2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99 " enable detection of firmware fault and halt firmware - (default=0)");
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
105 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
109 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
111 int ret = param_set_int(val, kp);
112 struct MPT3SAS_ADAPTER *ioc;
117 /* global ioc spinlock to protect controller list on list operations */
118 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
119 spin_lock(&gioc_lock);
120 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
121 ioc->fwfault_debug = mpt3sas_fwfault_debug;
122 spin_unlock(&gioc_lock);
125 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
126 param_get_int, &mpt3sas_fwfault_debug, 0644);
129 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
132 * @ioc: per adapter object
133 * @reply: reply message frame(lower 32bit addr)
134 * @index: System request message index.
139 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
143 * 256 is offset within sys register.
144 * 256 offset MPI frame starts. Max MPI frame supported is 32.
145 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
147 u16 cmd_credit = ioc->facts.RequestCredit + 1;
148 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
149 MPI_FRAME_START_OFFSET +
150 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
152 writel(reply, reply_free_iomem);
156 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
157 * to system/BAR0 region.
159 * @dst_iomem: Pointer to the destinaltion location in BAR0 space.
160 * @src: Pointer to the Source data.
161 * @size: Size of data to be copied.
164 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
167 u32 *src_virt_mem = (u32 *)src;
169 for (i = 0; i < size/4; i++)
170 writel((u32)src_virt_mem[i],
171 (void __iomem *)dst_iomem + (i * 4));
175 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
177 * @dst_iomem: Pointer to the destination location in BAR0 space.
178 * @src: Pointer to the Source data.
179 * @size: Size of data to be copied.
182 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
185 u32 *src_virt_mem = (u32 *)(src);
187 for (i = 0; i < size/4; i++)
188 writel((u32)src_virt_mem[i],
189 (void __iomem *)dst_iomem + (i * 4));
193 * _base_get_chain - Calculates and Returns virtual chain address
194 * for the provided smid in BAR0 space.
196 * @ioc: per adapter object
197 * @smid: system request message index
198 * @sge_chain_count: Scatter gather chain count.
200 * @Return: chain address.
202 static inline void __iomem*
203 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
206 void __iomem *base_chain, *chain_virt;
207 u16 cmd_credit = ioc->facts.RequestCredit + 1;
209 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
210 (cmd_credit * ioc->request_sz) +
211 REPLY_FREE_POOL_SIZE;
212 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
213 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
218 * _base_get_chain_phys - Calculates and Returns physical address
219 * in BAR0 for scatter gather chains, for
222 * @ioc: per adapter object
223 * @smid: system request message index
224 * @sge_chain_count: Scatter gather chain count.
226 * @Return - Physical chain address.
228 static inline phys_addr_t
229 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
232 phys_addr_t base_chain_phys, chain_phys;
233 u16 cmd_credit = ioc->facts.RequestCredit + 1;
235 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
236 (cmd_credit * ioc->request_sz) +
237 REPLY_FREE_POOL_SIZE;
238 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
239 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
244 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
245 * buffer address for the provided smid.
246 * (Each smid can have 64K starts from 17024)
248 * @ioc: per adapter object
249 * @smid: system request message index
251 * @Returns - Pointer to buffer location in BAR0.
254 static void __iomem *
255 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
257 u16 cmd_credit = ioc->facts.RequestCredit + 1;
258 // Added extra 1 to reach end of chain.
259 void __iomem *chain_end = _base_get_chain(ioc,
261 ioc->facts.MaxChainDepth);
262 return chain_end + (smid * 64 * 1024);
266 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
267 * Host buffer Physical address for the provided smid.
268 * (Each smid can have 64K starts from 17024)
270 * @ioc: per adapter object
271 * @smid: system request message index
273 * @Returns - Pointer to buffer location in BAR0.
276 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
278 u16 cmd_credit = ioc->facts.RequestCredit + 1;
279 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
281 ioc->facts.MaxChainDepth);
282 return chain_end_phys + (smid * 64 * 1024);
286 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
287 * lookup list and Provides chain_buffer
288 * address for the matching dma address.
289 * (Each smid can have 64K starts from 17024)
291 * @ioc: per adapter object
292 * @chain_buffer_dma: Chain buffer dma address.
294 * @Returns - Pointer to chain buffer. Or Null on Failure.
297 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
298 dma_addr_t chain_buffer_dma)
301 struct chain_tracker *ct;
303 for (index = 0; index < ioc->scsiio_depth; index++) {
304 for (j = 0; j < ioc->chains_needed_per_io; j++) {
305 ct = &ioc->chain_lookup[index].chains_per_smid[j];
306 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
307 return ct->chain_buffer;
311 "Provided chain_buffer_dma address is not in the lookup list\n",
317 * _clone_sg_entries - MPI EP's scsiio and config requests
318 * are handled here. Base function for
319 * double buffering, before submitting
322 * @ioc: per adapter object.
323 * @mpi_request: mf request pointer.
324 * @smid: system request message index.
328 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
329 void *mpi_request, u16 smid)
331 Mpi2SGESimple32_t *sgel, *sgel_next;
332 u32 sgl_flags, sge_chain_count = 0;
335 void __iomem *buffer_iomem;
336 phys_addr_t buffer_iomem_phys;
337 void __iomem *buff_ptr;
338 phys_addr_t buff_ptr_phys;
339 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
340 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
341 phys_addr_t dst_addr_phys;
342 MPI2RequestHeader_t *request_hdr;
343 struct scsi_cmnd *scmd;
344 struct scatterlist *sg_scmd = NULL;
345 int is_scsiio_req = 0;
347 request_hdr = (MPI2RequestHeader_t *) mpi_request;
349 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
350 Mpi25SCSIIORequest_t *scsiio_request =
351 (Mpi25SCSIIORequest_t *)mpi_request;
352 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
354 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
355 Mpi2ConfigRequest_t *config_req =
356 (Mpi2ConfigRequest_t *)mpi_request;
357 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
361 /* From smid we can get scsi_cmd, once we have sg_scmd,
362 * we just need to get sg_virt and sg_next to get virual
363 * address associated with sgel->Address.
367 /* Get scsi_cmd using smid */
368 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
370 pr_err(MPT3SAS_FMT "scmd is NULL\n", ioc->name);
374 /* Get sg_scmd from scmd provided */
375 sg_scmd = scsi_sglist(scmd);
379 * 0 - 255 System register
380 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
381 * 4352 - 4864 Reply_free pool (512 byte is reserved
382 * considering maxCredit 32. Reply need extra
383 * room, for mCPU case kept four times of
385 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
386 * 128 byte size = 12288)
387 * 17152 - x Host buffer mapped with smid.
388 * (Each smid can have 64K Max IO.)
389 * BAR0+Last 1K MSIX Addr and Data
390 * Total size in use 2113664 bytes of 4MB BAR0
393 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
394 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
396 buff_ptr = buffer_iomem;
397 buff_ptr_phys = buffer_iomem_phys;
398 WARN_ON(buff_ptr_phys > U32_MAX);
400 if (le32_to_cpu(sgel->FlagsLength) &
401 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
404 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
407 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
409 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
410 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
412 * Helper function which on passing
413 * chain_buffer_dma returns chain_buffer. Get
414 * the virtual address for sgel->Address
417 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
418 le32_to_cpu(sgel->Address));
419 if (sgel_next == NULL)
422 * This is coping 128 byte chain
423 * frame (not a host buffer)
425 dst_chain_addr[sge_chain_count] =
427 smid, sge_chain_count);
428 src_chain_addr[sge_chain_count] =
430 dst_addr_phys = _base_get_chain_phys(ioc,
431 smid, sge_chain_count);
432 WARN_ON(dst_addr_phys > U32_MAX);
434 cpu_to_le32(lower_32_bits(dst_addr_phys));
438 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
441 _base_clone_to_sys_mem(buff_ptr,
443 (le32_to_cpu(sgel->FlagsLength) &
446 * FIXME: this relies on a a zero
450 cpu_to_le32((u32)buff_ptr_phys);
452 _base_clone_to_sys_mem(buff_ptr,
454 (le32_to_cpu(sgel->FlagsLength) &
457 cpu_to_le32((u32)buff_ptr_phys);
460 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
462 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
464 if ((le32_to_cpu(sgel->FlagsLength) &
465 (MPI2_SGE_FLAGS_END_OF_BUFFER
466 << MPI2_SGE_FLAGS_SHIFT)))
467 goto eob_clone_chain;
470 * Every single element in MPT will have
471 * associated sg_next. Better to sanity that
472 * sg_next is not NULL, but it will be a bug
476 sg_scmd = sg_next(sg_scmd);
480 goto eob_clone_chain;
488 for (i = 0; i < sge_chain_count; i++) {
490 _base_clone_to_sys_mem(dst_chain_addr[i],
491 src_chain_addr[i], ioc->request_sz);
496 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
497 * @arg: input argument, used to derive ioc
499 * Return 0 if controller is removed from pci subsystem.
500 * Return -1 for other case.
502 static int mpt3sas_remove_dead_ioc_func(void *arg)
504 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
505 struct pci_dev *pdev;
513 pci_stop_and_remove_bus_device_locked(pdev);
518 * _base_fault_reset_work - workq handling ioc fault conditions
519 * @work: input argument, used to derive ioc
525 _base_fault_reset_work(struct work_struct *work)
527 struct MPT3SAS_ADAPTER *ioc =
528 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
532 struct task_struct *p;
535 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
536 if (ioc->shost_recovery || ioc->pci_error_recovery)
538 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
540 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
541 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
542 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
545 /* It may be possible that EEH recovery can resolve some of
546 * pci bus failure issues rather removing the dead ioc function
547 * by considering controller is in a non-operational state. So
548 * here priority is given to the EEH recovery. If it doesn't
549 * not resolve this issue, mpt3sas driver will consider this
550 * controller to non-operational state and remove the dead ioc
553 if (ioc->non_operational_loop++ < 5) {
554 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
560 * Call _scsih_flush_pending_cmds callback so that we flush all
561 * pending commands back to OS. This call is required to aovid
562 * deadlock at block layer. Dead IOC will fail to do diag reset,
563 * and this call is safe since dead ioc will never return any
564 * command back from HW.
566 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
568 * Set remove_host flag early since kernel thread will
569 * take some time to execute.
571 ioc->remove_host = 1;
572 /*Remove the Dead Host */
573 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
574 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
577 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
578 ioc->name, __func__);
581 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
582 ioc->name, __func__);
583 return; /* don't rearm timer */
586 ioc->non_operational_loop = 0;
588 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
589 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
590 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
591 __func__, (rc == 0) ? "success" : "failed");
592 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
593 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
594 mpt3sas_base_fault_info(ioc, doorbell &
595 MPI2_DOORBELL_DATA_MASK);
596 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
597 MPI2_IOC_STATE_OPERATIONAL)
598 return; /* don't rearm timer */
601 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
603 if (ioc->fault_reset_work_q)
604 queue_delayed_work(ioc->fault_reset_work_q,
605 &ioc->fault_reset_work,
606 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
607 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
611 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
612 * @ioc: per adapter object
618 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
622 if (ioc->fault_reset_work_q)
625 /* initialize fault polling */
627 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
628 snprintf(ioc->fault_reset_work_q_name,
629 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
630 ioc->driver_name, ioc->id);
631 ioc->fault_reset_work_q =
632 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
633 if (!ioc->fault_reset_work_q) {
634 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
635 ioc->name, __func__, __LINE__);
638 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
639 if (ioc->fault_reset_work_q)
640 queue_delayed_work(ioc->fault_reset_work_q,
641 &ioc->fault_reset_work,
642 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
643 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
647 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
648 * @ioc: per adapter object
654 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
657 struct workqueue_struct *wq;
659 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
660 wq = ioc->fault_reset_work_q;
661 ioc->fault_reset_work_q = NULL;
662 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
664 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
666 destroy_workqueue(wq);
671 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
672 * @ioc: per adapter object
673 * @fault_code: fault code
678 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
680 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
681 ioc->name, fault_code);
685 * mpt3sas_halt_firmware - halt's mpt controller firmware
686 * @ioc: per adapter object
688 * For debugging timeout related issues. Writing 0xCOFFEE00
689 * to the doorbell register will halt controller firmware. With
690 * the purpose to stop both driver and firmware, the enduser can
691 * obtain a ring buffer from controller UART.
694 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
698 if (!ioc->fwfault_debug)
703 doorbell = readl(&ioc->chip->Doorbell);
704 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
705 mpt3sas_base_fault_info(ioc , doorbell);
707 writel(0xC0FFEE00, &ioc->chip->Doorbell);
708 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
712 if (ioc->fwfault_debug == 2)
716 panic("panic in %s\n", __func__);
720 * _base_sas_ioc_info - verbose translation of the ioc status
721 * @ioc: per adapter object
722 * @mpi_reply: reply mf payload returned from firmware
723 * @request_hdr: request mf
728 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
729 MPI2RequestHeader_t *request_hdr)
731 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
735 char *func_str = NULL;
737 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
738 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
739 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
740 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
743 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
746 switch (ioc_status) {
748 /****************************************************************************
749 * Common IOCStatus values for all replies
750 ****************************************************************************/
752 case MPI2_IOCSTATUS_INVALID_FUNCTION:
753 desc = "invalid function";
755 case MPI2_IOCSTATUS_BUSY:
758 case MPI2_IOCSTATUS_INVALID_SGL:
759 desc = "invalid sgl";
761 case MPI2_IOCSTATUS_INTERNAL_ERROR:
762 desc = "internal error";
764 case MPI2_IOCSTATUS_INVALID_VPID:
765 desc = "invalid vpid";
767 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
768 desc = "insufficient resources";
770 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
771 desc = "insufficient power";
773 case MPI2_IOCSTATUS_INVALID_FIELD:
774 desc = "invalid field";
776 case MPI2_IOCSTATUS_INVALID_STATE:
777 desc = "invalid state";
779 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
780 desc = "op state not supported";
783 /****************************************************************************
784 * Config IOCStatus values
785 ****************************************************************************/
787 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
788 desc = "config invalid action";
790 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
791 desc = "config invalid type";
793 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
794 desc = "config invalid page";
796 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
797 desc = "config invalid data";
799 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
800 desc = "config no defaults";
802 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
803 desc = "config cant commit";
806 /****************************************************************************
808 ****************************************************************************/
810 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
811 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
812 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
813 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
814 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
815 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
816 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
817 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
818 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
819 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
820 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
821 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
824 /****************************************************************************
825 * For use by SCSI Initiator and SCSI Target end-to-end data protection
826 ****************************************************************************/
828 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
829 desc = "eedp guard error";
831 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
832 desc = "eedp ref tag error";
834 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
835 desc = "eedp app tag error";
838 /****************************************************************************
840 ****************************************************************************/
842 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
843 desc = "target invalid io index";
845 case MPI2_IOCSTATUS_TARGET_ABORTED:
846 desc = "target aborted";
848 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
849 desc = "target no conn retryable";
851 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
852 desc = "target no connection";
854 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
855 desc = "target xfer count mismatch";
857 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
858 desc = "target data offset error";
860 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
861 desc = "target too much write data";
863 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
864 desc = "target iu too short";
866 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
867 desc = "target ack nak timeout";
869 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
870 desc = "target nak received";
873 /****************************************************************************
874 * Serial Attached SCSI values
875 ****************************************************************************/
877 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
878 desc = "smp request failed";
880 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
881 desc = "smp data overrun";
884 /****************************************************************************
885 * Diagnostic Buffer Post / Diagnostic Release values
886 ****************************************************************************/
888 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
889 desc = "diagnostic released";
898 switch (request_hdr->Function) {
899 case MPI2_FUNCTION_CONFIG:
900 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
901 func_str = "config_page";
903 case MPI2_FUNCTION_SCSI_TASK_MGMT:
904 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
905 func_str = "task_mgmt";
907 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
908 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
909 func_str = "sas_iounit_ctl";
911 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
912 frame_sz = sizeof(Mpi2SepRequest_t);
913 func_str = "enclosure";
915 case MPI2_FUNCTION_IOC_INIT:
916 frame_sz = sizeof(Mpi2IOCInitRequest_t);
917 func_str = "ioc_init";
919 case MPI2_FUNCTION_PORT_ENABLE:
920 frame_sz = sizeof(Mpi2PortEnableRequest_t);
921 func_str = "port_enable";
923 case MPI2_FUNCTION_SMP_PASSTHROUGH:
924 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
925 func_str = "smp_passthru";
927 case MPI2_FUNCTION_NVME_ENCAPSULATED:
928 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
930 func_str = "nvme_encapsulated";
934 func_str = "unknown";
938 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
939 ioc->name, desc, ioc_status, request_hdr, func_str);
941 _debug_dump_mf(request_hdr, frame_sz/4);
945 * _base_display_event_data - verbose translation of firmware asyn events
946 * @ioc: per adapter object
947 * @mpi_reply: reply mf payload returned from firmware
952 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
953 Mpi2EventNotificationReply_t *mpi_reply)
958 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
961 event = le16_to_cpu(mpi_reply->Event);
964 case MPI2_EVENT_LOG_DATA:
967 case MPI2_EVENT_STATE_CHANGE:
968 desc = "Status Change";
970 case MPI2_EVENT_HARD_RESET_RECEIVED:
971 desc = "Hard Reset Received";
973 case MPI2_EVENT_EVENT_CHANGE:
974 desc = "Event Change";
976 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
977 desc = "Device Status Change";
979 case MPI2_EVENT_IR_OPERATION_STATUS:
980 if (!ioc->hide_ir_msg)
981 desc = "IR Operation Status";
983 case MPI2_EVENT_SAS_DISCOVERY:
985 Mpi2EventDataSasDiscovery_t *event_data =
986 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
987 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
988 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
990 if (event_data->DiscoveryStatus)
991 pr_cont(" discovery_status(0x%08x)",
992 le32_to_cpu(event_data->DiscoveryStatus));
996 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
997 desc = "SAS Broadcast Primitive";
999 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1000 desc = "SAS Init Device Status Change";
1002 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1003 desc = "SAS Init Table Overflow";
1005 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1006 desc = "SAS Topology Change List";
1008 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1009 desc = "SAS Enclosure Device Status Change";
1011 case MPI2_EVENT_IR_VOLUME:
1012 if (!ioc->hide_ir_msg)
1015 case MPI2_EVENT_IR_PHYSICAL_DISK:
1016 if (!ioc->hide_ir_msg)
1017 desc = "IR Physical Disk";
1019 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1020 if (!ioc->hide_ir_msg)
1021 desc = "IR Configuration Change List";
1023 case MPI2_EVENT_LOG_ENTRY_ADDED:
1024 if (!ioc->hide_ir_msg)
1025 desc = "Log Entry Added";
1027 case MPI2_EVENT_TEMP_THRESHOLD:
1028 desc = "Temperature Threshold";
1030 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1031 desc = "Cable Event";
1033 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1034 desc = "SAS Device Discovery Error";
1036 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1037 desc = "PCIE Device Status Change";
1039 case MPI2_EVENT_PCIE_ENUMERATION:
1041 Mpi26EventDataPCIeEnumeration_t *event_data =
1042 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1043 pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
1044 (event_data->ReasonCode ==
1045 MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
1047 if (event_data->EnumerationStatus)
1048 pr_info("enumeration_status(0x%08x)",
1049 le32_to_cpu(event_data->EnumerationStatus));
1053 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1054 desc = "PCIE Topology Change List";
1061 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
1065 * _base_sas_log_info - verbose translation of firmware log info
1066 * @ioc: per adapter object
1067 * @log_info: log info
1072 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1074 union loginfo_type {
1083 union loginfo_type sas_loginfo;
1084 char *originator_str = NULL;
1086 sas_loginfo.loginfo = log_info;
1087 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1090 /* each nexus loss loginfo */
1091 if (log_info == 0x31170000)
1094 /* eat the loginfos associated with task aborts */
1095 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1096 0x31140000 || log_info == 0x31130000))
1099 switch (sas_loginfo.dw.originator) {
1101 originator_str = "IOP";
1104 originator_str = "PL";
1107 if (!ioc->hide_ir_msg)
1108 originator_str = "IR";
1110 originator_str = "WarpDrive";
1115 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1116 ioc->name, log_info,
1117 originator_str, sas_loginfo.dw.code,
1118 sas_loginfo.dw.subcode);
1122 * _base_display_reply_info -
1123 * @ioc: per adapter object
1124 * @smid: system request message index
1125 * @msix_index: MSIX table index supplied by the OS
1126 * @reply: reply message frame(lower 32bit addr)
1131 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1134 MPI2DefaultReply_t *mpi_reply;
1138 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1139 if (unlikely(!mpi_reply)) {
1140 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
1141 ioc->name, __FILE__, __LINE__, __func__);
1144 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1146 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1147 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1148 _base_sas_ioc_info(ioc , mpi_reply,
1149 mpt3sas_base_get_msg_frame(ioc, smid));
1152 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1153 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1154 _base_sas_log_info(ioc, loginfo);
1157 if (ioc_status || loginfo) {
1158 ioc_status &= MPI2_IOCSTATUS_MASK;
1159 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1164 * mpt3sas_base_done - base internal command completion routine
1165 * @ioc: per adapter object
1166 * @smid: system request message index
1167 * @msix_index: MSIX table index supplied by the OS
1168 * @reply: reply message frame(lower 32bit addr)
1170 * Return 1 meaning mf should be freed from _base_interrupt
1171 * 0 means the mf is freed from this function.
1174 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1177 MPI2DefaultReply_t *mpi_reply;
1179 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1180 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1181 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1183 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1186 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1188 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1189 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1191 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1193 complete(&ioc->base_cmds.done);
1198 * _base_async_event - main callback handler for firmware asyn events
1199 * @ioc: per adapter object
1200 * @msix_index: MSIX table index supplied by the OS
1201 * @reply: reply message frame(lower 32bit addr)
1203 * Return 1 meaning mf should be freed from _base_interrupt
1204 * 0 means the mf is freed from this function.
1207 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1209 Mpi2EventNotificationReply_t *mpi_reply;
1210 Mpi2EventAckRequest_t *ack_request;
1212 struct _event_ack_list *delayed_event_ack;
1214 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1217 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1220 _base_display_event_data(ioc, mpi_reply);
1222 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1224 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1226 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1228 if (!delayed_event_ack)
1230 INIT_LIST_HEAD(&delayed_event_ack->list);
1231 delayed_event_ack->Event = mpi_reply->Event;
1232 delayed_event_ack->EventContext = mpi_reply->EventContext;
1233 list_add_tail(&delayed_event_ack->list,
1234 &ioc->delayed_event_ack_list);
1235 dewtprintk(ioc, pr_info(MPT3SAS_FMT
1236 "DELAYED: EVENT ACK: event (0x%04x)\n",
1237 ioc->name, le16_to_cpu(mpi_reply->Event)));
1241 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1242 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1243 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1244 ack_request->Event = mpi_reply->Event;
1245 ack_request->EventContext = mpi_reply->EventContext;
1246 ack_request->VF_ID = 0; /* TODO */
1247 ack_request->VP_ID = 0;
1248 mpt3sas_base_put_smid_default(ioc, smid);
1252 /* scsih callback handler */
1253 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1255 /* ctl callback handler */
1256 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1261 static struct scsiio_tracker *
1262 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1264 struct scsi_cmnd *cmd;
1266 if (WARN_ON(!smid) ||
1267 WARN_ON(smid >= ioc->hi_priority_smid))
1270 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1272 return scsi_cmd_priv(cmd);
1278 * _base_get_cb_idx - obtain the callback index
1279 * @ioc: per adapter object
1280 * @smid: system request message index
1282 * Return callback index.
1285 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1288 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1291 if (smid < ioc->hi_priority_smid) {
1292 struct scsiio_tracker *st;
1294 if (smid < ctl_smid) {
1295 st = _get_st_from_smid(ioc, smid);
1297 cb_idx = st->cb_idx;
1298 } else if (smid == ctl_smid)
1299 cb_idx = ioc->ctl_cb_idx;
1300 } else if (smid < ioc->internal_smid) {
1301 i = smid - ioc->hi_priority_smid;
1302 cb_idx = ioc->hpr_lookup[i].cb_idx;
1303 } else if (smid <= ioc->hba_queue_depth) {
1304 i = smid - ioc->internal_smid;
1305 cb_idx = ioc->internal_lookup[i].cb_idx;
1311 * _base_mask_interrupts - disable interrupts
1312 * @ioc: per adapter object
1314 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1319 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1323 ioc->mask_interrupts = 1;
1324 him_register = readl(&ioc->chip->HostInterruptMask);
1325 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1326 writel(him_register, &ioc->chip->HostInterruptMask);
1327 readl(&ioc->chip->HostInterruptMask);
1331 * _base_unmask_interrupts - enable interrupts
1332 * @ioc: per adapter object
1334 * Enabling only Reply Interrupts
1339 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1343 him_register = readl(&ioc->chip->HostInterruptMask);
1344 him_register &= ~MPI2_HIM_RIM;
1345 writel(him_register, &ioc->chip->HostInterruptMask);
1346 ioc->mask_interrupts = 0;
1349 union reply_descriptor {
1358 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1359 * @irq: irq number (not used)
1360 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1361 * @r: pt_regs pointer (not used)
1363 * Return IRQ_HANDLE if processed, else IRQ_NONE.
1366 _base_interrupt(int irq, void *bus_id)
1368 struct adapter_reply_queue *reply_q = bus_id;
1369 union reply_descriptor rd;
1371 u8 request_desript_type;
1375 u8 msix_index = reply_q->msix_index;
1376 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1377 Mpi2ReplyDescriptorsUnion_t *rpf;
1380 if (ioc->mask_interrupts)
1383 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1386 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1387 request_desript_type = rpf->Default.ReplyFlags
1388 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1389 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1390 atomic_dec(&reply_q->busy);
1397 rd.word = le64_to_cpu(rpf->Words);
1398 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1401 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1402 if (request_desript_type ==
1403 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1404 request_desript_type ==
1405 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1406 request_desript_type ==
1407 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1408 cb_idx = _base_get_cb_idx(ioc, smid);
1409 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1410 (likely(mpt_callbacks[cb_idx] != NULL))) {
1411 rc = mpt_callbacks[cb_idx](ioc, smid,
1414 mpt3sas_base_free_smid(ioc, smid);
1416 } else if (request_desript_type ==
1417 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1418 reply = le32_to_cpu(
1419 rpf->AddressReply.ReplyFrameAddress);
1420 if (reply > ioc->reply_dma_max_address ||
1421 reply < ioc->reply_dma_min_address)
1424 cb_idx = _base_get_cb_idx(ioc, smid);
1425 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1426 (likely(mpt_callbacks[cb_idx] != NULL))) {
1427 rc = mpt_callbacks[cb_idx](ioc, smid,
1430 _base_display_reply_info(ioc,
1431 smid, msix_index, reply);
1433 mpt3sas_base_free_smid(ioc,
1437 _base_async_event(ioc, msix_index, reply);
1440 /* reply free queue handling */
1442 ioc->reply_free_host_index =
1443 (ioc->reply_free_host_index ==
1444 (ioc->reply_free_queue_depth - 1)) ?
1445 0 : ioc->reply_free_host_index + 1;
1446 ioc->reply_free[ioc->reply_free_host_index] =
1448 if (ioc->is_mcpu_endpoint)
1449 _base_clone_reply_to_sys_mem(ioc,
1451 ioc->reply_free_host_index);
1452 writel(ioc->reply_free_host_index,
1453 &ioc->chip->ReplyFreeHostIndex);
1457 rpf->Words = cpu_to_le64(ULLONG_MAX);
1458 reply_q->reply_post_host_index =
1459 (reply_q->reply_post_host_index ==
1460 (ioc->reply_post_queue_depth - 1)) ? 0 :
1461 reply_q->reply_post_host_index + 1;
1462 request_desript_type =
1463 reply_q->reply_post_free[reply_q->reply_post_host_index].
1464 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1466 /* Update the reply post host index after continuously
1467 * processing the threshold number of Reply Descriptors.
1468 * So that FW can find enough entries to post the Reply
1469 * Descriptors in the reply descriptor post queue.
1471 if (completed_cmds > ioc->hba_queue_depth/3) {
1472 if (ioc->combined_reply_queue) {
1473 writel(reply_q->reply_post_host_index |
1474 ((msix_index & 7) <<
1475 MPI2_RPHI_MSIX_INDEX_SHIFT),
1476 ioc->replyPostRegisterIndex[msix_index/8]);
1478 writel(reply_q->reply_post_host_index |
1480 MPI2_RPHI_MSIX_INDEX_SHIFT),
1481 &ioc->chip->ReplyPostHostIndex);
1485 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1487 if (!reply_q->reply_post_host_index)
1488 rpf = reply_q->reply_post_free;
1495 if (!completed_cmds) {
1496 atomic_dec(&reply_q->busy);
1500 if (ioc->is_warpdrive) {
1501 writel(reply_q->reply_post_host_index,
1502 ioc->reply_post_host_index[msix_index]);
1503 atomic_dec(&reply_q->busy);
1507 /* Update Reply Post Host Index.
1508 * For those HBA's which support combined reply queue feature
1509 * 1. Get the correct Supplemental Reply Post Host Index Register.
1510 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1511 * Index Register address bank i.e replyPostRegisterIndex[],
1512 * 2. Then update this register with new reply host index value
1513 * in ReplyPostIndex field and the MSIxIndex field with
1514 * msix_index value reduced to a value between 0 and 7,
1515 * using a modulo 8 operation. Since each Supplemental Reply Post
1516 * Host Index Register supports 8 MSI-X vectors.
1518 * For other HBA's just update the Reply Post Host Index register with
1519 * new reply host index value in ReplyPostIndex Field and msix_index
1520 * value in MSIxIndex field.
1522 if (ioc->combined_reply_queue)
1523 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1524 MPI2_RPHI_MSIX_INDEX_SHIFT),
1525 ioc->replyPostRegisterIndex[msix_index/8]);
1527 writel(reply_q->reply_post_host_index | (msix_index <<
1528 MPI2_RPHI_MSIX_INDEX_SHIFT),
1529 &ioc->chip->ReplyPostHostIndex);
1530 atomic_dec(&reply_q->busy);
1535 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1536 * @ioc: per adapter object
1540 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1542 return (ioc->facts.IOCCapabilities &
1543 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1547 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1548 * @ioc: per adapter object
1549 * Context: non ISR conext
1551 * Called when a Task Management request has completed.
1556 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1558 struct adapter_reply_queue *reply_q;
1560 /* If MSIX capability is turned off
1561 * then multi-queues are not enabled
1563 if (!_base_is_controller_msix_enabled(ioc))
1566 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1567 if (ioc->shost_recovery || ioc->remove_host ||
1568 ioc->pci_error_recovery)
1570 /* TMs are on msix_index == 0 */
1571 if (reply_q->msix_index == 0)
1573 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1578 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1579 * @cb_idx: callback index
1584 mpt3sas_base_release_callback_handler(u8 cb_idx)
1586 mpt_callbacks[cb_idx] = NULL;
1590 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1591 * @cb_func: callback function
1596 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1600 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1601 if (mpt_callbacks[cb_idx] == NULL)
1604 mpt_callbacks[cb_idx] = cb_func;
1609 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1614 mpt3sas_base_initialize_callback_handler(void)
1618 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1619 mpt3sas_base_release_callback_handler(cb_idx);
1624 * _base_build_zero_len_sge - build zero length sg entry
1625 * @ioc: per adapter object
1626 * @paddr: virtual address for SGE
1628 * Create a zero length scatter gather entry to insure the IOCs hardware has
1629 * something to use if the target device goes brain dead and tries
1630 * to send data even when none is asked for.
1635 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1637 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1638 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1639 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1640 MPI2_SGE_FLAGS_SHIFT);
1641 ioc->base_add_sg_single(paddr, flags_length, -1);
1645 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1646 * @paddr: virtual address for SGE
1647 * @flags_length: SGE flags and data transfer length
1648 * @dma_addr: Physical address
1653 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1655 Mpi2SGESimple32_t *sgel = paddr;
1657 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1658 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1659 sgel->FlagsLength = cpu_to_le32(flags_length);
1660 sgel->Address = cpu_to_le32(dma_addr);
1665 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1666 * @paddr: virtual address for SGE
1667 * @flags_length: SGE flags and data transfer length
1668 * @dma_addr: Physical address
1673 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1675 Mpi2SGESimple64_t *sgel = paddr;
1677 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1678 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1679 sgel->FlagsLength = cpu_to_le32(flags_length);
1680 sgel->Address = cpu_to_le64(dma_addr);
1684 * _base_get_chain_buffer_tracker - obtain chain tracker
1685 * @ioc: per adapter object
1686 * @scmd: SCSI commands of the IO request
1688 * Returns chain tracker from chain_lookup table using key as
1689 * smid and smid's chain_offset.
1691 static struct chain_tracker *
1692 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1693 struct scsi_cmnd *scmd)
1695 struct chain_tracker *chain_req;
1696 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1697 u16 smid = st->smid;
1699 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1701 if (chain_offset == ioc->chains_needed_per_io)
1704 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1705 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1711 * _base_build_sg - build generic sg
1712 * @ioc: per adapter object
1713 * @psge: virtual address for SGE
1714 * @data_out_dma: physical address for WRITES
1715 * @data_out_sz: data xfer size for WRITES
1716 * @data_in_dma: physical address for READS
1717 * @data_in_sz: data xfer size for READS
1722 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1723 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1728 if (!data_out_sz && !data_in_sz) {
1729 _base_build_zero_len_sge(ioc, psge);
1733 if (data_out_sz && data_in_sz) {
1734 /* WRITE sgel first */
1735 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1736 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1737 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1738 ioc->base_add_sg_single(psge, sgl_flags |
1739 data_out_sz, data_out_dma);
1742 psge += ioc->sge_size;
1744 /* READ sgel last */
1745 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1746 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1747 MPI2_SGE_FLAGS_END_OF_LIST);
1748 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1749 ioc->base_add_sg_single(psge, sgl_flags |
1750 data_in_sz, data_in_dma);
1751 } else if (data_out_sz) /* WRITE */ {
1752 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1753 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1754 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1755 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1756 ioc->base_add_sg_single(psge, sgl_flags |
1757 data_out_sz, data_out_dma);
1758 } else if (data_in_sz) /* READ */ {
1759 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1760 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1761 MPI2_SGE_FLAGS_END_OF_LIST);
1762 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1763 ioc->base_add_sg_single(psge, sgl_flags |
1764 data_in_sz, data_in_dma);
1768 /* IEEE format sgls */
1771 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1772 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1773 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
1774 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
1775 * used to describe a larger data buffer. If the data buffer is too large to
1776 * describe using the two PRP entriess inside the NVMe message, then PRP1
1777 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1778 * list located elsewhere in memory to describe the remaining data memory
1779 * segments. The PRP list will be contiguous.
1781 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
1782 * consists of a list of PRP entries to describe a number of noncontigous
1783 * physical memory segments as a single memory buffer, just as a SGL does. Note
1784 * however, that this function is only used by the IOCTL call, so the memory
1785 * given will be guaranteed to be contiguous. There is no need to translate
1786 * non-contiguous SGL into a PRP in this case. All PRPs will describe
1787 * contiguous space that is one page size each.
1789 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
1790 * a PRP list pointer or a PRP element, depending upon the command. PRP2
1791 * contains the second PRP element if the memory being described fits within 2
1792 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1794 * A PRP list pointer contains the address of a PRP list, structured as a linear
1795 * array of PRP entries. Each PRP entry in this list describes a segment of
1798 * Each 64-bit PRP entry comprises an address and an offset field. The address
1799 * always points at the beginning of a 4KB physical memory page, and the offset
1800 * describes where within that 4KB page the memory segment begins. Only the
1801 * first element in a PRP list may contain a non-zero offest, implying that all
1802 * memory segments following the first begin at the start of a 4KB page.
1804 * Each PRP element normally describes 4KB of physical memory, with exceptions
1805 * for the first and last elements in the list. If the memory being described
1806 * by the list begins at a non-zero offset within the first 4KB page, then the
1807 * first PRP element will contain a non-zero offset indicating where the region
1808 * begins within the 4KB page. The last memory segment may end before the end
1809 * of the 4KB segment, depending upon the overall size of the memory being
1810 * described by the PRP list.
1812 * Since PRP entries lack any indication of size, the overall data buffer length
1813 * is used to determine where the end of the data memory buffer is located, and
1814 * how many PRP entries are required to describe it.
1816 * @ioc: per adapter object
1817 * @smid: system request message index for getting asscociated SGL
1818 * @nvme_encap_request: the NVMe request msg frame pointer
1819 * @data_out_dma: physical address for WRITES
1820 * @data_out_sz: data xfer size for WRITES
1821 * @data_in_dma: physical address for READS
1822 * @data_in_sz: data xfer size for READS
1827 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1828 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1829 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1832 int prp_size = NVME_PRP_SIZE;
1833 __le64 *prp_entry, *prp1_entry, *prp2_entry;
1835 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1836 u32 offset, entry_len;
1837 u32 page_mask_result, page_mask;
1841 * Not all commands require a data transfer. If no data, just return
1842 * without constructing any PRP.
1844 if (!data_in_sz && !data_out_sz)
1847 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
1848 * PRP1 is located at a 24 byte offset from the start of the NVMe
1849 * command. Then set the current PRP entry pointer to PRP1.
1851 prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1852 NVME_CMD_PRP1_OFFSET);
1853 prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1854 NVME_CMD_PRP2_OFFSET);
1855 prp_entry = prp1_entry;
1857 * For the PRP entries, use the specially allocated buffer of
1858 * contiguous memory.
1860 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1861 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1864 * Check if we are within 1 entry of a page boundary we don't
1865 * want our first entry to be a PRP List entry.
1867 page_mask = ioc->page_size - 1;
1868 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1869 if (!page_mask_result) {
1870 /* Bump up to next page boundary. */
1871 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1872 prp_page_dma = prp_page_dma + prp_size;
1876 * Set PRP physical pointer, which initially points to the current PRP
1879 prp_entry_dma = prp_page_dma;
1881 /* Get physical address and length of the data buffer. */
1883 dma_addr = data_in_dma;
1884 length = data_in_sz;
1886 dma_addr = data_out_dma;
1887 length = data_out_sz;
1890 /* Loop while the length is not zero. */
1893 * Check if we need to put a list pointer here if we are at
1894 * page boundary - prp_size (8 bytes).
1896 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1897 if (!page_mask_result) {
1899 * This is the last entry in a PRP List, so we need to
1900 * put a PRP list pointer here. What this does is:
1901 * - bump the current memory pointer to the next
1902 * address, which will be the next full page.
1903 * - set the PRP Entry to point to that page. This
1904 * is now the PRP List pointer.
1905 * - bump the PRP Entry pointer the start of the
1906 * next page. Since all of this PRP memory is
1907 * contiguous, no need to get a new page - it's
1908 * just the next address.
1911 *prp_entry = cpu_to_le64(prp_entry_dma);
1915 /* Need to handle if entry will be part of a page. */
1916 offset = dma_addr & page_mask;
1917 entry_len = ioc->page_size - offset;
1919 if (prp_entry == prp1_entry) {
1921 * Must fill in the first PRP pointer (PRP1) before
1924 *prp1_entry = cpu_to_le64(dma_addr);
1927 * Now point to the second PRP entry within the
1930 prp_entry = prp2_entry;
1931 } else if (prp_entry == prp2_entry) {
1933 * Should the PRP2 entry be a PRP List pointer or just
1934 * a regular PRP pointer? If there is more than one
1935 * more page of data, must use a PRP List pointer.
1937 if (length > ioc->page_size) {
1939 * PRP2 will contain a PRP List pointer because
1940 * more PRP's are needed with this command. The
1941 * list will start at the beginning of the
1942 * contiguous buffer.
1944 *prp2_entry = cpu_to_le64(prp_entry_dma);
1947 * The next PRP Entry will be the start of the
1950 prp_entry = prp_page;
1953 * After this, the PRP Entries are complete.
1954 * This command uses 2 PRP's and no PRP list.
1956 *prp2_entry = cpu_to_le64(dma_addr);
1960 * Put entry in list and bump the addresses.
1962 * After PRP1 and PRP2 are filled in, this will fill in
1963 * all remaining PRP entries in a PRP List, one per
1964 * each time through the loop.
1966 *prp_entry = cpu_to_le64(dma_addr);
1972 * Bump the phys address of the command's data buffer by the
1975 dma_addr += entry_len;
1977 /* Decrement length accounting for last partial page. */
1978 if (entry_len > length)
1981 length -= entry_len;
1986 * base_make_prp_nvme -
1987 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1989 * @ioc: per adapter object
1990 * @scmd: SCSI command from the mid-layer
1991 * @mpi_request: mpi request
1993 * @sge_count: scatter gather element count.
1995 * Returns: true: PRPs are built
1996 * false: IEEE SGLs needs to be built
1999 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2000 struct scsi_cmnd *scmd,
2001 Mpi25SCSIIORequest_t *mpi_request,
2002 u16 smid, int sge_count)
2004 int sge_len, num_prp_in_chain = 0;
2005 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2007 dma_addr_t msg_dma, sge_addr, offset;
2008 u32 page_mask, page_mask_result;
2009 struct scatterlist *sg_scmd;
2011 int data_len = scsi_bufflen(scmd);
2014 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2016 * Nvme has a very convoluted prp format. One prp is required
2017 * for each page or partial page. Driver need to split up OS sg_list
2018 * entries if it is longer than one page or cross a page
2019 * boundary. Driver also have to insert a PRP list pointer entry as
2020 * the last entry in each physical page of the PRP list.
2022 * NOTE: The first PRP "entry" is actually placed in the first
2023 * SGL entry in the main message as IEEE 64 format. The 2nd
2024 * entry in the main message is the chain element, and the rest
2025 * of the PRP entries are built in the contiguous pcie buffer.
2027 page_mask = nvme_pg_size - 1;
2030 * Native SGL is needed.
2031 * Put a chain element in main message frame that points to the first
2034 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2038 /* Set main message chain element pointer */
2039 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2041 * For NVMe the chain element needs to be the 2nd SG entry in the main
2044 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2045 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2048 * For the PRP entries, use the specially allocated buffer of
2049 * contiguous memory. Normal chain buffers can't be used
2050 * because each chain buffer would need to be the size of an OS
2053 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2054 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2056 main_chain_element->Address = cpu_to_le64(msg_dma);
2057 main_chain_element->NextChainOffset = 0;
2058 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2059 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2060 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2062 /* Build first prp, sge need not to be page aligned*/
2063 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2064 sg_scmd = scsi_sglist(scmd);
2065 sge_addr = sg_dma_address(sg_scmd);
2066 sge_len = sg_dma_len(sg_scmd);
2068 offset = sge_addr & page_mask;
2069 first_prp_len = nvme_pg_size - offset;
2071 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2072 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2074 data_len -= first_prp_len;
2076 if (sge_len > first_prp_len) {
2077 sge_addr += first_prp_len;
2078 sge_len -= first_prp_len;
2079 } else if (data_len && (sge_len == first_prp_len)) {
2080 sg_scmd = sg_next(sg_scmd);
2081 sge_addr = sg_dma_address(sg_scmd);
2082 sge_len = sg_dma_len(sg_scmd);
2086 offset = sge_addr & page_mask;
2088 /* Put PRP pointer due to page boundary*/
2089 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2090 if (unlikely(!page_mask_result)) {
2091 scmd_printk(KERN_NOTICE,
2092 scmd, "page boundary curr_buff: 0x%p\n",
2095 *curr_buff = cpu_to_le64(msg_dma);
2100 *curr_buff = cpu_to_le64(sge_addr);
2105 sge_addr += nvme_pg_size;
2106 sge_len -= nvme_pg_size;
2107 data_len -= nvme_pg_size;
2115 sg_scmd = sg_next(sg_scmd);
2116 sge_addr = sg_dma_address(sg_scmd);
2117 sge_len = sg_dma_len(sg_scmd);
2120 main_chain_element->Length =
2121 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2126 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2127 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2129 u32 data_length = 0;
2130 struct scatterlist *sg_scmd;
2131 bool build_prp = true;
2133 data_length = scsi_bufflen(scmd);
2134 sg_scmd = scsi_sglist(scmd);
2136 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2139 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2146 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2147 * determine if the driver needs to build a native SGL. If so, that native
2148 * SGL is built in the special contiguous buffers allocated especially for
2149 * PCIe SGL creation. If the driver will not build a native SGL, return
2150 * TRUE and a normal IEEE SGL will be built. Currently this routine
2152 * @ioc: per adapter object
2153 * @mpi_request: mf request pointer
2154 * @smid: system request message index
2155 * @scmd: scsi command
2156 * @pcie_device: points to the PCIe device's info
2158 * Returns 0 if native SGL was built, 1 if no SGL was built
2161 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2162 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2163 struct _pcie_device *pcie_device)
2165 struct scatterlist *sg_scmd;
2168 /* Get the SG list pointer and info. */
2169 sg_scmd = scsi_sglist(scmd);
2170 sges_left = scsi_dma_map(scmd);
2171 if (sges_left < 0) {
2172 sdev_printk(KERN_ERR, scmd->device,
2173 "scsi_dma_map failed: request for %d bytes!\n",
2174 scsi_bufflen(scmd));
2178 /* Check if we need to build a native SG list. */
2179 if (base_is_prp_possible(ioc, pcie_device,
2180 scmd, sges_left) == 0) {
2181 /* We built a native SG list, just return. */
2186 * Build native NVMe PRP.
2188 base_make_prp_nvme(ioc, scmd, mpi_request,
2193 scsi_dma_unmap(scmd);
2198 * _base_add_sg_single_ieee - add sg element for IEEE format
2199 * @paddr: virtual address for SGE
2201 * @chain_offset: number of 128 byte elements from start of segment
2202 * @length: data transfer length
2203 * @dma_addr: Physical address
2208 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2209 dma_addr_t dma_addr)
2211 Mpi25IeeeSgeChain64_t *sgel = paddr;
2213 sgel->Flags = flags;
2214 sgel->NextChainOffset = chain_offset;
2215 sgel->Length = cpu_to_le32(length);
2216 sgel->Address = cpu_to_le64(dma_addr);
2220 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2221 * @ioc: per adapter object
2222 * @paddr: virtual address for SGE
2224 * Create a zero length scatter gather entry to insure the IOCs hardware has
2225 * something to use if the target device goes brain dead and tries
2226 * to send data even when none is asked for.
2231 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2233 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2234 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2235 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2237 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2241 * _base_build_sg_scmd - main sg creation routine
2242 * pcie_device is unused here!
2243 * @ioc: per adapter object
2244 * @scmd: scsi command
2245 * @smid: system request message index
2246 * @unused: unused pcie_device pointer
2249 * The main routine that builds scatter gather table from a given
2250 * scsi request sent via the .queuecommand main handler.
2252 * Returns 0 success, anything else error
2255 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2256 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2258 Mpi2SCSIIORequest_t *mpi_request;
2259 dma_addr_t chain_dma;
2260 struct scatterlist *sg_scmd;
2261 void *sg_local, *chain;
2266 u32 sges_in_segment;
2268 u32 sgl_flags_last_element;
2269 u32 sgl_flags_end_buffer;
2270 struct chain_tracker *chain_req;
2272 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2274 /* init scatter gather flags */
2275 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2276 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2277 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2278 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2279 << MPI2_SGE_FLAGS_SHIFT;
2280 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2281 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2282 << MPI2_SGE_FLAGS_SHIFT;
2283 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2285 sg_scmd = scsi_sglist(scmd);
2286 sges_left = scsi_dma_map(scmd);
2287 if (sges_left < 0) {
2288 sdev_printk(KERN_ERR, scmd->device,
2289 "pci_map_sg failed: request for %d bytes!\n",
2290 scsi_bufflen(scmd));
2294 sg_local = &mpi_request->SGL;
2295 sges_in_segment = ioc->max_sges_in_main_message;
2296 if (sges_left <= sges_in_segment)
2297 goto fill_in_last_segment;
2299 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2300 (sges_in_segment * ioc->sge_size))/4;
2302 /* fill in main message segment when there is a chain following */
2303 while (sges_in_segment) {
2304 if (sges_in_segment == 1)
2305 ioc->base_add_sg_single(sg_local,
2306 sgl_flags_last_element | sg_dma_len(sg_scmd),
2307 sg_dma_address(sg_scmd));
2309 ioc->base_add_sg_single(sg_local, sgl_flags |
2310 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2311 sg_scmd = sg_next(sg_scmd);
2312 sg_local += ioc->sge_size;
2317 /* initializing the chain flags and pointers */
2318 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2319 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2322 chain = chain_req->chain_buffer;
2323 chain_dma = chain_req->chain_buffer_dma;
2325 sges_in_segment = (sges_left <=
2326 ioc->max_sges_in_chain_message) ? sges_left :
2327 ioc->max_sges_in_chain_message;
2328 chain_offset = (sges_left == sges_in_segment) ?
2329 0 : (sges_in_segment * ioc->sge_size)/4;
2330 chain_length = sges_in_segment * ioc->sge_size;
2332 chain_offset = chain_offset <<
2333 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2334 chain_length += ioc->sge_size;
2336 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2337 chain_length, chain_dma);
2340 goto fill_in_last_segment;
2342 /* fill in chain segments */
2343 while (sges_in_segment) {
2344 if (sges_in_segment == 1)
2345 ioc->base_add_sg_single(sg_local,
2346 sgl_flags_last_element |
2347 sg_dma_len(sg_scmd),
2348 sg_dma_address(sg_scmd));
2350 ioc->base_add_sg_single(sg_local, sgl_flags |
2351 sg_dma_len(sg_scmd),
2352 sg_dma_address(sg_scmd));
2353 sg_scmd = sg_next(sg_scmd);
2354 sg_local += ioc->sge_size;
2359 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2362 chain = chain_req->chain_buffer;
2363 chain_dma = chain_req->chain_buffer_dma;
2367 fill_in_last_segment:
2369 /* fill the last segment */
2372 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2373 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2375 ioc->base_add_sg_single(sg_local, sgl_flags |
2376 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2377 sg_scmd = sg_next(sg_scmd);
2378 sg_local += ioc->sge_size;
2386 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2387 * @ioc: per adapter object
2388 * @scmd: scsi command
2389 * @smid: system request message index
2390 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2391 * constructed on need.
2394 * The main routine that builds scatter gather table from a given
2395 * scsi request sent via the .queuecommand main handler.
2397 * Returns 0 success, anything else error
2400 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2401 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2403 Mpi25SCSIIORequest_t *mpi_request;
2404 dma_addr_t chain_dma;
2405 struct scatterlist *sg_scmd;
2406 void *sg_local, *chain;
2410 u32 sges_in_segment;
2411 u8 simple_sgl_flags;
2412 u8 simple_sgl_flags_last;
2414 struct chain_tracker *chain_req;
2416 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2418 /* init scatter gather flags */
2419 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2420 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2421 simple_sgl_flags_last = simple_sgl_flags |
2422 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2423 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2424 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2426 /* Check if we need to build a native SG list. */
2427 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2428 smid, scmd, pcie_device) == 0)) {
2429 /* We built a native SG list, just return. */
2433 sg_scmd = scsi_sglist(scmd);
2434 sges_left = scsi_dma_map(scmd);
2435 if (sges_left < 0) {
2436 sdev_printk(KERN_ERR, scmd->device,
2437 "pci_map_sg failed: request for %d bytes!\n",
2438 scsi_bufflen(scmd));
2442 sg_local = &mpi_request->SGL;
2443 sges_in_segment = (ioc->request_sz -
2444 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2445 if (sges_left <= sges_in_segment)
2446 goto fill_in_last_segment;
2448 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2449 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2451 /* fill in main message segment when there is a chain following */
2452 while (sges_in_segment > 1) {
2453 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2454 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2455 sg_scmd = sg_next(sg_scmd);
2456 sg_local += ioc->sge_size_ieee;
2461 /* initializing the pointers */
2462 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2465 chain = chain_req->chain_buffer;
2466 chain_dma = chain_req->chain_buffer_dma;
2468 sges_in_segment = (sges_left <=
2469 ioc->max_sges_in_chain_message) ? sges_left :
2470 ioc->max_sges_in_chain_message;
2471 chain_offset = (sges_left == sges_in_segment) ?
2472 0 : sges_in_segment;
2473 chain_length = sges_in_segment * ioc->sge_size_ieee;
2475 chain_length += ioc->sge_size_ieee;
2476 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2477 chain_offset, chain_length, chain_dma);
2481 goto fill_in_last_segment;
2483 /* fill in chain segments */
2484 while (sges_in_segment) {
2485 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2486 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2487 sg_scmd = sg_next(sg_scmd);
2488 sg_local += ioc->sge_size_ieee;
2493 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2496 chain = chain_req->chain_buffer;
2497 chain_dma = chain_req->chain_buffer_dma;
2501 fill_in_last_segment:
2503 /* fill the last segment */
2504 while (sges_left > 0) {
2506 _base_add_sg_single_ieee(sg_local,
2507 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2508 sg_dma_address(sg_scmd));
2510 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2511 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2512 sg_scmd = sg_next(sg_scmd);
2513 sg_local += ioc->sge_size_ieee;
2521 * _base_build_sg_ieee - build generic sg for IEEE format
2522 * @ioc: per adapter object
2523 * @psge: virtual address for SGE
2524 * @data_out_dma: physical address for WRITES
2525 * @data_out_sz: data xfer size for WRITES
2526 * @data_in_dma: physical address for READS
2527 * @data_in_sz: data xfer size for READS
2532 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2533 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2538 if (!data_out_sz && !data_in_sz) {
2539 _base_build_zero_len_sge_ieee(ioc, psge);
2543 if (data_out_sz && data_in_sz) {
2544 /* WRITE sgel first */
2545 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2546 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2547 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2551 psge += ioc->sge_size_ieee;
2553 /* READ sgel last */
2554 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2555 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2557 } else if (data_out_sz) /* WRITE */ {
2558 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2559 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2560 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2561 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2563 } else if (data_in_sz) /* READ */ {
2564 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2565 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2566 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2567 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2572 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2575 * _base_config_dma_addressing - set dma addressing
2576 * @ioc: per adapter object
2577 * @pdev: PCI device struct
2579 * Returns 0 for success, non-zero for failure.
2582 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2585 u64 consistent_dma_mask;
2587 if (ioc->is_mcpu_endpoint)
2591 consistent_dma_mask = DMA_BIT_MASK(64);
2593 consistent_dma_mask = DMA_BIT_MASK(32);
2595 if (sizeof(dma_addr_t) > 4) {
2596 const uint64_t required_mask =
2597 dma_get_required_mask(&pdev->dev);
2598 if ((required_mask > DMA_BIT_MASK(32)) &&
2599 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2600 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2601 ioc->base_add_sg_single = &_base_add_sg_single_64;
2602 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2609 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2610 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2611 ioc->base_add_sg_single = &_base_add_sg_single_32;
2612 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2620 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2621 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2627 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2628 struct pci_dev *pdev)
2630 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2631 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2638 * _base_check_enable_msix - checks MSIX capabable.
2639 * @ioc: per adapter object
2641 * Check to see if card is capable of MSIX, and set number
2642 * of available msix vectors
2645 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2648 u16 message_control;
2650 /* Check whether controller SAS2008 B0 controller,
2651 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2653 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2654 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2658 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2660 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2665 /* get msix vector count */
2666 /* NUMA_IO not supported for older controllers */
2667 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2668 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2669 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2670 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2671 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2672 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2673 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2674 ioc->msix_vector_count = 1;
2676 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2677 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2679 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2680 "msix is supported, vector_count(%d)\n",
2681 ioc->name, ioc->msix_vector_count));
2686 * _base_free_irq - free irq
2687 * @ioc: per adapter object
2689 * Freeing respective reply_queue from the list.
2692 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2694 struct adapter_reply_queue *reply_q, *next;
2696 if (list_empty(&ioc->reply_queue_list))
2699 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2700 list_del(&reply_q->list);
2701 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2708 * _base_request_irq - request irq
2709 * @ioc: per adapter object
2710 * @index: msix index into vector table
2712 * Inserting respective reply_queue into the list.
2715 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2717 struct pci_dev *pdev = ioc->pdev;
2718 struct adapter_reply_queue *reply_q;
2721 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2723 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2724 ioc->name, (int)sizeof(struct adapter_reply_queue));
2728 reply_q->msix_index = index;
2730 atomic_set(&reply_q->busy, 0);
2731 if (ioc->msix_enable)
2732 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2733 ioc->driver_name, ioc->id, index);
2735 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2736 ioc->driver_name, ioc->id);
2737 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2738 IRQF_SHARED, reply_q->name, reply_q);
2740 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2741 reply_q->name, pci_irq_vector(pdev, index));
2746 INIT_LIST_HEAD(&reply_q->list);
2747 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2752 * _base_assign_reply_queues - assigning msix index for each cpu
2753 * @ioc: per adapter object
2755 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2757 * It would nice if we could call irq_set_affinity, however it is not
2758 * an exported symbol
2761 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2763 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2764 struct adapter_reply_queue *reply_q;
2766 if (!_base_is_controller_msix_enabled(ioc))
2769 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2771 nr_cpus = num_online_cpus();
2772 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2773 ioc->facts.MaxMSIxVectors);
2777 if (smp_affinity_enable) {
2778 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2779 const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2780 reply_q->msix_index);
2782 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2783 ioc->name, reply_q->msix_index);
2787 for_each_cpu_and(cpu, mask, cpu_online_mask) {
2788 if (cpu >= ioc->cpu_msix_table_sz)
2790 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2795 cpu = cpumask_first(cpu_online_mask);
2797 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2799 unsigned int i, group = nr_cpus / nr_msix;
2804 if (index < nr_cpus % nr_msix)
2807 for (i = 0 ; i < group ; i++) {
2808 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2809 cpu = cpumask_next(cpu, cpu_online_mask);
2816 * _base_disable_msix - disables msix
2817 * @ioc: per adapter object
2821 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2823 if (!ioc->msix_enable)
2825 pci_disable_msix(ioc->pdev);
2826 ioc->msix_enable = 0;
2830 * _base_enable_msix - enables msix, failback to io_apic
2831 * @ioc: per adapter object
2835 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2838 int i, local_max_msix_vectors;
2840 unsigned int irq_flags = PCI_IRQ_MSIX;
2842 if (msix_disable == -1 || msix_disable == 0)
2848 if (_base_check_enable_msix(ioc) != 0)
2851 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2852 ioc->msix_vector_count);
2854 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2855 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2856 ioc->cpu_count, max_msix_vectors);
2858 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2859 local_max_msix_vectors = (reset_devices) ? 1 : 8;
2861 local_max_msix_vectors = max_msix_vectors;
2863 if (local_max_msix_vectors > 0)
2864 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2865 ioc->reply_queue_count);
2866 else if (local_max_msix_vectors == 0)
2869 if (ioc->msix_vector_count < ioc->cpu_count)
2870 smp_affinity_enable = 0;
2872 if (smp_affinity_enable)
2873 irq_flags |= PCI_IRQ_AFFINITY;
2875 r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2878 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2879 "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2884 ioc->msix_enable = 1;
2885 ioc->reply_queue_count = r;
2886 for (i = 0; i < ioc->reply_queue_count; i++) {
2887 r = _base_request_irq(ioc, i);
2889 _base_free_irq(ioc);
2890 _base_disable_msix(ioc);
2897 /* failback to io_apic interrupt routing */
2900 ioc->reply_queue_count = 1;
2901 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2903 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2904 "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2907 r = _base_request_irq(ioc, 0);
2913 * mpt3sas_base_unmap_resources - free controller resources
2914 * @ioc: per adapter object
2917 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2919 struct pci_dev *pdev = ioc->pdev;
2921 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2922 ioc->name, __func__));
2924 _base_free_irq(ioc);
2925 _base_disable_msix(ioc);
2927 if (ioc->combined_reply_queue) {
2928 kfree(ioc->replyPostRegisterIndex);
2929 ioc->replyPostRegisterIndex = NULL;
2932 if (ioc->chip_phys) {
2937 if (pci_is_enabled(pdev)) {
2938 pci_release_selected_regions(ioc->pdev, ioc->bars);
2939 pci_disable_pcie_error_reporting(pdev);
2940 pci_disable_device(pdev);
2945 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2946 * @ioc: per adapter object
2948 * Returns 0 for success, non-zero for failure.
2951 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2953 struct pci_dev *pdev = ioc->pdev;
2958 phys_addr_t chip_phys = 0;
2959 struct adapter_reply_queue *reply_q;
2961 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2962 ioc->name, __func__));
2964 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2965 if (pci_enable_device_mem(pdev)) {
2966 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2973 if (pci_request_selected_regions(pdev, ioc->bars,
2974 ioc->driver_name)) {
2975 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2982 /* AER (Advanced Error Reporting) hooks */
2983 pci_enable_pcie_error_reporting(pdev);
2985 pci_set_master(pdev);
2988 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2989 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2990 ioc->name, pci_name(pdev));
2995 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2996 (!memap_sz || !pio_sz); i++) {
2997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3000 pio_chip = (u64)pci_resource_start(pdev, i);
3001 pio_sz = pci_resource_len(pdev, i);
3002 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3005 ioc->chip_phys = pci_resource_start(pdev, i);
3006 chip_phys = ioc->chip_phys;
3007 memap_sz = pci_resource_len(pdev, i);
3008 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3012 if (ioc->chip == NULL) {
3013 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
3014 " or resource not found\n", ioc->name);
3019 _base_mask_interrupts(ioc);
3021 r = _base_get_ioc_facts(ioc);
3025 if (!ioc->rdpq_array_enable_assigned) {
3026 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3027 ioc->rdpq_array_enable_assigned = 1;
3030 r = _base_enable_msix(ioc);
3034 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3035 * revision HBAs and also only when reply queue count is greater than 8
3037 if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
3038 /* Determine the Supplemental Reply Post Host Index Registers
3039 * Addresse. Supplemental Reply Post Host Index Registers
3040 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3041 * each register is at offset bytes of
3042 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3044 ioc->replyPostRegisterIndex = kcalloc(
3045 ioc->combined_reply_index_count,
3046 sizeof(resource_size_t *), GFP_KERNEL);
3047 if (!ioc->replyPostRegisterIndex) {
3048 dfailprintk(ioc, printk(MPT3SAS_FMT
3049 "allocation for reply Post Register Index failed!!!\n",
3055 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3056 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3057 ((u8 __force *)&ioc->chip->Doorbell +
3058 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3059 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3062 ioc->combined_reply_queue = 0;
3064 if (ioc->is_warpdrive) {
3065 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3066 &ioc->chip->ReplyPostHostIndex;
3068 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3069 ioc->reply_post_host_index[i] =
3070 (resource_size_t __iomem *)
3071 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3075 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3076 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
3077 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
3079 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3081 pr_info(MPT3SAS_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
3082 ioc->name, &chip_phys, ioc->chip, memap_sz);
3083 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
3084 ioc->name, (unsigned long long)pio_chip, pio_sz);
3086 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3087 pci_save_state(pdev);
3091 mpt3sas_base_unmap_resources(ioc);
3096 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3097 * @ioc: per adapter object
3098 * @smid: system request message index(smid zero is invalid)
3100 * Returns virt pointer to message frame.
3103 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3105 return (void *)(ioc->request + (smid * ioc->request_sz));
3109 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3110 * @ioc: per adapter object
3111 * @smid: system request message index
3113 * Returns virt pointer to sense buffer.
3116 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3118 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3122 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3123 * @ioc: per adapter object
3124 * @smid: system request message index
3126 * Returns phys pointer to the low 32bit address of the sense buffer.
3129 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3131 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3132 SCSI_SENSE_BUFFERSIZE));
3136 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3137 * @ioc: per adapter object
3138 * @smid: system request message index
3140 * Returns virt pointer to a PCIe SGL.
3143 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3145 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3149 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3150 * @ioc: per adapter object
3151 * @smid: system request message index
3153 * Returns phys pointer to the address of the PCIe buffer.
3156 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3158 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3162 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3163 * @ioc: per adapter object
3164 * @phys_addr: lower 32 physical addr of the reply
3166 * Converts 32bit lower physical addr into a virt address.
3169 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3173 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3177 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3179 return ioc->cpu_msix_table[raw_smp_processor_id()];
3183 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3184 * @ioc: per adapter object
3185 * @cb_idx: callback index
3187 * Returns smid (zero is invalid)
3190 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3192 unsigned long flags;
3193 struct request_tracker *request;
3196 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3197 if (list_empty(&ioc->internal_free_list)) {
3198 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3199 pr_err(MPT3SAS_FMT "%s: smid not available\n",
3200 ioc->name, __func__);
3204 request = list_entry(ioc->internal_free_list.next,
3205 struct request_tracker, tracker_list);
3206 request->cb_idx = cb_idx;
3207 smid = request->smid;
3208 list_del(&request->tracker_list);
3209 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3214 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3215 * @ioc: per adapter object
3216 * @cb_idx: callback index
3217 * @scmd: pointer to scsi command object
3219 * Returns smid (zero is invalid)
3222 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3223 struct scsi_cmnd *scmd)
3225 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3226 unsigned int tag = scmd->request->tag;
3230 request->cb_idx = cb_idx;
3231 request->msix_io = _base_get_msix_index(ioc);
3232 request->smid = smid;
3233 INIT_LIST_HEAD(&request->chain_list);
3238 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3239 * @ioc: per adapter object
3240 * @cb_idx: callback index
3242 * Returns smid (zero is invalid)
3245 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3247 unsigned long flags;
3248 struct request_tracker *request;
3251 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3252 if (list_empty(&ioc->hpr_free_list)) {
3253 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3257 request = list_entry(ioc->hpr_free_list.next,
3258 struct request_tracker, tracker_list);
3259 request->cb_idx = cb_idx;
3260 smid = request->smid;
3261 list_del(&request->tracker_list);
3262 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3267 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3270 * See _wait_for_commands_to_complete() call with regards to this code.
3272 if (ioc->shost_recovery && ioc->pending_io_count) {
3273 ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
3274 if (ioc->pending_io_count == 0)
3275 wake_up(&ioc->reset_wq);
3279 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3280 struct scsiio_tracker *st)
3282 if (WARN_ON(st->smid == 0))
3286 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3290 * mpt3sas_base_free_smid - put smid back on free_list
3291 * @ioc: per adapter object
3292 * @smid: system request message index
3297 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3299 unsigned long flags;
3302 if (smid < ioc->hi_priority_smid) {
3303 struct scsiio_tracker *st;
3305 st = _get_st_from_smid(ioc, smid);
3307 _base_recovery_check(ioc);
3310 mpt3sas_base_clear_st(ioc, st);
3311 _base_recovery_check(ioc);
3315 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3316 if (smid < ioc->internal_smid) {
3318 i = smid - ioc->hi_priority_smid;
3319 ioc->hpr_lookup[i].cb_idx = 0xFF;
3320 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3321 } else if (smid <= ioc->hba_queue_depth) {
3322 /* internal queue */
3323 i = smid - ioc->internal_smid;
3324 ioc->internal_lookup[i].cb_idx = 0xFF;
3325 list_add(&ioc->internal_lookup[i].tracker_list,
3326 &ioc->internal_free_list);
3328 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3332 * _base_mpi_ep_writeq - 32 bit write to MMIO
3334 * @addr: address in MMIO space
3335 * @writeq_lock: spin lock
3337 * This special handling for MPI EP to take care of 32 bit
3338 * environment where its not quarenteed to send the entire word
3342 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3343 spinlock_t *writeq_lock)
3345 unsigned long flags;
3348 spin_lock_irqsave(writeq_lock, flags);
3349 writel((u32)(data_out), addr);
3350 writel((u32)(data_out >> 32), (addr + 4));
3351 spin_unlock_irqrestore(writeq_lock, flags);
3355 * _base_writeq - 64 bit write to MMIO
3356 * @ioc: per adapter object
3358 * @addr: address in MMIO space
3359 * @writeq_lock: spin lock
3361 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3362 * care of 32 bit environment where its not quarenteed to send the entire word
3365 #if defined(writeq) && defined(CONFIG_64BIT)
3367 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3373 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3375 _base_mpi_ep_writeq(b, addr, writeq_lock);
3380 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3381 * @ioc: per adapter object
3382 * @smid: system request message index
3383 * @handle: device handle
3388 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3390 Mpi2RequestDescriptorUnion_t descriptor;
3391 u64 *request = (u64 *)&descriptor;
3392 void *mpi_req_iomem;
3393 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3395 _clone_sg_entries(ioc, (void *) mfp, smid);
3396 mpi_req_iomem = (void __force *)ioc->chip +
3397 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3398 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3400 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3401 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3402 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3403 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3404 descriptor.SCSIIO.LMID = 0;
3405 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3406 &ioc->scsi_lookup_lock);
3410 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3411 * @ioc: per adapter object
3412 * @smid: system request message index
3413 * @handle: device handle
3418 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3420 Mpi2RequestDescriptorUnion_t descriptor;
3421 u64 *request = (u64 *)&descriptor;
3424 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3425 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3426 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3427 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3428 descriptor.SCSIIO.LMID = 0;
3429 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3430 &ioc->scsi_lookup_lock);
3434 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3435 * @ioc: per adapter object
3436 * @smid: system request message index
3437 * @handle: device handle
3442 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3445 Mpi2RequestDescriptorUnion_t descriptor;
3446 u64 *request = (u64 *)&descriptor;
3448 descriptor.SCSIIO.RequestFlags =
3449 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3450 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3451 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3452 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3453 descriptor.SCSIIO.LMID = 0;
3454 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3455 &ioc->scsi_lookup_lock);
3459 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3460 * @ioc: per adapter object
3461 * @smid: system request message index
3462 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3466 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3469 Mpi2RequestDescriptorUnion_t descriptor;
3470 void *mpi_req_iomem;
3473 if (ioc->is_mcpu_endpoint) {
3474 MPI2RequestHeader_t *request_hdr;
3476 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3478 request_hdr = (MPI2RequestHeader_t *)mfp;
3479 /* TBD 256 is offset within sys register. */
3480 mpi_req_iomem = (void __force *)ioc->chip
3481 + MPI_FRAME_START_OFFSET
3482 + (smid * ioc->request_sz);
3483 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3487 request = (u64 *)&descriptor;
3489 descriptor.HighPriority.RequestFlags =
3490 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3491 descriptor.HighPriority.MSIxIndex = msix_task;
3492 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3493 descriptor.HighPriority.LMID = 0;
3494 descriptor.HighPriority.Reserved1 = 0;
3495 if (ioc->is_mcpu_endpoint)
3496 _base_mpi_ep_writeq(*request,
3497 &ioc->chip->RequestDescriptorPostLow,
3498 &ioc->scsi_lookup_lock);
3500 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3501 &ioc->scsi_lookup_lock);
3505 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3507 * @ioc: per adapter object
3508 * @smid: system request message index
3513 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3515 Mpi2RequestDescriptorUnion_t descriptor;
3516 u64 *request = (u64 *)&descriptor;
3518 descriptor.Default.RequestFlags =
3519 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3520 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
3521 descriptor.Default.SMID = cpu_to_le16(smid);
3522 descriptor.Default.LMID = 0;
3523 descriptor.Default.DescriptorTypeDependent = 0;
3524 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3525 &ioc->scsi_lookup_lock);
3529 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3530 * @ioc: per adapter object
3531 * @smid: system request message index
3536 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3538 Mpi2RequestDescriptorUnion_t descriptor;
3539 void *mpi_req_iomem;
3541 MPI2RequestHeader_t *request_hdr;
3543 if (ioc->is_mcpu_endpoint) {
3544 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3546 request_hdr = (MPI2RequestHeader_t *)mfp;
3548 _clone_sg_entries(ioc, (void *) mfp, smid);
3549 /* TBD 256 is offset within sys register */
3550 mpi_req_iomem = (void __force *)ioc->chip +
3551 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3552 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3555 request = (u64 *)&descriptor;
3556 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3557 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
3558 descriptor.Default.SMID = cpu_to_le16(smid);
3559 descriptor.Default.LMID = 0;
3560 descriptor.Default.DescriptorTypeDependent = 0;
3561 if (ioc->is_mcpu_endpoint)
3562 _base_mpi_ep_writeq(*request,
3563 &ioc->chip->RequestDescriptorPostLow,
3564 &ioc->scsi_lookup_lock);
3566 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3567 &ioc->scsi_lookup_lock);
3571 * _base_display_OEMs_branding - Display branding string
3572 * @ioc: per adapter object
3577 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3579 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3582 switch (ioc->pdev->subsystem_vendor) {
3583 case PCI_VENDOR_ID_INTEL:
3584 switch (ioc->pdev->device) {
3585 case MPI2_MFGPAGE_DEVID_SAS2008:
3586 switch (ioc->pdev->subsystem_device) {
3587 case MPT2SAS_INTEL_RMS2LL080_SSDID:
3588 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3589 MPT2SAS_INTEL_RMS2LL080_BRANDING);
3591 case MPT2SAS_INTEL_RMS2LL040_SSDID:
3592 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3593 MPT2SAS_INTEL_RMS2LL040_BRANDING);
3595 case MPT2SAS_INTEL_SSD910_SSDID:
3596 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3597 MPT2SAS_INTEL_SSD910_BRANDING);
3601 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3602 ioc->name, ioc->pdev->subsystem_device);
3605 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3606 switch (ioc->pdev->subsystem_device) {
3607 case MPT2SAS_INTEL_RS25GB008_SSDID:
3608 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3609 MPT2SAS_INTEL_RS25GB008_BRANDING);
3611 case MPT2SAS_INTEL_RMS25JB080_SSDID:
3612 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3613 MPT2SAS_INTEL_RMS25JB080_BRANDING);
3615 case MPT2SAS_INTEL_RMS25JB040_SSDID:
3616 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3617 MPT2SAS_INTEL_RMS25JB040_BRANDING);
3619 case MPT2SAS_INTEL_RMS25KB080_SSDID:
3620 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3621 MPT2SAS_INTEL_RMS25KB080_BRANDING);
3623 case MPT2SAS_INTEL_RMS25KB040_SSDID:
3624 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3625 MPT2SAS_INTEL_RMS25KB040_BRANDING);
3627 case MPT2SAS_INTEL_RMS25LB040_SSDID:
3628 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3629 MPT2SAS_INTEL_RMS25LB040_BRANDING);
3631 case MPT2SAS_INTEL_RMS25LB080_SSDID:
3632 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3633 MPT2SAS_INTEL_RMS25LB080_BRANDING);
3637 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3638 ioc->name, ioc->pdev->subsystem_device);
3641 case MPI25_MFGPAGE_DEVID_SAS3008:
3642 switch (ioc->pdev->subsystem_device) {
3643 case MPT3SAS_INTEL_RMS3JC080_SSDID:
3644 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3645 MPT3SAS_INTEL_RMS3JC080_BRANDING);
3648 case MPT3SAS_INTEL_RS3GC008_SSDID:
3649 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3650 MPT3SAS_INTEL_RS3GC008_BRANDING);
3652 case MPT3SAS_INTEL_RS3FC044_SSDID:
3653 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3654 MPT3SAS_INTEL_RS3FC044_BRANDING);
3656 case MPT3SAS_INTEL_RS3UC080_SSDID:
3657 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3658 MPT3SAS_INTEL_RS3UC080_BRANDING);
3662 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3663 ioc->name, ioc->pdev->subsystem_device);
3669 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3670 ioc->name, ioc->pdev->subsystem_device);
3674 case PCI_VENDOR_ID_DELL:
3675 switch (ioc->pdev->device) {
3676 case MPI2_MFGPAGE_DEVID_SAS2008:
3677 switch (ioc->pdev->subsystem_device) {
3678 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3679 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3680 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3682 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3683 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3684 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3686 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3687 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3688 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3690 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3691 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3692 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3694 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3695 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3696 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3698 case MPT2SAS_DELL_PERC_H200_SSDID:
3699 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3700 MPT2SAS_DELL_PERC_H200_BRANDING);
3702 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3703 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3704 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3708 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3709 ioc->name, ioc->pdev->subsystem_device);
3713 case MPI25_MFGPAGE_DEVID_SAS3008:
3714 switch (ioc->pdev->subsystem_device) {
3715 case MPT3SAS_DELL_12G_HBA_SSDID:
3716 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3717 MPT3SAS_DELL_12G_HBA_BRANDING);
3721 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3722 ioc->name, ioc->pdev->subsystem_device);
3728 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3729 ioc->pdev->subsystem_device);
3733 case PCI_VENDOR_ID_CISCO:
3734 switch (ioc->pdev->device) {
3735 case MPI25_MFGPAGE_DEVID_SAS3008:
3736 switch (ioc->pdev->subsystem_device) {
3737 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3738 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3739 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3741 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3742 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3743 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3745 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3746 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3747 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3751 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3752 ioc->name, ioc->pdev->subsystem_device);
3756 case MPI25_MFGPAGE_DEVID_SAS3108_1:
3757 switch (ioc->pdev->subsystem_device) {
3758 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3759 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3760 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3762 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3763 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3764 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3769 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3770 ioc->name, ioc->pdev->subsystem_device);
3776 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3777 ioc->name, ioc->pdev->subsystem_device);
3781 case MPT2SAS_HP_3PAR_SSVID:
3782 switch (ioc->pdev->device) {
3783 case MPI2_MFGPAGE_DEVID_SAS2004:
3784 switch (ioc->pdev->subsystem_device) {
3785 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3786 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3787 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3791 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3792 ioc->name, ioc->pdev->subsystem_device);
3795 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3796 switch (ioc->pdev->subsystem_device) {
3797 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3798 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3799 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3801 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3802 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3803 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3805 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3806 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3807 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3809 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3810 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3811 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3815 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3816 ioc->name, ioc->pdev->subsystem_device);
3821 "HP SAS HBA: Subsystem ID: 0x%X\n",
3822 ioc->name, ioc->pdev->subsystem_device);
3831 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3832 * version from FW Image Header.
3833 * @ioc: per adapter object
3835 * Returns 0 for success, non-zero for failure.
3838 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3840 Mpi2FWImageHeader_t *FWImgHdr;
3841 Mpi25FWUploadRequest_t *mpi_request;
3842 Mpi2FWUploadReply_t mpi_reply;
3844 void *fwpkg_data = NULL;
3845 dma_addr_t fwpkg_data_dma;
3846 u16 smid, ioc_status;
3849 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3852 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3853 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3854 ioc->name, __func__);
3858 data_length = sizeof(Mpi2FWImageHeader_t);
3859 fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
3862 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3863 ioc->name, __FILE__, __LINE__, __func__);
3867 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3869 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3870 ioc->name, __func__);
3875 ioc->base_cmds.status = MPT3_CMD_PENDING;
3876 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3877 ioc->base_cmds.smid = smid;
3878 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3879 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3880 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3881 mpi_request->ImageSize = cpu_to_le32(data_length);
3882 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3884 init_completion(&ioc->base_cmds.done);
3885 mpt3sas_base_put_smid_default(ioc, smid);
3886 /* Wait for 15 seconds */
3887 wait_for_completion_timeout(&ioc->base_cmds.done,
3888 FW_IMG_HDR_READ_TIMEOUT*HZ);
3889 pr_info(MPT3SAS_FMT "%s: complete\n",
3890 ioc->name, __func__);
3891 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3892 pr_err(MPT3SAS_FMT "%s: timeout\n",
3893 ioc->name, __func__);
3894 _debug_dump_mf(mpi_request,
3895 sizeof(Mpi25FWUploadRequest_t)/4);
3898 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3899 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3900 memcpy(&mpi_reply, ioc->base_cmds.reply,
3901 sizeof(Mpi2FWUploadReply_t));
3902 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3903 MPI2_IOCSTATUS_MASK;
3904 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3905 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3906 if (FWImgHdr->PackageVersion.Word) {
3907 pr_info(MPT3SAS_FMT "FW Package Version"
3908 "(%02d.%02d.%02d.%02d)\n",
3910 FWImgHdr->PackageVersion.Struct.Major,
3911 FWImgHdr->PackageVersion.Struct.Minor,
3912 FWImgHdr->PackageVersion.Struct.Unit,
3913 FWImgHdr->PackageVersion.Struct.Dev);
3916 _debug_dump_mf(&mpi_reply,
3917 sizeof(Mpi2FWUploadReply_t)/4);
3921 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3924 pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
3930 * _base_display_ioc_capabilities - Disply IOC's capabilities.
3931 * @ioc: per adapter object
3936 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3940 u32 iounit_pg1_flags;
3943 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3944 strncpy(desc, ioc->manu_pg0.ChipName, 16);
3945 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3946 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3948 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3949 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3950 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3951 ioc->facts.FWVersion.Word & 0x000000FF,
3952 ioc->pdev->revision,
3953 (bios_version & 0xFF000000) >> 24,
3954 (bios_version & 0x00FF0000) >> 16,
3955 (bios_version & 0x0000FF00) >> 8,
3956 bios_version & 0x000000FF);
3958 _base_display_OEMs_branding(ioc);
3960 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3961 pr_info("%sNVMe", i ? "," : "");
3965 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3967 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3968 pr_info("Initiator");
3972 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3973 pr_info("%sTarget", i ? "," : "");
3979 pr_info("Capabilities=(");
3981 if (!ioc->hide_ir_msg) {
3982 if (ioc->facts.IOCCapabilities &
3983 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3989 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3990 pr_info("%sTLR", i ? "," : "");
3994 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3995 pr_info("%sMulticast", i ? "," : "");
3999 if (ioc->facts.IOCCapabilities &
4000 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4001 pr_info("%sBIDI Target", i ? "," : "");
4005 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4006 pr_info("%sEEDP", i ? "," : "");
4010 if (ioc->facts.IOCCapabilities &
4011 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4012 pr_info("%sSnapshot Buffer", i ? "," : "");
4016 if (ioc->facts.IOCCapabilities &
4017 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4018 pr_info("%sDiag Trace Buffer", i ? "," : "");
4022 if (ioc->facts.IOCCapabilities &
4023 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4024 pr_info("%sDiag Extended Buffer", i ? "," : "");
4028 if (ioc->facts.IOCCapabilities &
4029 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4030 pr_info("%sTask Set Full", i ? "," : "");
4034 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4035 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4036 pr_info("%sNCQ", i ? "," : "");
4044 * mpt3sas_base_update_missing_delay - change the missing delay timers
4045 * @ioc: per adapter object
4046 * @device_missing_delay: amount of time till device is reported missing
4047 * @io_missing_delay: interval IO is returned when there is a missing device
4051 * Passed on the command line, this function will modify the device missing
4052 * delay, as well as the io missing delay. This should be called at driver
4056 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4057 u16 device_missing_delay, u8 io_missing_delay)
4059 u16 dmd, dmd_new, dmd_orignal;
4060 u8 io_missing_delay_original;
4062 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4063 Mpi2ConfigReply_t mpi_reply;
4067 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4071 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4072 sizeof(Mpi2SasIOUnit1PhyData_t));
4073 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4074 if (!sas_iounit_pg1) {
4075 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4076 ioc->name, __FILE__, __LINE__, __func__);
4079 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4080 sas_iounit_pg1, sz))) {
4081 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4082 ioc->name, __FILE__, __LINE__, __func__);
4085 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4086 MPI2_IOCSTATUS_MASK;
4087 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4088 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4089 ioc->name, __FILE__, __LINE__, __func__);
4093 /* device missing delay */
4094 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4095 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4096 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4098 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4100 if (device_missing_delay > 0x7F) {
4101 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4102 device_missing_delay;
4104 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4106 dmd = device_missing_delay;
4107 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4109 /* io missing delay */
4110 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4111 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4113 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4115 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4117 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4120 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4121 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
4122 ioc->name, dmd_orignal, dmd_new);
4123 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
4124 ioc->name, io_missing_delay_original,
4126 ioc->device_missing_delay = dmd_new;
4127 ioc->io_missing_delay = io_missing_delay;
4131 kfree(sas_iounit_pg1);
4134 * _base_static_config_pages - static start of day config pages
4135 * @ioc: per adapter object
4140 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4142 Mpi2ConfigReply_t mpi_reply;
4143 u32 iounit_pg1_flags;
4145 ioc->nvme_abort_timeout = 30;
4146 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4147 if (ioc->ir_firmware)
4148 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4152 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4153 * flag unset in NVDATA.
4155 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4156 if (ioc->manu_pg11.EEDPTagMode == 0) {
4157 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4159 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4160 ioc->manu_pg11.EEDPTagMode |= 0x1;
4161 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4164 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4165 ioc->tm_custom_handling = 1;
4167 ioc->tm_custom_handling = 0;
4168 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4169 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4170 else if (ioc->manu_pg11.NVMeAbortTO >
4171 NVME_TASK_ABORT_MAX_TIMEOUT)
4172 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4174 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4177 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4178 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4179 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4180 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4181 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4182 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4183 _base_display_ioc_capabilities(ioc);
4186 * Enable task_set_full handling in iounit_pg1 when the
4187 * facts capabilities indicate that its supported.
4189 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4190 if ((ioc->facts.IOCCapabilities &
4191 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4193 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4196 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4197 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4198 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4200 if (ioc->iounit_pg8.NumSensors)
4201 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4205 * mpt3sas_free_enclosure_list - release memory
4206 * @ioc: per adapter object
4208 * Free memory allocated during encloure add.
4213 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4215 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4217 /* Free enclosure list */
4218 list_for_each_entry_safe(enclosure_dev,
4219 enclosure_dev_next, &ioc->enclosure_list, list) {
4220 list_del(&enclosure_dev->list);
4221 kfree(enclosure_dev);
4226 * _base_release_memory_pools - release memory
4227 * @ioc: per adapter object
4229 * Free memory allocated from _base_allocate_memory_pools.
4234 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4238 struct chain_tracker *ct;
4239 struct reply_post_struct *rps;
4241 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4245 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4246 ioc->request, ioc->request_dma);
4247 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4248 "request_pool(0x%p): free\n",
4249 ioc->name, ioc->request));
4250 ioc->request = NULL;
4254 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4255 dma_pool_destroy(ioc->sense_dma_pool);
4256 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4257 "sense_pool(0x%p): free\n",
4258 ioc->name, ioc->sense));
4263 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4264 dma_pool_destroy(ioc->reply_dma_pool);
4265 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4266 "reply_pool(0x%p): free\n",
4267 ioc->name, ioc->reply));
4271 if (ioc->reply_free) {
4272 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4273 ioc->reply_free_dma);
4274 dma_pool_destroy(ioc->reply_free_dma_pool);
4275 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4276 "reply_free_pool(0x%p): free\n",
4277 ioc->name, ioc->reply_free));
4278 ioc->reply_free = NULL;
4281 if (ioc->reply_post) {
4283 rps = &ioc->reply_post[i];
4284 if (rps->reply_post_free) {
4286 ioc->reply_post_free_dma_pool,
4287 rps->reply_post_free,
4288 rps->reply_post_free_dma);
4289 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4290 "reply_post_free_pool(0x%p): free\n",
4291 ioc->name, rps->reply_post_free));
4292 rps->reply_post_free = NULL;
4294 } while (ioc->rdpq_array_enable &&
4295 (++i < ioc->reply_queue_count));
4296 if (ioc->reply_post_free_array &&
4297 ioc->rdpq_array_enable) {
4298 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4299 ioc->reply_post_free_array,
4300 ioc->reply_post_free_array_dma);
4301 ioc->reply_post_free_array = NULL;
4303 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4304 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4305 kfree(ioc->reply_post);
4308 if (ioc->pcie_sgl_dma_pool) {
4309 for (i = 0; i < ioc->scsiio_depth; i++) {
4310 dma_pool_free(ioc->pcie_sgl_dma_pool,
4311 ioc->pcie_sg_lookup[i].pcie_sgl,
4312 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4314 if (ioc->pcie_sgl_dma_pool)
4315 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4318 if (ioc->config_page) {
4319 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4320 "config_page(0x%p): free\n", ioc->name,
4322 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4323 ioc->config_page, ioc->config_page_dma);
4326 kfree(ioc->hpr_lookup);
4327 kfree(ioc->internal_lookup);
4328 if (ioc->chain_lookup) {
4329 for (i = 0; i < ioc->scsiio_depth; i++) {
4330 for (j = ioc->chains_per_prp_buffer;
4331 j < ioc->chains_needed_per_io; j++) {
4332 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4333 if (ct && ct->chain_buffer)
4334 dma_pool_free(ioc->chain_dma_pool,
4336 ct->chain_buffer_dma);
4338 kfree(ioc->chain_lookup[i].chains_per_smid);
4340 dma_pool_destroy(ioc->chain_dma_pool);
4341 kfree(ioc->chain_lookup);
4342 ioc->chain_lookup = NULL;
4347 * is_MSB_are_same - checks whether all reply queues in a set are
4348 * having same upper 32bits in their base memory address.
4349 * @reply_pool_start_address: Base address of a reply queue set
4350 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4352 * Returns 1 if reply queues in a set have a same upper 32bits
4353 * in their base memory address,
4358 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4360 long reply_pool_end_address;
4362 reply_pool_end_address = reply_pool_start_address + pool_sz;
4364 if (upper_32_bits(reply_pool_start_address) ==
4365 upper_32_bits(reply_pool_end_address))
4372 * _base_allocate_memory_pools - allocate start of day memory pools
4373 * @ioc: per adapter object
4375 * Returns 0 success, anything else error
4378 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4380 struct mpt3sas_facts *facts;
4381 u16 max_sge_elements;
4382 u16 chains_needed_per_io;
4383 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4385 u16 max_request_credit, nvme_blocks_needed;
4386 unsigned short sg_tablesize;
4389 struct chain_tracker *ct;
4391 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4396 facts = &ioc->facts;
4398 /* command line tunables for max sgl entries */
4399 if (max_sgl_entries != -1)
4400 sg_tablesize = max_sgl_entries;
4402 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4403 sg_tablesize = MPT2SAS_SG_DEPTH;
4405 sg_tablesize = MPT3SAS_SG_DEPTH;
4408 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4410 sg_tablesize = min_t(unsigned short, sg_tablesize,
4411 MPT_KDUMP_MIN_PHYS_SEGMENTS);
4413 if (ioc->is_mcpu_endpoint)
4414 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4416 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4417 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4418 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4419 sg_tablesize = min_t(unsigned short, sg_tablesize,
4422 "sg_tablesize(%u) is bigger than kernel "
4423 "defined SG_CHUNK_SIZE(%u)\n", ioc->name,
4424 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4426 ioc->shost->sg_tablesize = sg_tablesize;
4429 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4430 (facts->RequestCredit / 4));
4431 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4432 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4433 INTERNAL_SCSIIO_CMDS_COUNT)) {
4434 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
4435 Credits, it has just %d number of credits\n",
4436 ioc->name, facts->RequestCredit);
4439 ioc->internal_depth = 10;
4442 ioc->hi_priority_depth = ioc->internal_depth - (5);
4443 /* command line tunables for max controller queue depth */
4444 if (max_queue_depth != -1 && max_queue_depth != 0) {
4445 max_request_credit = min_t(u16, max_queue_depth +
4446 ioc->internal_depth, facts->RequestCredit);
4447 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4448 max_request_credit = MAX_HBA_QUEUE_DEPTH;
4449 } else if (reset_devices)
4450 max_request_credit = min_t(u16, facts->RequestCredit,
4451 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4453 max_request_credit = min_t(u16, facts->RequestCredit,
4454 MAX_HBA_QUEUE_DEPTH);
4456 /* Firmware maintains additional facts->HighPriorityCredit number of
4457 * credits for HiPriprity Request messages, so hba queue depth will be
4458 * sum of max_request_credit and high priority queue depth.
4460 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4462 /* request frame size */
4463 ioc->request_sz = facts->IOCRequestFrameSize * 4;
4465 /* reply frame size */
4466 ioc->reply_sz = facts->ReplyFrameSize * 4;
4468 /* chain segment size */
4469 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4470 if (facts->IOCMaxChainSegmentSize)
4471 ioc->chain_segment_sz =
4472 facts->IOCMaxChainSegmentSize *
4475 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4476 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4479 ioc->chain_segment_sz = ioc->request_sz;
4481 /* calculate the max scatter element size */
4482 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4486 /* calculate number of sg elements left over in the 1st frame */
4487 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4488 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4489 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4491 /* now do the same for a chain buffer */
4492 max_sge_elements = ioc->chain_segment_sz - sge_size;
4493 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4496 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4498 chains_needed_per_io = ((ioc->shost->sg_tablesize -
4499 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4501 if (chains_needed_per_io > facts->MaxChainDepth) {
4502 chains_needed_per_io = facts->MaxChainDepth;
4503 ioc->shost->sg_tablesize = min_t(u16,
4504 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4505 * chains_needed_per_io), ioc->shost->sg_tablesize);
4507 ioc->chains_needed_per_io = chains_needed_per_io;
4509 /* reply free queue sizing - taking into account for 64 FW events */
4510 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4512 /* mCPU manage single counters for simplicity */
4513 if (ioc->is_mcpu_endpoint)
4514 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4516 /* calculate reply descriptor post queue depth */
4517 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4518 ioc->reply_free_queue_depth + 1;
4519 /* align the reply post queue on the next 16 count boundary */
4520 if (ioc->reply_post_queue_depth % 16)
4521 ioc->reply_post_queue_depth += 16 -
4522 (ioc->reply_post_queue_depth % 16);
4525 if (ioc->reply_post_queue_depth >
4526 facts->MaxReplyDescriptorPostQueueDepth) {
4527 ioc->reply_post_queue_depth =
4528 facts->MaxReplyDescriptorPostQueueDepth -
4529 (facts->MaxReplyDescriptorPostQueueDepth % 16);
4530 ioc->hba_queue_depth =
4531 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4532 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4535 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4536 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4537 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4538 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4539 ioc->chains_needed_per_io));
4541 /* reply post queue, 16 byte align */
4542 reply_post_free_sz = ioc->reply_post_queue_depth *
4543 sizeof(Mpi2DefaultReplyDescriptor_t);
4545 sz = reply_post_free_sz;
4546 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4547 sz *= ioc->reply_queue_count;
4549 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4550 (ioc->reply_queue_count):1,
4551 sizeof(struct reply_post_struct), GFP_KERNEL);
4553 if (!ioc->reply_post) {
4554 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4558 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4559 &ioc->pdev->dev, sz, 16, 0);
4560 if (!ioc->reply_post_free_dma_pool) {
4562 "reply_post_free pool: dma_pool_create failed\n",
4568 ioc->reply_post[i].reply_post_free =
4569 dma_pool_alloc(ioc->reply_post_free_dma_pool,
4571 &ioc->reply_post[i].reply_post_free_dma);
4572 if (!ioc->reply_post[i].reply_post_free) {
4574 "reply_post_free pool: dma_pool_alloc failed\n",
4578 memset(ioc->reply_post[i].reply_post_free, 0, sz);
4579 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4580 "reply post free pool (0x%p): depth(%d),"
4581 "element_size(%d), pool_size(%d kB)\n", ioc->name,
4582 ioc->reply_post[i].reply_post_free,
4583 ioc->reply_post_queue_depth, 8, sz/1024));
4584 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4585 "reply_post_free_dma = (0x%llx)\n", ioc->name,
4586 (unsigned long long)
4587 ioc->reply_post[i].reply_post_free_dma));
4589 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4591 if (ioc->dma_mask == 64) {
4592 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4594 "no suitable consistent DMA mask for %s\n",
4595 ioc->name, pci_name(ioc->pdev));
4600 ioc->scsiio_depth = ioc->hba_queue_depth -
4601 ioc->hi_priority_depth - ioc->internal_depth;
4603 /* set the scsi host can_queue depth
4604 * with some internal commands that could be outstanding
4606 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4607 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4608 "scsi host: can_queue depth (%d)\n",
4609 ioc->name, ioc->shost->can_queue));
4612 /* contiguous pool for request and chains, 16 byte align, one extra "
4615 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4616 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4618 /* hi-priority queue */
4619 sz += (ioc->hi_priority_depth * ioc->request_sz);
4621 /* internal queue */
4622 sz += (ioc->internal_depth * ioc->request_sz);
4624 ioc->request_dma_sz = sz;
4625 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4626 if (!ioc->request) {
4627 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4628 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4629 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4630 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4631 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4634 ioc->hba_queue_depth -= retry_sz;
4635 _base_release_memory_pools(ioc);
4636 goto retry_allocation;
4640 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4641 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4642 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4643 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4645 /* hi-priority queue */
4646 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4648 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4651 /* internal queue */
4652 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4654 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4657 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4658 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4659 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4660 (ioc->hba_queue_depth * ioc->request_sz)/1024));
4662 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4663 ioc->name, (unsigned long long) ioc->request_dma));
4666 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4667 ioc->name, ioc->request, ioc->scsiio_depth));
4669 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4670 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4671 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4672 if (!ioc->chain_lookup) {
4673 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages "
4674 "failed\n", ioc->name);
4678 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4679 for (i = 0; i < ioc->scsiio_depth; i++) {
4680 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4681 if (!ioc->chain_lookup[i].chains_per_smid) {
4682 pr_err(MPT3SAS_FMT "chain_lookup: "
4683 " kzalloc failed\n", ioc->name);
4688 /* initialize hi-priority queue smid's */
4689 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4690 sizeof(struct request_tracker), GFP_KERNEL);
4691 if (!ioc->hpr_lookup) {
4692 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4696 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4697 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4698 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4699 ioc->name, ioc->hi_priority,
4700 ioc->hi_priority_depth, ioc->hi_priority_smid));
4702 /* initialize internal queue smid's */
4703 ioc->internal_lookup = kcalloc(ioc->internal_depth,
4704 sizeof(struct request_tracker), GFP_KERNEL);
4705 if (!ioc->internal_lookup) {
4706 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4710 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4711 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4712 "internal(0x%p): depth(%d), start smid(%d)\n",
4713 ioc->name, ioc->internal,
4714 ioc->internal_depth, ioc->internal_smid));
4716 * The number of NVMe page sized blocks needed is:
4717 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4718 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4719 * that is placed in the main message frame. 8 is the size of each PRP
4720 * entry or PRP list pointer entry. 8 is subtracted from page_size
4721 * because of the PRP list pointer entry at the end of a page, so this
4722 * is not counted as a PRP entry. The 1 added page is a round up.
4724 * To avoid allocation failures due to the amount of memory that could
4725 * be required for NVMe PRP's, only each set of NVMe blocks will be
4726 * contiguous, so a new set is allocated for each possible I/O.
4728 ioc->chains_per_prp_buffer = 0;
4729 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4730 nvme_blocks_needed =
4731 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4732 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4733 nvme_blocks_needed++;
4735 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4736 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4737 if (!ioc->pcie_sg_lookup) {
4739 "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4742 sz = nvme_blocks_needed * ioc->page_size;
4743 ioc->pcie_sgl_dma_pool =
4744 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4745 if (!ioc->pcie_sgl_dma_pool) {
4747 "PCIe SGL pool: dma_pool_create failed\n",
4752 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4753 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4754 ioc->chains_needed_per_io);
4756 for (i = 0; i < ioc->scsiio_depth; i++) {
4757 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4758 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4759 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4760 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4762 "PCIe SGL pool: dma_pool_alloc failed\n",
4766 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4767 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4769 ioc->pcie_sg_lookup[i].pcie_sgl +
4770 (j * ioc->chain_segment_sz);
4771 ct->chain_buffer_dma =
4772 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4773 (j * ioc->chain_segment_sz);
4777 dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4778 "element_size(%d), pool_size(%d kB)\n", ioc->name,
4779 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4780 dinitprintk(ioc, pr_info(MPT3SAS_FMT "Number of chains can "
4781 "fit in a PRP page(%d)\n", ioc->name,
4782 ioc->chains_per_prp_buffer));
4783 total_sz += sz * ioc->scsiio_depth;
4786 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4787 ioc->chain_segment_sz, 16, 0);
4788 if (!ioc->chain_dma_pool) {
4789 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4793 for (i = 0; i < ioc->scsiio_depth; i++) {
4794 for (j = ioc->chains_per_prp_buffer;
4795 j < ioc->chains_needed_per_io; j++) {
4796 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4797 ct->chain_buffer = dma_pool_alloc(
4798 ioc->chain_dma_pool, GFP_KERNEL,
4799 &ct->chain_buffer_dma);
4800 if (!ct->chain_buffer) {
4801 pr_err(MPT3SAS_FMT "chain_lookup: "
4802 " pci_pool_alloc failed\n", ioc->name);
4803 _base_release_memory_pools(ioc);
4807 total_sz += ioc->chain_segment_sz;
4810 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4811 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4812 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4813 ((ioc->chain_depth * ioc->chain_segment_sz))/1024));
4815 /* sense buffers, 4 byte align */
4816 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4817 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4819 if (!ioc->sense_dma_pool) {
4820 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4824 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4827 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4831 /* sense buffer requires to be in same 4 gb region.
4832 * Below function will check the same.
4833 * In case of failure, new pci pool will be created with updated
4834 * alignment. Older allocation and pool will be destroyed.
4835 * Alignment will be used such a way that next allocation if
4836 * success, will always meet same 4gb region requirement.
4837 * Actual requirement is not alignment, but we need start and end of
4838 * DMA address must have same upper 32 bit address.
4840 if (!is_MSB_are_same((long)ioc->sense, sz)) {
4841 //Release Sense pool & Reallocate
4842 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4843 dma_pool_destroy(ioc->sense_dma_pool);
4846 ioc->sense_dma_pool =
4847 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4848 roundup_pow_of_two(sz), 0);
4849 if (!ioc->sense_dma_pool) {
4850 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
4854 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4857 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
4862 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4863 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4864 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4865 SCSI_SENSE_BUFFERSIZE, sz/1024));
4866 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4867 ioc->name, (unsigned long long)ioc->sense_dma));
4870 /* reply pool, 4 byte align */
4871 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4872 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4874 if (!ioc->reply_dma_pool) {
4875 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4879 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4882 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4886 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4887 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4888 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4889 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4890 ioc->name, ioc->reply,
4891 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4892 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4893 ioc->name, (unsigned long long)ioc->reply_dma));
4896 /* reply free queue, 16 byte align */
4897 sz = ioc->reply_free_queue_depth * 4;
4898 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4899 &ioc->pdev->dev, sz, 16, 0);
4900 if (!ioc->reply_free_dma_pool) {
4901 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4905 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4906 &ioc->reply_free_dma);
4907 if (!ioc->reply_free) {
4908 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4912 memset(ioc->reply_free, 0, sz);
4913 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4914 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4915 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4916 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4917 "reply_free_dma (0x%llx)\n",
4918 ioc->name, (unsigned long long)ioc->reply_free_dma));
4921 if (ioc->rdpq_array_enable) {
4922 reply_post_free_array_sz = ioc->reply_queue_count *
4923 sizeof(Mpi2IOCInitRDPQArrayEntry);
4924 ioc->reply_post_free_array_dma_pool =
4925 dma_pool_create("reply_post_free_array pool",
4926 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4927 if (!ioc->reply_post_free_array_dma_pool) {
4929 pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4930 "dma_pool_create failed\n", ioc->name));
4933 ioc->reply_post_free_array =
4934 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4935 GFP_KERNEL, &ioc->reply_post_free_array_dma);
4936 if (!ioc->reply_post_free_array) {
4938 pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4939 "dma_pool_alloc failed\n", ioc->name));
4943 ioc->config_page_sz = 512;
4944 ioc->config_page = pci_alloc_consistent(ioc->pdev,
4945 ioc->config_page_sz, &ioc->config_page_dma);
4946 if (!ioc->config_page) {
4948 "config page: dma_pool_alloc failed\n",
4952 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4953 "config page(0x%p): size(%d)\n",
4954 ioc->name, ioc->config_page, ioc->config_page_sz));
4955 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4956 ioc->name, (unsigned long long)ioc->config_page_dma));
4957 total_sz += ioc->config_page_sz;
4959 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4960 ioc->name, total_sz/1024);
4962 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4963 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4964 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4965 ioc->name, ioc->shost->sg_tablesize);
4973 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4974 * @ioc: Pointer to MPT_ADAPTER structure
4975 * @cooked: Request raw or cooked IOC state
4977 * Returns all IOC Doorbell register bits if cooked==0, else just the
4978 * Doorbell bits in MPI_IOC_STATE_MASK.
4981 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4985 s = readl(&ioc->chip->Doorbell);
4986 sc = s & MPI2_IOC_STATE_MASK;
4987 return cooked ? sc : s;
4991 * _base_wait_on_iocstate - waiting on a particular ioc state
4992 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4993 * @timeout: timeout in second
4995 * Returns 0 for success, non-zero for failure.
4998 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5004 cntdn = 1000 * timeout;
5006 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5007 if (current_state == ioc_state)
5009 if (count && current_state == MPI2_IOC_STATE_FAULT)
5012 usleep_range(1000, 1500);
5016 return current_state;
5020 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5021 * a write to the doorbell)
5022 * @ioc: per adapter object
5023 * @timeout: timeout in second
5025 * Returns 0 for success, non-zero for failure.
5027 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5030 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
5033 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5039 cntdn = 1000 * timeout;
5041 int_status = readl(&ioc->chip->HostInterruptStatus);
5042 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5043 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5044 "%s: successful count(%d), timeout(%d)\n",
5045 ioc->name, __func__, count, timeout));
5049 usleep_range(1000, 1500);
5054 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5055 ioc->name, __func__, count, int_status);
5060 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5066 cntdn = 2000 * timeout;
5068 int_status = readl(&ioc->chip->HostInterruptStatus);
5069 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5070 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5071 "%s: successful count(%d), timeout(%d)\n",
5072 ioc->name, __func__, count, timeout));
5081 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5082 ioc->name, __func__, count, int_status);
5088 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5089 * @ioc: per adapter object
5090 * @timeout: timeout in second
5092 * Returns 0 for success, non-zero for failure.
5094 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5098 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5105 cntdn = 1000 * timeout;
5107 int_status = readl(&ioc->chip->HostInterruptStatus);
5108 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5109 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5110 "%s: successful count(%d), timeout(%d)\n",
5111 ioc->name, __func__, count, timeout));
5113 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5114 doorbell = readl(&ioc->chip->Doorbell);
5115 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5116 MPI2_IOC_STATE_FAULT) {
5117 mpt3sas_base_fault_info(ioc , doorbell);
5120 } else if (int_status == 0xFFFFFFFF)
5123 usleep_range(1000, 1500);
5129 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5130 ioc->name, __func__, count, int_status);
5135 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5136 * @ioc: per adapter object
5137 * @timeout: timeout in second
5139 * Returns 0 for success, non-zero for failure.
5143 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5149 cntdn = 1000 * timeout;
5151 doorbell_reg = readl(&ioc->chip->Doorbell);
5152 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5153 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5154 "%s: successful count(%d), timeout(%d)\n",
5155 ioc->name, __func__, count, timeout));
5159 usleep_range(1000, 1500);
5164 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5165 ioc->name, __func__, count, doorbell_reg);
5170 * _base_send_ioc_reset - send doorbell reset
5171 * @ioc: per adapter object
5172 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5173 * @timeout: timeout in second
5175 * Returns 0 for success, non-zero for failure.
5178 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5183 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5184 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
5185 ioc->name, __func__);
5189 if (!(ioc->facts.IOCCapabilities &
5190 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5193 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
5195 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5196 &ioc->chip->Doorbell);
5197 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5201 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5204 "%s: failed going to ready state (ioc_state=0x%x)\n",
5205 ioc->name, __func__, ioc_state);
5210 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
5211 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
5216 * _base_handshake_req_reply_wait - send request thru doorbell interface
5217 * @ioc: per adapter object
5218 * @request_bytes: request length
5219 * @request: pointer having request payload
5220 * @reply_bytes: reply length
5221 * @reply: pointer to reply payload
5222 * @timeout: timeout in second
5224 * Returns 0 for success, non-zero for failure.
5227 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5228 u32 *request, int reply_bytes, u16 *reply, int timeout)
5230 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5235 /* make sure doorbell is not in use */
5236 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5238 "doorbell is in use (line=%d)\n",
5239 ioc->name, __LINE__);
5243 /* clear pending doorbell interrupts from previous state changes */
5244 if (readl(&ioc->chip->HostInterruptStatus) &
5245 MPI2_HIS_IOC2SYS_DB_STATUS)
5246 writel(0, &ioc->chip->HostInterruptStatus);
5248 /* send message to ioc */
5249 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5250 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5251 &ioc->chip->Doorbell);
5253 if ((_base_spin_on_doorbell_int(ioc, 5))) {
5255 "doorbell handshake int failed (line=%d)\n",
5256 ioc->name, __LINE__);
5259 writel(0, &ioc->chip->HostInterruptStatus);
5261 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5263 "doorbell handshake ack failed (line=%d)\n",
5264 ioc->name, __LINE__);
5268 /* send message 32-bits at a time */
5269 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5270 writel((u32)(request[i]), &ioc->chip->Doorbell);
5271 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5277 "doorbell handshake sending request failed (line=%d)\n",
5278 ioc->name, __LINE__);
5282 /* now wait for the reply */
5283 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5285 "doorbell handshake int failed (line=%d)\n",
5286 ioc->name, __LINE__);
5290 /* read the first two 16-bits, it gives the total length of the reply */
5291 reply[0] = (u16)(readl(&ioc->chip->Doorbell)
5292 & MPI2_DOORBELL_DATA_MASK);
5293 writel(0, &ioc->chip->HostInterruptStatus);
5294 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5296 "doorbell handshake int failed (line=%d)\n",
5297 ioc->name, __LINE__);
5300 reply[1] = (u16)(readl(&ioc->chip->Doorbell)
5301 & MPI2_DOORBELL_DATA_MASK);
5302 writel(0, &ioc->chip->HostInterruptStatus);
5304 for (i = 2; i < default_reply->MsgLength * 2; i++) {
5305 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5307 "doorbell handshake int failed (line=%d)\n",
5308 ioc->name, __LINE__);
5311 if (i >= reply_bytes/2) /* overflow case */
5312 readl(&ioc->chip->Doorbell);
5314 reply[i] = (u16)(readl(&ioc->chip->Doorbell)
5315 & MPI2_DOORBELL_DATA_MASK);
5316 writel(0, &ioc->chip->HostInterruptStatus);
5319 _base_wait_for_doorbell_int(ioc, 5);
5320 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5321 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5322 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
5324 writel(0, &ioc->chip->HostInterruptStatus);
5326 if (ioc->logging_level & MPT_DEBUG_INIT) {
5327 mfp = (__le32 *)reply;
5328 pr_info("\toffset:data\n");
5329 for (i = 0; i < reply_bytes/4; i++)
5330 pr_info("\t[0x%02x]:%08x\n", i*4,
5331 le32_to_cpu(mfp[i]));
5337 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5338 * @ioc: per adapter object
5339 * @mpi_reply: the reply payload from FW
5340 * @mpi_request: the request payload sent to FW
5342 * The SAS IO Unit Control Request message allows the host to perform low-level
5343 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5344 * to obtain the IOC assigned device handles for a device if it has other
5345 * identifying information about the device, in addition allows the host to
5346 * remove IOC resources associated with the device.
5348 * Returns 0 for success, non-zero for failure.
5351 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5352 Mpi2SasIoUnitControlReply_t *mpi_reply,
5353 Mpi2SasIoUnitControlRequest_t *mpi_request)
5357 bool issue_reset = false;
5360 u16 wait_state_count;
5362 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5365 mutex_lock(&ioc->base_cmds.mutex);
5367 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5368 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5369 ioc->name, __func__);
5374 wait_state_count = 0;
5375 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5376 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5377 if (wait_state_count++ == 10) {
5379 "%s: failed due to ioc not operational\n",
5380 ioc->name, __func__);
5385 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5387 "%s: waiting for operational state(count=%d)\n",
5388 ioc->name, __func__, wait_state_count);
5391 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5393 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5394 ioc->name, __func__);
5400 ioc->base_cmds.status = MPT3_CMD_PENDING;
5401 request = mpt3sas_base_get_msg_frame(ioc, smid);
5402 ioc->base_cmds.smid = smid;
5403 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5404 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5405 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5406 ioc->ioc_link_reset_in_progress = 1;
5407 init_completion(&ioc->base_cmds.done);
5408 mpt3sas_base_put_smid_default(ioc, smid);
5409 wait_for_completion_timeout(&ioc->base_cmds.done,
5410 msecs_to_jiffies(10000));
5411 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5412 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5413 ioc->ioc_link_reset_in_progress)
5414 ioc->ioc_link_reset_in_progress = 0;
5415 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5416 pr_err(MPT3SAS_FMT "%s: timeout\n",
5417 ioc->name, __func__);
5418 _debug_dump_mf(mpi_request,
5419 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5420 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5422 goto issue_host_reset;
5424 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5425 memcpy(mpi_reply, ioc->base_cmds.reply,
5426 sizeof(Mpi2SasIoUnitControlReply_t));
5428 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5429 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5434 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5435 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5438 mutex_unlock(&ioc->base_cmds.mutex);
5443 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5444 * @ioc: per adapter object
5445 * @mpi_reply: the reply payload from FW
5446 * @mpi_request: the request payload sent to FW
5448 * The SCSI Enclosure Processor request message causes the IOC to
5449 * communicate with SES devices to control LED status signals.
5451 * Returns 0 for success, non-zero for failure.
5454 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5455 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5459 bool issue_reset = false;
5462 u16 wait_state_count;
5464 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5467 mutex_lock(&ioc->base_cmds.mutex);
5469 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5470 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5471 ioc->name, __func__);
5476 wait_state_count = 0;
5477 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5478 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5479 if (wait_state_count++ == 10) {
5481 "%s: failed due to ioc not operational\n",
5482 ioc->name, __func__);
5487 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5489 "%s: waiting for operational state(count=%d)\n",
5491 __func__, wait_state_count);
5494 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5496 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5497 ioc->name, __func__);
5503 ioc->base_cmds.status = MPT3_CMD_PENDING;
5504 request = mpt3sas_base_get_msg_frame(ioc, smid);
5505 ioc->base_cmds.smid = smid;
5506 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5507 init_completion(&ioc->base_cmds.done);
5508 mpt3sas_base_put_smid_default(ioc, smid);
5509 wait_for_completion_timeout(&ioc->base_cmds.done,
5510 msecs_to_jiffies(10000));
5511 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5512 pr_err(MPT3SAS_FMT "%s: timeout\n",
5513 ioc->name, __func__);
5514 _debug_dump_mf(mpi_request,
5515 sizeof(Mpi2SepRequest_t)/4);
5516 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5517 issue_reset = false;
5518 goto issue_host_reset;
5520 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5521 memcpy(mpi_reply, ioc->base_cmds.reply,
5522 sizeof(Mpi2SepReply_t));
5524 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5525 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5530 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5531 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5534 mutex_unlock(&ioc->base_cmds.mutex);
5539 * _base_get_port_facts - obtain port facts reply and save in ioc
5540 * @ioc: per adapter object
5542 * Returns 0 for success, non-zero for failure.
5545 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5547 Mpi2PortFactsRequest_t mpi_request;
5548 Mpi2PortFactsReply_t mpi_reply;
5549 struct mpt3sas_port_facts *pfacts;
5550 int mpi_reply_sz, mpi_request_sz, r;
5552 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5555 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5556 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5557 memset(&mpi_request, 0, mpi_request_sz);
5558 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5559 mpi_request.PortNumber = port;
5560 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5561 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5564 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5565 ioc->name, __func__, r);
5569 pfacts = &ioc->pfacts[port];
5570 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5571 pfacts->PortNumber = mpi_reply.PortNumber;
5572 pfacts->VP_ID = mpi_reply.VP_ID;
5573 pfacts->VF_ID = mpi_reply.VF_ID;
5574 pfacts->MaxPostedCmdBuffers =
5575 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5581 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5582 * @ioc: per adapter object
5585 * Returns 0 for success, non-zero for failure.
5588 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5593 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
5596 if (ioc->pci_error_recovery) {
5597 dfailprintk(ioc, printk(MPT3SAS_FMT
5598 "%s: host in pci error recovery\n", ioc->name, __func__));
5602 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5603 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5604 ioc->name, __func__, ioc_state));
5606 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5607 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5610 if (ioc_state & MPI2_DOORBELL_USED) {
5611 dhsprintk(ioc, printk(MPT3SAS_FMT
5612 "unexpected doorbell active!\n", ioc->name));
5613 goto issue_diag_reset;
5616 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5617 mpt3sas_base_fault_info(ioc, ioc_state &
5618 MPI2_DOORBELL_DATA_MASK);
5619 goto issue_diag_reset;
5622 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5624 dfailprintk(ioc, printk(MPT3SAS_FMT
5625 "%s: failed going to ready state (ioc_state=0x%x)\n",
5626 ioc->name, __func__, ioc_state));
5631 rc = _base_diag_reset(ioc);
5636 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5637 * @ioc: per adapter object
5639 * Returns 0 for success, non-zero for failure.
5642 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5644 Mpi2IOCFactsRequest_t mpi_request;
5645 Mpi2IOCFactsReply_t mpi_reply;
5646 struct mpt3sas_facts *facts;
5647 int mpi_reply_sz, mpi_request_sz, r;
5649 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5652 r = _base_wait_for_iocstate(ioc, 10);
5654 dfailprintk(ioc, printk(MPT3SAS_FMT
5655 "%s: failed getting to correct state\n",
5656 ioc->name, __func__));
5659 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5660 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5661 memset(&mpi_request, 0, mpi_request_sz);
5662 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5663 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5664 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5667 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5668 ioc->name, __func__, r);
5672 facts = &ioc->facts;
5673 memset(facts, 0, sizeof(struct mpt3sas_facts));
5674 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5675 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5676 facts->VP_ID = mpi_reply.VP_ID;
5677 facts->VF_ID = mpi_reply.VF_ID;
5678 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5679 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5680 facts->WhoInit = mpi_reply.WhoInit;
5681 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5682 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5683 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5684 facts->MaxReplyDescriptorPostQueueDepth =
5685 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5686 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5687 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5688 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5689 ioc->ir_firmware = 1;
5690 if ((facts->IOCCapabilities &
5691 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5692 ioc->rdpq_array_capable = 1;
5693 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5694 facts->IOCRequestFrameSize =
5695 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5696 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5697 facts->IOCMaxChainSegmentSize =
5698 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5700 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5701 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5702 ioc->shost->max_id = -1;
5703 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5704 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5705 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5706 facts->HighPriorityCredit =
5707 le16_to_cpu(mpi_reply.HighPriorityCredit);
5708 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5709 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5710 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5713 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5715 ioc->page_size = 1 << facts->CurrentHostPageSize;
5716 if (ioc->page_size == 1) {
5717 pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5718 "default host page size to 4k\n", ioc->name);
5719 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5721 dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5722 ioc->name, facts->CurrentHostPageSize));
5724 dinitprintk(ioc, pr_info(MPT3SAS_FMT
5725 "hba queue depth(%d), max chains per io(%d)\n",
5726 ioc->name, facts->RequestCredit,
5727 facts->MaxChainDepth));
5728 dinitprintk(ioc, pr_info(MPT3SAS_FMT
5729 "request frame size(%d), reply frame size(%d)\n", ioc->name,
5730 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5735 * _base_send_ioc_init - send ioc_init to firmware
5736 * @ioc: per adapter object
5738 * Returns 0 for success, non-zero for failure.
5741 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5743 Mpi2IOCInitRequest_t mpi_request;
5744 Mpi2IOCInitReply_t mpi_reply;
5746 ktime_t current_time;
5748 u32 reply_post_free_array_sz = 0;
5750 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5753 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5754 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5755 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5756 mpi_request.VF_ID = 0; /* TODO */
5757 mpi_request.VP_ID = 0;
5758 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5759 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5760 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5762 if (_base_is_controller_msix_enabled(ioc))
5763 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5764 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5765 mpi_request.ReplyDescriptorPostQueueDepth =
5766 cpu_to_le16(ioc->reply_post_queue_depth);
5767 mpi_request.ReplyFreeQueueDepth =
5768 cpu_to_le16(ioc->reply_free_queue_depth);
5770 mpi_request.SenseBufferAddressHigh =
5771 cpu_to_le32((u64)ioc->sense_dma >> 32);
5772 mpi_request.SystemReplyAddressHigh =
5773 cpu_to_le32((u64)ioc->reply_dma >> 32);
5774 mpi_request.SystemRequestFrameBaseAddress =
5775 cpu_to_le64((u64)ioc->request_dma);
5776 mpi_request.ReplyFreeQueueAddress =
5777 cpu_to_le64((u64)ioc->reply_free_dma);
5779 if (ioc->rdpq_array_enable) {
5780 reply_post_free_array_sz = ioc->reply_queue_count *
5781 sizeof(Mpi2IOCInitRDPQArrayEntry);
5782 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5783 for (i = 0; i < ioc->reply_queue_count; i++)
5784 ioc->reply_post_free_array[i].RDPQBaseAddress =
5786 (u64)ioc->reply_post[i].reply_post_free_dma);
5787 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5788 mpi_request.ReplyDescriptorPostQueueAddress =
5789 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5791 mpi_request.ReplyDescriptorPostQueueAddress =
5792 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5795 /* This time stamp specifies number of milliseconds
5796 * since epoch ~ midnight January 1, 1970.
5798 current_time = ktime_get_real();
5799 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5801 if (ioc->logging_level & MPT_DEBUG_INIT) {
5805 mfp = (__le32 *)&mpi_request;
5806 pr_info("\toffset:data\n");
5807 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5808 pr_info("\t[0x%02x]:%08x\n", i*4,
5809 le32_to_cpu(mfp[i]));
5812 r = _base_handshake_req_reply_wait(ioc,
5813 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5814 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5817 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5818 ioc->name, __func__, r);
5822 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5823 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5824 mpi_reply.IOCLogInfo) {
5825 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5833 * mpt3sas_port_enable_done - command completion routine for port enable
5834 * @ioc: per adapter object
5835 * @smid: system request message index
5836 * @msix_index: MSIX table index supplied by the OS
5837 * @reply: reply message frame(lower 32bit addr)
5839 * Return 1 meaning mf should be freed from _base_interrupt
5840 * 0 means the mf is freed from this function.
5843 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5846 MPI2DefaultReply_t *mpi_reply;
5849 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5852 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5856 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5859 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5860 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5861 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5862 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5863 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5864 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5865 ioc->port_enable_failed = 1;
5867 if (ioc->is_driver_loading) {
5868 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5869 mpt3sas_port_enable_complete(ioc);
5872 ioc->start_scan_failed = ioc_status;
5873 ioc->start_scan = 0;
5877 complete(&ioc->port_enable_cmds.done);
5882 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5883 * @ioc: per adapter object
5885 * Returns 0 for success, non-zero for failure.
5888 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5890 Mpi2PortEnableRequest_t *mpi_request;
5891 Mpi2PortEnableReply_t *mpi_reply;
5896 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5898 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5899 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5900 ioc->name, __func__);
5904 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5906 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5907 ioc->name, __func__);
5911 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5912 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5913 ioc->port_enable_cmds.smid = smid;
5914 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5915 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5917 init_completion(&ioc->port_enable_cmds.done);
5918 mpt3sas_base_put_smid_default(ioc, smid);
5919 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5920 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5921 pr_err(MPT3SAS_FMT "%s: timeout\n",
5922 ioc->name, __func__);
5923 _debug_dump_mf(mpi_request,
5924 sizeof(Mpi2PortEnableRequest_t)/4);
5925 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5932 mpi_reply = ioc->port_enable_cmds.reply;
5933 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5934 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5935 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5936 ioc->name, __func__, ioc_status);
5942 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5943 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5944 "SUCCESS" : "FAILED"));
5949 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5950 * @ioc: per adapter object
5952 * Returns 0 for success, non-zero for failure.
5955 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5957 Mpi2PortEnableRequest_t *mpi_request;
5960 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5962 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5963 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5964 ioc->name, __func__);
5968 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5970 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5971 ioc->name, __func__);
5975 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5976 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5977 ioc->port_enable_cmds.smid = smid;
5978 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5979 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5981 mpt3sas_base_put_smid_default(ioc, smid);
5986 * _base_determine_wait_on_discovery - desposition
5987 * @ioc: per adapter object
5989 * Decide whether to wait on discovery to complete. Used to either
5990 * locate boot device, or report volumes ahead of physical devices.
5992 * Returns 1 for wait, 0 for don't wait
5995 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5997 /* We wait for discovery to complete if IR firmware is loaded.
5998 * The sas topology events arrive before PD events, so we need time to
5999 * turn on the bit in ioc->pd_handles to indicate PD
6000 * Also, it maybe required to report Volumes ahead of physical
6001 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6003 if (ioc->ir_firmware)
6006 /* if no Bios, then we don't need to wait */
6007 if (!ioc->bios_pg3.BiosVersion)
6010 /* Bios is present, then we drop down here.
6012 * If there any entries in the Bios Page 2, then we wait
6013 * for discovery to complete.
6016 /* Current Boot Device */
6017 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6018 MPI2_BIOSPAGE2_FORM_MASK) ==
6019 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6020 /* Request Boot Device */
6021 (ioc->bios_pg2.ReqBootDeviceForm &
6022 MPI2_BIOSPAGE2_FORM_MASK) ==
6023 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6024 /* Alternate Request Boot Device */
6025 (ioc->bios_pg2.ReqAltBootDeviceForm &
6026 MPI2_BIOSPAGE2_FORM_MASK) ==
6027 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6034 * _base_unmask_events - turn on notification for this event
6035 * @ioc: per adapter object
6036 * @event: firmware event
6038 * The mask is stored in ioc->event_masks.
6041 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6048 desired_event = (1 << (event % 32));
6051 ioc->event_masks[0] &= ~desired_event;
6052 else if (event < 64)
6053 ioc->event_masks[1] &= ~desired_event;
6054 else if (event < 96)
6055 ioc->event_masks[2] &= ~desired_event;
6056 else if (event < 128)
6057 ioc->event_masks[3] &= ~desired_event;
6061 * _base_event_notification - send event notification
6062 * @ioc: per adapter object
6064 * Returns 0 for success, non-zero for failure.
6067 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6069 Mpi2EventNotificationRequest_t *mpi_request;
6074 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6077 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6078 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
6079 ioc->name, __func__);
6083 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6085 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
6086 ioc->name, __func__);
6089 ioc->base_cmds.status = MPT3_CMD_PENDING;
6090 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6091 ioc->base_cmds.smid = smid;
6092 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6093 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6094 mpi_request->VF_ID = 0; /* TODO */
6095 mpi_request->VP_ID = 0;
6096 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6097 mpi_request->EventMasks[i] =
6098 cpu_to_le32(ioc->event_masks[i]);
6099 init_completion(&ioc->base_cmds.done);
6100 mpt3sas_base_put_smid_default(ioc, smid);
6101 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6102 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6103 pr_err(MPT3SAS_FMT "%s: timeout\n",
6104 ioc->name, __func__);
6105 _debug_dump_mf(mpi_request,
6106 sizeof(Mpi2EventNotificationRequest_t)/4);
6107 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6112 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
6113 ioc->name, __func__));
6114 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6119 * mpt3sas_base_validate_event_type - validating event types
6120 * @ioc: per adapter object
6121 * @event: firmware event
6123 * This will turn on firmware event notification when application
6124 * ask for that event. We don't mask events that are already enabled.
6127 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6130 u32 event_mask, desired_event;
6131 u8 send_update_to_fw;
6133 for (i = 0, send_update_to_fw = 0; i <
6134 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6135 event_mask = ~event_type[i];
6137 for (j = 0; j < 32; j++) {
6138 if (!(event_mask & desired_event) &&
6139 (ioc->event_masks[i] & desired_event)) {
6140 ioc->event_masks[i] &= ~desired_event;
6141 send_update_to_fw = 1;
6143 desired_event = (desired_event << 1);
6147 if (!send_update_to_fw)
6150 mutex_lock(&ioc->base_cmds.mutex);
6151 _base_event_notification(ioc);
6152 mutex_unlock(&ioc->base_cmds.mutex);
6156 * _base_diag_reset - the "big hammer" start of day reset
6157 * @ioc: per adapter object
6159 * Returns 0 for success, non-zero for failure.
6162 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6164 u32 host_diagnostic;
6169 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
6171 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
6176 /* Write magic sequence to WriteSequence register
6177 * Loop until in diagnostic mode
6179 drsprintk(ioc, pr_info(MPT3SAS_FMT
6180 "write magic sequence\n", ioc->name));
6181 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6182 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6183 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6184 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6185 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6186 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6187 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6195 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6196 drsprintk(ioc, pr_info(MPT3SAS_FMT
6197 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6198 ioc->name, count, host_diagnostic));
6200 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6202 hcb_size = readl(&ioc->chip->HCBSize);
6204 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
6206 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6207 &ioc->chip->HostDiagnostic);
6209 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6210 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6212 /* Approximately 300 second max wait */
6213 for (count = 0; count < (300000000 /
6214 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6216 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6218 if (host_diagnostic == 0xFFFFFFFF)
6220 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6223 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6226 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6228 drsprintk(ioc, pr_info(MPT3SAS_FMT
6229 "restart the adapter assuming the HCB Address points to good F/W\n",
6231 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6232 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6233 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6235 drsprintk(ioc, pr_info(MPT3SAS_FMT
6236 "re-enable the HCDW\n", ioc->name));
6237 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6238 &ioc->chip->HCBSize);
6241 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
6243 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6244 &ioc->chip->HostDiagnostic);
6246 drsprintk(ioc, pr_info(MPT3SAS_FMT
6247 "disable writes to the diagnostic register\n", ioc->name));
6248 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6250 drsprintk(ioc, pr_info(MPT3SAS_FMT
6251 "Wait for FW to go to the READY state\n", ioc->name));
6252 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6255 "%s: failed going to ready state (ioc_state=0x%x)\n",
6256 ioc->name, __func__, ioc_state);
6260 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
6264 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
6269 * _base_make_ioc_ready - put controller in READY state
6270 * @ioc: per adapter object
6271 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6273 * Returns 0 for success, non-zero for failure.
6276 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6282 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6285 if (ioc->pci_error_recovery)
6288 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6289 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
6290 ioc->name, __func__, ioc_state));
6292 /* if in RESET state, it should move to READY state shortly */
6294 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6295 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6296 MPI2_IOC_STATE_READY) {
6297 if (count++ == 10) {
6299 "%s: failed going to ready state (ioc_state=0x%x)\n",
6300 ioc->name, __func__, ioc_state);
6304 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6308 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6311 if (ioc_state & MPI2_DOORBELL_USED) {
6312 dhsprintk(ioc, pr_info(MPT3SAS_FMT
6313 "unexpected doorbell active!\n",
6315 goto issue_diag_reset;
6318 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6319 mpt3sas_base_fault_info(ioc, ioc_state &
6320 MPI2_DOORBELL_DATA_MASK);
6321 goto issue_diag_reset;
6324 if (type == FORCE_BIG_HAMMER)
6325 goto issue_diag_reset;
6327 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6328 if (!(_base_send_ioc_reset(ioc,
6329 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6334 rc = _base_diag_reset(ioc);
6339 * _base_make_ioc_operational - put controller in OPERATIONAL state
6340 * @ioc: per adapter object
6342 * Returns 0 for success, non-zero for failure.
6345 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6348 unsigned long flags;
6351 struct _tr_list *delayed_tr, *delayed_tr_next;
6352 struct _sc_list *delayed_sc, *delayed_sc_next;
6353 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6355 struct adapter_reply_queue *reply_q;
6356 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6358 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6361 /* clean the delayed target reset list */
6362 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6363 &ioc->delayed_tr_list, list) {
6364 list_del(&delayed_tr->list);
6369 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6370 &ioc->delayed_tr_volume_list, list) {
6371 list_del(&delayed_tr->list);
6375 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6376 &ioc->delayed_sc_list, list) {
6377 list_del(&delayed_sc->list);
6381 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6382 &ioc->delayed_event_ack_list, list) {
6383 list_del(&delayed_event_ack->list);
6384 kfree(delayed_event_ack);
6387 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6389 /* hi-priority queue */
6390 INIT_LIST_HEAD(&ioc->hpr_free_list);
6391 smid = ioc->hi_priority_smid;
6392 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6393 ioc->hpr_lookup[i].cb_idx = 0xFF;
6394 ioc->hpr_lookup[i].smid = smid;
6395 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6396 &ioc->hpr_free_list);
6399 /* internal queue */
6400 INIT_LIST_HEAD(&ioc->internal_free_list);
6401 smid = ioc->internal_smid;
6402 for (i = 0; i < ioc->internal_depth; i++, smid++) {
6403 ioc->internal_lookup[i].cb_idx = 0xFF;
6404 ioc->internal_lookup[i].smid = smid;
6405 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6406 &ioc->internal_free_list);
6409 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6411 /* initialize Reply Free Queue */
6412 for (i = 0, reply_address = (u32)ioc->reply_dma ;
6413 i < ioc->reply_free_queue_depth ; i++, reply_address +=
6415 ioc->reply_free[i] = cpu_to_le32(reply_address);
6416 if (ioc->is_mcpu_endpoint)
6417 _base_clone_reply_to_sys_mem(ioc,
6421 /* initialize reply queues */
6422 if (ioc->is_driver_loading)
6423 _base_assign_reply_queues(ioc);
6425 /* initialize Reply Post Free Queue */
6427 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6428 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6430 * If RDPQ is enabled, switch to the next allocation.
6431 * Otherwise advance within the contiguous region.
6433 if (ioc->rdpq_array_enable) {
6434 reply_q->reply_post_free =
6435 ioc->reply_post[index++].reply_post_free;
6437 reply_q->reply_post_free = reply_post_free_contig;
6438 reply_post_free_contig += ioc->reply_post_queue_depth;
6441 reply_q->reply_post_host_index = 0;
6442 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6443 reply_q->reply_post_free[i].Words =
6444 cpu_to_le64(ULLONG_MAX);
6445 if (!_base_is_controller_msix_enabled(ioc))
6446 goto skip_init_reply_post_free_queue;
6448 skip_init_reply_post_free_queue:
6450 r = _base_send_ioc_init(ioc);
6454 /* initialize reply free host index */
6455 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6456 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6458 /* initialize reply post host index */
6459 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6460 if (ioc->combined_reply_queue)
6461 writel((reply_q->msix_index & 7)<<
6462 MPI2_RPHI_MSIX_INDEX_SHIFT,
6463 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6465 writel(reply_q->msix_index <<
6466 MPI2_RPHI_MSIX_INDEX_SHIFT,
6467 &ioc->chip->ReplyPostHostIndex);
6469 if (!_base_is_controller_msix_enabled(ioc))
6470 goto skip_init_reply_post_host_index;
6473 skip_init_reply_post_host_index:
6475 _base_unmask_interrupts(ioc);
6477 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6478 r = _base_display_fwpkg_version(ioc);
6483 _base_static_config_pages(ioc);
6484 r = _base_event_notification(ioc);
6488 if (ioc->is_driver_loading) {
6490 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6493 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6494 MFG_PAGE10_HIDE_SSDS_MASK);
6495 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6496 ioc->mfg_pg10_hide_flag = hide_flag;
6499 ioc->wait_for_discovery_to_complete =
6500 _base_determine_wait_on_discovery(ioc);
6502 return r; /* scan_start and scan_finished support */
6505 r = _base_send_port_enable(ioc);
6513 * mpt3sas_base_free_resources - free resources controller resources
6514 * @ioc: per adapter object
6519 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6521 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6524 /* synchronizing freeing resource with pci_access_mutex lock */
6525 mutex_lock(&ioc->pci_access_mutex);
6526 if (ioc->chip_phys && ioc->chip) {
6527 _base_mask_interrupts(ioc);
6528 ioc->shost_recovery = 1;
6529 _base_make_ioc_ready(ioc, SOFT_RESET);
6530 ioc->shost_recovery = 0;
6533 mpt3sas_base_unmap_resources(ioc);
6534 mutex_unlock(&ioc->pci_access_mutex);
6539 * mpt3sas_base_attach - attach controller instance
6540 * @ioc: per adapter object
6542 * Returns 0 for success, non-zero for failure.
6545 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6548 int cpu_id, last_cpu_id = 0;
6550 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6553 /* setup cpu_msix_table */
6554 ioc->cpu_count = num_online_cpus();
6555 for_each_online_cpu(cpu_id)
6556 last_cpu_id = cpu_id;
6557 ioc->cpu_msix_table_sz = last_cpu_id + 1;
6558 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6559 ioc->reply_queue_count = 1;
6560 if (!ioc->cpu_msix_table) {
6561 dfailprintk(ioc, pr_info(MPT3SAS_FMT
6562 "allocation for cpu_msix_table failed!!!\n",
6565 goto out_free_resources;
6568 if (ioc->is_warpdrive) {
6569 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6570 sizeof(resource_size_t *), GFP_KERNEL);
6571 if (!ioc->reply_post_host_index) {
6572 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
6573 "for reply_post_host_index failed!!!\n",
6576 goto out_free_resources;
6580 ioc->rdpq_array_enable_assigned = 0;
6582 r = mpt3sas_base_map_resources(ioc);
6584 goto out_free_resources;
6586 pci_set_drvdata(ioc->pdev, ioc->shost);
6587 r = _base_get_ioc_facts(ioc);
6589 goto out_free_resources;
6591 switch (ioc->hba_mpi_version_belonged) {
6593 ioc->build_sg_scmd = &_base_build_sg_scmd;
6594 ioc->build_sg = &_base_build_sg;
6595 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6601 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6602 * Target Status - all require the IEEE formated scatter gather
6605 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6606 ioc->build_sg = &_base_build_sg_ieee;
6607 ioc->build_nvme_prp = &_base_build_nvme_prp;
6608 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6609 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6614 if (ioc->is_mcpu_endpoint)
6615 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6617 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6620 * These function pointers for other requests that don't
6621 * the require IEEE scatter gather elements.
6623 * For example Configuration Pages and SAS IOUNIT Control don't.
6625 ioc->build_sg_mpi = &_base_build_sg;
6626 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6628 r = _base_make_ioc_ready(ioc, SOFT_RESET);
6630 goto out_free_resources;
6632 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6633 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6636 goto out_free_resources;
6639 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6640 r = _base_get_port_facts(ioc, i);
6642 goto out_free_resources;
6645 r = _base_allocate_memory_pools(ioc);
6647 goto out_free_resources;
6649 init_waitqueue_head(&ioc->reset_wq);
6651 /* allocate memory pd handle bitmask list */
6652 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6653 if (ioc->facts.MaxDevHandle % 8)
6654 ioc->pd_handles_sz++;
6655 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6657 if (!ioc->pd_handles) {
6659 goto out_free_resources;
6661 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6663 if (!ioc->blocking_handles) {
6665 goto out_free_resources;
6668 /* allocate memory for pending OS device add list */
6669 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6670 if (ioc->facts.MaxDevHandle % 8)
6671 ioc->pend_os_device_add_sz++;
6672 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6674 if (!ioc->pend_os_device_add)
6675 goto out_free_resources;
6677 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6678 ioc->device_remove_in_progress =
6679 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6680 if (!ioc->device_remove_in_progress)
6681 goto out_free_resources;
6683 ioc->fwfault_debug = mpt3sas_fwfault_debug;
6685 /* base internal command bits */
6686 mutex_init(&ioc->base_cmds.mutex);
6687 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6688 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6690 /* port_enable command bits */
6691 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6692 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6694 /* transport internal command bits */
6695 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6696 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6697 mutex_init(&ioc->transport_cmds.mutex);
6699 /* scsih internal command bits */
6700 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6701 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6702 mutex_init(&ioc->scsih_cmds.mutex);
6704 /* task management internal command bits */
6705 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6706 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6707 mutex_init(&ioc->tm_cmds.mutex);
6709 /* config page internal command bits */
6710 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6711 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6712 mutex_init(&ioc->config_cmds.mutex);
6714 /* ctl module internal command bits */
6715 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6716 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6717 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6718 mutex_init(&ioc->ctl_cmds.mutex);
6720 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6721 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6722 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6723 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6725 goto out_free_resources;
6728 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6729 ioc->event_masks[i] = -1;
6731 /* here we enable the events we care about */
6732 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6733 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6734 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6735 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6736 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6737 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6738 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6739 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6740 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6741 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6742 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6743 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6744 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6745 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6746 if (ioc->is_gen35_ioc) {
6747 _base_unmask_events(ioc,
6748 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6749 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6750 _base_unmask_events(ioc,
6751 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6754 r = _base_make_ioc_operational(ioc);
6756 goto out_free_resources;
6758 ioc->non_operational_loop = 0;
6759 ioc->got_task_abort_from_ioctl = 0;
6764 ioc->remove_host = 1;
6766 mpt3sas_base_free_resources(ioc);
6767 _base_release_memory_pools(ioc);
6768 pci_set_drvdata(ioc->pdev, NULL);
6769 kfree(ioc->cpu_msix_table);
6770 if (ioc->is_warpdrive)
6771 kfree(ioc->reply_post_host_index);
6772 kfree(ioc->pd_handles);
6773 kfree(ioc->blocking_handles);
6774 kfree(ioc->device_remove_in_progress);
6775 kfree(ioc->pend_os_device_add);
6776 kfree(ioc->tm_cmds.reply);
6777 kfree(ioc->transport_cmds.reply);
6778 kfree(ioc->scsih_cmds.reply);
6779 kfree(ioc->config_cmds.reply);
6780 kfree(ioc->base_cmds.reply);
6781 kfree(ioc->port_enable_cmds.reply);
6782 kfree(ioc->ctl_cmds.reply);
6783 kfree(ioc->ctl_cmds.sense);
6785 ioc->ctl_cmds.reply = NULL;
6786 ioc->base_cmds.reply = NULL;
6787 ioc->tm_cmds.reply = NULL;
6788 ioc->scsih_cmds.reply = NULL;
6789 ioc->transport_cmds.reply = NULL;
6790 ioc->config_cmds.reply = NULL;
6797 * mpt3sas_base_detach - remove controller instance
6798 * @ioc: per adapter object
6803 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6805 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6808 mpt3sas_base_stop_watchdog(ioc);
6809 mpt3sas_base_free_resources(ioc);
6810 _base_release_memory_pools(ioc);
6811 mpt3sas_free_enclosure_list(ioc);
6812 pci_set_drvdata(ioc->pdev, NULL);
6813 kfree(ioc->cpu_msix_table);
6814 if (ioc->is_warpdrive)
6815 kfree(ioc->reply_post_host_index);
6816 kfree(ioc->pd_handles);
6817 kfree(ioc->blocking_handles);
6818 kfree(ioc->device_remove_in_progress);
6819 kfree(ioc->pend_os_device_add);
6821 kfree(ioc->ctl_cmds.reply);
6822 kfree(ioc->ctl_cmds.sense);
6823 kfree(ioc->base_cmds.reply);
6824 kfree(ioc->port_enable_cmds.reply);
6825 kfree(ioc->tm_cmds.reply);
6826 kfree(ioc->transport_cmds.reply);
6827 kfree(ioc->scsih_cmds.reply);
6828 kfree(ioc->config_cmds.reply);
6832 * _base_reset_handler - reset callback handler (for base)
6833 * @ioc: per adapter object
6834 * @reset_phase: phase
6836 * The handler for doing any required cleanup or initialization.
6838 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
6839 * MPT3_IOC_DONE_RESET
6844 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
6846 mpt3sas_scsih_reset_handler(ioc, reset_phase);
6847 mpt3sas_ctl_reset_handler(ioc, reset_phase);
6848 switch (reset_phase) {
6849 case MPT3_IOC_PRE_RESET:
6850 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6851 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6853 case MPT3_IOC_AFTER_RESET:
6854 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6855 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6856 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6857 ioc->transport_cmds.status |= MPT3_CMD_RESET;
6858 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6859 complete(&ioc->transport_cmds.done);
6861 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6862 ioc->base_cmds.status |= MPT3_CMD_RESET;
6863 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6864 complete(&ioc->base_cmds.done);
6866 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6867 ioc->port_enable_failed = 1;
6868 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6869 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6870 if (ioc->is_driver_loading) {
6871 ioc->start_scan_failed =
6872 MPI2_IOCSTATUS_INTERNAL_ERROR;
6873 ioc->start_scan = 0;
6874 ioc->port_enable_cmds.status =
6877 complete(&ioc->port_enable_cmds.done);
6879 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6880 ioc->config_cmds.status |= MPT3_CMD_RESET;
6881 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6882 ioc->config_cmds.smid = USHRT_MAX;
6883 complete(&ioc->config_cmds.done);
6886 case MPT3_IOC_DONE_RESET:
6887 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6888 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6894 * mpt3sas_wait_for_commands_to_complete - reset controller
6895 * @ioc: Pointer to MPT_ADAPTER structure
6897 * This function is waiting 10s for all pending commands to complete
6898 * prior to putting controller in reset.
6901 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6905 ioc->pending_io_count = 0;
6907 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6908 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6911 /* pending command count */
6912 ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
6914 if (!ioc->pending_io_count)
6917 /* wait for pending commands to complete */
6918 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6922 * mpt3sas_base_hard_reset_handler - reset controller
6923 * @ioc: Pointer to MPT_ADAPTER structure
6924 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6926 * Returns 0 for success, non-zero for failure.
6929 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6930 enum reset_type type)
6933 unsigned long flags;
6935 u8 is_fault = 0, is_trigger = 0;
6937 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6940 if (ioc->pci_error_recovery) {
6941 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6942 ioc->name, __func__);
6947 if (mpt3sas_fwfault_debug)
6948 mpt3sas_halt_firmware(ioc);
6950 /* wait for an active reset in progress to complete */
6951 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
6954 } while (ioc->shost_recovery == 1);
6955 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6957 return ioc->ioc_reset_in_progress_status;
6960 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6961 ioc->shost_recovery = 1;
6962 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6964 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6965 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6966 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6967 MPT3_DIAG_BUFFER_IS_RELEASED))) {
6969 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6970 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6973 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
6974 mpt3sas_wait_for_commands_to_complete(ioc);
6975 _base_mask_interrupts(ioc);
6976 r = _base_make_ioc_ready(ioc, type);
6979 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
6981 /* If this hard reset is called while port enable is active, then
6982 * there is no reason to call make_ioc_operational
6984 if (ioc->is_driver_loading && ioc->port_enable_failed) {
6985 ioc->remove_host = 1;
6989 r = _base_get_ioc_facts(ioc);
6993 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6994 panic("%s: Issue occurred with flashing controller firmware."
6995 "Please reboot the system and ensure that the correct"
6996 " firmware version is running\n", ioc->name);
6998 r = _base_make_ioc_operational(ioc);
7000 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
7003 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
7004 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
7006 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7007 ioc->ioc_reset_in_progress_status = r;
7008 ioc->shost_recovery = 0;
7009 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7010 ioc->ioc_reset_count++;
7011 mutex_unlock(&ioc->reset_in_progress_mutex);
7014 if ((r == 0) && is_trigger) {
7016 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7018 mpt3sas_trigger_master(ioc,
7019 MASTER_TRIGGER_ADAPTER_RESET);
7021 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,