anon_rmap(page, vma, vmf->address);
4117 lru_cache_add_inactive_or_unevictable(page, vma);
4119 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4121 /* No need to invalidate - it was non-present before */
4122 update_mmu_cache(vma, vmf->address, vmf->pte);
4124 pte_unmap_unlock(vmf->pte, vmf->ptl);
4132 return VM_FAULT_OOM;
4136 * The mmap_lock must have been held on entry, and may have been
4137 * released depending on flags and vma->vm_ops->fault() return value.
4138 * See filemap_fault() and __lock_page_retry().
4140 static vm_fault_t __do_fault(struct vm_fault *vmf)
4142 struct vm_area_struct *vma = vmf->vma;
4146 * Preallocate pte before we take page_lock because this might lead to
4147 * deadlocks for memcg reclaim which waits for pages under writeback:
4149 * SetPageWriteback(A)
4155 * wait_on_page_writeback(A)
4156 * SetPageWriteback(B)
4158 * # flush A, B to clear the writeback
4160 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4161 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4162 if (!vmf->prealloc_pte)
4163 return VM_FAULT_OOM;
4166 ret = vma->vm_ops->fault(vmf);
4167 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4168 VM_FAULT_DONE_COW)))
4171 if (unlikely(PageHWPoison(vmf->page))) {
4172 struct page *page = vmf->page;
4173 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4174 if (ret & VM_FAULT_LOCKED) {
4175 if (page_mapped(page))
4176 unmap_mapping_pages(page_mapping(page),
4177 page->index, 1, false);
4178 /* Retry if a clean page was removed from the cache. */
4179 if (invalidate_inode_page(page))
4180 poisonret = VM_FAULT_NOPAGE;
4188 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4189 lock_page(vmf->page);
4191 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4197 static void deposit_prealloc_pte(struct vm_fault *vmf)
4199 struct vm_area_struct *vma = vmf->vma;
4201 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4203 * We are going to consume the prealloc table,
4204 * count that as nr_ptes.
4206 mm_inc_nr_ptes(vma->vm_mm);
4207 vmf->prealloc_pte = NULL;
4210 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4212 struct vm_area_struct *vma = vmf->vma;
4213 bool write = vmf->flags & FAULT_FLAG_WRITE;
4214 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4217 vm_fault_t ret = VM_FAULT_FALLBACK;
4219 if (!transhuge_vma_suitable(vma, haddr))
4222 page = compound_head(page);
4223 if (compound_order(page) != HPAGE_PMD_ORDER)
4227 * Just backoff if any subpage of a THP is corrupted otherwise
4228 * the corrupted page may mapped by PMD silently to escape the
4229 * check. This kind of THP just can be PTE mapped. Access to
4230 * the corrupted subpage should trigger SIGBUS as expected.
4232 if (unlikely(PageHasHWPoisoned(page)))
4236 * Archs like ppc64 need additional space to store information
4237 * related to pte entry. Use the preallocated table for that.
4239 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4240 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4241 if (!vmf->prealloc_pte)
4242 return VM_FAULT_OOM;
4245 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4246 if (unlikely(!pmd_none(*vmf->pmd)))
4249 for (i = 0; i < HPAGE_PMD_NR; i++)
4250 flush_icache_page(vma, page + i);
4252 entry = mk_huge_pmd(page, vma->vm_page_prot);
4254 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4256 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4257 page_add_file_rmap(page, vma, true);
4260 * deposit and withdraw with pmd lock held
4262 if (arch_needs_pgtable_deposit())
4263 deposit_prealloc_pte(vmf);
4265 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4267 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4269 /* fault is handled */
4271 count_vm_event(THP_FILE_MAPPED);
4273 spin_unlock(vmf->ptl);
4277 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4279 return VM_FAULT_FALLBACK;
4283 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4285 struct vm_area_struct *vma = vmf->vma;
4286 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4287 bool write = vmf->flags & FAULT_FLAG_WRITE;
4288 bool prefault = vmf->address != addr;
4291 flush_icache_page(vma, page);
4292 entry = mk_pte(page, vma->vm_page_prot);
4294 if (prefault && arch_wants_old_prefaulted_pte())
4295 entry = pte_mkold(entry);
4297 entry = pte_sw_mkyoung(entry);
4300 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4301 if (unlikely(uffd_wp))
4302 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4303 /* copy-on-write page */
4304 if (write && !(vma->vm_flags & VM_SHARED)) {
4305 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4306 page_add_new_anon_rmap(page, vma, addr);
4307 lru_cache_add_inactive_or_unevictable(page, vma);
4309 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4310 page_add_file_rmap(page, vma, false);
4312 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4315 static bool vmf_pte_changed(struct vm_fault *vmf)
4317 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4318 return !pte_same(*vmf->pte, vmf->orig_pte);
4320 return !pte_none(*vmf->pte);
4324 * finish_fault - finish page fault once we have prepared the page to fault
4326 * @vmf: structure describing the fault
4328 * This function handles all that is needed to finish a page fault once the
4329 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4330 * given page, adds reverse page mapping, handles memcg charges and LRU
4333 * The function expects the page to be locked and on success it consumes a
4334 * reference of a page being mapped (for the PTE which maps it).
4336 * Return: %0 on success, %VM_FAULT_ code in case of error.
4338 vm_fault_t finish_fault(struct vm_fault *vmf)
4340 struct vm_area_struct *vma = vmf->vma;
4344 /* Did we COW the page? */
4345 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4346 page = vmf->cow_page;
4351 * check even for read faults because we might have lost our CoWed
4354 if (!(vma->vm_flags & VM_SHARED)) {
4355 ret = check_stable_address_space(vma->vm_mm);
4360 if (pmd_none(*vmf->pmd)) {
4361 if (PageTransCompound(page)) {
4362 ret = do_set_pmd(vmf, page);
4363 if (ret != VM_FAULT_FALLBACK)
4367 if (vmf->prealloc_pte)
4368 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4369 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4370 return VM_FAULT_OOM;
4374 * See comment in handle_pte_fault() for how this scenario happens, we
4375 * need to return NOPAGE so that we drop this page.
4377 if (pmd_devmap_trans_unstable(vmf->pmd))
4378 return VM_FAULT_NOPAGE;
4380 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4381 vmf->address, &vmf->ptl);
4383 /* Re-check under ptl */
4384 if (likely(!vmf_pte_changed(vmf))) {
4385 do_set_pte(vmf, page, vmf->address);
4387 /* no need to invalidate: a not-present page won't be cached */
4388 update_mmu_cache(vma, vmf->address, vmf->pte);
4392 update_mmu_tlb(vma, vmf->address, vmf->pte);
4393 ret = VM_FAULT_NOPAGE;
4396 pte_unmap_unlock(vmf->pte, vmf->ptl);
4400 static unsigned long fault_around_bytes __read_mostly =
4401 rounddown_pow_of_two(65536);
4403 #ifdef CONFIG_DEBUG_FS
4404 static int fault_around_bytes_get(void *data, u64 *val)
4406 *val = fault_around_bytes;
4411 * fault_around_bytes must be rounded down to the nearest page order as it's
4412 * what do_fault_around() expects to see.
4414 static int fault_around_bytes_set(void *data, u64 val)
4416 if (val / PAGE_SIZE > PTRS_PER_PTE)
4418 if (val > PAGE_SIZE)
4419 fault_around_bytes = rounddown_pow_of_two(val);
4421 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4424 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4425 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4427 static int __init fault_around_debugfs(void)
4429 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4430 &fault_around_bytes_fops);
4433 late_initcall(fault_around_debugfs);
4437 * do_fault_around() tries to map few pages around the fault address. The hope
4438 * is that the pages will be needed soon and this will lower the number of
4441 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4442 * not ready to be mapped: not up-to-date, locked, etc.
4444 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4447 * fault_around_bytes defines how many bytes we'll try to map.
4448 * do_fault_around() expects it to be set to a power of two less than or equal
4451 * The virtual address of the area that we map is naturally aligned to
4452 * fault_around_bytes rounded down to the machine page size
4453 * (and therefore to page order). This way it's easier to guarantee
4454 * that we don't cross page table boundaries.
4456 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4458 unsigned long address = vmf->address, nr_pages, mask;
4459 pgoff_t start_pgoff = vmf->pgoff;
4463 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4464 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4466 address = max(address & mask, vmf->vma->vm_start);
4467 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4471 * end_pgoff is either the end of the page table, the end of
4472 * the vma or nr_pages from start_pgoff, depending what is nearest.
4474 end_pgoff = start_pgoff -
4475 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4477 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4478 start_pgoff + nr_pages - 1);
4480 if (pmd_none(*vmf->pmd)) {
4481 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4482 if (!vmf->prealloc_pte)
4483 return VM_FAULT_OOM;
4486 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4489 /* Return true if we should do read fault-around, false otherwise */
4490 static inline bool should_fault_around(struct vm_fault *vmf)
4492 /* No ->map_pages? No way to fault around... */
4493 if (!vmf->vma->vm_ops->map_pages)
4496 if (uffd_disable_fault_around(vmf->vma))
4499 return fault_around_bytes >> PAGE_SHIFT > 1;
4502 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4507 * Let's call ->map_pages() first and use ->fault() as fallback
4508 * if page by the offset is not ready to be mapped (cold cache or
4511 if (should_fault_around(vmf)) {
4512 ret = do_fault_around(vmf);
4517 ret = __do_fault(vmf);
4518 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521 ret |= finish_fault(vmf);
4522 unlock_page(vmf->page);
4523 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4524 put_page(vmf->page);
4528 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4530 struct vm_area_struct *vma = vmf->vma;
4533 if (unlikely(anon_vma_prepare(vma)))
4534 return VM_FAULT_OOM;
4536 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4538 return VM_FAULT_OOM;
4540 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4542 put_page(vmf->cow_page);
4543 return VM_FAULT_OOM;
4545 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4547 ret = __do_fault(vmf);
4548 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4550 if (ret & VM_FAULT_DONE_COW)
4553 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4554 __SetPageUptodate(vmf->cow_page);
4556 ret |= finish_fault(vmf);
4557 unlock_page(vmf->page);
4558 put_page(vmf->page);
4559 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4563 put_page(vmf->cow_page);
4567 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4569 struct vm_area_struct *vma = vmf->vma;
4570 vm_fault_t ret, tmp;
4572 ret = __do_fault(vmf);
4573 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4577 * Check if the backing address space wants to know that the page is
4578 * about to become writable
4580 if (vma->vm_ops->page_mkwrite) {
4581 unlock_page(vmf->page);
4582 tmp = do_page_mkwrite(vmf);
4583 if (unlikely(!tmp ||
4584 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4585 put_page(vmf->page);
4590 ret |= finish_fault(vmf);
4591 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4593 unlock_page(vmf->page);
4594 put_page(vmf->page);
4598 ret |= fault_dirty_shared_page(vmf);
4603 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4604 * but allow concurrent faults).
4605 * The mmap_lock may have been released depending on flags and our
4606 * return value. See filemap_fault() and __folio_lock_or_retry().
4607 * If mmap_lock is released, vma may become invalid (for example
4608 * by other thread calling munmap()).
4610 static vm_fault_t do_fault(struct vm_fault *vmf)
4612 struct vm_area_struct *vma = vmf->vma;
4613 struct mm_struct *vm_mm = vma->vm_mm;
4617 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4619 if (!vma->vm_ops->fault) {
4621 * If we find a migration pmd entry or a none pmd entry, which
4622 * should never happen, return SIGBUS
4624 if (unlikely(!pmd_present(*vmf->pmd)))
4625 ret = VM_FAULT_SIGBUS;
4627 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4632 * Make sure this is not a temporary clearing of pte
4633 * by holding ptl and checking again. A R/M/W update
4634 * of pte involves: take ptl, clearing the pte so that
4635 * we don't have concurrent modification by hardware
4636 * followed by an update.
4638 if (unlikely(pte_none(*vmf->pte)))
4639 ret = VM_FAULT_SIGBUS;
4641 ret = VM_FAULT_NOPAGE;
4643 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4646 ret = do_read_fault(vmf);
4647 else if (!(vma->vm_flags & VM_SHARED))
4648 ret = do_cow_fault(vmf);
4650 ret = do_shared_fault(vmf);
4652 /* preallocated pagetable is unused: free it */
4653 if (vmf->prealloc_pte) {
4654 pte_free(vm_mm, vmf->prealloc_pte);
4655 vmf->prealloc_pte = NULL;
4660 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4661 unsigned long addr, int page_nid, int *flags)
4665 count_vm_numa_event(NUMA_HINT_FAULTS);
4666 if (page_nid == numa_node_id()) {
4667 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4668 *flags |= TNF_FAULT_LOCAL;
4671 return mpol_misplaced(page, vma, addr);
4674 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4676 struct vm_area_struct *vma = vmf->vma;
4677 struct page *page = NULL;
4678 int page_nid = NUMA_NO_NODE;
4679 bool writable = false;
4686 * The "pte" at this point cannot be used safely without
4687 * validation through pte_unmap_same(). It's of NUMA type but
4688 * the pfn may be screwed if the read is non atomic.
4690 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4691 spin_lock(vmf->ptl);
4692 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4693 pte_unmap_unlock(vmf->pte, vmf->ptl);
4697 /* Get the normal PTE */
4698 old_pte = ptep_get(vmf->pte);
4699 pte = pte_modify(old_pte, vma->vm_page_prot);
4702 * Detect now whether the PTE could be writable; this information
4703 * is only valid while holding the PT lock.
4705 writable = pte_write(pte);
4706 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4707 can_change_pte_writable(vma, vmf->address, pte))
4710 page = vm_normal_page(vma, vmf->address, pte);
4711 if (!page || is_zone_device_page(page))
4714 /* TODO: handle PTE-mapped THP */
4715 if (PageCompound(page))
4719 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4720 * much anyway since they can be in shared cache state. This misses
4721 * the case where a mapping is writable but the process never writes
4722 * to it but pte_write gets cleared during protection updates and
4723 * pte_dirty has unpredictable behaviour between PTE scan updates,
4724 * background writeback, dirty balancing and application behaviour.
4727 flags |= TNF_NO_GROUP;
4730 * Flag if the page is shared between multiple address spaces. This
4731 * is later used when determining whether to group tasks together
4733 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4734 flags |= TNF_SHARED;
4736 page_nid = page_to_nid(page);
4738 * For memory tiering mode, cpupid of slow memory page is used
4739 * to record page access time. So use default value.
4741 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4742 !node_is_toptier(page_nid))
4743 last_cpupid = (-1 & LAST_CPUPID_MASK);
4745 last_cpupid = page_cpupid_last(page);
4746 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4748 if (target_nid == NUMA_NO_NODE) {
4752 pte_unmap_unlock(vmf->pte, vmf->ptl);
4755 /* Migrate to the requested node */
4756 if (migrate_misplaced_page(page, vma, target_nid)) {
4757 page_nid = target_nid;
4758 flags |= TNF_MIGRATED;
4760 flags |= TNF_MIGRATE_FAIL;
4761 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4762 spin_lock(vmf->ptl);
4763 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4764 pte_unmap_unlock(vmf->pte, vmf->ptl);
4771 if (page_nid != NUMA_NO_NODE)
4772 task_numa_fault(last_cpupid, page_nid, 1, flags);
4776 * Make it present again, depending on how arch implements
4777 * non-accessible ptes, some can allow access by kernel mode.
4779 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4780 pte = pte_modify(old_pte, vma->vm_page_prot);
4781 pte = pte_mkyoung(pte);
4783 pte = pte_mkwrite(pte);
4784 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4785 update_mmu_cache(vma, vmf->address, vmf->pte);
4786 pte_unmap_unlock(vmf->pte, vmf->ptl);
4790 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4792 if (vma_is_anonymous(vmf->vma))
4793 return do_huge_pmd_anonymous_page(vmf);
4794 if (vmf->vma->vm_ops->huge_fault)
4795 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4796 return VM_FAULT_FALLBACK;
4799 /* `inline' is required to avoid gcc 4.1.2 build error */
4800 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4802 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4805 if (vma_is_anonymous(vmf->vma)) {
4806 if (likely(!unshare) &&
4807 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4808 return handle_userfault(vmf, VM_UFFD_WP);
4809 return do_huge_pmd_wp_page(vmf);
4812 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4813 if (vmf->vma->vm_ops->huge_fault) {
4814 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4815 if (!(ret & VM_FAULT_FALLBACK))
4820 /* COW or write-notify handled on pte level: split pmd. */
4821 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4823 return VM_FAULT_FALLBACK;
4826 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4829 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4830 /* No support for anonymous transparent PUD pages yet */
4831 if (vma_is_anonymous(vmf->vma))
4832 return VM_FAULT_FALLBACK;
4833 if (vmf->vma->vm_ops->huge_fault)
4834 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4836 return VM_FAULT_FALLBACK;
4839 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4842 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4845 /* No support for anonymous transparent PUD pages yet */
4846 if (vma_is_anonymous(vmf->vma))
4848 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4849 if (vmf->vma->vm_ops->huge_fault) {
4850 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851 if (!(ret & VM_FAULT_FALLBACK))
4856 /* COW or write-notify not handled on PUD level: split pud.*/
4857 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4858 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4859 return VM_FAULT_FALLBACK;
4863 * These routines also need to handle stuff like marking pages dirty
4864 * and/or accessed for architectures that don't do it in hardware (most
4865 * RISC architectures). The early dirtying is also good on the i386.
4867 * There is also a hook called "update_mmu_cache()" that architectures
4868 * with external mmu caches can use to update those (ie the Sparc or
4869 * PowerPC hashed page tables that act as extended TLBs).
4871 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4872 * concurrent faults).
4874 * The mmap_lock may have been released depending on flags and our return value.
4875 * See filemap_fault() and __folio_lock_or_retry().
4877 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4881 if (unlikely(pmd_none(*vmf->pmd))) {
4883 * Leave __pte_alloc() until later: because vm_ops->fault may
4884 * want to allocate huge page, and if we expose page table
4885 * for an instant, it will be difficult to retract from
4886 * concurrent faults and from rmap lookups.
4889 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4892 * If a huge pmd materialized under us just retry later. Use
4893 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4894 * of pmd_trans_huge() to ensure the pmd didn't become
4895 * pmd_trans_huge under us and then back to pmd_none, as a
4896 * result of MADV_DONTNEED running immediately after a huge pmd
4897 * fault in a different thread of this mm, in turn leading to a
4898 * misleading pmd_trans_huge() retval. All we have to ensure is
4899 * that it is a regular pmd that we can walk with
4900 * pte_offset_map() and we can do that through an atomic read
4901 * in C, which is what pmd_trans_unstable() provides.
4903 if (pmd_devmap_trans_unstable(vmf->pmd))
4906 * A regular pmd is established and it can't morph into a huge
4907 * pmd from under us anymore at this point because we hold the
4908 * mmap_lock read mode and khugepaged takes it in write mode.
4909 * So now it's safe to run pte_offset_map().
4911 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4912 vmf->orig_pte = *vmf->pte;
4913 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4916 * some architectures can have larger ptes than wordsize,
4917 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4918 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4919 * accesses. The code below just needs a consistent view
4920 * for the ifs and we later double check anyway with the
4921 * ptl lock held. So here a barrier will do.
4924 if (pte_none(vmf->orig_pte)) {
4925 pte_unmap(vmf->pte);
4931 if (vma_is_anonymous(vmf->vma))
4932 return do_anonymous_page(vmf);
4934 return do_fault(vmf);
4937 if (!pte_present(vmf->orig_pte))
4938 return do_swap_page(vmf);
4940 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4941 return do_numa_page(vmf);
4943 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4944 spin_lock(vmf->ptl);
4945 entry = vmf->orig_pte;
4946 if (unlikely(!pte_same(*vmf->pte, entry))) {
4947 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4950 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4951 if (!pte_write(entry))
4952 return do_wp_page(vmf);
4953 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4954 entry = pte_mkdirty(entry);
4956 entry = pte_mkyoung(entry);
4957 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4958 vmf->flags & FAULT_FLAG_WRITE)) {
4959 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4961 /* Skip spurious TLB flush for retried page fault */
4962 if (vmf->flags & FAULT_FLAG_TRIED)
4965 * This is needed only for protection faults but the arch code
4966 * is not yet telling us if this is a protection fault or not.
4967 * This still avoids useless tlb flushes for .text page faults
4970 if (vmf->flags & FAULT_FLAG_WRITE)
4971 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4974 pte_unmap_unlock(vmf->pte, vmf->ptl);
4979 * By the time we get here, we already hold the mm semaphore
4981 * The mmap_lock may have been released depending on flags and our
4982 * return value. See filemap_fault() and __folio_lock_or_retry().
4984 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4985 unsigned long address, unsigned int flags)
4987 struct vm_fault vmf = {
4989 .address = address & PAGE_MASK,
4990 .real_address = address,
4992 .pgoff = linear_page_index(vma, address),
4993 .gfp_mask = __get_fault_gfp_mask(vma),
4995 struct mm_struct *mm = vma->vm_mm;
4996 unsigned long vm_flags = vma->vm_flags;
5001 pgd = pgd_offset(mm, address);
5002 p4d = p4d_alloc(mm, pgd, address);
5004 return VM_FAULT_OOM;
5006 vmf.pud = pud_alloc(mm, p4d, address);
5008 return VM_FAULT_OOM;
5010 if (pud_none(*vmf.pud) &&
5011 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5012 ret = create_huge_pud(&vmf);
5013 if (!(ret & VM_FAULT_FALLBACK))
5016 pud_t orig_pud = *vmf.pud;
5019 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5022 * TODO once we support anonymous PUDs: NUMA case and
5023 * FAULT_FLAG_UNSHARE handling.
5025 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5026 ret = wp_huge_pud(&vmf, orig_pud);
5027 if (!(ret & VM_FAULT_FALLBACK))
5030 huge_pud_set_accessed(&vmf, orig_pud);
5036 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5038 return VM_FAULT_OOM;
5040 /* Huge pud page fault raced with pmd_alloc? */
5041 if (pud_trans_unstable(vmf.pud))
5044 if (pmd_none(*vmf.pmd) &&
5045 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5046 ret = create_huge_pmd(&vmf);
5047 if (!(ret & VM_FAULT_FALLBACK))
5050 vmf.orig_pmd = *vmf.pmd;
5053 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5054 VM_BUG_ON(thp_migration_supported() &&
5055 !is_pmd_migration_entry(vmf.orig_pmd));
5056 if (is_pmd_migration_entry(vmf.orig_pmd))
5057 pmd_migration_entry_wait(mm, vmf.pmd);
5060 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5061 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5062 return do_huge_pmd_numa_page(&vmf);
5064 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5065 !pmd_write(vmf.orig_pmd)) {
5066 ret = wp_huge_pmd(&vmf);
5067 if (!(ret & VM_FAULT_FALLBACK))
5070 huge_pmd_set_accessed(&vmf);
5076 return handle_pte_fault(&vmf);
5080 * mm_account_fault - Do page fault accounting
5082 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5083 * of perf event counters, but we'll still do the per-task accounting to
5084 * the task who triggered this page fault.
5085 * @address: the faulted address.
5086 * @flags: the fault flags.
5087 * @ret: the fault retcode.
5089 * This will take care of most of the page fault accounting. Meanwhile, it
5090 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5091 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5092 * still be in per-arch page fault handlers at the entry of page fault.
5094 static inline void mm_account_fault(struct pt_regs *regs,
5095 unsigned long address, unsigned int flags,
5101 * We don't do accounting for some specific faults:
5103 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5104 * includes arch_vma_access_permitted() failing before reaching here.
5105 * So this is not a "this many hardware page faults" counter. We
5106 * should use the hw profiling for that.
5108 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5109 * once they're completed.
5111 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5115 * We define the fault as a major fault when the final successful fault
5116 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5117 * handle it immediately previously).
5119 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5127 * If the fault is done for GUP, regs will be NULL. We only do the
5128 * accounting for the per thread fault counters who triggered the
5129 * fault, and we skip the perf event updates.
5135 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5137 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5140 #ifdef CONFIG_LRU_GEN
5141 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5143 /* the LRU algorithm doesn't apply to sequential or random reads */
5144 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5147 static void lru_gen_exit_fault(void)
5149 current->in_lru_fault = false;
5152 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5156 static void lru_gen_exit_fault(void)
5159 #endif /* CONFIG_LRU_GEN */
5161 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5162 unsigned int *flags)
5164 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5165 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5166 return VM_FAULT_SIGSEGV;
5168 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5169 * just treat it like an ordinary read-fault otherwise.
5171 if (!is_cow_mapping(vma->vm_flags))
5172 *flags &= ~FAULT_FLAG_UNSHARE;
5173 } else if (*flags & FAULT_FLAG_WRITE) {
5174 /* Write faults on read-only mappings are impossible ... */
5175 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5176 return VM_FAULT_SIGSEGV;
5177 /* ... and FOLL_FORCE only applies to COW mappings. */
5178 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5179 !is_cow_mapping(vma->vm_flags)))
5180 return VM_FAULT_SIGSEGV;
5186 * By the time we get here, we already hold the mm semaphore
5188 * The mmap_lock may have been released depending on flags and our
5189 * return value. See filemap_fault() and __folio_lock_or_retry().
5191 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5192 unsigned int flags, struct pt_regs *regs)
5196 __set_current_state(TASK_RUNNING);
5198 count_vm_event(PGFAULT);
5199 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5201 ret = sanitize_fault_flags(vma, &flags);
5205 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5206 flags & FAULT_FLAG_INSTRUCTION,
5207 flags & FAULT_FLAG_REMOTE))
5208 return VM_FAULT_SIGSEGV;
5211 * Enable the memcg OOM handling for faults triggered in user
5212 * space. Kernel faults are handled more gracefully.
5214 if (flags & FAULT_FLAG_USER)
5215 mem_cgroup_enter_user_fault();
5217 lru_gen_enter_fault(vma);
5219 if (unlikely(is_vm_hugetlb_page(vma)))
5220 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5222 ret = __handle_mm_fault(vma, address, flags);
5224 lru_gen_exit_fault();
5226 if (flags & FAULT_FLAG_USER) {
5227 mem_cgroup_exit_user_fault();
5229 * The task may have entered a memcg OOM situation but
5230 * if the allocation error was handled gracefully (no
5231 * VM_FAULT_OOM), there is no need to kill anything.
5232 * Just clean up the OOM state peacefully.
5234 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5235 mem_cgroup_oom_synchronize(false);
5238 mm_account_fault(regs, address, flags, ret);
5242 EXPORT_SYMBOL_GPL(handle_mm_fault);
5244 #ifndef __PAGETABLE_P4D_FOLDED
5246 * Allocate p4d page table.
5247 * We've already handled the fast-path in-line.
5249 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5251 p4d_t *new = p4d_alloc_one(mm, address);
5255 spin_lock(&mm->page_table_lock);
5256 if (pgd_present(*pgd)) { /* Another has populated it */
5259 smp_wmb(); /* See comment in pmd_install() */
5260 pgd_populate(mm, pgd, new);
5262 spin_unlock(&mm->page_table_lock);
5265 #endif /* __PAGETABLE_P4D_FOLDED */
5267 #ifndef __PAGETABLE_PUD_FOLDED
5269 * Allocate page upper directory.
5270 * We've already handled the fast-path in-line.
5272 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5274 pud_t *new = pud_alloc_one(mm, address);
5278 spin_lock(&mm->page_table_lock);
5279 if (!p4d_present(*p4d)) {
5281 smp_wmb(); /* See comment in pmd_install() */
5282 p4d_populate(mm, p4d, new);
5283 } else /* Another has populated it */
5285 spin_unlock(&mm->page_table_lock);
5288 #endif /* __PAGETABLE_PUD_FOLDED */
5290 #ifndef __PAGETABLE_PMD_FOLDED
5292 * Allocate page middle directory.
5293 * We've already handled the fast-path in-line.
5295 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5298 pmd_t *new = pmd_alloc_one(mm, address);
5302 ptl = pud_lock(mm, pud);
5303 if (!pud_present(*pud)) {
5305 smp_wmb(); /* See comment in pmd_install() */
5306 pud_populate(mm, pud, new);
5307 } else { /* Another has populated it */
5313 #endif /* __PAGETABLE_PMD_FOLDED */
5316 * follow_pte - look up PTE at a user virtual address
5317 * @mm: the mm_struct of the target address space
5318 * @address: user virtual address
5319 * @ptepp: location to store found PTE
5320 * @ptlp: location to store the lock for the PTE
5322 * On a successful return, the pointer to the PTE is stored in @ptepp;
5323 * the corresponding lock is taken and its location is stored in @ptlp.
5324 * The contents of the PTE are only stable until @ptlp is released;
5325 * any further use, if any, must be protected against invalidation
5326 * with MMU notifiers.
5328 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5329 * should be taken for read.
5331 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5332 * it is not a good general-purpose API.
5334 * Return: zero on success, -ve otherwise.
5336 int follow_pte(struct mm_struct *mm, unsigned long address,
5337 pte_t **ptepp, spinlock_t **ptlp)
5345 pgd = pgd_offset(mm, address);
5346 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5349 p4d = p4d_offset(pgd, address);
5350 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5353 pud = pud_offset(p4d, address);
5354 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5357 pmd = pmd_offset(pud, address);
5358 VM_BUG_ON(pmd_trans_huge(*pmd));
5360 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5363 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5364 if (!pte_present(*ptep))
5369 pte_unmap_unlock(ptep, *ptlp);
5373 EXPORT_SYMBOL_GPL(follow_pte);
5376 * follow_pfn - look up PFN at a user virtual address
5377 * @vma: memory mapping
5378 * @address: user virtual address
5379 * @pfn: location to store found PFN
5381 * Only IO mappings and raw PFN mappings are allowed.
5383 * This function does not allow the caller to read the permissions
5384 * of the PTE. Do not use it.
5386 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5388 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5395 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5398 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5401 *pfn = pte_pfn(*ptep);
5402 pte_unmap_unlock(ptep, ptl);
5405 EXPORT_SYMBOL(follow_pfn);
5407 #ifdef CONFIG_HAVE_IOREMAP_PROT
5408 int follow_phys(struct vm_area_struct *vma,
5409 unsigned long address, unsigned int flags,
5410 unsigned long *prot, resource_size_t *phys)
5416 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5419 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5423 if ((flags & FOLL_WRITE) && !pte_write(pte))
5426 *prot = pgprot_val(pte_pgprot(pte));
5427 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5431 pte_unmap_unlock(ptep, ptl);
5437 * generic_access_phys - generic implementation for iomem mmap access
5438 * @vma: the vma to access
5439 * @addr: userspace address, not relative offset within @vma
5440 * @buf: buffer to read/write
5441 * @len: length of transfer
5442 * @write: set to FOLL_WRITE when writing, otherwise reading
5444 * This is a generic implementation for &vm_operations_struct.access for an
5445 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5448 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5449 void *buf, int len, int write)
5451 resource_size_t phys_addr;
5452 unsigned long prot = 0;
5453 void __iomem *maddr;
5456 int offset = offset_in_page(addr);
5459 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5463 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5466 pte_unmap_unlock(ptep, ptl);
5468 prot = pgprot_val(pte_pgprot(pte));
5469 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5471 if ((write & FOLL_WRITE) && !pte_write(pte))
5474 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5478 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5481 if (!pte_same(pte, *ptep)) {
5482 pte_unmap_unlock(ptep, ptl);
5489 memcpy_toio(maddr + offset, buf, len);
5491 memcpy_fromio(buf, maddr + offset, len);
5493 pte_unmap_unlock(ptep, ptl);
5499 EXPORT_SYMBOL_GPL(generic_access_phys);
5503 * Access another process' address space as given in mm.
5505 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5506 int len, unsigned int gup_flags)
5508 struct vm_area_struct *vma;
5509 void *old_buf = buf;
5510 int write = gup_flags & FOLL_WRITE;
5512 if (mmap_read_lock_killable(mm))
5515 /* ignore errors, just check how much was successfully transferred */
5517 int bytes, ret, offset;
5519 struct page *page = NULL;
5521 ret = get_user_pages_remote(mm, addr, 1,
5522 gup_flags, &page, &vma, NULL);
5524 #ifndef CONFIG_HAVE_IOREMAP_PROT
5528 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5529 * we can access using slightly different code.
5531 vma = vma_lookup(mm, addr);
5534 if (vma->vm_ops && vma->vm_ops->access)
5535 ret = vma->vm_ops->access(vma, addr, buf,
5543 offset = addr & (PAGE_SIZE-1);
5544 if (bytes > PAGE_SIZE-offset)
5545 bytes = PAGE_SIZE-offset;
5549 copy_to_user_page(vma, page, addr,
5550 maddr + offset, buf, bytes);
5551 set_page_dirty_lock(page);
5553 copy_from_user_page(vma, page, addr,
5554 buf, maddr + offset, bytes);
5563 mmap_read_unlock(mm);
5565 return buf - old_buf;
5569 * access_remote_vm - access another process' address space
5570 * @mm: the mm_struct of the target address space
5571 * @addr: start address to access
5572 * @buf: source or destination buffer
5573 * @len: number of bytes to transfer
5574 * @gup_flags: flags modifying lookup behaviour
5576 * The caller must hold a reference on @mm.
5578 * Return: number of bytes copied from source to destination.
5580 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5581 void *buf, int len, unsigned int gup_flags)
5583 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5587 * Access another process' address space.
5588 * Source/target buffer must be kernel space,
5589 * Do not walk the page table directly, use get_user_pages
5591 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5592 void *buf, int len, unsigned int gup_flags)
5594 struct mm_struct *mm;
5597 mm = get_task_mm(tsk);
5601 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5607 EXPORT_SYMBOL_GPL(access_process_vm);
5610 * Print the name of a VMA.
5612 void print_vma_addr(char *prefix, unsigned long ip)
5614 struct mm_struct *mm = current->mm;
5615 struct vm_area_struct *vma;
5618 * we might be running from an atomic context so we cannot sleep
5620 if (!mmap_read_trylock(mm))
5623 vma = find_vma(mm, ip);
5624 if (vma && vma->vm_file) {
5625 struct file *f = vma->vm_file;
5626 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5630 p = file_path(f, buf, PAGE_SIZE);
5633 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5635 vma->vm_end - vma->vm_start);
5636 free_page((unsigned long)buf);
5639 mmap_read_unlock(mm);
5642 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5643 void __might_fault(const char *file, int line)
5645 if (pagefault_disabled())
5647 __might_sleep(file, line);
5648 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5650 might_lock_read(¤t->mm->mmap_lock);
5653 EXPORT_SYMBOL(__might_fault);
5656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5658 * Process all subpages of the specified huge page with the specified
5659 * operation. The target subpage will be processed last to keep its
5662 static inline void process_huge_page(
5663 unsigned long addr_hint, unsigned int pages_per_huge_page,
5664 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5668 unsigned long addr = addr_hint &
5669 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5671 /* Process target subpage last to keep its cache lines hot */
5673 n = (addr_hint - addr) / PAGE_SIZE;
5674 if (2 * n <= pages_per_huge_page) {
5675 /* If target subpage in first half of huge page */
5678 /* Process subpages at the end of huge page */
5679 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5681 process_subpage(addr + i * PAGE_SIZE, i, arg);
5684 /* If target subpage in second half of huge page */
5685 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5686 l = pages_per_huge_page - n;
5687 /* Process subpages at the begin of huge page */
5688 for (i = 0; i < base; i++) {
5690 process_subpage(addr + i * PAGE_SIZE, i, arg);
5694 * Process remaining subpages in left-right-left-right pattern
5695 * towards the target subpage
5697 for (i = 0; i < l; i++) {
5698 int left_idx = base + i;
5699 int right_idx = base + 2 * l - 1 - i;
5702 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5704 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5708 static void clear_gigantic_page(struct page *page,
5710 unsigned int pages_per_huge_page)
5716 for (i = 0; i < pages_per_huge_page; i++) {
5717 p = nth_page(page, i);
5719 clear_user_highpage(p, addr + i * PAGE_SIZE);
5723 static void clear_subpage(unsigned long addr, int idx, void *arg)
5725 struct page *page = arg;
5727 clear_user_highpage(page + idx, addr);
5730 void clear_huge_page(struct page *page,
5731 unsigned long addr_hint, unsigned int pages_per_huge_page)
5733 unsigned long addr = addr_hint &
5734 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5736 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5737 clear_gigantic_page(page, addr, pages_per_huge_page);
5741 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5744 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5746 struct vm_area_struct *vma,
5747 unsigned int pages_per_huge_page)
5750 struct page *dst_base = dst;
5751 struct page *src_base = src;
5753 for (i = 0; i < pages_per_huge_page; i++) {
5754 dst = nth_page(dst_base, i);
5755 src = nth_page(src_base, i);
5758 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5762 struct copy_subpage_arg {
5765 struct vm_area_struct *vma;
5768 static void copy_subpage(unsigned long addr, int idx, void *arg)
5770 struct copy_subpage_arg *copy_arg = arg;
5772 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5773 addr, copy_arg->vma);
5776 void copy_user_huge_page(struct page *dst, struct page *src,
5777 unsigned long addr_hint, struct vm_area_struct *vma,
5778 unsigned int pages_per_huge_page)
5780 unsigned long addr = addr_hint &
5781 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5782 struct copy_subpage_arg arg = {
5788 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5789 copy_user_gigantic_page(dst, src, addr, vma,
5790 pages_per_huge_page);
5794 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5797 long copy_huge_page_from_user(struct page *dst_page,
5798 const void __user *usr_src,
5799 unsigned int pages_per_huge_page,
5800 bool allow_pagefault)
5803 unsigned long i, rc = 0;
5804 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5805 struct page *subpage;
5807 for (i = 0; i < pages_per_huge_page; i++) {
5808 subpage = nth_page(dst_page, i);
5809 if (allow_pagefault)
5810 page_kaddr = kmap(subpage);
5812 page_kaddr = kmap_atomic(subpage);
5813 rc = copy_from_user(page_kaddr,
5814 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5815 if (allow_pagefault)
5818 kunmap_atomic(page_kaddr);
5820 ret_val -= (PAGE_SIZE - rc);
5824 flush_dcache_page(subpage);
5830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5832 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5834 static struct kmem_cache *page_ptl_cachep;
5836 void __init ptlock_cache_init(void)
5838 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5842 bool ptlock_alloc(struct page *page)
5846 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5853 void ptlock_free(struct page *page)
5855 kmem_cache_free(page_ptl_cachep, page->ptl);