]> Git Repo - linux.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: [email protected])
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99         " enable detection of firmware fault and halt firmware - (default=0)");
100
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103
104 /**
105  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
106  *
107  */
108 static int
109 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
110 {
111         int ret = param_set_int(val, kp);
112         struct MPT3SAS_ADAPTER *ioc;
113
114         if (ret)
115                 return ret;
116
117         /* global ioc spinlock to protect controller list on list operations */
118         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
119         spin_lock(&gioc_lock);
120         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
121                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
122         spin_unlock(&gioc_lock);
123         return 0;
124 }
125 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
126         param_get_int, &mpt3sas_fwfault_debug, 0644);
127
128 /**
129  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
130  *                                in BAR0 space.
131  *
132  * @ioc: per adapter object
133  * @reply: reply message frame(lower 32bit addr)
134  * @index: System request message index.
135  *
136  * @Returns - Nothing
137  */
138 static void
139 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
140                 u32 index)
141 {
142         /*
143          * 256 is offset within sys register.
144          * 256 offset MPI frame starts. Max MPI frame supported is 32.
145          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
146          */
147         u16 cmd_credit = ioc->facts.RequestCredit + 1;
148         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
149                         MPI_FRAME_START_OFFSET +
150                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
151
152         writel(reply, reply_free_iomem);
153 }
154
155 /**
156  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
157  *                              to system/BAR0 region.
158  *
159  * @dst_iomem: Pointer to the destinaltion location in BAR0 space.
160  * @src: Pointer to the Source data.
161  * @size: Size of data to be copied.
162  */
163 static void
164 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
165 {
166         int i;
167         u32 *src_virt_mem = (u32 *)src;
168
169         for (i = 0; i < size/4; i++)
170                 writel((u32)src_virt_mem[i],
171                                 (void __iomem *)dst_iomem + (i * 4));
172 }
173
174 /**
175  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
176  *
177  * @dst_iomem: Pointer to the destination location in BAR0 space.
178  * @src: Pointer to the Source data.
179  * @size: Size of data to be copied.
180  */
181 static void
182 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
183 {
184         int i;
185         u32 *src_virt_mem = (u32 *)(src);
186
187         for (i = 0; i < size/4; i++)
188                 writel((u32)src_virt_mem[i],
189                         (void __iomem *)dst_iomem + (i * 4));
190 }
191
192 /**
193  * _base_get_chain - Calculates and Returns virtual chain address
194  *                       for the provided smid in BAR0 space.
195  *
196  * @ioc: per adapter object
197  * @smid: system request message index
198  * @sge_chain_count: Scatter gather chain count.
199  *
200  * @Return: chain address.
201  */
202 static inline void __iomem*
203 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
204                 u8 sge_chain_count)
205 {
206         void __iomem *base_chain, *chain_virt;
207         u16 cmd_credit = ioc->facts.RequestCredit + 1;
208
209         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
210                 (cmd_credit * ioc->request_sz) +
211                 REPLY_FREE_POOL_SIZE;
212         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
213                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
214         return chain_virt;
215 }
216
217 /**
218  * _base_get_chain_phys - Calculates and Returns physical address
219  *                      in BAR0 for scatter gather chains, for
220  *                      the provided smid.
221  *
222  * @ioc: per adapter object
223  * @smid: system request message index
224  * @sge_chain_count: Scatter gather chain count.
225  *
226  * @Return - Physical chain address.
227  */
228 static inline phys_addr_t
229 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
230                 u8 sge_chain_count)
231 {
232         phys_addr_t base_chain_phys, chain_phys;
233         u16 cmd_credit = ioc->facts.RequestCredit + 1;
234
235         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
236                 (cmd_credit * ioc->request_sz) +
237                 REPLY_FREE_POOL_SIZE;
238         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
239                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
240         return chain_phys;
241 }
242
243 /**
244  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
245  *                      buffer address for the provided smid.
246  *                      (Each smid can have 64K starts from 17024)
247  *
248  * @ioc: per adapter object
249  * @smid: system request message index
250  *
251  * @Returns - Pointer to buffer location in BAR0.
252  */
253
254 static void __iomem *
255 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
256 {
257         u16 cmd_credit = ioc->facts.RequestCredit + 1;
258         // Added extra 1 to reach end of chain.
259         void __iomem *chain_end = _base_get_chain(ioc,
260                         cmd_credit + 1,
261                         ioc->facts.MaxChainDepth);
262         return chain_end + (smid * 64 * 1024);
263 }
264
265 /**
266  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
267  *              Host buffer Physical address for the provided smid.
268  *              (Each smid can have 64K starts from 17024)
269  *
270  * @ioc: per adapter object
271  * @smid: system request message index
272  *
273  * @Returns - Pointer to buffer location in BAR0.
274  */
275 static phys_addr_t
276 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
277 {
278         u16 cmd_credit = ioc->facts.RequestCredit + 1;
279         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
280                         cmd_credit + 1,
281                         ioc->facts.MaxChainDepth);
282         return chain_end_phys + (smid * 64 * 1024);
283 }
284
285 /**
286  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
287  *                      lookup list and Provides chain_buffer
288  *                      address for the matching dma address.
289  *                      (Each smid can have 64K starts from 17024)
290  *
291  * @ioc: per adapter object
292  * @chain_buffer_dma: Chain buffer dma address.
293  *
294  * @Returns - Pointer to chain buffer. Or Null on Failure.
295  */
296 static void *
297 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
298                 dma_addr_t chain_buffer_dma)
299 {
300         u16 index, j;
301         struct chain_tracker *ct;
302
303         for (index = 0; index < ioc->scsiio_depth; index++) {
304                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
305                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
306                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
307                                 return ct->chain_buffer;
308                 }
309         }
310         pr_info(MPT3SAS_FMT
311             "Provided chain_buffer_dma address is not in the lookup list\n",
312             ioc->name);
313         return NULL;
314 }
315
316 /**
317  * _clone_sg_entries -  MPI EP's scsiio and config requests
318  *                      are handled here. Base function for
319  *                      double buffering, before submitting
320  *                      the requests.
321  *
322  * @ioc: per adapter object.
323  * @mpi_request: mf request pointer.
324  * @smid: system request message index.
325  *
326  * @Returns: Nothing.
327  */
328 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
329                 void *mpi_request, u16 smid)
330 {
331         Mpi2SGESimple32_t *sgel, *sgel_next;
332         u32  sgl_flags, sge_chain_count = 0;
333         bool is_write = 0;
334         u16 i = 0;
335         void __iomem *buffer_iomem;
336         phys_addr_t buffer_iomem_phys;
337         void __iomem *buff_ptr;
338         phys_addr_t buff_ptr_phys;
339         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
340         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
341         phys_addr_t dst_addr_phys;
342         MPI2RequestHeader_t *request_hdr;
343         struct scsi_cmnd *scmd;
344         struct scatterlist *sg_scmd = NULL;
345         int is_scsiio_req = 0;
346
347         request_hdr = (MPI2RequestHeader_t *) mpi_request;
348
349         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
350                 Mpi25SCSIIORequest_t *scsiio_request =
351                         (Mpi25SCSIIORequest_t *)mpi_request;
352                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
353                 is_scsiio_req = 1;
354         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
355                 Mpi2ConfigRequest_t  *config_req =
356                         (Mpi2ConfigRequest_t *)mpi_request;
357                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
358         } else
359                 return;
360
361         /* From smid we can get scsi_cmd, once we have sg_scmd,
362          * we just need to get sg_virt and sg_next to get virual
363          * address associated with sgel->Address.
364          */
365
366         if (is_scsiio_req) {
367                 /* Get scsi_cmd using smid */
368                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
369                 if (scmd == NULL) {
370                         pr_err(MPT3SAS_FMT "scmd is NULL\n", ioc->name);
371                         return;
372                 }
373
374                 /* Get sg_scmd from scmd provided */
375                 sg_scmd = scsi_sglist(scmd);
376         }
377
378         /*
379          * 0 - 255      System register
380          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
381          * 4352 - 4864  Reply_free pool (512 byte is reserved
382          *              considering maxCredit 32. Reply need extra
383          *              room, for mCPU case kept four times of
384          *              maxCredit).
385          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
386          *              128 byte size = 12288)
387          * 17152 - x    Host buffer mapped with smid.
388          *              (Each smid can have 64K Max IO.)
389          * BAR0+Last 1K MSIX Addr and Data
390          * Total size in use 2113664 bytes of 4MB BAR0
391          */
392
393         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
394         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
395
396         buff_ptr = buffer_iomem;
397         buff_ptr_phys = buffer_iomem_phys;
398         WARN_ON(buff_ptr_phys > U32_MAX);
399
400         if (le32_to_cpu(sgel->FlagsLength) &
401                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
402                 is_write = 1;
403
404         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
405
406                 sgl_flags =
407                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
408
409                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
410                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
411                         /*
412                          * Helper function which on passing
413                          * chain_buffer_dma returns chain_buffer. Get
414                          * the virtual address for sgel->Address
415                          */
416                         sgel_next =
417                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
418                                                 le32_to_cpu(sgel->Address));
419                         if (sgel_next == NULL)
420                                 return;
421                         /*
422                          * This is coping 128 byte chain
423                          * frame (not a host buffer)
424                          */
425                         dst_chain_addr[sge_chain_count] =
426                                 _base_get_chain(ioc,
427                                         smid, sge_chain_count);
428                         src_chain_addr[sge_chain_count] =
429                                                 (void *) sgel_next;
430                         dst_addr_phys = _base_get_chain_phys(ioc,
431                                                 smid, sge_chain_count);
432                         WARN_ON(dst_addr_phys > U32_MAX);
433                         sgel->Address =
434                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
435                         sgel = sgel_next;
436                         sge_chain_count++;
437                         break;
438                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
439                         if (is_write) {
440                                 if (is_scsiio_req) {
441                                         _base_clone_to_sys_mem(buff_ptr,
442                                             sg_virt(sg_scmd),
443                                             (le32_to_cpu(sgel->FlagsLength) &
444                                             0x00ffffff));
445                                         /*
446                                          * FIXME: this relies on a a zero
447                                          * PCI mem_offset.
448                                          */
449                                         sgel->Address =
450                                             cpu_to_le32((u32)buff_ptr_phys);
451                                 } else {
452                                         _base_clone_to_sys_mem(buff_ptr,
453                                             ioc->config_vaddr,
454                                             (le32_to_cpu(sgel->FlagsLength) &
455                                             0x00ffffff));
456                                         sgel->Address =
457                                             cpu_to_le32((u32)buff_ptr_phys);
458                                 }
459                         }
460                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
461                             0x00ffffff);
462                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
463                             0x00ffffff);
464                         if ((le32_to_cpu(sgel->FlagsLength) &
465                             (MPI2_SGE_FLAGS_END_OF_BUFFER
466                                         << MPI2_SGE_FLAGS_SHIFT)))
467                                 goto eob_clone_chain;
468                         else {
469                                 /*
470                                  * Every single element in MPT will have
471                                  * associated sg_next. Better to sanity that
472                                  * sg_next is not NULL, but it will be a bug
473                                  * if it is null.
474                                  */
475                                 if (is_scsiio_req) {
476                                         sg_scmd = sg_next(sg_scmd);
477                                         if (sg_scmd)
478                                                 sgel++;
479                                         else
480                                                 goto eob_clone_chain;
481                                 }
482                         }
483                         break;
484                 }
485         }
486
487 eob_clone_chain:
488         for (i = 0; i < sge_chain_count; i++) {
489                 if (is_scsiio_req)
490                         _base_clone_to_sys_mem(dst_chain_addr[i],
491                                 src_chain_addr[i], ioc->request_sz);
492         }
493 }
494
495 /**
496  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
497  * @arg: input argument, used to derive ioc
498  *
499  * Return 0 if controller is removed from pci subsystem.
500  * Return -1 for other case.
501  */
502 static int mpt3sas_remove_dead_ioc_func(void *arg)
503 {
504         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
505         struct pci_dev *pdev;
506
507         if ((ioc == NULL))
508                 return -1;
509
510         pdev = ioc->pdev;
511         if ((pdev == NULL))
512                 return -1;
513         pci_stop_and_remove_bus_device_locked(pdev);
514         return 0;
515 }
516
517 /**
518  * _base_fault_reset_work - workq handling ioc fault conditions
519  * @work: input argument, used to derive ioc
520  * Context: sleep.
521  *
522  * Return nothing.
523  */
524 static void
525 _base_fault_reset_work(struct work_struct *work)
526 {
527         struct MPT3SAS_ADAPTER *ioc =
528             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
529         unsigned long    flags;
530         u32 doorbell;
531         int rc;
532         struct task_struct *p;
533
534
535         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
536         if (ioc->shost_recovery || ioc->pci_error_recovery)
537                 goto rearm_timer;
538         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
539
540         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
541         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
542                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
543                     ioc->name);
544
545                 /* It may be possible that EEH recovery can resolve some of
546                  * pci bus failure issues rather removing the dead ioc function
547                  * by considering controller is in a non-operational state. So
548                  * here priority is given to the EEH recovery. If it doesn't
549                  * not resolve this issue, mpt3sas driver will consider this
550                  * controller to non-operational state and remove the dead ioc
551                  * function.
552                  */
553                 if (ioc->non_operational_loop++ < 5) {
554                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
555                                                          flags);
556                         goto rearm_timer;
557                 }
558
559                 /*
560                  * Call _scsih_flush_pending_cmds callback so that we flush all
561                  * pending commands back to OS. This call is required to aovid
562                  * deadlock at block layer. Dead IOC will fail to do diag reset,
563                  * and this call is safe since dead ioc will never return any
564                  * command back from HW.
565                  */
566                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
567                 /*
568                  * Set remove_host flag early since kernel thread will
569                  * take some time to execute.
570                  */
571                 ioc->remove_host = 1;
572                 /*Remove the Dead Host */
573                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
574                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
575                 if (IS_ERR(p))
576                         pr_err(MPT3SAS_FMT
577                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
578                         ioc->name, __func__);
579                 else
580                         pr_err(MPT3SAS_FMT
581                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
582                         ioc->name, __func__);
583                 return; /* don't rearm timer */
584         }
585
586         ioc->non_operational_loop = 0;
587
588         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
589                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
590                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
591                     __func__, (rc == 0) ? "success" : "failed");
592                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
593                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
594                         mpt3sas_base_fault_info(ioc, doorbell &
595                             MPI2_DOORBELL_DATA_MASK);
596                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
597                     MPI2_IOC_STATE_OPERATIONAL)
598                         return; /* don't rearm timer */
599         }
600
601         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
602  rearm_timer:
603         if (ioc->fault_reset_work_q)
604                 queue_delayed_work(ioc->fault_reset_work_q,
605                     &ioc->fault_reset_work,
606                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
607         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
608 }
609
610 /**
611  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
612  * @ioc: per adapter object
613  * Context: sleep.
614  *
615  * Return nothing.
616  */
617 void
618 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
619 {
620         unsigned long    flags;
621
622         if (ioc->fault_reset_work_q)
623                 return;
624
625         /* initialize fault polling */
626
627         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
628         snprintf(ioc->fault_reset_work_q_name,
629             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
630             ioc->driver_name, ioc->id);
631         ioc->fault_reset_work_q =
632                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
633         if (!ioc->fault_reset_work_q) {
634                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
635                     ioc->name, __func__, __LINE__);
636                         return;
637         }
638         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
639         if (ioc->fault_reset_work_q)
640                 queue_delayed_work(ioc->fault_reset_work_q,
641                     &ioc->fault_reset_work,
642                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
643         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
644 }
645
646 /**
647  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
648  * @ioc: per adapter object
649  * Context: sleep.
650  *
651  * Return nothing.
652  */
653 void
654 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
655 {
656         unsigned long flags;
657         struct workqueue_struct *wq;
658
659         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
660         wq = ioc->fault_reset_work_q;
661         ioc->fault_reset_work_q = NULL;
662         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
663         if (wq) {
664                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
665                         flush_workqueue(wq);
666                 destroy_workqueue(wq);
667         }
668 }
669
670 /**
671  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
672  * @ioc: per adapter object
673  * @fault_code: fault code
674  *
675  * Return nothing.
676  */
677 void
678 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
679 {
680         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
681             ioc->name, fault_code);
682 }
683
684 /**
685  * mpt3sas_halt_firmware - halt's mpt controller firmware
686  * @ioc: per adapter object
687  *
688  * For debugging timeout related issues.  Writing 0xCOFFEE00
689  * to the doorbell register will halt controller firmware. With
690  * the purpose to stop both driver and firmware, the enduser can
691  * obtain a ring buffer from controller UART.
692  */
693 void
694 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
695 {
696         u32 doorbell;
697
698         if (!ioc->fwfault_debug)
699                 return;
700
701         dump_stack();
702
703         doorbell = readl(&ioc->chip->Doorbell);
704         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
705                 mpt3sas_base_fault_info(ioc , doorbell);
706         else {
707                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
708                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
709                         ioc->name);
710         }
711
712         if (ioc->fwfault_debug == 2)
713                 for (;;)
714                         ;
715         else
716                 panic("panic in %s\n", __func__);
717 }
718
719 /**
720  * _base_sas_ioc_info - verbose translation of the ioc status
721  * @ioc: per adapter object
722  * @mpi_reply: reply mf payload returned from firmware
723  * @request_hdr: request mf
724  *
725  * Return nothing.
726  */
727 static void
728 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
729         MPI2RequestHeader_t *request_hdr)
730 {
731         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
732             MPI2_IOCSTATUS_MASK;
733         char *desc = NULL;
734         u16 frame_sz;
735         char *func_str = NULL;
736
737         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
738         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
739             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
740             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
741                 return;
742
743         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
744                 return;
745
746         switch (ioc_status) {
747
748 /****************************************************************************
749 *  Common IOCStatus values for all replies
750 ****************************************************************************/
751
752         case MPI2_IOCSTATUS_INVALID_FUNCTION:
753                 desc = "invalid function";
754                 break;
755         case MPI2_IOCSTATUS_BUSY:
756                 desc = "busy";
757                 break;
758         case MPI2_IOCSTATUS_INVALID_SGL:
759                 desc = "invalid sgl";
760                 break;
761         case MPI2_IOCSTATUS_INTERNAL_ERROR:
762                 desc = "internal error";
763                 break;
764         case MPI2_IOCSTATUS_INVALID_VPID:
765                 desc = "invalid vpid";
766                 break;
767         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
768                 desc = "insufficient resources";
769                 break;
770         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
771                 desc = "insufficient power";
772                 break;
773         case MPI2_IOCSTATUS_INVALID_FIELD:
774                 desc = "invalid field";
775                 break;
776         case MPI2_IOCSTATUS_INVALID_STATE:
777                 desc = "invalid state";
778                 break;
779         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
780                 desc = "op state not supported";
781                 break;
782
783 /****************************************************************************
784 *  Config IOCStatus values
785 ****************************************************************************/
786
787         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
788                 desc = "config invalid action";
789                 break;
790         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
791                 desc = "config invalid type";
792                 break;
793         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
794                 desc = "config invalid page";
795                 break;
796         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
797                 desc = "config invalid data";
798                 break;
799         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
800                 desc = "config no defaults";
801                 break;
802         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
803                 desc = "config cant commit";
804                 break;
805
806 /****************************************************************************
807 *  SCSI IO Reply
808 ****************************************************************************/
809
810         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
811         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
812         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
813         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
814         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
815         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
816         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
817         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
818         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
819         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
820         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
821         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
822                 break;
823
824 /****************************************************************************
825 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
826 ****************************************************************************/
827
828         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
829                 desc = "eedp guard error";
830                 break;
831         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
832                 desc = "eedp ref tag error";
833                 break;
834         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
835                 desc = "eedp app tag error";
836                 break;
837
838 /****************************************************************************
839 *  SCSI Target values
840 ****************************************************************************/
841
842         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
843                 desc = "target invalid io index";
844                 break;
845         case MPI2_IOCSTATUS_TARGET_ABORTED:
846                 desc = "target aborted";
847                 break;
848         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
849                 desc = "target no conn retryable";
850                 break;
851         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
852                 desc = "target no connection";
853                 break;
854         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
855                 desc = "target xfer count mismatch";
856                 break;
857         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
858                 desc = "target data offset error";
859                 break;
860         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
861                 desc = "target too much write data";
862                 break;
863         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
864                 desc = "target iu too short";
865                 break;
866         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
867                 desc = "target ack nak timeout";
868                 break;
869         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
870                 desc = "target nak received";
871                 break;
872
873 /****************************************************************************
874 *  Serial Attached SCSI values
875 ****************************************************************************/
876
877         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
878                 desc = "smp request failed";
879                 break;
880         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
881                 desc = "smp data overrun";
882                 break;
883
884 /****************************************************************************
885 *  Diagnostic Buffer Post / Diagnostic Release values
886 ****************************************************************************/
887
888         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
889                 desc = "diagnostic released";
890                 break;
891         default:
892                 break;
893         }
894
895         if (!desc)
896                 return;
897
898         switch (request_hdr->Function) {
899         case MPI2_FUNCTION_CONFIG:
900                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
901                 func_str = "config_page";
902                 break;
903         case MPI2_FUNCTION_SCSI_TASK_MGMT:
904                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
905                 func_str = "task_mgmt";
906                 break;
907         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
908                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
909                 func_str = "sas_iounit_ctl";
910                 break;
911         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
912                 frame_sz = sizeof(Mpi2SepRequest_t);
913                 func_str = "enclosure";
914                 break;
915         case MPI2_FUNCTION_IOC_INIT:
916                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
917                 func_str = "ioc_init";
918                 break;
919         case MPI2_FUNCTION_PORT_ENABLE:
920                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
921                 func_str = "port_enable";
922                 break;
923         case MPI2_FUNCTION_SMP_PASSTHROUGH:
924                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
925                 func_str = "smp_passthru";
926                 break;
927         case MPI2_FUNCTION_NVME_ENCAPSULATED:
928                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
929                     ioc->sge_size;
930                 func_str = "nvme_encapsulated";
931                 break;
932         default:
933                 frame_sz = 32;
934                 func_str = "unknown";
935                 break;
936         }
937
938         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
939                 ioc->name, desc, ioc_status, request_hdr, func_str);
940
941         _debug_dump_mf(request_hdr, frame_sz/4);
942 }
943
944 /**
945  * _base_display_event_data - verbose translation of firmware asyn events
946  * @ioc: per adapter object
947  * @mpi_reply: reply mf payload returned from firmware
948  *
949  * Return nothing.
950  */
951 static void
952 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
953         Mpi2EventNotificationReply_t *mpi_reply)
954 {
955         char *desc = NULL;
956         u16 event;
957
958         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
959                 return;
960
961         event = le16_to_cpu(mpi_reply->Event);
962
963         switch (event) {
964         case MPI2_EVENT_LOG_DATA:
965                 desc = "Log Data";
966                 break;
967         case MPI2_EVENT_STATE_CHANGE:
968                 desc = "Status Change";
969                 break;
970         case MPI2_EVENT_HARD_RESET_RECEIVED:
971                 desc = "Hard Reset Received";
972                 break;
973         case MPI2_EVENT_EVENT_CHANGE:
974                 desc = "Event Change";
975                 break;
976         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
977                 desc = "Device Status Change";
978                 break;
979         case MPI2_EVENT_IR_OPERATION_STATUS:
980                 if (!ioc->hide_ir_msg)
981                         desc = "IR Operation Status";
982                 break;
983         case MPI2_EVENT_SAS_DISCOVERY:
984         {
985                 Mpi2EventDataSasDiscovery_t *event_data =
986                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
987                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
988                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
989                     "start" : "stop");
990                 if (event_data->DiscoveryStatus)
991                         pr_cont(" discovery_status(0x%08x)",
992                             le32_to_cpu(event_data->DiscoveryStatus));
993                 pr_cont("\n");
994                 return;
995         }
996         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
997                 desc = "SAS Broadcast Primitive";
998                 break;
999         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1000                 desc = "SAS Init Device Status Change";
1001                 break;
1002         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1003                 desc = "SAS Init Table Overflow";
1004                 break;
1005         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1006                 desc = "SAS Topology Change List";
1007                 break;
1008         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1009                 desc = "SAS Enclosure Device Status Change";
1010                 break;
1011         case MPI2_EVENT_IR_VOLUME:
1012                 if (!ioc->hide_ir_msg)
1013                         desc = "IR Volume";
1014                 break;
1015         case MPI2_EVENT_IR_PHYSICAL_DISK:
1016                 if (!ioc->hide_ir_msg)
1017                         desc = "IR Physical Disk";
1018                 break;
1019         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1020                 if (!ioc->hide_ir_msg)
1021                         desc = "IR Configuration Change List";
1022                 break;
1023         case MPI2_EVENT_LOG_ENTRY_ADDED:
1024                 if (!ioc->hide_ir_msg)
1025                         desc = "Log Entry Added";
1026                 break;
1027         case MPI2_EVENT_TEMP_THRESHOLD:
1028                 desc = "Temperature Threshold";
1029                 break;
1030         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1031                 desc = "Cable Event";
1032                 break;
1033         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1034                 desc = "SAS Device Discovery Error";
1035                 break;
1036         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1037                 desc = "PCIE Device Status Change";
1038                 break;
1039         case MPI2_EVENT_PCIE_ENUMERATION:
1040         {
1041                 Mpi26EventDataPCIeEnumeration_t *event_data =
1042                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1043                 pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
1044                            (event_data->ReasonCode ==
1045                                 MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
1046                                 "start" : "stop");
1047                 if (event_data->EnumerationStatus)
1048                         pr_info("enumeration_status(0x%08x)",
1049                                    le32_to_cpu(event_data->EnumerationStatus));
1050                 pr_info("\n");
1051                 return;
1052         }
1053         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1054                 desc = "PCIE Topology Change List";
1055                 break;
1056         }
1057
1058         if (!desc)
1059                 return;
1060
1061         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
1062 }
1063
1064 /**
1065  * _base_sas_log_info - verbose translation of firmware log info
1066  * @ioc: per adapter object
1067  * @log_info: log info
1068  *
1069  * Return nothing.
1070  */
1071 static void
1072 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1073 {
1074         union loginfo_type {
1075                 u32     loginfo;
1076                 struct {
1077                         u32     subcode:16;
1078                         u32     code:8;
1079                         u32     originator:4;
1080                         u32     bus_type:4;
1081                 } dw;
1082         };
1083         union loginfo_type sas_loginfo;
1084         char *originator_str = NULL;
1085
1086         sas_loginfo.loginfo = log_info;
1087         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1088                 return;
1089
1090         /* each nexus loss loginfo */
1091         if (log_info == 0x31170000)
1092                 return;
1093
1094         /* eat the loginfos associated with task aborts */
1095         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1096             0x31140000 || log_info == 0x31130000))
1097                 return;
1098
1099         switch (sas_loginfo.dw.originator) {
1100         case 0:
1101                 originator_str = "IOP";
1102                 break;
1103         case 1:
1104                 originator_str = "PL";
1105                 break;
1106         case 2:
1107                 if (!ioc->hide_ir_msg)
1108                         originator_str = "IR";
1109                 else
1110                         originator_str = "WarpDrive";
1111                 break;
1112         }
1113
1114         pr_warn(MPT3SAS_FMT
1115                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1116                 ioc->name, log_info,
1117              originator_str, sas_loginfo.dw.code,
1118              sas_loginfo.dw.subcode);
1119 }
1120
1121 /**
1122  * _base_display_reply_info -
1123  * @ioc: per adapter object
1124  * @smid: system request message index
1125  * @msix_index: MSIX table index supplied by the OS
1126  * @reply: reply message frame(lower 32bit addr)
1127  *
1128  * Return nothing.
1129  */
1130 static void
1131 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1132         u32 reply)
1133 {
1134         MPI2DefaultReply_t *mpi_reply;
1135         u16 ioc_status;
1136         u32 loginfo = 0;
1137
1138         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1139         if (unlikely(!mpi_reply)) {
1140                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
1141                     ioc->name, __FILE__, __LINE__, __func__);
1142                 return;
1143         }
1144         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1145
1146         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1147             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1148                 _base_sas_ioc_info(ioc , mpi_reply,
1149                    mpt3sas_base_get_msg_frame(ioc, smid));
1150         }
1151
1152         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1153                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1154                 _base_sas_log_info(ioc, loginfo);
1155         }
1156
1157         if (ioc_status || loginfo) {
1158                 ioc_status &= MPI2_IOCSTATUS_MASK;
1159                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1160         }
1161 }
1162
1163 /**
1164  * mpt3sas_base_done - base internal command completion routine
1165  * @ioc: per adapter object
1166  * @smid: system request message index
1167  * @msix_index: MSIX table index supplied by the OS
1168  * @reply: reply message frame(lower 32bit addr)
1169  *
1170  * Return 1 meaning mf should be freed from _base_interrupt
1171  *        0 means the mf is freed from this function.
1172  */
1173 u8
1174 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1175         u32 reply)
1176 {
1177         MPI2DefaultReply_t *mpi_reply;
1178
1179         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1180         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1181                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1182
1183         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1184                 return 1;
1185
1186         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1187         if (mpi_reply) {
1188                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1189                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1190         }
1191         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1192
1193         complete(&ioc->base_cmds.done);
1194         return 1;
1195 }
1196
1197 /**
1198  * _base_async_event - main callback handler for firmware asyn events
1199  * @ioc: per adapter object
1200  * @msix_index: MSIX table index supplied by the OS
1201  * @reply: reply message frame(lower 32bit addr)
1202  *
1203  * Return 1 meaning mf should be freed from _base_interrupt
1204  *        0 means the mf is freed from this function.
1205  */
1206 static u8
1207 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1208 {
1209         Mpi2EventNotificationReply_t *mpi_reply;
1210         Mpi2EventAckRequest_t *ack_request;
1211         u16 smid;
1212         struct _event_ack_list *delayed_event_ack;
1213
1214         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1215         if (!mpi_reply)
1216                 return 1;
1217         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1218                 return 1;
1219
1220         _base_display_event_data(ioc, mpi_reply);
1221
1222         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1223                 goto out;
1224         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1225         if (!smid) {
1226                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1227                                         GFP_ATOMIC);
1228                 if (!delayed_event_ack)
1229                         goto out;
1230                 INIT_LIST_HEAD(&delayed_event_ack->list);
1231                 delayed_event_ack->Event = mpi_reply->Event;
1232                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1233                 list_add_tail(&delayed_event_ack->list,
1234                                 &ioc->delayed_event_ack_list);
1235                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
1236                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
1237                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
1238                 goto out;
1239         }
1240
1241         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1242         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1243         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1244         ack_request->Event = mpi_reply->Event;
1245         ack_request->EventContext = mpi_reply->EventContext;
1246         ack_request->VF_ID = 0;  /* TODO */
1247         ack_request->VP_ID = 0;
1248         mpt3sas_base_put_smid_default(ioc, smid);
1249
1250  out:
1251
1252         /* scsih callback handler */
1253         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1254
1255         /* ctl callback handler */
1256         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1257
1258         return 1;
1259 }
1260
1261 static struct scsiio_tracker *
1262 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1263 {
1264         struct scsi_cmnd *cmd;
1265
1266         if (WARN_ON(!smid) ||
1267             WARN_ON(smid >= ioc->hi_priority_smid))
1268                 return NULL;
1269
1270         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1271         if (cmd)
1272                 return scsi_cmd_priv(cmd);
1273
1274         return NULL;
1275 }
1276
1277 /**
1278  * _base_get_cb_idx - obtain the callback index
1279  * @ioc: per adapter object
1280  * @smid: system request message index
1281  *
1282  * Return callback index.
1283  */
1284 static u8
1285 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1286 {
1287         int i;
1288         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1289         u8 cb_idx = 0xFF;
1290
1291         if (smid < ioc->hi_priority_smid) {
1292                 struct scsiio_tracker *st;
1293
1294                 if (smid < ctl_smid) {
1295                         st = _get_st_from_smid(ioc, smid);
1296                         if (st)
1297                                 cb_idx = st->cb_idx;
1298                 } else if (smid == ctl_smid)
1299                         cb_idx = ioc->ctl_cb_idx;
1300         } else if (smid < ioc->internal_smid) {
1301                 i = smid - ioc->hi_priority_smid;
1302                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1303         } else if (smid <= ioc->hba_queue_depth) {
1304                 i = smid - ioc->internal_smid;
1305                 cb_idx = ioc->internal_lookup[i].cb_idx;
1306         }
1307         return cb_idx;
1308 }
1309
1310 /**
1311  * _base_mask_interrupts - disable interrupts
1312  * @ioc: per adapter object
1313  *
1314  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1315  *
1316  * Return nothing.
1317  */
1318 static void
1319 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1320 {
1321         u32 him_register;
1322
1323         ioc->mask_interrupts = 1;
1324         him_register = readl(&ioc->chip->HostInterruptMask);
1325         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1326         writel(him_register, &ioc->chip->HostInterruptMask);
1327         readl(&ioc->chip->HostInterruptMask);
1328 }
1329
1330 /**
1331  * _base_unmask_interrupts - enable interrupts
1332  * @ioc: per adapter object
1333  *
1334  * Enabling only Reply Interrupts
1335  *
1336  * Return nothing.
1337  */
1338 static void
1339 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1340 {
1341         u32 him_register;
1342
1343         him_register = readl(&ioc->chip->HostInterruptMask);
1344         him_register &= ~MPI2_HIM_RIM;
1345         writel(him_register, &ioc->chip->HostInterruptMask);
1346         ioc->mask_interrupts = 0;
1347 }
1348
1349 union reply_descriptor {
1350         u64 word;
1351         struct {
1352                 u32 low;
1353                 u32 high;
1354         } u;
1355 };
1356
1357 /**
1358  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1359  * @irq: irq number (not used)
1360  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1361  * @r: pt_regs pointer (not used)
1362  *
1363  * Return IRQ_HANDLE if processed, else IRQ_NONE.
1364  */
1365 static irqreturn_t
1366 _base_interrupt(int irq, void *bus_id)
1367 {
1368         struct adapter_reply_queue *reply_q = bus_id;
1369         union reply_descriptor rd;
1370         u32 completed_cmds;
1371         u8 request_desript_type;
1372         u16 smid;
1373         u8 cb_idx;
1374         u32 reply;
1375         u8 msix_index = reply_q->msix_index;
1376         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1377         Mpi2ReplyDescriptorsUnion_t *rpf;
1378         u8 rc;
1379
1380         if (ioc->mask_interrupts)
1381                 return IRQ_NONE;
1382
1383         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1384                 return IRQ_NONE;
1385
1386         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1387         request_desript_type = rpf->Default.ReplyFlags
1388              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1389         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1390                 atomic_dec(&reply_q->busy);
1391                 return IRQ_NONE;
1392         }
1393
1394         completed_cmds = 0;
1395         cb_idx = 0xFF;
1396         do {
1397                 rd.word = le64_to_cpu(rpf->Words);
1398                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1399                         goto out;
1400                 reply = 0;
1401                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1402                 if (request_desript_type ==
1403                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1404                     request_desript_type ==
1405                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1406                     request_desript_type ==
1407                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1408                         cb_idx = _base_get_cb_idx(ioc, smid);
1409                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1410                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1411                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1412                                     msix_index, 0);
1413                                 if (rc)
1414                                         mpt3sas_base_free_smid(ioc, smid);
1415                         }
1416                 } else if (request_desript_type ==
1417                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1418                         reply = le32_to_cpu(
1419                             rpf->AddressReply.ReplyFrameAddress);
1420                         if (reply > ioc->reply_dma_max_address ||
1421                             reply < ioc->reply_dma_min_address)
1422                                 reply = 0;
1423                         if (smid) {
1424                                 cb_idx = _base_get_cb_idx(ioc, smid);
1425                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1426                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1427                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1428                                             msix_index, reply);
1429                                         if (reply)
1430                                                 _base_display_reply_info(ioc,
1431                                                     smid, msix_index, reply);
1432                                         if (rc)
1433                                                 mpt3sas_base_free_smid(ioc,
1434                                                     smid);
1435                                 }
1436                         } else {
1437                                 _base_async_event(ioc, msix_index, reply);
1438                         }
1439
1440                         /* reply free queue handling */
1441                         if (reply) {
1442                                 ioc->reply_free_host_index =
1443                                     (ioc->reply_free_host_index ==
1444                                     (ioc->reply_free_queue_depth - 1)) ?
1445                                     0 : ioc->reply_free_host_index + 1;
1446                                 ioc->reply_free[ioc->reply_free_host_index] =
1447                                     cpu_to_le32(reply);
1448                                 if (ioc->is_mcpu_endpoint)
1449                                         _base_clone_reply_to_sys_mem(ioc,
1450                                                 reply,
1451                                                 ioc->reply_free_host_index);
1452                                 writel(ioc->reply_free_host_index,
1453                                     &ioc->chip->ReplyFreeHostIndex);
1454                         }
1455                 }
1456
1457                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1458                 reply_q->reply_post_host_index =
1459                     (reply_q->reply_post_host_index ==
1460                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1461                     reply_q->reply_post_host_index + 1;
1462                 request_desript_type =
1463                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1464                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1465                 completed_cmds++;
1466                 /* Update the reply post host index after continuously
1467                  * processing the threshold number of Reply Descriptors.
1468                  * So that FW can find enough entries to post the Reply
1469                  * Descriptors in the reply descriptor post queue.
1470                  */
1471                 if (completed_cmds > ioc->hba_queue_depth/3) {
1472                         if (ioc->combined_reply_queue) {
1473                                 writel(reply_q->reply_post_host_index |
1474                                                 ((msix_index  & 7) <<
1475                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1476                                     ioc->replyPostRegisterIndex[msix_index/8]);
1477                         } else {
1478                                 writel(reply_q->reply_post_host_index |
1479                                                 (msix_index <<
1480                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1481                                                 &ioc->chip->ReplyPostHostIndex);
1482                         }
1483                         completed_cmds = 1;
1484                 }
1485                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1486                         goto out;
1487                 if (!reply_q->reply_post_host_index)
1488                         rpf = reply_q->reply_post_free;
1489                 else
1490                         rpf++;
1491         } while (1);
1492
1493  out:
1494
1495         if (!completed_cmds) {
1496                 atomic_dec(&reply_q->busy);
1497                 return IRQ_NONE;
1498         }
1499
1500         if (ioc->is_warpdrive) {
1501                 writel(reply_q->reply_post_host_index,
1502                 ioc->reply_post_host_index[msix_index]);
1503                 atomic_dec(&reply_q->busy);
1504                 return IRQ_HANDLED;
1505         }
1506
1507         /* Update Reply Post Host Index.
1508          * For those HBA's which support combined reply queue feature
1509          * 1. Get the correct Supplemental Reply Post Host Index Register.
1510          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1511          *    Index Register address bank i.e replyPostRegisterIndex[],
1512          * 2. Then update this register with new reply host index value
1513          *    in ReplyPostIndex field and the MSIxIndex field with
1514          *    msix_index value reduced to a value between 0 and 7,
1515          *    using a modulo 8 operation. Since each Supplemental Reply Post
1516          *    Host Index Register supports 8 MSI-X vectors.
1517          *
1518          * For other HBA's just update the Reply Post Host Index register with
1519          * new reply host index value in ReplyPostIndex Field and msix_index
1520          * value in MSIxIndex field.
1521          */
1522         if (ioc->combined_reply_queue)
1523                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1524                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1525                         ioc->replyPostRegisterIndex[msix_index/8]);
1526         else
1527                 writel(reply_q->reply_post_host_index | (msix_index <<
1528                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1529                         &ioc->chip->ReplyPostHostIndex);
1530         atomic_dec(&reply_q->busy);
1531         return IRQ_HANDLED;
1532 }
1533
1534 /**
1535  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1536  * @ioc: per adapter object
1537  *
1538  */
1539 static inline int
1540 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1541 {
1542         return (ioc->facts.IOCCapabilities &
1543             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1544 }
1545
1546 /**
1547  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1548  * @ioc: per adapter object
1549  * Context: non ISR conext
1550  *
1551  * Called when a Task Management request has completed.
1552  *
1553  * Return nothing.
1554  */
1555 void
1556 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1557 {
1558         struct adapter_reply_queue *reply_q;
1559
1560         /* If MSIX capability is turned off
1561          * then multi-queues are not enabled
1562          */
1563         if (!_base_is_controller_msix_enabled(ioc))
1564                 return;
1565
1566         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1567                 if (ioc->shost_recovery || ioc->remove_host ||
1568                                 ioc->pci_error_recovery)
1569                         return;
1570                 /* TMs are on msix_index == 0 */
1571                 if (reply_q->msix_index == 0)
1572                         continue;
1573                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1574         }
1575 }
1576
1577 /**
1578  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1579  * @cb_idx: callback index
1580  *
1581  * Return nothing.
1582  */
1583 void
1584 mpt3sas_base_release_callback_handler(u8 cb_idx)
1585 {
1586         mpt_callbacks[cb_idx] = NULL;
1587 }
1588
1589 /**
1590  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1591  * @cb_func: callback function
1592  *
1593  * Returns cb_func.
1594  */
1595 u8
1596 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1597 {
1598         u8 cb_idx;
1599
1600         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1601                 if (mpt_callbacks[cb_idx] == NULL)
1602                         break;
1603
1604         mpt_callbacks[cb_idx] = cb_func;
1605         return cb_idx;
1606 }
1607
1608 /**
1609  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1610  *
1611  * Return nothing.
1612  */
1613 void
1614 mpt3sas_base_initialize_callback_handler(void)
1615 {
1616         u8 cb_idx;
1617
1618         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1619                 mpt3sas_base_release_callback_handler(cb_idx);
1620 }
1621
1622
1623 /**
1624  * _base_build_zero_len_sge - build zero length sg entry
1625  * @ioc: per adapter object
1626  * @paddr: virtual address for SGE
1627  *
1628  * Create a zero length scatter gather entry to insure the IOCs hardware has
1629  * something to use if the target device goes brain dead and tries
1630  * to send data even when none is asked for.
1631  *
1632  * Return nothing.
1633  */
1634 static void
1635 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1636 {
1637         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1638             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1639             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1640             MPI2_SGE_FLAGS_SHIFT);
1641         ioc->base_add_sg_single(paddr, flags_length, -1);
1642 }
1643
1644 /**
1645  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1646  * @paddr: virtual address for SGE
1647  * @flags_length: SGE flags and data transfer length
1648  * @dma_addr: Physical address
1649  *
1650  * Return nothing.
1651  */
1652 static void
1653 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1654 {
1655         Mpi2SGESimple32_t *sgel = paddr;
1656
1657         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1658             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1659         sgel->FlagsLength = cpu_to_le32(flags_length);
1660         sgel->Address = cpu_to_le32(dma_addr);
1661 }
1662
1663
1664 /**
1665  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1666  * @paddr: virtual address for SGE
1667  * @flags_length: SGE flags and data transfer length
1668  * @dma_addr: Physical address
1669  *
1670  * Return nothing.
1671  */
1672 static void
1673 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1674 {
1675         Mpi2SGESimple64_t *sgel = paddr;
1676
1677         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1678             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1679         sgel->FlagsLength = cpu_to_le32(flags_length);
1680         sgel->Address = cpu_to_le64(dma_addr);
1681 }
1682
1683 /**
1684  * _base_get_chain_buffer_tracker - obtain chain tracker
1685  * @ioc: per adapter object
1686  * @scmd: SCSI commands of the IO request
1687  *
1688  * Returns chain tracker from chain_lookup table using key as
1689  * smid and smid's chain_offset.
1690  */
1691 static struct chain_tracker *
1692 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1693                                struct scsi_cmnd *scmd)
1694 {
1695         struct chain_tracker *chain_req;
1696         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1697         u16 smid = st->smid;
1698         u8 chain_offset =
1699            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1700
1701         if (chain_offset == ioc->chains_needed_per_io)
1702                 return NULL;
1703
1704         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1705         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1706         return chain_req;
1707 }
1708
1709
1710 /**
1711  * _base_build_sg - build generic sg
1712  * @ioc: per adapter object
1713  * @psge: virtual address for SGE
1714  * @data_out_dma: physical address for WRITES
1715  * @data_out_sz: data xfer size for WRITES
1716  * @data_in_dma: physical address for READS
1717  * @data_in_sz: data xfer size for READS
1718  *
1719  * Return nothing.
1720  */
1721 static void
1722 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1723         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1724         size_t data_in_sz)
1725 {
1726         u32 sgl_flags;
1727
1728         if (!data_out_sz && !data_in_sz) {
1729                 _base_build_zero_len_sge(ioc, psge);
1730                 return;
1731         }
1732
1733         if (data_out_sz && data_in_sz) {
1734                 /* WRITE sgel first */
1735                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1736                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1737                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1738                 ioc->base_add_sg_single(psge, sgl_flags |
1739                     data_out_sz, data_out_dma);
1740
1741                 /* incr sgel */
1742                 psge += ioc->sge_size;
1743
1744                 /* READ sgel last */
1745                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1746                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1747                     MPI2_SGE_FLAGS_END_OF_LIST);
1748                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1749                 ioc->base_add_sg_single(psge, sgl_flags |
1750                     data_in_sz, data_in_dma);
1751         } else if (data_out_sz) /* WRITE */ {
1752                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1753                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1754                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1755                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1756                 ioc->base_add_sg_single(psge, sgl_flags |
1757                     data_out_sz, data_out_dma);
1758         } else if (data_in_sz) /* READ */ {
1759                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1760                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1761                     MPI2_SGE_FLAGS_END_OF_LIST);
1762                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1763                 ioc->base_add_sg_single(psge, sgl_flags |
1764                     data_in_sz, data_in_dma);
1765         }
1766 }
1767
1768 /* IEEE format sgls */
1769
1770 /**
1771  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1772  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1773  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1774  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1775  * used to describe a larger data buffer.  If the data buffer is too large to
1776  * describe using the two PRP entriess inside the NVMe message, then PRP1
1777  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1778  * list located elsewhere in memory to describe the remaining data memory
1779  * segments.  The PRP list will be contiguous.
1780
1781  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1782  * consists of a list of PRP entries to describe a number of noncontigous
1783  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1784  * however, that this function is only used by the IOCTL call, so the memory
1785  * given will be guaranteed to be contiguous.  There is no need to translate
1786  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1787  * contiguous space that is one page size each.
1788  *
1789  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1790  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1791  * contains the second PRP element if the memory being described fits within 2
1792  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1793  *
1794  * A PRP list pointer contains the address of a PRP list, structured as a linear
1795  * array of PRP entries.  Each PRP entry in this list describes a segment of
1796  * physical memory.
1797  *
1798  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1799  * always points at the beginning of a 4KB physical memory page, and the offset
1800  * describes where within that 4KB page the memory segment begins.  Only the
1801  * first element in a PRP list may contain a non-zero offest, implying that all
1802  * memory segments following the first begin at the start of a 4KB page.
1803  *
1804  * Each PRP element normally describes 4KB of physical memory, with exceptions
1805  * for the first and last elements in the list.  If the memory being described
1806  * by the list begins at a non-zero offset within the first 4KB page, then the
1807  * first PRP element will contain a non-zero offset indicating where the region
1808  * begins within the 4KB page.  The last memory segment may end before the end
1809  * of the 4KB segment, depending upon the overall size of the memory being
1810  * described by the PRP list.
1811  *
1812  * Since PRP entries lack any indication of size, the overall data buffer length
1813  * is used to determine where the end of the data memory buffer is located, and
1814  * how many PRP entries are required to describe it.
1815  *
1816  * @ioc: per adapter object
1817  * @smid: system request message index for getting asscociated SGL
1818  * @nvme_encap_request: the NVMe request msg frame pointer
1819  * @data_out_dma: physical address for WRITES
1820  * @data_out_sz: data xfer size for WRITES
1821  * @data_in_dma: physical address for READS
1822  * @data_in_sz: data xfer size for READS
1823  *
1824  * Returns nothing.
1825  */
1826 static void
1827 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1828         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1829         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1830         size_t data_in_sz)
1831 {
1832         int             prp_size = NVME_PRP_SIZE;
1833         __le64          *prp_entry, *prp1_entry, *prp2_entry;
1834         __le64          *prp_page;
1835         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1836         u32             offset, entry_len;
1837         u32             page_mask_result, page_mask;
1838         size_t          length;
1839
1840         /*
1841          * Not all commands require a data transfer. If no data, just return
1842          * without constructing any PRP.
1843          */
1844         if (!data_in_sz && !data_out_sz)
1845                 return;
1846         /*
1847          * Set pointers to PRP1 and PRP2, which are in the NVMe command.
1848          * PRP1 is located at a 24 byte offset from the start of the NVMe
1849          * command.  Then set the current PRP entry pointer to PRP1.
1850          */
1851         prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1852             NVME_CMD_PRP1_OFFSET);
1853         prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1854             NVME_CMD_PRP2_OFFSET);
1855         prp_entry = prp1_entry;
1856         /*
1857          * For the PRP entries, use the specially allocated buffer of
1858          * contiguous memory.
1859          */
1860         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1861         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1862
1863         /*
1864          * Check if we are within 1 entry of a page boundary we don't
1865          * want our first entry to be a PRP List entry.
1866          */
1867         page_mask = ioc->page_size - 1;
1868         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1869         if (!page_mask_result) {
1870                 /* Bump up to next page boundary. */
1871                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1872                 prp_page_dma = prp_page_dma + prp_size;
1873         }
1874
1875         /*
1876          * Set PRP physical pointer, which initially points to the current PRP
1877          * DMA memory page.
1878          */
1879         prp_entry_dma = prp_page_dma;
1880
1881         /* Get physical address and length of the data buffer. */
1882         if (data_in_sz) {
1883                 dma_addr = data_in_dma;
1884                 length = data_in_sz;
1885         } else {
1886                 dma_addr = data_out_dma;
1887                 length = data_out_sz;
1888         }
1889
1890         /* Loop while the length is not zero. */
1891         while (length) {
1892                 /*
1893                  * Check if we need to put a list pointer here if we are at
1894                  * page boundary - prp_size (8 bytes).
1895                  */
1896                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1897                 if (!page_mask_result) {
1898                         /*
1899                          * This is the last entry in a PRP List, so we need to
1900                          * put a PRP list pointer here.  What this does is:
1901                          *   - bump the current memory pointer to the next
1902                          *     address, which will be the next full page.
1903                          *   - set the PRP Entry to point to that page.  This
1904                          *     is now the PRP List pointer.
1905                          *   - bump the PRP Entry pointer the start of the
1906                          *     next page.  Since all of this PRP memory is
1907                          *     contiguous, no need to get a new page - it's
1908                          *     just the next address.
1909                          */
1910                         prp_entry_dma++;
1911                         *prp_entry = cpu_to_le64(prp_entry_dma);
1912                         prp_entry++;
1913                 }
1914
1915                 /* Need to handle if entry will be part of a page. */
1916                 offset = dma_addr & page_mask;
1917                 entry_len = ioc->page_size - offset;
1918
1919                 if (prp_entry == prp1_entry) {
1920                         /*
1921                          * Must fill in the first PRP pointer (PRP1) before
1922                          * moving on.
1923                          */
1924                         *prp1_entry = cpu_to_le64(dma_addr);
1925
1926                         /*
1927                          * Now point to the second PRP entry within the
1928                          * command (PRP2).
1929                          */
1930                         prp_entry = prp2_entry;
1931                 } else if (prp_entry == prp2_entry) {
1932                         /*
1933                          * Should the PRP2 entry be a PRP List pointer or just
1934                          * a regular PRP pointer?  If there is more than one
1935                          * more page of data, must use a PRP List pointer.
1936                          */
1937                         if (length > ioc->page_size) {
1938                                 /*
1939                                  * PRP2 will contain a PRP List pointer because
1940                                  * more PRP's are needed with this command. The
1941                                  * list will start at the beginning of the
1942                                  * contiguous buffer.
1943                                  */
1944                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
1945
1946                                 /*
1947                                  * The next PRP Entry will be the start of the
1948                                  * first PRP List.
1949                                  */
1950                                 prp_entry = prp_page;
1951                         } else {
1952                                 /*
1953                                  * After this, the PRP Entries are complete.
1954                                  * This command uses 2 PRP's and no PRP list.
1955                                  */
1956                                 *prp2_entry = cpu_to_le64(dma_addr);
1957                         }
1958                 } else {
1959                         /*
1960                          * Put entry in list and bump the addresses.
1961                          *
1962                          * After PRP1 and PRP2 are filled in, this will fill in
1963                          * all remaining PRP entries in a PRP List, one per
1964                          * each time through the loop.
1965                          */
1966                         *prp_entry = cpu_to_le64(dma_addr);
1967                         prp_entry++;
1968                         prp_entry_dma++;
1969                 }
1970
1971                 /*
1972                  * Bump the phys address of the command's data buffer by the
1973                  * entry_len.
1974                  */
1975                 dma_addr += entry_len;
1976
1977                 /* Decrement length accounting for last partial page. */
1978                 if (entry_len > length)
1979                         length = 0;
1980                 else
1981                         length -= entry_len;
1982         }
1983 }
1984
1985 /**
1986  * base_make_prp_nvme -
1987  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1988  *
1989  * @ioc:                per adapter object
1990  * @scmd:               SCSI command from the mid-layer
1991  * @mpi_request:        mpi request
1992  * @smid:               msg Index
1993  * @sge_count:          scatter gather element count.
1994  *
1995  * Returns:             true: PRPs are built
1996  *                      false: IEEE SGLs needs to be built
1997  */
1998 static void
1999 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2000                 struct scsi_cmnd *scmd,
2001                 Mpi25SCSIIORequest_t *mpi_request,
2002                 u16 smid, int sge_count)
2003 {
2004         int sge_len, num_prp_in_chain = 0;
2005         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2006         __le64 *curr_buff;
2007         dma_addr_t msg_dma, sge_addr, offset;
2008         u32 page_mask, page_mask_result;
2009         struct scatterlist *sg_scmd;
2010         u32 first_prp_len;
2011         int data_len = scsi_bufflen(scmd);
2012         u32 nvme_pg_size;
2013
2014         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2015         /*
2016          * Nvme has a very convoluted prp format.  One prp is required
2017          * for each page or partial page. Driver need to split up OS sg_list
2018          * entries if it is longer than one page or cross a page
2019          * boundary.  Driver also have to insert a PRP list pointer entry as
2020          * the last entry in each physical page of the PRP list.
2021          *
2022          * NOTE: The first PRP "entry" is actually placed in the first
2023          * SGL entry in the main message as IEEE 64 format.  The 2nd
2024          * entry in the main message is the chain element, and the rest
2025          * of the PRP entries are built in the contiguous pcie buffer.
2026          */
2027         page_mask = nvme_pg_size - 1;
2028
2029         /*
2030          * Native SGL is needed.
2031          * Put a chain element in main message frame that points to the first
2032          * chain buffer.
2033          *
2034          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2035          *        a native SGL.
2036          */
2037
2038         /* Set main message chain element pointer */
2039         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2040         /*
2041          * For NVMe the chain element needs to be the 2nd SG entry in the main
2042          * message.
2043          */
2044         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2045                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2046
2047         /*
2048          * For the PRP entries, use the specially allocated buffer of
2049          * contiguous memory.  Normal chain buffers can't be used
2050          * because each chain buffer would need to be the size of an OS
2051          * page (4k).
2052          */
2053         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2054         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2055
2056         main_chain_element->Address = cpu_to_le64(msg_dma);
2057         main_chain_element->NextChainOffset = 0;
2058         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2059                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2060                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2061
2062         /* Build first prp, sge need not to be page aligned*/
2063         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2064         sg_scmd = scsi_sglist(scmd);
2065         sge_addr = sg_dma_address(sg_scmd);
2066         sge_len = sg_dma_len(sg_scmd);
2067
2068         offset = sge_addr & page_mask;
2069         first_prp_len = nvme_pg_size - offset;
2070
2071         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2072         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2073
2074         data_len -= first_prp_len;
2075
2076         if (sge_len > first_prp_len) {
2077                 sge_addr += first_prp_len;
2078                 sge_len -= first_prp_len;
2079         } else if (data_len && (sge_len == first_prp_len)) {
2080                 sg_scmd = sg_next(sg_scmd);
2081                 sge_addr = sg_dma_address(sg_scmd);
2082                 sge_len = sg_dma_len(sg_scmd);
2083         }
2084
2085         for (;;) {
2086                 offset = sge_addr & page_mask;
2087
2088                 /* Put PRP pointer due to page boundary*/
2089                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2090                 if (unlikely(!page_mask_result)) {
2091                         scmd_printk(KERN_NOTICE,
2092                                 scmd, "page boundary curr_buff: 0x%p\n",
2093                                 curr_buff);
2094                         msg_dma += 8;
2095                         *curr_buff = cpu_to_le64(msg_dma);
2096                         curr_buff++;
2097                         num_prp_in_chain++;
2098                 }
2099
2100                 *curr_buff = cpu_to_le64(sge_addr);
2101                 curr_buff++;
2102                 msg_dma += 8;
2103                 num_prp_in_chain++;
2104
2105                 sge_addr += nvme_pg_size;
2106                 sge_len -= nvme_pg_size;
2107                 data_len -= nvme_pg_size;
2108
2109                 if (data_len <= 0)
2110                         break;
2111
2112                 if (sge_len > 0)
2113                         continue;
2114
2115                 sg_scmd = sg_next(sg_scmd);
2116                 sge_addr = sg_dma_address(sg_scmd);
2117                 sge_len = sg_dma_len(sg_scmd);
2118         }
2119
2120         main_chain_element->Length =
2121                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2122         return;
2123 }
2124
2125 static bool
2126 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2127         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2128 {
2129         u32 data_length = 0;
2130         struct scatterlist *sg_scmd;
2131         bool build_prp = true;
2132
2133         data_length = scsi_bufflen(scmd);
2134         sg_scmd = scsi_sglist(scmd);
2135
2136         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2137          * we built IEEE SGL
2138          */
2139         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2140                 build_prp = false;
2141
2142         return build_prp;
2143 }
2144
2145 /**
2146  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2147  * determine if the driver needs to build a native SGL.  If so, that native
2148  * SGL is built in the special contiguous buffers allocated especially for
2149  * PCIe SGL creation.  If the driver will not build a native SGL, return
2150  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2151  * supports NVMe.
2152  * @ioc: per adapter object
2153  * @mpi_request: mf request pointer
2154  * @smid: system request message index
2155  * @scmd: scsi command
2156  * @pcie_device: points to the PCIe device's info
2157  *
2158  * Returns 0 if native SGL was built, 1 if no SGL was built
2159  */
2160 static int
2161 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2162         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2163         struct _pcie_device *pcie_device)
2164 {
2165         struct scatterlist *sg_scmd;
2166         int sges_left;
2167
2168         /* Get the SG list pointer and info. */
2169         sg_scmd = scsi_sglist(scmd);
2170         sges_left = scsi_dma_map(scmd);
2171         if (sges_left < 0) {
2172                 sdev_printk(KERN_ERR, scmd->device,
2173                         "scsi_dma_map failed: request for %d bytes!\n",
2174                         scsi_bufflen(scmd));
2175                 return 1;
2176         }
2177
2178         /* Check if we need to build a native SG list. */
2179         if (base_is_prp_possible(ioc, pcie_device,
2180                                 scmd, sges_left) == 0) {
2181                 /* We built a native SG list, just return. */
2182                 goto out;
2183         }
2184
2185         /*
2186          * Build native NVMe PRP.
2187          */
2188         base_make_prp_nvme(ioc, scmd, mpi_request,
2189                         smid, sges_left);
2190
2191         return 0;
2192 out:
2193         scsi_dma_unmap(scmd);
2194         return 1;
2195 }
2196
2197 /**
2198  * _base_add_sg_single_ieee - add sg element for IEEE format
2199  * @paddr: virtual address for SGE
2200  * @flags: SGE flags
2201  * @chain_offset: number of 128 byte elements from start of segment
2202  * @length: data transfer length
2203  * @dma_addr: Physical address
2204  *
2205  * Return nothing.
2206  */
2207 static void
2208 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2209         dma_addr_t dma_addr)
2210 {
2211         Mpi25IeeeSgeChain64_t *sgel = paddr;
2212
2213         sgel->Flags = flags;
2214         sgel->NextChainOffset = chain_offset;
2215         sgel->Length = cpu_to_le32(length);
2216         sgel->Address = cpu_to_le64(dma_addr);
2217 }
2218
2219 /**
2220  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2221  * @ioc: per adapter object
2222  * @paddr: virtual address for SGE
2223  *
2224  * Create a zero length scatter gather entry to insure the IOCs hardware has
2225  * something to use if the target device goes brain dead and tries
2226  * to send data even when none is asked for.
2227  *
2228  * Return nothing.
2229  */
2230 static void
2231 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2232 {
2233         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2234                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2235                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2236
2237         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2238 }
2239
2240 /**
2241  * _base_build_sg_scmd - main sg creation routine
2242  *              pcie_device is unused here!
2243  * @ioc: per adapter object
2244  * @scmd: scsi command
2245  * @smid: system request message index
2246  * @unused: unused pcie_device pointer
2247  * Context: none.
2248  *
2249  * The main routine that builds scatter gather table from a given
2250  * scsi request sent via the .queuecommand main handler.
2251  *
2252  * Returns 0 success, anything else error
2253  */
2254 static int
2255 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2256         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2257 {
2258         Mpi2SCSIIORequest_t *mpi_request;
2259         dma_addr_t chain_dma;
2260         struct scatterlist *sg_scmd;
2261         void *sg_local, *chain;
2262         u32 chain_offset;
2263         u32 chain_length;
2264         u32 chain_flags;
2265         int sges_left;
2266         u32 sges_in_segment;
2267         u32 sgl_flags;
2268         u32 sgl_flags_last_element;
2269         u32 sgl_flags_end_buffer;
2270         struct chain_tracker *chain_req;
2271
2272         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2273
2274         /* init scatter gather flags */
2275         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2276         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2277                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2278         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2279             << MPI2_SGE_FLAGS_SHIFT;
2280         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2281             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2282             << MPI2_SGE_FLAGS_SHIFT;
2283         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2284
2285         sg_scmd = scsi_sglist(scmd);
2286         sges_left = scsi_dma_map(scmd);
2287         if (sges_left < 0) {
2288                 sdev_printk(KERN_ERR, scmd->device,
2289                  "pci_map_sg failed: request for %d bytes!\n",
2290                  scsi_bufflen(scmd));
2291                 return -ENOMEM;
2292         }
2293
2294         sg_local = &mpi_request->SGL;
2295         sges_in_segment = ioc->max_sges_in_main_message;
2296         if (sges_left <= sges_in_segment)
2297                 goto fill_in_last_segment;
2298
2299         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2300             (sges_in_segment * ioc->sge_size))/4;
2301
2302         /* fill in main message segment when there is a chain following */
2303         while (sges_in_segment) {
2304                 if (sges_in_segment == 1)
2305                         ioc->base_add_sg_single(sg_local,
2306                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2307                             sg_dma_address(sg_scmd));
2308                 else
2309                         ioc->base_add_sg_single(sg_local, sgl_flags |
2310                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2311                 sg_scmd = sg_next(sg_scmd);
2312                 sg_local += ioc->sge_size;
2313                 sges_left--;
2314                 sges_in_segment--;
2315         }
2316
2317         /* initializing the chain flags and pointers */
2318         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2319         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2320         if (!chain_req)
2321                 return -1;
2322         chain = chain_req->chain_buffer;
2323         chain_dma = chain_req->chain_buffer_dma;
2324         do {
2325                 sges_in_segment = (sges_left <=
2326                     ioc->max_sges_in_chain_message) ? sges_left :
2327                     ioc->max_sges_in_chain_message;
2328                 chain_offset = (sges_left == sges_in_segment) ?
2329                     0 : (sges_in_segment * ioc->sge_size)/4;
2330                 chain_length = sges_in_segment * ioc->sge_size;
2331                 if (chain_offset) {
2332                         chain_offset = chain_offset <<
2333                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2334                         chain_length += ioc->sge_size;
2335                 }
2336                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2337                     chain_length, chain_dma);
2338                 sg_local = chain;
2339                 if (!chain_offset)
2340                         goto fill_in_last_segment;
2341
2342                 /* fill in chain segments */
2343                 while (sges_in_segment) {
2344                         if (sges_in_segment == 1)
2345                                 ioc->base_add_sg_single(sg_local,
2346                                     sgl_flags_last_element |
2347                                     sg_dma_len(sg_scmd),
2348                                     sg_dma_address(sg_scmd));
2349                         else
2350                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2351                                     sg_dma_len(sg_scmd),
2352                                     sg_dma_address(sg_scmd));
2353                         sg_scmd = sg_next(sg_scmd);
2354                         sg_local += ioc->sge_size;
2355                         sges_left--;
2356                         sges_in_segment--;
2357                 }
2358
2359                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2360                 if (!chain_req)
2361                         return -1;
2362                 chain = chain_req->chain_buffer;
2363                 chain_dma = chain_req->chain_buffer_dma;
2364         } while (1);
2365
2366
2367  fill_in_last_segment:
2368
2369         /* fill the last segment */
2370         while (sges_left) {
2371                 if (sges_left == 1)
2372                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2373                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2374                 else
2375                         ioc->base_add_sg_single(sg_local, sgl_flags |
2376                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2377                 sg_scmd = sg_next(sg_scmd);
2378                 sg_local += ioc->sge_size;
2379                 sges_left--;
2380         }
2381
2382         return 0;
2383 }
2384
2385 /**
2386  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2387  * @ioc: per adapter object
2388  * @scmd: scsi command
2389  * @smid: system request message index
2390  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2391  * constructed on need.
2392  * Context: none.
2393  *
2394  * The main routine that builds scatter gather table from a given
2395  * scsi request sent via the .queuecommand main handler.
2396  *
2397  * Returns 0 success, anything else error
2398  */
2399 static int
2400 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2401         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2402 {
2403         Mpi25SCSIIORequest_t *mpi_request;
2404         dma_addr_t chain_dma;
2405         struct scatterlist *sg_scmd;
2406         void *sg_local, *chain;
2407         u32 chain_offset;
2408         u32 chain_length;
2409         int sges_left;
2410         u32 sges_in_segment;
2411         u8 simple_sgl_flags;
2412         u8 simple_sgl_flags_last;
2413         u8 chain_sgl_flags;
2414         struct chain_tracker *chain_req;
2415
2416         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2417
2418         /* init scatter gather flags */
2419         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2420             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2421         simple_sgl_flags_last = simple_sgl_flags |
2422             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2423         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2424             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2425
2426         /* Check if we need to build a native SG list. */
2427         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2428                         smid, scmd, pcie_device) == 0)) {
2429                 /* We built a native SG list, just return. */
2430                 return 0;
2431         }
2432
2433         sg_scmd = scsi_sglist(scmd);
2434         sges_left = scsi_dma_map(scmd);
2435         if (sges_left < 0) {
2436                 sdev_printk(KERN_ERR, scmd->device,
2437                         "pci_map_sg failed: request for %d bytes!\n",
2438                         scsi_bufflen(scmd));
2439                 return -ENOMEM;
2440         }
2441
2442         sg_local = &mpi_request->SGL;
2443         sges_in_segment = (ioc->request_sz -
2444                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2445         if (sges_left <= sges_in_segment)
2446                 goto fill_in_last_segment;
2447
2448         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2449             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2450
2451         /* fill in main message segment when there is a chain following */
2452         while (sges_in_segment > 1) {
2453                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2454                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2455                 sg_scmd = sg_next(sg_scmd);
2456                 sg_local += ioc->sge_size_ieee;
2457                 sges_left--;
2458                 sges_in_segment--;
2459         }
2460
2461         /* initializing the pointers */
2462         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2463         if (!chain_req)
2464                 return -1;
2465         chain = chain_req->chain_buffer;
2466         chain_dma = chain_req->chain_buffer_dma;
2467         do {
2468                 sges_in_segment = (sges_left <=
2469                     ioc->max_sges_in_chain_message) ? sges_left :
2470                     ioc->max_sges_in_chain_message;
2471                 chain_offset = (sges_left == sges_in_segment) ?
2472                     0 : sges_in_segment;
2473                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2474                 if (chain_offset)
2475                         chain_length += ioc->sge_size_ieee;
2476                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2477                     chain_offset, chain_length, chain_dma);
2478
2479                 sg_local = chain;
2480                 if (!chain_offset)
2481                         goto fill_in_last_segment;
2482
2483                 /* fill in chain segments */
2484                 while (sges_in_segment) {
2485                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2486                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2487                         sg_scmd = sg_next(sg_scmd);
2488                         sg_local += ioc->sge_size_ieee;
2489                         sges_left--;
2490                         sges_in_segment--;
2491                 }
2492
2493                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2494                 if (!chain_req)
2495                         return -1;
2496                 chain = chain_req->chain_buffer;
2497                 chain_dma = chain_req->chain_buffer_dma;
2498         } while (1);
2499
2500
2501  fill_in_last_segment:
2502
2503         /* fill the last segment */
2504         while (sges_left > 0) {
2505                 if (sges_left == 1)
2506                         _base_add_sg_single_ieee(sg_local,
2507                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2508                             sg_dma_address(sg_scmd));
2509                 else
2510                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2511                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2512                 sg_scmd = sg_next(sg_scmd);
2513                 sg_local += ioc->sge_size_ieee;
2514                 sges_left--;
2515         }
2516
2517         return 0;
2518 }
2519
2520 /**
2521  * _base_build_sg_ieee - build generic sg for IEEE format
2522  * @ioc: per adapter object
2523  * @psge: virtual address for SGE
2524  * @data_out_dma: physical address for WRITES
2525  * @data_out_sz: data xfer size for WRITES
2526  * @data_in_dma: physical address for READS
2527  * @data_in_sz: data xfer size for READS
2528  *
2529  * Return nothing.
2530  */
2531 static void
2532 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2533         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2534         size_t data_in_sz)
2535 {
2536         u8 sgl_flags;
2537
2538         if (!data_out_sz && !data_in_sz) {
2539                 _base_build_zero_len_sge_ieee(ioc, psge);
2540                 return;
2541         }
2542
2543         if (data_out_sz && data_in_sz) {
2544                 /* WRITE sgel first */
2545                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2546                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2547                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2548                     data_out_dma);
2549
2550                 /* incr sgel */
2551                 psge += ioc->sge_size_ieee;
2552
2553                 /* READ sgel last */
2554                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2555                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2556                     data_in_dma);
2557         } else if (data_out_sz) /* WRITE */ {
2558                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2559                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2560                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2561                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2562                     data_out_dma);
2563         } else if (data_in_sz) /* READ */ {
2564                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2565                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2566                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2567                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2568                     data_in_dma);
2569         }
2570 }
2571
2572 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2573
2574 /**
2575  * _base_config_dma_addressing - set dma addressing
2576  * @ioc: per adapter object
2577  * @pdev: PCI device struct
2578  *
2579  * Returns 0 for success, non-zero for failure.
2580  */
2581 static int
2582 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2583 {
2584         struct sysinfo s;
2585         u64 consistent_dma_mask;
2586
2587         if (ioc->is_mcpu_endpoint)
2588                 goto try_32bit;
2589
2590         if (ioc->dma_mask)
2591                 consistent_dma_mask = DMA_BIT_MASK(64);
2592         else
2593                 consistent_dma_mask = DMA_BIT_MASK(32);
2594
2595         if (sizeof(dma_addr_t) > 4) {
2596                 const uint64_t required_mask =
2597                     dma_get_required_mask(&pdev->dev);
2598                 if ((required_mask > DMA_BIT_MASK(32)) &&
2599                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2600                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2601                         ioc->base_add_sg_single = &_base_add_sg_single_64;
2602                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2603                         ioc->dma_mask = 64;
2604                         goto out;
2605                 }
2606         }
2607
2608  try_32bit:
2609         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2610             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2611                 ioc->base_add_sg_single = &_base_add_sg_single_32;
2612                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2613                 ioc->dma_mask = 32;
2614         } else
2615                 return -ENODEV;
2616
2617  out:
2618         si_meminfo(&s);
2619         pr_info(MPT3SAS_FMT
2620                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2621                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2622
2623         return 0;
2624 }
2625
2626 static int
2627 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2628                                       struct pci_dev *pdev)
2629 {
2630         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2631                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2632                         return -ENODEV;
2633         }
2634         return 0;
2635 }
2636
2637 /**
2638  * _base_check_enable_msix - checks MSIX capabable.
2639  * @ioc: per adapter object
2640  *
2641  * Check to see if card is capable of MSIX, and set number
2642  * of available msix vectors
2643  */
2644 static int
2645 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2646 {
2647         int base;
2648         u16 message_control;
2649
2650         /* Check whether controller SAS2008 B0 controller,
2651          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2652          */
2653         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2654             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2655                 return -EINVAL;
2656         }
2657
2658         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2659         if (!base) {
2660                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2661                         ioc->name));
2662                 return -EINVAL;
2663         }
2664
2665         /* get msix vector count */
2666         /* NUMA_IO not supported for older controllers */
2667         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2668             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2669             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2670             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2671             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2672             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2673             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2674                 ioc->msix_vector_count = 1;
2675         else {
2676                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2677                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2678         }
2679         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2680                 "msix is supported, vector_count(%d)\n",
2681                 ioc->name, ioc->msix_vector_count));
2682         return 0;
2683 }
2684
2685 /**
2686  * _base_free_irq - free irq
2687  * @ioc: per adapter object
2688  *
2689  * Freeing respective reply_queue from the list.
2690  */
2691 static void
2692 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2693 {
2694         struct adapter_reply_queue *reply_q, *next;
2695
2696         if (list_empty(&ioc->reply_queue_list))
2697                 return;
2698
2699         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2700                 list_del(&reply_q->list);
2701                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2702                          reply_q);
2703                 kfree(reply_q);
2704         }
2705 }
2706
2707 /**
2708  * _base_request_irq - request irq
2709  * @ioc: per adapter object
2710  * @index: msix index into vector table
2711  *
2712  * Inserting respective reply_queue into the list.
2713  */
2714 static int
2715 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2716 {
2717         struct pci_dev *pdev = ioc->pdev;
2718         struct adapter_reply_queue *reply_q;
2719         int r;
2720
2721         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2722         if (!reply_q) {
2723                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2724                     ioc->name, (int)sizeof(struct adapter_reply_queue));
2725                 return -ENOMEM;
2726         }
2727         reply_q->ioc = ioc;
2728         reply_q->msix_index = index;
2729
2730         atomic_set(&reply_q->busy, 0);
2731         if (ioc->msix_enable)
2732                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2733                     ioc->driver_name, ioc->id, index);
2734         else
2735                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2736                     ioc->driver_name, ioc->id);
2737         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2738                         IRQF_SHARED, reply_q->name, reply_q);
2739         if (r) {
2740                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2741                        reply_q->name, pci_irq_vector(pdev, index));
2742                 kfree(reply_q);
2743                 return -EBUSY;
2744         }
2745
2746         INIT_LIST_HEAD(&reply_q->list);
2747         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2748         return 0;
2749 }
2750
2751 /**
2752  * _base_assign_reply_queues - assigning msix index for each cpu
2753  * @ioc: per adapter object
2754  *
2755  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2756  *
2757  * It would nice if we could call irq_set_affinity, however it is not
2758  * an exported symbol
2759  */
2760 static void
2761 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2762 {
2763         unsigned int cpu, nr_cpus, nr_msix, index = 0;
2764         struct adapter_reply_queue *reply_q;
2765
2766         if (!_base_is_controller_msix_enabled(ioc))
2767                 return;
2768
2769         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2770
2771         nr_cpus = num_online_cpus();
2772         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2773                                                ioc->facts.MaxMSIxVectors);
2774         if (!nr_msix)
2775                 return;
2776
2777         if (smp_affinity_enable) {
2778                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2779                         const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2780                                                         reply_q->msix_index);
2781                         if (!mask) {
2782                                 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2783                                         ioc->name, reply_q->msix_index);
2784                                 continue;
2785                         }
2786
2787                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
2788                                 if (cpu >= ioc->cpu_msix_table_sz)
2789                                         break;
2790                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2791                         }
2792                 }
2793                 return;
2794         }
2795         cpu = cpumask_first(cpu_online_mask);
2796
2797         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2798
2799                 unsigned int i, group = nr_cpus / nr_msix;
2800
2801                 if (cpu >= nr_cpus)
2802                         break;
2803
2804                 if (index < nr_cpus % nr_msix)
2805                         group++;
2806
2807                 for (i = 0 ; i < group ; i++) {
2808                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2809                         cpu = cpumask_next(cpu, cpu_online_mask);
2810                 }
2811                 index++;
2812         }
2813 }
2814
2815 /**
2816  * _base_disable_msix - disables msix
2817  * @ioc: per adapter object
2818  *
2819  */
2820 static void
2821 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2822 {
2823         if (!ioc->msix_enable)
2824                 return;
2825         pci_disable_msix(ioc->pdev);
2826         ioc->msix_enable = 0;
2827 }
2828
2829 /**
2830  * _base_enable_msix - enables msix, failback to io_apic
2831  * @ioc: per adapter object
2832  *
2833  */
2834 static int
2835 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2836 {
2837         int r;
2838         int i, local_max_msix_vectors;
2839         u8 try_msix = 0;
2840         unsigned int irq_flags = PCI_IRQ_MSIX;
2841
2842         if (msix_disable == -1 || msix_disable == 0)
2843                 try_msix = 1;
2844
2845         if (!try_msix)
2846                 goto try_ioapic;
2847
2848         if (_base_check_enable_msix(ioc) != 0)
2849                 goto try_ioapic;
2850
2851         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2852                 ioc->msix_vector_count);
2853
2854         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2855           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2856           ioc->cpu_count, max_msix_vectors);
2857
2858         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2859                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
2860         else
2861                 local_max_msix_vectors = max_msix_vectors;
2862
2863         if (local_max_msix_vectors > 0)
2864                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2865                         ioc->reply_queue_count);
2866         else if (local_max_msix_vectors == 0)
2867                 goto try_ioapic;
2868
2869         if (ioc->msix_vector_count < ioc->cpu_count)
2870                 smp_affinity_enable = 0;
2871
2872         if (smp_affinity_enable)
2873                 irq_flags |= PCI_IRQ_AFFINITY;
2874
2875         r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2876                                   irq_flags);
2877         if (r < 0) {
2878                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2879                         "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2880                         ioc->name, r));
2881                 goto try_ioapic;
2882         }
2883
2884         ioc->msix_enable = 1;
2885         ioc->reply_queue_count = r;
2886         for (i = 0; i < ioc->reply_queue_count; i++) {
2887                 r = _base_request_irq(ioc, i);
2888                 if (r) {
2889                         _base_free_irq(ioc);
2890                         _base_disable_msix(ioc);
2891                         goto try_ioapic;
2892                 }
2893         }
2894
2895         return 0;
2896
2897 /* failback to io_apic interrupt routing */
2898  try_ioapic:
2899
2900         ioc->reply_queue_count = 1;
2901         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2902         if (r < 0) {
2903                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2904                         "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2905                         ioc->name, r));
2906         } else
2907                 r = _base_request_irq(ioc, 0);
2908
2909         return r;
2910 }
2911
2912 /**
2913  * mpt3sas_base_unmap_resources - free controller resources
2914  * @ioc: per adapter object
2915  */
2916 static void
2917 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2918 {
2919         struct pci_dev *pdev = ioc->pdev;
2920
2921         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2922                 ioc->name, __func__));
2923
2924         _base_free_irq(ioc);
2925         _base_disable_msix(ioc);
2926
2927         if (ioc->combined_reply_queue) {
2928                 kfree(ioc->replyPostRegisterIndex);
2929                 ioc->replyPostRegisterIndex = NULL;
2930         }
2931
2932         if (ioc->chip_phys) {
2933                 iounmap(ioc->chip);
2934                 ioc->chip_phys = 0;
2935         }
2936
2937         if (pci_is_enabled(pdev)) {
2938                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2939                 pci_disable_pcie_error_reporting(pdev);
2940                 pci_disable_device(pdev);
2941         }
2942 }
2943
2944 /**
2945  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2946  * @ioc: per adapter object
2947  *
2948  * Returns 0 for success, non-zero for failure.
2949  */
2950 int
2951 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2952 {
2953         struct pci_dev *pdev = ioc->pdev;
2954         u32 memap_sz;
2955         u32 pio_sz;
2956         int i, r = 0;
2957         u64 pio_chip = 0;
2958         phys_addr_t chip_phys = 0;
2959         struct adapter_reply_queue *reply_q;
2960
2961         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2962             ioc->name, __func__));
2963
2964         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2965         if (pci_enable_device_mem(pdev)) {
2966                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2967                         ioc->name);
2968                 ioc->bars = 0;
2969                 return -ENODEV;
2970         }
2971
2972
2973         if (pci_request_selected_regions(pdev, ioc->bars,
2974             ioc->driver_name)) {
2975                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2976                         ioc->name);
2977                 ioc->bars = 0;
2978                 r = -ENODEV;
2979                 goto out_fail;
2980         }
2981
2982 /* AER (Advanced Error Reporting) hooks */
2983         pci_enable_pcie_error_reporting(pdev);
2984
2985         pci_set_master(pdev);
2986
2987
2988         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2989                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2990                     ioc->name, pci_name(pdev));
2991                 r = -ENODEV;
2992                 goto out_fail;
2993         }
2994
2995         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2996              (!memap_sz || !pio_sz); i++) {
2997                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2998                         if (pio_sz)
2999                                 continue;
3000                         pio_chip = (u64)pci_resource_start(pdev, i);
3001                         pio_sz = pci_resource_len(pdev, i);
3002                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3003                         if (memap_sz)
3004                                 continue;
3005                         ioc->chip_phys = pci_resource_start(pdev, i);
3006                         chip_phys = ioc->chip_phys;
3007                         memap_sz = pci_resource_len(pdev, i);
3008                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3009                 }
3010         }
3011
3012         if (ioc->chip == NULL) {
3013                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
3014                         " or resource not found\n", ioc->name);
3015                 r = -EINVAL;
3016                 goto out_fail;
3017         }
3018
3019         _base_mask_interrupts(ioc);
3020
3021         r = _base_get_ioc_facts(ioc);
3022         if (r)
3023                 goto out_fail;
3024
3025         if (!ioc->rdpq_array_enable_assigned) {
3026                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3027                 ioc->rdpq_array_enable_assigned = 1;
3028         }
3029
3030         r = _base_enable_msix(ioc);
3031         if (r)
3032                 goto out_fail;
3033
3034         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3035          * revision HBAs and also only when reply queue count is greater than 8
3036          */
3037         if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
3038                 /* Determine the Supplemental Reply Post Host Index Registers
3039                  * Addresse. Supplemental Reply Post Host Index Registers
3040                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3041                  * each register is at offset bytes of
3042                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3043                  */
3044                 ioc->replyPostRegisterIndex = kcalloc(
3045                      ioc->combined_reply_index_count,
3046                      sizeof(resource_size_t *), GFP_KERNEL);
3047                 if (!ioc->replyPostRegisterIndex) {
3048                         dfailprintk(ioc, printk(MPT3SAS_FMT
3049                         "allocation for reply Post Register Index failed!!!\n",
3050                                                                    ioc->name));
3051                         r = -ENOMEM;
3052                         goto out_fail;
3053                 }
3054
3055                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3056                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3057                              ((u8 __force *)&ioc->chip->Doorbell +
3058                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3059                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3060                 }
3061         } else
3062                 ioc->combined_reply_queue = 0;
3063
3064         if (ioc->is_warpdrive) {
3065                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3066                     &ioc->chip->ReplyPostHostIndex;
3067
3068                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3069                         ioc->reply_post_host_index[i] =
3070                         (resource_size_t __iomem *)
3071                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3072                         * 4)));
3073         }
3074
3075         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3076                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
3077                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
3078                     "IO-APIC enabled"),
3079                     pci_irq_vector(ioc->pdev, reply_q->msix_index));
3080
3081         pr_info(MPT3SAS_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
3082             ioc->name, &chip_phys, ioc->chip, memap_sz);
3083         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
3084             ioc->name, (unsigned long long)pio_chip, pio_sz);
3085
3086         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3087         pci_save_state(pdev);
3088         return 0;
3089
3090  out_fail:
3091         mpt3sas_base_unmap_resources(ioc);
3092         return r;
3093 }
3094
3095 /**
3096  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3097  * @ioc: per adapter object
3098  * @smid: system request message index(smid zero is invalid)
3099  *
3100  * Returns virt pointer to message frame.
3101  */
3102 void *
3103 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3104 {
3105         return (void *)(ioc->request + (smid * ioc->request_sz));
3106 }
3107
3108 /**
3109  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3110  * @ioc: per adapter object
3111  * @smid: system request message index
3112  *
3113  * Returns virt pointer to sense buffer.
3114  */
3115 void *
3116 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3117 {
3118         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3119 }
3120
3121 /**
3122  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3123  * @ioc: per adapter object
3124  * @smid: system request message index
3125  *
3126  * Returns phys pointer to the low 32bit address of the sense buffer.
3127  */
3128 __le32
3129 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3130 {
3131         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3132             SCSI_SENSE_BUFFERSIZE));
3133 }
3134
3135 /**
3136  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3137  * @ioc: per adapter object
3138  * @smid: system request message index
3139  *
3140  * Returns virt pointer to a PCIe SGL.
3141  */
3142 void *
3143 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3144 {
3145         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3146 }
3147
3148 /**
3149  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3150  * @ioc: per adapter object
3151  * @smid: system request message index
3152  *
3153  * Returns phys pointer to the address of the PCIe buffer.
3154  */
3155 dma_addr_t
3156 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3157 {
3158         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3159 }
3160
3161 /**
3162  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3163  * @ioc: per adapter object
3164  * @phys_addr: lower 32 physical addr of the reply
3165  *
3166  * Converts 32bit lower physical addr into a virt address.
3167  */
3168 void *
3169 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3170 {
3171         if (!phys_addr)
3172                 return NULL;
3173         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3174 }
3175
3176 static inline u8
3177 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3178 {
3179         return ioc->cpu_msix_table[raw_smp_processor_id()];
3180 }
3181
3182 /**
3183  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3184  * @ioc: per adapter object
3185  * @cb_idx: callback index
3186  *
3187  * Returns smid (zero is invalid)
3188  */
3189 u16
3190 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3191 {
3192         unsigned long flags;
3193         struct request_tracker *request;
3194         u16 smid;
3195
3196         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3197         if (list_empty(&ioc->internal_free_list)) {
3198                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3199                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
3200                     ioc->name, __func__);
3201                 return 0;
3202         }
3203
3204         request = list_entry(ioc->internal_free_list.next,
3205             struct request_tracker, tracker_list);
3206         request->cb_idx = cb_idx;
3207         smid = request->smid;
3208         list_del(&request->tracker_list);
3209         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3210         return smid;
3211 }
3212
3213 /**
3214  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3215  * @ioc: per adapter object
3216  * @cb_idx: callback index
3217  * @scmd: pointer to scsi command object
3218  *
3219  * Returns smid (zero is invalid)
3220  */
3221 u16
3222 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3223         struct scsi_cmnd *scmd)
3224 {
3225         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3226         unsigned int tag = scmd->request->tag;
3227         u16 smid;
3228
3229         smid = tag + 1;
3230         request->cb_idx = cb_idx;
3231         request->msix_io = _base_get_msix_index(ioc);
3232         request->smid = smid;
3233         INIT_LIST_HEAD(&request->chain_list);
3234         return smid;
3235 }
3236
3237 /**
3238  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3239  * @ioc: per adapter object
3240  * @cb_idx: callback index
3241  *
3242  * Returns smid (zero is invalid)
3243  */
3244 u16
3245 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3246 {
3247         unsigned long flags;
3248         struct request_tracker *request;
3249         u16 smid;
3250
3251         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3252         if (list_empty(&ioc->hpr_free_list)) {
3253                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3254                 return 0;
3255         }
3256
3257         request = list_entry(ioc->hpr_free_list.next,
3258             struct request_tracker, tracker_list);
3259         request->cb_idx = cb_idx;
3260         smid = request->smid;
3261         list_del(&request->tracker_list);
3262         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3263         return smid;
3264 }
3265
3266 static void
3267 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3268 {
3269         /*
3270          * See _wait_for_commands_to_complete() call with regards to this code.
3271          */
3272         if (ioc->shost_recovery && ioc->pending_io_count) {
3273                 ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
3274                 if (ioc->pending_io_count == 0)
3275                         wake_up(&ioc->reset_wq);
3276         }
3277 }
3278
3279 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3280                            struct scsiio_tracker *st)
3281 {
3282         if (WARN_ON(st->smid == 0))
3283                 return;
3284         st->cb_idx = 0xFF;
3285         st->direct_io = 0;
3286         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3287 }
3288
3289 /**
3290  * mpt3sas_base_free_smid - put smid back on free_list
3291  * @ioc: per adapter object
3292  * @smid: system request message index
3293  *
3294  * Return nothing.
3295  */
3296 void
3297 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3298 {
3299         unsigned long flags;
3300         int i;
3301
3302         if (smid < ioc->hi_priority_smid) {
3303                 struct scsiio_tracker *st;
3304
3305                 st = _get_st_from_smid(ioc, smid);
3306                 if (!st) {
3307                         _base_recovery_check(ioc);
3308                         return;
3309                 }
3310                 mpt3sas_base_clear_st(ioc, st);
3311                 _base_recovery_check(ioc);
3312                 return;
3313         }
3314
3315         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3316         if (smid < ioc->internal_smid) {
3317                 /* hi-priority */
3318                 i = smid - ioc->hi_priority_smid;
3319                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3320                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3321         } else if (smid <= ioc->hba_queue_depth) {
3322                 /* internal queue */
3323                 i = smid - ioc->internal_smid;
3324                 ioc->internal_lookup[i].cb_idx = 0xFF;
3325                 list_add(&ioc->internal_lookup[i].tracker_list,
3326                     &ioc->internal_free_list);
3327         }
3328         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3329 }
3330
3331 /**
3332  * _base_mpi_ep_writeq - 32 bit write to MMIO
3333  * @b: data payload
3334  * @addr: address in MMIO space
3335  * @writeq_lock: spin lock
3336  *
3337  * This special handling for MPI EP to take care of 32 bit
3338  * environment where its not quarenteed to send the entire word
3339  * in one transfer.
3340  */
3341 static inline void
3342 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3343                                         spinlock_t *writeq_lock)
3344 {
3345         unsigned long flags;
3346         __u64 data_out = b;
3347
3348         spin_lock_irqsave(writeq_lock, flags);
3349         writel((u32)(data_out), addr);
3350         writel((u32)(data_out >> 32), (addr + 4));
3351         spin_unlock_irqrestore(writeq_lock, flags);
3352 }
3353
3354 /**
3355  * _base_writeq - 64 bit write to MMIO
3356  * @ioc: per adapter object
3357  * @b: data payload
3358  * @addr: address in MMIO space
3359  * @writeq_lock: spin lock
3360  *
3361  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3362  * care of 32 bit environment where its not quarenteed to send the entire word
3363  * in one transfer.
3364  */
3365 #if defined(writeq) && defined(CONFIG_64BIT)
3366 static inline void
3367 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3368 {
3369         writeq(b, addr);
3370 }
3371 #else
3372 static inline void
3373 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3374 {
3375         _base_mpi_ep_writeq(b, addr, writeq_lock);
3376 }
3377 #endif
3378
3379 /**
3380  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3381  * @ioc: per adapter object
3382  * @smid: system request message index
3383  * @handle: device handle
3384  *
3385  * Return nothing.
3386  */
3387 static void
3388 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3389 {
3390         Mpi2RequestDescriptorUnion_t descriptor;
3391         u64 *request = (u64 *)&descriptor;
3392         void *mpi_req_iomem;
3393         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3394
3395         _clone_sg_entries(ioc, (void *) mfp, smid);
3396         mpi_req_iomem = (void __force *)ioc->chip +
3397                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3398         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3399                                         ioc->request_sz);
3400         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3401         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3402         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3403         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3404         descriptor.SCSIIO.LMID = 0;
3405         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3406             &ioc->scsi_lookup_lock);
3407 }
3408
3409 /**
3410  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3411  * @ioc: per adapter object
3412  * @smid: system request message index
3413  * @handle: device handle
3414  *
3415  * Return nothing.
3416  */
3417 static void
3418 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3419 {
3420         Mpi2RequestDescriptorUnion_t descriptor;
3421         u64 *request = (u64 *)&descriptor;
3422
3423
3424         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3425         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3426         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3427         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3428         descriptor.SCSIIO.LMID = 0;
3429         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3430             &ioc->scsi_lookup_lock);
3431 }
3432
3433 /**
3434  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3435  * @ioc: per adapter object
3436  * @smid: system request message index
3437  * @handle: device handle
3438  *
3439  * Return nothing.
3440  */
3441 void
3442 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3443         u16 handle)
3444 {
3445         Mpi2RequestDescriptorUnion_t descriptor;
3446         u64 *request = (u64 *)&descriptor;
3447
3448         descriptor.SCSIIO.RequestFlags =
3449             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3450         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3451         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3452         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3453         descriptor.SCSIIO.LMID = 0;
3454         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3455             &ioc->scsi_lookup_lock);
3456 }
3457
3458 /**
3459  * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3460  * @ioc: per adapter object
3461  * @smid: system request message index
3462  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3463  * Return nothing.
3464  */
3465 void
3466 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3467         u16 msix_task)
3468 {
3469         Mpi2RequestDescriptorUnion_t descriptor;
3470         void *mpi_req_iomem;
3471         u64 *request;
3472
3473         if (ioc->is_mcpu_endpoint) {
3474                 MPI2RequestHeader_t *request_hdr;
3475
3476                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3477
3478                 request_hdr = (MPI2RequestHeader_t *)mfp;
3479                 /* TBD 256 is offset within sys register. */
3480                 mpi_req_iomem = (void __force *)ioc->chip
3481                                         + MPI_FRAME_START_OFFSET
3482                                         + (smid * ioc->request_sz);
3483                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3484                                                         ioc->request_sz);
3485         }
3486
3487         request = (u64 *)&descriptor;
3488
3489         descriptor.HighPriority.RequestFlags =
3490             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3491         descriptor.HighPriority.MSIxIndex =  msix_task;
3492         descriptor.HighPriority.SMID = cpu_to_le16(smid);
3493         descriptor.HighPriority.LMID = 0;
3494         descriptor.HighPriority.Reserved1 = 0;
3495         if (ioc->is_mcpu_endpoint)
3496                 _base_mpi_ep_writeq(*request,
3497                                 &ioc->chip->RequestDescriptorPostLow,
3498                                 &ioc->scsi_lookup_lock);
3499         else
3500                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3501                     &ioc->scsi_lookup_lock);
3502 }
3503
3504 /**
3505  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3506  *  firmware
3507  * @ioc: per adapter object
3508  * @smid: system request message index
3509  *
3510  * Return nothing.
3511  */
3512 void
3513 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3514 {
3515         Mpi2RequestDescriptorUnion_t descriptor;
3516         u64 *request = (u64 *)&descriptor;
3517
3518         descriptor.Default.RequestFlags =
3519                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3520         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3521         descriptor.Default.SMID = cpu_to_le16(smid);
3522         descriptor.Default.LMID = 0;
3523         descriptor.Default.DescriptorTypeDependent = 0;
3524         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3525             &ioc->scsi_lookup_lock);
3526 }
3527
3528 /**
3529  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3530  * @ioc: per adapter object
3531  * @smid: system request message index
3532  *
3533  * Return nothing.
3534  */
3535 void
3536 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3537 {
3538         Mpi2RequestDescriptorUnion_t descriptor;
3539         void *mpi_req_iomem;
3540         u64 *request;
3541         MPI2RequestHeader_t *request_hdr;
3542
3543         if (ioc->is_mcpu_endpoint) {
3544                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3545
3546                 request_hdr = (MPI2RequestHeader_t *)mfp;
3547
3548                 _clone_sg_entries(ioc, (void *) mfp, smid);
3549                 /* TBD 256 is offset within sys register */
3550                 mpi_req_iomem = (void __force *)ioc->chip +
3551                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3552                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3553                                                         ioc->request_sz);
3554         }
3555         request = (u64 *)&descriptor;
3556         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3557         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3558         descriptor.Default.SMID = cpu_to_le16(smid);
3559         descriptor.Default.LMID = 0;
3560         descriptor.Default.DescriptorTypeDependent = 0;
3561         if (ioc->is_mcpu_endpoint)
3562                 _base_mpi_ep_writeq(*request,
3563                                 &ioc->chip->RequestDescriptorPostLow,
3564                                 &ioc->scsi_lookup_lock);
3565         else
3566                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3567                                 &ioc->scsi_lookup_lock);
3568 }
3569
3570 /**
3571  * _base_display_OEMs_branding - Display branding string
3572  * @ioc: per adapter object
3573  *
3574  * Return nothing.
3575  */
3576 static void
3577 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3578 {
3579         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3580                 return;
3581
3582         switch (ioc->pdev->subsystem_vendor) {
3583         case PCI_VENDOR_ID_INTEL:
3584                 switch (ioc->pdev->device) {
3585                 case MPI2_MFGPAGE_DEVID_SAS2008:
3586                         switch (ioc->pdev->subsystem_device) {
3587                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
3588                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3589                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
3590                                 break;
3591                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
3592                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3593                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
3594                                 break;
3595                         case MPT2SAS_INTEL_SSD910_SSDID:
3596                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3597                                     MPT2SAS_INTEL_SSD910_BRANDING);
3598                                 break;
3599                         default:
3600                                 pr_info(MPT3SAS_FMT
3601                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3602                                  ioc->name, ioc->pdev->subsystem_device);
3603                                 break;
3604                         }
3605                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3606                         switch (ioc->pdev->subsystem_device) {
3607                         case MPT2SAS_INTEL_RS25GB008_SSDID:
3608                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3609                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
3610                                 break;
3611                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
3612                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3613                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
3614                                 break;
3615                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
3616                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3617                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
3618                                 break;
3619                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
3620                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3621                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
3622                                 break;
3623                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
3624                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3625                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
3626                                 break;
3627                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
3628                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3629                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
3630                                 break;
3631                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
3632                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3633                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
3634                                 break;
3635                         default:
3636                                 pr_info(MPT3SAS_FMT
3637                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3638                                  ioc->name, ioc->pdev->subsystem_device);
3639                                 break;
3640                         }
3641                 case MPI25_MFGPAGE_DEVID_SAS3008:
3642                         switch (ioc->pdev->subsystem_device) {
3643                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
3644                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3645                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
3646                                 break;
3647
3648                         case MPT3SAS_INTEL_RS3GC008_SSDID:
3649                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3650                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
3651                                 break;
3652                         case MPT3SAS_INTEL_RS3FC044_SSDID:
3653                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3654                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
3655                                 break;
3656                         case MPT3SAS_INTEL_RS3UC080_SSDID:
3657                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3658                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
3659                                 break;
3660                         default:
3661                                 pr_info(MPT3SAS_FMT
3662                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3663                                  ioc->name, ioc->pdev->subsystem_device);
3664                                 break;
3665                         }
3666                         break;
3667                 default:
3668                         pr_info(MPT3SAS_FMT
3669                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
3670                          ioc->name, ioc->pdev->subsystem_device);
3671                         break;
3672                 }
3673                 break;
3674         case PCI_VENDOR_ID_DELL:
3675                 switch (ioc->pdev->device) {
3676                 case MPI2_MFGPAGE_DEVID_SAS2008:
3677                         switch (ioc->pdev->subsystem_device) {
3678                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3679                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3680                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3681                                 break;
3682                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3683                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3684                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3685                                 break;
3686                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3687                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3688                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3689                                 break;
3690                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3691                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3692                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3693                                 break;
3694                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3695                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3696                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3697                                 break;
3698                         case MPT2SAS_DELL_PERC_H200_SSDID:
3699                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3700                                  MPT2SAS_DELL_PERC_H200_BRANDING);
3701                                 break;
3702                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3703                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3704                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3705                                 break;
3706                         default:
3707                                 pr_info(MPT3SAS_FMT
3708                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3709                                    ioc->name, ioc->pdev->subsystem_device);
3710                                 break;
3711                         }
3712                         break;
3713                 case MPI25_MFGPAGE_DEVID_SAS3008:
3714                         switch (ioc->pdev->subsystem_device) {
3715                         case MPT3SAS_DELL_12G_HBA_SSDID:
3716                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3717                                         MPT3SAS_DELL_12G_HBA_BRANDING);
3718                                 break;
3719                         default:
3720                                 pr_info(MPT3SAS_FMT
3721                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3722                                    ioc->name, ioc->pdev->subsystem_device);
3723                                 break;
3724                         }
3725                         break;
3726                 default:
3727                         pr_info(MPT3SAS_FMT
3728                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3729                            ioc->pdev->subsystem_device);
3730                         break;
3731                 }
3732                 break;
3733         case PCI_VENDOR_ID_CISCO:
3734                 switch (ioc->pdev->device) {
3735                 case MPI25_MFGPAGE_DEVID_SAS3008:
3736                         switch (ioc->pdev->subsystem_device) {
3737                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3738                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3739                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3740                                 break;
3741                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3742                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3743                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3744                                 break;
3745                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3746                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3747                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3748                                 break;
3749                         default:
3750                                 pr_info(MPT3SAS_FMT
3751                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3752                                   ioc->name, ioc->pdev->subsystem_device);
3753                                 break;
3754                         }
3755                         break;
3756                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
3757                         switch (ioc->pdev->subsystem_device) {
3758                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3759                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3760                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3761                                 break;
3762                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3763                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3764                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3765                                 );
3766                                 break;
3767                         default:
3768                                 pr_info(MPT3SAS_FMT
3769                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3770                                  ioc->name, ioc->pdev->subsystem_device);
3771                                 break;
3772                         }
3773                         break;
3774                 default:
3775                         pr_info(MPT3SAS_FMT
3776                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3777                            ioc->name, ioc->pdev->subsystem_device);
3778                         break;
3779                 }
3780                 break;
3781         case MPT2SAS_HP_3PAR_SSVID:
3782                 switch (ioc->pdev->device) {
3783                 case MPI2_MFGPAGE_DEVID_SAS2004:
3784                         switch (ioc->pdev->subsystem_device) {
3785                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3786                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3787                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3788                                 break;
3789                         default:
3790                                 pr_info(MPT3SAS_FMT
3791                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3792                                    ioc->name, ioc->pdev->subsystem_device);
3793                                 break;
3794                         }
3795                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3796                         switch (ioc->pdev->subsystem_device) {
3797                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3798                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3799                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3800                                 break;
3801                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3802                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3803                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3804                                 break;
3805                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3806                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3807                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3808                                 break;
3809                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3810                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3811                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3812                                 break;
3813                         default:
3814                                 pr_info(MPT3SAS_FMT
3815                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3816                                    ioc->name, ioc->pdev->subsystem_device);
3817                                 break;
3818                         }
3819                 default:
3820                         pr_info(MPT3SAS_FMT
3821                            "HP SAS HBA: Subsystem ID: 0x%X\n",
3822                            ioc->name, ioc->pdev->subsystem_device);
3823                         break;
3824                 }
3825         default:
3826                 break;
3827         }
3828 }
3829
3830 /**
3831  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3832  *                              version from FW Image Header.
3833  * @ioc: per adapter object
3834  *
3835  * Returns 0 for success, non-zero for failure.
3836  */
3837         static int
3838 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3839 {
3840         Mpi2FWImageHeader_t *FWImgHdr;
3841         Mpi25FWUploadRequest_t *mpi_request;
3842         Mpi2FWUploadReply_t mpi_reply;
3843         int r = 0;
3844         void *fwpkg_data = NULL;
3845         dma_addr_t fwpkg_data_dma;
3846         u16 smid, ioc_status;
3847         size_t data_length;
3848
3849         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3850                                 __func__));
3851
3852         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3853                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3854                                 ioc->name, __func__);
3855                 return -EAGAIN;
3856         }
3857
3858         data_length = sizeof(Mpi2FWImageHeader_t);
3859         fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
3860                         &fwpkg_data_dma);
3861         if (!fwpkg_data) {
3862                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3863                                 ioc->name, __FILE__, __LINE__, __func__);
3864                 return -ENOMEM;
3865         }
3866
3867         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3868         if (!smid) {
3869                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3870                                 ioc->name, __func__);
3871                 r = -EAGAIN;
3872                 goto out;
3873         }
3874
3875         ioc->base_cmds.status = MPT3_CMD_PENDING;
3876         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3877         ioc->base_cmds.smid = smid;
3878         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3879         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3880         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3881         mpi_request->ImageSize = cpu_to_le32(data_length);
3882         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3883                         data_length);
3884         init_completion(&ioc->base_cmds.done);
3885         mpt3sas_base_put_smid_default(ioc, smid);
3886         /* Wait for 15 seconds */
3887         wait_for_completion_timeout(&ioc->base_cmds.done,
3888                         FW_IMG_HDR_READ_TIMEOUT*HZ);
3889         pr_info(MPT3SAS_FMT "%s: complete\n",
3890                         ioc->name, __func__);
3891         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3892                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3893                                 ioc->name, __func__);
3894                 _debug_dump_mf(mpi_request,
3895                                 sizeof(Mpi25FWUploadRequest_t)/4);
3896                 r = -ETIME;
3897         } else {
3898                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3899                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3900                         memcpy(&mpi_reply, ioc->base_cmds.reply,
3901                                         sizeof(Mpi2FWUploadReply_t));
3902                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3903                                                 MPI2_IOCSTATUS_MASK;
3904                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3905                                 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3906                                 if (FWImgHdr->PackageVersion.Word) {
3907                                         pr_info(MPT3SAS_FMT "FW Package Version"
3908                                         "(%02d.%02d.%02d.%02d)\n",
3909                                         ioc->name,
3910                                         FWImgHdr->PackageVersion.Struct.Major,
3911                                         FWImgHdr->PackageVersion.Struct.Minor,
3912                                         FWImgHdr->PackageVersion.Struct.Unit,
3913                                         FWImgHdr->PackageVersion.Struct.Dev);
3914                                 }
3915                         } else {
3916                                 _debug_dump_mf(&mpi_reply,
3917                                                 sizeof(Mpi2FWUploadReply_t)/4);
3918                         }
3919                 }
3920         }
3921         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3922 out:
3923         if (fwpkg_data)
3924                 pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
3925                                 fwpkg_data_dma);
3926         return r;
3927 }
3928
3929 /**
3930  * _base_display_ioc_capabilities - Disply IOC's capabilities.
3931  * @ioc: per adapter object
3932  *
3933  * Return nothing.
3934  */
3935 static void
3936 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3937 {
3938         int i = 0;
3939         char desc[16];
3940         u32 iounit_pg1_flags;
3941         u32 bios_version;
3942
3943         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3944         strncpy(desc, ioc->manu_pg0.ChipName, 16);
3945         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3946            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3947             ioc->name, desc,
3948            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3949            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3950            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3951            ioc->facts.FWVersion.Word & 0x000000FF,
3952            ioc->pdev->revision,
3953            (bios_version & 0xFF000000) >> 24,
3954            (bios_version & 0x00FF0000) >> 16,
3955            (bios_version & 0x0000FF00) >> 8,
3956             bios_version & 0x000000FF);
3957
3958         _base_display_OEMs_branding(ioc);
3959
3960         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3961                 pr_info("%sNVMe", i ? "," : "");
3962                 i++;
3963         }
3964
3965         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3966
3967         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3968                 pr_info("Initiator");
3969                 i++;
3970         }
3971
3972         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3973                 pr_info("%sTarget", i ? "," : "");
3974                 i++;
3975         }
3976
3977         i = 0;
3978         pr_info("), ");
3979         pr_info("Capabilities=(");
3980
3981         if (!ioc->hide_ir_msg) {
3982                 if (ioc->facts.IOCCapabilities &
3983                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3984                         pr_info("Raid");
3985                         i++;
3986                 }
3987         }
3988
3989         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3990                 pr_info("%sTLR", i ? "," : "");
3991                 i++;
3992         }
3993
3994         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3995                 pr_info("%sMulticast", i ? "," : "");
3996                 i++;
3997         }
3998
3999         if (ioc->facts.IOCCapabilities &
4000             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4001                 pr_info("%sBIDI Target", i ? "," : "");
4002                 i++;
4003         }
4004
4005         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4006                 pr_info("%sEEDP", i ? "," : "");
4007                 i++;
4008         }
4009
4010         if (ioc->facts.IOCCapabilities &
4011             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4012                 pr_info("%sSnapshot Buffer", i ? "," : "");
4013                 i++;
4014         }
4015
4016         if (ioc->facts.IOCCapabilities &
4017             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4018                 pr_info("%sDiag Trace Buffer", i ? "," : "");
4019                 i++;
4020         }
4021
4022         if (ioc->facts.IOCCapabilities &
4023             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4024                 pr_info("%sDiag Extended Buffer", i ? "," : "");
4025                 i++;
4026         }
4027
4028         if (ioc->facts.IOCCapabilities &
4029             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4030                 pr_info("%sTask Set Full", i ? "," : "");
4031                 i++;
4032         }
4033
4034         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4035         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4036                 pr_info("%sNCQ", i ? "," : "");
4037                 i++;
4038         }
4039
4040         pr_info(")\n");
4041 }
4042
4043 /**
4044  * mpt3sas_base_update_missing_delay - change the missing delay timers
4045  * @ioc: per adapter object
4046  * @device_missing_delay: amount of time till device is reported missing
4047  * @io_missing_delay: interval IO is returned when there is a missing device
4048  *
4049  * Return nothing.
4050  *
4051  * Passed on the command line, this function will modify the device missing
4052  * delay, as well as the io missing delay. This should be called at driver
4053  * load time.
4054  */
4055 void
4056 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4057         u16 device_missing_delay, u8 io_missing_delay)
4058 {
4059         u16 dmd, dmd_new, dmd_orignal;
4060         u8 io_missing_delay_original;
4061         u16 sz;
4062         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4063         Mpi2ConfigReply_t mpi_reply;
4064         u8 num_phys = 0;
4065         u16 ioc_status;
4066
4067         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4068         if (!num_phys)
4069                 return;
4070
4071         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4072             sizeof(Mpi2SasIOUnit1PhyData_t));
4073         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4074         if (!sas_iounit_pg1) {
4075                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4076                     ioc->name, __FILE__, __LINE__, __func__);
4077                 goto out;
4078         }
4079         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4080             sas_iounit_pg1, sz))) {
4081                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4082                     ioc->name, __FILE__, __LINE__, __func__);
4083                 goto out;
4084         }
4085         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4086             MPI2_IOCSTATUS_MASK;
4087         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4088                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4089                     ioc->name, __FILE__, __LINE__, __func__);
4090                 goto out;
4091         }
4092
4093         /* device missing delay */
4094         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4095         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4096                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4097         else
4098                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4099         dmd_orignal = dmd;
4100         if (device_missing_delay > 0x7F) {
4101                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4102                     device_missing_delay;
4103                 dmd = dmd / 16;
4104                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4105         } else
4106                 dmd = device_missing_delay;
4107         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4108
4109         /* io missing delay */
4110         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4111         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4112
4113         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4114             sz)) {
4115                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4116                         dmd_new = (dmd &
4117                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4118                 else
4119                         dmd_new =
4120                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4121                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
4122                         ioc->name, dmd_orignal, dmd_new);
4123                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
4124                         ioc->name, io_missing_delay_original,
4125                     io_missing_delay);
4126                 ioc->device_missing_delay = dmd_new;
4127                 ioc->io_missing_delay = io_missing_delay;
4128         }
4129
4130 out:
4131         kfree(sas_iounit_pg1);
4132 }
4133 /**
4134  * _base_static_config_pages - static start of day config pages
4135  * @ioc: per adapter object
4136  *
4137  * Return nothing.
4138  */
4139 static void
4140 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4141 {
4142         Mpi2ConfigReply_t mpi_reply;
4143         u32 iounit_pg1_flags;
4144
4145         ioc->nvme_abort_timeout = 30;
4146         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4147         if (ioc->ir_firmware)
4148                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4149                     &ioc->manu_pg10);
4150
4151         /*
4152          * Ensure correct T10 PI operation if vendor left EEDPTagMode
4153          * flag unset in NVDATA.
4154          */
4155         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4156         if (ioc->manu_pg11.EEDPTagMode == 0) {
4157                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4158                     ioc->name);
4159                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4160                 ioc->manu_pg11.EEDPTagMode |= 0x1;
4161                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4162                     &ioc->manu_pg11);
4163         }
4164         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4165                 ioc->tm_custom_handling = 1;
4166         else {
4167                 ioc->tm_custom_handling = 0;
4168                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4169                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4170                 else if (ioc->manu_pg11.NVMeAbortTO >
4171                                         NVME_TASK_ABORT_MAX_TIMEOUT)
4172                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4173                 else
4174                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4175         }
4176
4177         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4178         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4179         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4180         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4181         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4182         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4183         _base_display_ioc_capabilities(ioc);
4184
4185         /*
4186          * Enable task_set_full handling in iounit_pg1 when the
4187          * facts capabilities indicate that its supported.
4188          */
4189         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4190         if ((ioc->facts.IOCCapabilities &
4191             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4192                 iounit_pg1_flags &=
4193                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4194         else
4195                 iounit_pg1_flags |=
4196                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4197         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4198         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4199
4200         if (ioc->iounit_pg8.NumSensors)
4201                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4202 }
4203
4204 /**
4205  * mpt3sas_free_enclosure_list - release memory
4206  * @ioc: per adapter object
4207  *
4208  * Free memory allocated during encloure add.
4209  *
4210  * Return nothing.
4211  */
4212 void
4213 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4214 {
4215         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4216
4217         /* Free enclosure list */
4218         list_for_each_entry_safe(enclosure_dev,
4219                         enclosure_dev_next, &ioc->enclosure_list, list) {
4220                 list_del(&enclosure_dev->list);
4221                 kfree(enclosure_dev);
4222         }
4223 }
4224
4225 /**
4226  * _base_release_memory_pools - release memory
4227  * @ioc: per adapter object
4228  *
4229  * Free memory allocated from _base_allocate_memory_pools.
4230  *
4231  * Return nothing.
4232  */
4233 static void
4234 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4235 {
4236         int i = 0;
4237         int j = 0;
4238         struct chain_tracker *ct;
4239         struct reply_post_struct *rps;
4240
4241         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4242             __func__));
4243
4244         if (ioc->request) {
4245                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4246                     ioc->request,  ioc->request_dma);
4247                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4248                         "request_pool(0x%p): free\n",
4249                         ioc->name, ioc->request));
4250                 ioc->request = NULL;
4251         }
4252
4253         if (ioc->sense) {
4254                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4255                 dma_pool_destroy(ioc->sense_dma_pool);
4256                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4257                         "sense_pool(0x%p): free\n",
4258                         ioc->name, ioc->sense));
4259                 ioc->sense = NULL;
4260         }
4261
4262         if (ioc->reply) {
4263                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4264                 dma_pool_destroy(ioc->reply_dma_pool);
4265                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4266                         "reply_pool(0x%p): free\n",
4267                         ioc->name, ioc->reply));
4268                 ioc->reply = NULL;
4269         }
4270
4271         if (ioc->reply_free) {
4272                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4273                     ioc->reply_free_dma);
4274                 dma_pool_destroy(ioc->reply_free_dma_pool);
4275                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4276                         "reply_free_pool(0x%p): free\n",
4277                         ioc->name, ioc->reply_free));
4278                 ioc->reply_free = NULL;
4279         }
4280
4281         if (ioc->reply_post) {
4282                 do {
4283                         rps = &ioc->reply_post[i];
4284                         if (rps->reply_post_free) {
4285                                 dma_pool_free(
4286                                     ioc->reply_post_free_dma_pool,
4287                                     rps->reply_post_free,
4288                                     rps->reply_post_free_dma);
4289                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4290                                     "reply_post_free_pool(0x%p): free\n",
4291                                     ioc->name, rps->reply_post_free));
4292                                 rps->reply_post_free = NULL;
4293                         }
4294                 } while (ioc->rdpq_array_enable &&
4295                            (++i < ioc->reply_queue_count));
4296                 if (ioc->reply_post_free_array &&
4297                         ioc->rdpq_array_enable) {
4298                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
4299                                 ioc->reply_post_free_array,
4300                                 ioc->reply_post_free_array_dma);
4301                         ioc->reply_post_free_array = NULL;
4302                 }
4303                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4304                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4305                 kfree(ioc->reply_post);
4306         }
4307
4308         if (ioc->pcie_sgl_dma_pool) {
4309                 for (i = 0; i < ioc->scsiio_depth; i++) {
4310                         dma_pool_free(ioc->pcie_sgl_dma_pool,
4311                                         ioc->pcie_sg_lookup[i].pcie_sgl,
4312                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4313                 }
4314                 if (ioc->pcie_sgl_dma_pool)
4315                         dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4316         }
4317
4318         if (ioc->config_page) {
4319                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4320                     "config_page(0x%p): free\n", ioc->name,
4321                     ioc->config_page));
4322                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4323                     ioc->config_page, ioc->config_page_dma);
4324         }
4325
4326         kfree(ioc->hpr_lookup);
4327         kfree(ioc->internal_lookup);
4328         if (ioc->chain_lookup) {
4329                 for (i = 0; i < ioc->scsiio_depth; i++) {
4330                         for (j = ioc->chains_per_prp_buffer;
4331                             j < ioc->chains_needed_per_io; j++) {
4332                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4333                                 if (ct && ct->chain_buffer)
4334                                         dma_pool_free(ioc->chain_dma_pool,
4335                                                 ct->chain_buffer,
4336                                                 ct->chain_buffer_dma);
4337                         }
4338                         kfree(ioc->chain_lookup[i].chains_per_smid);
4339                 }
4340                 dma_pool_destroy(ioc->chain_dma_pool);
4341                 kfree(ioc->chain_lookup);
4342                 ioc->chain_lookup = NULL;
4343         }
4344 }
4345
4346 /**
4347  * is_MSB_are_same - checks whether all reply queues in a set are
4348  *      having same upper 32bits in their base memory address.
4349  * @reply_pool_start_address: Base address of a reply queue set
4350  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4351  *
4352  * Returns 1 if reply queues in a set have a same upper 32bits
4353  * in their base memory address,
4354  * else 0
4355  */
4356
4357 static int
4358 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4359 {
4360         long reply_pool_end_address;
4361
4362         reply_pool_end_address = reply_pool_start_address + pool_sz;
4363
4364         if (upper_32_bits(reply_pool_start_address) ==
4365                 upper_32_bits(reply_pool_end_address))
4366                 return 1;
4367         else
4368                 return 0;
4369 }
4370
4371 /**
4372  * _base_allocate_memory_pools - allocate start of day memory pools
4373  * @ioc: per adapter object
4374  *
4375  * Returns 0 success, anything else error
4376  */
4377 static int
4378 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4379 {
4380         struct mpt3sas_facts *facts;
4381         u16 max_sge_elements;
4382         u16 chains_needed_per_io;
4383         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4384         u32 retry_sz;
4385         u16 max_request_credit, nvme_blocks_needed;
4386         unsigned short sg_tablesize;
4387         u16 sge_size;
4388         int i, j;
4389         struct chain_tracker *ct;
4390
4391         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4392             __func__));
4393
4394
4395         retry_sz = 0;
4396         facts = &ioc->facts;
4397
4398         /* command line tunables for max sgl entries */
4399         if (max_sgl_entries != -1)
4400                 sg_tablesize = max_sgl_entries;
4401         else {
4402                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4403                         sg_tablesize = MPT2SAS_SG_DEPTH;
4404                 else
4405                         sg_tablesize = MPT3SAS_SG_DEPTH;
4406         }
4407
4408         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4409         if (reset_devices)
4410                 sg_tablesize = min_t(unsigned short, sg_tablesize,
4411                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
4412
4413         if (ioc->is_mcpu_endpoint)
4414                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4415         else {
4416                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4417                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4418                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4419                         sg_tablesize = min_t(unsigned short, sg_tablesize,
4420                                         SG_MAX_SEGMENTS);
4421                         pr_warn(MPT3SAS_FMT
4422                                 "sg_tablesize(%u) is bigger than kernel "
4423                                 "defined SG_CHUNK_SIZE(%u)\n", ioc->name,
4424                                 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4425                 }
4426                 ioc->shost->sg_tablesize = sg_tablesize;
4427         }
4428
4429         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4430                 (facts->RequestCredit / 4));
4431         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4432                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4433                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
4434                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
4435                             Credits, it has just %d number of credits\n",
4436                             ioc->name, facts->RequestCredit);
4437                         return -ENOMEM;
4438                 }
4439                 ioc->internal_depth = 10;
4440         }
4441
4442         ioc->hi_priority_depth = ioc->internal_depth - (5);
4443         /* command line tunables  for max controller queue depth */
4444         if (max_queue_depth != -1 && max_queue_depth != 0) {
4445                 max_request_credit = min_t(u16, max_queue_depth +
4446                         ioc->internal_depth, facts->RequestCredit);
4447                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4448                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4449         } else if (reset_devices)
4450                 max_request_credit = min_t(u16, facts->RequestCredit,
4451                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4452         else
4453                 max_request_credit = min_t(u16, facts->RequestCredit,
4454                     MAX_HBA_QUEUE_DEPTH);
4455
4456         /* Firmware maintains additional facts->HighPriorityCredit number of
4457          * credits for HiPriprity Request messages, so hba queue depth will be
4458          * sum of max_request_credit and high priority queue depth.
4459          */
4460         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4461
4462         /* request frame size */
4463         ioc->request_sz = facts->IOCRequestFrameSize * 4;
4464
4465         /* reply frame size */
4466         ioc->reply_sz = facts->ReplyFrameSize * 4;
4467
4468         /* chain segment size */
4469         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4470                 if (facts->IOCMaxChainSegmentSize)
4471                         ioc->chain_segment_sz =
4472                                         facts->IOCMaxChainSegmentSize *
4473                                         MAX_CHAIN_ELEMT_SZ;
4474                 else
4475                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4476                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4477                                                     MAX_CHAIN_ELEMT_SZ;
4478         } else
4479                 ioc->chain_segment_sz = ioc->request_sz;
4480
4481         /* calculate the max scatter element size */
4482         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4483
4484  retry_allocation:
4485         total_sz = 0;
4486         /* calculate number of sg elements left over in the 1st frame */
4487         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4488             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4489         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4490
4491         /* now do the same for a chain buffer */
4492         max_sge_elements = ioc->chain_segment_sz - sge_size;
4493         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4494
4495         /*
4496          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4497          */
4498         chains_needed_per_io = ((ioc->shost->sg_tablesize -
4499            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4500             + 1;
4501         if (chains_needed_per_io > facts->MaxChainDepth) {
4502                 chains_needed_per_io = facts->MaxChainDepth;
4503                 ioc->shost->sg_tablesize = min_t(u16,
4504                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4505                 * chains_needed_per_io), ioc->shost->sg_tablesize);
4506         }
4507         ioc->chains_needed_per_io = chains_needed_per_io;
4508
4509         /* reply free queue sizing - taking into account for 64 FW events */
4510         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4511
4512         /* mCPU manage single counters for simplicity */
4513         if (ioc->is_mcpu_endpoint)
4514                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4515         else {
4516                 /* calculate reply descriptor post queue depth */
4517                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4518                         ioc->reply_free_queue_depth +  1;
4519                 /* align the reply post queue on the next 16 count boundary */
4520                 if (ioc->reply_post_queue_depth % 16)
4521                         ioc->reply_post_queue_depth += 16 -
4522                                 (ioc->reply_post_queue_depth % 16);
4523         }
4524
4525         if (ioc->reply_post_queue_depth >
4526             facts->MaxReplyDescriptorPostQueueDepth) {
4527                 ioc->reply_post_queue_depth =
4528                                 facts->MaxReplyDescriptorPostQueueDepth -
4529                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
4530                 ioc->hba_queue_depth =
4531                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4532                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4533         }
4534
4535         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4536             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4537             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4538             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4539             ioc->chains_needed_per_io));
4540
4541         /* reply post queue, 16 byte align */
4542         reply_post_free_sz = ioc->reply_post_queue_depth *
4543             sizeof(Mpi2DefaultReplyDescriptor_t);
4544
4545         sz = reply_post_free_sz;
4546         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4547                 sz *= ioc->reply_queue_count;
4548
4549         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4550             (ioc->reply_queue_count):1,
4551             sizeof(struct reply_post_struct), GFP_KERNEL);
4552
4553         if (!ioc->reply_post) {
4554                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4555                         ioc->name);
4556                 goto out;
4557         }
4558         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4559             &ioc->pdev->dev, sz, 16, 0);
4560         if (!ioc->reply_post_free_dma_pool) {
4561                 pr_err(MPT3SAS_FMT
4562                  "reply_post_free pool: dma_pool_create failed\n",
4563                  ioc->name);
4564                 goto out;
4565         }
4566         i = 0;
4567         do {
4568                 ioc->reply_post[i].reply_post_free =
4569                     dma_pool_alloc(ioc->reply_post_free_dma_pool,
4570                     GFP_KERNEL,
4571                     &ioc->reply_post[i].reply_post_free_dma);
4572                 if (!ioc->reply_post[i].reply_post_free) {
4573                         pr_err(MPT3SAS_FMT
4574                         "reply_post_free pool: dma_pool_alloc failed\n",
4575                         ioc->name);
4576                         goto out;
4577                 }
4578                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
4579                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4580                     "reply post free pool (0x%p): depth(%d),"
4581                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
4582                     ioc->reply_post[i].reply_post_free,
4583                     ioc->reply_post_queue_depth, 8, sz/1024));
4584                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4585                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
4586                     (unsigned long long)
4587                     ioc->reply_post[i].reply_post_free_dma));
4588                 total_sz += sz;
4589         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4590
4591         if (ioc->dma_mask == 64) {
4592                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4593                         pr_warn(MPT3SAS_FMT
4594                             "no suitable consistent DMA mask for %s\n",
4595                             ioc->name, pci_name(ioc->pdev));
4596                         goto out;
4597                 }
4598         }
4599
4600         ioc->scsiio_depth = ioc->hba_queue_depth -
4601             ioc->hi_priority_depth - ioc->internal_depth;
4602
4603         /* set the scsi host can_queue depth
4604          * with some internal commands that could be outstanding
4605          */
4606         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4607         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4608                 "scsi host: can_queue depth (%d)\n",
4609                 ioc->name, ioc->shost->can_queue));
4610
4611
4612         /* contiguous pool for request and chains, 16 byte align, one extra "
4613          * "frame for smid=0
4614          */
4615         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4616         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4617
4618         /* hi-priority queue */
4619         sz += (ioc->hi_priority_depth * ioc->request_sz);
4620
4621         /* internal queue */
4622         sz += (ioc->internal_depth * ioc->request_sz);
4623
4624         ioc->request_dma_sz = sz;
4625         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4626         if (!ioc->request) {
4627                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4628                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4629                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4630                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4631                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4632                         goto out;
4633                 retry_sz = 64;
4634                 ioc->hba_queue_depth -= retry_sz;
4635                 _base_release_memory_pools(ioc);
4636                 goto retry_allocation;
4637         }
4638
4639         if (retry_sz)
4640                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4641                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4642                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4643                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4644
4645         /* hi-priority queue */
4646         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4647             ioc->request_sz);
4648         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4649             ioc->request_sz);
4650
4651         /* internal queue */
4652         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4653             ioc->request_sz);
4654         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4655             ioc->request_sz);
4656
4657         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4658                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4659                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4660             (ioc->hba_queue_depth * ioc->request_sz)/1024));
4661
4662         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4663             ioc->name, (unsigned long long) ioc->request_dma));
4664         total_sz += sz;
4665
4666         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4667                 ioc->name, ioc->request, ioc->scsiio_depth));
4668
4669         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4670         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4671         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4672         if (!ioc->chain_lookup) {
4673                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages "
4674                                 "failed\n", ioc->name);
4675                 goto out;
4676         }
4677
4678         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4679         for (i = 0; i < ioc->scsiio_depth; i++) {
4680                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4681                 if (!ioc->chain_lookup[i].chains_per_smid) {
4682                         pr_err(MPT3SAS_FMT "chain_lookup: "
4683                                         " kzalloc failed\n", ioc->name);
4684                         goto out;
4685                 }
4686         }
4687
4688         /* initialize hi-priority queue smid's */
4689         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4690             sizeof(struct request_tracker), GFP_KERNEL);
4691         if (!ioc->hpr_lookup) {
4692                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4693                     ioc->name);
4694                 goto out;
4695         }
4696         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4697         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4698                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4699                 ioc->name, ioc->hi_priority,
4700             ioc->hi_priority_depth, ioc->hi_priority_smid));
4701
4702         /* initialize internal queue smid's */
4703         ioc->internal_lookup = kcalloc(ioc->internal_depth,
4704             sizeof(struct request_tracker), GFP_KERNEL);
4705         if (!ioc->internal_lookup) {
4706                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4707                     ioc->name);
4708                 goto out;
4709         }
4710         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4711         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4712                 "internal(0x%p): depth(%d), start smid(%d)\n",
4713                 ioc->name, ioc->internal,
4714             ioc->internal_depth, ioc->internal_smid));
4715         /*
4716          * The number of NVMe page sized blocks needed is:
4717          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4718          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4719          * that is placed in the main message frame.  8 is the size of each PRP
4720          * entry or PRP list pointer entry.  8 is subtracted from page_size
4721          * because of the PRP list pointer entry at the end of a page, so this
4722          * is not counted as a PRP entry.  The 1 added page is a round up.
4723          *
4724          * To avoid allocation failures due to the amount of memory that could
4725          * be required for NVMe PRP's, only each set of NVMe blocks will be
4726          * contiguous, so a new set is allocated for each possible I/O.
4727          */
4728         ioc->chains_per_prp_buffer = 0;
4729         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4730                 nvme_blocks_needed =
4731                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4732                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4733                 nvme_blocks_needed++;
4734
4735                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4736                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4737                 if (!ioc->pcie_sg_lookup) {
4738                         pr_info(MPT3SAS_FMT
4739                             "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4740                         goto out;
4741                 }
4742                 sz = nvme_blocks_needed * ioc->page_size;
4743                 ioc->pcie_sgl_dma_pool =
4744                         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4745                 if (!ioc->pcie_sgl_dma_pool) {
4746                         pr_info(MPT3SAS_FMT
4747                             "PCIe SGL pool: dma_pool_create failed\n",
4748                             ioc->name);
4749                         goto out;
4750                 }
4751
4752                 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4753                 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4754                                                 ioc->chains_needed_per_io);
4755
4756                 for (i = 0; i < ioc->scsiio_depth; i++) {
4757                         ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4758                                 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4759                                 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4760                         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4761                                 pr_info(MPT3SAS_FMT
4762                                     "PCIe SGL pool: dma_pool_alloc failed\n",
4763                                     ioc->name);
4764                                 goto out;
4765                         }
4766                         for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4767                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4768                                 ct->chain_buffer =
4769                                     ioc->pcie_sg_lookup[i].pcie_sgl +
4770                                     (j * ioc->chain_segment_sz);
4771                                 ct->chain_buffer_dma =
4772                                     ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4773                                     (j * ioc->chain_segment_sz);
4774                         }
4775                 }
4776
4777                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4778                         "element_size(%d), pool_size(%d kB)\n", ioc->name,
4779                         ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4780                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "Number of chains can "
4781                     "fit in a PRP page(%d)\n", ioc->name,
4782                     ioc->chains_per_prp_buffer));
4783                 total_sz += sz * ioc->scsiio_depth;
4784         }
4785
4786         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4787             ioc->chain_segment_sz, 16, 0);
4788         if (!ioc->chain_dma_pool) {
4789                 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4790                         ioc->name);
4791                 goto out;
4792         }
4793         for (i = 0; i < ioc->scsiio_depth; i++) {
4794                 for (j = ioc->chains_per_prp_buffer;
4795                                 j < ioc->chains_needed_per_io; j++) {
4796                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
4797                         ct->chain_buffer = dma_pool_alloc(
4798                                         ioc->chain_dma_pool, GFP_KERNEL,
4799                                         &ct->chain_buffer_dma);
4800                         if (!ct->chain_buffer) {
4801                                 pr_err(MPT3SAS_FMT "chain_lookup: "
4802                                 " pci_pool_alloc failed\n", ioc->name);
4803                                 _base_release_memory_pools(ioc);
4804                                 goto out;
4805                         }
4806                 }
4807                 total_sz += ioc->chain_segment_sz;
4808         }
4809
4810         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4811                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4812                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4813                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
4814
4815         /* sense buffers, 4 byte align */
4816         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4817         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4818                                               4, 0);
4819         if (!ioc->sense_dma_pool) {
4820                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4821                     ioc->name);
4822                 goto out;
4823         }
4824         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4825             &ioc->sense_dma);
4826         if (!ioc->sense) {
4827                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4828                     ioc->name);
4829                 goto out;
4830         }
4831         /* sense buffer requires to be in same 4 gb region.
4832          * Below function will check the same.
4833          * In case of failure, new pci pool will be created with updated
4834          * alignment. Older allocation and pool will be destroyed.
4835          * Alignment will be used such a way that next allocation if
4836          * success, will always meet same 4gb region requirement.
4837          * Actual requirement is not alignment, but we need start and end of
4838          * DMA address must have same upper 32 bit address.
4839          */
4840         if (!is_MSB_are_same((long)ioc->sense, sz)) {
4841                 //Release Sense pool & Reallocate
4842                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4843                 dma_pool_destroy(ioc->sense_dma_pool);
4844                 ioc->sense = NULL;
4845
4846                 ioc->sense_dma_pool =
4847                         dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4848                                                 roundup_pow_of_two(sz), 0);
4849                 if (!ioc->sense_dma_pool) {
4850                         pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
4851                                         ioc->name);
4852                         goto out;
4853                 }
4854                 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4855                                 &ioc->sense_dma);
4856                 if (!ioc->sense) {
4857                         pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
4858                                         ioc->name);
4859                         goto out;
4860                 }
4861         }
4862         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4863             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4864             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4865             SCSI_SENSE_BUFFERSIZE, sz/1024));
4866         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4867             ioc->name, (unsigned long long)ioc->sense_dma));
4868         total_sz += sz;
4869
4870         /* reply pool, 4 byte align */
4871         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4872         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4873                                               4, 0);
4874         if (!ioc->reply_dma_pool) {
4875                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4876                     ioc->name);
4877                 goto out;
4878         }
4879         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4880             &ioc->reply_dma);
4881         if (!ioc->reply) {
4882                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4883                     ioc->name);
4884                 goto out;
4885         }
4886         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4887         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4888         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4889                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4890                 ioc->name, ioc->reply,
4891             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4892         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4893             ioc->name, (unsigned long long)ioc->reply_dma));
4894         total_sz += sz;
4895
4896         /* reply free queue, 16 byte align */
4897         sz = ioc->reply_free_queue_depth * 4;
4898         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4899             &ioc->pdev->dev, sz, 16, 0);
4900         if (!ioc->reply_free_dma_pool) {
4901                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4902                         ioc->name);
4903                 goto out;
4904         }
4905         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4906             &ioc->reply_free_dma);
4907         if (!ioc->reply_free) {
4908                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4909                         ioc->name);
4910                 goto out;
4911         }
4912         memset(ioc->reply_free, 0, sz);
4913         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4914             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4915             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4916         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4917                 "reply_free_dma (0x%llx)\n",
4918                 ioc->name, (unsigned long long)ioc->reply_free_dma));
4919         total_sz += sz;
4920
4921         if (ioc->rdpq_array_enable) {
4922                 reply_post_free_array_sz = ioc->reply_queue_count *
4923                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4924                 ioc->reply_post_free_array_dma_pool =
4925                     dma_pool_create("reply_post_free_array pool",
4926                     &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4927                 if (!ioc->reply_post_free_array_dma_pool) {
4928                         dinitprintk(ioc,
4929                             pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4930                             "dma_pool_create failed\n", ioc->name));
4931                         goto out;
4932                 }
4933                 ioc->reply_post_free_array =
4934                     dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4935                     GFP_KERNEL, &ioc->reply_post_free_array_dma);
4936                 if (!ioc->reply_post_free_array) {
4937                         dinitprintk(ioc,
4938                             pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4939                             "dma_pool_alloc failed\n", ioc->name));
4940                         goto out;
4941                 }
4942         }
4943         ioc->config_page_sz = 512;
4944         ioc->config_page = pci_alloc_consistent(ioc->pdev,
4945             ioc->config_page_sz, &ioc->config_page_dma);
4946         if (!ioc->config_page) {
4947                 pr_err(MPT3SAS_FMT
4948                         "config page: dma_pool_alloc failed\n",
4949                         ioc->name);
4950                 goto out;
4951         }
4952         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4953                 "config page(0x%p): size(%d)\n",
4954                 ioc->name, ioc->config_page, ioc->config_page_sz));
4955         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4956                 ioc->name, (unsigned long long)ioc->config_page_dma));
4957         total_sz += ioc->config_page_sz;
4958
4959         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4960             ioc->name, total_sz/1024);
4961         pr_info(MPT3SAS_FMT
4962                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4963             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4964         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4965             ioc->name, ioc->shost->sg_tablesize);
4966         return 0;
4967
4968  out:
4969         return -ENOMEM;
4970 }
4971
4972 /**
4973  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4974  * @ioc: Pointer to MPT_ADAPTER structure
4975  * @cooked: Request raw or cooked IOC state
4976  *
4977  * Returns all IOC Doorbell register bits if cooked==0, else just the
4978  * Doorbell bits in MPI_IOC_STATE_MASK.
4979  */
4980 u32
4981 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4982 {
4983         u32 s, sc;
4984
4985         s = readl(&ioc->chip->Doorbell);
4986         sc = s & MPI2_IOC_STATE_MASK;
4987         return cooked ? sc : s;
4988 }
4989
4990 /**
4991  * _base_wait_on_iocstate - waiting on a particular ioc state
4992  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4993  * @timeout: timeout in second
4994  *
4995  * Returns 0 for success, non-zero for failure.
4996  */
4997 static int
4998 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4999 {
5000         u32 count, cntdn;
5001         u32 current_state;
5002
5003         count = 0;
5004         cntdn = 1000 * timeout;
5005         do {
5006                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5007                 if (current_state == ioc_state)
5008                         return 0;
5009                 if (count && current_state == MPI2_IOC_STATE_FAULT)
5010                         break;
5011
5012                 usleep_range(1000, 1500);
5013                 count++;
5014         } while (--cntdn);
5015
5016         return current_state;
5017 }
5018
5019 /**
5020  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5021  * a write to the doorbell)
5022  * @ioc: per adapter object
5023  * @timeout: timeout in second
5024  *
5025  * Returns 0 for success, non-zero for failure.
5026  *
5027  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5028  */
5029 static int
5030 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
5031
5032 static int
5033 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5034 {
5035         u32 cntdn, count;
5036         u32 int_status;
5037
5038         count = 0;
5039         cntdn = 1000 * timeout;
5040         do {
5041                 int_status = readl(&ioc->chip->HostInterruptStatus);
5042                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5043                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5044                                 "%s: successful count(%d), timeout(%d)\n",
5045                                 ioc->name, __func__, count, timeout));
5046                         return 0;
5047                 }
5048
5049                 usleep_range(1000, 1500);
5050                 count++;
5051         } while (--cntdn);
5052
5053         pr_err(MPT3SAS_FMT
5054                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5055                 ioc->name, __func__, count, int_status);
5056         return -EFAULT;
5057 }
5058
5059 static int
5060 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5061 {
5062         u32 cntdn, count;
5063         u32 int_status;
5064
5065         count = 0;
5066         cntdn = 2000 * timeout;
5067         do {
5068                 int_status = readl(&ioc->chip->HostInterruptStatus);
5069                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5070                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5071                                 "%s: successful count(%d), timeout(%d)\n",
5072                                 ioc->name, __func__, count, timeout));
5073                         return 0;
5074                 }
5075
5076                 udelay(500);
5077                 count++;
5078         } while (--cntdn);
5079
5080         pr_err(MPT3SAS_FMT
5081                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5082                 ioc->name, __func__, count, int_status);
5083         return -EFAULT;
5084
5085 }
5086
5087 /**
5088  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5089  * @ioc: per adapter object
5090  * @timeout: timeout in second
5091  *
5092  * Returns 0 for success, non-zero for failure.
5093  *
5094  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5095  * doorbell.
5096  */
5097 static int
5098 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5099 {
5100         u32 cntdn, count;
5101         u32 int_status;
5102         u32 doorbell;
5103
5104         count = 0;
5105         cntdn = 1000 * timeout;
5106         do {
5107                 int_status = readl(&ioc->chip->HostInterruptStatus);
5108                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5109                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5110                                 "%s: successful count(%d), timeout(%d)\n",
5111                                 ioc->name, __func__, count, timeout));
5112                         return 0;
5113                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5114                         doorbell = readl(&ioc->chip->Doorbell);
5115                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
5116                             MPI2_IOC_STATE_FAULT) {
5117                                 mpt3sas_base_fault_info(ioc , doorbell);
5118                                 return -EFAULT;
5119                         }
5120                 } else if (int_status == 0xFFFFFFFF)
5121                         goto out;
5122
5123                 usleep_range(1000, 1500);
5124                 count++;
5125         } while (--cntdn);
5126
5127  out:
5128         pr_err(MPT3SAS_FMT
5129          "%s: failed due to timeout count(%d), int_status(%x)!\n",
5130          ioc->name, __func__, count, int_status);
5131         return -EFAULT;
5132 }
5133
5134 /**
5135  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5136  * @ioc: per adapter object
5137  * @timeout: timeout in second
5138  *
5139  * Returns 0 for success, non-zero for failure.
5140  *
5141  */
5142 static int
5143 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5144 {
5145         u32 cntdn, count;
5146         u32 doorbell_reg;
5147
5148         count = 0;
5149         cntdn = 1000 * timeout;
5150         do {
5151                 doorbell_reg = readl(&ioc->chip->Doorbell);
5152                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5153                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5154                                 "%s: successful count(%d), timeout(%d)\n",
5155                                 ioc->name, __func__, count, timeout));
5156                         return 0;
5157                 }
5158
5159                 usleep_range(1000, 1500);
5160                 count++;
5161         } while (--cntdn);
5162
5163         pr_err(MPT3SAS_FMT
5164                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5165                 ioc->name, __func__, count, doorbell_reg);
5166         return -EFAULT;
5167 }
5168
5169 /**
5170  * _base_send_ioc_reset - send doorbell reset
5171  * @ioc: per adapter object
5172  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5173  * @timeout: timeout in second
5174  *
5175  * Returns 0 for success, non-zero for failure.
5176  */
5177 static int
5178 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5179 {
5180         u32 ioc_state;
5181         int r = 0;
5182
5183         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5184                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
5185                     ioc->name, __func__);
5186                 return -EFAULT;
5187         }
5188
5189         if (!(ioc->facts.IOCCapabilities &
5190            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5191                 return -EFAULT;
5192
5193         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
5194
5195         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5196             &ioc->chip->Doorbell);
5197         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5198                 r = -EFAULT;
5199                 goto out;
5200         }
5201         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5202         if (ioc_state) {
5203                 pr_err(MPT3SAS_FMT
5204                         "%s: failed going to ready state (ioc_state=0x%x)\n",
5205                         ioc->name, __func__, ioc_state);
5206                 r = -EFAULT;
5207                 goto out;
5208         }
5209  out:
5210         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
5211             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
5212         return r;
5213 }
5214
5215 /**
5216  * _base_handshake_req_reply_wait - send request thru doorbell interface
5217  * @ioc: per adapter object
5218  * @request_bytes: request length
5219  * @request: pointer having request payload
5220  * @reply_bytes: reply length
5221  * @reply: pointer to reply payload
5222  * @timeout: timeout in second
5223  *
5224  * Returns 0 for success, non-zero for failure.
5225  */
5226 static int
5227 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5228         u32 *request, int reply_bytes, u16 *reply, int timeout)
5229 {
5230         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5231         int i;
5232         u8 failed;
5233         __le32 *mfp;
5234
5235         /* make sure doorbell is not in use */
5236         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5237                 pr_err(MPT3SAS_FMT
5238                         "doorbell is in use (line=%d)\n",
5239                         ioc->name, __LINE__);
5240                 return -EFAULT;
5241         }
5242
5243         /* clear pending doorbell interrupts from previous state changes */
5244         if (readl(&ioc->chip->HostInterruptStatus) &
5245             MPI2_HIS_IOC2SYS_DB_STATUS)
5246                 writel(0, &ioc->chip->HostInterruptStatus);
5247
5248         /* send message to ioc */
5249         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5250             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5251             &ioc->chip->Doorbell);
5252
5253         if ((_base_spin_on_doorbell_int(ioc, 5))) {
5254                 pr_err(MPT3SAS_FMT
5255                         "doorbell handshake int failed (line=%d)\n",
5256                         ioc->name, __LINE__);
5257                 return -EFAULT;
5258         }
5259         writel(0, &ioc->chip->HostInterruptStatus);
5260
5261         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5262                 pr_err(MPT3SAS_FMT
5263                         "doorbell handshake ack failed (line=%d)\n",
5264                         ioc->name, __LINE__);
5265                 return -EFAULT;
5266         }
5267
5268         /* send message 32-bits at a time */
5269         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5270                 writel((u32)(request[i]), &ioc->chip->Doorbell);
5271                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5272                         failed = 1;
5273         }
5274
5275         if (failed) {
5276                 pr_err(MPT3SAS_FMT
5277                         "doorbell handshake sending request failed (line=%d)\n",
5278                         ioc->name, __LINE__);
5279                 return -EFAULT;
5280         }
5281
5282         /* now wait for the reply */
5283         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5284                 pr_err(MPT3SAS_FMT
5285                         "doorbell handshake int failed (line=%d)\n",
5286                         ioc->name, __LINE__);
5287                 return -EFAULT;
5288         }
5289
5290         /* read the first two 16-bits, it gives the total length of the reply */
5291         reply[0] = (u16)(readl(&ioc->chip->Doorbell)
5292             & MPI2_DOORBELL_DATA_MASK);
5293         writel(0, &ioc->chip->HostInterruptStatus);
5294         if ((_base_wait_for_doorbell_int(ioc, 5))) {
5295                 pr_err(MPT3SAS_FMT
5296                         "doorbell handshake int failed (line=%d)\n",
5297                         ioc->name, __LINE__);
5298                 return -EFAULT;
5299         }
5300         reply[1] = (u16)(readl(&ioc->chip->Doorbell)
5301             & MPI2_DOORBELL_DATA_MASK);
5302         writel(0, &ioc->chip->HostInterruptStatus);
5303
5304         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5305                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5306                         pr_err(MPT3SAS_FMT
5307                                 "doorbell handshake int failed (line=%d)\n",
5308                                 ioc->name, __LINE__);
5309                         return -EFAULT;
5310                 }
5311                 if (i >=  reply_bytes/2) /* overflow case */
5312                         readl(&ioc->chip->Doorbell);
5313                 else
5314                         reply[i] = (u16)(readl(&ioc->chip->Doorbell)
5315                             & MPI2_DOORBELL_DATA_MASK);
5316                 writel(0, &ioc->chip->HostInterruptStatus);
5317         }
5318
5319         _base_wait_for_doorbell_int(ioc, 5);
5320         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5321                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5322                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
5323         }
5324         writel(0, &ioc->chip->HostInterruptStatus);
5325
5326         if (ioc->logging_level & MPT_DEBUG_INIT) {
5327                 mfp = (__le32 *)reply;
5328                 pr_info("\toffset:data\n");
5329                 for (i = 0; i < reply_bytes/4; i++)
5330                         pr_info("\t[0x%02x]:%08x\n", i*4,
5331                             le32_to_cpu(mfp[i]));
5332         }
5333         return 0;
5334 }
5335
5336 /**
5337  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5338  * @ioc: per adapter object
5339  * @mpi_reply: the reply payload from FW
5340  * @mpi_request: the request payload sent to FW
5341  *
5342  * The SAS IO Unit Control Request message allows the host to perform low-level
5343  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5344  * to obtain the IOC assigned device handles for a device if it has other
5345  * identifying information about the device, in addition allows the host to
5346  * remove IOC resources associated with the device.
5347  *
5348  * Returns 0 for success, non-zero for failure.
5349  */
5350 int
5351 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5352         Mpi2SasIoUnitControlReply_t *mpi_reply,
5353         Mpi2SasIoUnitControlRequest_t *mpi_request)
5354 {
5355         u16 smid;
5356         u32 ioc_state;
5357         bool issue_reset = false;
5358         int rc;
5359         void *request;
5360         u16 wait_state_count;
5361
5362         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5363             __func__));
5364
5365         mutex_lock(&ioc->base_cmds.mutex);
5366
5367         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5368                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5369                     ioc->name, __func__);
5370                 rc = -EAGAIN;
5371                 goto out;
5372         }
5373
5374         wait_state_count = 0;
5375         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5376         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5377                 if (wait_state_count++ == 10) {
5378                         pr_err(MPT3SAS_FMT
5379                             "%s: failed due to ioc not operational\n",
5380                             ioc->name, __func__);
5381                         rc = -EFAULT;
5382                         goto out;
5383                 }
5384                 ssleep(1);
5385                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5386                 pr_info(MPT3SAS_FMT
5387                         "%s: waiting for operational state(count=%d)\n",
5388                         ioc->name, __func__, wait_state_count);
5389         }
5390
5391         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5392         if (!smid) {
5393                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5394                     ioc->name, __func__);
5395                 rc = -EAGAIN;
5396                 goto out;
5397         }
5398
5399         rc = 0;
5400         ioc->base_cmds.status = MPT3_CMD_PENDING;
5401         request = mpt3sas_base_get_msg_frame(ioc, smid);
5402         ioc->base_cmds.smid = smid;
5403         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5404         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5405             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5406                 ioc->ioc_link_reset_in_progress = 1;
5407         init_completion(&ioc->base_cmds.done);
5408         mpt3sas_base_put_smid_default(ioc, smid);
5409         wait_for_completion_timeout(&ioc->base_cmds.done,
5410             msecs_to_jiffies(10000));
5411         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5412             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5413             ioc->ioc_link_reset_in_progress)
5414                 ioc->ioc_link_reset_in_progress = 0;
5415         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5416                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5417                     ioc->name, __func__);
5418                 _debug_dump_mf(mpi_request,
5419                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5420                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5421                         issue_reset = true;
5422                 goto issue_host_reset;
5423         }
5424         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5425                 memcpy(mpi_reply, ioc->base_cmds.reply,
5426                     sizeof(Mpi2SasIoUnitControlReply_t));
5427         else
5428                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5429         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5430         goto out;
5431
5432  issue_host_reset:
5433         if (issue_reset)
5434                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5435         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5436         rc = -EFAULT;
5437  out:
5438         mutex_unlock(&ioc->base_cmds.mutex);
5439         return rc;
5440 }
5441
5442 /**
5443  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5444  * @ioc: per adapter object
5445  * @mpi_reply: the reply payload from FW
5446  * @mpi_request: the request payload sent to FW
5447  *
5448  * The SCSI Enclosure Processor request message causes the IOC to
5449  * communicate with SES devices to control LED status signals.
5450  *
5451  * Returns 0 for success, non-zero for failure.
5452  */
5453 int
5454 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5455         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5456 {
5457         u16 smid;
5458         u32 ioc_state;
5459         bool issue_reset = false;
5460         int rc;
5461         void *request;
5462         u16 wait_state_count;
5463
5464         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5465             __func__));
5466
5467         mutex_lock(&ioc->base_cmds.mutex);
5468
5469         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5470                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5471                     ioc->name, __func__);
5472                 rc = -EAGAIN;
5473                 goto out;
5474         }
5475
5476         wait_state_count = 0;
5477         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5478         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5479                 if (wait_state_count++ == 10) {
5480                         pr_err(MPT3SAS_FMT
5481                             "%s: failed due to ioc not operational\n",
5482                             ioc->name, __func__);
5483                         rc = -EFAULT;
5484                         goto out;
5485                 }
5486                 ssleep(1);
5487                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5488                 pr_info(MPT3SAS_FMT
5489                         "%s: waiting for operational state(count=%d)\n",
5490                         ioc->name,
5491                     __func__, wait_state_count);
5492         }
5493
5494         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5495         if (!smid) {
5496                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5497                     ioc->name, __func__);
5498                 rc = -EAGAIN;
5499                 goto out;
5500         }
5501
5502         rc = 0;
5503         ioc->base_cmds.status = MPT3_CMD_PENDING;
5504         request = mpt3sas_base_get_msg_frame(ioc, smid);
5505         ioc->base_cmds.smid = smid;
5506         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5507         init_completion(&ioc->base_cmds.done);
5508         mpt3sas_base_put_smid_default(ioc, smid);
5509         wait_for_completion_timeout(&ioc->base_cmds.done,
5510             msecs_to_jiffies(10000));
5511         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5512                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5513                     ioc->name, __func__);
5514                 _debug_dump_mf(mpi_request,
5515                     sizeof(Mpi2SepRequest_t)/4);
5516                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5517                         issue_reset = false;
5518                 goto issue_host_reset;
5519         }
5520         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5521                 memcpy(mpi_reply, ioc->base_cmds.reply,
5522                     sizeof(Mpi2SepReply_t));
5523         else
5524                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5525         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5526         goto out;
5527
5528  issue_host_reset:
5529         if (issue_reset)
5530                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5531         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5532         rc = -EFAULT;
5533  out:
5534         mutex_unlock(&ioc->base_cmds.mutex);
5535         return rc;
5536 }
5537
5538 /**
5539  * _base_get_port_facts - obtain port facts reply and save in ioc
5540  * @ioc: per adapter object
5541  *
5542  * Returns 0 for success, non-zero for failure.
5543  */
5544 static int
5545 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5546 {
5547         Mpi2PortFactsRequest_t mpi_request;
5548         Mpi2PortFactsReply_t mpi_reply;
5549         struct mpt3sas_port_facts *pfacts;
5550         int mpi_reply_sz, mpi_request_sz, r;
5551
5552         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5553             __func__));
5554
5555         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5556         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5557         memset(&mpi_request, 0, mpi_request_sz);
5558         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5559         mpi_request.PortNumber = port;
5560         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5561             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5562
5563         if (r != 0) {
5564                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5565                     ioc->name, __func__, r);
5566                 return r;
5567         }
5568
5569         pfacts = &ioc->pfacts[port];
5570         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5571         pfacts->PortNumber = mpi_reply.PortNumber;
5572         pfacts->VP_ID = mpi_reply.VP_ID;
5573         pfacts->VF_ID = mpi_reply.VF_ID;
5574         pfacts->MaxPostedCmdBuffers =
5575             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5576
5577         return 0;
5578 }
5579
5580 /**
5581  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5582  * @ioc: per adapter object
5583  * @timeout:
5584  *
5585  * Returns 0 for success, non-zero for failure.
5586  */
5587 static int
5588 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5589 {
5590         u32 ioc_state;
5591         int rc;
5592
5593         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
5594             __func__));
5595
5596         if (ioc->pci_error_recovery) {
5597                 dfailprintk(ioc, printk(MPT3SAS_FMT
5598                     "%s: host in pci error recovery\n", ioc->name, __func__));
5599                 return -EFAULT;
5600         }
5601
5602         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5603         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5604             ioc->name, __func__, ioc_state));
5605
5606         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5607             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5608                 return 0;
5609
5610         if (ioc_state & MPI2_DOORBELL_USED) {
5611                 dhsprintk(ioc, printk(MPT3SAS_FMT
5612                     "unexpected doorbell active!\n", ioc->name));
5613                 goto issue_diag_reset;
5614         }
5615
5616         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5617                 mpt3sas_base_fault_info(ioc, ioc_state &
5618                     MPI2_DOORBELL_DATA_MASK);
5619                 goto issue_diag_reset;
5620         }
5621
5622         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5623         if (ioc_state) {
5624                 dfailprintk(ioc, printk(MPT3SAS_FMT
5625                     "%s: failed going to ready state (ioc_state=0x%x)\n",
5626                     ioc->name, __func__, ioc_state));
5627                 return -EFAULT;
5628         }
5629
5630  issue_diag_reset:
5631         rc = _base_diag_reset(ioc);
5632         return rc;
5633 }
5634
5635 /**
5636  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5637  * @ioc: per adapter object
5638  *
5639  * Returns 0 for success, non-zero for failure.
5640  */
5641 static int
5642 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5643 {
5644         Mpi2IOCFactsRequest_t mpi_request;
5645         Mpi2IOCFactsReply_t mpi_reply;
5646         struct mpt3sas_facts *facts;
5647         int mpi_reply_sz, mpi_request_sz, r;
5648
5649         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5650             __func__));
5651
5652         r = _base_wait_for_iocstate(ioc, 10);
5653         if (r) {
5654                 dfailprintk(ioc, printk(MPT3SAS_FMT
5655                     "%s: failed getting to correct state\n",
5656                     ioc->name, __func__));
5657                 return r;
5658         }
5659         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5660         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5661         memset(&mpi_request, 0, mpi_request_sz);
5662         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5663         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5664             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5665
5666         if (r != 0) {
5667                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5668                     ioc->name, __func__, r);
5669                 return r;
5670         }
5671
5672         facts = &ioc->facts;
5673         memset(facts, 0, sizeof(struct mpt3sas_facts));
5674         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5675         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5676         facts->VP_ID = mpi_reply.VP_ID;
5677         facts->VF_ID = mpi_reply.VF_ID;
5678         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5679         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5680         facts->WhoInit = mpi_reply.WhoInit;
5681         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5682         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5683         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5684         facts->MaxReplyDescriptorPostQueueDepth =
5685             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5686         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5687         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5688         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5689                 ioc->ir_firmware = 1;
5690         if ((facts->IOCCapabilities &
5691               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5692                 ioc->rdpq_array_capable = 1;
5693         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5694         facts->IOCRequestFrameSize =
5695             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5696         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5697                 facts->IOCMaxChainSegmentSize =
5698                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5699         }
5700         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5701         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5702         ioc->shost->max_id = -1;
5703         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5704         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5705         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5706         facts->HighPriorityCredit =
5707             le16_to_cpu(mpi_reply.HighPriorityCredit);
5708         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5709         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5710         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5711
5712         /*
5713          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5714          */
5715         ioc->page_size = 1 << facts->CurrentHostPageSize;
5716         if (ioc->page_size == 1) {
5717                 pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5718                         "default host page size to 4k\n", ioc->name);
5719                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5720         }
5721         dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5722                 ioc->name, facts->CurrentHostPageSize));
5723
5724         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5725                 "hba queue depth(%d), max chains per io(%d)\n",
5726                 ioc->name, facts->RequestCredit,
5727             facts->MaxChainDepth));
5728         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5729                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
5730             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5731         return 0;
5732 }
5733
5734 /**
5735  * _base_send_ioc_init - send ioc_init to firmware
5736  * @ioc: per adapter object
5737  *
5738  * Returns 0 for success, non-zero for failure.
5739  */
5740 static int
5741 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5742 {
5743         Mpi2IOCInitRequest_t mpi_request;
5744         Mpi2IOCInitReply_t mpi_reply;
5745         int i, r = 0;
5746         ktime_t current_time;
5747         u16 ioc_status;
5748         u32 reply_post_free_array_sz = 0;
5749
5750         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5751             __func__));
5752
5753         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5754         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5755         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5756         mpi_request.VF_ID = 0; /* TODO */
5757         mpi_request.VP_ID = 0;
5758         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5759         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5760         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5761
5762         if (_base_is_controller_msix_enabled(ioc))
5763                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5764         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5765         mpi_request.ReplyDescriptorPostQueueDepth =
5766             cpu_to_le16(ioc->reply_post_queue_depth);
5767         mpi_request.ReplyFreeQueueDepth =
5768             cpu_to_le16(ioc->reply_free_queue_depth);
5769
5770         mpi_request.SenseBufferAddressHigh =
5771             cpu_to_le32((u64)ioc->sense_dma >> 32);
5772         mpi_request.SystemReplyAddressHigh =
5773             cpu_to_le32((u64)ioc->reply_dma >> 32);
5774         mpi_request.SystemRequestFrameBaseAddress =
5775             cpu_to_le64((u64)ioc->request_dma);
5776         mpi_request.ReplyFreeQueueAddress =
5777             cpu_to_le64((u64)ioc->reply_free_dma);
5778
5779         if (ioc->rdpq_array_enable) {
5780                 reply_post_free_array_sz = ioc->reply_queue_count *
5781                     sizeof(Mpi2IOCInitRDPQArrayEntry);
5782                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5783                 for (i = 0; i < ioc->reply_queue_count; i++)
5784                         ioc->reply_post_free_array[i].RDPQBaseAddress =
5785                             cpu_to_le64(
5786                                 (u64)ioc->reply_post[i].reply_post_free_dma);
5787                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5788                 mpi_request.ReplyDescriptorPostQueueAddress =
5789                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5790         } else {
5791                 mpi_request.ReplyDescriptorPostQueueAddress =
5792                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5793         }
5794
5795         /* This time stamp specifies number of milliseconds
5796          * since epoch ~ midnight January 1, 1970.
5797          */
5798         current_time = ktime_get_real();
5799         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5800
5801         if (ioc->logging_level & MPT_DEBUG_INIT) {
5802                 __le32 *mfp;
5803                 int i;
5804
5805                 mfp = (__le32 *)&mpi_request;
5806                 pr_info("\toffset:data\n");
5807                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5808                         pr_info("\t[0x%02x]:%08x\n", i*4,
5809                             le32_to_cpu(mfp[i]));
5810         }
5811
5812         r = _base_handshake_req_reply_wait(ioc,
5813             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5814             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5815
5816         if (r != 0) {
5817                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5818                     ioc->name, __func__, r);
5819                 return r;
5820         }
5821
5822         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5823         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5824             mpi_reply.IOCLogInfo) {
5825                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5826                 r = -EIO;
5827         }
5828
5829         return r;
5830 }
5831
5832 /**
5833  * mpt3sas_port_enable_done - command completion routine for port enable
5834  * @ioc: per adapter object
5835  * @smid: system request message index
5836  * @msix_index: MSIX table index supplied by the OS
5837  * @reply: reply message frame(lower 32bit addr)
5838  *
5839  * Return 1 meaning mf should be freed from _base_interrupt
5840  *        0 means the mf is freed from this function.
5841  */
5842 u8
5843 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5844         u32 reply)
5845 {
5846         MPI2DefaultReply_t *mpi_reply;
5847         u16 ioc_status;
5848
5849         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5850                 return 1;
5851
5852         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5853         if (!mpi_reply)
5854                 return 1;
5855
5856         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5857                 return 1;
5858
5859         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5860         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5861         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5862         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5863         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5864         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5865                 ioc->port_enable_failed = 1;
5866
5867         if (ioc->is_driver_loading) {
5868                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5869                         mpt3sas_port_enable_complete(ioc);
5870                         return 1;
5871                 } else {
5872                         ioc->start_scan_failed = ioc_status;
5873                         ioc->start_scan = 0;
5874                         return 1;
5875                 }
5876         }
5877         complete(&ioc->port_enable_cmds.done);
5878         return 1;
5879 }
5880
5881 /**
5882  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5883  * @ioc: per adapter object
5884  *
5885  * Returns 0 for success, non-zero for failure.
5886  */
5887 static int
5888 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5889 {
5890         Mpi2PortEnableRequest_t *mpi_request;
5891         Mpi2PortEnableReply_t *mpi_reply;
5892         int r = 0;
5893         u16 smid;
5894         u16 ioc_status;
5895
5896         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5897
5898         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5899                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5900                     ioc->name, __func__);
5901                 return -EAGAIN;
5902         }
5903
5904         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5905         if (!smid) {
5906                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5907                     ioc->name, __func__);
5908                 return -EAGAIN;
5909         }
5910
5911         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5912         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5913         ioc->port_enable_cmds.smid = smid;
5914         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5915         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5916
5917         init_completion(&ioc->port_enable_cmds.done);
5918         mpt3sas_base_put_smid_default(ioc, smid);
5919         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5920         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5921                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5922                     ioc->name, __func__);
5923                 _debug_dump_mf(mpi_request,
5924                     sizeof(Mpi2PortEnableRequest_t)/4);
5925                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5926                         r = -EFAULT;
5927                 else
5928                         r = -ETIME;
5929                 goto out;
5930         }
5931
5932         mpi_reply = ioc->port_enable_cmds.reply;
5933         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5934         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5935                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5936                     ioc->name, __func__, ioc_status);
5937                 r = -EFAULT;
5938                 goto out;
5939         }
5940
5941  out:
5942         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5943         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5944             "SUCCESS" : "FAILED"));
5945         return r;
5946 }
5947
5948 /**
5949  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5950  * @ioc: per adapter object
5951  *
5952  * Returns 0 for success, non-zero for failure.
5953  */
5954 int
5955 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5956 {
5957         Mpi2PortEnableRequest_t *mpi_request;
5958         u16 smid;
5959
5960         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5961
5962         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5963                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5964                     ioc->name, __func__);
5965                 return -EAGAIN;
5966         }
5967
5968         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5969         if (!smid) {
5970                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5971                     ioc->name, __func__);
5972                 return -EAGAIN;
5973         }
5974
5975         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5976         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5977         ioc->port_enable_cmds.smid = smid;
5978         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5979         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5980
5981         mpt3sas_base_put_smid_default(ioc, smid);
5982         return 0;
5983 }
5984
5985 /**
5986  * _base_determine_wait_on_discovery - desposition
5987  * @ioc: per adapter object
5988  *
5989  * Decide whether to wait on discovery to complete. Used to either
5990  * locate boot device, or report volumes ahead of physical devices.
5991  *
5992  * Returns 1 for wait, 0 for don't wait
5993  */
5994 static int
5995 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5996 {
5997         /* We wait for discovery to complete if IR firmware is loaded.
5998          * The sas topology events arrive before PD events, so we need time to
5999          * turn on the bit in ioc->pd_handles to indicate PD
6000          * Also, it maybe required to report Volumes ahead of physical
6001          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6002          */
6003         if (ioc->ir_firmware)
6004                 return 1;
6005
6006         /* if no Bios, then we don't need to wait */
6007         if (!ioc->bios_pg3.BiosVersion)
6008                 return 0;
6009
6010         /* Bios is present, then we drop down here.
6011          *
6012          * If there any entries in the Bios Page 2, then we wait
6013          * for discovery to complete.
6014          */
6015
6016         /* Current Boot Device */
6017         if ((ioc->bios_pg2.CurrentBootDeviceForm &
6018             MPI2_BIOSPAGE2_FORM_MASK) ==
6019             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6020         /* Request Boot Device */
6021            (ioc->bios_pg2.ReqBootDeviceForm &
6022             MPI2_BIOSPAGE2_FORM_MASK) ==
6023             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6024         /* Alternate Request Boot Device */
6025            (ioc->bios_pg2.ReqAltBootDeviceForm &
6026             MPI2_BIOSPAGE2_FORM_MASK) ==
6027             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6028                 return 0;
6029
6030         return 1;
6031 }
6032
6033 /**
6034  * _base_unmask_events - turn on notification for this event
6035  * @ioc: per adapter object
6036  * @event: firmware event
6037  *
6038  * The mask is stored in ioc->event_masks.
6039  */
6040 static void
6041 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6042 {
6043         u32 desired_event;
6044
6045         if (event >= 128)
6046                 return;
6047
6048         desired_event = (1 << (event % 32));
6049
6050         if (event < 32)
6051                 ioc->event_masks[0] &= ~desired_event;
6052         else if (event < 64)
6053                 ioc->event_masks[1] &= ~desired_event;
6054         else if (event < 96)
6055                 ioc->event_masks[2] &= ~desired_event;
6056         else if (event < 128)
6057                 ioc->event_masks[3] &= ~desired_event;
6058 }
6059
6060 /**
6061  * _base_event_notification - send event notification
6062  * @ioc: per adapter object
6063  *
6064  * Returns 0 for success, non-zero for failure.
6065  */
6066 static int
6067 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6068 {
6069         Mpi2EventNotificationRequest_t *mpi_request;
6070         u16 smid;
6071         int r = 0;
6072         int i;
6073
6074         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6075             __func__));
6076
6077         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6078                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
6079                     ioc->name, __func__);
6080                 return -EAGAIN;
6081         }
6082
6083         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6084         if (!smid) {
6085                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
6086                     ioc->name, __func__);
6087                 return -EAGAIN;
6088         }
6089         ioc->base_cmds.status = MPT3_CMD_PENDING;
6090         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6091         ioc->base_cmds.smid = smid;
6092         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6093         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6094         mpi_request->VF_ID = 0; /* TODO */
6095         mpi_request->VP_ID = 0;
6096         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6097                 mpi_request->EventMasks[i] =
6098                     cpu_to_le32(ioc->event_masks[i]);
6099         init_completion(&ioc->base_cmds.done);
6100         mpt3sas_base_put_smid_default(ioc, smid);
6101         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6102         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6103                 pr_err(MPT3SAS_FMT "%s: timeout\n",
6104                     ioc->name, __func__);
6105                 _debug_dump_mf(mpi_request,
6106                     sizeof(Mpi2EventNotificationRequest_t)/4);
6107                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6108                         r = -EFAULT;
6109                 else
6110                         r = -ETIME;
6111         } else
6112                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
6113                     ioc->name, __func__));
6114         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6115         return r;
6116 }
6117
6118 /**
6119  * mpt3sas_base_validate_event_type - validating event types
6120  * @ioc: per adapter object
6121  * @event: firmware event
6122  *
6123  * This will turn on firmware event notification when application
6124  * ask for that event. We don't mask events that are already enabled.
6125  */
6126 void
6127 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6128 {
6129         int i, j;
6130         u32 event_mask, desired_event;
6131         u8 send_update_to_fw;
6132
6133         for (i = 0, send_update_to_fw = 0; i <
6134             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6135                 event_mask = ~event_type[i];
6136                 desired_event = 1;
6137                 for (j = 0; j < 32; j++) {
6138                         if (!(event_mask & desired_event) &&
6139                             (ioc->event_masks[i] & desired_event)) {
6140                                 ioc->event_masks[i] &= ~desired_event;
6141                                 send_update_to_fw = 1;
6142                         }
6143                         desired_event = (desired_event << 1);
6144                 }
6145         }
6146
6147         if (!send_update_to_fw)
6148                 return;
6149
6150         mutex_lock(&ioc->base_cmds.mutex);
6151         _base_event_notification(ioc);
6152         mutex_unlock(&ioc->base_cmds.mutex);
6153 }
6154
6155 /**
6156  * _base_diag_reset - the "big hammer" start of day reset
6157  * @ioc: per adapter object
6158  *
6159  * Returns 0 for success, non-zero for failure.
6160  */
6161 static int
6162 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6163 {
6164         u32 host_diagnostic;
6165         u32 ioc_state;
6166         u32 count;
6167         u32 hcb_size;
6168
6169         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
6170
6171         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
6172             ioc->name));
6173
6174         count = 0;
6175         do {
6176                 /* Write magic sequence to WriteSequence register
6177                  * Loop until in diagnostic mode
6178                  */
6179                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6180                         "write magic sequence\n", ioc->name));
6181                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6182                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6183                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6184                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6185                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6186                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6187                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6188
6189                 /* wait 100 msec */
6190                 msleep(100);
6191
6192                 if (count++ > 20)
6193                         goto out;
6194
6195                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6196                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6197                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6198                     ioc->name, count, host_diagnostic));
6199
6200         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6201
6202         hcb_size = readl(&ioc->chip->HCBSize);
6203
6204         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
6205             ioc->name));
6206         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6207              &ioc->chip->HostDiagnostic);
6208
6209         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6210         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6211
6212         /* Approximately 300 second max wait */
6213         for (count = 0; count < (300000000 /
6214                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6215
6216                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6217
6218                 if (host_diagnostic == 0xFFFFFFFF)
6219                         goto out;
6220                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6221                         break;
6222
6223                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6224         }
6225
6226         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6227
6228                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6229                 "restart the adapter assuming the HCB Address points to good F/W\n",
6230                     ioc->name));
6231                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6232                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6233                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6234
6235                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6236                     "re-enable the HCDW\n", ioc->name));
6237                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6238                     &ioc->chip->HCBSize);
6239         }
6240
6241         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
6242             ioc->name));
6243         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6244             &ioc->chip->HostDiagnostic);
6245
6246         drsprintk(ioc, pr_info(MPT3SAS_FMT
6247                 "disable writes to the diagnostic register\n", ioc->name));
6248         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6249
6250         drsprintk(ioc, pr_info(MPT3SAS_FMT
6251                 "Wait for FW to go to the READY state\n", ioc->name));
6252         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6253         if (ioc_state) {
6254                 pr_err(MPT3SAS_FMT
6255                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6256                         ioc->name, __func__, ioc_state);
6257                 goto out;
6258         }
6259
6260         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
6261         return 0;
6262
6263  out:
6264         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
6265         return -EFAULT;
6266 }
6267
6268 /**
6269  * _base_make_ioc_ready - put controller in READY state
6270  * @ioc: per adapter object
6271  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6272  *
6273  * Returns 0 for success, non-zero for failure.
6274  */
6275 static int
6276 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6277 {
6278         u32 ioc_state;
6279         int rc;
6280         int count;
6281
6282         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6283             __func__));
6284
6285         if (ioc->pci_error_recovery)
6286                 return 0;
6287
6288         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6289         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
6290             ioc->name, __func__, ioc_state));
6291
6292         /* if in RESET state, it should move to READY state shortly */
6293         count = 0;
6294         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6295                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6296                     MPI2_IOC_STATE_READY) {
6297                         if (count++ == 10) {
6298                                 pr_err(MPT3SAS_FMT
6299                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6300                                     ioc->name, __func__, ioc_state);
6301                                 return -EFAULT;
6302                         }
6303                         ssleep(1);
6304                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6305                 }
6306         }
6307
6308         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6309                 return 0;
6310
6311         if (ioc_state & MPI2_DOORBELL_USED) {
6312                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
6313                         "unexpected doorbell active!\n",
6314                         ioc->name));
6315                 goto issue_diag_reset;
6316         }
6317
6318         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6319                 mpt3sas_base_fault_info(ioc, ioc_state &
6320                     MPI2_DOORBELL_DATA_MASK);
6321                 goto issue_diag_reset;
6322         }
6323
6324         if (type == FORCE_BIG_HAMMER)
6325                 goto issue_diag_reset;
6326
6327         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6328                 if (!(_base_send_ioc_reset(ioc,
6329                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6330                         return 0;
6331         }
6332
6333  issue_diag_reset:
6334         rc = _base_diag_reset(ioc);
6335         return rc;
6336 }
6337
6338 /**
6339  * _base_make_ioc_operational - put controller in OPERATIONAL state
6340  * @ioc: per adapter object
6341  *
6342  * Returns 0 for success, non-zero for failure.
6343  */
6344 static int
6345 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6346 {
6347         int r, i, index;
6348         unsigned long   flags;
6349         u32 reply_address;
6350         u16 smid;
6351         struct _tr_list *delayed_tr, *delayed_tr_next;
6352         struct _sc_list *delayed_sc, *delayed_sc_next;
6353         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6354         u8 hide_flag;
6355         struct adapter_reply_queue *reply_q;
6356         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6357
6358         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6359             __func__));
6360
6361         /* clean the delayed target reset list */
6362         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6363             &ioc->delayed_tr_list, list) {
6364                 list_del(&delayed_tr->list);
6365                 kfree(delayed_tr);
6366         }
6367
6368
6369         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6370             &ioc->delayed_tr_volume_list, list) {
6371                 list_del(&delayed_tr->list);
6372                 kfree(delayed_tr);
6373         }
6374
6375         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6376             &ioc->delayed_sc_list, list) {
6377                 list_del(&delayed_sc->list);
6378                 kfree(delayed_sc);
6379         }
6380
6381         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6382             &ioc->delayed_event_ack_list, list) {
6383                 list_del(&delayed_event_ack->list);
6384                 kfree(delayed_event_ack);
6385         }
6386
6387         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6388
6389         /* hi-priority queue */
6390         INIT_LIST_HEAD(&ioc->hpr_free_list);
6391         smid = ioc->hi_priority_smid;
6392         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6393                 ioc->hpr_lookup[i].cb_idx = 0xFF;
6394                 ioc->hpr_lookup[i].smid = smid;
6395                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6396                     &ioc->hpr_free_list);
6397         }
6398
6399         /* internal queue */
6400         INIT_LIST_HEAD(&ioc->internal_free_list);
6401         smid = ioc->internal_smid;
6402         for (i = 0; i < ioc->internal_depth; i++, smid++) {
6403                 ioc->internal_lookup[i].cb_idx = 0xFF;
6404                 ioc->internal_lookup[i].smid = smid;
6405                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6406                     &ioc->internal_free_list);
6407         }
6408
6409         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6410
6411         /* initialize Reply Free Queue */
6412         for (i = 0, reply_address = (u32)ioc->reply_dma ;
6413             i < ioc->reply_free_queue_depth ; i++, reply_address +=
6414             ioc->reply_sz) {
6415                 ioc->reply_free[i] = cpu_to_le32(reply_address);
6416                 if (ioc->is_mcpu_endpoint)
6417                         _base_clone_reply_to_sys_mem(ioc,
6418                                         reply_address, i);
6419         }
6420
6421         /* initialize reply queues */
6422         if (ioc->is_driver_loading)
6423                 _base_assign_reply_queues(ioc);
6424
6425         /* initialize Reply Post Free Queue */
6426         index = 0;
6427         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6428         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6429                 /*
6430                  * If RDPQ is enabled, switch to the next allocation.
6431                  * Otherwise advance within the contiguous region.
6432                  */
6433                 if (ioc->rdpq_array_enable) {
6434                         reply_q->reply_post_free =
6435                                 ioc->reply_post[index++].reply_post_free;
6436                 } else {
6437                         reply_q->reply_post_free = reply_post_free_contig;
6438                         reply_post_free_contig += ioc->reply_post_queue_depth;
6439                 }
6440
6441                 reply_q->reply_post_host_index = 0;
6442                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6443                         reply_q->reply_post_free[i].Words =
6444                             cpu_to_le64(ULLONG_MAX);
6445                 if (!_base_is_controller_msix_enabled(ioc))
6446                         goto skip_init_reply_post_free_queue;
6447         }
6448  skip_init_reply_post_free_queue:
6449
6450         r = _base_send_ioc_init(ioc);
6451         if (r)
6452                 return r;
6453
6454         /* initialize reply free host index */
6455         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6456         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6457
6458         /* initialize reply post host index */
6459         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6460                 if (ioc->combined_reply_queue)
6461                         writel((reply_q->msix_index & 7)<<
6462                            MPI2_RPHI_MSIX_INDEX_SHIFT,
6463                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6464                 else
6465                         writel(reply_q->msix_index <<
6466                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
6467                                 &ioc->chip->ReplyPostHostIndex);
6468
6469                 if (!_base_is_controller_msix_enabled(ioc))
6470                         goto skip_init_reply_post_host_index;
6471         }
6472
6473  skip_init_reply_post_host_index:
6474
6475         _base_unmask_interrupts(ioc);
6476
6477         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6478                 r = _base_display_fwpkg_version(ioc);
6479                 if (r)
6480                         return r;
6481         }
6482
6483         _base_static_config_pages(ioc);
6484         r = _base_event_notification(ioc);
6485         if (r)
6486                 return r;
6487
6488         if (ioc->is_driver_loading) {
6489
6490                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6491                     == 0x80) {
6492                         hide_flag = (u8) (
6493                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6494                             MFG_PAGE10_HIDE_SSDS_MASK);
6495                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6496                                 ioc->mfg_pg10_hide_flag = hide_flag;
6497                 }
6498
6499                 ioc->wait_for_discovery_to_complete =
6500                     _base_determine_wait_on_discovery(ioc);
6501
6502                 return r; /* scan_start and scan_finished support */
6503         }
6504
6505         r = _base_send_port_enable(ioc);
6506         if (r)
6507                 return r;
6508
6509         return r;
6510 }
6511
6512 /**
6513  * mpt3sas_base_free_resources - free resources controller resources
6514  * @ioc: per adapter object
6515  *
6516  * Return nothing.
6517  */
6518 void
6519 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6520 {
6521         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6522             __func__));
6523
6524         /* synchronizing freeing resource with pci_access_mutex lock */
6525         mutex_lock(&ioc->pci_access_mutex);
6526         if (ioc->chip_phys && ioc->chip) {
6527                 _base_mask_interrupts(ioc);
6528                 ioc->shost_recovery = 1;
6529                 _base_make_ioc_ready(ioc, SOFT_RESET);
6530                 ioc->shost_recovery = 0;
6531         }
6532
6533         mpt3sas_base_unmap_resources(ioc);
6534         mutex_unlock(&ioc->pci_access_mutex);
6535         return;
6536 }
6537
6538 /**
6539  * mpt3sas_base_attach - attach controller instance
6540  * @ioc: per adapter object
6541  *
6542  * Returns 0 for success, non-zero for failure.
6543  */
6544 int
6545 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6546 {
6547         int r, i;
6548         int cpu_id, last_cpu_id = 0;
6549
6550         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6551             __func__));
6552
6553         /* setup cpu_msix_table */
6554         ioc->cpu_count = num_online_cpus();
6555         for_each_online_cpu(cpu_id)
6556                 last_cpu_id = cpu_id;
6557         ioc->cpu_msix_table_sz = last_cpu_id + 1;
6558         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6559         ioc->reply_queue_count = 1;
6560         if (!ioc->cpu_msix_table) {
6561                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
6562                         "allocation for cpu_msix_table failed!!!\n",
6563                         ioc->name));
6564                 r = -ENOMEM;
6565                 goto out_free_resources;
6566         }
6567
6568         if (ioc->is_warpdrive) {
6569                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6570                     sizeof(resource_size_t *), GFP_KERNEL);
6571                 if (!ioc->reply_post_host_index) {
6572                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
6573                                 "for reply_post_host_index failed!!!\n",
6574                                 ioc->name));
6575                         r = -ENOMEM;
6576                         goto out_free_resources;
6577                 }
6578         }
6579
6580         ioc->rdpq_array_enable_assigned = 0;
6581         ioc->dma_mask = 0;
6582         r = mpt3sas_base_map_resources(ioc);
6583         if (r)
6584                 goto out_free_resources;
6585
6586         pci_set_drvdata(ioc->pdev, ioc->shost);
6587         r = _base_get_ioc_facts(ioc);
6588         if (r)
6589                 goto out_free_resources;
6590
6591         switch (ioc->hba_mpi_version_belonged) {
6592         case MPI2_VERSION:
6593                 ioc->build_sg_scmd = &_base_build_sg_scmd;
6594                 ioc->build_sg = &_base_build_sg;
6595                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6596                 break;
6597         case MPI25_VERSION:
6598         case MPI26_VERSION:
6599                 /*
6600                  * In SAS3.0,
6601                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6602                  * Target Status - all require the IEEE formated scatter gather
6603                  * elements.
6604                  */
6605                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6606                 ioc->build_sg = &_base_build_sg_ieee;
6607                 ioc->build_nvme_prp = &_base_build_nvme_prp;
6608                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6609                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6610
6611                 break;
6612         }
6613
6614         if (ioc->is_mcpu_endpoint)
6615                 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6616         else
6617                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6618
6619         /*
6620          * These function pointers for other requests that don't
6621          * the require IEEE scatter gather elements.
6622          *
6623          * For example Configuration Pages and SAS IOUNIT Control don't.
6624          */
6625         ioc->build_sg_mpi = &_base_build_sg;
6626         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6627
6628         r = _base_make_ioc_ready(ioc, SOFT_RESET);
6629         if (r)
6630                 goto out_free_resources;
6631
6632         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6633             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6634         if (!ioc->pfacts) {
6635                 r = -ENOMEM;
6636                 goto out_free_resources;
6637         }
6638
6639         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6640                 r = _base_get_port_facts(ioc, i);
6641                 if (r)
6642                         goto out_free_resources;
6643         }
6644
6645         r = _base_allocate_memory_pools(ioc);
6646         if (r)
6647                 goto out_free_resources;
6648
6649         init_waitqueue_head(&ioc->reset_wq);
6650
6651         /* allocate memory pd handle bitmask list */
6652         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6653         if (ioc->facts.MaxDevHandle % 8)
6654                 ioc->pd_handles_sz++;
6655         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6656             GFP_KERNEL);
6657         if (!ioc->pd_handles) {
6658                 r = -ENOMEM;
6659                 goto out_free_resources;
6660         }
6661         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6662             GFP_KERNEL);
6663         if (!ioc->blocking_handles) {
6664                 r = -ENOMEM;
6665                 goto out_free_resources;
6666         }
6667
6668         /* allocate memory for pending OS device add list */
6669         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6670         if (ioc->facts.MaxDevHandle % 8)
6671                 ioc->pend_os_device_add_sz++;
6672         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6673             GFP_KERNEL);
6674         if (!ioc->pend_os_device_add)
6675                 goto out_free_resources;
6676
6677         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6678         ioc->device_remove_in_progress =
6679                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6680         if (!ioc->device_remove_in_progress)
6681                 goto out_free_resources;
6682
6683         ioc->fwfault_debug = mpt3sas_fwfault_debug;
6684
6685         /* base internal command bits */
6686         mutex_init(&ioc->base_cmds.mutex);
6687         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6688         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6689
6690         /* port_enable command bits */
6691         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6692         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6693
6694         /* transport internal command bits */
6695         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6696         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6697         mutex_init(&ioc->transport_cmds.mutex);
6698
6699         /* scsih internal command bits */
6700         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6701         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6702         mutex_init(&ioc->scsih_cmds.mutex);
6703
6704         /* task management internal command bits */
6705         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6706         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6707         mutex_init(&ioc->tm_cmds.mutex);
6708
6709         /* config page internal command bits */
6710         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6711         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6712         mutex_init(&ioc->config_cmds.mutex);
6713
6714         /* ctl module internal command bits */
6715         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6716         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6717         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6718         mutex_init(&ioc->ctl_cmds.mutex);
6719
6720         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6721             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6722             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6723             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6724                 r = -ENOMEM;
6725                 goto out_free_resources;
6726         }
6727
6728         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6729                 ioc->event_masks[i] = -1;
6730
6731         /* here we enable the events we care about */
6732         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6733         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6734         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6735         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6736         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6737         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6738         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6739         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6740         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6741         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6742         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6743         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6744         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6745         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6746                 if (ioc->is_gen35_ioc) {
6747                         _base_unmask_events(ioc,
6748                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6749                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6750                         _base_unmask_events(ioc,
6751                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6752                 }
6753         }
6754         r = _base_make_ioc_operational(ioc);
6755         if (r)
6756                 goto out_free_resources;
6757
6758         ioc->non_operational_loop = 0;
6759         ioc->got_task_abort_from_ioctl = 0;
6760         return 0;
6761
6762  out_free_resources:
6763
6764         ioc->remove_host = 1;
6765
6766         mpt3sas_base_free_resources(ioc);
6767         _base_release_memory_pools(ioc);
6768         pci_set_drvdata(ioc->pdev, NULL);
6769         kfree(ioc->cpu_msix_table);
6770         if (ioc->is_warpdrive)
6771                 kfree(ioc->reply_post_host_index);
6772         kfree(ioc->pd_handles);
6773         kfree(ioc->blocking_handles);
6774         kfree(ioc->device_remove_in_progress);
6775         kfree(ioc->pend_os_device_add);
6776         kfree(ioc->tm_cmds.reply);
6777         kfree(ioc->transport_cmds.reply);
6778         kfree(ioc->scsih_cmds.reply);
6779         kfree(ioc->config_cmds.reply);
6780         kfree(ioc->base_cmds.reply);
6781         kfree(ioc->port_enable_cmds.reply);
6782         kfree(ioc->ctl_cmds.reply);
6783         kfree(ioc->ctl_cmds.sense);
6784         kfree(ioc->pfacts);
6785         ioc->ctl_cmds.reply = NULL;
6786         ioc->base_cmds.reply = NULL;
6787         ioc->tm_cmds.reply = NULL;
6788         ioc->scsih_cmds.reply = NULL;
6789         ioc->transport_cmds.reply = NULL;
6790         ioc->config_cmds.reply = NULL;
6791         ioc->pfacts = NULL;
6792         return r;
6793 }
6794
6795
6796 /**
6797  * mpt3sas_base_detach - remove controller instance
6798  * @ioc: per adapter object
6799  *
6800  * Return nothing.
6801  */
6802 void
6803 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6804 {
6805         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6806             __func__));
6807
6808         mpt3sas_base_stop_watchdog(ioc);
6809         mpt3sas_base_free_resources(ioc);
6810         _base_release_memory_pools(ioc);
6811         mpt3sas_free_enclosure_list(ioc);
6812         pci_set_drvdata(ioc->pdev, NULL);
6813         kfree(ioc->cpu_msix_table);
6814         if (ioc->is_warpdrive)
6815                 kfree(ioc->reply_post_host_index);
6816         kfree(ioc->pd_handles);
6817         kfree(ioc->blocking_handles);
6818         kfree(ioc->device_remove_in_progress);
6819         kfree(ioc->pend_os_device_add);
6820         kfree(ioc->pfacts);
6821         kfree(ioc->ctl_cmds.reply);
6822         kfree(ioc->ctl_cmds.sense);
6823         kfree(ioc->base_cmds.reply);
6824         kfree(ioc->port_enable_cmds.reply);
6825         kfree(ioc->tm_cmds.reply);
6826         kfree(ioc->transport_cmds.reply);
6827         kfree(ioc->scsih_cmds.reply);
6828         kfree(ioc->config_cmds.reply);
6829 }
6830
6831 /**
6832  * _base_reset_handler - reset callback handler (for base)
6833  * @ioc: per adapter object
6834  * @reset_phase: phase
6835  *
6836  * The handler for doing any required cleanup or initialization.
6837  *
6838  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
6839  * MPT3_IOC_DONE_RESET
6840  *
6841  * Return nothing.
6842  */
6843 static void
6844 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
6845 {
6846         mpt3sas_scsih_reset_handler(ioc, reset_phase);
6847         mpt3sas_ctl_reset_handler(ioc, reset_phase);
6848         switch (reset_phase) {
6849         case MPT3_IOC_PRE_RESET:
6850                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6851                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6852                 break;
6853         case MPT3_IOC_AFTER_RESET:
6854                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6855                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6856                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6857                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
6858                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6859                         complete(&ioc->transport_cmds.done);
6860                 }
6861                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6862                         ioc->base_cmds.status |= MPT3_CMD_RESET;
6863                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6864                         complete(&ioc->base_cmds.done);
6865                 }
6866                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6867                         ioc->port_enable_failed = 1;
6868                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6869                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6870                         if (ioc->is_driver_loading) {
6871                                 ioc->start_scan_failed =
6872                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
6873                                 ioc->start_scan = 0;
6874                                 ioc->port_enable_cmds.status =
6875                                     MPT3_CMD_NOT_USED;
6876                         } else
6877                                 complete(&ioc->port_enable_cmds.done);
6878                 }
6879                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6880                         ioc->config_cmds.status |= MPT3_CMD_RESET;
6881                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6882                         ioc->config_cmds.smid = USHRT_MAX;
6883                         complete(&ioc->config_cmds.done);
6884                 }
6885                 break;
6886         case MPT3_IOC_DONE_RESET:
6887                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6888                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6889                 break;
6890         }
6891 }
6892
6893 /**
6894  * mpt3sas_wait_for_commands_to_complete - reset controller
6895  * @ioc: Pointer to MPT_ADAPTER structure
6896  *
6897  * This function is waiting 10s for all pending commands to complete
6898  * prior to putting controller in reset.
6899  */
6900 void
6901 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6902 {
6903         u32 ioc_state;
6904
6905         ioc->pending_io_count = 0;
6906
6907         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6908         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6909                 return;
6910
6911         /* pending command count */
6912         ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
6913
6914         if (!ioc->pending_io_count)
6915                 return;
6916
6917         /* wait for pending commands to complete */
6918         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6919 }
6920
6921 /**
6922  * mpt3sas_base_hard_reset_handler - reset controller
6923  * @ioc: Pointer to MPT_ADAPTER structure
6924  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6925  *
6926  * Returns 0 for success, non-zero for failure.
6927  */
6928 int
6929 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6930         enum reset_type type)
6931 {
6932         int r;
6933         unsigned long flags;
6934         u32 ioc_state;
6935         u8 is_fault = 0, is_trigger = 0;
6936
6937         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6938             __func__));
6939
6940         if (ioc->pci_error_recovery) {
6941                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6942                     ioc->name, __func__);
6943                 r = 0;
6944                 goto out_unlocked;
6945         }
6946
6947         if (mpt3sas_fwfault_debug)
6948                 mpt3sas_halt_firmware(ioc);
6949
6950         /* wait for an active reset in progress to complete */
6951         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
6952                 do {
6953                         ssleep(1);
6954                 } while (ioc->shost_recovery == 1);
6955                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6956                     __func__));
6957                 return ioc->ioc_reset_in_progress_status;
6958         }
6959
6960         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6961         ioc->shost_recovery = 1;
6962         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6963
6964         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6965             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6966             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6967             MPT3_DIAG_BUFFER_IS_RELEASED))) {
6968                 is_trigger = 1;
6969                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6970                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6971                         is_fault = 1;
6972         }
6973         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
6974         mpt3sas_wait_for_commands_to_complete(ioc);
6975         _base_mask_interrupts(ioc);
6976         r = _base_make_ioc_ready(ioc, type);
6977         if (r)
6978                 goto out;
6979         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
6980
6981         /* If this hard reset is called while port enable is active, then
6982          * there is no reason to call make_ioc_operational
6983          */
6984         if (ioc->is_driver_loading && ioc->port_enable_failed) {
6985                 ioc->remove_host = 1;
6986                 r = -EFAULT;
6987                 goto out;
6988         }
6989         r = _base_get_ioc_facts(ioc);
6990         if (r)
6991                 goto out;
6992
6993         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6994                 panic("%s: Issue occurred with flashing controller firmware."
6995                       "Please reboot the system and ensure that the correct"
6996                       " firmware version is running\n", ioc->name);
6997
6998         r = _base_make_ioc_operational(ioc);
6999         if (!r)
7000                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
7001
7002  out:
7003         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
7004             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
7005
7006         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7007         ioc->ioc_reset_in_progress_status = r;
7008         ioc->shost_recovery = 0;
7009         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7010         ioc->ioc_reset_count++;
7011         mutex_unlock(&ioc->reset_in_progress_mutex);
7012
7013  out_unlocked:
7014         if ((r == 0) && is_trigger) {
7015                 if (is_fault)
7016                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7017                 else
7018                         mpt3sas_trigger_master(ioc,
7019                             MASTER_TRIGGER_ADAPTER_RESET);
7020         }
7021         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
7022             __func__));
7023         return r;
7024 }
This page took 0.452888 seconds and 4 git commands to generate.