]> Git Repo - linux.git/blob - net/core/dev.c
net: bcmgenet: Fix return value check for fixed_phy_register()
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static DECLARE_RWSEM(devnet_rename_sem);
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock_irqsave(struct softnet_data *sd,
219                                     unsigned long *flags)
220 {
221         if (IS_ENABLED(CONFIG_RPS))
222                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
223         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
224                 local_irq_save(*flags);
225 }
226
227 static inline void rps_lock_irq_disable(struct softnet_data *sd)
228 {
229         if (IS_ENABLED(CONFIG_RPS))
230                 spin_lock_irq(&sd->input_pkt_queue.lock);
231         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
232                 local_irq_disable();
233 }
234
235 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
236                                           unsigned long *flags)
237 {
238         if (IS_ENABLED(CONFIG_RPS))
239                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
240         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
241                 local_irq_restore(*flags);
242 }
243
244 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
245 {
246         if (IS_ENABLED(CONFIG_RPS))
247                 spin_unlock_irq(&sd->input_pkt_queue.lock);
248         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
249                 local_irq_enable();
250 }
251
252 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
253                                                        const char *name)
254 {
255         struct netdev_name_node *name_node;
256
257         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
258         if (!name_node)
259                 return NULL;
260         INIT_HLIST_NODE(&name_node->hlist);
261         name_node->dev = dev;
262         name_node->name = name;
263         return name_node;
264 }
265
266 static struct netdev_name_node *
267 netdev_name_node_head_alloc(struct net_device *dev)
268 {
269         struct netdev_name_node *name_node;
270
271         name_node = netdev_name_node_alloc(dev, dev->name);
272         if (!name_node)
273                 return NULL;
274         INIT_LIST_HEAD(&name_node->list);
275         return name_node;
276 }
277
278 static void netdev_name_node_free(struct netdev_name_node *name_node)
279 {
280         kfree(name_node);
281 }
282
283 static void netdev_name_node_add(struct net *net,
284                                  struct netdev_name_node *name_node)
285 {
286         hlist_add_head_rcu(&name_node->hlist,
287                            dev_name_hash(net, name_node->name));
288 }
289
290 static void netdev_name_node_del(struct netdev_name_node *name_node)
291 {
292         hlist_del_rcu(&name_node->hlist);
293 }
294
295 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
296                                                         const char *name)
297 {
298         struct hlist_head *head = dev_name_hash(net, name);
299         struct netdev_name_node *name_node;
300
301         hlist_for_each_entry(name_node, head, hlist)
302                 if (!strcmp(name_node->name, name))
303                         return name_node;
304         return NULL;
305 }
306
307 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
308                                                             const char *name)
309 {
310         struct hlist_head *head = dev_name_hash(net, name);
311         struct netdev_name_node *name_node;
312
313         hlist_for_each_entry_rcu(name_node, head, hlist)
314                 if (!strcmp(name_node->name, name))
315                         return name_node;
316         return NULL;
317 }
318
319 bool netdev_name_in_use(struct net *net, const char *name)
320 {
321         return netdev_name_node_lookup(net, name);
322 }
323 EXPORT_SYMBOL(netdev_name_in_use);
324
325 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
326 {
327         struct netdev_name_node *name_node;
328         struct net *net = dev_net(dev);
329
330         name_node = netdev_name_node_lookup(net, name);
331         if (name_node)
332                 return -EEXIST;
333         name_node = netdev_name_node_alloc(dev, name);
334         if (!name_node)
335                 return -ENOMEM;
336         netdev_name_node_add(net, name_node);
337         /* The node that holds dev->name acts as a head of per-device list. */
338         list_add_tail(&name_node->list, &dev->name_node->list);
339
340         return 0;
341 }
342
343 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
344 {
345         list_del(&name_node->list);
346         netdev_name_node_del(name_node);
347         kfree(name_node->name);
348         netdev_name_node_free(name_node);
349 }
350
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353         struct netdev_name_node *name_node;
354         struct net *net = dev_net(dev);
355
356         name_node = netdev_name_node_lookup(net, name);
357         if (!name_node)
358                 return -ENOENT;
359         /* lookup might have found our primary name or a name belonging
360          * to another device.
361          */
362         if (name_node == dev->name_node || name_node->dev != dev)
363                 return -EINVAL;
364
365         __netdev_name_node_alt_destroy(name_node);
366
367         return 0;
368 }
369
370 static void netdev_name_node_alt_flush(struct net_device *dev)
371 {
372         struct netdev_name_node *name_node, *tmp;
373
374         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
375                 __netdev_name_node_alt_destroy(name_node);
376 }
377
378 /* Device list insertion */
379 static void list_netdevice(struct net_device *dev)
380 {
381         struct net *net = dev_net(dev);
382
383         ASSERT_RTNL();
384
385         write_lock(&dev_base_lock);
386         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
387         netdev_name_node_add(net, dev->name_node);
388         hlist_add_head_rcu(&dev->index_hlist,
389                            dev_index_hash(net, dev->ifindex));
390         write_unlock(&dev_base_lock);
391
392         dev_base_seq_inc(net);
393 }
394
395 /* Device list removal
396  * caller must respect a RCU grace period before freeing/reusing dev
397  */
398 static void unlist_netdevice(struct net_device *dev, bool lock)
399 {
400         ASSERT_RTNL();
401
402         /* Unlink dev from the device chain */
403         if (lock)
404                 write_lock(&dev_base_lock);
405         list_del_rcu(&dev->dev_list);
406         netdev_name_node_del(dev->name_node);
407         hlist_del_rcu(&dev->index_hlist);
408         if (lock)
409                 write_unlock(&dev_base_lock);
410
411         dev_base_seq_inc(dev_net(dev));
412 }
413
414 /*
415  *      Our notifier list
416  */
417
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419
420 /*
421  *      Device drivers call our routines to queue packets here. We empty the
422  *      queue in the local softnet handler.
423  */
424
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427
428 #ifdef CONFIG_LOCKDEP
429 /*
430  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431  * according to dev->type
432  */
433 static const unsigned short netdev_lock_type[] = {
434          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449
450 static const char *const netdev_lock_name[] = {
451         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466
467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469
470 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471 {
472         int i;
473
474         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475                 if (netdev_lock_type[i] == dev_type)
476                         return i;
477         /* the last key is used by default */
478         return ARRAY_SIZE(netdev_lock_type) - 1;
479 }
480
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482                                                  unsigned short dev_type)
483 {
484         int i;
485
486         i = netdev_lock_pos(dev_type);
487         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488                                    netdev_lock_name[i]);
489 }
490
491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492 {
493         int i;
494
495         i = netdev_lock_pos(dev->type);
496         lockdep_set_class_and_name(&dev->addr_list_lock,
497                                    &netdev_addr_lock_key[i],
498                                    netdev_lock_name[i]);
499 }
500 #else
501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502                                                  unsigned short dev_type)
503 {
504 }
505
506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507 {
508 }
509 #endif
510
511 /*******************************************************************************
512  *
513  *              Protocol management and registration routines
514  *
515  *******************************************************************************/
516
517
518 /*
519  *      Add a protocol ID to the list. Now that the input handler is
520  *      smarter we can dispense with all the messy stuff that used to be
521  *      here.
522  *
523  *      BEWARE!!! Protocol handlers, mangling input packets,
524  *      MUST BE last in hash buckets and checking protocol handlers
525  *      MUST start from promiscuous ptype_all chain in net_bh.
526  *      It is true now, do not change it.
527  *      Explanation follows: if protocol handler, mangling packet, will
528  *      be the first on list, it is not able to sense, that packet
529  *      is cloned and should be copied-on-write, so that it will
530  *      change it and subsequent readers will get broken packet.
531  *                                                      --ANK (980803)
532  */
533
534 static inline struct list_head *ptype_head(const struct packet_type *pt)
535 {
536         if (pt->type == htons(ETH_P_ALL))
537                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538         else
539                 return pt->dev ? &pt->dev->ptype_specific :
540                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541 }
542
543 /**
544  *      dev_add_pack - add packet handler
545  *      @pt: packet type declaration
546  *
547  *      Add a protocol handler to the networking stack. The passed &packet_type
548  *      is linked into kernel lists and may not be freed until it has been
549  *      removed from the kernel lists.
550  *
551  *      This call does not sleep therefore it can not
552  *      guarantee all CPU's that are in middle of receiving packets
553  *      will see the new packet type (until the next received packet).
554  */
555
556 void dev_add_pack(struct packet_type *pt)
557 {
558         struct list_head *head = ptype_head(pt);
559
560         spin_lock(&ptype_lock);
561         list_add_rcu(&pt->list, head);
562         spin_unlock(&ptype_lock);
563 }
564 EXPORT_SYMBOL(dev_add_pack);
565
566 /**
567  *      __dev_remove_pack        - remove packet handler
568  *      @pt: packet type declaration
569  *
570  *      Remove a protocol handler that was previously added to the kernel
571  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
572  *      from the kernel lists and can be freed or reused once this function
573  *      returns.
574  *
575  *      The packet type might still be in use by receivers
576  *      and must not be freed until after all the CPU's have gone
577  *      through a quiescent state.
578  */
579 void __dev_remove_pack(struct packet_type *pt)
580 {
581         struct list_head *head = ptype_head(pt);
582         struct packet_type *pt1;
583
584         spin_lock(&ptype_lock);
585
586         list_for_each_entry(pt1, head, list) {
587                 if (pt == pt1) {
588                         list_del_rcu(&pt->list);
589                         goto out;
590                 }
591         }
592
593         pr_warn("dev_remove_pack: %p not found\n", pt);
594 out:
595         spin_unlock(&ptype_lock);
596 }
597 EXPORT_SYMBOL(__dev_remove_pack);
598
599 /**
600  *      dev_remove_pack  - remove packet handler
601  *      @pt: packet type declaration
602  *
603  *      Remove a protocol handler that was previously added to the kernel
604  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
605  *      from the kernel lists and can be freed or reused once this function
606  *      returns.
607  *
608  *      This call sleeps to guarantee that no CPU is looking at the packet
609  *      type after return.
610  */
611 void dev_remove_pack(struct packet_type *pt)
612 {
613         __dev_remove_pack(pt);
614
615         synchronize_net();
616 }
617 EXPORT_SYMBOL(dev_remove_pack);
618
619
620 /*******************************************************************************
621  *
622  *                          Device Interface Subroutines
623  *
624  *******************************************************************************/
625
626 /**
627  *      dev_get_iflink  - get 'iflink' value of a interface
628  *      @dev: targeted interface
629  *
630  *      Indicates the ifindex the interface is linked to.
631  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
632  */
633
634 int dev_get_iflink(const struct net_device *dev)
635 {
636         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637                 return dev->netdev_ops->ndo_get_iflink(dev);
638
639         return dev->ifindex;
640 }
641 EXPORT_SYMBOL(dev_get_iflink);
642
643 /**
644  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
645  *      @dev: targeted interface
646  *      @skb: The packet.
647  *
648  *      For better visibility of tunnel traffic OVS needs to retrieve
649  *      egress tunnel information for a packet. Following API allows
650  *      user to get this info.
651  */
652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653 {
654         struct ip_tunnel_info *info;
655
656         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
657                 return -EINVAL;
658
659         info = skb_tunnel_info_unclone(skb);
660         if (!info)
661                 return -ENOMEM;
662         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663                 return -EINVAL;
664
665         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666 }
667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668
669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670 {
671         int k = stack->num_paths++;
672
673         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674                 return NULL;
675
676         return &stack->path[k];
677 }
678
679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680                           struct net_device_path_stack *stack)
681 {
682         const struct net_device *last_dev;
683         struct net_device_path_ctx ctx = {
684                 .dev    = dev,
685         };
686         struct net_device_path *path;
687         int ret = 0;
688
689         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
690         stack->num_paths = 0;
691         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692                 last_dev = ctx.dev;
693                 path = dev_fwd_path(stack);
694                 if (!path)
695                         return -1;
696
697                 memset(path, 0, sizeof(struct net_device_path));
698                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699                 if (ret < 0)
700                         return -1;
701
702                 if (WARN_ON_ONCE(last_dev == ctx.dev))
703                         return -1;
704         }
705
706         if (!ctx.dev)
707                 return ret;
708
709         path = dev_fwd_path(stack);
710         if (!path)
711                 return -1;
712         path->type = DEV_PATH_ETHERNET;
713         path->dev = ctx.dev;
714
715         return ret;
716 }
717 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718
719 /**
720  *      __dev_get_by_name       - find a device by its name
721  *      @net: the applicable net namespace
722  *      @name: name to find
723  *
724  *      Find an interface by name. Must be called under RTNL semaphore
725  *      or @dev_base_lock. If the name is found a pointer to the device
726  *      is returned. If the name is not found then %NULL is returned. The
727  *      reference counters are not incremented so the caller must be
728  *      careful with locks.
729  */
730
731 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 {
733         struct netdev_name_node *node_name;
734
735         node_name = netdev_name_node_lookup(net, name);
736         return node_name ? node_name->dev : NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  * dev_get_by_name_rcu  - find a device by its name
742  * @net: the applicable net namespace
743  * @name: name to find
744  *
745  * Find an interface by name.
746  * If the name is found a pointer to the device is returned.
747  * If the name is not found then %NULL is returned.
748  * The reference counters are not incremented so the caller must be
749  * careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct netdev_name_node *node_name;
755
756         node_name = netdev_name_node_lookup_rcu(net, name);
757         return node_name ? node_name->dev : NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /* Deprecated for new users, call netdev_get_by_name() instead */
762 struct net_device *dev_get_by_name(struct net *net, const char *name)
763 {
764         struct net_device *dev;
765
766         rcu_read_lock();
767         dev = dev_get_by_name_rcu(net, name);
768         dev_hold(dev);
769         rcu_read_unlock();
770         return dev;
771 }
772 EXPORT_SYMBOL(dev_get_by_name);
773
774 /**
775  *      netdev_get_by_name() - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *      @tracker: tracking object for the acquired reference
779  *      @gfp: allocation flags for the tracker
780  *
781  *      Find an interface by name. This can be called from any
782  *      context and does its own locking. The returned handle has
783  *      the usage count incremented and the caller must use netdev_put() to
784  *      release it when it is no longer needed. %NULL is returned if no
785  *      matching device is found.
786  */
787 struct net_device *netdev_get_by_name(struct net *net, const char *name,
788                                       netdevice_tracker *tracker, gfp_t gfp)
789 {
790         struct net_device *dev;
791
792         dev = dev_get_by_name(net, name);
793         if (dev)
794                 netdev_tracker_alloc(dev, tracker, gfp);
795         return dev;
796 }
797 EXPORT_SYMBOL(netdev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848 /* Deprecated for new users, call netdev_get_by_index() instead */
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851         struct net_device *dev;
852
853         rcu_read_lock();
854         dev = dev_get_by_index_rcu(net, ifindex);
855         dev_hold(dev);
856         rcu_read_unlock();
857         return dev;
858 }
859 EXPORT_SYMBOL(dev_get_by_index);
860
861 /**
862  *      netdev_get_by_index() - find a device by its ifindex
863  *      @net: the applicable net namespace
864  *      @ifindex: index of device
865  *      @tracker: tracking object for the acquired reference
866  *      @gfp: allocation flags for the tracker
867  *
868  *      Search for an interface by index. Returns NULL if the device
869  *      is not found or a pointer to the device. The device returned has
870  *      had a reference added and the pointer is safe until the user calls
871  *      netdev_put() to indicate they have finished with it.
872  */
873 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
874                                        netdevice_tracker *tracker, gfp_t gfp)
875 {
876         struct net_device *dev;
877
878         dev = dev_get_by_index(net, ifindex);
879         if (dev)
880                 netdev_tracker_alloc(dev, tracker, gfp);
881         return dev;
882 }
883 EXPORT_SYMBOL(netdev_get_by_index);
884
885 /**
886  *      dev_get_by_napi_id - find a device by napi_id
887  *      @napi_id: ID of the NAPI struct
888  *
889  *      Search for an interface by NAPI ID. Returns %NULL if the device
890  *      is not found or a pointer to the device. The device has not had
891  *      its reference counter increased so the caller must be careful
892  *      about locking. The caller must hold RCU lock.
893  */
894
895 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
896 {
897         struct napi_struct *napi;
898
899         WARN_ON_ONCE(!rcu_read_lock_held());
900
901         if (napi_id < MIN_NAPI_ID)
902                 return NULL;
903
904         napi = napi_by_id(napi_id);
905
906         return napi ? napi->dev : NULL;
907 }
908 EXPORT_SYMBOL(dev_get_by_napi_id);
909
910 /**
911  *      netdev_get_name - get a netdevice name, knowing its ifindex.
912  *      @net: network namespace
913  *      @name: a pointer to the buffer where the name will be stored.
914  *      @ifindex: the ifindex of the interface to get the name from.
915  */
916 int netdev_get_name(struct net *net, char *name, int ifindex)
917 {
918         struct net_device *dev;
919         int ret;
920
921         down_read(&devnet_rename_sem);
922         rcu_read_lock();
923
924         dev = dev_get_by_index_rcu(net, ifindex);
925         if (!dev) {
926                 ret = -ENODEV;
927                 goto out;
928         }
929
930         strcpy(name, dev->name);
931
932         ret = 0;
933 out:
934         rcu_read_unlock();
935         up_read(&devnet_rename_sem);
936         return ret;
937 }
938
939 /**
940  *      dev_getbyhwaddr_rcu - find a device by its hardware address
941  *      @net: the applicable net namespace
942  *      @type: media type of device
943  *      @ha: hardware address
944  *
945  *      Search for an interface by MAC address. Returns NULL if the device
946  *      is not found or a pointer to the device.
947  *      The caller must hold RCU or RTNL.
948  *      The returned device has not had its ref count increased
949  *      and the caller must therefore be careful about locking
950  *
951  */
952
953 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
954                                        const char *ha)
955 {
956         struct net_device *dev;
957
958         for_each_netdev_rcu(net, dev)
959                 if (dev->type == type &&
960                     !memcmp(dev->dev_addr, ha, dev->addr_len))
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
966
967 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
968 {
969         struct net_device *dev, *ret = NULL;
970
971         rcu_read_lock();
972         for_each_netdev_rcu(net, dev)
973                 if (dev->type == type) {
974                         dev_hold(dev);
975                         ret = dev;
976                         break;
977                 }
978         rcu_read_unlock();
979         return ret;
980 }
981 EXPORT_SYMBOL(dev_getfirstbyhwtype);
982
983 /**
984  *      __dev_get_by_flags - find any device with given flags
985  *      @net: the applicable net namespace
986  *      @if_flags: IFF_* values
987  *      @mask: bitmask of bits in if_flags to check
988  *
989  *      Search for any interface with the given flags. Returns NULL if a device
990  *      is not found or a pointer to the device. Must be called inside
991  *      rtnl_lock(), and result refcount is unchanged.
992  */
993
994 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
995                                       unsigned short mask)
996 {
997         struct net_device *dev, *ret;
998
999         ASSERT_RTNL();
1000
1001         ret = NULL;
1002         for_each_netdev(net, dev) {
1003                 if (((dev->flags ^ if_flags) & mask) == 0) {
1004                         ret = dev;
1005                         break;
1006                 }
1007         }
1008         return ret;
1009 }
1010 EXPORT_SYMBOL(__dev_get_by_flags);
1011
1012 /**
1013  *      dev_valid_name - check if name is okay for network device
1014  *      @name: name string
1015  *
1016  *      Network device names need to be valid file names to
1017  *      allow sysfs to work.  We also disallow any kind of
1018  *      whitespace.
1019  */
1020 bool dev_valid_name(const char *name)
1021 {
1022         if (*name == '\0')
1023                 return false;
1024         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1025                 return false;
1026         if (!strcmp(name, ".") || !strcmp(name, ".."))
1027                 return false;
1028
1029         while (*name) {
1030                 if (*name == '/' || *name == ':' || isspace(*name))
1031                         return false;
1032                 name++;
1033         }
1034         return true;
1035 }
1036 EXPORT_SYMBOL(dev_valid_name);
1037
1038 /**
1039  *      __dev_alloc_name - allocate a name for a device
1040  *      @net: network namespace to allocate the device name in
1041  *      @name: name format string
1042  *      @buf:  scratch buffer and result name string
1043  *
1044  *      Passed a format string - eg "lt%d" it will try and find a suitable
1045  *      id. It scans list of devices to build up a free map, then chooses
1046  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1047  *      while allocating the name and adding the device in order to avoid
1048  *      duplicates.
1049  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1050  *      Returns the number of the unit assigned or a negative errno code.
1051  */
1052
1053 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1054 {
1055         int i = 0;
1056         const char *p;
1057         const int max_netdevices = 8*PAGE_SIZE;
1058         unsigned long *inuse;
1059         struct net_device *d;
1060
1061         if (!dev_valid_name(name))
1062                 return -EINVAL;
1063
1064         p = strchr(name, '%');
1065         if (p) {
1066                 /*
1067                  * Verify the string as this thing may have come from
1068                  * the user.  There must be either one "%d" and no other "%"
1069                  * characters.
1070                  */
1071                 if (p[1] != 'd' || strchr(p + 2, '%'))
1072                         return -EINVAL;
1073
1074                 /* Use one page as a bit array of possible slots */
1075                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076                 if (!inuse)
1077                         return -ENOMEM;
1078
1079                 for_each_netdev(net, d) {
1080                         struct netdev_name_node *name_node;
1081                         list_for_each_entry(name_node, &d->name_node->list, list) {
1082                                 if (!sscanf(name_node->name, name, &i))
1083                                         continue;
1084                                 if (i < 0 || i >= max_netdevices)
1085                                         continue;
1086
1087                                 /*  avoid cases where sscanf is not exact inverse of printf */
1088                                 snprintf(buf, IFNAMSIZ, name, i);
1089                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1090                                         __set_bit(i, inuse);
1091                         }
1092                         if (!sscanf(d->name, name, &i))
1093                                 continue;
1094                         if (i < 0 || i >= max_netdevices)
1095                                 continue;
1096
1097                         /*  avoid cases where sscanf is not exact inverse of printf */
1098                         snprintf(buf, IFNAMSIZ, name, i);
1099                         if (!strncmp(buf, d->name, IFNAMSIZ))
1100                                 __set_bit(i, inuse);
1101                 }
1102
1103                 i = find_first_zero_bit(inuse, max_netdevices);
1104                 free_page((unsigned long) inuse);
1105         }
1106
1107         snprintf(buf, IFNAMSIZ, name, i);
1108         if (!netdev_name_in_use(net, buf))
1109                 return i;
1110
1111         /* It is possible to run out of possible slots
1112          * when the name is long and there isn't enough space left
1113          * for the digits, or if all bits are used.
1114          */
1115         return -ENFILE;
1116 }
1117
1118 static int dev_alloc_name_ns(struct net *net,
1119                              struct net_device *dev,
1120                              const char *name)
1121 {
1122         char buf[IFNAMSIZ];
1123         int ret;
1124
1125         BUG_ON(!net);
1126         ret = __dev_alloc_name(net, name, buf);
1127         if (ret >= 0)
1128                 strscpy(dev->name, buf, IFNAMSIZ);
1129         return ret;
1130 }
1131
1132 /**
1133  *      dev_alloc_name - allocate a name for a device
1134  *      @dev: device
1135  *      @name: name format string
1136  *
1137  *      Passed a format string - eg "lt%d" it will try and find a suitable
1138  *      id. It scans list of devices to build up a free map, then chooses
1139  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1140  *      while allocating the name and adding the device in order to avoid
1141  *      duplicates.
1142  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1143  *      Returns the number of the unit assigned or a negative errno code.
1144  */
1145
1146 int dev_alloc_name(struct net_device *dev, const char *name)
1147 {
1148         return dev_alloc_name_ns(dev_net(dev), dev, name);
1149 }
1150 EXPORT_SYMBOL(dev_alloc_name);
1151
1152 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1153                               const char *name)
1154 {
1155         BUG_ON(!net);
1156
1157         if (!dev_valid_name(name))
1158                 return -EINVAL;
1159
1160         if (strchr(name, '%'))
1161                 return dev_alloc_name_ns(net, dev, name);
1162         else if (netdev_name_in_use(net, name))
1163                 return -EEXIST;
1164         else if (dev->name != name)
1165                 strscpy(dev->name, name, IFNAMSIZ);
1166
1167         return 0;
1168 }
1169
1170 /**
1171  *      dev_change_name - change name of a device
1172  *      @dev: device
1173  *      @newname: name (or format string) must be at least IFNAMSIZ
1174  *
1175  *      Change name of a device, can pass format strings "eth%d".
1176  *      for wildcarding.
1177  */
1178 int dev_change_name(struct net_device *dev, const char *newname)
1179 {
1180         unsigned char old_assign_type;
1181         char oldname[IFNAMSIZ];
1182         int err = 0;
1183         int ret;
1184         struct net *net;
1185
1186         ASSERT_RTNL();
1187         BUG_ON(!dev_net(dev));
1188
1189         net = dev_net(dev);
1190
1191         down_write(&devnet_rename_sem);
1192
1193         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194                 up_write(&devnet_rename_sem);
1195                 return 0;
1196         }
1197
1198         memcpy(oldname, dev->name, IFNAMSIZ);
1199
1200         err = dev_get_valid_name(net, dev, newname);
1201         if (err < 0) {
1202                 up_write(&devnet_rename_sem);
1203                 return err;
1204         }
1205
1206         if (oldname[0] && !strchr(oldname, '%'))
1207                 netdev_info(dev, "renamed from %s%s\n", oldname,
1208                             dev->flags & IFF_UP ? " (while UP)" : "");
1209
1210         old_assign_type = dev->name_assign_type;
1211         dev->name_assign_type = NET_NAME_RENAMED;
1212
1213 rollback:
1214         ret = device_rename(&dev->dev, dev->name);
1215         if (ret) {
1216                 memcpy(dev->name, oldname, IFNAMSIZ);
1217                 dev->name_assign_type = old_assign_type;
1218                 up_write(&devnet_rename_sem);
1219                 return ret;
1220         }
1221
1222         up_write(&devnet_rename_sem);
1223
1224         netdev_adjacent_rename_links(dev, oldname);
1225
1226         write_lock(&dev_base_lock);
1227         netdev_name_node_del(dev->name_node);
1228         write_unlock(&dev_base_lock);
1229
1230         synchronize_rcu();
1231
1232         write_lock(&dev_base_lock);
1233         netdev_name_node_add(net, dev->name_node);
1234         write_unlock(&dev_base_lock);
1235
1236         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237         ret = notifier_to_errno(ret);
1238
1239         if (ret) {
1240                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1241                 if (err >= 0) {
1242                         err = ret;
1243                         down_write(&devnet_rename_sem);
1244                         memcpy(dev->name, oldname, IFNAMSIZ);
1245                         memcpy(oldname, newname, IFNAMSIZ);
1246                         dev->name_assign_type = old_assign_type;
1247                         old_assign_type = NET_NAME_RENAMED;
1248                         goto rollback;
1249                 } else {
1250                         netdev_err(dev, "name change rollback failed: %d\n",
1251                                    ret);
1252                 }
1253         }
1254
1255         return err;
1256 }
1257
1258 /**
1259  *      dev_set_alias - change ifalias of a device
1260  *      @dev: device
1261  *      @alias: name up to IFALIASZ
1262  *      @len: limit of bytes to copy from info
1263  *
1264  *      Set ifalias for a device,
1265  */
1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267 {
1268         struct dev_ifalias *new_alias = NULL;
1269
1270         if (len >= IFALIASZ)
1271                 return -EINVAL;
1272
1273         if (len) {
1274                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1275                 if (!new_alias)
1276                         return -ENOMEM;
1277
1278                 memcpy(new_alias->ifalias, alias, len);
1279                 new_alias->ifalias[len] = 0;
1280         }
1281
1282         mutex_lock(&ifalias_mutex);
1283         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1284                                         mutex_is_locked(&ifalias_mutex));
1285         mutex_unlock(&ifalias_mutex);
1286
1287         if (new_alias)
1288                 kfree_rcu(new_alias, rcuhead);
1289
1290         return len;
1291 }
1292 EXPORT_SYMBOL(dev_set_alias);
1293
1294 /**
1295  *      dev_get_alias - get ifalias of a device
1296  *      @dev: device
1297  *      @name: buffer to store name of ifalias
1298  *      @len: size of buffer
1299  *
1300  *      get ifalias for a device.  Caller must make sure dev cannot go
1301  *      away,  e.g. rcu read lock or own a reference count to device.
1302  */
1303 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1304 {
1305         const struct dev_ifalias *alias;
1306         int ret = 0;
1307
1308         rcu_read_lock();
1309         alias = rcu_dereference(dev->ifalias);
1310         if (alias)
1311                 ret = snprintf(name, len, "%s", alias->ifalias);
1312         rcu_read_unlock();
1313
1314         return ret;
1315 }
1316
1317 /**
1318  *      netdev_features_change - device changes features
1319  *      @dev: device to cause notification
1320  *
1321  *      Called to indicate a device has changed features.
1322  */
1323 void netdev_features_change(struct net_device *dev)
1324 {
1325         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1326 }
1327 EXPORT_SYMBOL(netdev_features_change);
1328
1329 /**
1330  *      netdev_state_change - device changes state
1331  *      @dev: device to cause notification
1332  *
1333  *      Called to indicate a device has changed state. This function calls
1334  *      the notifier chains for netdev_chain and sends a NEWLINK message
1335  *      to the routing socket.
1336  */
1337 void netdev_state_change(struct net_device *dev)
1338 {
1339         if (dev->flags & IFF_UP) {
1340                 struct netdev_notifier_change_info change_info = {
1341                         .info.dev = dev,
1342                 };
1343
1344                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1345                                               &change_info.info);
1346                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1347         }
1348 }
1349 EXPORT_SYMBOL(netdev_state_change);
1350
1351 /**
1352  * __netdev_notify_peers - notify network peers about existence of @dev,
1353  * to be called when rtnl lock is already held.
1354  * @dev: network device
1355  *
1356  * Generate traffic such that interested network peers are aware of
1357  * @dev, such as by generating a gratuitous ARP. This may be used when
1358  * a device wants to inform the rest of the network about some sort of
1359  * reconfiguration such as a failover event or virtual machine
1360  * migration.
1361  */
1362 void __netdev_notify_peers(struct net_device *dev)
1363 {
1364         ASSERT_RTNL();
1365         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1366         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1367 }
1368 EXPORT_SYMBOL(__netdev_notify_peers);
1369
1370 /**
1371  * netdev_notify_peers - notify network peers about existence of @dev
1372  * @dev: network device
1373  *
1374  * Generate traffic such that interested network peers are aware of
1375  * @dev, such as by generating a gratuitous ARP. This may be used when
1376  * a device wants to inform the rest of the network about some sort of
1377  * reconfiguration such as a failover event or virtual machine
1378  * migration.
1379  */
1380 void netdev_notify_peers(struct net_device *dev)
1381 {
1382         rtnl_lock();
1383         __netdev_notify_peers(dev);
1384         rtnl_unlock();
1385 }
1386 EXPORT_SYMBOL(netdev_notify_peers);
1387
1388 static int napi_threaded_poll(void *data);
1389
1390 static int napi_kthread_create(struct napi_struct *n)
1391 {
1392         int err = 0;
1393
1394         /* Create and wake up the kthread once to put it in
1395          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1396          * warning and work with loadavg.
1397          */
1398         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1399                                 n->dev->name, n->napi_id);
1400         if (IS_ERR(n->thread)) {
1401                 err = PTR_ERR(n->thread);
1402                 pr_err("kthread_run failed with err %d\n", err);
1403                 n->thread = NULL;
1404         }
1405
1406         return err;
1407 }
1408
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411         const struct net_device_ops *ops = dev->netdev_ops;
1412         int ret;
1413
1414         ASSERT_RTNL();
1415         dev_addr_check(dev);
1416
1417         if (!netif_device_present(dev)) {
1418                 /* may be detached because parent is runtime-suspended */
1419                 if (dev->dev.parent)
1420                         pm_runtime_resume(dev->dev.parent);
1421                 if (!netif_device_present(dev))
1422                         return -ENODEV;
1423         }
1424
1425         /* Block netpoll from trying to do any rx path servicing.
1426          * If we don't do this there is a chance ndo_poll_controller
1427          * or ndo_poll may be running while we open the device
1428          */
1429         netpoll_poll_disable(dev);
1430
1431         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1432         ret = notifier_to_errno(ret);
1433         if (ret)
1434                 return ret;
1435
1436         set_bit(__LINK_STATE_START, &dev->state);
1437
1438         if (ops->ndo_validate_addr)
1439                 ret = ops->ndo_validate_addr(dev);
1440
1441         if (!ret && ops->ndo_open)
1442                 ret = ops->ndo_open(dev);
1443
1444         netpoll_poll_enable(dev);
1445
1446         if (ret)
1447                 clear_bit(__LINK_STATE_START, &dev->state);
1448         else {
1449                 dev->flags |= IFF_UP;
1450                 dev_set_rx_mode(dev);
1451                 dev_activate(dev);
1452                 add_device_randomness(dev->dev_addr, dev->addr_len);
1453         }
1454
1455         return ret;
1456 }
1457
1458 /**
1459  *      dev_open        - prepare an interface for use.
1460  *      @dev: device to open
1461  *      @extack: netlink extended ack
1462  *
1463  *      Takes a device from down to up state. The device's private open
1464  *      function is invoked and then the multicast lists are loaded. Finally
1465  *      the device is moved into the up state and a %NETDEV_UP message is
1466  *      sent to the netdev notifier chain.
1467  *
1468  *      Calling this function on an active interface is a nop. On a failure
1469  *      a negative errno code is returned.
1470  */
1471 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1472 {
1473         int ret;
1474
1475         if (dev->flags & IFF_UP)
1476                 return 0;
1477
1478         ret = __dev_open(dev, extack);
1479         if (ret < 0)
1480                 return ret;
1481
1482         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1483         call_netdevice_notifiers(NETDEV_UP, dev);
1484
1485         return ret;
1486 }
1487 EXPORT_SYMBOL(dev_open);
1488
1489 static void __dev_close_many(struct list_head *head)
1490 {
1491         struct net_device *dev;
1492
1493         ASSERT_RTNL();
1494         might_sleep();
1495
1496         list_for_each_entry(dev, head, close_list) {
1497                 /* Temporarily disable netpoll until the interface is down */
1498                 netpoll_poll_disable(dev);
1499
1500                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1501
1502                 clear_bit(__LINK_STATE_START, &dev->state);
1503
1504                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1505                  * can be even on different cpu. So just clear netif_running().
1506                  *
1507                  * dev->stop() will invoke napi_disable() on all of it's
1508                  * napi_struct instances on this device.
1509                  */
1510                 smp_mb__after_atomic(); /* Commit netif_running(). */
1511         }
1512
1513         dev_deactivate_many(head);
1514
1515         list_for_each_entry(dev, head, close_list) {
1516                 const struct net_device_ops *ops = dev->netdev_ops;
1517
1518                 /*
1519                  *      Call the device specific close. This cannot fail.
1520                  *      Only if device is UP
1521                  *
1522                  *      We allow it to be called even after a DETACH hot-plug
1523                  *      event.
1524                  */
1525                 if (ops->ndo_stop)
1526                         ops->ndo_stop(dev);
1527
1528                 dev->flags &= ~IFF_UP;
1529                 netpoll_poll_enable(dev);
1530         }
1531 }
1532
1533 static void __dev_close(struct net_device *dev)
1534 {
1535         LIST_HEAD(single);
1536
1537         list_add(&dev->close_list, &single);
1538         __dev_close_many(&single);
1539         list_del(&single);
1540 }
1541
1542 void dev_close_many(struct list_head *head, bool unlink)
1543 {
1544         struct net_device *dev, *tmp;
1545
1546         /* Remove the devices that don't need to be closed */
1547         list_for_each_entry_safe(dev, tmp, head, close_list)
1548                 if (!(dev->flags & IFF_UP))
1549                         list_del_init(&dev->close_list);
1550
1551         __dev_close_many(head);
1552
1553         list_for_each_entry_safe(dev, tmp, head, close_list) {
1554                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1555                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1556                 if (unlink)
1557                         list_del_init(&dev->close_list);
1558         }
1559 }
1560 EXPORT_SYMBOL(dev_close_many);
1561
1562 /**
1563  *      dev_close - shutdown an interface.
1564  *      @dev: device to shutdown
1565  *
1566  *      This function moves an active device into down state. A
1567  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1568  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1569  *      chain.
1570  */
1571 void dev_close(struct net_device *dev)
1572 {
1573         if (dev->flags & IFF_UP) {
1574                 LIST_HEAD(single);
1575
1576                 list_add(&dev->close_list, &single);
1577                 dev_close_many(&single, true);
1578                 list_del(&single);
1579         }
1580 }
1581 EXPORT_SYMBOL(dev_close);
1582
1583
1584 /**
1585  *      dev_disable_lro - disable Large Receive Offload on a device
1586  *      @dev: device
1587  *
1588  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1589  *      called under RTNL.  This is needed if received packets may be
1590  *      forwarded to another interface.
1591  */
1592 void dev_disable_lro(struct net_device *dev)
1593 {
1594         struct net_device *lower_dev;
1595         struct list_head *iter;
1596
1597         dev->wanted_features &= ~NETIF_F_LRO;
1598         netdev_update_features(dev);
1599
1600         if (unlikely(dev->features & NETIF_F_LRO))
1601                 netdev_WARN(dev, "failed to disable LRO!\n");
1602
1603         netdev_for_each_lower_dev(dev, lower_dev, iter)
1604                 dev_disable_lro(lower_dev);
1605 }
1606 EXPORT_SYMBOL(dev_disable_lro);
1607
1608 /**
1609  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1610  *      @dev: device
1611  *
1612  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1613  *      called under RTNL.  This is needed if Generic XDP is installed on
1614  *      the device.
1615  */
1616 static void dev_disable_gro_hw(struct net_device *dev)
1617 {
1618         dev->wanted_features &= ~NETIF_F_GRO_HW;
1619         netdev_update_features(dev);
1620
1621         if (unlikely(dev->features & NETIF_F_GRO_HW))
1622                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1623 }
1624
1625 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1626 {
1627 #define N(val)                                          \
1628         case NETDEV_##val:                              \
1629                 return "NETDEV_" __stringify(val);
1630         switch (cmd) {
1631         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1632         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1633         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1634         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1635         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1636         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1637         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1638         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1639         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1640         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1641         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1642         N(XDP_FEAT_CHANGE)
1643         }
1644 #undef N
1645         return "UNKNOWN_NETDEV_EVENT";
1646 }
1647 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1648
1649 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1650                                    struct net_device *dev)
1651 {
1652         struct netdev_notifier_info info = {
1653                 .dev = dev,
1654         };
1655
1656         return nb->notifier_call(nb, val, &info);
1657 }
1658
1659 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1660                                              struct net_device *dev)
1661 {
1662         int err;
1663
1664         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1665         err = notifier_to_errno(err);
1666         if (err)
1667                 return err;
1668
1669         if (!(dev->flags & IFF_UP))
1670                 return 0;
1671
1672         call_netdevice_notifier(nb, NETDEV_UP, dev);
1673         return 0;
1674 }
1675
1676 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1677                                                 struct net_device *dev)
1678 {
1679         if (dev->flags & IFF_UP) {
1680                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1681                                         dev);
1682                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1683         }
1684         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1685 }
1686
1687 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1688                                                  struct net *net)
1689 {
1690         struct net_device *dev;
1691         int err;
1692
1693         for_each_netdev(net, dev) {
1694                 err = call_netdevice_register_notifiers(nb, dev);
1695                 if (err)
1696                         goto rollback;
1697         }
1698         return 0;
1699
1700 rollback:
1701         for_each_netdev_continue_reverse(net, dev)
1702                 call_netdevice_unregister_notifiers(nb, dev);
1703         return err;
1704 }
1705
1706 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1707                                                     struct net *net)
1708 {
1709         struct net_device *dev;
1710
1711         for_each_netdev(net, dev)
1712                 call_netdevice_unregister_notifiers(nb, dev);
1713 }
1714
1715 static int dev_boot_phase = 1;
1716
1717 /**
1718  * register_netdevice_notifier - register a network notifier block
1719  * @nb: notifier
1720  *
1721  * Register a notifier to be called when network device events occur.
1722  * The notifier passed is linked into the kernel structures and must
1723  * not be reused until it has been unregistered. A negative errno code
1724  * is returned on a failure.
1725  *
1726  * When registered all registration and up events are replayed
1727  * to the new notifier to allow device to have a race free
1728  * view of the network device list.
1729  */
1730
1731 int register_netdevice_notifier(struct notifier_block *nb)
1732 {
1733         struct net *net;
1734         int err;
1735
1736         /* Close race with setup_net() and cleanup_net() */
1737         down_write(&pernet_ops_rwsem);
1738         rtnl_lock();
1739         err = raw_notifier_chain_register(&netdev_chain, nb);
1740         if (err)
1741                 goto unlock;
1742         if (dev_boot_phase)
1743                 goto unlock;
1744         for_each_net(net) {
1745                 err = call_netdevice_register_net_notifiers(nb, net);
1746                 if (err)
1747                         goto rollback;
1748         }
1749
1750 unlock:
1751         rtnl_unlock();
1752         up_write(&pernet_ops_rwsem);
1753         return err;
1754
1755 rollback:
1756         for_each_net_continue_reverse(net)
1757                 call_netdevice_unregister_net_notifiers(nb, net);
1758
1759         raw_notifier_chain_unregister(&netdev_chain, nb);
1760         goto unlock;
1761 }
1762 EXPORT_SYMBOL(register_netdevice_notifier);
1763
1764 /**
1765  * unregister_netdevice_notifier - unregister a network notifier block
1766  * @nb: notifier
1767  *
1768  * Unregister a notifier previously registered by
1769  * register_netdevice_notifier(). The notifier is unlinked into the
1770  * kernel structures and may then be reused. A negative errno code
1771  * is returned on a failure.
1772  *
1773  * After unregistering unregister and down device events are synthesized
1774  * for all devices on the device list to the removed notifier to remove
1775  * the need for special case cleanup code.
1776  */
1777
1778 int unregister_netdevice_notifier(struct notifier_block *nb)
1779 {
1780         struct net *net;
1781         int err;
1782
1783         /* Close race with setup_net() and cleanup_net() */
1784         down_write(&pernet_ops_rwsem);
1785         rtnl_lock();
1786         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1787         if (err)
1788                 goto unlock;
1789
1790         for_each_net(net)
1791                 call_netdevice_unregister_net_notifiers(nb, net);
1792
1793 unlock:
1794         rtnl_unlock();
1795         up_write(&pernet_ops_rwsem);
1796         return err;
1797 }
1798 EXPORT_SYMBOL(unregister_netdevice_notifier);
1799
1800 static int __register_netdevice_notifier_net(struct net *net,
1801                                              struct notifier_block *nb,
1802                                              bool ignore_call_fail)
1803 {
1804         int err;
1805
1806         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1807         if (err)
1808                 return err;
1809         if (dev_boot_phase)
1810                 return 0;
1811
1812         err = call_netdevice_register_net_notifiers(nb, net);
1813         if (err && !ignore_call_fail)
1814                 goto chain_unregister;
1815
1816         return 0;
1817
1818 chain_unregister:
1819         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1820         return err;
1821 }
1822
1823 static int __unregister_netdevice_notifier_net(struct net *net,
1824                                                struct notifier_block *nb)
1825 {
1826         int err;
1827
1828         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1829         if (err)
1830                 return err;
1831
1832         call_netdevice_unregister_net_notifiers(nb, net);
1833         return 0;
1834 }
1835
1836 /**
1837  * register_netdevice_notifier_net - register a per-netns network notifier block
1838  * @net: network namespace
1839  * @nb: notifier
1840  *
1841  * Register a notifier to be called when network device events occur.
1842  * The notifier passed is linked into the kernel structures and must
1843  * not be reused until it has been unregistered. A negative errno code
1844  * is returned on a failure.
1845  *
1846  * When registered all registration and up events are replayed
1847  * to the new notifier to allow device to have a race free
1848  * view of the network device list.
1849  */
1850
1851 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1852 {
1853         int err;
1854
1855         rtnl_lock();
1856         err = __register_netdevice_notifier_net(net, nb, false);
1857         rtnl_unlock();
1858         return err;
1859 }
1860 EXPORT_SYMBOL(register_netdevice_notifier_net);
1861
1862 /**
1863  * unregister_netdevice_notifier_net - unregister a per-netns
1864  *                                     network notifier block
1865  * @net: network namespace
1866  * @nb: notifier
1867  *
1868  * Unregister a notifier previously registered by
1869  * register_netdevice_notifier_net(). The notifier is unlinked from the
1870  * kernel structures and may then be reused. A negative errno code
1871  * is returned on a failure.
1872  *
1873  * After unregistering unregister and down device events are synthesized
1874  * for all devices on the device list to the removed notifier to remove
1875  * the need for special case cleanup code.
1876  */
1877
1878 int unregister_netdevice_notifier_net(struct net *net,
1879                                       struct notifier_block *nb)
1880 {
1881         int err;
1882
1883         rtnl_lock();
1884         err = __unregister_netdevice_notifier_net(net, nb);
1885         rtnl_unlock();
1886         return err;
1887 }
1888 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1889
1890 static void __move_netdevice_notifier_net(struct net *src_net,
1891                                           struct net *dst_net,
1892                                           struct notifier_block *nb)
1893 {
1894         __unregister_netdevice_notifier_net(src_net, nb);
1895         __register_netdevice_notifier_net(dst_net, nb, true);
1896 }
1897
1898 int register_netdevice_notifier_dev_net(struct net_device *dev,
1899                                         struct notifier_block *nb,
1900                                         struct netdev_net_notifier *nn)
1901 {
1902         int err;
1903
1904         rtnl_lock();
1905         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1906         if (!err) {
1907                 nn->nb = nb;
1908                 list_add(&nn->list, &dev->net_notifier_list);
1909         }
1910         rtnl_unlock();
1911         return err;
1912 }
1913 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1914
1915 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1916                                           struct notifier_block *nb,
1917                                           struct netdev_net_notifier *nn)
1918 {
1919         int err;
1920
1921         rtnl_lock();
1922         list_del(&nn->list);
1923         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1924         rtnl_unlock();
1925         return err;
1926 }
1927 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1928
1929 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1930                                              struct net *net)
1931 {
1932         struct netdev_net_notifier *nn;
1933
1934         list_for_each_entry(nn, &dev->net_notifier_list, list)
1935                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1936 }
1937
1938 /**
1939  *      call_netdevice_notifiers_info - call all network notifier blocks
1940  *      @val: value passed unmodified to notifier function
1941  *      @info: notifier information data
1942  *
1943  *      Call all network notifier blocks.  Parameters and return value
1944  *      are as for raw_notifier_call_chain().
1945  */
1946
1947 int call_netdevice_notifiers_info(unsigned long val,
1948                                   struct netdev_notifier_info *info)
1949 {
1950         struct net *net = dev_net(info->dev);
1951         int ret;
1952
1953         ASSERT_RTNL();
1954
1955         /* Run per-netns notifier block chain first, then run the global one.
1956          * Hopefully, one day, the global one is going to be removed after
1957          * all notifier block registrators get converted to be per-netns.
1958          */
1959         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1960         if (ret & NOTIFY_STOP_MASK)
1961                 return ret;
1962         return raw_notifier_call_chain(&netdev_chain, val, info);
1963 }
1964
1965 /**
1966  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1967  *                                             for and rollback on error
1968  *      @val_up: value passed unmodified to notifier function
1969  *      @val_down: value passed unmodified to the notifier function when
1970  *                 recovering from an error on @val_up
1971  *      @info: notifier information data
1972  *
1973  *      Call all per-netns network notifier blocks, but not notifier blocks on
1974  *      the global notifier chain. Parameters and return value are as for
1975  *      raw_notifier_call_chain_robust().
1976  */
1977
1978 static int
1979 call_netdevice_notifiers_info_robust(unsigned long val_up,
1980                                      unsigned long val_down,
1981                                      struct netdev_notifier_info *info)
1982 {
1983         struct net *net = dev_net(info->dev);
1984
1985         ASSERT_RTNL();
1986
1987         return raw_notifier_call_chain_robust(&net->netdev_chain,
1988                                               val_up, val_down, info);
1989 }
1990
1991 static int call_netdevice_notifiers_extack(unsigned long val,
1992                                            struct net_device *dev,
1993                                            struct netlink_ext_ack *extack)
1994 {
1995         struct netdev_notifier_info info = {
1996                 .dev = dev,
1997                 .extack = extack,
1998         };
1999
2000         return call_netdevice_notifiers_info(val, &info);
2001 }
2002
2003 /**
2004  *      call_netdevice_notifiers - call all network notifier blocks
2005  *      @val: value passed unmodified to notifier function
2006  *      @dev: net_device pointer passed unmodified to notifier function
2007  *
2008  *      Call all network notifier blocks.  Parameters and return value
2009  *      are as for raw_notifier_call_chain().
2010  */
2011
2012 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2013 {
2014         return call_netdevice_notifiers_extack(val, dev, NULL);
2015 }
2016 EXPORT_SYMBOL(call_netdevice_notifiers);
2017
2018 /**
2019  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2020  *      @val: value passed unmodified to notifier function
2021  *      @dev: net_device pointer passed unmodified to notifier function
2022  *      @arg: additional u32 argument passed to the notifier function
2023  *
2024  *      Call all network notifier blocks.  Parameters and return value
2025  *      are as for raw_notifier_call_chain().
2026  */
2027 static int call_netdevice_notifiers_mtu(unsigned long val,
2028                                         struct net_device *dev, u32 arg)
2029 {
2030         struct netdev_notifier_info_ext info = {
2031                 .info.dev = dev,
2032                 .ext.mtu = arg,
2033         };
2034
2035         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2036
2037         return call_netdevice_notifiers_info(val, &info.info);
2038 }
2039
2040 #ifdef CONFIG_NET_INGRESS
2041 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2042
2043 void net_inc_ingress_queue(void)
2044 {
2045         static_branch_inc(&ingress_needed_key);
2046 }
2047 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2048
2049 void net_dec_ingress_queue(void)
2050 {
2051         static_branch_dec(&ingress_needed_key);
2052 }
2053 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2054 #endif
2055
2056 #ifdef CONFIG_NET_EGRESS
2057 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2058
2059 void net_inc_egress_queue(void)
2060 {
2061         static_branch_inc(&egress_needed_key);
2062 }
2063 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2064
2065 void net_dec_egress_queue(void)
2066 {
2067         static_branch_dec(&egress_needed_key);
2068 }
2069 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2070 #endif
2071
2072 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2073 EXPORT_SYMBOL(netstamp_needed_key);
2074 #ifdef CONFIG_JUMP_LABEL
2075 static atomic_t netstamp_needed_deferred;
2076 static atomic_t netstamp_wanted;
2077 static void netstamp_clear(struct work_struct *work)
2078 {
2079         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2080         int wanted;
2081
2082         wanted = atomic_add_return(deferred, &netstamp_wanted);
2083         if (wanted > 0)
2084                 static_branch_enable(&netstamp_needed_key);
2085         else
2086                 static_branch_disable(&netstamp_needed_key);
2087 }
2088 static DECLARE_WORK(netstamp_work, netstamp_clear);
2089 #endif
2090
2091 void net_enable_timestamp(void)
2092 {
2093 #ifdef CONFIG_JUMP_LABEL
2094         int wanted = atomic_read(&netstamp_wanted);
2095
2096         while (wanted > 0) {
2097                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2098                         return;
2099         }
2100         atomic_inc(&netstamp_needed_deferred);
2101         schedule_work(&netstamp_work);
2102 #else
2103         static_branch_inc(&netstamp_needed_key);
2104 #endif
2105 }
2106 EXPORT_SYMBOL(net_enable_timestamp);
2107
2108 void net_disable_timestamp(void)
2109 {
2110 #ifdef CONFIG_JUMP_LABEL
2111         int wanted = atomic_read(&netstamp_wanted);
2112
2113         while (wanted > 1) {
2114                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2115                         return;
2116         }
2117         atomic_dec(&netstamp_needed_deferred);
2118         schedule_work(&netstamp_work);
2119 #else
2120         static_branch_dec(&netstamp_needed_key);
2121 #endif
2122 }
2123 EXPORT_SYMBOL(net_disable_timestamp);
2124
2125 static inline void net_timestamp_set(struct sk_buff *skb)
2126 {
2127         skb->tstamp = 0;
2128         skb->mono_delivery_time = 0;
2129         if (static_branch_unlikely(&netstamp_needed_key))
2130                 skb->tstamp = ktime_get_real();
2131 }
2132
2133 #define net_timestamp_check(COND, SKB)                          \
2134         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2135                 if ((COND) && !(SKB)->tstamp)                   \
2136                         (SKB)->tstamp = ktime_get_real();       \
2137         }                                                       \
2138
2139 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2140 {
2141         return __is_skb_forwardable(dev, skb, true);
2142 }
2143 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2144
2145 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2146                               bool check_mtu)
2147 {
2148         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2149
2150         if (likely(!ret)) {
2151                 skb->protocol = eth_type_trans(skb, dev);
2152                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2153         }
2154
2155         return ret;
2156 }
2157
2158 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2159 {
2160         return __dev_forward_skb2(dev, skb, true);
2161 }
2162 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2163
2164 /**
2165  * dev_forward_skb - loopback an skb to another netif
2166  *
2167  * @dev: destination network device
2168  * @skb: buffer to forward
2169  *
2170  * return values:
2171  *      NET_RX_SUCCESS  (no congestion)
2172  *      NET_RX_DROP     (packet was dropped, but freed)
2173  *
2174  * dev_forward_skb can be used for injecting an skb from the
2175  * start_xmit function of one device into the receive queue
2176  * of another device.
2177  *
2178  * The receiving device may be in another namespace, so
2179  * we have to clear all information in the skb that could
2180  * impact namespace isolation.
2181  */
2182 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2183 {
2184         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2185 }
2186 EXPORT_SYMBOL_GPL(dev_forward_skb);
2187
2188 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2189 {
2190         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2191 }
2192
2193 static inline int deliver_skb(struct sk_buff *skb,
2194                               struct packet_type *pt_prev,
2195                               struct net_device *orig_dev)
2196 {
2197         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2198                 return -ENOMEM;
2199         refcount_inc(&skb->users);
2200         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2201 }
2202
2203 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2204                                           struct packet_type **pt,
2205                                           struct net_device *orig_dev,
2206                                           __be16 type,
2207                                           struct list_head *ptype_list)
2208 {
2209         struct packet_type *ptype, *pt_prev = *pt;
2210
2211         list_for_each_entry_rcu(ptype, ptype_list, list) {
2212                 if (ptype->type != type)
2213                         continue;
2214                 if (pt_prev)
2215                         deliver_skb(skb, pt_prev, orig_dev);
2216                 pt_prev = ptype;
2217         }
2218         *pt = pt_prev;
2219 }
2220
2221 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2222 {
2223         if (!ptype->af_packet_priv || !skb->sk)
2224                 return false;
2225
2226         if (ptype->id_match)
2227                 return ptype->id_match(ptype, skb->sk);
2228         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2229                 return true;
2230
2231         return false;
2232 }
2233
2234 /**
2235  * dev_nit_active - return true if any network interface taps are in use
2236  *
2237  * @dev: network device to check for the presence of taps
2238  */
2239 bool dev_nit_active(struct net_device *dev)
2240 {
2241         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2242 }
2243 EXPORT_SYMBOL_GPL(dev_nit_active);
2244
2245 /*
2246  *      Support routine. Sends outgoing frames to any network
2247  *      taps currently in use.
2248  */
2249
2250 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2251 {
2252         struct packet_type *ptype;
2253         struct sk_buff *skb2 = NULL;
2254         struct packet_type *pt_prev = NULL;
2255         struct list_head *ptype_list = &ptype_all;
2256
2257         rcu_read_lock();
2258 again:
2259         list_for_each_entry_rcu(ptype, ptype_list, list) {
2260                 if (ptype->ignore_outgoing)
2261                         continue;
2262
2263                 /* Never send packets back to the socket
2264                  * they originated from - MvS ([email protected])
2265                  */
2266                 if (skb_loop_sk(ptype, skb))
2267                         continue;
2268
2269                 if (pt_prev) {
2270                         deliver_skb(skb2, pt_prev, skb->dev);
2271                         pt_prev = ptype;
2272                         continue;
2273                 }
2274
2275                 /* need to clone skb, done only once */
2276                 skb2 = skb_clone(skb, GFP_ATOMIC);
2277                 if (!skb2)
2278                         goto out_unlock;
2279
2280                 net_timestamp_set(skb2);
2281
2282                 /* skb->nh should be correctly
2283                  * set by sender, so that the second statement is
2284                  * just protection against buggy protocols.
2285                  */
2286                 skb_reset_mac_header(skb2);
2287
2288                 if (skb_network_header(skb2) < skb2->data ||
2289                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2290                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2291                                              ntohs(skb2->protocol),
2292                                              dev->name);
2293                         skb_reset_network_header(skb2);
2294                 }
2295
2296                 skb2->transport_header = skb2->network_header;
2297                 skb2->pkt_type = PACKET_OUTGOING;
2298                 pt_prev = ptype;
2299         }
2300
2301         if (ptype_list == &ptype_all) {
2302                 ptype_list = &dev->ptype_all;
2303                 goto again;
2304         }
2305 out_unlock:
2306         if (pt_prev) {
2307                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2308                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2309                 else
2310                         kfree_skb(skb2);
2311         }
2312         rcu_read_unlock();
2313 }
2314 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2315
2316 /**
2317  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2318  * @dev: Network device
2319  * @txq: number of queues available
2320  *
2321  * If real_num_tx_queues is changed the tc mappings may no longer be
2322  * valid. To resolve this verify the tc mapping remains valid and if
2323  * not NULL the mapping. With no priorities mapping to this
2324  * offset/count pair it will no longer be used. In the worst case TC0
2325  * is invalid nothing can be done so disable priority mappings. If is
2326  * expected that drivers will fix this mapping if they can before
2327  * calling netif_set_real_num_tx_queues.
2328  */
2329 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2330 {
2331         int i;
2332         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333
2334         /* If TC0 is invalidated disable TC mapping */
2335         if (tc->offset + tc->count > txq) {
2336                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2337                 dev->num_tc = 0;
2338                 return;
2339         }
2340
2341         /* Invalidated prio to tc mappings set to TC0 */
2342         for (i = 1; i < TC_BITMASK + 1; i++) {
2343                 int q = netdev_get_prio_tc_map(dev, i);
2344
2345                 tc = &dev->tc_to_txq[q];
2346                 if (tc->offset + tc->count > txq) {
2347                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2348                                     i, q);
2349                         netdev_set_prio_tc_map(dev, i, 0);
2350                 }
2351         }
2352 }
2353
2354 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2355 {
2356         if (dev->num_tc) {
2357                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2358                 int i;
2359
2360                 /* walk through the TCs and see if it falls into any of them */
2361                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2362                         if ((txq - tc->offset) < tc->count)
2363                                 return i;
2364                 }
2365
2366                 /* didn't find it, just return -1 to indicate no match */
2367                 return -1;
2368         }
2369
2370         return 0;
2371 }
2372 EXPORT_SYMBOL(netdev_txq_to_tc);
2373
2374 #ifdef CONFIG_XPS
2375 static struct static_key xps_needed __read_mostly;
2376 static struct static_key xps_rxqs_needed __read_mostly;
2377 static DEFINE_MUTEX(xps_map_mutex);
2378 #define xmap_dereference(P)             \
2379         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2380
2381 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2382                              struct xps_dev_maps *old_maps, int tci, u16 index)
2383 {
2384         struct xps_map *map = NULL;
2385         int pos;
2386
2387         if (dev_maps)
2388                 map = xmap_dereference(dev_maps->attr_map[tci]);
2389         if (!map)
2390                 return false;
2391
2392         for (pos = map->len; pos--;) {
2393                 if (map->queues[pos] != index)
2394                         continue;
2395
2396                 if (map->len > 1) {
2397                         map->queues[pos] = map->queues[--map->len];
2398                         break;
2399                 }
2400
2401                 if (old_maps)
2402                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2403                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2404                 kfree_rcu(map, rcu);
2405                 return false;
2406         }
2407
2408         return true;
2409 }
2410
2411 static bool remove_xps_queue_cpu(struct net_device *dev,
2412                                  struct xps_dev_maps *dev_maps,
2413                                  int cpu, u16 offset, u16 count)
2414 {
2415         int num_tc = dev_maps->num_tc;
2416         bool active = false;
2417         int tci;
2418
2419         for (tci = cpu * num_tc; num_tc--; tci++) {
2420                 int i, j;
2421
2422                 for (i = count, j = offset; i--; j++) {
2423                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2424                                 break;
2425                 }
2426
2427                 active |= i < 0;
2428         }
2429
2430         return active;
2431 }
2432
2433 static void reset_xps_maps(struct net_device *dev,
2434                            struct xps_dev_maps *dev_maps,
2435                            enum xps_map_type type)
2436 {
2437         static_key_slow_dec_cpuslocked(&xps_needed);
2438         if (type == XPS_RXQS)
2439                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2440
2441         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2442
2443         kfree_rcu(dev_maps, rcu);
2444 }
2445
2446 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2447                            u16 offset, u16 count)
2448 {
2449         struct xps_dev_maps *dev_maps;
2450         bool active = false;
2451         int i, j;
2452
2453         dev_maps = xmap_dereference(dev->xps_maps[type]);
2454         if (!dev_maps)
2455                 return;
2456
2457         for (j = 0; j < dev_maps->nr_ids; j++)
2458                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2459         if (!active)
2460                 reset_xps_maps(dev, dev_maps, type);
2461
2462         if (type == XPS_CPUS) {
2463                 for (i = offset + (count - 1); count--; i--)
2464                         netdev_queue_numa_node_write(
2465                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2466         }
2467 }
2468
2469 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2470                                    u16 count)
2471 {
2472         if (!static_key_false(&xps_needed))
2473                 return;
2474
2475         cpus_read_lock();
2476         mutex_lock(&xps_map_mutex);
2477
2478         if (static_key_false(&xps_rxqs_needed))
2479                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2480
2481         clean_xps_maps(dev, XPS_CPUS, offset, count);
2482
2483         mutex_unlock(&xps_map_mutex);
2484         cpus_read_unlock();
2485 }
2486
2487 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2488 {
2489         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2490 }
2491
2492 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2493                                       u16 index, bool is_rxqs_map)
2494 {
2495         struct xps_map *new_map;
2496         int alloc_len = XPS_MIN_MAP_ALLOC;
2497         int i, pos;
2498
2499         for (pos = 0; map && pos < map->len; pos++) {
2500                 if (map->queues[pos] != index)
2501                         continue;
2502                 return map;
2503         }
2504
2505         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2506         if (map) {
2507                 if (pos < map->alloc_len)
2508                         return map;
2509
2510                 alloc_len = map->alloc_len * 2;
2511         }
2512
2513         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2514          *  map
2515          */
2516         if (is_rxqs_map)
2517                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2518         else
2519                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2520                                        cpu_to_node(attr_index));
2521         if (!new_map)
2522                 return NULL;
2523
2524         for (i = 0; i < pos; i++)
2525                 new_map->queues[i] = map->queues[i];
2526         new_map->alloc_len = alloc_len;
2527         new_map->len = pos;
2528
2529         return new_map;
2530 }
2531
2532 /* Copy xps maps at a given index */
2533 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2534                               struct xps_dev_maps *new_dev_maps, int index,
2535                               int tc, bool skip_tc)
2536 {
2537         int i, tci = index * dev_maps->num_tc;
2538         struct xps_map *map;
2539
2540         /* copy maps belonging to foreign traffic classes */
2541         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2542                 if (i == tc && skip_tc)
2543                         continue;
2544
2545                 /* fill in the new device map from the old device map */
2546                 map = xmap_dereference(dev_maps->attr_map[tci]);
2547                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2548         }
2549 }
2550
2551 /* Must be called under cpus_read_lock */
2552 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2553                           u16 index, enum xps_map_type type)
2554 {
2555         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2556         const unsigned long *online_mask = NULL;
2557         bool active = false, copy = false;
2558         int i, j, tci, numa_node_id = -2;
2559         int maps_sz, num_tc = 1, tc = 0;
2560         struct xps_map *map, *new_map;
2561         unsigned int nr_ids;
2562
2563         WARN_ON_ONCE(index >= dev->num_tx_queues);
2564
2565         if (dev->num_tc) {
2566                 /* Do not allow XPS on subordinate device directly */
2567                 num_tc = dev->num_tc;
2568                 if (num_tc < 0)
2569                         return -EINVAL;
2570
2571                 /* If queue belongs to subordinate dev use its map */
2572                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2573
2574                 tc = netdev_txq_to_tc(dev, index);
2575                 if (tc < 0)
2576                         return -EINVAL;
2577         }
2578
2579         mutex_lock(&xps_map_mutex);
2580
2581         dev_maps = xmap_dereference(dev->xps_maps[type]);
2582         if (type == XPS_RXQS) {
2583                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2584                 nr_ids = dev->num_rx_queues;
2585         } else {
2586                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2587                 if (num_possible_cpus() > 1)
2588                         online_mask = cpumask_bits(cpu_online_mask);
2589                 nr_ids = nr_cpu_ids;
2590         }
2591
2592         if (maps_sz < L1_CACHE_BYTES)
2593                 maps_sz = L1_CACHE_BYTES;
2594
2595         /* The old dev_maps could be larger or smaller than the one we're
2596          * setting up now, as dev->num_tc or nr_ids could have been updated in
2597          * between. We could try to be smart, but let's be safe instead and only
2598          * copy foreign traffic classes if the two map sizes match.
2599          */
2600         if (dev_maps &&
2601             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2602                 copy = true;
2603
2604         /* allocate memory for queue storage */
2605         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2606              j < nr_ids;) {
2607                 if (!new_dev_maps) {
2608                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2609                         if (!new_dev_maps) {
2610                                 mutex_unlock(&xps_map_mutex);
2611                                 return -ENOMEM;
2612                         }
2613
2614                         new_dev_maps->nr_ids = nr_ids;
2615                         new_dev_maps->num_tc = num_tc;
2616                 }
2617
2618                 tci = j * num_tc + tc;
2619                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2620
2621                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2622                 if (!map)
2623                         goto error;
2624
2625                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2626         }
2627
2628         if (!new_dev_maps)
2629                 goto out_no_new_maps;
2630
2631         if (!dev_maps) {
2632                 /* Increment static keys at most once per type */
2633                 static_key_slow_inc_cpuslocked(&xps_needed);
2634                 if (type == XPS_RXQS)
2635                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2636         }
2637
2638         for (j = 0; j < nr_ids; j++) {
2639                 bool skip_tc = false;
2640
2641                 tci = j * num_tc + tc;
2642                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2643                     netif_attr_test_online(j, online_mask, nr_ids)) {
2644                         /* add tx-queue to CPU/rx-queue maps */
2645                         int pos = 0;
2646
2647                         skip_tc = true;
2648
2649                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2650                         while ((pos < map->len) && (map->queues[pos] != index))
2651                                 pos++;
2652
2653                         if (pos == map->len)
2654                                 map->queues[map->len++] = index;
2655 #ifdef CONFIG_NUMA
2656                         if (type == XPS_CPUS) {
2657                                 if (numa_node_id == -2)
2658                                         numa_node_id = cpu_to_node(j);
2659                                 else if (numa_node_id != cpu_to_node(j))
2660                                         numa_node_id = -1;
2661                         }
2662 #endif
2663                 }
2664
2665                 if (copy)
2666                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2667                                           skip_tc);
2668         }
2669
2670         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2671
2672         /* Cleanup old maps */
2673         if (!dev_maps)
2674                 goto out_no_old_maps;
2675
2676         for (j = 0; j < dev_maps->nr_ids; j++) {
2677                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2678                         map = xmap_dereference(dev_maps->attr_map[tci]);
2679                         if (!map)
2680                                 continue;
2681
2682                         if (copy) {
2683                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2684                                 if (map == new_map)
2685                                         continue;
2686                         }
2687
2688                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2689                         kfree_rcu(map, rcu);
2690                 }
2691         }
2692
2693         old_dev_maps = dev_maps;
2694
2695 out_no_old_maps:
2696         dev_maps = new_dev_maps;
2697         active = true;
2698
2699 out_no_new_maps:
2700         if (type == XPS_CPUS)
2701                 /* update Tx queue numa node */
2702                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2703                                              (numa_node_id >= 0) ?
2704                                              numa_node_id : NUMA_NO_NODE);
2705
2706         if (!dev_maps)
2707                 goto out_no_maps;
2708
2709         /* removes tx-queue from unused CPUs/rx-queues */
2710         for (j = 0; j < dev_maps->nr_ids; j++) {
2711                 tci = j * dev_maps->num_tc;
2712
2713                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2714                         if (i == tc &&
2715                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2716                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2717                                 continue;
2718
2719                         active |= remove_xps_queue(dev_maps,
2720                                                    copy ? old_dev_maps : NULL,
2721                                                    tci, index);
2722                 }
2723         }
2724
2725         if (old_dev_maps)
2726                 kfree_rcu(old_dev_maps, rcu);
2727
2728         /* free map if not active */
2729         if (!active)
2730                 reset_xps_maps(dev, dev_maps, type);
2731
2732 out_no_maps:
2733         mutex_unlock(&xps_map_mutex);
2734
2735         return 0;
2736 error:
2737         /* remove any maps that we added */
2738         for (j = 0; j < nr_ids; j++) {
2739                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2740                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2741                         map = copy ?
2742                               xmap_dereference(dev_maps->attr_map[tci]) :
2743                               NULL;
2744                         if (new_map && new_map != map)
2745                                 kfree(new_map);
2746                 }
2747         }
2748
2749         mutex_unlock(&xps_map_mutex);
2750
2751         kfree(new_dev_maps);
2752         return -ENOMEM;
2753 }
2754 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2755
2756 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2757                         u16 index)
2758 {
2759         int ret;
2760
2761         cpus_read_lock();
2762         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2763         cpus_read_unlock();
2764
2765         return ret;
2766 }
2767 EXPORT_SYMBOL(netif_set_xps_queue);
2768
2769 #endif
2770 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2771 {
2772         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2773
2774         /* Unbind any subordinate channels */
2775         while (txq-- != &dev->_tx[0]) {
2776                 if (txq->sb_dev)
2777                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2778         }
2779 }
2780
2781 void netdev_reset_tc(struct net_device *dev)
2782 {
2783 #ifdef CONFIG_XPS
2784         netif_reset_xps_queues_gt(dev, 0);
2785 #endif
2786         netdev_unbind_all_sb_channels(dev);
2787
2788         /* Reset TC configuration of device */
2789         dev->num_tc = 0;
2790         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2791         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2792 }
2793 EXPORT_SYMBOL(netdev_reset_tc);
2794
2795 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2796 {
2797         if (tc >= dev->num_tc)
2798                 return -EINVAL;
2799
2800 #ifdef CONFIG_XPS
2801         netif_reset_xps_queues(dev, offset, count);
2802 #endif
2803         dev->tc_to_txq[tc].count = count;
2804         dev->tc_to_txq[tc].offset = offset;
2805         return 0;
2806 }
2807 EXPORT_SYMBOL(netdev_set_tc_queue);
2808
2809 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2810 {
2811         if (num_tc > TC_MAX_QUEUE)
2812                 return -EINVAL;
2813
2814 #ifdef CONFIG_XPS
2815         netif_reset_xps_queues_gt(dev, 0);
2816 #endif
2817         netdev_unbind_all_sb_channels(dev);
2818
2819         dev->num_tc = num_tc;
2820         return 0;
2821 }
2822 EXPORT_SYMBOL(netdev_set_num_tc);
2823
2824 void netdev_unbind_sb_channel(struct net_device *dev,
2825                               struct net_device *sb_dev)
2826 {
2827         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828
2829 #ifdef CONFIG_XPS
2830         netif_reset_xps_queues_gt(sb_dev, 0);
2831 #endif
2832         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2833         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2834
2835         while (txq-- != &dev->_tx[0]) {
2836                 if (txq->sb_dev == sb_dev)
2837                         txq->sb_dev = NULL;
2838         }
2839 }
2840 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2841
2842 int netdev_bind_sb_channel_queue(struct net_device *dev,
2843                                  struct net_device *sb_dev,
2844                                  u8 tc, u16 count, u16 offset)
2845 {
2846         /* Make certain the sb_dev and dev are already configured */
2847         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2848                 return -EINVAL;
2849
2850         /* We cannot hand out queues we don't have */
2851         if ((offset + count) > dev->real_num_tx_queues)
2852                 return -EINVAL;
2853
2854         /* Record the mapping */
2855         sb_dev->tc_to_txq[tc].count = count;
2856         sb_dev->tc_to_txq[tc].offset = offset;
2857
2858         /* Provide a way for Tx queue to find the tc_to_txq map or
2859          * XPS map for itself.
2860          */
2861         while (count--)
2862                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2863
2864         return 0;
2865 }
2866 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2867
2868 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2869 {
2870         /* Do not use a multiqueue device to represent a subordinate channel */
2871         if (netif_is_multiqueue(dev))
2872                 return -ENODEV;
2873
2874         /* We allow channels 1 - 32767 to be used for subordinate channels.
2875          * Channel 0 is meant to be "native" mode and used only to represent
2876          * the main root device. We allow writing 0 to reset the device back
2877          * to normal mode after being used as a subordinate channel.
2878          */
2879         if (channel > S16_MAX)
2880                 return -EINVAL;
2881
2882         dev->num_tc = -channel;
2883
2884         return 0;
2885 }
2886 EXPORT_SYMBOL(netdev_set_sb_channel);
2887
2888 /*
2889  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2890  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2891  */
2892 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2893 {
2894         bool disabling;
2895         int rc;
2896
2897         disabling = txq < dev->real_num_tx_queues;
2898
2899         if (txq < 1 || txq > dev->num_tx_queues)
2900                 return -EINVAL;
2901
2902         if (dev->reg_state == NETREG_REGISTERED ||
2903             dev->reg_state == NETREG_UNREGISTERING) {
2904                 ASSERT_RTNL();
2905
2906                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2907                                                   txq);
2908                 if (rc)
2909                         return rc;
2910
2911                 if (dev->num_tc)
2912                         netif_setup_tc(dev, txq);
2913
2914                 dev_qdisc_change_real_num_tx(dev, txq);
2915
2916                 dev->real_num_tx_queues = txq;
2917
2918                 if (disabling) {
2919                         synchronize_net();
2920                         qdisc_reset_all_tx_gt(dev, txq);
2921 #ifdef CONFIG_XPS
2922                         netif_reset_xps_queues_gt(dev, txq);
2923 #endif
2924                 }
2925         } else {
2926                 dev->real_num_tx_queues = txq;
2927         }
2928
2929         return 0;
2930 }
2931 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2932
2933 #ifdef CONFIG_SYSFS
2934 /**
2935  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2936  *      @dev: Network device
2937  *      @rxq: Actual number of RX queues
2938  *
2939  *      This must be called either with the rtnl_lock held or before
2940  *      registration of the net device.  Returns 0 on success, or a
2941  *      negative error code.  If called before registration, it always
2942  *      succeeds.
2943  */
2944 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2945 {
2946         int rc;
2947
2948         if (rxq < 1 || rxq > dev->num_rx_queues)
2949                 return -EINVAL;
2950
2951         if (dev->reg_state == NETREG_REGISTERED) {
2952                 ASSERT_RTNL();
2953
2954                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2955                                                   rxq);
2956                 if (rc)
2957                         return rc;
2958         }
2959
2960         dev->real_num_rx_queues = rxq;
2961         return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2964 #endif
2965
2966 /**
2967  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2968  *      @dev: Network device
2969  *      @txq: Actual number of TX queues
2970  *      @rxq: Actual number of RX queues
2971  *
2972  *      Set the real number of both TX and RX queues.
2973  *      Does nothing if the number of queues is already correct.
2974  */
2975 int netif_set_real_num_queues(struct net_device *dev,
2976                               unsigned int txq, unsigned int rxq)
2977 {
2978         unsigned int old_rxq = dev->real_num_rx_queues;
2979         int err;
2980
2981         if (txq < 1 || txq > dev->num_tx_queues ||
2982             rxq < 1 || rxq > dev->num_rx_queues)
2983                 return -EINVAL;
2984
2985         /* Start from increases, so the error path only does decreases -
2986          * decreases can't fail.
2987          */
2988         if (rxq > dev->real_num_rx_queues) {
2989                 err = netif_set_real_num_rx_queues(dev, rxq);
2990                 if (err)
2991                         return err;
2992         }
2993         if (txq > dev->real_num_tx_queues) {
2994                 err = netif_set_real_num_tx_queues(dev, txq);
2995                 if (err)
2996                         goto undo_rx;
2997         }
2998         if (rxq < dev->real_num_rx_queues)
2999                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3000         if (txq < dev->real_num_tx_queues)
3001                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3002
3003         return 0;
3004 undo_rx:
3005         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3006         return err;
3007 }
3008 EXPORT_SYMBOL(netif_set_real_num_queues);
3009
3010 /**
3011  * netif_set_tso_max_size() - set the max size of TSO frames supported
3012  * @dev:        netdev to update
3013  * @size:       max skb->len of a TSO frame
3014  *
3015  * Set the limit on the size of TSO super-frames the device can handle.
3016  * Unless explicitly set the stack will assume the value of
3017  * %GSO_LEGACY_MAX_SIZE.
3018  */
3019 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3020 {
3021         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3022         if (size < READ_ONCE(dev->gso_max_size))
3023                 netif_set_gso_max_size(dev, size);
3024         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3025                 netif_set_gso_ipv4_max_size(dev, size);
3026 }
3027 EXPORT_SYMBOL(netif_set_tso_max_size);
3028
3029 /**
3030  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3031  * @dev:        netdev to update
3032  * @segs:       max number of TCP segments
3033  *
3034  * Set the limit on the number of TCP segments the device can generate from
3035  * a single TSO super-frame.
3036  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3037  */
3038 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3039 {
3040         dev->tso_max_segs = segs;
3041         if (segs < READ_ONCE(dev->gso_max_segs))
3042                 netif_set_gso_max_segs(dev, segs);
3043 }
3044 EXPORT_SYMBOL(netif_set_tso_max_segs);
3045
3046 /**
3047  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3048  * @to:         netdev to update
3049  * @from:       netdev from which to copy the limits
3050  */
3051 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3052 {
3053         netif_set_tso_max_size(to, from->tso_max_size);
3054         netif_set_tso_max_segs(to, from->tso_max_segs);
3055 }
3056 EXPORT_SYMBOL(netif_inherit_tso_max);
3057
3058 /**
3059  * netif_get_num_default_rss_queues - default number of RSS queues
3060  *
3061  * Default value is the number of physical cores if there are only 1 or 2, or
3062  * divided by 2 if there are more.
3063  */
3064 int netif_get_num_default_rss_queues(void)
3065 {
3066         cpumask_var_t cpus;
3067         int cpu, count = 0;
3068
3069         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3070                 return 1;
3071
3072         cpumask_copy(cpus, cpu_online_mask);
3073         for_each_cpu(cpu, cpus) {
3074                 ++count;
3075                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3076         }
3077         free_cpumask_var(cpus);
3078
3079         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3080 }
3081 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3082
3083 static void __netif_reschedule(struct Qdisc *q)
3084 {
3085         struct softnet_data *sd;
3086         unsigned long flags;
3087
3088         local_irq_save(flags);
3089         sd = this_cpu_ptr(&softnet_data);
3090         q->next_sched = NULL;
3091         *sd->output_queue_tailp = q;
3092         sd->output_queue_tailp = &q->next_sched;
3093         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3094         local_irq_restore(flags);
3095 }
3096
3097 void __netif_schedule(struct Qdisc *q)
3098 {
3099         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3100                 __netif_reschedule(q);
3101 }
3102 EXPORT_SYMBOL(__netif_schedule);
3103
3104 struct dev_kfree_skb_cb {
3105         enum skb_drop_reason reason;
3106 };
3107
3108 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3109 {
3110         return (struct dev_kfree_skb_cb *)skb->cb;
3111 }
3112
3113 void netif_schedule_queue(struct netdev_queue *txq)
3114 {
3115         rcu_read_lock();
3116         if (!netif_xmit_stopped(txq)) {
3117                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3118
3119                 __netif_schedule(q);
3120         }
3121         rcu_read_unlock();
3122 }
3123 EXPORT_SYMBOL(netif_schedule_queue);
3124
3125 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3126 {
3127         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3128                 struct Qdisc *q;
3129
3130                 rcu_read_lock();
3131                 q = rcu_dereference(dev_queue->qdisc);
3132                 __netif_schedule(q);
3133                 rcu_read_unlock();
3134         }
3135 }
3136 EXPORT_SYMBOL(netif_tx_wake_queue);
3137
3138 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3139 {
3140         unsigned long flags;
3141
3142         if (unlikely(!skb))
3143                 return;
3144
3145         if (likely(refcount_read(&skb->users) == 1)) {
3146                 smp_rmb();
3147                 refcount_set(&skb->users, 0);
3148         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3149                 return;
3150         }
3151         get_kfree_skb_cb(skb)->reason = reason;
3152         local_irq_save(flags);
3153         skb->next = __this_cpu_read(softnet_data.completion_queue);
3154         __this_cpu_write(softnet_data.completion_queue, skb);
3155         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3156         local_irq_restore(flags);
3157 }
3158 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3159
3160 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3161 {
3162         if (in_hardirq() || irqs_disabled())
3163                 dev_kfree_skb_irq_reason(skb, reason);
3164         else
3165                 kfree_skb_reason(skb, reason);
3166 }
3167 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3168
3169
3170 /**
3171  * netif_device_detach - mark device as removed
3172  * @dev: network device
3173  *
3174  * Mark device as removed from system and therefore no longer available.
3175  */
3176 void netif_device_detach(struct net_device *dev)
3177 {
3178         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179             netif_running(dev)) {
3180                 netif_tx_stop_all_queues(dev);
3181         }
3182 }
3183 EXPORT_SYMBOL(netif_device_detach);
3184
3185 /**
3186  * netif_device_attach - mark device as attached
3187  * @dev: network device
3188  *
3189  * Mark device as attached from system and restart if needed.
3190  */
3191 void netif_device_attach(struct net_device *dev)
3192 {
3193         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3194             netif_running(dev)) {
3195                 netif_tx_wake_all_queues(dev);
3196                 __netdev_watchdog_up(dev);
3197         }
3198 }
3199 EXPORT_SYMBOL(netif_device_attach);
3200
3201 /*
3202  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3203  * to be used as a distribution range.
3204  */
3205 static u16 skb_tx_hash(const struct net_device *dev,
3206                        const struct net_device *sb_dev,
3207                        struct sk_buff *skb)
3208 {
3209         u32 hash;
3210         u16 qoffset = 0;
3211         u16 qcount = dev->real_num_tx_queues;
3212
3213         if (dev->num_tc) {
3214                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3215
3216                 qoffset = sb_dev->tc_to_txq[tc].offset;
3217                 qcount = sb_dev->tc_to_txq[tc].count;
3218                 if (unlikely(!qcount)) {
3219                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3220                                              sb_dev->name, qoffset, tc);
3221                         qoffset = 0;
3222                         qcount = dev->real_num_tx_queues;
3223                 }
3224         }
3225
3226         if (skb_rx_queue_recorded(skb)) {
3227                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3228                 hash = skb_get_rx_queue(skb);
3229                 if (hash >= qoffset)
3230                         hash -= qoffset;
3231                 while (unlikely(hash >= qcount))
3232                         hash -= qcount;
3233                 return hash + qoffset;
3234         }
3235
3236         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3237 }
3238
3239 void skb_warn_bad_offload(const struct sk_buff *skb)
3240 {
3241         static const netdev_features_t null_features;
3242         struct net_device *dev = skb->dev;
3243         const char *name = "";
3244
3245         if (!net_ratelimit())
3246                 return;
3247
3248         if (dev) {
3249                 if (dev->dev.parent)
3250                         name = dev_driver_string(dev->dev.parent);
3251                 else
3252                         name = netdev_name(dev);
3253         }
3254         skb_dump(KERN_WARNING, skb, false);
3255         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3256              name, dev ? &dev->features : &null_features,
3257              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3258 }
3259
3260 /*
3261  * Invalidate hardware checksum when packet is to be mangled, and
3262  * complete checksum manually on outgoing path.
3263  */
3264 int skb_checksum_help(struct sk_buff *skb)
3265 {
3266         __wsum csum;
3267         int ret = 0, offset;
3268
3269         if (skb->ip_summed == CHECKSUM_COMPLETE)
3270                 goto out_set_summed;
3271
3272         if (unlikely(skb_is_gso(skb))) {
3273                 skb_warn_bad_offload(skb);
3274                 return -EINVAL;
3275         }
3276
3277         /* Before computing a checksum, we should make sure no frag could
3278          * be modified by an external entity : checksum could be wrong.
3279          */
3280         if (skb_has_shared_frag(skb)) {
3281                 ret = __skb_linearize(skb);
3282                 if (ret)
3283                         goto out;
3284         }
3285
3286         offset = skb_checksum_start_offset(skb);
3287         ret = -EINVAL;
3288         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3289                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3290                 goto out;
3291         }
3292         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3293
3294         offset += skb->csum_offset;
3295         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3296                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297                 goto out;
3298         }
3299         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3300         if (ret)
3301                 goto out;
3302
3303         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3304 out_set_summed:
3305         skb->ip_summed = CHECKSUM_NONE;
3306 out:
3307         return ret;
3308 }
3309 EXPORT_SYMBOL(skb_checksum_help);
3310
3311 int skb_crc32c_csum_help(struct sk_buff *skb)
3312 {
3313         __le32 crc32c_csum;
3314         int ret = 0, offset, start;
3315
3316         if (skb->ip_summed != CHECKSUM_PARTIAL)
3317                 goto out;
3318
3319         if (unlikely(skb_is_gso(skb)))
3320                 goto out;
3321
3322         /* Before computing a checksum, we should make sure no frag could
3323          * be modified by an external entity : checksum could be wrong.
3324          */
3325         if (unlikely(skb_has_shared_frag(skb))) {
3326                 ret = __skb_linearize(skb);
3327                 if (ret)
3328                         goto out;
3329         }
3330         start = skb_checksum_start_offset(skb);
3331         offset = start + offsetof(struct sctphdr, checksum);
3332         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3333                 ret = -EINVAL;
3334                 goto out;
3335         }
3336
3337         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3338         if (ret)
3339                 goto out;
3340
3341         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3342                                                   skb->len - start, ~(__u32)0,
3343                                                   crc32c_csum_stub));
3344         *(__le32 *)(skb->data + offset) = crc32c_csum;
3345         skb_reset_csum_not_inet(skb);
3346 out:
3347         return ret;
3348 }
3349
3350 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3351 {
3352         __be16 type = skb->protocol;
3353
3354         /* Tunnel gso handlers can set protocol to ethernet. */
3355         if (type == htons(ETH_P_TEB)) {
3356                 struct ethhdr *eth;
3357
3358                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3359                         return 0;
3360
3361                 eth = (struct ethhdr *)skb->data;
3362                 type = eth->h_proto;
3363         }
3364
3365         return vlan_get_protocol_and_depth(skb, type, depth);
3366 }
3367
3368
3369 /* Take action when hardware reception checksum errors are detected. */
3370 #ifdef CONFIG_BUG
3371 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3372 {
3373         netdev_err(dev, "hw csum failure\n");
3374         skb_dump(KERN_ERR, skb, true);
3375         dump_stack();
3376 }
3377
3378 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3381 }
3382 EXPORT_SYMBOL(netdev_rx_csum_fault);
3383 #endif
3384
3385 /* XXX: check that highmem exists at all on the given machine. */
3386 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 #ifdef CONFIG_HIGHMEM
3389         int i;
3390
3391         if (!(dev->features & NETIF_F_HIGHDMA)) {
3392                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3393                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3394
3395                         if (PageHighMem(skb_frag_page(frag)))
3396                                 return 1;
3397                 }
3398         }
3399 #endif
3400         return 0;
3401 }
3402
3403 /* If MPLS offload request, verify we are testing hardware MPLS features
3404  * instead of standard features for the netdev.
3405  */
3406 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3407 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3408                                            netdev_features_t features,
3409                                            __be16 type)
3410 {
3411         if (eth_p_mpls(type))
3412                 features &= skb->dev->mpls_features;
3413
3414         return features;
3415 }
3416 #else
3417 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3418                                            netdev_features_t features,
3419                                            __be16 type)
3420 {
3421         return features;
3422 }
3423 #endif
3424
3425 static netdev_features_t harmonize_features(struct sk_buff *skb,
3426         netdev_features_t features)
3427 {
3428         __be16 type;
3429
3430         type = skb_network_protocol(skb, NULL);
3431         features = net_mpls_features(skb, features, type);
3432
3433         if (skb->ip_summed != CHECKSUM_NONE &&
3434             !can_checksum_protocol(features, type)) {
3435                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3436         }
3437         if (illegal_highdma(skb->dev, skb))
3438                 features &= ~NETIF_F_SG;
3439
3440         return features;
3441 }
3442
3443 netdev_features_t passthru_features_check(struct sk_buff *skb,
3444                                           struct net_device *dev,
3445                                           netdev_features_t features)
3446 {
3447         return features;
3448 }
3449 EXPORT_SYMBOL(passthru_features_check);
3450
3451 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3452                                              struct net_device *dev,
3453                                              netdev_features_t features)
3454 {
3455         return vlan_features_check(skb, features);
3456 }
3457
3458 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3459                                             struct net_device *dev,
3460                                             netdev_features_t features)
3461 {
3462         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3463
3464         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3465                 return features & ~NETIF_F_GSO_MASK;
3466
3467         if (!skb_shinfo(skb)->gso_type) {
3468                 skb_warn_bad_offload(skb);
3469                 return features & ~NETIF_F_GSO_MASK;
3470         }
3471
3472         /* Support for GSO partial features requires software
3473          * intervention before we can actually process the packets
3474          * so we need to strip support for any partial features now
3475          * and we can pull them back in after we have partially
3476          * segmented the frame.
3477          */
3478         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3479                 features &= ~dev->gso_partial_features;
3480
3481         /* Make sure to clear the IPv4 ID mangling feature if the
3482          * IPv4 header has the potential to be fragmented.
3483          */
3484         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3485                 struct iphdr *iph = skb->encapsulation ?
3486                                     inner_ip_hdr(skb) : ip_hdr(skb);
3487
3488                 if (!(iph->frag_off & htons(IP_DF)))
3489                         features &= ~NETIF_F_TSO_MANGLEID;
3490         }
3491
3492         return features;
3493 }
3494
3495 netdev_features_t netif_skb_features(struct sk_buff *skb)
3496 {
3497         struct net_device *dev = skb->dev;
3498         netdev_features_t features = dev->features;
3499
3500         if (skb_is_gso(skb))
3501                 features = gso_features_check(skb, dev, features);
3502
3503         /* If encapsulation offload request, verify we are testing
3504          * hardware encapsulation features instead of standard
3505          * features for the netdev
3506          */
3507         if (skb->encapsulation)
3508                 features &= dev->hw_enc_features;
3509
3510         if (skb_vlan_tagged(skb))
3511                 features = netdev_intersect_features(features,
3512                                                      dev->vlan_features |
3513                                                      NETIF_F_HW_VLAN_CTAG_TX |
3514                                                      NETIF_F_HW_VLAN_STAG_TX);
3515
3516         if (dev->netdev_ops->ndo_features_check)
3517                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3518                                                                 features);
3519         else
3520                 features &= dflt_features_check(skb, dev, features);
3521
3522         return harmonize_features(skb, features);
3523 }
3524 EXPORT_SYMBOL(netif_skb_features);
3525
3526 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3527                     struct netdev_queue *txq, bool more)
3528 {
3529         unsigned int len;
3530         int rc;
3531
3532         if (dev_nit_active(dev))
3533                 dev_queue_xmit_nit(skb, dev);
3534
3535         len = skb->len;
3536         trace_net_dev_start_xmit(skb, dev);
3537         rc = netdev_start_xmit(skb, dev, txq, more);
3538         trace_net_dev_xmit(skb, rc, dev, len);
3539
3540         return rc;
3541 }
3542
3543 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3544                                     struct netdev_queue *txq, int *ret)
3545 {
3546         struct sk_buff *skb = first;
3547         int rc = NETDEV_TX_OK;
3548
3549         while (skb) {
3550                 struct sk_buff *next = skb->next;
3551
3552                 skb_mark_not_on_list(skb);
3553                 rc = xmit_one(skb, dev, txq, next != NULL);
3554                 if (unlikely(!dev_xmit_complete(rc))) {
3555                         skb->next = next;
3556                         goto out;
3557                 }
3558
3559                 skb = next;
3560                 if (netif_tx_queue_stopped(txq) && skb) {
3561                         rc = NETDEV_TX_BUSY;
3562                         break;
3563                 }
3564         }
3565
3566 out:
3567         *ret = rc;
3568         return skb;
3569 }
3570
3571 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3572                                           netdev_features_t features)
3573 {
3574         if (skb_vlan_tag_present(skb) &&
3575             !vlan_hw_offload_capable(features, skb->vlan_proto))
3576                 skb = __vlan_hwaccel_push_inside(skb);
3577         return skb;
3578 }
3579
3580 int skb_csum_hwoffload_help(struct sk_buff *skb,
3581                             const netdev_features_t features)
3582 {
3583         if (unlikely(skb_csum_is_sctp(skb)))
3584                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3585                         skb_crc32c_csum_help(skb);
3586
3587         if (features & NETIF_F_HW_CSUM)
3588                 return 0;
3589
3590         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3591                 switch (skb->csum_offset) {
3592                 case offsetof(struct tcphdr, check):
3593                 case offsetof(struct udphdr, check):
3594                         return 0;
3595                 }
3596         }
3597
3598         return skb_checksum_help(skb);
3599 }
3600 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3601
3602 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3603 {
3604         netdev_features_t features;
3605
3606         features = netif_skb_features(skb);
3607         skb = validate_xmit_vlan(skb, features);
3608         if (unlikely(!skb))
3609                 goto out_null;
3610
3611         skb = sk_validate_xmit_skb(skb, dev);
3612         if (unlikely(!skb))
3613                 goto out_null;
3614
3615         if (netif_needs_gso(skb, features)) {
3616                 struct sk_buff *segs;
3617
3618                 segs = skb_gso_segment(skb, features);
3619                 if (IS_ERR(segs)) {
3620                         goto out_kfree_skb;
3621                 } else if (segs) {
3622                         consume_skb(skb);
3623                         skb = segs;
3624                 }
3625         } else {
3626                 if (skb_needs_linearize(skb, features) &&
3627                     __skb_linearize(skb))
3628                         goto out_kfree_skb;
3629
3630                 /* If packet is not checksummed and device does not
3631                  * support checksumming for this protocol, complete
3632                  * checksumming here.
3633                  */
3634                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3635                         if (skb->encapsulation)
3636                                 skb_set_inner_transport_header(skb,
3637                                                                skb_checksum_start_offset(skb));
3638                         else
3639                                 skb_set_transport_header(skb,
3640                                                          skb_checksum_start_offset(skb));
3641                         if (skb_csum_hwoffload_help(skb, features))
3642                                 goto out_kfree_skb;
3643                 }
3644         }
3645
3646         skb = validate_xmit_xfrm(skb, features, again);
3647
3648         return skb;
3649
3650 out_kfree_skb:
3651         kfree_skb(skb);
3652 out_null:
3653         dev_core_stats_tx_dropped_inc(dev);
3654         return NULL;
3655 }
3656
3657 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3658 {
3659         struct sk_buff *next, *head = NULL, *tail;
3660
3661         for (; skb != NULL; skb = next) {
3662                 next = skb->next;
3663                 skb_mark_not_on_list(skb);
3664
3665                 /* in case skb wont be segmented, point to itself */
3666                 skb->prev = skb;
3667
3668                 skb = validate_xmit_skb(skb, dev, again);
3669                 if (!skb)
3670                         continue;
3671
3672                 if (!head)
3673                         head = skb;
3674                 else
3675                         tail->next = skb;
3676                 /* If skb was segmented, skb->prev points to
3677                  * the last segment. If not, it still contains skb.
3678                  */
3679                 tail = skb->prev;
3680         }
3681         return head;
3682 }
3683 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3684
3685 static void qdisc_pkt_len_init(struct sk_buff *skb)
3686 {
3687         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3688
3689         qdisc_skb_cb(skb)->pkt_len = skb->len;
3690
3691         /* To get more precise estimation of bytes sent on wire,
3692          * we add to pkt_len the headers size of all segments
3693          */
3694         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3695                 u16 gso_segs = shinfo->gso_segs;
3696                 unsigned int hdr_len;
3697
3698                 /* mac layer + network layer */
3699                 hdr_len = skb_transport_offset(skb);
3700
3701                 /* + transport layer */
3702                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3703                         const struct tcphdr *th;
3704                         struct tcphdr _tcphdr;
3705
3706                         th = skb_header_pointer(skb, hdr_len,
3707                                                 sizeof(_tcphdr), &_tcphdr);
3708                         if (likely(th))
3709                                 hdr_len += __tcp_hdrlen(th);
3710                 } else {
3711                         struct udphdr _udphdr;
3712
3713                         if (skb_header_pointer(skb, hdr_len,
3714                                                sizeof(_udphdr), &_udphdr))
3715                                 hdr_len += sizeof(struct udphdr);
3716                 }
3717
3718                 if (shinfo->gso_type & SKB_GSO_DODGY)
3719                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3720                                                 shinfo->gso_size);
3721
3722                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3723         }
3724 }
3725
3726 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3727                              struct sk_buff **to_free,
3728                              struct netdev_queue *txq)
3729 {
3730         int rc;
3731
3732         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3733         if (rc == NET_XMIT_SUCCESS)
3734                 trace_qdisc_enqueue(q, txq, skb);
3735         return rc;
3736 }
3737
3738 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3739                                  struct net_device *dev,
3740                                  struct netdev_queue *txq)
3741 {
3742         spinlock_t *root_lock = qdisc_lock(q);
3743         struct sk_buff *to_free = NULL;
3744         bool contended;
3745         int rc;
3746
3747         qdisc_calculate_pkt_len(skb, q);
3748
3749         if (q->flags & TCQ_F_NOLOCK) {
3750                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3751                     qdisc_run_begin(q)) {
3752                         /* Retest nolock_qdisc_is_empty() within the protection
3753                          * of q->seqlock to protect from racing with requeuing.
3754                          */
3755                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3756                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3757                                 __qdisc_run(q);
3758                                 qdisc_run_end(q);
3759
3760                                 goto no_lock_out;
3761                         }
3762
3763                         qdisc_bstats_cpu_update(q, skb);
3764                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3765                             !nolock_qdisc_is_empty(q))
3766                                 __qdisc_run(q);
3767
3768                         qdisc_run_end(q);
3769                         return NET_XMIT_SUCCESS;
3770                 }
3771
3772                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3773                 qdisc_run(q);
3774
3775 no_lock_out:
3776                 if (unlikely(to_free))
3777                         kfree_skb_list_reason(to_free,
3778                                               SKB_DROP_REASON_QDISC_DROP);
3779                 return rc;
3780         }
3781
3782         /*
3783          * Heuristic to force contended enqueues to serialize on a
3784          * separate lock before trying to get qdisc main lock.
3785          * This permits qdisc->running owner to get the lock more
3786          * often and dequeue packets faster.
3787          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3788          * and then other tasks will only enqueue packets. The packets will be
3789          * sent after the qdisc owner is scheduled again. To prevent this
3790          * scenario the task always serialize on the lock.
3791          */
3792         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3793         if (unlikely(contended))
3794                 spin_lock(&q->busylock);
3795
3796         spin_lock(root_lock);
3797         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3798                 __qdisc_drop(skb, &to_free);
3799                 rc = NET_XMIT_DROP;
3800         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3801                    qdisc_run_begin(q)) {
3802                 /*
3803                  * This is a work-conserving queue; there are no old skbs
3804                  * waiting to be sent out; and the qdisc is not running -
3805                  * xmit the skb directly.
3806                  */
3807
3808                 qdisc_bstats_update(q, skb);
3809
3810                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3811                         if (unlikely(contended)) {
3812                                 spin_unlock(&q->busylock);
3813                                 contended = false;
3814                         }
3815                         __qdisc_run(q);
3816                 }
3817
3818                 qdisc_run_end(q);
3819                 rc = NET_XMIT_SUCCESS;
3820         } else {
3821                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822                 if (qdisc_run_begin(q)) {
3823                         if (unlikely(contended)) {
3824                                 spin_unlock(&q->busylock);
3825                                 contended = false;
3826                         }
3827                         __qdisc_run(q);
3828                         qdisc_run_end(q);
3829                 }
3830         }
3831         spin_unlock(root_lock);
3832         if (unlikely(to_free))
3833                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3834         if (unlikely(contended))
3835                 spin_unlock(&q->busylock);
3836         return rc;
3837 }
3838
3839 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3840 static void skb_update_prio(struct sk_buff *skb)
3841 {
3842         const struct netprio_map *map;
3843         const struct sock *sk;
3844         unsigned int prioidx;
3845
3846         if (skb->priority)
3847                 return;
3848         map = rcu_dereference_bh(skb->dev->priomap);
3849         if (!map)
3850                 return;
3851         sk = skb_to_full_sk(skb);
3852         if (!sk)
3853                 return;
3854
3855         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3856
3857         if (prioidx < map->priomap_len)
3858                 skb->priority = map->priomap[prioidx];
3859 }
3860 #else
3861 #define skb_update_prio(skb)
3862 #endif
3863
3864 /**
3865  *      dev_loopback_xmit - loop back @skb
3866  *      @net: network namespace this loopback is happening in
3867  *      @sk:  sk needed to be a netfilter okfn
3868  *      @skb: buffer to transmit
3869  */
3870 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3871 {
3872         skb_reset_mac_header(skb);
3873         __skb_pull(skb, skb_network_offset(skb));
3874         skb->pkt_type = PACKET_LOOPBACK;
3875         if (skb->ip_summed == CHECKSUM_NONE)
3876                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3877         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3878         skb_dst_force(skb);
3879         netif_rx(skb);
3880         return 0;
3881 }
3882 EXPORT_SYMBOL(dev_loopback_xmit);
3883
3884 #ifdef CONFIG_NET_EGRESS
3885 static struct sk_buff *
3886 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3887 {
3888 #ifdef CONFIG_NET_CLS_ACT
3889         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3890         struct tcf_result cl_res;
3891
3892         if (!miniq)
3893                 return skb;
3894
3895         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3896         tc_skb_cb(skb)->mru = 0;
3897         tc_skb_cb(skb)->post_ct = false;
3898         mini_qdisc_bstats_cpu_update(miniq, skb);
3899
3900         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3901         case TC_ACT_OK:
3902         case TC_ACT_RECLASSIFY:
3903                 skb->tc_index = TC_H_MIN(cl_res.classid);
3904                 break;
3905         case TC_ACT_SHOT:
3906                 mini_qdisc_qstats_cpu_drop(miniq);
3907                 *ret = NET_XMIT_DROP;
3908                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3909                 return NULL;
3910         case TC_ACT_STOLEN:
3911         case TC_ACT_QUEUED:
3912         case TC_ACT_TRAP:
3913                 *ret = NET_XMIT_SUCCESS;
3914                 consume_skb(skb);
3915                 return NULL;
3916         case TC_ACT_REDIRECT:
3917                 /* No need to push/pop skb's mac_header here on egress! */
3918                 skb_do_redirect(skb);
3919                 *ret = NET_XMIT_SUCCESS;
3920                 return NULL;
3921         default:
3922                 break;
3923         }
3924 #endif /* CONFIG_NET_CLS_ACT */
3925
3926         return skb;
3927 }
3928
3929 static struct netdev_queue *
3930 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3931 {
3932         int qm = skb_get_queue_mapping(skb);
3933
3934         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3935 }
3936
3937 static bool netdev_xmit_txqueue_skipped(void)
3938 {
3939         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3940 }
3941
3942 void netdev_xmit_skip_txqueue(bool skip)
3943 {
3944         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3945 }
3946 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3947 #endif /* CONFIG_NET_EGRESS */
3948
3949 #ifdef CONFIG_XPS
3950 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3951                                struct xps_dev_maps *dev_maps, unsigned int tci)
3952 {
3953         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3954         struct xps_map *map;
3955         int queue_index = -1;
3956
3957         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3958                 return queue_index;
3959
3960         tci *= dev_maps->num_tc;
3961         tci += tc;
3962
3963         map = rcu_dereference(dev_maps->attr_map[tci]);
3964         if (map) {
3965                 if (map->len == 1)
3966                         queue_index = map->queues[0];
3967                 else
3968                         queue_index = map->queues[reciprocal_scale(
3969                                                 skb_get_hash(skb), map->len)];
3970                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3971                         queue_index = -1;
3972         }
3973         return queue_index;
3974 }
3975 #endif
3976
3977 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3978                          struct sk_buff *skb)
3979 {
3980 #ifdef CONFIG_XPS
3981         struct xps_dev_maps *dev_maps;
3982         struct sock *sk = skb->sk;
3983         int queue_index = -1;
3984
3985         if (!static_key_false(&xps_needed))
3986                 return -1;
3987
3988         rcu_read_lock();
3989         if (!static_key_false(&xps_rxqs_needed))
3990                 goto get_cpus_map;
3991
3992         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3993         if (dev_maps) {
3994                 int tci = sk_rx_queue_get(sk);
3995
3996                 if (tci >= 0)
3997                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3998                                                           tci);
3999         }
4000
4001 get_cpus_map:
4002         if (queue_index < 0) {
4003                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4004                 if (dev_maps) {
4005                         unsigned int tci = skb->sender_cpu - 1;
4006
4007                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4008                                                           tci);
4009                 }
4010         }
4011         rcu_read_unlock();
4012
4013         return queue_index;
4014 #else
4015         return -1;
4016 #endif
4017 }
4018
4019 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4020                      struct net_device *sb_dev)
4021 {
4022         return 0;
4023 }
4024 EXPORT_SYMBOL(dev_pick_tx_zero);
4025
4026 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4027                        struct net_device *sb_dev)
4028 {
4029         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4030 }
4031 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4032
4033 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4034                      struct net_device *sb_dev)
4035 {
4036         struct sock *sk = skb->sk;
4037         int queue_index = sk_tx_queue_get(sk);
4038
4039         sb_dev = sb_dev ? : dev;
4040
4041         if (queue_index < 0 || skb->ooo_okay ||
4042             queue_index >= dev->real_num_tx_queues) {
4043                 int new_index = get_xps_queue(dev, sb_dev, skb);
4044
4045                 if (new_index < 0)
4046                         new_index = skb_tx_hash(dev, sb_dev, skb);
4047
4048                 if (queue_index != new_index && sk &&
4049                     sk_fullsock(sk) &&
4050                     rcu_access_pointer(sk->sk_dst_cache))
4051                         sk_tx_queue_set(sk, new_index);
4052
4053                 queue_index = new_index;
4054         }
4055
4056         return queue_index;
4057 }
4058 EXPORT_SYMBOL(netdev_pick_tx);
4059
4060 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4061                                          struct sk_buff *skb,
4062                                          struct net_device *sb_dev)
4063 {
4064         int queue_index = 0;
4065
4066 #ifdef CONFIG_XPS
4067         u32 sender_cpu = skb->sender_cpu - 1;
4068
4069         if (sender_cpu >= (u32)NR_CPUS)
4070                 skb->sender_cpu = raw_smp_processor_id() + 1;
4071 #endif
4072
4073         if (dev->real_num_tx_queues != 1) {
4074                 const struct net_device_ops *ops = dev->netdev_ops;
4075
4076                 if (ops->ndo_select_queue)
4077                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4078                 else
4079                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4080
4081                 queue_index = netdev_cap_txqueue(dev, queue_index);
4082         }
4083
4084         skb_set_queue_mapping(skb, queue_index);
4085         return netdev_get_tx_queue(dev, queue_index);
4086 }
4087
4088 /**
4089  * __dev_queue_xmit() - transmit a buffer
4090  * @skb:        buffer to transmit
4091  * @sb_dev:     suboordinate device used for L2 forwarding offload
4092  *
4093  * Queue a buffer for transmission to a network device. The caller must
4094  * have set the device and priority and built the buffer before calling
4095  * this function. The function can be called from an interrupt.
4096  *
4097  * When calling this method, interrupts MUST be enabled. This is because
4098  * the BH enable code must have IRQs enabled so that it will not deadlock.
4099  *
4100  * Regardless of the return value, the skb is consumed, so it is currently
4101  * difficult to retry a send to this method. (You can bump the ref count
4102  * before sending to hold a reference for retry if you are careful.)
4103  *
4104  * Return:
4105  * * 0                          - buffer successfully transmitted
4106  * * positive qdisc return code - NET_XMIT_DROP etc.
4107  * * negative errno             - other errors
4108  */
4109 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4110 {
4111         struct net_device *dev = skb->dev;
4112         struct netdev_queue *txq = NULL;
4113         struct Qdisc *q;
4114         int rc = -ENOMEM;
4115         bool again = false;
4116
4117         skb_reset_mac_header(skb);
4118         skb_assert_len(skb);
4119
4120         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4121                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4122
4123         /* Disable soft irqs for various locks below. Also
4124          * stops preemption for RCU.
4125          */
4126         rcu_read_lock_bh();
4127
4128         skb_update_prio(skb);
4129
4130         qdisc_pkt_len_init(skb);
4131 #ifdef CONFIG_NET_CLS_ACT
4132         skb->tc_at_ingress = 0;
4133 #endif
4134 #ifdef CONFIG_NET_EGRESS
4135         if (static_branch_unlikely(&egress_needed_key)) {
4136                 if (nf_hook_egress_active()) {
4137                         skb = nf_hook_egress(skb, &rc, dev);
4138                         if (!skb)
4139                                 goto out;
4140                 }
4141
4142                 netdev_xmit_skip_txqueue(false);
4143
4144                 nf_skip_egress(skb, true);
4145                 skb = sch_handle_egress(skb, &rc, dev);
4146                 if (!skb)
4147                         goto out;
4148                 nf_skip_egress(skb, false);
4149
4150                 if (netdev_xmit_txqueue_skipped())
4151                         txq = netdev_tx_queue_mapping(dev, skb);
4152         }
4153 #endif
4154         /* If device/qdisc don't need skb->dst, release it right now while
4155          * its hot in this cpu cache.
4156          */
4157         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4158                 skb_dst_drop(skb);
4159         else
4160                 skb_dst_force(skb);
4161
4162         if (!txq)
4163                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4164
4165         q = rcu_dereference_bh(txq->qdisc);
4166
4167         trace_net_dev_queue(skb);
4168         if (q->enqueue) {
4169                 rc = __dev_xmit_skb(skb, q, dev, txq);
4170                 goto out;
4171         }
4172
4173         /* The device has no queue. Common case for software devices:
4174          * loopback, all the sorts of tunnels...
4175
4176          * Really, it is unlikely that netif_tx_lock protection is necessary
4177          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4178          * counters.)
4179          * However, it is possible, that they rely on protection
4180          * made by us here.
4181
4182          * Check this and shot the lock. It is not prone from deadlocks.
4183          *Either shot noqueue qdisc, it is even simpler 8)
4184          */
4185         if (dev->flags & IFF_UP) {
4186                 int cpu = smp_processor_id(); /* ok because BHs are off */
4187
4188                 /* Other cpus might concurrently change txq->xmit_lock_owner
4189                  * to -1 or to their cpu id, but not to our id.
4190                  */
4191                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4192                         if (dev_xmit_recursion())
4193                                 goto recursion_alert;
4194
4195                         skb = validate_xmit_skb(skb, dev, &again);
4196                         if (!skb)
4197                                 goto out;
4198
4199                         HARD_TX_LOCK(dev, txq, cpu);
4200
4201                         if (!netif_xmit_stopped(txq)) {
4202                                 dev_xmit_recursion_inc();
4203                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4204                                 dev_xmit_recursion_dec();
4205                                 if (dev_xmit_complete(rc)) {
4206                                         HARD_TX_UNLOCK(dev, txq);
4207                                         goto out;
4208                                 }
4209                         }
4210                         HARD_TX_UNLOCK(dev, txq);
4211                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4212                                              dev->name);
4213                 } else {
4214                         /* Recursion is detected! It is possible,
4215                          * unfortunately
4216                          */
4217 recursion_alert:
4218                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4219                                              dev->name);
4220                 }
4221         }
4222
4223         rc = -ENETDOWN;
4224         rcu_read_unlock_bh();
4225
4226         dev_core_stats_tx_dropped_inc(dev);
4227         kfree_skb_list(skb);
4228         return rc;
4229 out:
4230         rcu_read_unlock_bh();
4231         return rc;
4232 }
4233 EXPORT_SYMBOL(__dev_queue_xmit);
4234
4235 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4236 {
4237         struct net_device *dev = skb->dev;
4238         struct sk_buff *orig_skb = skb;
4239         struct netdev_queue *txq;
4240         int ret = NETDEV_TX_BUSY;
4241         bool again = false;
4242
4243         if (unlikely(!netif_running(dev) ||
4244                      !netif_carrier_ok(dev)))
4245                 goto drop;
4246
4247         skb = validate_xmit_skb_list(skb, dev, &again);
4248         if (skb != orig_skb)
4249                 goto drop;
4250
4251         skb_set_queue_mapping(skb, queue_id);
4252         txq = skb_get_tx_queue(dev, skb);
4253
4254         local_bh_disable();
4255
4256         dev_xmit_recursion_inc();
4257         HARD_TX_LOCK(dev, txq, smp_processor_id());
4258         if (!netif_xmit_frozen_or_drv_stopped(txq))
4259                 ret = netdev_start_xmit(skb, dev, txq, false);
4260         HARD_TX_UNLOCK(dev, txq);
4261         dev_xmit_recursion_dec();
4262
4263         local_bh_enable();
4264         return ret;
4265 drop:
4266         dev_core_stats_tx_dropped_inc(dev);
4267         kfree_skb_list(skb);
4268         return NET_XMIT_DROP;
4269 }
4270 EXPORT_SYMBOL(__dev_direct_xmit);
4271
4272 /*************************************************************************
4273  *                      Receiver routines
4274  *************************************************************************/
4275
4276 int netdev_max_backlog __read_mostly = 1000;
4277 EXPORT_SYMBOL(netdev_max_backlog);
4278
4279 int netdev_tstamp_prequeue __read_mostly = 1;
4280 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4281 int netdev_budget __read_mostly = 300;
4282 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4283 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4284 int weight_p __read_mostly = 64;           /* old backlog weight */
4285 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4286 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4287 int dev_rx_weight __read_mostly = 64;
4288 int dev_tx_weight __read_mostly = 64;
4289
4290 /* Called with irq disabled */
4291 static inline void ____napi_schedule(struct softnet_data *sd,
4292                                      struct napi_struct *napi)
4293 {
4294         struct task_struct *thread;
4295
4296         lockdep_assert_irqs_disabled();
4297
4298         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4299                 /* Paired with smp_mb__before_atomic() in
4300                  * napi_enable()/dev_set_threaded().
4301                  * Use READ_ONCE() to guarantee a complete
4302                  * read on napi->thread. Only call
4303                  * wake_up_process() when it's not NULL.
4304                  */
4305                 thread = READ_ONCE(napi->thread);
4306                 if (thread) {
4307                         /* Avoid doing set_bit() if the thread is in
4308                          * INTERRUPTIBLE state, cause napi_thread_wait()
4309                          * makes sure to proceed with napi polling
4310                          * if the thread is explicitly woken from here.
4311                          */
4312                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4313                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4314                         wake_up_process(thread);
4315                         return;
4316                 }
4317         }
4318
4319         list_add_tail(&napi->poll_list, &sd->poll_list);
4320         WRITE_ONCE(napi->list_owner, smp_processor_id());
4321         /* If not called from net_rx_action()
4322          * we have to raise NET_RX_SOFTIRQ.
4323          */
4324         if (!sd->in_net_rx_action)
4325                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4326 }
4327
4328 #ifdef CONFIG_RPS
4329
4330 /* One global table that all flow-based protocols share. */
4331 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4332 EXPORT_SYMBOL(rps_sock_flow_table);
4333 u32 rps_cpu_mask __read_mostly;
4334 EXPORT_SYMBOL(rps_cpu_mask);
4335
4336 struct static_key_false rps_needed __read_mostly;
4337 EXPORT_SYMBOL(rps_needed);
4338 struct static_key_false rfs_needed __read_mostly;
4339 EXPORT_SYMBOL(rfs_needed);
4340
4341 static struct rps_dev_flow *
4342 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4343             struct rps_dev_flow *rflow, u16 next_cpu)
4344 {
4345         if (next_cpu < nr_cpu_ids) {
4346 #ifdef CONFIG_RFS_ACCEL
4347                 struct netdev_rx_queue *rxqueue;
4348                 struct rps_dev_flow_table *flow_table;
4349                 struct rps_dev_flow *old_rflow;
4350                 u32 flow_id;
4351                 u16 rxq_index;
4352                 int rc;
4353
4354                 /* Should we steer this flow to a different hardware queue? */
4355                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4356                     !(dev->features & NETIF_F_NTUPLE))
4357                         goto out;
4358                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4359                 if (rxq_index == skb_get_rx_queue(skb))
4360                         goto out;
4361
4362                 rxqueue = dev->_rx + rxq_index;
4363                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4364                 if (!flow_table)
4365                         goto out;
4366                 flow_id = skb_get_hash(skb) & flow_table->mask;
4367                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4368                                                         rxq_index, flow_id);
4369                 if (rc < 0)
4370                         goto out;
4371                 old_rflow = rflow;
4372                 rflow = &flow_table->flows[flow_id];
4373                 rflow->filter = rc;
4374                 if (old_rflow->filter == rflow->filter)
4375                         old_rflow->filter = RPS_NO_FILTER;
4376         out:
4377 #endif
4378                 rflow->last_qtail =
4379                         per_cpu(softnet_data, next_cpu).input_queue_head;
4380         }
4381
4382         rflow->cpu = next_cpu;
4383         return rflow;
4384 }
4385
4386 /*
4387  * get_rps_cpu is called from netif_receive_skb and returns the target
4388  * CPU from the RPS map of the receiving queue for a given skb.
4389  * rcu_read_lock must be held on entry.
4390  */
4391 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392                        struct rps_dev_flow **rflowp)
4393 {
4394         const struct rps_sock_flow_table *sock_flow_table;
4395         struct netdev_rx_queue *rxqueue = dev->_rx;
4396         struct rps_dev_flow_table *flow_table;
4397         struct rps_map *map;
4398         int cpu = -1;
4399         u32 tcpu;
4400         u32 hash;
4401
4402         if (skb_rx_queue_recorded(skb)) {
4403                 u16 index = skb_get_rx_queue(skb);
4404
4405                 if (unlikely(index >= dev->real_num_rx_queues)) {
4406                         WARN_ONCE(dev->real_num_rx_queues > 1,
4407                                   "%s received packet on queue %u, but number "
4408                                   "of RX queues is %u\n",
4409                                   dev->name, index, dev->real_num_rx_queues);
4410                         goto done;
4411                 }
4412                 rxqueue += index;
4413         }
4414
4415         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4416
4417         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4418         map = rcu_dereference(rxqueue->rps_map);
4419         if (!flow_table && !map)
4420                 goto done;
4421
4422         skb_reset_network_header(skb);
4423         hash = skb_get_hash(skb);
4424         if (!hash)
4425                 goto done;
4426
4427         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4428         if (flow_table && sock_flow_table) {
4429                 struct rps_dev_flow *rflow;
4430                 u32 next_cpu;
4431                 u32 ident;
4432
4433                 /* First check into global flow table if there is a match.
4434                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4435                  */
4436                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4437                 if ((ident ^ hash) & ~rps_cpu_mask)
4438                         goto try_rps;
4439
4440                 next_cpu = ident & rps_cpu_mask;
4441
4442                 /* OK, now we know there is a match,
4443                  * we can look at the local (per receive queue) flow table
4444                  */
4445                 rflow = &flow_table->flows[hash & flow_table->mask];
4446                 tcpu = rflow->cpu;
4447
4448                 /*
4449                  * If the desired CPU (where last recvmsg was done) is
4450                  * different from current CPU (one in the rx-queue flow
4451                  * table entry), switch if one of the following holds:
4452                  *   - Current CPU is unset (>= nr_cpu_ids).
4453                  *   - Current CPU is offline.
4454                  *   - The current CPU's queue tail has advanced beyond the
4455                  *     last packet that was enqueued using this table entry.
4456                  *     This guarantees that all previous packets for the flow
4457                  *     have been dequeued, thus preserving in order delivery.
4458                  */
4459                 if (unlikely(tcpu != next_cpu) &&
4460                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4461                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4462                       rflow->last_qtail)) >= 0)) {
4463                         tcpu = next_cpu;
4464                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4465                 }
4466
4467                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4468                         *rflowp = rflow;
4469                         cpu = tcpu;
4470                         goto done;
4471                 }
4472         }
4473
4474 try_rps:
4475
4476         if (map) {
4477                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4478                 if (cpu_online(tcpu)) {
4479                         cpu = tcpu;
4480                         goto done;
4481                 }
4482         }
4483
4484 done:
4485         return cpu;
4486 }
4487
4488 #ifdef CONFIG_RFS_ACCEL
4489
4490 /**
4491  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4492  * @dev: Device on which the filter was set
4493  * @rxq_index: RX queue index
4494  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4495  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4496  *
4497  * Drivers that implement ndo_rx_flow_steer() should periodically call
4498  * this function for each installed filter and remove the filters for
4499  * which it returns %true.
4500  */
4501 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4502                          u32 flow_id, u16 filter_id)
4503 {
4504         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4505         struct rps_dev_flow_table *flow_table;
4506         struct rps_dev_flow *rflow;
4507         bool expire = true;
4508         unsigned int cpu;
4509
4510         rcu_read_lock();
4511         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4512         if (flow_table && flow_id <= flow_table->mask) {
4513                 rflow = &flow_table->flows[flow_id];
4514                 cpu = READ_ONCE(rflow->cpu);
4515                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4516                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4517                            rflow->last_qtail) <
4518                      (int)(10 * flow_table->mask)))
4519                         expire = false;
4520         }
4521         rcu_read_unlock();
4522         return expire;
4523 }
4524 EXPORT_SYMBOL(rps_may_expire_flow);
4525
4526 #endif /* CONFIG_RFS_ACCEL */
4527
4528 /* Called from hardirq (IPI) context */
4529 static void rps_trigger_softirq(void *data)
4530 {
4531         struct softnet_data *sd = data;
4532
4533         ____napi_schedule(sd, &sd->backlog);
4534         sd->received_rps++;
4535 }
4536
4537 #endif /* CONFIG_RPS */
4538
4539 /* Called from hardirq (IPI) context */
4540 static void trigger_rx_softirq(void *data)
4541 {
4542         struct softnet_data *sd = data;
4543
4544         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4545         smp_store_release(&sd->defer_ipi_scheduled, 0);
4546 }
4547
4548 /*
4549  * After we queued a packet into sd->input_pkt_queue,
4550  * we need to make sure this queue is serviced soon.
4551  *
4552  * - If this is another cpu queue, link it to our rps_ipi_list,
4553  *   and make sure we will process rps_ipi_list from net_rx_action().
4554  *
4555  * - If this is our own queue, NAPI schedule our backlog.
4556  *   Note that this also raises NET_RX_SOFTIRQ.
4557  */
4558 static void napi_schedule_rps(struct softnet_data *sd)
4559 {
4560         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4561
4562 #ifdef CONFIG_RPS
4563         if (sd != mysd) {
4564                 sd->rps_ipi_next = mysd->rps_ipi_list;
4565                 mysd->rps_ipi_list = sd;
4566
4567                 /* If not called from net_rx_action() or napi_threaded_poll()
4568                  * we have to raise NET_RX_SOFTIRQ.
4569                  */
4570                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4571                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4572                 return;
4573         }
4574 #endif /* CONFIG_RPS */
4575         __napi_schedule_irqoff(&mysd->backlog);
4576 }
4577
4578 #ifdef CONFIG_NET_FLOW_LIMIT
4579 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4580 #endif
4581
4582 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4583 {
4584 #ifdef CONFIG_NET_FLOW_LIMIT
4585         struct sd_flow_limit *fl;
4586         struct softnet_data *sd;
4587         unsigned int old_flow, new_flow;
4588
4589         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4590                 return false;
4591
4592         sd = this_cpu_ptr(&softnet_data);
4593
4594         rcu_read_lock();
4595         fl = rcu_dereference(sd->flow_limit);
4596         if (fl) {
4597                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4598                 old_flow = fl->history[fl->history_head];
4599                 fl->history[fl->history_head] = new_flow;
4600
4601                 fl->history_head++;
4602                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4603
4604                 if (likely(fl->buckets[old_flow]))
4605                         fl->buckets[old_flow]--;
4606
4607                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4608                         fl->count++;
4609                         rcu_read_unlock();
4610                         return true;
4611                 }
4612         }
4613         rcu_read_unlock();
4614 #endif
4615         return false;
4616 }
4617
4618 /*
4619  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4620  * queue (may be a remote CPU queue).
4621  */
4622 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4623                               unsigned int *qtail)
4624 {
4625         enum skb_drop_reason reason;
4626         struct softnet_data *sd;
4627         unsigned long flags;
4628         unsigned int qlen;
4629
4630         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4631         sd = &per_cpu(softnet_data, cpu);
4632
4633         rps_lock_irqsave(sd, &flags);
4634         if (!netif_running(skb->dev))
4635                 goto drop;
4636         qlen = skb_queue_len(&sd->input_pkt_queue);
4637         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4638                 if (qlen) {
4639 enqueue:
4640                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4641                         input_queue_tail_incr_save(sd, qtail);
4642                         rps_unlock_irq_restore(sd, &flags);
4643                         return NET_RX_SUCCESS;
4644                 }
4645
4646                 /* Schedule NAPI for backlog device
4647                  * We can use non atomic operation since we own the queue lock
4648                  */
4649                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4650                         napi_schedule_rps(sd);
4651                 goto enqueue;
4652         }
4653         reason = SKB_DROP_REASON_CPU_BACKLOG;
4654
4655 drop:
4656         sd->dropped++;
4657         rps_unlock_irq_restore(sd, &flags);
4658
4659         dev_core_stats_rx_dropped_inc(skb->dev);
4660         kfree_skb_reason(skb, reason);
4661         return NET_RX_DROP;
4662 }
4663
4664 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4665 {
4666         struct net_device *dev = skb->dev;
4667         struct netdev_rx_queue *rxqueue;
4668
4669         rxqueue = dev->_rx;
4670
4671         if (skb_rx_queue_recorded(skb)) {
4672                 u16 index = skb_get_rx_queue(skb);
4673
4674                 if (unlikely(index >= dev->real_num_rx_queues)) {
4675                         WARN_ONCE(dev->real_num_rx_queues > 1,
4676                                   "%s received packet on queue %u, but number "
4677                                   "of RX queues is %u\n",
4678                                   dev->name, index, dev->real_num_rx_queues);
4679
4680                         return rxqueue; /* Return first rxqueue */
4681                 }
4682                 rxqueue += index;
4683         }
4684         return rxqueue;
4685 }
4686
4687 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4688                              struct bpf_prog *xdp_prog)
4689 {
4690         void *orig_data, *orig_data_end, *hard_start;
4691         struct netdev_rx_queue *rxqueue;
4692         bool orig_bcast, orig_host;
4693         u32 mac_len, frame_sz;
4694         __be16 orig_eth_type;
4695         struct ethhdr *eth;
4696         u32 metalen, act;
4697         int off;
4698
4699         /* The XDP program wants to see the packet starting at the MAC
4700          * header.
4701          */
4702         mac_len = skb->data - skb_mac_header(skb);
4703         hard_start = skb->data - skb_headroom(skb);
4704
4705         /* SKB "head" area always have tailroom for skb_shared_info */
4706         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4707         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4708
4709         rxqueue = netif_get_rxqueue(skb);
4710         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4711         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4712                          skb_headlen(skb) + mac_len, true);
4713
4714         orig_data_end = xdp->data_end;
4715         orig_data = xdp->data;
4716         eth = (struct ethhdr *)xdp->data;
4717         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4718         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4719         orig_eth_type = eth->h_proto;
4720
4721         act = bpf_prog_run_xdp(xdp_prog, xdp);
4722
4723         /* check if bpf_xdp_adjust_head was used */
4724         off = xdp->data - orig_data;
4725         if (off) {
4726                 if (off > 0)
4727                         __skb_pull(skb, off);
4728                 else if (off < 0)
4729                         __skb_push(skb, -off);
4730
4731                 skb->mac_header += off;
4732                 skb_reset_network_header(skb);
4733         }
4734
4735         /* check if bpf_xdp_adjust_tail was used */
4736         off = xdp->data_end - orig_data_end;
4737         if (off != 0) {
4738                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4739                 skb->len += off; /* positive on grow, negative on shrink */
4740         }
4741
4742         /* check if XDP changed eth hdr such SKB needs update */
4743         eth = (struct ethhdr *)xdp->data;
4744         if ((orig_eth_type != eth->h_proto) ||
4745             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4746                                                   skb->dev->dev_addr)) ||
4747             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4748                 __skb_push(skb, ETH_HLEN);
4749                 skb->pkt_type = PACKET_HOST;
4750                 skb->protocol = eth_type_trans(skb, skb->dev);
4751         }
4752
4753         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4754          * before calling us again on redirect path. We do not call do_redirect
4755          * as we leave that up to the caller.
4756          *
4757          * Caller is responsible for managing lifetime of skb (i.e. calling
4758          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4759          */
4760         switch (act) {
4761         case XDP_REDIRECT:
4762         case XDP_TX:
4763                 __skb_push(skb, mac_len);
4764                 break;
4765         case XDP_PASS:
4766                 metalen = xdp->data - xdp->data_meta;
4767                 if (metalen)
4768                         skb_metadata_set(skb, metalen);
4769                 break;
4770         }
4771
4772         return act;
4773 }
4774
4775 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4776                                      struct xdp_buff *xdp,
4777                                      struct bpf_prog *xdp_prog)
4778 {
4779         u32 act = XDP_DROP;
4780
4781         /* Reinjected packets coming from act_mirred or similar should
4782          * not get XDP generic processing.
4783          */
4784         if (skb_is_redirected(skb))
4785                 return XDP_PASS;
4786
4787         /* XDP packets must be linear and must have sufficient headroom
4788          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4789          * native XDP provides, thus we need to do it here as well.
4790          */
4791         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4792             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4793                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4794                 int troom = skb->tail + skb->data_len - skb->end;
4795
4796                 /* In case we have to go down the path and also linearize,
4797                  * then lets do the pskb_expand_head() work just once here.
4798                  */
4799                 if (pskb_expand_head(skb,
4800                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4801                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4802                         goto do_drop;
4803                 if (skb_linearize(skb))
4804                         goto do_drop;
4805         }
4806
4807         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4808         switch (act) {
4809         case XDP_REDIRECT:
4810         case XDP_TX:
4811         case XDP_PASS:
4812                 break;
4813         default:
4814                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4815                 fallthrough;
4816         case XDP_ABORTED:
4817                 trace_xdp_exception(skb->dev, xdp_prog, act);
4818                 fallthrough;
4819         case XDP_DROP:
4820         do_drop:
4821                 kfree_skb(skb);
4822                 break;
4823         }
4824
4825         return act;
4826 }
4827
4828 /* When doing generic XDP we have to bypass the qdisc layer and the
4829  * network taps in order to match in-driver-XDP behavior. This also means
4830  * that XDP packets are able to starve other packets going through a qdisc,
4831  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4832  * queues, so they do not have this starvation issue.
4833  */
4834 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4835 {
4836         struct net_device *dev = skb->dev;
4837         struct netdev_queue *txq;
4838         bool free_skb = true;
4839         int cpu, rc;
4840
4841         txq = netdev_core_pick_tx(dev, skb, NULL);
4842         cpu = smp_processor_id();
4843         HARD_TX_LOCK(dev, txq, cpu);
4844         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4845                 rc = netdev_start_xmit(skb, dev, txq, 0);
4846                 if (dev_xmit_complete(rc))
4847                         free_skb = false;
4848         }
4849         HARD_TX_UNLOCK(dev, txq);
4850         if (free_skb) {
4851                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4852                 dev_core_stats_tx_dropped_inc(dev);
4853                 kfree_skb(skb);
4854         }
4855 }
4856
4857 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4858
4859 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4860 {
4861         if (xdp_prog) {
4862                 struct xdp_buff xdp;
4863                 u32 act;
4864                 int err;
4865
4866                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4867                 if (act != XDP_PASS) {
4868                         switch (act) {
4869                         case XDP_REDIRECT:
4870                                 err = xdp_do_generic_redirect(skb->dev, skb,
4871                                                               &xdp, xdp_prog);
4872                                 if (err)
4873                                         goto out_redir;
4874                                 break;
4875                         case XDP_TX:
4876                                 generic_xdp_tx(skb, xdp_prog);
4877                                 break;
4878                         }
4879                         return XDP_DROP;
4880                 }
4881         }
4882         return XDP_PASS;
4883 out_redir:
4884         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4885         return XDP_DROP;
4886 }
4887 EXPORT_SYMBOL_GPL(do_xdp_generic);
4888
4889 static int netif_rx_internal(struct sk_buff *skb)
4890 {
4891         int ret;
4892
4893         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4894
4895         trace_netif_rx(skb);
4896
4897 #ifdef CONFIG_RPS
4898         if (static_branch_unlikely(&rps_needed)) {
4899                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4900                 int cpu;
4901
4902                 rcu_read_lock();
4903
4904                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4905                 if (cpu < 0)
4906                         cpu = smp_processor_id();
4907
4908                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4909
4910                 rcu_read_unlock();
4911         } else
4912 #endif
4913         {
4914                 unsigned int qtail;
4915
4916                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4917         }
4918         return ret;
4919 }
4920
4921 /**
4922  *      __netif_rx      -       Slightly optimized version of netif_rx
4923  *      @skb: buffer to post
4924  *
4925  *      This behaves as netif_rx except that it does not disable bottom halves.
4926  *      As a result this function may only be invoked from the interrupt context
4927  *      (either hard or soft interrupt).
4928  */
4929 int __netif_rx(struct sk_buff *skb)
4930 {
4931         int ret;
4932
4933         lockdep_assert_once(hardirq_count() | softirq_count());
4934
4935         trace_netif_rx_entry(skb);
4936         ret = netif_rx_internal(skb);
4937         trace_netif_rx_exit(ret);
4938         return ret;
4939 }
4940 EXPORT_SYMBOL(__netif_rx);
4941
4942 /**
4943  *      netif_rx        -       post buffer to the network code
4944  *      @skb: buffer to post
4945  *
4946  *      This function receives a packet from a device driver and queues it for
4947  *      the upper (protocol) levels to process via the backlog NAPI device. It
4948  *      always succeeds. The buffer may be dropped during processing for
4949  *      congestion control or by the protocol layers.
4950  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4951  *      driver should use NAPI and GRO.
4952  *      This function can used from interrupt and from process context. The
4953  *      caller from process context must not disable interrupts before invoking
4954  *      this function.
4955  *
4956  *      return values:
4957  *      NET_RX_SUCCESS  (no congestion)
4958  *      NET_RX_DROP     (packet was dropped)
4959  *
4960  */
4961 int netif_rx(struct sk_buff *skb)
4962 {
4963         bool need_bh_off = !(hardirq_count() | softirq_count());
4964         int ret;
4965
4966         if (need_bh_off)
4967                 local_bh_disable();
4968         trace_netif_rx_entry(skb);
4969         ret = netif_rx_internal(skb);
4970         trace_netif_rx_exit(ret);
4971         if (need_bh_off)
4972                 local_bh_enable();
4973         return ret;
4974 }
4975 EXPORT_SYMBOL(netif_rx);
4976
4977 static __latent_entropy void net_tx_action(struct softirq_action *h)
4978 {
4979         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4980
4981         if (sd->completion_queue) {
4982                 struct sk_buff *clist;
4983
4984                 local_irq_disable();
4985                 clist = sd->completion_queue;
4986                 sd->completion_queue = NULL;
4987                 local_irq_enable();
4988
4989                 while (clist) {
4990                         struct sk_buff *skb = clist;
4991
4992                         clist = clist->next;
4993
4994                         WARN_ON(refcount_read(&skb->users));
4995                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
4996                                 trace_consume_skb(skb, net_tx_action);
4997                         else
4998                                 trace_kfree_skb(skb, net_tx_action,
4999                                                 get_kfree_skb_cb(skb)->reason);
5000
5001                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5002                                 __kfree_skb(skb);
5003                         else
5004                                 __napi_kfree_skb(skb,
5005                                                  get_kfree_skb_cb(skb)->reason);
5006                 }
5007         }
5008
5009         if (sd->output_queue) {
5010                 struct Qdisc *head;
5011
5012                 local_irq_disable();
5013                 head = sd->output_queue;
5014                 sd->output_queue = NULL;
5015                 sd->output_queue_tailp = &sd->output_queue;
5016                 local_irq_enable();
5017
5018                 rcu_read_lock();
5019
5020                 while (head) {
5021                         struct Qdisc *q = head;
5022                         spinlock_t *root_lock = NULL;
5023
5024                         head = head->next_sched;
5025
5026                         /* We need to make sure head->next_sched is read
5027                          * before clearing __QDISC_STATE_SCHED
5028                          */
5029                         smp_mb__before_atomic();
5030
5031                         if (!(q->flags & TCQ_F_NOLOCK)) {
5032                                 root_lock = qdisc_lock(q);
5033                                 spin_lock(root_lock);
5034                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5035                                                      &q->state))) {
5036                                 /* There is a synchronize_net() between
5037                                  * STATE_DEACTIVATED flag being set and
5038                                  * qdisc_reset()/some_qdisc_is_busy() in
5039                                  * dev_deactivate(), so we can safely bail out
5040                                  * early here to avoid data race between
5041                                  * qdisc_deactivate() and some_qdisc_is_busy()
5042                                  * for lockless qdisc.
5043                                  */
5044                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5045                                 continue;
5046                         }
5047
5048                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5049                         qdisc_run(q);
5050                         if (root_lock)
5051                                 spin_unlock(root_lock);
5052                 }
5053
5054                 rcu_read_unlock();
5055         }
5056
5057         xfrm_dev_backlog(sd);
5058 }
5059
5060 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5061 /* This hook is defined here for ATM LANE */
5062 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5063                              unsigned char *addr) __read_mostly;
5064 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5065 #endif
5066
5067 static inline struct sk_buff *
5068 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5069                    struct net_device *orig_dev, bool *another)
5070 {
5071 #ifdef CONFIG_NET_CLS_ACT
5072         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5073         struct tcf_result cl_res;
5074
5075         /* If there's at least one ingress present somewhere (so
5076          * we get here via enabled static key), remaining devices
5077          * that are not configured with an ingress qdisc will bail
5078          * out here.
5079          */
5080         if (!miniq)
5081                 return skb;
5082
5083         if (*pt_prev) {
5084                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5085                 *pt_prev = NULL;
5086         }
5087
5088         qdisc_skb_cb(skb)->pkt_len = skb->len;
5089         tc_skb_cb(skb)->mru = 0;
5090         tc_skb_cb(skb)->post_ct = false;
5091         skb->tc_at_ingress = 1;
5092         mini_qdisc_bstats_cpu_update(miniq, skb);
5093
5094         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5095         case TC_ACT_OK:
5096         case TC_ACT_RECLASSIFY:
5097                 skb->tc_index = TC_H_MIN(cl_res.classid);
5098                 break;
5099         case TC_ACT_SHOT:
5100                 mini_qdisc_qstats_cpu_drop(miniq);
5101                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5102                 *ret = NET_RX_DROP;
5103                 return NULL;
5104         case TC_ACT_STOLEN:
5105         case TC_ACT_QUEUED:
5106         case TC_ACT_TRAP:
5107                 consume_skb(skb);
5108                 *ret = NET_RX_SUCCESS;
5109                 return NULL;
5110         case TC_ACT_REDIRECT:
5111                 /* skb_mac_header check was done by cls/act_bpf, so
5112                  * we can safely push the L2 header back before
5113                  * redirecting to another netdev
5114                  */
5115                 __skb_push(skb, skb->mac_len);
5116                 if (skb_do_redirect(skb) == -EAGAIN) {
5117                         __skb_pull(skb, skb->mac_len);
5118                         *another = true;
5119                         break;
5120                 }
5121                 *ret = NET_RX_SUCCESS;
5122                 return NULL;
5123         case TC_ACT_CONSUMED:
5124                 *ret = NET_RX_SUCCESS;
5125                 return NULL;
5126         default:
5127                 break;
5128         }
5129 #endif /* CONFIG_NET_CLS_ACT */
5130         return skb;
5131 }
5132
5133 /**
5134  *      netdev_is_rx_handler_busy - check if receive handler is registered
5135  *      @dev: device to check
5136  *
5137  *      Check if a receive handler is already registered for a given device.
5138  *      Return true if there one.
5139  *
5140  *      The caller must hold the rtnl_mutex.
5141  */
5142 bool netdev_is_rx_handler_busy(struct net_device *dev)
5143 {
5144         ASSERT_RTNL();
5145         return dev && rtnl_dereference(dev->rx_handler);
5146 }
5147 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5148
5149 /**
5150  *      netdev_rx_handler_register - register receive handler
5151  *      @dev: device to register a handler for
5152  *      @rx_handler: receive handler to register
5153  *      @rx_handler_data: data pointer that is used by rx handler
5154  *
5155  *      Register a receive handler for a device. This handler will then be
5156  *      called from __netif_receive_skb. A negative errno code is returned
5157  *      on a failure.
5158  *
5159  *      The caller must hold the rtnl_mutex.
5160  *
5161  *      For a general description of rx_handler, see enum rx_handler_result.
5162  */
5163 int netdev_rx_handler_register(struct net_device *dev,
5164                                rx_handler_func_t *rx_handler,
5165                                void *rx_handler_data)
5166 {
5167         if (netdev_is_rx_handler_busy(dev))
5168                 return -EBUSY;
5169
5170         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5171                 return -EINVAL;
5172
5173         /* Note: rx_handler_data must be set before rx_handler */
5174         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5175         rcu_assign_pointer(dev->rx_handler, rx_handler);
5176
5177         return 0;
5178 }
5179 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5180
5181 /**
5182  *      netdev_rx_handler_unregister - unregister receive handler
5183  *      @dev: device to unregister a handler from
5184  *
5185  *      Unregister a receive handler from a device.
5186  *
5187  *      The caller must hold the rtnl_mutex.
5188  */
5189 void netdev_rx_handler_unregister(struct net_device *dev)
5190 {
5191
5192         ASSERT_RTNL();
5193         RCU_INIT_POINTER(dev->rx_handler, NULL);
5194         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5195          * section has a guarantee to see a non NULL rx_handler_data
5196          * as well.
5197          */
5198         synchronize_net();
5199         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5200 }
5201 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5202
5203 /*
5204  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5205  * the special handling of PFMEMALLOC skbs.
5206  */
5207 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5208 {
5209         switch (skb->protocol) {
5210         case htons(ETH_P_ARP):
5211         case htons(ETH_P_IP):
5212         case htons(ETH_P_IPV6):
5213         case htons(ETH_P_8021Q):
5214         case htons(ETH_P_8021AD):
5215                 return true;
5216         default:
5217                 return false;
5218         }
5219 }
5220
5221 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5222                              int *ret, struct net_device *orig_dev)
5223 {
5224         if (nf_hook_ingress_active(skb)) {
5225                 int ingress_retval;
5226
5227                 if (*pt_prev) {
5228                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5229                         *pt_prev = NULL;
5230                 }
5231
5232                 rcu_read_lock();
5233                 ingress_retval = nf_hook_ingress(skb);
5234                 rcu_read_unlock();
5235                 return ingress_retval;
5236         }
5237         return 0;
5238 }
5239
5240 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5241                                     struct packet_type **ppt_prev)
5242 {
5243         struct packet_type *ptype, *pt_prev;
5244         rx_handler_func_t *rx_handler;
5245         struct sk_buff *skb = *pskb;
5246         struct net_device *orig_dev;
5247         bool deliver_exact = false;
5248         int ret = NET_RX_DROP;
5249         __be16 type;
5250
5251         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5252
5253         trace_netif_receive_skb(skb);
5254
5255         orig_dev = skb->dev;
5256
5257         skb_reset_network_header(skb);
5258         if (!skb_transport_header_was_set(skb))
5259                 skb_reset_transport_header(skb);
5260         skb_reset_mac_len(skb);
5261
5262         pt_prev = NULL;
5263
5264 another_round:
5265         skb->skb_iif = skb->dev->ifindex;
5266
5267         __this_cpu_inc(softnet_data.processed);
5268
5269         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5270                 int ret2;
5271
5272                 migrate_disable();
5273                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5274                 migrate_enable();
5275
5276                 if (ret2 != XDP_PASS) {
5277                         ret = NET_RX_DROP;
5278                         goto out;
5279                 }
5280         }
5281
5282         if (eth_type_vlan(skb->protocol)) {
5283                 skb = skb_vlan_untag(skb);
5284                 if (unlikely(!skb))
5285                         goto out;
5286         }
5287
5288         if (skb_skip_tc_classify(skb))
5289                 goto skip_classify;
5290
5291         if (pfmemalloc)
5292                 goto skip_taps;
5293
5294         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5295                 if (pt_prev)
5296                         ret = deliver_skb(skb, pt_prev, orig_dev);
5297                 pt_prev = ptype;
5298         }
5299
5300         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5301                 if (pt_prev)
5302                         ret = deliver_skb(skb, pt_prev, orig_dev);
5303                 pt_prev = ptype;
5304         }
5305
5306 skip_taps:
5307 #ifdef CONFIG_NET_INGRESS
5308         if (static_branch_unlikely(&ingress_needed_key)) {
5309                 bool another = false;
5310
5311                 nf_skip_egress(skb, true);
5312                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5313                                          &another);
5314                 if (another)
5315                         goto another_round;
5316                 if (!skb)
5317                         goto out;
5318
5319                 nf_skip_egress(skb, false);
5320                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5321                         goto out;
5322         }
5323 #endif
5324         skb_reset_redirect(skb);
5325 skip_classify:
5326         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5327                 goto drop;
5328
5329         if (skb_vlan_tag_present(skb)) {
5330                 if (pt_prev) {
5331                         ret = deliver_skb(skb, pt_prev, orig_dev);
5332                         pt_prev = NULL;
5333                 }
5334                 if (vlan_do_receive(&skb))
5335                         goto another_round;
5336                 else if (unlikely(!skb))
5337                         goto out;
5338         }
5339
5340         rx_handler = rcu_dereference(skb->dev->rx_handler);
5341         if (rx_handler) {
5342                 if (pt_prev) {
5343                         ret = deliver_skb(skb, pt_prev, orig_dev);
5344                         pt_prev = NULL;
5345                 }
5346                 switch (rx_handler(&skb)) {
5347                 case RX_HANDLER_CONSUMED:
5348                         ret = NET_RX_SUCCESS;
5349                         goto out;
5350                 case RX_HANDLER_ANOTHER:
5351                         goto another_round;
5352                 case RX_HANDLER_EXACT:
5353                         deliver_exact = true;
5354                         break;
5355                 case RX_HANDLER_PASS:
5356                         break;
5357                 default:
5358                         BUG();
5359                 }
5360         }
5361
5362         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5363 check_vlan_id:
5364                 if (skb_vlan_tag_get_id(skb)) {
5365                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5366                          * find vlan device.
5367                          */
5368                         skb->pkt_type = PACKET_OTHERHOST;
5369                 } else if (eth_type_vlan(skb->protocol)) {
5370                         /* Outer header is 802.1P with vlan 0, inner header is
5371                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5372                          * not find vlan dev for vlan id 0.
5373                          */
5374                         __vlan_hwaccel_clear_tag(skb);
5375                         skb = skb_vlan_untag(skb);
5376                         if (unlikely(!skb))
5377                                 goto out;
5378                         if (vlan_do_receive(&skb))
5379                                 /* After stripping off 802.1P header with vlan 0
5380                                  * vlan dev is found for inner header.
5381                                  */
5382                                 goto another_round;
5383                         else if (unlikely(!skb))
5384                                 goto out;
5385                         else
5386                                 /* We have stripped outer 802.1P vlan 0 header.
5387                                  * But could not find vlan dev.
5388                                  * check again for vlan id to set OTHERHOST.
5389                                  */
5390                                 goto check_vlan_id;
5391                 }
5392                 /* Note: we might in the future use prio bits
5393                  * and set skb->priority like in vlan_do_receive()
5394                  * For the time being, just ignore Priority Code Point
5395                  */
5396                 __vlan_hwaccel_clear_tag(skb);
5397         }
5398
5399         type = skb->protocol;
5400
5401         /* deliver only exact match when indicated */
5402         if (likely(!deliver_exact)) {
5403                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5404                                        &ptype_base[ntohs(type) &
5405                                                    PTYPE_HASH_MASK]);
5406         }
5407
5408         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5409                                &orig_dev->ptype_specific);
5410
5411         if (unlikely(skb->dev != orig_dev)) {
5412                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5413                                        &skb->dev->ptype_specific);
5414         }
5415
5416         if (pt_prev) {
5417                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5418                         goto drop;
5419                 *ppt_prev = pt_prev;
5420         } else {
5421 drop:
5422                 if (!deliver_exact)
5423                         dev_core_stats_rx_dropped_inc(skb->dev);
5424                 else
5425                         dev_core_stats_rx_nohandler_inc(skb->dev);
5426                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5427                 /* Jamal, now you will not able to escape explaining
5428                  * me how you were going to use this. :-)
5429                  */
5430                 ret = NET_RX_DROP;
5431         }
5432
5433 out:
5434         /* The invariant here is that if *ppt_prev is not NULL
5435          * then skb should also be non-NULL.
5436          *
5437          * Apparently *ppt_prev assignment above holds this invariant due to
5438          * skb dereferencing near it.
5439          */
5440         *pskb = skb;
5441         return ret;
5442 }
5443
5444 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5445 {
5446         struct net_device *orig_dev = skb->dev;
5447         struct packet_type *pt_prev = NULL;
5448         int ret;
5449
5450         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5451         if (pt_prev)
5452                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5453                                          skb->dev, pt_prev, orig_dev);
5454         return ret;
5455 }
5456
5457 /**
5458  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5459  *      @skb: buffer to process
5460  *
5461  *      More direct receive version of netif_receive_skb().  It should
5462  *      only be used by callers that have a need to skip RPS and Generic XDP.
5463  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5464  *
5465  *      This function may only be called from softirq context and interrupts
5466  *      should be enabled.
5467  *
5468  *      Return values (usually ignored):
5469  *      NET_RX_SUCCESS: no congestion
5470  *      NET_RX_DROP: packet was dropped
5471  */
5472 int netif_receive_skb_core(struct sk_buff *skb)
5473 {
5474         int ret;
5475
5476         rcu_read_lock();
5477         ret = __netif_receive_skb_one_core(skb, false);
5478         rcu_read_unlock();
5479
5480         return ret;
5481 }
5482 EXPORT_SYMBOL(netif_receive_skb_core);
5483
5484 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5485                                                   struct packet_type *pt_prev,
5486                                                   struct net_device *orig_dev)
5487 {
5488         struct sk_buff *skb, *next;
5489
5490         if (!pt_prev)
5491                 return;
5492         if (list_empty(head))
5493                 return;
5494         if (pt_prev->list_func != NULL)
5495                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5496                                    ip_list_rcv, head, pt_prev, orig_dev);
5497         else
5498                 list_for_each_entry_safe(skb, next, head, list) {
5499                         skb_list_del_init(skb);
5500                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5501                 }
5502 }
5503
5504 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5505 {
5506         /* Fast-path assumptions:
5507          * - There is no RX handler.
5508          * - Only one packet_type matches.
5509          * If either of these fails, we will end up doing some per-packet
5510          * processing in-line, then handling the 'last ptype' for the whole
5511          * sublist.  This can't cause out-of-order delivery to any single ptype,
5512          * because the 'last ptype' must be constant across the sublist, and all
5513          * other ptypes are handled per-packet.
5514          */
5515         /* Current (common) ptype of sublist */
5516         struct packet_type *pt_curr = NULL;
5517         /* Current (common) orig_dev of sublist */
5518         struct net_device *od_curr = NULL;
5519         struct list_head sublist;
5520         struct sk_buff *skb, *next;
5521
5522         INIT_LIST_HEAD(&sublist);
5523         list_for_each_entry_safe(skb, next, head, list) {
5524                 struct net_device *orig_dev = skb->dev;
5525                 struct packet_type *pt_prev = NULL;
5526
5527                 skb_list_del_init(skb);
5528                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5529                 if (!pt_prev)
5530                         continue;
5531                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5532                         /* dispatch old sublist */
5533                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5534                         /* start new sublist */
5535                         INIT_LIST_HEAD(&sublist);
5536                         pt_curr = pt_prev;
5537                         od_curr = orig_dev;
5538                 }
5539                 list_add_tail(&skb->list, &sublist);
5540         }
5541
5542         /* dispatch final sublist */
5543         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5544 }
5545
5546 static int __netif_receive_skb(struct sk_buff *skb)
5547 {
5548         int ret;
5549
5550         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5551                 unsigned int noreclaim_flag;
5552
5553                 /*
5554                  * PFMEMALLOC skbs are special, they should
5555                  * - be delivered to SOCK_MEMALLOC sockets only
5556                  * - stay away from userspace
5557                  * - have bounded memory usage
5558                  *
5559                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5560                  * context down to all allocation sites.
5561                  */
5562                 noreclaim_flag = memalloc_noreclaim_save();
5563                 ret = __netif_receive_skb_one_core(skb, true);
5564                 memalloc_noreclaim_restore(noreclaim_flag);
5565         } else
5566                 ret = __netif_receive_skb_one_core(skb, false);
5567
5568         return ret;
5569 }
5570
5571 static void __netif_receive_skb_list(struct list_head *head)
5572 {
5573         unsigned long noreclaim_flag = 0;
5574         struct sk_buff *skb, *next;
5575         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5576
5577         list_for_each_entry_safe(skb, next, head, list) {
5578                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5579                         struct list_head sublist;
5580
5581                         /* Handle the previous sublist */
5582                         list_cut_before(&sublist, head, &skb->list);
5583                         if (!list_empty(&sublist))
5584                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5585                         pfmemalloc = !pfmemalloc;
5586                         /* See comments in __netif_receive_skb */
5587                         if (pfmemalloc)
5588                                 noreclaim_flag = memalloc_noreclaim_save();
5589                         else
5590                                 memalloc_noreclaim_restore(noreclaim_flag);
5591                 }
5592         }
5593         /* Handle the remaining sublist */
5594         if (!list_empty(head))
5595                 __netif_receive_skb_list_core(head, pfmemalloc);
5596         /* Restore pflags */
5597         if (pfmemalloc)
5598                 memalloc_noreclaim_restore(noreclaim_flag);
5599 }
5600
5601 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5602 {
5603         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5604         struct bpf_prog *new = xdp->prog;
5605         int ret = 0;
5606
5607         switch (xdp->command) {
5608         case XDP_SETUP_PROG:
5609                 rcu_assign_pointer(dev->xdp_prog, new);
5610                 if (old)
5611                         bpf_prog_put(old);
5612
5613                 if (old && !new) {
5614                         static_branch_dec(&generic_xdp_needed_key);
5615                 } else if (new && !old) {
5616                         static_branch_inc(&generic_xdp_needed_key);
5617                         dev_disable_lro(dev);
5618                         dev_disable_gro_hw(dev);
5619                 }
5620                 break;
5621
5622         default:
5623                 ret = -EINVAL;
5624                 break;
5625         }
5626
5627         return ret;
5628 }
5629
5630 static int netif_receive_skb_internal(struct sk_buff *skb)
5631 {
5632         int ret;
5633
5634         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5635
5636         if (skb_defer_rx_timestamp(skb))
5637                 return NET_RX_SUCCESS;
5638
5639         rcu_read_lock();
5640 #ifdef CONFIG_RPS
5641         if (static_branch_unlikely(&rps_needed)) {
5642                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5643                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5644
5645                 if (cpu >= 0) {
5646                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5647                         rcu_read_unlock();
5648                         return ret;
5649                 }
5650         }
5651 #endif
5652         ret = __netif_receive_skb(skb);
5653         rcu_read_unlock();
5654         return ret;
5655 }
5656
5657 void netif_receive_skb_list_internal(struct list_head *head)
5658 {
5659         struct sk_buff *skb, *next;
5660         struct list_head sublist;
5661
5662         INIT_LIST_HEAD(&sublist);
5663         list_for_each_entry_safe(skb, next, head, list) {
5664                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5665                 skb_list_del_init(skb);
5666                 if (!skb_defer_rx_timestamp(skb))
5667                         list_add_tail(&skb->list, &sublist);
5668         }
5669         list_splice_init(&sublist, head);
5670
5671         rcu_read_lock();
5672 #ifdef CONFIG_RPS
5673         if (static_branch_unlikely(&rps_needed)) {
5674                 list_for_each_entry_safe(skb, next, head, list) {
5675                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5676                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5677
5678                         if (cpu >= 0) {
5679                                 /* Will be handled, remove from list */
5680                                 skb_list_del_init(skb);
5681                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5682                         }
5683                 }
5684         }
5685 #endif
5686         __netif_receive_skb_list(head);
5687         rcu_read_unlock();
5688 }
5689
5690 /**
5691  *      netif_receive_skb - process receive buffer from network
5692  *      @skb: buffer to process
5693  *
5694  *      netif_receive_skb() is the main receive data processing function.
5695  *      It always succeeds. The buffer may be dropped during processing
5696  *      for congestion control or by the protocol layers.
5697  *
5698  *      This function may only be called from softirq context and interrupts
5699  *      should be enabled.
5700  *
5701  *      Return values (usually ignored):
5702  *      NET_RX_SUCCESS: no congestion
5703  *      NET_RX_DROP: packet was dropped
5704  */
5705 int netif_receive_skb(struct sk_buff *skb)
5706 {
5707         int ret;
5708
5709         trace_netif_receive_skb_entry(skb);
5710
5711         ret = netif_receive_skb_internal(skb);
5712         trace_netif_receive_skb_exit(ret);
5713
5714         return ret;
5715 }
5716 EXPORT_SYMBOL(netif_receive_skb);
5717
5718 /**
5719  *      netif_receive_skb_list - process many receive buffers from network
5720  *      @head: list of skbs to process.
5721  *
5722  *      Since return value of netif_receive_skb() is normally ignored, and
5723  *      wouldn't be meaningful for a list, this function returns void.
5724  *
5725  *      This function may only be called from softirq context and interrupts
5726  *      should be enabled.
5727  */
5728 void netif_receive_skb_list(struct list_head *head)
5729 {
5730         struct sk_buff *skb;
5731
5732         if (list_empty(head))
5733                 return;
5734         if (trace_netif_receive_skb_list_entry_enabled()) {
5735                 list_for_each_entry(skb, head, list)
5736                         trace_netif_receive_skb_list_entry(skb);
5737         }
5738         netif_receive_skb_list_internal(head);
5739         trace_netif_receive_skb_list_exit(0);
5740 }
5741 EXPORT_SYMBOL(netif_receive_skb_list);
5742
5743 static DEFINE_PER_CPU(struct work_struct, flush_works);
5744
5745 /* Network device is going away, flush any packets still pending */
5746 static void flush_backlog(struct work_struct *work)
5747 {
5748         struct sk_buff *skb, *tmp;
5749         struct softnet_data *sd;
5750
5751         local_bh_disable();
5752         sd = this_cpu_ptr(&softnet_data);
5753
5754         rps_lock_irq_disable(sd);
5755         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5756                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5757                         __skb_unlink(skb, &sd->input_pkt_queue);
5758                         dev_kfree_skb_irq(skb);
5759                         input_queue_head_incr(sd);
5760                 }
5761         }
5762         rps_unlock_irq_enable(sd);
5763
5764         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5765                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5766                         __skb_unlink(skb, &sd->process_queue);
5767                         kfree_skb(skb);
5768                         input_queue_head_incr(sd);
5769                 }
5770         }
5771         local_bh_enable();
5772 }
5773
5774 static bool flush_required(int cpu)
5775 {
5776 #if IS_ENABLED(CONFIG_RPS)
5777         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5778         bool do_flush;
5779
5780         rps_lock_irq_disable(sd);
5781
5782         /* as insertion into process_queue happens with the rps lock held,
5783          * process_queue access may race only with dequeue
5784          */
5785         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5786                    !skb_queue_empty_lockless(&sd->process_queue);
5787         rps_unlock_irq_enable(sd);
5788
5789         return do_flush;
5790 #endif
5791         /* without RPS we can't safely check input_pkt_queue: during a
5792          * concurrent remote skb_queue_splice() we can detect as empty both
5793          * input_pkt_queue and process_queue even if the latter could end-up
5794          * containing a lot of packets.
5795          */
5796         return true;
5797 }
5798
5799 static void flush_all_backlogs(void)
5800 {
5801         static cpumask_t flush_cpus;
5802         unsigned int cpu;
5803
5804         /* since we are under rtnl lock protection we can use static data
5805          * for the cpumask and avoid allocating on stack the possibly
5806          * large mask
5807          */
5808         ASSERT_RTNL();
5809
5810         cpus_read_lock();
5811
5812         cpumask_clear(&flush_cpus);
5813         for_each_online_cpu(cpu) {
5814                 if (flush_required(cpu)) {
5815                         queue_work_on(cpu, system_highpri_wq,
5816                                       per_cpu_ptr(&flush_works, cpu));
5817                         cpumask_set_cpu(cpu, &flush_cpus);
5818                 }
5819         }
5820
5821         /* we can have in flight packet[s] on the cpus we are not flushing,
5822          * synchronize_net() in unregister_netdevice_many() will take care of
5823          * them
5824          */
5825         for_each_cpu(cpu, &flush_cpus)
5826                 flush_work(per_cpu_ptr(&flush_works, cpu));
5827
5828         cpus_read_unlock();
5829 }
5830
5831 static void net_rps_send_ipi(struct softnet_data *remsd)
5832 {
5833 #ifdef CONFIG_RPS
5834         while (remsd) {
5835                 struct softnet_data *next = remsd->rps_ipi_next;
5836
5837                 if (cpu_online(remsd->cpu))
5838                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5839                 remsd = next;
5840         }
5841 #endif
5842 }
5843
5844 /*
5845  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5846  * Note: called with local irq disabled, but exits with local irq enabled.
5847  */
5848 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5849 {
5850 #ifdef CONFIG_RPS
5851         struct softnet_data *remsd = sd->rps_ipi_list;
5852
5853         if (remsd) {
5854                 sd->rps_ipi_list = NULL;
5855
5856                 local_irq_enable();
5857
5858                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5859                 net_rps_send_ipi(remsd);
5860         } else
5861 #endif
5862                 local_irq_enable();
5863 }
5864
5865 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5866 {
5867 #ifdef CONFIG_RPS
5868         return sd->rps_ipi_list != NULL;
5869 #else
5870         return false;
5871 #endif
5872 }
5873
5874 static int process_backlog(struct napi_struct *napi, int quota)
5875 {
5876         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5877         bool again = true;
5878         int work = 0;
5879
5880         /* Check if we have pending ipi, its better to send them now,
5881          * not waiting net_rx_action() end.
5882          */
5883         if (sd_has_rps_ipi_waiting(sd)) {
5884                 local_irq_disable();
5885                 net_rps_action_and_irq_enable(sd);
5886         }
5887
5888         napi->weight = READ_ONCE(dev_rx_weight);
5889         while (again) {
5890                 struct sk_buff *skb;
5891
5892                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5893                         rcu_read_lock();
5894                         __netif_receive_skb(skb);
5895                         rcu_read_unlock();
5896                         input_queue_head_incr(sd);
5897                         if (++work >= quota)
5898                                 return work;
5899
5900                 }
5901
5902                 rps_lock_irq_disable(sd);
5903                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5904                         /*
5905                          * Inline a custom version of __napi_complete().
5906                          * only current cpu owns and manipulates this napi,
5907                          * and NAPI_STATE_SCHED is the only possible flag set
5908                          * on backlog.
5909                          * We can use a plain write instead of clear_bit(),
5910                          * and we dont need an smp_mb() memory barrier.
5911                          */
5912                         napi->state = 0;
5913                         again = false;
5914                 } else {
5915                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5916                                                    &sd->process_queue);
5917                 }
5918                 rps_unlock_irq_enable(sd);
5919         }
5920
5921         return work;
5922 }
5923
5924 /**
5925  * __napi_schedule - schedule for receive
5926  * @n: entry to schedule
5927  *
5928  * The entry's receive function will be scheduled to run.
5929  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5930  */
5931 void __napi_schedule(struct napi_struct *n)
5932 {
5933         unsigned long flags;
5934
5935         local_irq_save(flags);
5936         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5937         local_irq_restore(flags);
5938 }
5939 EXPORT_SYMBOL(__napi_schedule);
5940
5941 /**
5942  *      napi_schedule_prep - check if napi can be scheduled
5943  *      @n: napi context
5944  *
5945  * Test if NAPI routine is already running, and if not mark
5946  * it as running.  This is used as a condition variable to
5947  * insure only one NAPI poll instance runs.  We also make
5948  * sure there is no pending NAPI disable.
5949  */
5950 bool napi_schedule_prep(struct napi_struct *n)
5951 {
5952         unsigned long new, val = READ_ONCE(n->state);
5953
5954         do {
5955                 if (unlikely(val & NAPIF_STATE_DISABLE))
5956                         return false;
5957                 new = val | NAPIF_STATE_SCHED;
5958
5959                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5960                  * This was suggested by Alexander Duyck, as compiler
5961                  * emits better code than :
5962                  * if (val & NAPIF_STATE_SCHED)
5963                  *     new |= NAPIF_STATE_MISSED;
5964                  */
5965                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5966                                                    NAPIF_STATE_MISSED;
5967         } while (!try_cmpxchg(&n->state, &val, new));
5968
5969         return !(val & NAPIF_STATE_SCHED);
5970 }
5971 EXPORT_SYMBOL(napi_schedule_prep);
5972
5973 /**
5974  * __napi_schedule_irqoff - schedule for receive
5975  * @n: entry to schedule
5976  *
5977  * Variant of __napi_schedule() assuming hard irqs are masked.
5978  *
5979  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5980  * because the interrupt disabled assumption might not be true
5981  * due to force-threaded interrupts and spinlock substitution.
5982  */
5983 void __napi_schedule_irqoff(struct napi_struct *n)
5984 {
5985         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5986                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5987         else
5988                 __napi_schedule(n);
5989 }
5990 EXPORT_SYMBOL(__napi_schedule_irqoff);
5991
5992 bool napi_complete_done(struct napi_struct *n, int work_done)
5993 {
5994         unsigned long flags, val, new, timeout = 0;
5995         bool ret = true;
5996
5997         /*
5998          * 1) Don't let napi dequeue from the cpu poll list
5999          *    just in case its running on a different cpu.
6000          * 2) If we are busy polling, do nothing here, we have
6001          *    the guarantee we will be called later.
6002          */
6003         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6004                                  NAPIF_STATE_IN_BUSY_POLL)))
6005                 return false;
6006
6007         if (work_done) {
6008                 if (n->gro_bitmask)
6009                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6010                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6011         }
6012         if (n->defer_hard_irqs_count > 0) {
6013                 n->defer_hard_irqs_count--;
6014                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6015                 if (timeout)
6016                         ret = false;
6017         }
6018         if (n->gro_bitmask) {
6019                 /* When the NAPI instance uses a timeout and keeps postponing
6020                  * it, we need to bound somehow the time packets are kept in
6021                  * the GRO layer
6022                  */
6023                 napi_gro_flush(n, !!timeout);
6024         }
6025
6026         gro_normal_list(n);
6027
6028         if (unlikely(!list_empty(&n->poll_list))) {
6029                 /* If n->poll_list is not empty, we need to mask irqs */
6030                 local_irq_save(flags);
6031                 list_del_init(&n->poll_list);
6032                 local_irq_restore(flags);
6033         }
6034         WRITE_ONCE(n->list_owner, -1);
6035
6036         val = READ_ONCE(n->state);
6037         do {
6038                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6039
6040                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6041                               NAPIF_STATE_SCHED_THREADED |
6042                               NAPIF_STATE_PREFER_BUSY_POLL);
6043
6044                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6045                  * because we will call napi->poll() one more time.
6046                  * This C code was suggested by Alexander Duyck to help gcc.
6047                  */
6048                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6049                                                     NAPIF_STATE_SCHED;
6050         } while (!try_cmpxchg(&n->state, &val, new));
6051
6052         if (unlikely(val & NAPIF_STATE_MISSED)) {
6053                 __napi_schedule(n);
6054                 return false;
6055         }
6056
6057         if (timeout)
6058                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6059                               HRTIMER_MODE_REL_PINNED);
6060         return ret;
6061 }
6062 EXPORT_SYMBOL(napi_complete_done);
6063
6064 /* must be called under rcu_read_lock(), as we dont take a reference */
6065 static struct napi_struct *napi_by_id(unsigned int napi_id)
6066 {
6067         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6068         struct napi_struct *napi;
6069
6070         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6071                 if (napi->napi_id == napi_id)
6072                         return napi;
6073
6074         return NULL;
6075 }
6076
6077 #if defined(CONFIG_NET_RX_BUSY_POLL)
6078
6079 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6080 {
6081         if (!skip_schedule) {
6082                 gro_normal_list(napi);
6083                 __napi_schedule(napi);
6084                 return;
6085         }
6086
6087         if (napi->gro_bitmask) {
6088                 /* flush too old packets
6089                  * If HZ < 1000, flush all packets.
6090                  */
6091                 napi_gro_flush(napi, HZ >= 1000);
6092         }
6093
6094         gro_normal_list(napi);
6095         clear_bit(NAPI_STATE_SCHED, &napi->state);
6096 }
6097
6098 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6099                            u16 budget)
6100 {
6101         bool skip_schedule = false;
6102         unsigned long timeout;
6103         int rc;
6104
6105         /* Busy polling means there is a high chance device driver hard irq
6106          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6107          * set in napi_schedule_prep().
6108          * Since we are about to call napi->poll() once more, we can safely
6109          * clear NAPI_STATE_MISSED.
6110          *
6111          * Note: x86 could use a single "lock and ..." instruction
6112          * to perform these two clear_bit()
6113          */
6114         clear_bit(NAPI_STATE_MISSED, &napi->state);
6115         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6116
6117         local_bh_disable();
6118
6119         if (prefer_busy_poll) {
6120                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6121                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6122                 if (napi->defer_hard_irqs_count && timeout) {
6123                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6124                         skip_schedule = true;
6125                 }
6126         }
6127
6128         /* All we really want here is to re-enable device interrupts.
6129          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6130          */
6131         rc = napi->poll(napi, budget);
6132         /* We can't gro_normal_list() here, because napi->poll() might have
6133          * rearmed the napi (napi_complete_done()) in which case it could
6134          * already be running on another CPU.
6135          */
6136         trace_napi_poll(napi, rc, budget);
6137         netpoll_poll_unlock(have_poll_lock);
6138         if (rc == budget)
6139                 __busy_poll_stop(napi, skip_schedule);
6140         local_bh_enable();
6141 }
6142
6143 void napi_busy_loop(unsigned int napi_id,
6144                     bool (*loop_end)(void *, unsigned long),
6145                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6146 {
6147         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6148         int (*napi_poll)(struct napi_struct *napi, int budget);
6149         void *have_poll_lock = NULL;
6150         struct napi_struct *napi;
6151
6152 restart:
6153         napi_poll = NULL;
6154
6155         rcu_read_lock();
6156
6157         napi = napi_by_id(napi_id);
6158         if (!napi)
6159                 goto out;
6160
6161         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6162                 preempt_disable();
6163         for (;;) {
6164                 int work = 0;
6165
6166                 local_bh_disable();
6167                 if (!napi_poll) {
6168                         unsigned long val = READ_ONCE(napi->state);
6169
6170                         /* If multiple threads are competing for this napi,
6171                          * we avoid dirtying napi->state as much as we can.
6172                          */
6173                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6174                                    NAPIF_STATE_IN_BUSY_POLL)) {
6175                                 if (prefer_busy_poll)
6176                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6177                                 goto count;
6178                         }
6179                         if (cmpxchg(&napi->state, val,
6180                                     val | NAPIF_STATE_IN_BUSY_POLL |
6181                                           NAPIF_STATE_SCHED) != val) {
6182                                 if (prefer_busy_poll)
6183                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6184                                 goto count;
6185                         }
6186                         have_poll_lock = netpoll_poll_lock(napi);
6187                         napi_poll = napi->poll;
6188                 }
6189                 work = napi_poll(napi, budget);
6190                 trace_napi_poll(napi, work, budget);
6191                 gro_normal_list(napi);
6192 count:
6193                 if (work > 0)
6194                         __NET_ADD_STATS(dev_net(napi->dev),
6195                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6196                 local_bh_enable();
6197
6198                 if (!loop_end || loop_end(loop_end_arg, start_time))
6199                         break;
6200
6201                 if (unlikely(need_resched())) {
6202                         if (napi_poll)
6203                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6204                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6205                                 preempt_enable();
6206                         rcu_read_unlock();
6207                         cond_resched();
6208                         if (loop_end(loop_end_arg, start_time))
6209                                 return;
6210                         goto restart;
6211                 }
6212                 cpu_relax();
6213         }
6214         if (napi_poll)
6215                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6216         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6217                 preempt_enable();
6218 out:
6219         rcu_read_unlock();
6220 }
6221 EXPORT_SYMBOL(napi_busy_loop);
6222
6223 #endif /* CONFIG_NET_RX_BUSY_POLL */
6224
6225 static void napi_hash_add(struct napi_struct *napi)
6226 {
6227         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6228                 return;
6229
6230         spin_lock(&napi_hash_lock);
6231
6232         /* 0..NR_CPUS range is reserved for sender_cpu use */
6233         do {
6234                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6235                         napi_gen_id = MIN_NAPI_ID;
6236         } while (napi_by_id(napi_gen_id));
6237         napi->napi_id = napi_gen_id;
6238
6239         hlist_add_head_rcu(&napi->napi_hash_node,
6240                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6241
6242         spin_unlock(&napi_hash_lock);
6243 }
6244
6245 /* Warning : caller is responsible to make sure rcu grace period
6246  * is respected before freeing memory containing @napi
6247  */
6248 static void napi_hash_del(struct napi_struct *napi)
6249 {
6250         spin_lock(&napi_hash_lock);
6251
6252         hlist_del_init_rcu(&napi->napi_hash_node);
6253
6254         spin_unlock(&napi_hash_lock);
6255 }
6256
6257 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6258 {
6259         struct napi_struct *napi;
6260
6261         napi = container_of(timer, struct napi_struct, timer);
6262
6263         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6264          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6265          */
6266         if (!napi_disable_pending(napi) &&
6267             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6268                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6269                 __napi_schedule_irqoff(napi);
6270         }
6271
6272         return HRTIMER_NORESTART;
6273 }
6274
6275 static void init_gro_hash(struct napi_struct *napi)
6276 {
6277         int i;
6278
6279         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6280                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6281                 napi->gro_hash[i].count = 0;
6282         }
6283         napi->gro_bitmask = 0;
6284 }
6285
6286 int dev_set_threaded(struct net_device *dev, bool threaded)
6287 {
6288         struct napi_struct *napi;
6289         int err = 0;
6290
6291         if (dev->threaded == threaded)
6292                 return 0;
6293
6294         if (threaded) {
6295                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6296                         if (!napi->thread) {
6297                                 err = napi_kthread_create(napi);
6298                                 if (err) {
6299                                         threaded = false;
6300                                         break;
6301                                 }
6302                         }
6303                 }
6304         }
6305
6306         dev->threaded = threaded;
6307
6308         /* Make sure kthread is created before THREADED bit
6309          * is set.
6310          */
6311         smp_mb__before_atomic();
6312
6313         /* Setting/unsetting threaded mode on a napi might not immediately
6314          * take effect, if the current napi instance is actively being
6315          * polled. In this case, the switch between threaded mode and
6316          * softirq mode will happen in the next round of napi_schedule().
6317          * This should not cause hiccups/stalls to the live traffic.
6318          */
6319         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6320                 if (threaded)
6321                         set_bit(NAPI_STATE_THREADED, &napi->state);
6322                 else
6323                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6324         }
6325
6326         return err;
6327 }
6328 EXPORT_SYMBOL(dev_set_threaded);
6329
6330 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6331                            int (*poll)(struct napi_struct *, int), int weight)
6332 {
6333         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6334                 return;
6335
6336         INIT_LIST_HEAD(&napi->poll_list);
6337         INIT_HLIST_NODE(&napi->napi_hash_node);
6338         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6339         napi->timer.function = napi_watchdog;
6340         init_gro_hash(napi);
6341         napi->skb = NULL;
6342         INIT_LIST_HEAD(&napi->rx_list);
6343         napi->rx_count = 0;
6344         napi->poll = poll;
6345         if (weight > NAPI_POLL_WEIGHT)
6346                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6347                                 weight);
6348         napi->weight = weight;
6349         napi->dev = dev;
6350 #ifdef CONFIG_NETPOLL
6351         napi->poll_owner = -1;
6352 #endif
6353         napi->list_owner = -1;
6354         set_bit(NAPI_STATE_SCHED, &napi->state);
6355         set_bit(NAPI_STATE_NPSVC, &napi->state);
6356         list_add_rcu(&napi->dev_list, &dev->napi_list);
6357         napi_hash_add(napi);
6358         napi_get_frags_check(napi);
6359         /* Create kthread for this napi if dev->threaded is set.
6360          * Clear dev->threaded if kthread creation failed so that
6361          * threaded mode will not be enabled in napi_enable().
6362          */
6363         if (dev->threaded && napi_kthread_create(napi))
6364                 dev->threaded = 0;
6365 }
6366 EXPORT_SYMBOL(netif_napi_add_weight);
6367
6368 void napi_disable(struct napi_struct *n)
6369 {
6370         unsigned long val, new;
6371
6372         might_sleep();
6373         set_bit(NAPI_STATE_DISABLE, &n->state);
6374
6375         val = READ_ONCE(n->state);
6376         do {
6377                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6378                         usleep_range(20, 200);
6379                         val = READ_ONCE(n->state);
6380                 }
6381
6382                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6383                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6384         } while (!try_cmpxchg(&n->state, &val, new));
6385
6386         hrtimer_cancel(&n->timer);
6387
6388         clear_bit(NAPI_STATE_DISABLE, &n->state);
6389 }
6390 EXPORT_SYMBOL(napi_disable);
6391
6392 /**
6393  *      napi_enable - enable NAPI scheduling
6394  *      @n: NAPI context
6395  *
6396  * Resume NAPI from being scheduled on this context.
6397  * Must be paired with napi_disable.
6398  */
6399 void napi_enable(struct napi_struct *n)
6400 {
6401         unsigned long new, val = READ_ONCE(n->state);
6402
6403         do {
6404                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6405
6406                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6407                 if (n->dev->threaded && n->thread)
6408                         new |= NAPIF_STATE_THREADED;
6409         } while (!try_cmpxchg(&n->state, &val, new));
6410 }
6411 EXPORT_SYMBOL(napi_enable);
6412
6413 static void flush_gro_hash(struct napi_struct *napi)
6414 {
6415         int i;
6416
6417         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6418                 struct sk_buff *skb, *n;
6419
6420                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6421                         kfree_skb(skb);
6422                 napi->gro_hash[i].count = 0;
6423         }
6424 }
6425
6426 /* Must be called in process context */
6427 void __netif_napi_del(struct napi_struct *napi)
6428 {
6429         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6430                 return;
6431
6432         napi_hash_del(napi);
6433         list_del_rcu(&napi->dev_list);
6434         napi_free_frags(napi);
6435
6436         flush_gro_hash(napi);
6437         napi->gro_bitmask = 0;
6438
6439         if (napi->thread) {
6440                 kthread_stop(napi->thread);
6441                 napi->thread = NULL;
6442         }
6443 }
6444 EXPORT_SYMBOL(__netif_napi_del);
6445
6446 static int __napi_poll(struct napi_struct *n, bool *repoll)
6447 {
6448         int work, weight;
6449
6450         weight = n->weight;
6451
6452         /* This NAPI_STATE_SCHED test is for avoiding a race
6453          * with netpoll's poll_napi().  Only the entity which
6454          * obtains the lock and sees NAPI_STATE_SCHED set will
6455          * actually make the ->poll() call.  Therefore we avoid
6456          * accidentally calling ->poll() when NAPI is not scheduled.
6457          */
6458         work = 0;
6459         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6460                 work = n->poll(n, weight);
6461                 trace_napi_poll(n, work, weight);
6462         }
6463
6464         if (unlikely(work > weight))
6465                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6466                                 n->poll, work, weight);
6467
6468         if (likely(work < weight))
6469                 return work;
6470
6471         /* Drivers must not modify the NAPI state if they
6472          * consume the entire weight.  In such cases this code
6473          * still "owns" the NAPI instance and therefore can
6474          * move the instance around on the list at-will.
6475          */
6476         if (unlikely(napi_disable_pending(n))) {
6477                 napi_complete(n);
6478                 return work;
6479         }
6480
6481         /* The NAPI context has more processing work, but busy-polling
6482          * is preferred. Exit early.
6483          */
6484         if (napi_prefer_busy_poll(n)) {
6485                 if (napi_complete_done(n, work)) {
6486                         /* If timeout is not set, we need to make sure
6487                          * that the NAPI is re-scheduled.
6488                          */
6489                         napi_schedule(n);
6490                 }
6491                 return work;
6492         }
6493
6494         if (n->gro_bitmask) {
6495                 /* flush too old packets
6496                  * If HZ < 1000, flush all packets.
6497                  */
6498                 napi_gro_flush(n, HZ >= 1000);
6499         }
6500
6501         gro_normal_list(n);
6502
6503         /* Some drivers may have called napi_schedule
6504          * prior to exhausting their budget.
6505          */
6506         if (unlikely(!list_empty(&n->poll_list))) {
6507                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6508                              n->dev ? n->dev->name : "backlog");
6509                 return work;
6510         }
6511
6512         *repoll = true;
6513
6514         return work;
6515 }
6516
6517 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6518 {
6519         bool do_repoll = false;
6520         void *have;
6521         int work;
6522
6523         list_del_init(&n->poll_list);
6524
6525         have = netpoll_poll_lock(n);
6526
6527         work = __napi_poll(n, &do_repoll);
6528
6529         if (do_repoll)
6530                 list_add_tail(&n->poll_list, repoll);
6531
6532         netpoll_poll_unlock(have);
6533
6534         return work;
6535 }
6536
6537 static int napi_thread_wait(struct napi_struct *napi)
6538 {
6539         bool woken = false;
6540
6541         set_current_state(TASK_INTERRUPTIBLE);
6542
6543         while (!kthread_should_stop()) {
6544                 /* Testing SCHED_THREADED bit here to make sure the current
6545                  * kthread owns this napi and could poll on this napi.
6546                  * Testing SCHED bit is not enough because SCHED bit might be
6547                  * set by some other busy poll thread or by napi_disable().
6548                  */
6549                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6550                         WARN_ON(!list_empty(&napi->poll_list));
6551                         __set_current_state(TASK_RUNNING);
6552                         return 0;
6553                 }
6554
6555                 schedule();
6556                 /* woken being true indicates this thread owns this napi. */
6557                 woken = true;
6558                 set_current_state(TASK_INTERRUPTIBLE);
6559         }
6560         __set_current_state(TASK_RUNNING);
6561
6562         return -1;
6563 }
6564
6565 static void skb_defer_free_flush(struct softnet_data *sd)
6566 {
6567         struct sk_buff *skb, *next;
6568
6569         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6570         if (!READ_ONCE(sd->defer_list))
6571                 return;
6572
6573         spin_lock(&sd->defer_lock);
6574         skb = sd->defer_list;
6575         sd->defer_list = NULL;
6576         sd->defer_count = 0;
6577         spin_unlock(&sd->defer_lock);
6578
6579         while (skb != NULL) {
6580                 next = skb->next;
6581                 napi_consume_skb(skb, 1);
6582                 skb = next;
6583         }
6584 }
6585
6586 static int napi_threaded_poll(void *data)
6587 {
6588         struct napi_struct *napi = data;
6589         struct softnet_data *sd;
6590         void *have;
6591
6592         while (!napi_thread_wait(napi)) {
6593                 for (;;) {
6594                         bool repoll = false;
6595
6596                         local_bh_disable();
6597                         sd = this_cpu_ptr(&softnet_data);
6598                         sd->in_napi_threaded_poll = true;
6599
6600                         have = netpoll_poll_lock(napi);
6601                         __napi_poll(napi, &repoll);
6602                         netpoll_poll_unlock(have);
6603
6604                         sd->in_napi_threaded_poll = false;
6605                         barrier();
6606
6607                         if (sd_has_rps_ipi_waiting(sd)) {
6608                                 local_irq_disable();
6609                                 net_rps_action_and_irq_enable(sd);
6610                         }
6611                         skb_defer_free_flush(sd);
6612                         local_bh_enable();
6613
6614                         if (!repoll)
6615                                 break;
6616
6617                         cond_resched();
6618                 }
6619         }
6620         return 0;
6621 }
6622
6623 static __latent_entropy void net_rx_action(struct softirq_action *h)
6624 {
6625         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6626         unsigned long time_limit = jiffies +
6627                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6628         int budget = READ_ONCE(netdev_budget);
6629         LIST_HEAD(list);
6630         LIST_HEAD(repoll);
6631
6632 start:
6633         sd->in_net_rx_action = true;
6634         local_irq_disable();
6635         list_splice_init(&sd->poll_list, &list);
6636         local_irq_enable();
6637
6638         for (;;) {
6639                 struct napi_struct *n;
6640
6641                 skb_defer_free_flush(sd);
6642
6643                 if (list_empty(&list)) {
6644                         if (list_empty(&repoll)) {
6645                                 sd->in_net_rx_action = false;
6646                                 barrier();
6647                                 /* We need to check if ____napi_schedule()
6648                                  * had refilled poll_list while
6649                                  * sd->in_net_rx_action was true.
6650                                  */
6651                                 if (!list_empty(&sd->poll_list))
6652                                         goto start;
6653                                 if (!sd_has_rps_ipi_waiting(sd))
6654                                         goto end;
6655                         }
6656                         break;
6657                 }
6658
6659                 n = list_first_entry(&list, struct napi_struct, poll_list);
6660                 budget -= napi_poll(n, &repoll);
6661
6662                 /* If softirq window is exhausted then punt.
6663                  * Allow this to run for 2 jiffies since which will allow
6664                  * an average latency of 1.5/HZ.
6665                  */
6666                 if (unlikely(budget <= 0 ||
6667                              time_after_eq(jiffies, time_limit))) {
6668                         sd->time_squeeze++;
6669                         break;
6670                 }
6671         }
6672
6673         local_irq_disable();
6674
6675         list_splice_tail_init(&sd->poll_list, &list);
6676         list_splice_tail(&repoll, &list);
6677         list_splice(&list, &sd->poll_list);
6678         if (!list_empty(&sd->poll_list))
6679                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6680         else
6681                 sd->in_net_rx_action = false;
6682
6683         net_rps_action_and_irq_enable(sd);
6684 end:;
6685 }
6686
6687 struct netdev_adjacent {
6688         struct net_device *dev;
6689         netdevice_tracker dev_tracker;
6690
6691         /* upper master flag, there can only be one master device per list */
6692         bool master;
6693
6694         /* lookup ignore flag */
6695         bool ignore;
6696
6697         /* counter for the number of times this device was added to us */
6698         u16 ref_nr;
6699
6700         /* private field for the users */
6701         void *private;
6702
6703         struct list_head list;
6704         struct rcu_head rcu;
6705 };
6706
6707 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6708                                                  struct list_head *adj_list)
6709 {
6710         struct netdev_adjacent *adj;
6711
6712         list_for_each_entry(adj, adj_list, list) {
6713                 if (adj->dev == adj_dev)
6714                         return adj;
6715         }
6716         return NULL;
6717 }
6718
6719 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6720                                     struct netdev_nested_priv *priv)
6721 {
6722         struct net_device *dev = (struct net_device *)priv->data;
6723
6724         return upper_dev == dev;
6725 }
6726
6727 /**
6728  * netdev_has_upper_dev - Check if device is linked to an upper device
6729  * @dev: device
6730  * @upper_dev: upper device to check
6731  *
6732  * Find out if a device is linked to specified upper device and return true
6733  * in case it is. Note that this checks only immediate upper device,
6734  * not through a complete stack of devices. The caller must hold the RTNL lock.
6735  */
6736 bool netdev_has_upper_dev(struct net_device *dev,
6737                           struct net_device *upper_dev)
6738 {
6739         struct netdev_nested_priv priv = {
6740                 .data = (void *)upper_dev,
6741         };
6742
6743         ASSERT_RTNL();
6744
6745         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6746                                              &priv);
6747 }
6748 EXPORT_SYMBOL(netdev_has_upper_dev);
6749
6750 /**
6751  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6752  * @dev: device
6753  * @upper_dev: upper device to check
6754  *
6755  * Find out if a device is linked to specified upper device and return true
6756  * in case it is. Note that this checks the entire upper device chain.
6757  * The caller must hold rcu lock.
6758  */
6759
6760 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6761                                   struct net_device *upper_dev)
6762 {
6763         struct netdev_nested_priv priv = {
6764                 .data = (void *)upper_dev,
6765         };
6766
6767         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6768                                                &priv);
6769 }
6770 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6771
6772 /**
6773  * netdev_has_any_upper_dev - Check if device is linked to some device
6774  * @dev: device
6775  *
6776  * Find out if a device is linked to an upper device and return true in case
6777  * it is. The caller must hold the RTNL lock.
6778  */
6779 bool netdev_has_any_upper_dev(struct net_device *dev)
6780 {
6781         ASSERT_RTNL();
6782
6783         return !list_empty(&dev->adj_list.upper);
6784 }
6785 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6786
6787 /**
6788  * netdev_master_upper_dev_get - Get master upper device
6789  * @dev: device
6790  *
6791  * Find a master upper device and return pointer to it or NULL in case
6792  * it's not there. The caller must hold the RTNL lock.
6793  */
6794 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6795 {
6796         struct netdev_adjacent *upper;
6797
6798         ASSERT_RTNL();
6799
6800         if (list_empty(&dev->adj_list.upper))
6801                 return NULL;
6802
6803         upper = list_first_entry(&dev->adj_list.upper,
6804                                  struct netdev_adjacent, list);
6805         if (likely(upper->master))
6806                 return upper->dev;
6807         return NULL;
6808 }
6809 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6810
6811 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6812 {
6813         struct netdev_adjacent *upper;
6814
6815         ASSERT_RTNL();
6816
6817         if (list_empty(&dev->adj_list.upper))
6818                 return NULL;
6819
6820         upper = list_first_entry(&dev->adj_list.upper,
6821                                  struct netdev_adjacent, list);
6822         if (likely(upper->master) && !upper->ignore)
6823                 return upper->dev;
6824         return NULL;
6825 }
6826
6827 /**
6828  * netdev_has_any_lower_dev - Check if device is linked to some device
6829  * @dev: device
6830  *
6831  * Find out if a device is linked to a lower device and return true in case
6832  * it is. The caller must hold the RTNL lock.
6833  */
6834 static bool netdev_has_any_lower_dev(struct net_device *dev)
6835 {
6836         ASSERT_RTNL();
6837
6838         return !list_empty(&dev->adj_list.lower);
6839 }
6840
6841 void *netdev_adjacent_get_private(struct list_head *adj_list)
6842 {
6843         struct netdev_adjacent *adj;
6844
6845         adj = list_entry(adj_list, struct netdev_adjacent, list);
6846
6847         return adj->private;
6848 }
6849 EXPORT_SYMBOL(netdev_adjacent_get_private);
6850
6851 /**
6852  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6853  * @dev: device
6854  * @iter: list_head ** of the current position
6855  *
6856  * Gets the next device from the dev's upper list, starting from iter
6857  * position. The caller must hold RCU read lock.
6858  */
6859 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6860                                                  struct list_head **iter)
6861 {
6862         struct netdev_adjacent *upper;
6863
6864         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6865
6866         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6867
6868         if (&upper->list == &dev->adj_list.upper)
6869                 return NULL;
6870
6871         *iter = &upper->list;
6872
6873         return upper->dev;
6874 }
6875 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6876
6877 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6878                                                   struct list_head **iter,
6879                                                   bool *ignore)
6880 {
6881         struct netdev_adjacent *upper;
6882
6883         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6884
6885         if (&upper->list == &dev->adj_list.upper)
6886                 return NULL;
6887
6888         *iter = &upper->list;
6889         *ignore = upper->ignore;
6890
6891         return upper->dev;
6892 }
6893
6894 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6895                                                     struct list_head **iter)
6896 {
6897         struct netdev_adjacent *upper;
6898
6899         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6900
6901         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6902
6903         if (&upper->list == &dev->adj_list.upper)
6904                 return NULL;
6905
6906         *iter = &upper->list;
6907
6908         return upper->dev;
6909 }
6910
6911 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6912                                        int (*fn)(struct net_device *dev,
6913                                          struct netdev_nested_priv *priv),
6914                                        struct netdev_nested_priv *priv)
6915 {
6916         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6917         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6918         int ret, cur = 0;
6919         bool ignore;
6920
6921         now = dev;
6922         iter = &dev->adj_list.upper;
6923
6924         while (1) {
6925                 if (now != dev) {
6926                         ret = fn(now, priv);
6927                         if (ret)
6928                                 return ret;
6929                 }
6930
6931                 next = NULL;
6932                 while (1) {
6933                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6934                         if (!udev)
6935                                 break;
6936                         if (ignore)
6937                                 continue;
6938
6939                         next = udev;
6940                         niter = &udev->adj_list.upper;
6941                         dev_stack[cur] = now;
6942                         iter_stack[cur++] = iter;
6943                         break;
6944                 }
6945
6946                 if (!next) {
6947                         if (!cur)
6948                                 return 0;
6949                         next = dev_stack[--cur];
6950                         niter = iter_stack[cur];
6951                 }
6952
6953                 now = next;
6954                 iter = niter;
6955         }
6956
6957         return 0;
6958 }
6959
6960 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6961                                   int (*fn)(struct net_device *dev,
6962                                             struct netdev_nested_priv *priv),
6963                                   struct netdev_nested_priv *priv)
6964 {
6965         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6966         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6967         int ret, cur = 0;
6968
6969         now = dev;
6970         iter = &dev->adj_list.upper;
6971
6972         while (1) {
6973                 if (now != dev) {
6974                         ret = fn(now, priv);
6975                         if (ret)
6976                                 return ret;
6977                 }
6978
6979                 next = NULL;
6980                 while (1) {
6981                         udev = netdev_next_upper_dev_rcu(now, &iter);
6982                         if (!udev)
6983                                 break;
6984
6985                         next = udev;
6986                         niter = &udev->adj_list.upper;
6987                         dev_stack[cur] = now;
6988                         iter_stack[cur++] = iter;
6989                         break;
6990                 }
6991
6992                 if (!next) {
6993                         if (!cur)
6994                                 return 0;
6995                         next = dev_stack[--cur];
6996                         niter = iter_stack[cur];
6997                 }
6998
6999                 now = next;
7000                 iter = niter;
7001         }
7002
7003         return 0;
7004 }
7005 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7006
7007 static bool __netdev_has_upper_dev(struct net_device *dev,
7008                                    struct net_device *upper_dev)
7009 {
7010         struct netdev_nested_priv priv = {
7011                 .flags = 0,
7012                 .data = (void *)upper_dev,
7013         };
7014
7015         ASSERT_RTNL();
7016
7017         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7018                                            &priv);
7019 }
7020
7021 /**
7022  * netdev_lower_get_next_private - Get the next ->private from the
7023  *                                 lower neighbour list
7024  * @dev: device
7025  * @iter: list_head ** of the current position
7026  *
7027  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7028  * list, starting from iter position. The caller must hold either hold the
7029  * RTNL lock or its own locking that guarantees that the neighbour lower
7030  * list will remain unchanged.
7031  */
7032 void *netdev_lower_get_next_private(struct net_device *dev,
7033                                     struct list_head **iter)
7034 {
7035         struct netdev_adjacent *lower;
7036
7037         lower = list_entry(*iter, struct netdev_adjacent, list);
7038
7039         if (&lower->list == &dev->adj_list.lower)
7040                 return NULL;
7041
7042         *iter = lower->list.next;
7043
7044         return lower->private;
7045 }
7046 EXPORT_SYMBOL(netdev_lower_get_next_private);
7047
7048 /**
7049  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7050  *                                     lower neighbour list, RCU
7051  *                                     variant
7052  * @dev: device
7053  * @iter: list_head ** of the current position
7054  *
7055  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7056  * list, starting from iter position. The caller must hold RCU read lock.
7057  */
7058 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7059                                         struct list_head **iter)
7060 {
7061         struct netdev_adjacent *lower;
7062
7063         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7064
7065         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7066
7067         if (&lower->list == &dev->adj_list.lower)
7068                 return NULL;
7069
7070         *iter = &lower->list;
7071
7072         return lower->private;
7073 }
7074 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7075
7076 /**
7077  * netdev_lower_get_next - Get the next device from the lower neighbour
7078  *                         list
7079  * @dev: device
7080  * @iter: list_head ** of the current position
7081  *
7082  * Gets the next netdev_adjacent from the dev's lower neighbour
7083  * list, starting from iter position. The caller must hold RTNL lock or
7084  * its own locking that guarantees that the neighbour lower
7085  * list will remain unchanged.
7086  */
7087 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7088 {
7089         struct netdev_adjacent *lower;
7090
7091         lower = list_entry(*iter, struct netdev_adjacent, list);
7092
7093         if (&lower->list == &dev->adj_list.lower)
7094                 return NULL;
7095
7096         *iter = lower->list.next;
7097
7098         return lower->dev;
7099 }
7100 EXPORT_SYMBOL(netdev_lower_get_next);
7101
7102 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7103                                                 struct list_head **iter)
7104 {
7105         struct netdev_adjacent *lower;
7106
7107         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7108
7109         if (&lower->list == &dev->adj_list.lower)
7110                 return NULL;
7111
7112         *iter = &lower->list;
7113
7114         return lower->dev;
7115 }
7116
7117 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7118                                                   struct list_head **iter,
7119                                                   bool *ignore)
7120 {
7121         struct netdev_adjacent *lower;
7122
7123         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7124
7125         if (&lower->list == &dev->adj_list.lower)
7126                 return NULL;
7127
7128         *iter = &lower->list;
7129         *ignore = lower->ignore;
7130
7131         return lower->dev;
7132 }
7133
7134 int netdev_walk_all_lower_dev(struct net_device *dev,
7135                               int (*fn)(struct net_device *dev,
7136                                         struct netdev_nested_priv *priv),
7137                               struct netdev_nested_priv *priv)
7138 {
7139         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7140         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7141         int ret, cur = 0;
7142
7143         now = dev;
7144         iter = &dev->adj_list.lower;
7145
7146         while (1) {
7147                 if (now != dev) {
7148                         ret = fn(now, priv);
7149                         if (ret)
7150                                 return ret;
7151                 }
7152
7153                 next = NULL;
7154                 while (1) {
7155                         ldev = netdev_next_lower_dev(now, &iter);
7156                         if (!ldev)
7157                                 break;
7158
7159                         next = ldev;
7160                         niter = &ldev->adj_list.lower;
7161                         dev_stack[cur] = now;
7162                         iter_stack[cur++] = iter;
7163                         break;
7164                 }
7165
7166                 if (!next) {
7167                         if (!cur)
7168                                 return 0;
7169                         next = dev_stack[--cur];
7170                         niter = iter_stack[cur];
7171                 }
7172
7173                 now = next;
7174                 iter = niter;
7175         }
7176
7177         return 0;
7178 }
7179 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7180
7181 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7182                                        int (*fn)(struct net_device *dev,
7183                                          struct netdev_nested_priv *priv),
7184                                        struct netdev_nested_priv *priv)
7185 {
7186         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7187         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7188         int ret, cur = 0;
7189         bool ignore;
7190
7191         now = dev;
7192         iter = &dev->adj_list.lower;
7193
7194         while (1) {
7195                 if (now != dev) {
7196                         ret = fn(now, priv);
7197                         if (ret)
7198                                 return ret;
7199                 }
7200
7201                 next = NULL;
7202                 while (1) {
7203                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7204                         if (!ldev)
7205                                 break;
7206                         if (ignore)
7207                                 continue;
7208
7209                         next = ldev;
7210                         niter = &ldev->adj_list.lower;
7211                         dev_stack[cur] = now;
7212                         iter_stack[cur++] = iter;
7213                         break;
7214                 }
7215
7216                 if (!next) {
7217                         if (!cur)
7218                                 return 0;
7219                         next = dev_stack[--cur];
7220                         niter = iter_stack[cur];
7221                 }
7222
7223                 now = next;
7224                 iter = niter;
7225         }
7226
7227         return 0;
7228 }
7229
7230 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7231                                              struct list_head **iter)
7232 {
7233         struct netdev_adjacent *lower;
7234
7235         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7236         if (&lower->list == &dev->adj_list.lower)
7237                 return NULL;
7238
7239         *iter = &lower->list;
7240
7241         return lower->dev;
7242 }
7243 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7244
7245 static u8 __netdev_upper_depth(struct net_device *dev)
7246 {
7247         struct net_device *udev;
7248         struct list_head *iter;
7249         u8 max_depth = 0;
7250         bool ignore;
7251
7252         for (iter = &dev->adj_list.upper,
7253              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7254              udev;
7255              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7256                 if (ignore)
7257                         continue;
7258                 if (max_depth < udev->upper_level)
7259                         max_depth = udev->upper_level;
7260         }
7261
7262         return max_depth;
7263 }
7264
7265 static u8 __netdev_lower_depth(struct net_device *dev)
7266 {
7267         struct net_device *ldev;
7268         struct list_head *iter;
7269         u8 max_depth = 0;
7270         bool ignore;
7271
7272         for (iter = &dev->adj_list.lower,
7273              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7274              ldev;
7275              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7276                 if (ignore)
7277                         continue;
7278                 if (max_depth < ldev->lower_level)
7279                         max_depth = ldev->lower_level;
7280         }
7281
7282         return max_depth;
7283 }
7284
7285 static int __netdev_update_upper_level(struct net_device *dev,
7286                                        struct netdev_nested_priv *__unused)
7287 {
7288         dev->upper_level = __netdev_upper_depth(dev) + 1;
7289         return 0;
7290 }
7291
7292 #ifdef CONFIG_LOCKDEP
7293 static LIST_HEAD(net_unlink_list);
7294
7295 static void net_unlink_todo(struct net_device *dev)
7296 {
7297         if (list_empty(&dev->unlink_list))
7298                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7299 }
7300 #endif
7301
7302 static int __netdev_update_lower_level(struct net_device *dev,
7303                                        struct netdev_nested_priv *priv)
7304 {
7305         dev->lower_level = __netdev_lower_depth(dev) + 1;
7306
7307 #ifdef CONFIG_LOCKDEP
7308         if (!priv)
7309                 return 0;
7310
7311         if (priv->flags & NESTED_SYNC_IMM)
7312                 dev->nested_level = dev->lower_level - 1;
7313         if (priv->flags & NESTED_SYNC_TODO)
7314                 net_unlink_todo(dev);
7315 #endif
7316         return 0;
7317 }
7318
7319 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7320                                   int (*fn)(struct net_device *dev,
7321                                             struct netdev_nested_priv *priv),
7322                                   struct netdev_nested_priv *priv)
7323 {
7324         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7325         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7326         int ret, cur = 0;
7327
7328         now = dev;
7329         iter = &dev->adj_list.lower;
7330
7331         while (1) {
7332                 if (now != dev) {
7333                         ret = fn(now, priv);
7334                         if (ret)
7335                                 return ret;
7336                 }
7337
7338                 next = NULL;
7339                 while (1) {
7340                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7341                         if (!ldev)
7342                                 break;
7343
7344                         next = ldev;
7345                         niter = &ldev->adj_list.lower;
7346                         dev_stack[cur] = now;
7347                         iter_stack[cur++] = iter;
7348                         break;
7349                 }
7350
7351                 if (!next) {
7352                         if (!cur)
7353                                 return 0;
7354                         next = dev_stack[--cur];
7355                         niter = iter_stack[cur];
7356                 }
7357
7358                 now = next;
7359                 iter = niter;
7360         }
7361
7362         return 0;
7363 }
7364 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7365
7366 /**
7367  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7368  *                                     lower neighbour list, RCU
7369  *                                     variant
7370  * @dev: device
7371  *
7372  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7373  * list. The caller must hold RCU read lock.
7374  */
7375 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7376 {
7377         struct netdev_adjacent *lower;
7378
7379         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7380                         struct netdev_adjacent, list);
7381         if (lower)
7382                 return lower->private;
7383         return NULL;
7384 }
7385 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7386
7387 /**
7388  * netdev_master_upper_dev_get_rcu - Get master upper device
7389  * @dev: device
7390  *
7391  * Find a master upper device and return pointer to it or NULL in case
7392  * it's not there. The caller must hold the RCU read lock.
7393  */
7394 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7395 {
7396         struct netdev_adjacent *upper;
7397
7398         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7399                                        struct netdev_adjacent, list);
7400         if (upper && likely(upper->master))
7401                 return upper->dev;
7402         return NULL;
7403 }
7404 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7405
7406 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7407                               struct net_device *adj_dev,
7408                               struct list_head *dev_list)
7409 {
7410         char linkname[IFNAMSIZ+7];
7411
7412         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7413                 "upper_%s" : "lower_%s", adj_dev->name);
7414         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7415                                  linkname);
7416 }
7417 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7418                                char *name,
7419                                struct list_head *dev_list)
7420 {
7421         char linkname[IFNAMSIZ+7];
7422
7423         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7424                 "upper_%s" : "lower_%s", name);
7425         sysfs_remove_link(&(dev->dev.kobj), linkname);
7426 }
7427
7428 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7429                                                  struct net_device *adj_dev,
7430                                                  struct list_head *dev_list)
7431 {
7432         return (dev_list == &dev->adj_list.upper ||
7433                 dev_list == &dev->adj_list.lower) &&
7434                 net_eq(dev_net(dev), dev_net(adj_dev));
7435 }
7436
7437 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7438                                         struct net_device *adj_dev,
7439                                         struct list_head *dev_list,
7440                                         void *private, bool master)
7441 {
7442         struct netdev_adjacent *adj;
7443         int ret;
7444
7445         adj = __netdev_find_adj(adj_dev, dev_list);
7446
7447         if (adj) {
7448                 adj->ref_nr += 1;
7449                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7450                          dev->name, adj_dev->name, adj->ref_nr);
7451
7452                 return 0;
7453         }
7454
7455         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7456         if (!adj)
7457                 return -ENOMEM;
7458
7459         adj->dev = adj_dev;
7460         adj->master = master;
7461         adj->ref_nr = 1;
7462         adj->private = private;
7463         adj->ignore = false;
7464         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7465
7466         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7467                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7468
7469         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7470                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7471                 if (ret)
7472                         goto free_adj;
7473         }
7474
7475         /* Ensure that master link is always the first item in list. */
7476         if (master) {
7477                 ret = sysfs_create_link(&(dev->dev.kobj),
7478                                         &(adj_dev->dev.kobj), "master");
7479                 if (ret)
7480                         goto remove_symlinks;
7481
7482                 list_add_rcu(&adj->list, dev_list);
7483         } else {
7484                 list_add_tail_rcu(&adj->list, dev_list);
7485         }
7486
7487         return 0;
7488
7489 remove_symlinks:
7490         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7491                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7492 free_adj:
7493         netdev_put(adj_dev, &adj->dev_tracker);
7494         kfree(adj);
7495
7496         return ret;
7497 }
7498
7499 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7500                                          struct net_device *adj_dev,
7501                                          u16 ref_nr,
7502                                          struct list_head *dev_list)
7503 {
7504         struct netdev_adjacent *adj;
7505
7506         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7507                  dev->name, adj_dev->name, ref_nr);
7508
7509         adj = __netdev_find_adj(adj_dev, dev_list);
7510
7511         if (!adj) {
7512                 pr_err("Adjacency does not exist for device %s from %s\n",
7513                        dev->name, adj_dev->name);
7514                 WARN_ON(1);
7515                 return;
7516         }
7517
7518         if (adj->ref_nr > ref_nr) {
7519                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7520                          dev->name, adj_dev->name, ref_nr,
7521                          adj->ref_nr - ref_nr);
7522                 adj->ref_nr -= ref_nr;
7523                 return;
7524         }
7525
7526         if (adj->master)
7527                 sysfs_remove_link(&(dev->dev.kobj), "master");
7528
7529         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7530                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7531
7532         list_del_rcu(&adj->list);
7533         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7534                  adj_dev->name, dev->name, adj_dev->name);
7535         netdev_put(adj_dev, &adj->dev_tracker);
7536         kfree_rcu(adj, rcu);
7537 }
7538
7539 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7540                                             struct net_device *upper_dev,
7541                                             struct list_head *up_list,
7542                                             struct list_head *down_list,
7543                                             void *private, bool master)
7544 {
7545         int ret;
7546
7547         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7548                                            private, master);
7549         if (ret)
7550                 return ret;
7551
7552         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7553                                            private, false);
7554         if (ret) {
7555                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7556                 return ret;
7557         }
7558
7559         return 0;
7560 }
7561
7562 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7563                                                struct net_device *upper_dev,
7564                                                u16 ref_nr,
7565                                                struct list_head *up_list,
7566                                                struct list_head *down_list)
7567 {
7568         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7569         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7570 }
7571
7572 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7573                                                 struct net_device *upper_dev,
7574                                                 void *private, bool master)
7575 {
7576         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7577                                                 &dev->adj_list.upper,
7578                                                 &upper_dev->adj_list.lower,
7579                                                 private, master);
7580 }
7581
7582 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7583                                                    struct net_device *upper_dev)
7584 {
7585         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7586                                            &dev->adj_list.upper,
7587                                            &upper_dev->adj_list.lower);
7588 }
7589
7590 static int __netdev_upper_dev_link(struct net_device *dev,
7591                                    struct net_device *upper_dev, bool master,
7592                                    void *upper_priv, void *upper_info,
7593                                    struct netdev_nested_priv *priv,
7594                                    struct netlink_ext_ack *extack)
7595 {
7596         struct netdev_notifier_changeupper_info changeupper_info = {
7597                 .info = {
7598                         .dev = dev,
7599                         .extack = extack,
7600                 },
7601                 .upper_dev = upper_dev,
7602                 .master = master,
7603                 .linking = true,
7604                 .upper_info = upper_info,
7605         };
7606         struct net_device *master_dev;
7607         int ret = 0;
7608
7609         ASSERT_RTNL();
7610
7611         if (dev == upper_dev)
7612                 return -EBUSY;
7613
7614         /* To prevent loops, check if dev is not upper device to upper_dev. */
7615         if (__netdev_has_upper_dev(upper_dev, dev))
7616                 return -EBUSY;
7617
7618         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7619                 return -EMLINK;
7620
7621         if (!master) {
7622                 if (__netdev_has_upper_dev(dev, upper_dev))
7623                         return -EEXIST;
7624         } else {
7625                 master_dev = __netdev_master_upper_dev_get(dev);
7626                 if (master_dev)
7627                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7628         }
7629
7630         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7631                                             &changeupper_info.info);
7632         ret = notifier_to_errno(ret);
7633         if (ret)
7634                 return ret;
7635
7636         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7637                                                    master);
7638         if (ret)
7639                 return ret;
7640
7641         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7642                                             &changeupper_info.info);
7643         ret = notifier_to_errno(ret);
7644         if (ret)
7645                 goto rollback;
7646
7647         __netdev_update_upper_level(dev, NULL);
7648         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7649
7650         __netdev_update_lower_level(upper_dev, priv);
7651         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7652                                     priv);
7653
7654         return 0;
7655
7656 rollback:
7657         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7658
7659         return ret;
7660 }
7661
7662 /**
7663  * netdev_upper_dev_link - Add a link to the upper device
7664  * @dev: device
7665  * @upper_dev: new upper device
7666  * @extack: netlink extended ack
7667  *
7668  * Adds a link to device which is upper to this one. The caller must hold
7669  * the RTNL lock. On a failure a negative errno code is returned.
7670  * On success the reference counts are adjusted and the function
7671  * returns zero.
7672  */
7673 int netdev_upper_dev_link(struct net_device *dev,
7674                           struct net_device *upper_dev,
7675                           struct netlink_ext_ack *extack)
7676 {
7677         struct netdev_nested_priv priv = {
7678                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7679                 .data = NULL,
7680         };
7681
7682         return __netdev_upper_dev_link(dev, upper_dev, false,
7683                                        NULL, NULL, &priv, extack);
7684 }
7685 EXPORT_SYMBOL(netdev_upper_dev_link);
7686
7687 /**
7688  * netdev_master_upper_dev_link - Add a master link to the upper device
7689  * @dev: device
7690  * @upper_dev: new upper device
7691  * @upper_priv: upper device private
7692  * @upper_info: upper info to be passed down via notifier
7693  * @extack: netlink extended ack
7694  *
7695  * Adds a link to device which is upper to this one. In this case, only
7696  * one master upper device can be linked, although other non-master devices
7697  * might be linked as well. The caller must hold the RTNL lock.
7698  * On a failure a negative errno code is returned. On success the reference
7699  * counts are adjusted and the function returns zero.
7700  */
7701 int netdev_master_upper_dev_link(struct net_device *dev,
7702                                  struct net_device *upper_dev,
7703                                  void *upper_priv, void *upper_info,
7704                                  struct netlink_ext_ack *extack)
7705 {
7706         struct netdev_nested_priv priv = {
7707                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7708                 .data = NULL,
7709         };
7710
7711         return __netdev_upper_dev_link(dev, upper_dev, true,
7712                                        upper_priv, upper_info, &priv, extack);
7713 }
7714 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7715
7716 static void __netdev_upper_dev_unlink(struct net_device *dev,
7717                                       struct net_device *upper_dev,
7718                                       struct netdev_nested_priv *priv)
7719 {
7720         struct netdev_notifier_changeupper_info changeupper_info = {
7721                 .info = {
7722                         .dev = dev,
7723                 },
7724                 .upper_dev = upper_dev,
7725                 .linking = false,
7726         };
7727
7728         ASSERT_RTNL();
7729
7730         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7731
7732         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7733                                       &changeupper_info.info);
7734
7735         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7736
7737         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7738                                       &changeupper_info.info);
7739
7740         __netdev_update_upper_level(dev, NULL);
7741         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7742
7743         __netdev_update_lower_level(upper_dev, priv);
7744         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7745                                     priv);
7746 }
7747
7748 /**
7749  * netdev_upper_dev_unlink - Removes a link to upper device
7750  * @dev: device
7751  * @upper_dev: new upper device
7752  *
7753  * Removes a link to device which is upper to this one. The caller must hold
7754  * the RTNL lock.
7755  */
7756 void netdev_upper_dev_unlink(struct net_device *dev,
7757                              struct net_device *upper_dev)
7758 {
7759         struct netdev_nested_priv priv = {
7760                 .flags = NESTED_SYNC_TODO,
7761                 .data = NULL,
7762         };
7763
7764         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7765 }
7766 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7767
7768 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7769                                       struct net_device *lower_dev,
7770                                       bool val)
7771 {
7772         struct netdev_adjacent *adj;
7773
7774         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7775         if (adj)
7776                 adj->ignore = val;
7777
7778         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7779         if (adj)
7780                 adj->ignore = val;
7781 }
7782
7783 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7784                                         struct net_device *lower_dev)
7785 {
7786         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7787 }
7788
7789 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7790                                        struct net_device *lower_dev)
7791 {
7792         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7793 }
7794
7795 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7796                                    struct net_device *new_dev,
7797                                    struct net_device *dev,
7798                                    struct netlink_ext_ack *extack)
7799 {
7800         struct netdev_nested_priv priv = {
7801                 .flags = 0,
7802                 .data = NULL,
7803         };
7804         int err;
7805
7806         if (!new_dev)
7807                 return 0;
7808
7809         if (old_dev && new_dev != old_dev)
7810                 netdev_adjacent_dev_disable(dev, old_dev);
7811         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7812                                       extack);
7813         if (err) {
7814                 if (old_dev && new_dev != old_dev)
7815                         netdev_adjacent_dev_enable(dev, old_dev);
7816                 return err;
7817         }
7818
7819         return 0;
7820 }
7821 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7822
7823 void netdev_adjacent_change_commit(struct net_device *old_dev,
7824                                    struct net_device *new_dev,
7825                                    struct net_device *dev)
7826 {
7827         struct netdev_nested_priv priv = {
7828                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7829                 .data = NULL,
7830         };
7831
7832         if (!new_dev || !old_dev)
7833                 return;
7834
7835         if (new_dev == old_dev)
7836                 return;
7837
7838         netdev_adjacent_dev_enable(dev, old_dev);
7839         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7840 }
7841 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7842
7843 void netdev_adjacent_change_abort(struct net_device *old_dev,
7844                                   struct net_device *new_dev,
7845                                   struct net_device *dev)
7846 {
7847         struct netdev_nested_priv priv = {
7848                 .flags = 0,
7849                 .data = NULL,
7850         };
7851
7852         if (!new_dev)
7853                 return;
7854
7855         if (old_dev && new_dev != old_dev)
7856                 netdev_adjacent_dev_enable(dev, old_dev);
7857
7858         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7859 }
7860 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7861
7862 /**
7863  * netdev_bonding_info_change - Dispatch event about slave change
7864  * @dev: device
7865  * @bonding_info: info to dispatch
7866  *
7867  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7868  * The caller must hold the RTNL lock.
7869  */
7870 void netdev_bonding_info_change(struct net_device *dev,
7871                                 struct netdev_bonding_info *bonding_info)
7872 {
7873         struct netdev_notifier_bonding_info info = {
7874                 .info.dev = dev,
7875         };
7876
7877         memcpy(&info.bonding_info, bonding_info,
7878                sizeof(struct netdev_bonding_info));
7879         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7880                                       &info.info);
7881 }
7882 EXPORT_SYMBOL(netdev_bonding_info_change);
7883
7884 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7885                                            struct netlink_ext_ack *extack)
7886 {
7887         struct netdev_notifier_offload_xstats_info info = {
7888                 .info.dev = dev,
7889                 .info.extack = extack,
7890                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7891         };
7892         int err;
7893         int rc;
7894
7895         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7896                                          GFP_KERNEL);
7897         if (!dev->offload_xstats_l3)
7898                 return -ENOMEM;
7899
7900         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7901                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7902                                                   &info.info);
7903         err = notifier_to_errno(rc);
7904         if (err)
7905                 goto free_stats;
7906
7907         return 0;
7908
7909 free_stats:
7910         kfree(dev->offload_xstats_l3);
7911         dev->offload_xstats_l3 = NULL;
7912         return err;
7913 }
7914
7915 int netdev_offload_xstats_enable(struct net_device *dev,
7916                                  enum netdev_offload_xstats_type type,
7917                                  struct netlink_ext_ack *extack)
7918 {
7919         ASSERT_RTNL();
7920
7921         if (netdev_offload_xstats_enabled(dev, type))
7922                 return -EALREADY;
7923
7924         switch (type) {
7925         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7926                 return netdev_offload_xstats_enable_l3(dev, extack);
7927         }
7928
7929         WARN_ON(1);
7930         return -EINVAL;
7931 }
7932 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7933
7934 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7935 {
7936         struct netdev_notifier_offload_xstats_info info = {
7937                 .info.dev = dev,
7938                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7939         };
7940
7941         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7942                                       &info.info);
7943         kfree(dev->offload_xstats_l3);
7944         dev->offload_xstats_l3 = NULL;
7945 }
7946
7947 int netdev_offload_xstats_disable(struct net_device *dev,
7948                                   enum netdev_offload_xstats_type type)
7949 {
7950         ASSERT_RTNL();
7951
7952         if (!netdev_offload_xstats_enabled(dev, type))
7953                 return -EALREADY;
7954
7955         switch (type) {
7956         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7957                 netdev_offload_xstats_disable_l3(dev);
7958                 return 0;
7959         }
7960
7961         WARN_ON(1);
7962         return -EINVAL;
7963 }
7964 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7965
7966 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7967 {
7968         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7969 }
7970
7971 static struct rtnl_hw_stats64 *
7972 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7973                               enum netdev_offload_xstats_type type)
7974 {
7975         switch (type) {
7976         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7977                 return dev->offload_xstats_l3;
7978         }
7979
7980         WARN_ON(1);
7981         return NULL;
7982 }
7983
7984 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7985                                    enum netdev_offload_xstats_type type)
7986 {
7987         ASSERT_RTNL();
7988
7989         return netdev_offload_xstats_get_ptr(dev, type);
7990 }
7991 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7992
7993 struct netdev_notifier_offload_xstats_ru {
7994         bool used;
7995 };
7996
7997 struct netdev_notifier_offload_xstats_rd {
7998         struct rtnl_hw_stats64 stats;
7999         bool used;
8000 };
8001
8002 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8003                                   const struct rtnl_hw_stats64 *src)
8004 {
8005         dest->rx_packets          += src->rx_packets;
8006         dest->tx_packets          += src->tx_packets;
8007         dest->rx_bytes            += src->rx_bytes;
8008         dest->tx_bytes            += src->tx_bytes;
8009         dest->rx_errors           += src->rx_errors;
8010         dest->tx_errors           += src->tx_errors;
8011         dest->rx_dropped          += src->rx_dropped;
8012         dest->tx_dropped          += src->tx_dropped;
8013         dest->multicast           += src->multicast;
8014 }
8015
8016 static int netdev_offload_xstats_get_used(struct net_device *dev,
8017                                           enum netdev_offload_xstats_type type,
8018                                           bool *p_used,
8019                                           struct netlink_ext_ack *extack)
8020 {
8021         struct netdev_notifier_offload_xstats_ru report_used = {};
8022         struct netdev_notifier_offload_xstats_info info = {
8023                 .info.dev = dev,
8024                 .info.extack = extack,
8025                 .type = type,
8026                 .report_used = &report_used,
8027         };
8028         int rc;
8029
8030         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8031         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8032                                            &info.info);
8033         *p_used = report_used.used;
8034         return notifier_to_errno(rc);
8035 }
8036
8037 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8038                                            enum netdev_offload_xstats_type type,
8039                                            struct rtnl_hw_stats64 *p_stats,
8040                                            bool *p_used,
8041                                            struct netlink_ext_ack *extack)
8042 {
8043         struct netdev_notifier_offload_xstats_rd report_delta = {};
8044         struct netdev_notifier_offload_xstats_info info = {
8045                 .info.dev = dev,
8046                 .info.extack = extack,
8047                 .type = type,
8048                 .report_delta = &report_delta,
8049         };
8050         struct rtnl_hw_stats64 *stats;
8051         int rc;
8052
8053         stats = netdev_offload_xstats_get_ptr(dev, type);
8054         if (WARN_ON(!stats))
8055                 return -EINVAL;
8056
8057         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8058                                            &info.info);
8059
8060         /* Cache whatever we got, even if there was an error, otherwise the
8061          * successful stats retrievals would get lost.
8062          */
8063         netdev_hw_stats64_add(stats, &report_delta.stats);
8064
8065         if (p_stats)
8066                 *p_stats = *stats;
8067         *p_used = report_delta.used;
8068
8069         return notifier_to_errno(rc);
8070 }
8071
8072 int netdev_offload_xstats_get(struct net_device *dev,
8073                               enum netdev_offload_xstats_type type,
8074                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8075                               struct netlink_ext_ack *extack)
8076 {
8077         ASSERT_RTNL();
8078
8079         if (p_stats)
8080                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8081                                                        p_used, extack);
8082         else
8083                 return netdev_offload_xstats_get_used(dev, type, p_used,
8084                                                       extack);
8085 }
8086 EXPORT_SYMBOL(netdev_offload_xstats_get);
8087
8088 void
8089 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8090                                    const struct rtnl_hw_stats64 *stats)
8091 {
8092         report_delta->used = true;
8093         netdev_hw_stats64_add(&report_delta->stats, stats);
8094 }
8095 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8096
8097 void
8098 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8099 {
8100         report_used->used = true;
8101 }
8102 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8103
8104 void netdev_offload_xstats_push_delta(struct net_device *dev,
8105                                       enum netdev_offload_xstats_type type,
8106                                       const struct rtnl_hw_stats64 *p_stats)
8107 {
8108         struct rtnl_hw_stats64 *stats;
8109
8110         ASSERT_RTNL();
8111
8112         stats = netdev_offload_xstats_get_ptr(dev, type);
8113         if (WARN_ON(!stats))
8114                 return;
8115
8116         netdev_hw_stats64_add(stats, p_stats);
8117 }
8118 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8119
8120 /**
8121  * netdev_get_xmit_slave - Get the xmit slave of master device
8122  * @dev: device
8123  * @skb: The packet
8124  * @all_slaves: assume all the slaves are active
8125  *
8126  * The reference counters are not incremented so the caller must be
8127  * careful with locks. The caller must hold RCU lock.
8128  * %NULL is returned if no slave is found.
8129  */
8130
8131 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8132                                          struct sk_buff *skb,
8133                                          bool all_slaves)
8134 {
8135         const struct net_device_ops *ops = dev->netdev_ops;
8136
8137         if (!ops->ndo_get_xmit_slave)
8138                 return NULL;
8139         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8140 }
8141 EXPORT_SYMBOL(netdev_get_xmit_slave);
8142
8143 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8144                                                   struct sock *sk)
8145 {
8146         const struct net_device_ops *ops = dev->netdev_ops;
8147
8148         if (!ops->ndo_sk_get_lower_dev)
8149                 return NULL;
8150         return ops->ndo_sk_get_lower_dev(dev, sk);
8151 }
8152
8153 /**
8154  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8155  * @dev: device
8156  * @sk: the socket
8157  *
8158  * %NULL is returned if no lower device is found.
8159  */
8160
8161 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8162                                             struct sock *sk)
8163 {
8164         struct net_device *lower;
8165
8166         lower = netdev_sk_get_lower_dev(dev, sk);
8167         while (lower) {
8168                 dev = lower;
8169                 lower = netdev_sk_get_lower_dev(dev, sk);
8170         }
8171
8172         return dev;
8173 }
8174 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8175
8176 static void netdev_adjacent_add_links(struct net_device *dev)
8177 {
8178         struct netdev_adjacent *iter;
8179
8180         struct net *net = dev_net(dev);
8181
8182         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8183                 if (!net_eq(net, dev_net(iter->dev)))
8184                         continue;
8185                 netdev_adjacent_sysfs_add(iter->dev, dev,
8186                                           &iter->dev->adj_list.lower);
8187                 netdev_adjacent_sysfs_add(dev, iter->dev,
8188                                           &dev->adj_list.upper);
8189         }
8190
8191         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8192                 if (!net_eq(net, dev_net(iter->dev)))
8193                         continue;
8194                 netdev_adjacent_sysfs_add(iter->dev, dev,
8195                                           &iter->dev->adj_list.upper);
8196                 netdev_adjacent_sysfs_add(dev, iter->dev,
8197                                           &dev->adj_list.lower);
8198         }
8199 }
8200
8201 static void netdev_adjacent_del_links(struct net_device *dev)
8202 {
8203         struct netdev_adjacent *iter;
8204
8205         struct net *net = dev_net(dev);
8206
8207         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8208                 if (!net_eq(net, dev_net(iter->dev)))
8209                         continue;
8210                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8211                                           &iter->dev->adj_list.lower);
8212                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8213                                           &dev->adj_list.upper);
8214         }
8215
8216         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8217                 if (!net_eq(net, dev_net(iter->dev)))
8218                         continue;
8219                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8220                                           &iter->dev->adj_list.upper);
8221                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8222                                           &dev->adj_list.lower);
8223         }
8224 }
8225
8226 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8227 {
8228         struct netdev_adjacent *iter;
8229
8230         struct net *net = dev_net(dev);
8231
8232         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8233                 if (!net_eq(net, dev_net(iter->dev)))
8234                         continue;
8235                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8236                                           &iter->dev->adj_list.lower);
8237                 netdev_adjacent_sysfs_add(iter->dev, dev,
8238                                           &iter->dev->adj_list.lower);
8239         }
8240
8241         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8242                 if (!net_eq(net, dev_net(iter->dev)))
8243                         continue;
8244                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8245                                           &iter->dev->adj_list.upper);
8246                 netdev_adjacent_sysfs_add(iter->dev, dev,
8247                                           &iter->dev->adj_list.upper);
8248         }
8249 }
8250
8251 void *netdev_lower_dev_get_private(struct net_device *dev,
8252                                    struct net_device *lower_dev)
8253 {
8254         struct netdev_adjacent *lower;
8255
8256         if (!lower_dev)
8257                 return NULL;
8258         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8259         if (!lower)
8260                 return NULL;
8261
8262         return lower->private;
8263 }
8264 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8265
8266
8267 /**
8268  * netdev_lower_state_changed - Dispatch event about lower device state change
8269  * @lower_dev: device
8270  * @lower_state_info: state to dispatch
8271  *
8272  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8273  * The caller must hold the RTNL lock.
8274  */
8275 void netdev_lower_state_changed(struct net_device *lower_dev,
8276                                 void *lower_state_info)
8277 {
8278         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8279                 .info.dev = lower_dev,
8280         };
8281
8282         ASSERT_RTNL();
8283         changelowerstate_info.lower_state_info = lower_state_info;
8284         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8285                                       &changelowerstate_info.info);
8286 }
8287 EXPORT_SYMBOL(netdev_lower_state_changed);
8288
8289 static void dev_change_rx_flags(struct net_device *dev, int flags)
8290 {
8291         const struct net_device_ops *ops = dev->netdev_ops;
8292
8293         if (ops->ndo_change_rx_flags)
8294                 ops->ndo_change_rx_flags(dev, flags);
8295 }
8296
8297 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8298 {
8299         unsigned int old_flags = dev->flags;
8300         kuid_t uid;
8301         kgid_t gid;
8302
8303         ASSERT_RTNL();
8304
8305         dev->flags |= IFF_PROMISC;
8306         dev->promiscuity += inc;
8307         if (dev->promiscuity == 0) {
8308                 /*
8309                  * Avoid overflow.
8310                  * If inc causes overflow, untouch promisc and return error.
8311                  */
8312                 if (inc < 0)
8313                         dev->flags &= ~IFF_PROMISC;
8314                 else {
8315                         dev->promiscuity -= inc;
8316                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8317                         return -EOVERFLOW;
8318                 }
8319         }
8320         if (dev->flags != old_flags) {
8321                 netdev_info(dev, "%s promiscuous mode\n",
8322                             dev->flags & IFF_PROMISC ? "entered" : "left");
8323                 if (audit_enabled) {
8324                         current_uid_gid(&uid, &gid);
8325                         audit_log(audit_context(), GFP_ATOMIC,
8326                                   AUDIT_ANOM_PROMISCUOUS,
8327                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8328                                   dev->name, (dev->flags & IFF_PROMISC),
8329                                   (old_flags & IFF_PROMISC),
8330                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8331                                   from_kuid(&init_user_ns, uid),
8332                                   from_kgid(&init_user_ns, gid),
8333                                   audit_get_sessionid(current));
8334                 }
8335
8336                 dev_change_rx_flags(dev, IFF_PROMISC);
8337         }
8338         if (notify)
8339                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8340         return 0;
8341 }
8342
8343 /**
8344  *      dev_set_promiscuity     - update promiscuity count on a device
8345  *      @dev: device
8346  *      @inc: modifier
8347  *
8348  *      Add or remove promiscuity from a device. While the count in the device
8349  *      remains above zero the interface remains promiscuous. Once it hits zero
8350  *      the device reverts back to normal filtering operation. A negative inc
8351  *      value is used to drop promiscuity on the device.
8352  *      Return 0 if successful or a negative errno code on error.
8353  */
8354 int dev_set_promiscuity(struct net_device *dev, int inc)
8355 {
8356         unsigned int old_flags = dev->flags;
8357         int err;
8358
8359         err = __dev_set_promiscuity(dev, inc, true);
8360         if (err < 0)
8361                 return err;
8362         if (dev->flags != old_flags)
8363                 dev_set_rx_mode(dev);
8364         return err;
8365 }
8366 EXPORT_SYMBOL(dev_set_promiscuity);
8367
8368 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8369 {
8370         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8371
8372         ASSERT_RTNL();
8373
8374         dev->flags |= IFF_ALLMULTI;
8375         dev->allmulti += inc;
8376         if (dev->allmulti == 0) {
8377                 /*
8378                  * Avoid overflow.
8379                  * If inc causes overflow, untouch allmulti and return error.
8380                  */
8381                 if (inc < 0)
8382                         dev->flags &= ~IFF_ALLMULTI;
8383                 else {
8384                         dev->allmulti -= inc;
8385                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8386                         return -EOVERFLOW;
8387                 }
8388         }
8389         if (dev->flags ^ old_flags) {
8390                 netdev_info(dev, "%s allmulticast mode\n",
8391                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8392                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8393                 dev_set_rx_mode(dev);
8394                 if (notify)
8395                         __dev_notify_flags(dev, old_flags,
8396                                            dev->gflags ^ old_gflags, 0, NULL);
8397         }
8398         return 0;
8399 }
8400
8401 /**
8402  *      dev_set_allmulti        - update allmulti count on a device
8403  *      @dev: device
8404  *      @inc: modifier
8405  *
8406  *      Add or remove reception of all multicast frames to a device. While the
8407  *      count in the device remains above zero the interface remains listening
8408  *      to all interfaces. Once it hits zero the device reverts back to normal
8409  *      filtering operation. A negative @inc value is used to drop the counter
8410  *      when releasing a resource needing all multicasts.
8411  *      Return 0 if successful or a negative errno code on error.
8412  */
8413
8414 int dev_set_allmulti(struct net_device *dev, int inc)
8415 {
8416         return __dev_set_allmulti(dev, inc, true);
8417 }
8418 EXPORT_SYMBOL(dev_set_allmulti);
8419
8420 /*
8421  *      Upload unicast and multicast address lists to device and
8422  *      configure RX filtering. When the device doesn't support unicast
8423  *      filtering it is put in promiscuous mode while unicast addresses
8424  *      are present.
8425  */
8426 void __dev_set_rx_mode(struct net_device *dev)
8427 {
8428         const struct net_device_ops *ops = dev->netdev_ops;
8429
8430         /* dev_open will call this function so the list will stay sane. */
8431         if (!(dev->flags&IFF_UP))
8432                 return;
8433
8434         if (!netif_device_present(dev))
8435                 return;
8436
8437         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8438                 /* Unicast addresses changes may only happen under the rtnl,
8439                  * therefore calling __dev_set_promiscuity here is safe.
8440                  */
8441                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8442                         __dev_set_promiscuity(dev, 1, false);
8443                         dev->uc_promisc = true;
8444                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8445                         __dev_set_promiscuity(dev, -1, false);
8446                         dev->uc_promisc = false;
8447                 }
8448         }
8449
8450         if (ops->ndo_set_rx_mode)
8451                 ops->ndo_set_rx_mode(dev);
8452 }
8453
8454 void dev_set_rx_mode(struct net_device *dev)
8455 {
8456         netif_addr_lock_bh(dev);
8457         __dev_set_rx_mode(dev);
8458         netif_addr_unlock_bh(dev);
8459 }
8460
8461 /**
8462  *      dev_get_flags - get flags reported to userspace
8463  *      @dev: device
8464  *
8465  *      Get the combination of flag bits exported through APIs to userspace.
8466  */
8467 unsigned int dev_get_flags(const struct net_device *dev)
8468 {
8469         unsigned int flags;
8470
8471         flags = (dev->flags & ~(IFF_PROMISC |
8472                                 IFF_ALLMULTI |
8473                                 IFF_RUNNING |
8474                                 IFF_LOWER_UP |
8475                                 IFF_DORMANT)) |
8476                 (dev->gflags & (IFF_PROMISC |
8477                                 IFF_ALLMULTI));
8478
8479         if (netif_running(dev)) {
8480                 if (netif_oper_up(dev))
8481                         flags |= IFF_RUNNING;
8482                 if (netif_carrier_ok(dev))
8483                         flags |= IFF_LOWER_UP;
8484                 if (netif_dormant(dev))
8485                         flags |= IFF_DORMANT;
8486         }
8487
8488         return flags;
8489 }
8490 EXPORT_SYMBOL(dev_get_flags);
8491
8492 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8493                        struct netlink_ext_ack *extack)
8494 {
8495         unsigned int old_flags = dev->flags;
8496         int ret;
8497
8498         ASSERT_RTNL();
8499
8500         /*
8501          *      Set the flags on our device.
8502          */
8503
8504         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8505                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8506                                IFF_AUTOMEDIA)) |
8507                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8508                                     IFF_ALLMULTI));
8509
8510         /*
8511          *      Load in the correct multicast list now the flags have changed.
8512          */
8513
8514         if ((old_flags ^ flags) & IFF_MULTICAST)
8515                 dev_change_rx_flags(dev, IFF_MULTICAST);
8516
8517         dev_set_rx_mode(dev);
8518
8519         /*
8520          *      Have we downed the interface. We handle IFF_UP ourselves
8521          *      according to user attempts to set it, rather than blindly
8522          *      setting it.
8523          */
8524
8525         ret = 0;
8526         if ((old_flags ^ flags) & IFF_UP) {
8527                 if (old_flags & IFF_UP)
8528                         __dev_close(dev);
8529                 else
8530                         ret = __dev_open(dev, extack);
8531         }
8532
8533         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8534                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8535                 unsigned int old_flags = dev->flags;
8536
8537                 dev->gflags ^= IFF_PROMISC;
8538
8539                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8540                         if (dev->flags != old_flags)
8541                                 dev_set_rx_mode(dev);
8542         }
8543
8544         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8545          * is important. Some (broken) drivers set IFF_PROMISC, when
8546          * IFF_ALLMULTI is requested not asking us and not reporting.
8547          */
8548         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8549                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8550
8551                 dev->gflags ^= IFF_ALLMULTI;
8552                 __dev_set_allmulti(dev, inc, false);
8553         }
8554
8555         return ret;
8556 }
8557
8558 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8559                         unsigned int gchanges, u32 portid,
8560                         const struct nlmsghdr *nlh)
8561 {
8562         unsigned int changes = dev->flags ^ old_flags;
8563
8564         if (gchanges)
8565                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8566
8567         if (changes & IFF_UP) {
8568                 if (dev->flags & IFF_UP)
8569                         call_netdevice_notifiers(NETDEV_UP, dev);
8570                 else
8571                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8572         }
8573
8574         if (dev->flags & IFF_UP &&
8575             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8576                 struct netdev_notifier_change_info change_info = {
8577                         .info = {
8578                                 .dev = dev,
8579                         },
8580                         .flags_changed = changes,
8581                 };
8582
8583                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8584         }
8585 }
8586
8587 /**
8588  *      dev_change_flags - change device settings
8589  *      @dev: device
8590  *      @flags: device state flags
8591  *      @extack: netlink extended ack
8592  *
8593  *      Change settings on device based state flags. The flags are
8594  *      in the userspace exported format.
8595  */
8596 int dev_change_flags(struct net_device *dev, unsigned int flags,
8597                      struct netlink_ext_ack *extack)
8598 {
8599         int ret;
8600         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8601
8602         ret = __dev_change_flags(dev, flags, extack);
8603         if (ret < 0)
8604                 return ret;
8605
8606         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8607         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8608         return ret;
8609 }
8610 EXPORT_SYMBOL(dev_change_flags);
8611
8612 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8613 {
8614         const struct net_device_ops *ops = dev->netdev_ops;
8615
8616         if (ops->ndo_change_mtu)
8617                 return ops->ndo_change_mtu(dev, new_mtu);
8618
8619         /* Pairs with all the lockless reads of dev->mtu in the stack */
8620         WRITE_ONCE(dev->mtu, new_mtu);
8621         return 0;
8622 }
8623 EXPORT_SYMBOL(__dev_set_mtu);
8624
8625 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8626                      struct netlink_ext_ack *extack)
8627 {
8628         /* MTU must be positive, and in range */
8629         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8630                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8631                 return -EINVAL;
8632         }
8633
8634         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8635                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8636                 return -EINVAL;
8637         }
8638         return 0;
8639 }
8640
8641 /**
8642  *      dev_set_mtu_ext - Change maximum transfer unit
8643  *      @dev: device
8644  *      @new_mtu: new transfer unit
8645  *      @extack: netlink extended ack
8646  *
8647  *      Change the maximum transfer size of the network device.
8648  */
8649 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8650                     struct netlink_ext_ack *extack)
8651 {
8652         int err, orig_mtu;
8653
8654         if (new_mtu == dev->mtu)
8655                 return 0;
8656
8657         err = dev_validate_mtu(dev, new_mtu, extack);
8658         if (err)
8659                 return err;
8660
8661         if (!netif_device_present(dev))
8662                 return -ENODEV;
8663
8664         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8665         err = notifier_to_errno(err);
8666         if (err)
8667                 return err;
8668
8669         orig_mtu = dev->mtu;
8670         err = __dev_set_mtu(dev, new_mtu);
8671
8672         if (!err) {
8673                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8674                                                    orig_mtu);
8675                 err = notifier_to_errno(err);
8676                 if (err) {
8677                         /* setting mtu back and notifying everyone again,
8678                          * so that they have a chance to revert changes.
8679                          */
8680                         __dev_set_mtu(dev, orig_mtu);
8681                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8682                                                      new_mtu);
8683                 }
8684         }
8685         return err;
8686 }
8687
8688 int dev_set_mtu(struct net_device *dev, int new_mtu)
8689 {
8690         struct netlink_ext_ack extack;
8691         int err;
8692
8693         memset(&extack, 0, sizeof(extack));
8694         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8695         if (err && extack._msg)
8696                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8697         return err;
8698 }
8699 EXPORT_SYMBOL(dev_set_mtu);
8700
8701 /**
8702  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8703  *      @dev: device
8704  *      @new_len: new tx queue length
8705  */
8706 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8707 {
8708         unsigned int orig_len = dev->tx_queue_len;
8709         int res;
8710
8711         if (new_len != (unsigned int)new_len)
8712                 return -ERANGE;
8713
8714         if (new_len != orig_len) {
8715                 dev->tx_queue_len = new_len;
8716                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8717                 res = notifier_to_errno(res);
8718                 if (res)
8719                         goto err_rollback;
8720                 res = dev_qdisc_change_tx_queue_len(dev);
8721                 if (res)
8722                         goto err_rollback;
8723         }
8724
8725         return 0;
8726
8727 err_rollback:
8728         netdev_err(dev, "refused to change device tx_queue_len\n");
8729         dev->tx_queue_len = orig_len;
8730         return res;
8731 }
8732
8733 /**
8734  *      dev_set_group - Change group this device belongs to
8735  *      @dev: device
8736  *      @new_group: group this device should belong to
8737  */
8738 void dev_set_group(struct net_device *dev, int new_group)
8739 {
8740         dev->group = new_group;
8741 }
8742
8743 /**
8744  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8745  *      @dev: device
8746  *      @addr: new address
8747  *      @extack: netlink extended ack
8748  */
8749 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8750                               struct netlink_ext_ack *extack)
8751 {
8752         struct netdev_notifier_pre_changeaddr_info info = {
8753                 .info.dev = dev,
8754                 .info.extack = extack,
8755                 .dev_addr = addr,
8756         };
8757         int rc;
8758
8759         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8760         return notifier_to_errno(rc);
8761 }
8762 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8763
8764 /**
8765  *      dev_set_mac_address - Change Media Access Control Address
8766  *      @dev: device
8767  *      @sa: new address
8768  *      @extack: netlink extended ack
8769  *
8770  *      Change the hardware (MAC) address of the device
8771  */
8772 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8773                         struct netlink_ext_ack *extack)
8774 {
8775         const struct net_device_ops *ops = dev->netdev_ops;
8776         int err;
8777
8778         if (!ops->ndo_set_mac_address)
8779                 return -EOPNOTSUPP;
8780         if (sa->sa_family != dev->type)
8781                 return -EINVAL;
8782         if (!netif_device_present(dev))
8783                 return -ENODEV;
8784         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8785         if (err)
8786                 return err;
8787         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8788                 err = ops->ndo_set_mac_address(dev, sa);
8789                 if (err)
8790                         return err;
8791         }
8792         dev->addr_assign_type = NET_ADDR_SET;
8793         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8794         add_device_randomness(dev->dev_addr, dev->addr_len);
8795         return 0;
8796 }
8797 EXPORT_SYMBOL(dev_set_mac_address);
8798
8799 static DECLARE_RWSEM(dev_addr_sem);
8800
8801 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8802                              struct netlink_ext_ack *extack)
8803 {
8804         int ret;
8805
8806         down_write(&dev_addr_sem);
8807         ret = dev_set_mac_address(dev, sa, extack);
8808         up_write(&dev_addr_sem);
8809         return ret;
8810 }
8811 EXPORT_SYMBOL(dev_set_mac_address_user);
8812
8813 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8814 {
8815         size_t size = sizeof(sa->sa_data_min);
8816         struct net_device *dev;
8817         int ret = 0;
8818
8819         down_read(&dev_addr_sem);
8820         rcu_read_lock();
8821
8822         dev = dev_get_by_name_rcu(net, dev_name);
8823         if (!dev) {
8824                 ret = -ENODEV;
8825                 goto unlock;
8826         }
8827         if (!dev->addr_len)
8828                 memset(sa->sa_data, 0, size);
8829         else
8830                 memcpy(sa->sa_data, dev->dev_addr,
8831                        min_t(size_t, size, dev->addr_len));
8832         sa->sa_family = dev->type;
8833
8834 unlock:
8835         rcu_read_unlock();
8836         up_read(&dev_addr_sem);
8837         return ret;
8838 }
8839 EXPORT_SYMBOL(dev_get_mac_address);
8840
8841 /**
8842  *      dev_change_carrier - Change device carrier
8843  *      @dev: device
8844  *      @new_carrier: new value
8845  *
8846  *      Change device carrier
8847  */
8848 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8849 {
8850         const struct net_device_ops *ops = dev->netdev_ops;
8851
8852         if (!ops->ndo_change_carrier)
8853                 return -EOPNOTSUPP;
8854         if (!netif_device_present(dev))
8855                 return -ENODEV;
8856         return ops->ndo_change_carrier(dev, new_carrier);
8857 }
8858
8859 /**
8860  *      dev_get_phys_port_id - Get device physical port ID
8861  *      @dev: device
8862  *      @ppid: port ID
8863  *
8864  *      Get device physical port ID
8865  */
8866 int dev_get_phys_port_id(struct net_device *dev,
8867                          struct netdev_phys_item_id *ppid)
8868 {
8869         const struct net_device_ops *ops = dev->netdev_ops;
8870
8871         if (!ops->ndo_get_phys_port_id)
8872                 return -EOPNOTSUPP;
8873         return ops->ndo_get_phys_port_id(dev, ppid);
8874 }
8875
8876 /**
8877  *      dev_get_phys_port_name - Get device physical port name
8878  *      @dev: device
8879  *      @name: port name
8880  *      @len: limit of bytes to copy to name
8881  *
8882  *      Get device physical port name
8883  */
8884 int dev_get_phys_port_name(struct net_device *dev,
8885                            char *name, size_t len)
8886 {
8887         const struct net_device_ops *ops = dev->netdev_ops;
8888         int err;
8889
8890         if (ops->ndo_get_phys_port_name) {
8891                 err = ops->ndo_get_phys_port_name(dev, name, len);
8892                 if (err != -EOPNOTSUPP)
8893                         return err;
8894         }
8895         return devlink_compat_phys_port_name_get(dev, name, len);
8896 }
8897
8898 /**
8899  *      dev_get_port_parent_id - Get the device's port parent identifier
8900  *      @dev: network device
8901  *      @ppid: pointer to a storage for the port's parent identifier
8902  *      @recurse: allow/disallow recursion to lower devices
8903  *
8904  *      Get the devices's port parent identifier
8905  */
8906 int dev_get_port_parent_id(struct net_device *dev,
8907                            struct netdev_phys_item_id *ppid,
8908                            bool recurse)
8909 {
8910         const struct net_device_ops *ops = dev->netdev_ops;
8911         struct netdev_phys_item_id first = { };
8912         struct net_device *lower_dev;
8913         struct list_head *iter;
8914         int err;
8915
8916         if (ops->ndo_get_port_parent_id) {
8917                 err = ops->ndo_get_port_parent_id(dev, ppid);
8918                 if (err != -EOPNOTSUPP)
8919                         return err;
8920         }
8921
8922         err = devlink_compat_switch_id_get(dev, ppid);
8923         if (!recurse || err != -EOPNOTSUPP)
8924                 return err;
8925
8926         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8927                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8928                 if (err)
8929                         break;
8930                 if (!first.id_len)
8931                         first = *ppid;
8932                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8933                         return -EOPNOTSUPP;
8934         }
8935
8936         return err;
8937 }
8938 EXPORT_SYMBOL(dev_get_port_parent_id);
8939
8940 /**
8941  *      netdev_port_same_parent_id - Indicate if two network devices have
8942  *      the same port parent identifier
8943  *      @a: first network device
8944  *      @b: second network device
8945  */
8946 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8947 {
8948         struct netdev_phys_item_id a_id = { };
8949         struct netdev_phys_item_id b_id = { };
8950
8951         if (dev_get_port_parent_id(a, &a_id, true) ||
8952             dev_get_port_parent_id(b, &b_id, true))
8953                 return false;
8954
8955         return netdev_phys_item_id_same(&a_id, &b_id);
8956 }
8957 EXPORT_SYMBOL(netdev_port_same_parent_id);
8958
8959 /**
8960  *      dev_change_proto_down - set carrier according to proto_down.
8961  *
8962  *      @dev: device
8963  *      @proto_down: new value
8964  */
8965 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8966 {
8967         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8968                 return -EOPNOTSUPP;
8969         if (!netif_device_present(dev))
8970                 return -ENODEV;
8971         if (proto_down)
8972                 netif_carrier_off(dev);
8973         else
8974                 netif_carrier_on(dev);
8975         dev->proto_down = proto_down;
8976         return 0;
8977 }
8978
8979 /**
8980  *      dev_change_proto_down_reason - proto down reason
8981  *
8982  *      @dev: device
8983  *      @mask: proto down mask
8984  *      @value: proto down value
8985  */
8986 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8987                                   u32 value)
8988 {
8989         int b;
8990
8991         if (!mask) {
8992                 dev->proto_down_reason = value;
8993         } else {
8994                 for_each_set_bit(b, &mask, 32) {
8995                         if (value & (1 << b))
8996                                 dev->proto_down_reason |= BIT(b);
8997                         else
8998                                 dev->proto_down_reason &= ~BIT(b);
8999                 }
9000         }
9001 }
9002
9003 struct bpf_xdp_link {
9004         struct bpf_link link;
9005         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9006         int flags;
9007 };
9008
9009 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9010 {
9011         if (flags & XDP_FLAGS_HW_MODE)
9012                 return XDP_MODE_HW;
9013         if (flags & XDP_FLAGS_DRV_MODE)
9014                 return XDP_MODE_DRV;
9015         if (flags & XDP_FLAGS_SKB_MODE)
9016                 return XDP_MODE_SKB;
9017         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9018 }
9019
9020 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9021 {
9022         switch (mode) {
9023         case XDP_MODE_SKB:
9024                 return generic_xdp_install;
9025         case XDP_MODE_DRV:
9026         case XDP_MODE_HW:
9027                 return dev->netdev_ops->ndo_bpf;
9028         default:
9029                 return NULL;
9030         }
9031 }
9032
9033 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9034                                          enum bpf_xdp_mode mode)
9035 {
9036         return dev->xdp_state[mode].link;
9037 }
9038
9039 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9040                                      enum bpf_xdp_mode mode)
9041 {
9042         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9043
9044         if (link)
9045                 return link->link.prog;
9046         return dev->xdp_state[mode].prog;
9047 }
9048
9049 u8 dev_xdp_prog_count(struct net_device *dev)
9050 {
9051         u8 count = 0;
9052         int i;
9053
9054         for (i = 0; i < __MAX_XDP_MODE; i++)
9055                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9056                         count++;
9057         return count;
9058 }
9059 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9060
9061 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9062 {
9063         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9064
9065         return prog ? prog->aux->id : 0;
9066 }
9067
9068 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9069                              struct bpf_xdp_link *link)
9070 {
9071         dev->xdp_state[mode].link = link;
9072         dev->xdp_state[mode].prog = NULL;
9073 }
9074
9075 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9076                              struct bpf_prog *prog)
9077 {
9078         dev->xdp_state[mode].link = NULL;
9079         dev->xdp_state[mode].prog = prog;
9080 }
9081
9082 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9083                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9084                            u32 flags, struct bpf_prog *prog)
9085 {
9086         struct netdev_bpf xdp;
9087         int err;
9088
9089         memset(&xdp, 0, sizeof(xdp));
9090         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9091         xdp.extack = extack;
9092         xdp.flags = flags;
9093         xdp.prog = prog;
9094
9095         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9096          * "moved" into driver), so they don't increment it on their own, but
9097          * they do decrement refcnt when program is detached or replaced.
9098          * Given net_device also owns link/prog, we need to bump refcnt here
9099          * to prevent drivers from underflowing it.
9100          */
9101         if (prog)
9102                 bpf_prog_inc(prog);
9103         err = bpf_op(dev, &xdp);
9104         if (err) {
9105                 if (prog)
9106                         bpf_prog_put(prog);
9107                 return err;
9108         }
9109
9110         if (mode != XDP_MODE_HW)
9111                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9112
9113         return 0;
9114 }
9115
9116 static void dev_xdp_uninstall(struct net_device *dev)
9117 {
9118         struct bpf_xdp_link *link;
9119         struct bpf_prog *prog;
9120         enum bpf_xdp_mode mode;
9121         bpf_op_t bpf_op;
9122
9123         ASSERT_RTNL();
9124
9125         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9126                 prog = dev_xdp_prog(dev, mode);
9127                 if (!prog)
9128                         continue;
9129
9130                 bpf_op = dev_xdp_bpf_op(dev, mode);
9131                 if (!bpf_op)
9132                         continue;
9133
9134                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9135
9136                 /* auto-detach link from net device */
9137                 link = dev_xdp_link(dev, mode);
9138                 if (link)
9139                         link->dev = NULL;
9140                 else
9141                         bpf_prog_put(prog);
9142
9143                 dev_xdp_set_link(dev, mode, NULL);
9144         }
9145 }
9146
9147 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9148                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9149                           struct bpf_prog *old_prog, u32 flags)
9150 {
9151         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9152         struct bpf_prog *cur_prog;
9153         struct net_device *upper;
9154         struct list_head *iter;
9155         enum bpf_xdp_mode mode;
9156         bpf_op_t bpf_op;
9157         int err;
9158
9159         ASSERT_RTNL();
9160
9161         /* either link or prog attachment, never both */
9162         if (link && (new_prog || old_prog))
9163                 return -EINVAL;
9164         /* link supports only XDP mode flags */
9165         if (link && (flags & ~XDP_FLAGS_MODES)) {
9166                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9167                 return -EINVAL;
9168         }
9169         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9170         if (num_modes > 1) {
9171                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9172                 return -EINVAL;
9173         }
9174         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9175         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9176                 NL_SET_ERR_MSG(extack,
9177                                "More than one program loaded, unset mode is ambiguous");
9178                 return -EINVAL;
9179         }
9180         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9181         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9182                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9183                 return -EINVAL;
9184         }
9185
9186         mode = dev_xdp_mode(dev, flags);
9187         /* can't replace attached link */
9188         if (dev_xdp_link(dev, mode)) {
9189                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9190                 return -EBUSY;
9191         }
9192
9193         /* don't allow if an upper device already has a program */
9194         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9195                 if (dev_xdp_prog_count(upper) > 0) {
9196                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9197                         return -EEXIST;
9198                 }
9199         }
9200
9201         cur_prog = dev_xdp_prog(dev, mode);
9202         /* can't replace attached prog with link */
9203         if (link && cur_prog) {
9204                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9205                 return -EBUSY;
9206         }
9207         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9208                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9209                 return -EEXIST;
9210         }
9211
9212         /* put effective new program into new_prog */
9213         if (link)
9214                 new_prog = link->link.prog;
9215
9216         if (new_prog) {
9217                 bool offload = mode == XDP_MODE_HW;
9218                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9219                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9220
9221                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9222                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9223                         return -EBUSY;
9224                 }
9225                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9226                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9227                         return -EEXIST;
9228                 }
9229                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9230                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9231                         return -EINVAL;
9232                 }
9233                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9234                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9235                         return -EINVAL;
9236                 }
9237                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9238                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9239                         return -EINVAL;
9240                 }
9241                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9242                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9243                         return -EINVAL;
9244                 }
9245         }
9246
9247         /* don't call drivers if the effective program didn't change */
9248         if (new_prog != cur_prog) {
9249                 bpf_op = dev_xdp_bpf_op(dev, mode);
9250                 if (!bpf_op) {
9251                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9252                         return -EOPNOTSUPP;
9253                 }
9254
9255                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9256                 if (err)
9257                         return err;
9258         }
9259
9260         if (link)
9261                 dev_xdp_set_link(dev, mode, link);
9262         else
9263                 dev_xdp_set_prog(dev, mode, new_prog);
9264         if (cur_prog)
9265                 bpf_prog_put(cur_prog);
9266
9267         return 0;
9268 }
9269
9270 static int dev_xdp_attach_link(struct net_device *dev,
9271                                struct netlink_ext_ack *extack,
9272                                struct bpf_xdp_link *link)
9273 {
9274         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9275 }
9276
9277 static int dev_xdp_detach_link(struct net_device *dev,
9278                                struct netlink_ext_ack *extack,
9279                                struct bpf_xdp_link *link)
9280 {
9281         enum bpf_xdp_mode mode;
9282         bpf_op_t bpf_op;
9283
9284         ASSERT_RTNL();
9285
9286         mode = dev_xdp_mode(dev, link->flags);
9287         if (dev_xdp_link(dev, mode) != link)
9288                 return -EINVAL;
9289
9290         bpf_op = dev_xdp_bpf_op(dev, mode);
9291         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9292         dev_xdp_set_link(dev, mode, NULL);
9293         return 0;
9294 }
9295
9296 static void bpf_xdp_link_release(struct bpf_link *link)
9297 {
9298         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9299
9300         rtnl_lock();
9301
9302         /* if racing with net_device's tear down, xdp_link->dev might be
9303          * already NULL, in which case link was already auto-detached
9304          */
9305         if (xdp_link->dev) {
9306                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9307                 xdp_link->dev = NULL;
9308         }
9309
9310         rtnl_unlock();
9311 }
9312
9313 static int bpf_xdp_link_detach(struct bpf_link *link)
9314 {
9315         bpf_xdp_link_release(link);
9316         return 0;
9317 }
9318
9319 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9320 {
9321         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9322
9323         kfree(xdp_link);
9324 }
9325
9326 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9327                                      struct seq_file *seq)
9328 {
9329         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9330         u32 ifindex = 0;
9331
9332         rtnl_lock();
9333         if (xdp_link->dev)
9334                 ifindex = xdp_link->dev->ifindex;
9335         rtnl_unlock();
9336
9337         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9338 }
9339
9340 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9341                                        struct bpf_link_info *info)
9342 {
9343         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9344         u32 ifindex = 0;
9345
9346         rtnl_lock();
9347         if (xdp_link->dev)
9348                 ifindex = xdp_link->dev->ifindex;
9349         rtnl_unlock();
9350
9351         info->xdp.ifindex = ifindex;
9352         return 0;
9353 }
9354
9355 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9356                                struct bpf_prog *old_prog)
9357 {
9358         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9359         enum bpf_xdp_mode mode;
9360         bpf_op_t bpf_op;
9361         int err = 0;
9362
9363         rtnl_lock();
9364
9365         /* link might have been auto-released already, so fail */
9366         if (!xdp_link->dev) {
9367                 err = -ENOLINK;
9368                 goto out_unlock;
9369         }
9370
9371         if (old_prog && link->prog != old_prog) {
9372                 err = -EPERM;
9373                 goto out_unlock;
9374         }
9375         old_prog = link->prog;
9376         if (old_prog->type != new_prog->type ||
9377             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9378                 err = -EINVAL;
9379                 goto out_unlock;
9380         }
9381
9382         if (old_prog == new_prog) {
9383                 /* no-op, don't disturb drivers */
9384                 bpf_prog_put(new_prog);
9385                 goto out_unlock;
9386         }
9387
9388         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9389         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9390         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9391                               xdp_link->flags, new_prog);
9392         if (err)
9393                 goto out_unlock;
9394
9395         old_prog = xchg(&link->prog, new_prog);
9396         bpf_prog_put(old_prog);
9397
9398 out_unlock:
9399         rtnl_unlock();
9400         return err;
9401 }
9402
9403 static const struct bpf_link_ops bpf_xdp_link_lops = {
9404         .release = bpf_xdp_link_release,
9405         .dealloc = bpf_xdp_link_dealloc,
9406         .detach = bpf_xdp_link_detach,
9407         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9408         .fill_link_info = bpf_xdp_link_fill_link_info,
9409         .update_prog = bpf_xdp_link_update,
9410 };
9411
9412 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9413 {
9414         struct net *net = current->nsproxy->net_ns;
9415         struct bpf_link_primer link_primer;
9416         struct bpf_xdp_link *link;
9417         struct net_device *dev;
9418         int err, fd;
9419
9420         rtnl_lock();
9421         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9422         if (!dev) {
9423                 rtnl_unlock();
9424                 return -EINVAL;
9425         }
9426
9427         link = kzalloc(sizeof(*link), GFP_USER);
9428         if (!link) {
9429                 err = -ENOMEM;
9430                 goto unlock;
9431         }
9432
9433         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9434         link->dev = dev;
9435         link->flags = attr->link_create.flags;
9436
9437         err = bpf_link_prime(&link->link, &link_primer);
9438         if (err) {
9439                 kfree(link);
9440                 goto unlock;
9441         }
9442
9443         err = dev_xdp_attach_link(dev, NULL, link);
9444         rtnl_unlock();
9445
9446         if (err) {
9447                 link->dev = NULL;
9448                 bpf_link_cleanup(&link_primer);
9449                 goto out_put_dev;
9450         }
9451
9452         fd = bpf_link_settle(&link_primer);
9453         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9454         dev_put(dev);
9455         return fd;
9456
9457 unlock:
9458         rtnl_unlock();
9459
9460 out_put_dev:
9461         dev_put(dev);
9462         return err;
9463 }
9464
9465 /**
9466  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9467  *      @dev: device
9468  *      @extack: netlink extended ack
9469  *      @fd: new program fd or negative value to clear
9470  *      @expected_fd: old program fd that userspace expects to replace or clear
9471  *      @flags: xdp-related flags
9472  *
9473  *      Set or clear a bpf program for a device
9474  */
9475 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9476                       int fd, int expected_fd, u32 flags)
9477 {
9478         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9479         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9480         int err;
9481
9482         ASSERT_RTNL();
9483
9484         if (fd >= 0) {
9485                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9486                                                  mode != XDP_MODE_SKB);
9487                 if (IS_ERR(new_prog))
9488                         return PTR_ERR(new_prog);
9489         }
9490
9491         if (expected_fd >= 0) {
9492                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9493                                                  mode != XDP_MODE_SKB);
9494                 if (IS_ERR(old_prog)) {
9495                         err = PTR_ERR(old_prog);
9496                         old_prog = NULL;
9497                         goto err_out;
9498                 }
9499         }
9500
9501         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9502
9503 err_out:
9504         if (err && new_prog)
9505                 bpf_prog_put(new_prog);
9506         if (old_prog)
9507                 bpf_prog_put(old_prog);
9508         return err;
9509 }
9510
9511 /**
9512  *      dev_new_index   -       allocate an ifindex
9513  *      @net: the applicable net namespace
9514  *
9515  *      Returns a suitable unique value for a new device interface
9516  *      number.  The caller must hold the rtnl semaphore or the
9517  *      dev_base_lock to be sure it remains unique.
9518  */
9519 static int dev_new_index(struct net *net)
9520 {
9521         int ifindex = net->ifindex;
9522
9523         for (;;) {
9524                 if (++ifindex <= 0)
9525                         ifindex = 1;
9526                 if (!__dev_get_by_index(net, ifindex))
9527                         return net->ifindex = ifindex;
9528         }
9529 }
9530
9531 /* Delayed registration/unregisteration */
9532 LIST_HEAD(net_todo_list);
9533 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9534
9535 static void net_set_todo(struct net_device *dev)
9536 {
9537         list_add_tail(&dev->todo_list, &net_todo_list);
9538         atomic_inc(&dev_net(dev)->dev_unreg_count);
9539 }
9540
9541 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9542         struct net_device *upper, netdev_features_t features)
9543 {
9544         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9545         netdev_features_t feature;
9546         int feature_bit;
9547
9548         for_each_netdev_feature(upper_disables, feature_bit) {
9549                 feature = __NETIF_F_BIT(feature_bit);
9550                 if (!(upper->wanted_features & feature)
9551                     && (features & feature)) {
9552                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9553                                    &feature, upper->name);
9554                         features &= ~feature;
9555                 }
9556         }
9557
9558         return features;
9559 }
9560
9561 static void netdev_sync_lower_features(struct net_device *upper,
9562         struct net_device *lower, netdev_features_t features)
9563 {
9564         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9565         netdev_features_t feature;
9566         int feature_bit;
9567
9568         for_each_netdev_feature(upper_disables, feature_bit) {
9569                 feature = __NETIF_F_BIT(feature_bit);
9570                 if (!(features & feature) && (lower->features & feature)) {
9571                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9572                                    &feature, lower->name);
9573                         lower->wanted_features &= ~feature;
9574                         __netdev_update_features(lower);
9575
9576                         if (unlikely(lower->features & feature))
9577                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9578                                             &feature, lower->name);
9579                         else
9580                                 netdev_features_change(lower);
9581                 }
9582         }
9583 }
9584
9585 static netdev_features_t netdev_fix_features(struct net_device *dev,
9586         netdev_features_t features)
9587 {
9588         /* Fix illegal checksum combinations */
9589         if ((features & NETIF_F_HW_CSUM) &&
9590             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9591                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9592                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9593         }
9594
9595         /* TSO requires that SG is present as well. */
9596         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9597                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9598                 features &= ~NETIF_F_ALL_TSO;
9599         }
9600
9601         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9602                                         !(features & NETIF_F_IP_CSUM)) {
9603                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9604                 features &= ~NETIF_F_TSO;
9605                 features &= ~NETIF_F_TSO_ECN;
9606         }
9607
9608         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9609                                          !(features & NETIF_F_IPV6_CSUM)) {
9610                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9611                 features &= ~NETIF_F_TSO6;
9612         }
9613
9614         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9615         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9616                 features &= ~NETIF_F_TSO_MANGLEID;
9617
9618         /* TSO ECN requires that TSO is present as well. */
9619         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9620                 features &= ~NETIF_F_TSO_ECN;
9621
9622         /* Software GSO depends on SG. */
9623         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9624                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9625                 features &= ~NETIF_F_GSO;
9626         }
9627
9628         /* GSO partial features require GSO partial be set */
9629         if ((features & dev->gso_partial_features) &&
9630             !(features & NETIF_F_GSO_PARTIAL)) {
9631                 netdev_dbg(dev,
9632                            "Dropping partially supported GSO features since no GSO partial.\n");
9633                 features &= ~dev->gso_partial_features;
9634         }
9635
9636         if (!(features & NETIF_F_RXCSUM)) {
9637                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9638                  * successfully merged by hardware must also have the
9639                  * checksum verified by hardware.  If the user does not
9640                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9641                  */
9642                 if (features & NETIF_F_GRO_HW) {
9643                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9644                         features &= ~NETIF_F_GRO_HW;
9645                 }
9646         }
9647
9648         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9649         if (features & NETIF_F_RXFCS) {
9650                 if (features & NETIF_F_LRO) {
9651                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9652                         features &= ~NETIF_F_LRO;
9653                 }
9654
9655                 if (features & NETIF_F_GRO_HW) {
9656                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9657                         features &= ~NETIF_F_GRO_HW;
9658                 }
9659         }
9660
9661         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9662                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9663                 features &= ~NETIF_F_LRO;
9664         }
9665
9666         if (features & NETIF_F_HW_TLS_TX) {
9667                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9668                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9669                 bool hw_csum = features & NETIF_F_HW_CSUM;
9670
9671                 if (!ip_csum && !hw_csum) {
9672                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9673                         features &= ~NETIF_F_HW_TLS_TX;
9674                 }
9675         }
9676
9677         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9678                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9679                 features &= ~NETIF_F_HW_TLS_RX;
9680         }
9681
9682         return features;
9683 }
9684
9685 int __netdev_update_features(struct net_device *dev)
9686 {
9687         struct net_device *upper, *lower;
9688         netdev_features_t features;
9689         struct list_head *iter;
9690         int err = -1;
9691
9692         ASSERT_RTNL();
9693
9694         features = netdev_get_wanted_features(dev);
9695
9696         if (dev->netdev_ops->ndo_fix_features)
9697                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9698
9699         /* driver might be less strict about feature dependencies */
9700         features = netdev_fix_features(dev, features);
9701
9702         /* some features can't be enabled if they're off on an upper device */
9703         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9704                 features = netdev_sync_upper_features(dev, upper, features);
9705
9706         if (dev->features == features)
9707                 goto sync_lower;
9708
9709         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9710                 &dev->features, &features);
9711
9712         if (dev->netdev_ops->ndo_set_features)
9713                 err = dev->netdev_ops->ndo_set_features(dev, features);
9714         else
9715                 err = 0;
9716
9717         if (unlikely(err < 0)) {
9718                 netdev_err(dev,
9719                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9720                         err, &features, &dev->features);
9721                 /* return non-0 since some features might have changed and
9722                  * it's better to fire a spurious notification than miss it
9723                  */
9724                 return -1;
9725         }
9726
9727 sync_lower:
9728         /* some features must be disabled on lower devices when disabled
9729          * on an upper device (think: bonding master or bridge)
9730          */
9731         netdev_for_each_lower_dev(dev, lower, iter)
9732                 netdev_sync_lower_features(dev, lower, features);
9733
9734         if (!err) {
9735                 netdev_features_t diff = features ^ dev->features;
9736
9737                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9738                         /* udp_tunnel_{get,drop}_rx_info both need
9739                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9740                          * device, or they won't do anything.
9741                          * Thus we need to update dev->features
9742                          * *before* calling udp_tunnel_get_rx_info,
9743                          * but *after* calling udp_tunnel_drop_rx_info.
9744                          */
9745                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9746                                 dev->features = features;
9747                                 udp_tunnel_get_rx_info(dev);
9748                         } else {
9749                                 udp_tunnel_drop_rx_info(dev);
9750                         }
9751                 }
9752
9753                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9754                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9755                                 dev->features = features;
9756                                 err |= vlan_get_rx_ctag_filter_info(dev);
9757                         } else {
9758                                 vlan_drop_rx_ctag_filter_info(dev);
9759                         }
9760                 }
9761
9762                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9763                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9764                                 dev->features = features;
9765                                 err |= vlan_get_rx_stag_filter_info(dev);
9766                         } else {
9767                                 vlan_drop_rx_stag_filter_info(dev);
9768                         }
9769                 }
9770
9771                 dev->features = features;
9772         }
9773
9774         return err < 0 ? 0 : 1;
9775 }
9776
9777 /**
9778  *      netdev_update_features - recalculate device features
9779  *      @dev: the device to check
9780  *
9781  *      Recalculate dev->features set and send notifications if it
9782  *      has changed. Should be called after driver or hardware dependent
9783  *      conditions might have changed that influence the features.
9784  */
9785 void netdev_update_features(struct net_device *dev)
9786 {
9787         if (__netdev_update_features(dev))
9788                 netdev_features_change(dev);
9789 }
9790 EXPORT_SYMBOL(netdev_update_features);
9791
9792 /**
9793  *      netdev_change_features - recalculate device features
9794  *      @dev: the device to check
9795  *
9796  *      Recalculate dev->features set and send notifications even
9797  *      if they have not changed. Should be called instead of
9798  *      netdev_update_features() if also dev->vlan_features might
9799  *      have changed to allow the changes to be propagated to stacked
9800  *      VLAN devices.
9801  */
9802 void netdev_change_features(struct net_device *dev)
9803 {
9804         __netdev_update_features(dev);
9805         netdev_features_change(dev);
9806 }
9807 EXPORT_SYMBOL(netdev_change_features);
9808
9809 /**
9810  *      netif_stacked_transfer_operstate -      transfer operstate
9811  *      @rootdev: the root or lower level device to transfer state from
9812  *      @dev: the device to transfer operstate to
9813  *
9814  *      Transfer operational state from root to device. This is normally
9815  *      called when a stacking relationship exists between the root
9816  *      device and the device(a leaf device).
9817  */
9818 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9819                                         struct net_device *dev)
9820 {
9821         if (rootdev->operstate == IF_OPER_DORMANT)
9822                 netif_dormant_on(dev);
9823         else
9824                 netif_dormant_off(dev);
9825
9826         if (rootdev->operstate == IF_OPER_TESTING)
9827                 netif_testing_on(dev);
9828         else
9829                 netif_testing_off(dev);
9830
9831         if (netif_carrier_ok(rootdev))
9832                 netif_carrier_on(dev);
9833         else
9834                 netif_carrier_off(dev);
9835 }
9836 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9837
9838 static int netif_alloc_rx_queues(struct net_device *dev)
9839 {
9840         unsigned int i, count = dev->num_rx_queues;
9841         struct netdev_rx_queue *rx;
9842         size_t sz = count * sizeof(*rx);
9843         int err = 0;
9844
9845         BUG_ON(count < 1);
9846
9847         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9848         if (!rx)
9849                 return -ENOMEM;
9850
9851         dev->_rx = rx;
9852
9853         for (i = 0; i < count; i++) {
9854                 rx[i].dev = dev;
9855
9856                 /* XDP RX-queue setup */
9857                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9858                 if (err < 0)
9859                         goto err_rxq_info;
9860         }
9861         return 0;
9862
9863 err_rxq_info:
9864         /* Rollback successful reg's and free other resources */
9865         while (i--)
9866                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9867         kvfree(dev->_rx);
9868         dev->_rx = NULL;
9869         return err;
9870 }
9871
9872 static void netif_free_rx_queues(struct net_device *dev)
9873 {
9874         unsigned int i, count = dev->num_rx_queues;
9875
9876         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9877         if (!dev->_rx)
9878                 return;
9879
9880         for (i = 0; i < count; i++)
9881                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9882
9883         kvfree(dev->_rx);
9884 }
9885
9886 static void netdev_init_one_queue(struct net_device *dev,
9887                                   struct netdev_queue *queue, void *_unused)
9888 {
9889         /* Initialize queue lock */
9890         spin_lock_init(&queue->_xmit_lock);
9891         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9892         queue->xmit_lock_owner = -1;
9893         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9894         queue->dev = dev;
9895 #ifdef CONFIG_BQL
9896         dql_init(&queue->dql, HZ);
9897 #endif
9898 }
9899
9900 static void netif_free_tx_queues(struct net_device *dev)
9901 {
9902         kvfree(dev->_tx);
9903 }
9904
9905 static int netif_alloc_netdev_queues(struct net_device *dev)
9906 {
9907         unsigned int count = dev->num_tx_queues;
9908         struct netdev_queue *tx;
9909         size_t sz = count * sizeof(*tx);
9910
9911         if (count < 1 || count > 0xffff)
9912                 return -EINVAL;
9913
9914         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9915         if (!tx)
9916                 return -ENOMEM;
9917
9918         dev->_tx = tx;
9919
9920         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9921         spin_lock_init(&dev->tx_global_lock);
9922
9923         return 0;
9924 }
9925
9926 void netif_tx_stop_all_queues(struct net_device *dev)
9927 {
9928         unsigned int i;
9929
9930         for (i = 0; i < dev->num_tx_queues; i++) {
9931                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9932
9933                 netif_tx_stop_queue(txq);
9934         }
9935 }
9936 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9937
9938 /**
9939  * register_netdevice() - register a network device
9940  * @dev: device to register
9941  *
9942  * Take a prepared network device structure and make it externally accessible.
9943  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9944  * Callers must hold the rtnl lock - you may want register_netdev()
9945  * instead of this.
9946  */
9947 int register_netdevice(struct net_device *dev)
9948 {
9949         int ret;
9950         struct net *net = dev_net(dev);
9951
9952         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9953                      NETDEV_FEATURE_COUNT);
9954         BUG_ON(dev_boot_phase);
9955         ASSERT_RTNL();
9956
9957         might_sleep();
9958
9959         /* When net_device's are persistent, this will be fatal. */
9960         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9961         BUG_ON(!net);
9962
9963         ret = ethtool_check_ops(dev->ethtool_ops);
9964         if (ret)
9965                 return ret;
9966
9967         spin_lock_init(&dev->addr_list_lock);
9968         netdev_set_addr_lockdep_class(dev);
9969
9970         ret = dev_get_valid_name(net, dev, dev->name);
9971         if (ret < 0)
9972                 goto out;
9973
9974         ret = -ENOMEM;
9975         dev->name_node = netdev_name_node_head_alloc(dev);
9976         if (!dev->name_node)
9977                 goto out;
9978
9979         /* Init, if this function is available */
9980         if (dev->netdev_ops->ndo_init) {
9981                 ret = dev->netdev_ops->ndo_init(dev);
9982                 if (ret) {
9983                         if (ret > 0)
9984                                 ret = -EIO;
9985                         goto err_free_name;
9986                 }
9987         }
9988
9989         if (((dev->hw_features | dev->features) &
9990              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9991             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9992              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9993                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9994                 ret = -EINVAL;
9995                 goto err_uninit;
9996         }
9997
9998         ret = -EBUSY;
9999         if (!dev->ifindex)
10000                 dev->ifindex = dev_new_index(net);
10001         else if (__dev_get_by_index(net, dev->ifindex))
10002                 goto err_uninit;
10003
10004         /* Transfer changeable features to wanted_features and enable
10005          * software offloads (GSO and GRO).
10006          */
10007         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10008         dev->features |= NETIF_F_SOFT_FEATURES;
10009
10010         if (dev->udp_tunnel_nic_info) {
10011                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10012                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10013         }
10014
10015         dev->wanted_features = dev->features & dev->hw_features;
10016
10017         if (!(dev->flags & IFF_LOOPBACK))
10018                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10019
10020         /* If IPv4 TCP segmentation offload is supported we should also
10021          * allow the device to enable segmenting the frame with the option
10022          * of ignoring a static IP ID value.  This doesn't enable the
10023          * feature itself but allows the user to enable it later.
10024          */
10025         if (dev->hw_features & NETIF_F_TSO)
10026                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10027         if (dev->vlan_features & NETIF_F_TSO)
10028                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10029         if (dev->mpls_features & NETIF_F_TSO)
10030                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10031         if (dev->hw_enc_features & NETIF_F_TSO)
10032                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10033
10034         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10035          */
10036         dev->vlan_features |= NETIF_F_HIGHDMA;
10037
10038         /* Make NETIF_F_SG inheritable to tunnel devices.
10039          */
10040         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10041
10042         /* Make NETIF_F_SG inheritable to MPLS.
10043          */
10044         dev->mpls_features |= NETIF_F_SG;
10045
10046         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10047         ret = notifier_to_errno(ret);
10048         if (ret)
10049                 goto err_uninit;
10050
10051         ret = netdev_register_kobject(dev);
10052         write_lock(&dev_base_lock);
10053         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10054         write_unlock(&dev_base_lock);
10055         if (ret)
10056                 goto err_uninit_notify;
10057
10058         __netdev_update_features(dev);
10059
10060         /*
10061          *      Default initial state at registry is that the
10062          *      device is present.
10063          */
10064
10065         set_bit(__LINK_STATE_PRESENT, &dev->state);
10066
10067         linkwatch_init_dev(dev);
10068
10069         dev_init_scheduler(dev);
10070
10071         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10072         list_netdevice(dev);
10073
10074         add_device_randomness(dev->dev_addr, dev->addr_len);
10075
10076         /* If the device has permanent device address, driver should
10077          * set dev_addr and also addr_assign_type should be set to
10078          * NET_ADDR_PERM (default value).
10079          */
10080         if (dev->addr_assign_type == NET_ADDR_PERM)
10081                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10082
10083         /* Notify protocols, that a new device appeared. */
10084         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10085         ret = notifier_to_errno(ret);
10086         if (ret) {
10087                 /* Expect explicit free_netdev() on failure */
10088                 dev->needs_free_netdev = false;
10089                 unregister_netdevice_queue(dev, NULL);
10090                 goto out;
10091         }
10092         /*
10093          *      Prevent userspace races by waiting until the network
10094          *      device is fully setup before sending notifications.
10095          */
10096         if (!dev->rtnl_link_ops ||
10097             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10098                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10099
10100 out:
10101         return ret;
10102
10103 err_uninit_notify:
10104         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10105 err_uninit:
10106         if (dev->netdev_ops->ndo_uninit)
10107                 dev->netdev_ops->ndo_uninit(dev);
10108         if (dev->priv_destructor)
10109                 dev->priv_destructor(dev);
10110 err_free_name:
10111         netdev_name_node_free(dev->name_node);
10112         goto out;
10113 }
10114 EXPORT_SYMBOL(register_netdevice);
10115
10116 /**
10117  *      init_dummy_netdev       - init a dummy network device for NAPI
10118  *      @dev: device to init
10119  *
10120  *      This takes a network device structure and initialize the minimum
10121  *      amount of fields so it can be used to schedule NAPI polls without
10122  *      registering a full blown interface. This is to be used by drivers
10123  *      that need to tie several hardware interfaces to a single NAPI
10124  *      poll scheduler due to HW limitations.
10125  */
10126 int init_dummy_netdev(struct net_device *dev)
10127 {
10128         /* Clear everything. Note we don't initialize spinlocks
10129          * are they aren't supposed to be taken by any of the
10130          * NAPI code and this dummy netdev is supposed to be
10131          * only ever used for NAPI polls
10132          */
10133         memset(dev, 0, sizeof(struct net_device));
10134
10135         /* make sure we BUG if trying to hit standard
10136          * register/unregister code path
10137          */
10138         dev->reg_state = NETREG_DUMMY;
10139
10140         /* NAPI wants this */
10141         INIT_LIST_HEAD(&dev->napi_list);
10142
10143         /* a dummy interface is started by default */
10144         set_bit(__LINK_STATE_PRESENT, &dev->state);
10145         set_bit(__LINK_STATE_START, &dev->state);
10146
10147         /* napi_busy_loop stats accounting wants this */
10148         dev_net_set(dev, &init_net);
10149
10150         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10151          * because users of this 'device' dont need to change
10152          * its refcount.
10153          */
10154
10155         return 0;
10156 }
10157 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10158
10159
10160 /**
10161  *      register_netdev - register a network device
10162  *      @dev: device to register
10163  *
10164  *      Take a completed network device structure and add it to the kernel
10165  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10166  *      chain. 0 is returned on success. A negative errno code is returned
10167  *      on a failure to set up the device, or if the name is a duplicate.
10168  *
10169  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10170  *      and expands the device name if you passed a format string to
10171  *      alloc_netdev.
10172  */
10173 int register_netdev(struct net_device *dev)
10174 {
10175         int err;
10176
10177         if (rtnl_lock_killable())
10178                 return -EINTR;
10179         err = register_netdevice(dev);
10180         rtnl_unlock();
10181         return err;
10182 }
10183 EXPORT_SYMBOL(register_netdev);
10184
10185 int netdev_refcnt_read(const struct net_device *dev)
10186 {
10187 #ifdef CONFIG_PCPU_DEV_REFCNT
10188         int i, refcnt = 0;
10189
10190         for_each_possible_cpu(i)
10191                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10192         return refcnt;
10193 #else
10194         return refcount_read(&dev->dev_refcnt);
10195 #endif
10196 }
10197 EXPORT_SYMBOL(netdev_refcnt_read);
10198
10199 int netdev_unregister_timeout_secs __read_mostly = 10;
10200
10201 #define WAIT_REFS_MIN_MSECS 1
10202 #define WAIT_REFS_MAX_MSECS 250
10203 /**
10204  * netdev_wait_allrefs_any - wait until all references are gone.
10205  * @list: list of net_devices to wait on
10206  *
10207  * This is called when unregistering network devices.
10208  *
10209  * Any protocol or device that holds a reference should register
10210  * for netdevice notification, and cleanup and put back the
10211  * reference if they receive an UNREGISTER event.
10212  * We can get stuck here if buggy protocols don't correctly
10213  * call dev_put.
10214  */
10215 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10216 {
10217         unsigned long rebroadcast_time, warning_time;
10218         struct net_device *dev;
10219         int wait = 0;
10220
10221         rebroadcast_time = warning_time = jiffies;
10222
10223         list_for_each_entry(dev, list, todo_list)
10224                 if (netdev_refcnt_read(dev) == 1)
10225                         return dev;
10226
10227         while (true) {
10228                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10229                         rtnl_lock();
10230
10231                         /* Rebroadcast unregister notification */
10232                         list_for_each_entry(dev, list, todo_list)
10233                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10234
10235                         __rtnl_unlock();
10236                         rcu_barrier();
10237                         rtnl_lock();
10238
10239                         list_for_each_entry(dev, list, todo_list)
10240                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10241                                              &dev->state)) {
10242                                         /* We must not have linkwatch events
10243                                          * pending on unregister. If this
10244                                          * happens, we simply run the queue
10245                                          * unscheduled, resulting in a noop
10246                                          * for this device.
10247                                          */
10248                                         linkwatch_run_queue();
10249                                         break;
10250                                 }
10251
10252                         __rtnl_unlock();
10253
10254                         rebroadcast_time = jiffies;
10255                 }
10256
10257                 if (!wait) {
10258                         rcu_barrier();
10259                         wait = WAIT_REFS_MIN_MSECS;
10260                 } else {
10261                         msleep(wait);
10262                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10263                 }
10264
10265                 list_for_each_entry(dev, list, todo_list)
10266                         if (netdev_refcnt_read(dev) == 1)
10267                                 return dev;
10268
10269                 if (time_after(jiffies, warning_time +
10270                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10271                         list_for_each_entry(dev, list, todo_list) {
10272                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10273                                          dev->name, netdev_refcnt_read(dev));
10274                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10275                         }
10276
10277                         warning_time = jiffies;
10278                 }
10279         }
10280 }
10281
10282 /* The sequence is:
10283  *
10284  *      rtnl_lock();
10285  *      ...
10286  *      register_netdevice(x1);
10287  *      register_netdevice(x2);
10288  *      ...
10289  *      unregister_netdevice(y1);
10290  *      unregister_netdevice(y2);
10291  *      ...
10292  *      rtnl_unlock();
10293  *      free_netdev(y1);
10294  *      free_netdev(y2);
10295  *
10296  * We are invoked by rtnl_unlock().
10297  * This allows us to deal with problems:
10298  * 1) We can delete sysfs objects which invoke hotplug
10299  *    without deadlocking with linkwatch via keventd.
10300  * 2) Since we run with the RTNL semaphore not held, we can sleep
10301  *    safely in order to wait for the netdev refcnt to drop to zero.
10302  *
10303  * We must not return until all unregister events added during
10304  * the interval the lock was held have been completed.
10305  */
10306 void netdev_run_todo(void)
10307 {
10308         struct net_device *dev, *tmp;
10309         struct list_head list;
10310 #ifdef CONFIG_LOCKDEP
10311         struct list_head unlink_list;
10312
10313         list_replace_init(&net_unlink_list, &unlink_list);
10314
10315         while (!list_empty(&unlink_list)) {
10316                 struct net_device *dev = list_first_entry(&unlink_list,
10317                                                           struct net_device,
10318                                                           unlink_list);
10319                 list_del_init(&dev->unlink_list);
10320                 dev->nested_level = dev->lower_level - 1;
10321         }
10322 #endif
10323
10324         /* Snapshot list, allow later requests */
10325         list_replace_init(&net_todo_list, &list);
10326
10327         __rtnl_unlock();
10328
10329         /* Wait for rcu callbacks to finish before next phase */
10330         if (!list_empty(&list))
10331                 rcu_barrier();
10332
10333         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10334                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10335                         netdev_WARN(dev, "run_todo but not unregistering\n");
10336                         list_del(&dev->todo_list);
10337                         continue;
10338                 }
10339
10340                 write_lock(&dev_base_lock);
10341                 dev->reg_state = NETREG_UNREGISTERED;
10342                 write_unlock(&dev_base_lock);
10343                 linkwatch_forget_dev(dev);
10344         }
10345
10346         while (!list_empty(&list)) {
10347                 dev = netdev_wait_allrefs_any(&list);
10348                 list_del(&dev->todo_list);
10349
10350                 /* paranoia */
10351                 BUG_ON(netdev_refcnt_read(dev) != 1);
10352                 BUG_ON(!list_empty(&dev->ptype_all));
10353                 BUG_ON(!list_empty(&dev->ptype_specific));
10354                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10355                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10356
10357                 if (dev->priv_destructor)
10358                         dev->priv_destructor(dev);
10359                 if (dev->needs_free_netdev)
10360                         free_netdev(dev);
10361
10362                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10363                         wake_up(&netdev_unregistering_wq);
10364
10365                 /* Free network device */
10366                 kobject_put(&dev->dev.kobj);
10367         }
10368 }
10369
10370 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10371  * all the same fields in the same order as net_device_stats, with only
10372  * the type differing, but rtnl_link_stats64 may have additional fields
10373  * at the end for newer counters.
10374  */
10375 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10376                              const struct net_device_stats *netdev_stats)
10377 {
10378         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10379         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10380         u64 *dst = (u64 *)stats64;
10381
10382         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10383         for (i = 0; i < n; i++)
10384                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10385         /* zero out counters that only exist in rtnl_link_stats64 */
10386         memset((char *)stats64 + n * sizeof(u64), 0,
10387                sizeof(*stats64) - n * sizeof(u64));
10388 }
10389 EXPORT_SYMBOL(netdev_stats_to_stats64);
10390
10391 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10392 {
10393         struct net_device_core_stats __percpu *p;
10394
10395         p = alloc_percpu_gfp(struct net_device_core_stats,
10396                              GFP_ATOMIC | __GFP_NOWARN);
10397
10398         if (p && cmpxchg(&dev->core_stats, NULL, p))
10399                 free_percpu(p);
10400
10401         /* This READ_ONCE() pairs with the cmpxchg() above */
10402         return READ_ONCE(dev->core_stats);
10403 }
10404 EXPORT_SYMBOL(netdev_core_stats_alloc);
10405
10406 /**
10407  *      dev_get_stats   - get network device statistics
10408  *      @dev: device to get statistics from
10409  *      @storage: place to store stats
10410  *
10411  *      Get network statistics from device. Return @storage.
10412  *      The device driver may provide its own method by setting
10413  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10414  *      otherwise the internal statistics structure is used.
10415  */
10416 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10417                                         struct rtnl_link_stats64 *storage)
10418 {
10419         const struct net_device_ops *ops = dev->netdev_ops;
10420         const struct net_device_core_stats __percpu *p;
10421
10422         if (ops->ndo_get_stats64) {
10423                 memset(storage, 0, sizeof(*storage));
10424                 ops->ndo_get_stats64(dev, storage);
10425         } else if (ops->ndo_get_stats) {
10426                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10427         } else {
10428                 netdev_stats_to_stats64(storage, &dev->stats);
10429         }
10430
10431         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10432         p = READ_ONCE(dev->core_stats);
10433         if (p) {
10434                 const struct net_device_core_stats *core_stats;
10435                 int i;
10436
10437                 for_each_possible_cpu(i) {
10438                         core_stats = per_cpu_ptr(p, i);
10439                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10440                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10441                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10442                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10443                 }
10444         }
10445         return storage;
10446 }
10447 EXPORT_SYMBOL(dev_get_stats);
10448
10449 /**
10450  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10451  *      @s: place to store stats
10452  *      @netstats: per-cpu network stats to read from
10453  *
10454  *      Read per-cpu network statistics and populate the related fields in @s.
10455  */
10456 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10457                            const struct pcpu_sw_netstats __percpu *netstats)
10458 {
10459         int cpu;
10460
10461         for_each_possible_cpu(cpu) {
10462                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10463                 const struct pcpu_sw_netstats *stats;
10464                 unsigned int start;
10465
10466                 stats = per_cpu_ptr(netstats, cpu);
10467                 do {
10468                         start = u64_stats_fetch_begin(&stats->syncp);
10469                         rx_packets = u64_stats_read(&stats->rx_packets);
10470                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10471                         tx_packets = u64_stats_read(&stats->tx_packets);
10472                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10473                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10474
10475                 s->rx_packets += rx_packets;
10476                 s->rx_bytes   += rx_bytes;
10477                 s->tx_packets += tx_packets;
10478                 s->tx_bytes   += tx_bytes;
10479         }
10480 }
10481 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10482
10483 /**
10484  *      dev_get_tstats64 - ndo_get_stats64 implementation
10485  *      @dev: device to get statistics from
10486  *      @s: place to store stats
10487  *
10488  *      Populate @s from dev->stats and dev->tstats. Can be used as
10489  *      ndo_get_stats64() callback.
10490  */
10491 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10492 {
10493         netdev_stats_to_stats64(s, &dev->stats);
10494         dev_fetch_sw_netstats(s, dev->tstats);
10495 }
10496 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10497
10498 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10499 {
10500         struct netdev_queue *queue = dev_ingress_queue(dev);
10501
10502 #ifdef CONFIG_NET_CLS_ACT
10503         if (queue)
10504                 return queue;
10505         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10506         if (!queue)
10507                 return NULL;
10508         netdev_init_one_queue(dev, queue, NULL);
10509         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10510         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10511         rcu_assign_pointer(dev->ingress_queue, queue);
10512 #endif
10513         return queue;
10514 }
10515
10516 static const struct ethtool_ops default_ethtool_ops;
10517
10518 void netdev_set_default_ethtool_ops(struct net_device *dev,
10519                                     const struct ethtool_ops *ops)
10520 {
10521         if (dev->ethtool_ops == &default_ethtool_ops)
10522                 dev->ethtool_ops = ops;
10523 }
10524 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10525
10526 /**
10527  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10528  * @dev: netdev to enable the IRQ coalescing on
10529  *
10530  * Sets a conservative default for SW IRQ coalescing. Users can use
10531  * sysfs attributes to override the default values.
10532  */
10533 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10534 {
10535         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10536
10537         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10538                 dev->gro_flush_timeout = 20000;
10539                 dev->napi_defer_hard_irqs = 1;
10540         }
10541 }
10542 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10543
10544 void netdev_freemem(struct net_device *dev)
10545 {
10546         char *addr = (char *)dev - dev->padded;
10547
10548         kvfree(addr);
10549 }
10550
10551 /**
10552  * alloc_netdev_mqs - allocate network device
10553  * @sizeof_priv: size of private data to allocate space for
10554  * @name: device name format string
10555  * @name_assign_type: origin of device name
10556  * @setup: callback to initialize device
10557  * @txqs: the number of TX subqueues to allocate
10558  * @rxqs: the number of RX subqueues to allocate
10559  *
10560  * Allocates a struct net_device with private data area for driver use
10561  * and performs basic initialization.  Also allocates subqueue structs
10562  * for each queue on the device.
10563  */
10564 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10565                 unsigned char name_assign_type,
10566                 void (*setup)(struct net_device *),
10567                 unsigned int txqs, unsigned int rxqs)
10568 {
10569         struct net_device *dev;
10570         unsigned int alloc_size;
10571         struct net_device *p;
10572
10573         BUG_ON(strlen(name) >= sizeof(dev->name));
10574
10575         if (txqs < 1) {
10576                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10577                 return NULL;
10578         }
10579
10580         if (rxqs < 1) {
10581                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10582                 return NULL;
10583         }
10584
10585         alloc_size = sizeof(struct net_device);
10586         if (sizeof_priv) {
10587                 /* ensure 32-byte alignment of private area */
10588                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10589                 alloc_size += sizeof_priv;
10590         }
10591         /* ensure 32-byte alignment of whole construct */
10592         alloc_size += NETDEV_ALIGN - 1;
10593
10594         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10595         if (!p)
10596                 return NULL;
10597
10598         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10599         dev->padded = (char *)dev - (char *)p;
10600
10601         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10602 #ifdef CONFIG_PCPU_DEV_REFCNT
10603         dev->pcpu_refcnt = alloc_percpu(int);
10604         if (!dev->pcpu_refcnt)
10605                 goto free_dev;
10606         __dev_hold(dev);
10607 #else
10608         refcount_set(&dev->dev_refcnt, 1);
10609 #endif
10610
10611         if (dev_addr_init(dev))
10612                 goto free_pcpu;
10613
10614         dev_mc_init(dev);
10615         dev_uc_init(dev);
10616
10617         dev_net_set(dev, &init_net);
10618
10619         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10620         dev->gso_max_segs = GSO_MAX_SEGS;
10621         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10622         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10623         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10624         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10625         dev->tso_max_segs = TSO_MAX_SEGS;
10626         dev->upper_level = 1;
10627         dev->lower_level = 1;
10628 #ifdef CONFIG_LOCKDEP
10629         dev->nested_level = 0;
10630         INIT_LIST_HEAD(&dev->unlink_list);
10631 #endif
10632
10633         INIT_LIST_HEAD(&dev->napi_list);
10634         INIT_LIST_HEAD(&dev->unreg_list);
10635         INIT_LIST_HEAD(&dev->close_list);
10636         INIT_LIST_HEAD(&dev->link_watch_list);
10637         INIT_LIST_HEAD(&dev->adj_list.upper);
10638         INIT_LIST_HEAD(&dev->adj_list.lower);
10639         INIT_LIST_HEAD(&dev->ptype_all);
10640         INIT_LIST_HEAD(&dev->ptype_specific);
10641         INIT_LIST_HEAD(&dev->net_notifier_list);
10642 #ifdef CONFIG_NET_SCHED
10643         hash_init(dev->qdisc_hash);
10644 #endif
10645         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10646         setup(dev);
10647
10648         if (!dev->tx_queue_len) {
10649                 dev->priv_flags |= IFF_NO_QUEUE;
10650                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10651         }
10652
10653         dev->num_tx_queues = txqs;
10654         dev->real_num_tx_queues = txqs;
10655         if (netif_alloc_netdev_queues(dev))
10656                 goto free_all;
10657
10658         dev->num_rx_queues = rxqs;
10659         dev->real_num_rx_queues = rxqs;
10660         if (netif_alloc_rx_queues(dev))
10661                 goto free_all;
10662
10663         strcpy(dev->name, name);
10664         dev->name_assign_type = name_assign_type;
10665         dev->group = INIT_NETDEV_GROUP;
10666         if (!dev->ethtool_ops)
10667                 dev->ethtool_ops = &default_ethtool_ops;
10668
10669         nf_hook_netdev_init(dev);
10670
10671         return dev;
10672
10673 free_all:
10674         free_netdev(dev);
10675         return NULL;
10676
10677 free_pcpu:
10678 #ifdef CONFIG_PCPU_DEV_REFCNT
10679         free_percpu(dev->pcpu_refcnt);
10680 free_dev:
10681 #endif
10682         netdev_freemem(dev);
10683         return NULL;
10684 }
10685 EXPORT_SYMBOL(alloc_netdev_mqs);
10686
10687 /**
10688  * free_netdev - free network device
10689  * @dev: device
10690  *
10691  * This function does the last stage of destroying an allocated device
10692  * interface. The reference to the device object is released. If this
10693  * is the last reference then it will be freed.Must be called in process
10694  * context.
10695  */
10696 void free_netdev(struct net_device *dev)
10697 {
10698         struct napi_struct *p, *n;
10699
10700         might_sleep();
10701
10702         /* When called immediately after register_netdevice() failed the unwind
10703          * handling may still be dismantling the device. Handle that case by
10704          * deferring the free.
10705          */
10706         if (dev->reg_state == NETREG_UNREGISTERING) {
10707                 ASSERT_RTNL();
10708                 dev->needs_free_netdev = true;
10709                 return;
10710         }
10711
10712         netif_free_tx_queues(dev);
10713         netif_free_rx_queues(dev);
10714
10715         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10716
10717         /* Flush device addresses */
10718         dev_addr_flush(dev);
10719
10720         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10721                 netif_napi_del(p);
10722
10723         ref_tracker_dir_exit(&dev->refcnt_tracker);
10724 #ifdef CONFIG_PCPU_DEV_REFCNT
10725         free_percpu(dev->pcpu_refcnt);
10726         dev->pcpu_refcnt = NULL;
10727 #endif
10728         free_percpu(dev->core_stats);
10729         dev->core_stats = NULL;
10730         free_percpu(dev->xdp_bulkq);
10731         dev->xdp_bulkq = NULL;
10732
10733         /*  Compatibility with error handling in drivers */
10734         if (dev->reg_state == NETREG_UNINITIALIZED) {
10735                 netdev_freemem(dev);
10736                 return;
10737         }
10738
10739         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10740         dev->reg_state = NETREG_RELEASED;
10741
10742         /* will free via device release */
10743         put_device(&dev->dev);
10744 }
10745 EXPORT_SYMBOL(free_netdev);
10746
10747 /**
10748  *      synchronize_net -  Synchronize with packet receive processing
10749  *
10750  *      Wait for packets currently being received to be done.
10751  *      Does not block later packets from starting.
10752  */
10753 void synchronize_net(void)
10754 {
10755         might_sleep();
10756         if (rtnl_is_locked())
10757                 synchronize_rcu_expedited();
10758         else
10759                 synchronize_rcu();
10760 }
10761 EXPORT_SYMBOL(synchronize_net);
10762
10763 /**
10764  *      unregister_netdevice_queue - remove device from the kernel
10765  *      @dev: device
10766  *      @head: list
10767  *
10768  *      This function shuts down a device interface and removes it
10769  *      from the kernel tables.
10770  *      If head not NULL, device is queued to be unregistered later.
10771  *
10772  *      Callers must hold the rtnl semaphore.  You may want
10773  *      unregister_netdev() instead of this.
10774  */
10775
10776 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10777 {
10778         ASSERT_RTNL();
10779
10780         if (head) {
10781                 list_move_tail(&dev->unreg_list, head);
10782         } else {
10783                 LIST_HEAD(single);
10784
10785                 list_add(&dev->unreg_list, &single);
10786                 unregister_netdevice_many(&single);
10787         }
10788 }
10789 EXPORT_SYMBOL(unregister_netdevice_queue);
10790
10791 void unregister_netdevice_many_notify(struct list_head *head,
10792                                       u32 portid, const struct nlmsghdr *nlh)
10793 {
10794         struct net_device *dev, *tmp;
10795         LIST_HEAD(close_head);
10796
10797         BUG_ON(dev_boot_phase);
10798         ASSERT_RTNL();
10799
10800         if (list_empty(head))
10801                 return;
10802
10803         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10804                 /* Some devices call without registering
10805                  * for initialization unwind. Remove those
10806                  * devices and proceed with the remaining.
10807                  */
10808                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10809                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10810                                  dev->name, dev);
10811
10812                         WARN_ON(1);
10813                         list_del(&dev->unreg_list);
10814                         continue;
10815                 }
10816                 dev->dismantle = true;
10817                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10818         }
10819
10820         /* If device is running, close it first. */
10821         list_for_each_entry(dev, head, unreg_list)
10822                 list_add_tail(&dev->close_list, &close_head);
10823         dev_close_many(&close_head, true);
10824
10825         list_for_each_entry(dev, head, unreg_list) {
10826                 /* And unlink it from device chain. */
10827                 write_lock(&dev_base_lock);
10828                 unlist_netdevice(dev, false);
10829                 dev->reg_state = NETREG_UNREGISTERING;
10830                 write_unlock(&dev_base_lock);
10831         }
10832         flush_all_backlogs();
10833
10834         synchronize_net();
10835
10836         list_for_each_entry(dev, head, unreg_list) {
10837                 struct sk_buff *skb = NULL;
10838
10839                 /* Shutdown queueing discipline. */
10840                 dev_shutdown(dev);
10841
10842                 dev_xdp_uninstall(dev);
10843                 bpf_dev_bound_netdev_unregister(dev);
10844
10845                 netdev_offload_xstats_disable_all(dev);
10846
10847                 /* Notify protocols, that we are about to destroy
10848                  * this device. They should clean all the things.
10849                  */
10850                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10851
10852                 if (!dev->rtnl_link_ops ||
10853                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10854                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10855                                                      GFP_KERNEL, NULL, 0,
10856                                                      portid, nlh);
10857
10858                 /*
10859                  *      Flush the unicast and multicast chains
10860                  */
10861                 dev_uc_flush(dev);
10862                 dev_mc_flush(dev);
10863
10864                 netdev_name_node_alt_flush(dev);
10865                 netdev_name_node_free(dev->name_node);
10866
10867                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10868
10869                 if (dev->netdev_ops->ndo_uninit)
10870                         dev->netdev_ops->ndo_uninit(dev);
10871
10872                 if (skb)
10873                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10874
10875                 /* Notifier chain MUST detach us all upper devices. */
10876                 WARN_ON(netdev_has_any_upper_dev(dev));
10877                 WARN_ON(netdev_has_any_lower_dev(dev));
10878
10879                 /* Remove entries from kobject tree */
10880                 netdev_unregister_kobject(dev);
10881 #ifdef CONFIG_XPS
10882                 /* Remove XPS queueing entries */
10883                 netif_reset_xps_queues_gt(dev, 0);
10884 #endif
10885         }
10886
10887         synchronize_net();
10888
10889         list_for_each_entry(dev, head, unreg_list) {
10890                 netdev_put(dev, &dev->dev_registered_tracker);
10891                 net_set_todo(dev);
10892         }
10893
10894         list_del(head);
10895 }
10896
10897 /**
10898  *      unregister_netdevice_many - unregister many devices
10899  *      @head: list of devices
10900  *
10901  *  Note: As most callers use a stack allocated list_head,
10902  *  we force a list_del() to make sure stack wont be corrupted later.
10903  */
10904 void unregister_netdevice_many(struct list_head *head)
10905 {
10906         unregister_netdevice_many_notify(head, 0, NULL);
10907 }
10908 EXPORT_SYMBOL(unregister_netdevice_many);
10909
10910 /**
10911  *      unregister_netdev - remove device from the kernel
10912  *      @dev: device
10913  *
10914  *      This function shuts down a device interface and removes it
10915  *      from the kernel tables.
10916  *
10917  *      This is just a wrapper for unregister_netdevice that takes
10918  *      the rtnl semaphore.  In general you want to use this and not
10919  *      unregister_netdevice.
10920  */
10921 void unregister_netdev(struct net_device *dev)
10922 {
10923         rtnl_lock();
10924         unregister_netdevice(dev);
10925         rtnl_unlock();
10926 }
10927 EXPORT_SYMBOL(unregister_netdev);
10928
10929 /**
10930  *      __dev_change_net_namespace - move device to different nethost namespace
10931  *      @dev: device
10932  *      @net: network namespace
10933  *      @pat: If not NULL name pattern to try if the current device name
10934  *            is already taken in the destination network namespace.
10935  *      @new_ifindex: If not zero, specifies device index in the target
10936  *                    namespace.
10937  *
10938  *      This function shuts down a device interface and moves it
10939  *      to a new network namespace. On success 0 is returned, on
10940  *      a failure a netagive errno code is returned.
10941  *
10942  *      Callers must hold the rtnl semaphore.
10943  */
10944
10945 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10946                                const char *pat, int new_ifindex)
10947 {
10948         struct net *net_old = dev_net(dev);
10949         int err, new_nsid;
10950
10951         ASSERT_RTNL();
10952
10953         /* Don't allow namespace local devices to be moved. */
10954         err = -EINVAL;
10955         if (dev->features & NETIF_F_NETNS_LOCAL)
10956                 goto out;
10957
10958         /* Ensure the device has been registrered */
10959         if (dev->reg_state != NETREG_REGISTERED)
10960                 goto out;
10961
10962         /* Get out if there is nothing todo */
10963         err = 0;
10964         if (net_eq(net_old, net))
10965                 goto out;
10966
10967         /* Pick the destination device name, and ensure
10968          * we can use it in the destination network namespace.
10969          */
10970         err = -EEXIST;
10971         if (netdev_name_in_use(net, dev->name)) {
10972                 /* We get here if we can't use the current device name */
10973                 if (!pat)
10974                         goto out;
10975                 err = dev_get_valid_name(net, dev, pat);
10976                 if (err < 0)
10977                         goto out;
10978         }
10979
10980         /* Check that new_ifindex isn't used yet. */
10981         err = -EBUSY;
10982         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10983                 goto out;
10984
10985         /*
10986          * And now a mini version of register_netdevice unregister_netdevice.
10987          */
10988
10989         /* If device is running close it first. */
10990         dev_close(dev);
10991
10992         /* And unlink it from device chain */
10993         unlist_netdevice(dev, true);
10994
10995         synchronize_net();
10996
10997         /* Shutdown queueing discipline. */
10998         dev_shutdown(dev);
10999
11000         /* Notify protocols, that we are about to destroy
11001          * this device. They should clean all the things.
11002          *
11003          * Note that dev->reg_state stays at NETREG_REGISTERED.
11004          * This is wanted because this way 8021q and macvlan know
11005          * the device is just moving and can keep their slaves up.
11006          */
11007         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11008         rcu_barrier();
11009
11010         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11011         /* If there is an ifindex conflict assign a new one */
11012         if (!new_ifindex) {
11013                 if (__dev_get_by_index(net, dev->ifindex))
11014                         new_ifindex = dev_new_index(net);
11015                 else
11016                         new_ifindex = dev->ifindex;
11017         }
11018
11019         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11020                             new_ifindex);
11021
11022         /*
11023          *      Flush the unicast and multicast chains
11024          */
11025         dev_uc_flush(dev);
11026         dev_mc_flush(dev);
11027
11028         /* Send a netdev-removed uevent to the old namespace */
11029         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11030         netdev_adjacent_del_links(dev);
11031
11032         /* Move per-net netdevice notifiers that are following the netdevice */
11033         move_netdevice_notifiers_dev_net(dev, net);
11034
11035         /* Actually switch the network namespace */
11036         dev_net_set(dev, net);
11037         dev->ifindex = new_ifindex;
11038
11039         /* Send a netdev-add uevent to the new namespace */
11040         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11041         netdev_adjacent_add_links(dev);
11042
11043         /* Fixup kobjects */
11044         err = device_rename(&dev->dev, dev->name);
11045         WARN_ON(err);
11046
11047         /* Adapt owner in case owning user namespace of target network
11048          * namespace is different from the original one.
11049          */
11050         err = netdev_change_owner(dev, net_old, net);
11051         WARN_ON(err);
11052
11053         /* Add the device back in the hashes */
11054         list_netdevice(dev);
11055
11056         /* Notify protocols, that a new device appeared. */
11057         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11058
11059         /*
11060          *      Prevent userspace races by waiting until the network
11061          *      device is fully setup before sending notifications.
11062          */
11063         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11064
11065         synchronize_net();
11066         err = 0;
11067 out:
11068         return err;
11069 }
11070 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11071
11072 static int dev_cpu_dead(unsigned int oldcpu)
11073 {
11074         struct sk_buff **list_skb;
11075         struct sk_buff *skb;
11076         unsigned int cpu;
11077         struct softnet_data *sd, *oldsd, *remsd = NULL;
11078
11079         local_irq_disable();
11080         cpu = smp_processor_id();
11081         sd = &per_cpu(softnet_data, cpu);
11082         oldsd = &per_cpu(softnet_data, oldcpu);
11083
11084         /* Find end of our completion_queue. */
11085         list_skb = &sd->completion_queue;
11086         while (*list_skb)
11087                 list_skb = &(*list_skb)->next;
11088         /* Append completion queue from offline CPU. */
11089         *list_skb = oldsd->completion_queue;
11090         oldsd->completion_queue = NULL;
11091
11092         /* Append output queue from offline CPU. */
11093         if (oldsd->output_queue) {
11094                 *sd->output_queue_tailp = oldsd->output_queue;
11095                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11096                 oldsd->output_queue = NULL;
11097                 oldsd->output_queue_tailp = &oldsd->output_queue;
11098         }
11099         /* Append NAPI poll list from offline CPU, with one exception :
11100          * process_backlog() must be called by cpu owning percpu backlog.
11101          * We properly handle process_queue & input_pkt_queue later.
11102          */
11103         while (!list_empty(&oldsd->poll_list)) {
11104                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11105                                                             struct napi_struct,
11106                                                             poll_list);
11107
11108                 list_del_init(&napi->poll_list);
11109                 if (napi->poll == process_backlog)
11110                         napi->state = 0;
11111                 else
11112                         ____napi_schedule(sd, napi);
11113         }
11114
11115         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11116         local_irq_enable();
11117
11118 #ifdef CONFIG_RPS
11119         remsd = oldsd->rps_ipi_list;
11120         oldsd->rps_ipi_list = NULL;
11121 #endif
11122         /* send out pending IPI's on offline CPU */
11123         net_rps_send_ipi(remsd);
11124
11125         /* Process offline CPU's input_pkt_queue */
11126         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11127                 netif_rx(skb);
11128                 input_queue_head_incr(oldsd);
11129         }
11130         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11131                 netif_rx(skb);
11132                 input_queue_head_incr(oldsd);
11133         }
11134
11135         return 0;
11136 }
11137
11138 /**
11139  *      netdev_increment_features - increment feature set by one
11140  *      @all: current feature set
11141  *      @one: new feature set
11142  *      @mask: mask feature set
11143  *
11144  *      Computes a new feature set after adding a device with feature set
11145  *      @one to the master device with current feature set @all.  Will not
11146  *      enable anything that is off in @mask. Returns the new feature set.
11147  */
11148 netdev_features_t netdev_increment_features(netdev_features_t all,
11149         netdev_features_t one, netdev_features_t mask)
11150 {
11151         if (mask & NETIF_F_HW_CSUM)
11152                 mask |= NETIF_F_CSUM_MASK;
11153         mask |= NETIF_F_VLAN_CHALLENGED;
11154
11155         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11156         all &= one | ~NETIF_F_ALL_FOR_ALL;
11157
11158         /* If one device supports hw checksumming, set for all. */
11159         if (all & NETIF_F_HW_CSUM)
11160                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11161
11162         return all;
11163 }
11164 EXPORT_SYMBOL(netdev_increment_features);
11165
11166 static struct hlist_head * __net_init netdev_create_hash(void)
11167 {
11168         int i;
11169         struct hlist_head *hash;
11170
11171         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11172         if (hash != NULL)
11173                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11174                         INIT_HLIST_HEAD(&hash[i]);
11175
11176         return hash;
11177 }
11178
11179 /* Initialize per network namespace state */
11180 static int __net_init netdev_init(struct net *net)
11181 {
11182         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11183                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11184
11185         INIT_LIST_HEAD(&net->dev_base_head);
11186
11187         net->dev_name_head = netdev_create_hash();
11188         if (net->dev_name_head == NULL)
11189                 goto err_name;
11190
11191         net->dev_index_head = netdev_create_hash();
11192         if (net->dev_index_head == NULL)
11193                 goto err_idx;
11194
11195         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11196
11197         return 0;
11198
11199 err_idx:
11200         kfree(net->dev_name_head);
11201 err_name:
11202         return -ENOMEM;
11203 }
11204
11205 /**
11206  *      netdev_drivername - network driver for the device
11207  *      @dev: network device
11208  *
11209  *      Determine network driver for device.
11210  */
11211 const char *netdev_drivername(const struct net_device *dev)
11212 {
11213         const struct device_driver *driver;
11214         const struct device *parent;
11215         const char *empty = "";
11216
11217         parent = dev->dev.parent;
11218         if (!parent)
11219                 return empty;
11220
11221         driver = parent->driver;
11222         if (driver && driver->name)
11223                 return driver->name;
11224         return empty;
11225 }
11226
11227 static void __netdev_printk(const char *level, const struct net_device *dev,
11228                             struct va_format *vaf)
11229 {
11230         if (dev && dev->dev.parent) {
11231                 dev_printk_emit(level[1] - '0',
11232                                 dev->dev.parent,
11233                                 "%s %s %s%s: %pV",
11234                                 dev_driver_string(dev->dev.parent),
11235                                 dev_name(dev->dev.parent),
11236                                 netdev_name(dev), netdev_reg_state(dev),
11237                                 vaf);
11238         } else if (dev) {
11239                 printk("%s%s%s: %pV",
11240                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11241         } else {
11242                 printk("%s(NULL net_device): %pV", level, vaf);
11243         }
11244 }
11245
11246 void netdev_printk(const char *level, const struct net_device *dev,
11247                    const char *format, ...)
11248 {
11249         struct va_format vaf;
11250         va_list args;
11251
11252         va_start(args, format);
11253
11254         vaf.fmt = format;
11255         vaf.va = &args;
11256
11257         __netdev_printk(level, dev, &vaf);
11258
11259         va_end(args);
11260 }
11261 EXPORT_SYMBOL(netdev_printk);
11262
11263 #define define_netdev_printk_level(func, level)                 \
11264 void func(const struct net_device *dev, const char *fmt, ...)   \
11265 {                                                               \
11266         struct va_format vaf;                                   \
11267         va_list args;                                           \
11268                                                                 \
11269         va_start(args, fmt);                                    \
11270                                                                 \
11271         vaf.fmt = fmt;                                          \
11272         vaf.va = &args;                                         \
11273                                                                 \
11274         __netdev_printk(level, dev, &vaf);                      \
11275                                                                 \
11276         va_end(args);                                           \
11277 }                                                               \
11278 EXPORT_SYMBOL(func);
11279
11280 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11281 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11282 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11283 define_netdev_printk_level(netdev_err, KERN_ERR);
11284 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11285 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11286 define_netdev_printk_level(netdev_info, KERN_INFO);
11287
11288 static void __net_exit netdev_exit(struct net *net)
11289 {
11290         kfree(net->dev_name_head);
11291         kfree(net->dev_index_head);
11292         if (net != &init_net)
11293                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11294 }
11295
11296 static struct pernet_operations __net_initdata netdev_net_ops = {
11297         .init = netdev_init,
11298         .exit = netdev_exit,
11299 };
11300
11301 static void __net_exit default_device_exit_net(struct net *net)
11302 {
11303         struct net_device *dev, *aux;
11304         /*
11305          * Push all migratable network devices back to the
11306          * initial network namespace
11307          */
11308         ASSERT_RTNL();
11309         for_each_netdev_safe(net, dev, aux) {
11310                 int err;
11311                 char fb_name[IFNAMSIZ];
11312
11313                 /* Ignore unmoveable devices (i.e. loopback) */
11314                 if (dev->features & NETIF_F_NETNS_LOCAL)
11315                         continue;
11316
11317                 /* Leave virtual devices for the generic cleanup */
11318                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11319                         continue;
11320
11321                 /* Push remaining network devices to init_net */
11322                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11323                 if (netdev_name_in_use(&init_net, fb_name))
11324                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11325                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11326                 if (err) {
11327                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11328                                  __func__, dev->name, err);
11329                         BUG();
11330                 }
11331         }
11332 }
11333
11334 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11335 {
11336         /* At exit all network devices most be removed from a network
11337          * namespace.  Do this in the reverse order of registration.
11338          * Do this across as many network namespaces as possible to
11339          * improve batching efficiency.
11340          */
11341         struct net_device *dev;
11342         struct net *net;
11343         LIST_HEAD(dev_kill_list);
11344
11345         rtnl_lock();
11346         list_for_each_entry(net, net_list, exit_list) {
11347                 default_device_exit_net(net);
11348                 cond_resched();
11349         }
11350
11351         list_for_each_entry(net, net_list, exit_list) {
11352                 for_each_netdev_reverse(net, dev) {
11353                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11354                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11355                         else
11356                                 unregister_netdevice_queue(dev, &dev_kill_list);
11357                 }
11358         }
11359         unregister_netdevice_many(&dev_kill_list);
11360         rtnl_unlock();
11361 }
11362
11363 static struct pernet_operations __net_initdata default_device_ops = {
11364         .exit_batch = default_device_exit_batch,
11365 };
11366
11367 /*
11368  *      Initialize the DEV module. At boot time this walks the device list and
11369  *      unhooks any devices that fail to initialise (normally hardware not
11370  *      present) and leaves us with a valid list of present and active devices.
11371  *
11372  */
11373
11374 /*
11375  *       This is called single threaded during boot, so no need
11376  *       to take the rtnl semaphore.
11377  */
11378 static int __init net_dev_init(void)
11379 {
11380         int i, rc = -ENOMEM;
11381
11382         BUG_ON(!dev_boot_phase);
11383
11384         if (dev_proc_init())
11385                 goto out;
11386
11387         if (netdev_kobject_init())
11388                 goto out;
11389
11390         INIT_LIST_HEAD(&ptype_all);
11391         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11392                 INIT_LIST_HEAD(&ptype_base[i]);
11393
11394         if (register_pernet_subsys(&netdev_net_ops))
11395                 goto out;
11396
11397         /*
11398          *      Initialise the packet receive queues.
11399          */
11400
11401         for_each_possible_cpu(i) {
11402                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11403                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11404
11405                 INIT_WORK(flush, flush_backlog);
11406
11407                 skb_queue_head_init(&sd->input_pkt_queue);
11408                 skb_queue_head_init(&sd->process_queue);
11409 #ifdef CONFIG_XFRM_OFFLOAD
11410                 skb_queue_head_init(&sd->xfrm_backlog);
11411 #endif
11412                 INIT_LIST_HEAD(&sd->poll_list);
11413                 sd->output_queue_tailp = &sd->output_queue;
11414 #ifdef CONFIG_RPS
11415                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11416                 sd->cpu = i;
11417 #endif
11418                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11419                 spin_lock_init(&sd->defer_lock);
11420
11421                 init_gro_hash(&sd->backlog);
11422                 sd->backlog.poll = process_backlog;
11423                 sd->backlog.weight = weight_p;
11424         }
11425
11426         dev_boot_phase = 0;
11427
11428         /* The loopback device is special if any other network devices
11429          * is present in a network namespace the loopback device must
11430          * be present. Since we now dynamically allocate and free the
11431          * loopback device ensure this invariant is maintained by
11432          * keeping the loopback device as the first device on the
11433          * list of network devices.  Ensuring the loopback devices
11434          * is the first device that appears and the last network device
11435          * that disappears.
11436          */
11437         if (register_pernet_device(&loopback_net_ops))
11438                 goto out;
11439
11440         if (register_pernet_device(&default_device_ops))
11441                 goto out;
11442
11443         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11444         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11445
11446         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11447                                        NULL, dev_cpu_dead);
11448         WARN_ON(rc < 0);
11449         rc = 0;
11450 out:
11451         return rc;
11452 }
11453
11454 subsys_initcall(net_dev_init);
This page took 0.807883 seconds and 4 git commands to generate.