1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
27 #include <trace/events/f2fs.h>
29 #define NUM_PREALLOC_POST_READ_CTXS 128
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static struct kmem_cache *bio_entry_slab;
33 static mempool_t *bio_post_read_ctx_pool;
34 static struct bio_set f2fs_bioset;
36 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
38 int __init f2fs_init_bioset(void)
40 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
41 0, BIOSET_NEED_BVECS))
46 void f2fs_destroy_bioset(void)
48 bioset_exit(&f2fs_bioset);
51 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
52 unsigned int nr_iovecs)
54 return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 /* No failure on bio allocation */
61 return __f2fs_bio_alloc(GFP_NOIO, npages);
64 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
65 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
69 return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 static bool __is_cp_guaranteed(struct page *page)
74 struct address_space *mapping = page->mapping;
76 struct f2fs_sb_info *sbi;
81 if (f2fs_is_compressed_page(page))
84 inode = mapping->host;
85 sbi = F2FS_I_SB(inode);
87 if (inode->i_ino == F2FS_META_INO(sbi) ||
88 inode->i_ino == F2FS_NODE_INO(sbi) ||
89 S_ISDIR(inode->i_mode) ||
90 (S_ISREG(inode->i_mode) &&
91 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
97 static enum count_type __read_io_type(struct page *page)
99 struct address_space *mapping = page_file_mapping(page);
102 struct inode *inode = mapping->host;
103 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
105 if (inode->i_ino == F2FS_META_INO(sbi))
108 if (inode->i_ino == F2FS_NODE_INO(sbi))
114 /* postprocessing steps for read bios */
115 enum bio_post_read_step {
121 struct bio_post_read_ctx {
123 struct f2fs_sb_info *sbi;
124 struct work_struct work;
125 unsigned int enabled_steps;
128 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 struct bvec_iter_all iter_all;
134 bio_for_each_segment_all(bv, bio, iter_all) {
137 #ifdef CONFIG_F2FS_FS_COMPRESSION
138 if (compr && f2fs_is_compressed_page(page)) {
139 f2fs_decompress_pages(bio, page, verity);
146 /* PG_error was set if any post_read step failed */
147 if (bio->bi_status || PageError(page)) {
148 ClearPageUptodate(page);
149 /* will re-read again later */
150 ClearPageError(page);
152 SetPageUptodate(page);
154 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
159 static void f2fs_release_read_bio(struct bio *bio);
160 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
163 __read_end_io(bio, false, verity);
164 f2fs_release_read_bio(bio);
167 static void f2fs_decompress_bio(struct bio *bio, bool verity)
169 __read_end_io(bio, true, verity);
172 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
174 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
176 fscrypt_decrypt_bio(ctx->bio);
179 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
181 f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
184 #ifdef CONFIG_F2FS_FS_COMPRESSION
185 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
187 f2fs_decompress_end_io(rpages, cluster_size, false, true);
190 static void f2fs_verify_bio(struct bio *bio)
193 struct bvec_iter_all iter_all;
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
197 struct decompress_io_ctx *dic;
199 dic = (struct decompress_io_ctx *)page_private(page);
202 if (refcount_dec_not_one(&dic->ref))
204 f2fs_verify_pages(dic->rpages,
210 if (bio->bi_status || PageError(page))
213 if (fsverity_verify_page(page)) {
214 SetPageUptodate(page);
218 ClearPageUptodate(page);
219 ClearPageError(page);
221 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
227 static void f2fs_verity_work(struct work_struct *work)
229 struct bio_post_read_ctx *ctx =
230 container_of(work, struct bio_post_read_ctx, work);
231 struct bio *bio = ctx->bio;
232 #ifdef CONFIG_F2FS_FS_COMPRESSION
233 unsigned int enabled_steps = ctx->enabled_steps;
237 * fsverity_verify_bio() may call readpages() again, and while verity
238 * will be disabled for this, decryption may still be needed, resulting
239 * in another bio_post_read_ctx being allocated. So to prevent
240 * deadlocks we need to release the current ctx to the mempool first.
241 * This assumes that verity is the last post-read step.
243 mempool_free(ctx, bio_post_read_ctx_pool);
244 bio->bi_private = NULL;
246 #ifdef CONFIG_F2FS_FS_COMPRESSION
247 /* previous step is decompression */
248 if (enabled_steps & (1 << STEP_DECOMPRESS)) {
249 f2fs_verify_bio(bio);
250 f2fs_release_read_bio(bio);
255 fsverity_verify_bio(bio);
256 __f2fs_read_end_io(bio, false, false);
259 static void f2fs_post_read_work(struct work_struct *work)
261 struct bio_post_read_ctx *ctx =
262 container_of(work, struct bio_post_read_ctx, work);
264 if (ctx->enabled_steps & (1 << STEP_DECRYPT))
265 f2fs_decrypt_work(ctx);
267 if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
268 f2fs_decompress_work(ctx);
270 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
271 INIT_WORK(&ctx->work, f2fs_verity_work);
272 fsverity_enqueue_verify_work(&ctx->work);
276 __f2fs_read_end_io(ctx->bio,
277 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
280 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
281 struct work_struct *work)
283 queue_work(sbi->post_read_wq, work);
286 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
289 * We use different work queues for decryption and for verity because
290 * verity may require reading metadata pages that need decryption, and
291 * we shouldn't recurse to the same workqueue.
294 if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
295 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
296 INIT_WORK(&ctx->work, f2fs_post_read_work);
297 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
302 INIT_WORK(&ctx->work, f2fs_verity_work);
303 fsverity_enqueue_verify_work(&ctx->work);
307 __f2fs_read_end_io(ctx->bio, false, false);
310 static bool f2fs_bio_post_read_required(struct bio *bio)
312 return bio->bi_private;
315 static void f2fs_read_end_io(struct bio *bio)
317 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
319 if (time_to_inject(sbi, FAULT_READ_IO)) {
320 f2fs_show_injection_info(sbi, FAULT_READ_IO);
321 bio->bi_status = BLK_STS_IOERR;
324 if (f2fs_bio_post_read_required(bio)) {
325 struct bio_post_read_ctx *ctx = bio->bi_private;
327 bio_post_read_processing(ctx);
331 __f2fs_read_end_io(bio, false, false);
334 static void f2fs_write_end_io(struct bio *bio)
336 struct f2fs_sb_info *sbi = bio->bi_private;
337 struct bio_vec *bvec;
338 struct bvec_iter_all iter_all;
340 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
341 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
342 bio->bi_status = BLK_STS_IOERR;
345 bio_for_each_segment_all(bvec, bio, iter_all) {
346 struct page *page = bvec->bv_page;
347 enum count_type type = WB_DATA_TYPE(page);
349 if (IS_DUMMY_WRITTEN_PAGE(page)) {
350 set_page_private(page, (unsigned long)NULL);
351 ClearPagePrivate(page);
353 mempool_free(page, sbi->write_io_dummy);
355 if (unlikely(bio->bi_status))
356 f2fs_stop_checkpoint(sbi, true);
360 fscrypt_finalize_bounce_page(&page);
362 #ifdef CONFIG_F2FS_FS_COMPRESSION
363 if (f2fs_is_compressed_page(page)) {
364 f2fs_compress_write_end_io(bio, page);
369 if (unlikely(bio->bi_status)) {
370 mapping_set_error(page->mapping, -EIO);
371 if (type == F2FS_WB_CP_DATA)
372 f2fs_stop_checkpoint(sbi, true);
375 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
376 page->index != nid_of_node(page));
378 dec_page_count(sbi, type);
379 if (f2fs_in_warm_node_list(sbi, page))
380 f2fs_del_fsync_node_entry(sbi, page);
381 clear_cold_data(page);
382 end_page_writeback(page);
384 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
385 wq_has_sleeper(&sbi->cp_wait))
386 wake_up(&sbi->cp_wait);
391 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
392 block_t blk_addr, struct bio *bio)
394 struct block_device *bdev = sbi->sb->s_bdev;
397 if (f2fs_is_multi_device(sbi)) {
398 for (i = 0; i < sbi->s_ndevs; i++) {
399 if (FDEV(i).start_blk <= blk_addr &&
400 FDEV(i).end_blk >= blk_addr) {
401 blk_addr -= FDEV(i).start_blk;
408 bio_set_dev(bio, bdev);
409 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
414 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 if (!f2fs_is_multi_device(sbi))
421 for (i = 0; i < sbi->s_ndevs; i++)
422 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428 * Return true, if pre_bio's bdev is same as its target device.
430 static bool __same_bdev(struct f2fs_sb_info *sbi,
431 block_t blk_addr, struct bio *bio)
433 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
434 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
437 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
439 struct f2fs_sb_info *sbi = fio->sbi;
442 bio = f2fs_bio_alloc(sbi, npages, true);
444 f2fs_target_device(sbi, fio->new_blkaddr, bio);
445 if (is_read_io(fio->op)) {
446 bio->bi_end_io = f2fs_read_end_io;
447 bio->bi_private = NULL;
449 bio->bi_end_io = f2fs_write_end_io;
450 bio->bi_private = sbi;
451 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
452 fio->type, fio->temp);
455 wbc_init_bio(fio->io_wbc, bio);
460 static inline void __submit_bio(struct f2fs_sb_info *sbi,
461 struct bio *bio, enum page_type type)
463 if (!is_read_io(bio_op(bio))) {
466 if (type != DATA && type != NODE)
469 if (f2fs_lfs_mode(sbi) && current->plug)
470 blk_finish_plug(current->plug);
472 if (F2FS_IO_ALIGNED(sbi))
475 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
476 start %= F2FS_IO_SIZE(sbi);
481 /* fill dummy pages */
482 for (; start < F2FS_IO_SIZE(sbi); start++) {
484 mempool_alloc(sbi->write_io_dummy,
485 GFP_NOIO | __GFP_NOFAIL);
486 f2fs_bug_on(sbi, !page);
488 zero_user_segment(page, 0, PAGE_SIZE);
489 SetPagePrivate(page);
490 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
492 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
496 * In the NODE case, we lose next block address chain. So, we
497 * need to do checkpoint in f2fs_sync_file.
500 set_sbi_flag(sbi, SBI_NEED_CP);
503 if (is_read_io(bio_op(bio)))
504 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
506 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
510 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
511 struct bio *bio, enum page_type type)
513 __submit_bio(sbi, bio, type);
516 static void __attach_data_io_flag(struct f2fs_io_info *fio)
518 struct f2fs_sb_info *sbi = fio->sbi;
519 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
520 unsigned int fua_flag = sbi->data_io_flag & temp_mask;
521 unsigned int meta_flag = (sbi->data_io_flag >> NR_TEMP_TYPE) &
524 * data io flag bits per temp:
525 * REQ_META | REQ_FUA |
526 * 5 | 4 | 3 | 2 | 1 | 0 |
527 * Cold | Warm | Hot | Cold | Warm | Hot |
529 if (fio->type != DATA)
532 if ((1 << fio->temp) & meta_flag)
533 fio->op_flags |= REQ_META;
534 if ((1 << fio->temp) & fua_flag)
535 fio->op_flags |= REQ_FUA;
538 static void __submit_merged_bio(struct f2fs_bio_info *io)
540 struct f2fs_io_info *fio = &io->fio;
545 __attach_data_io_flag(fio);
546 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
548 if (is_read_io(fio->op))
549 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
551 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
553 __submit_bio(io->sbi, io->bio, fio->type);
557 static bool __has_merged_page(struct bio *bio, struct inode *inode,
558 struct page *page, nid_t ino)
560 struct bio_vec *bvec;
561 struct bvec_iter_all iter_all;
566 if (!inode && !page && !ino)
569 bio_for_each_segment_all(bvec, bio, iter_all) {
570 struct page *target = bvec->bv_page;
572 if (fscrypt_is_bounce_page(target)) {
573 target = fscrypt_pagecache_page(target);
577 if (f2fs_is_compressed_page(target)) {
578 target = f2fs_compress_control_page(target);
583 if (inode && inode == target->mapping->host)
585 if (page && page == target)
587 if (ino && ino == ino_of_node(target))
594 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
595 enum page_type type, enum temp_type temp)
597 enum page_type btype = PAGE_TYPE_OF_BIO(type);
598 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
600 down_write(&io->io_rwsem);
602 /* change META to META_FLUSH in the checkpoint procedure */
603 if (type >= META_FLUSH) {
604 io->fio.type = META_FLUSH;
605 io->fio.op = REQ_OP_WRITE;
606 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
607 if (!test_opt(sbi, NOBARRIER))
608 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
610 __submit_merged_bio(io);
611 up_write(&io->io_rwsem);
614 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
615 struct inode *inode, struct page *page,
616 nid_t ino, enum page_type type, bool force)
621 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
623 enum page_type btype = PAGE_TYPE_OF_BIO(type);
624 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
626 down_read(&io->io_rwsem);
627 ret = __has_merged_page(io->bio, inode, page, ino);
628 up_read(&io->io_rwsem);
631 __f2fs_submit_merged_write(sbi, type, temp);
633 /* TODO: use HOT temp only for meta pages now. */
639 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
641 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
644 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
645 struct inode *inode, struct page *page,
646 nid_t ino, enum page_type type)
648 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
651 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
653 f2fs_submit_merged_write(sbi, DATA);
654 f2fs_submit_merged_write(sbi, NODE);
655 f2fs_submit_merged_write(sbi, META);
659 * Fill the locked page with data located in the block address.
660 * A caller needs to unlock the page on failure.
662 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
665 struct page *page = fio->encrypted_page ?
666 fio->encrypted_page : fio->page;
668 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
669 fio->is_por ? META_POR : (__is_meta_io(fio) ?
670 META_GENERIC : DATA_GENERIC_ENHANCE)))
671 return -EFSCORRUPTED;
673 trace_f2fs_submit_page_bio(page, fio);
674 f2fs_trace_ios(fio, 0);
676 /* Allocate a new bio */
677 bio = __bio_alloc(fio, 1);
679 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
684 if (fio->io_wbc && !is_read_io(fio->op))
685 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
687 bio_set_op_attrs(bio, fio->op, fio->op_flags);
689 inc_page_count(fio->sbi, is_read_io(fio->op) ?
690 __read_io_type(page): WB_DATA_TYPE(fio->page));
692 __submit_bio(fio->sbi, bio, fio->type);
696 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
697 block_t last_blkaddr, block_t cur_blkaddr)
699 if (last_blkaddr + 1 != cur_blkaddr)
701 return __same_bdev(sbi, cur_blkaddr, bio);
704 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
705 struct f2fs_io_info *fio)
707 if (io->fio.op != fio->op)
709 return io->fio.op_flags == fio->op_flags;
712 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
713 struct f2fs_bio_info *io,
714 struct f2fs_io_info *fio,
715 block_t last_blkaddr,
718 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
719 unsigned int filled_blocks =
720 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
721 unsigned int io_size = F2FS_IO_SIZE(sbi);
722 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
724 /* IOs in bio is aligned and left space of vectors is not enough */
725 if (!(filled_blocks % io_size) && left_vecs < io_size)
728 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
730 return io_type_is_mergeable(io, fio);
733 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
734 struct page *page, enum temp_type temp)
736 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
737 struct bio_entry *be;
739 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
743 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
746 down_write(&io->bio_list_lock);
747 list_add_tail(&be->list, &io->bio_list);
748 up_write(&io->bio_list_lock);
751 static void del_bio_entry(struct bio_entry *be)
754 kmem_cache_free(bio_entry_slab, be);
757 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
764 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
765 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
766 struct list_head *head = &io->bio_list;
767 struct bio_entry *be;
769 down_write(&io->bio_list_lock);
770 list_for_each_entry(be, head, list) {
776 if (bio_add_page(*bio, page, PAGE_SIZE, 0) ==
784 __submit_bio(sbi, *bio, DATA);
787 up_write(&io->bio_list_lock);
798 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
799 struct bio **bio, struct page *page)
803 struct bio *target = bio ? *bio : NULL;
805 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807 struct list_head *head = &io->bio_list;
808 struct bio_entry *be;
810 if (list_empty(head))
813 down_read(&io->bio_list_lock);
814 list_for_each_entry(be, head, list) {
816 found = (target == be->bio);
818 found = __has_merged_page(be->bio, NULL,
823 up_read(&io->bio_list_lock);
830 down_write(&io->bio_list_lock);
831 list_for_each_entry(be, head, list) {
833 found = (target == be->bio);
835 found = __has_merged_page(be->bio, NULL,
843 up_write(&io->bio_list_lock);
847 __submit_bio(sbi, target, DATA);
854 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
856 struct bio *bio = *fio->bio;
857 struct page *page = fio->encrypted_page ?
858 fio->encrypted_page : fio->page;
860 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
861 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
862 return -EFSCORRUPTED;
864 trace_f2fs_submit_page_bio(page, fio);
865 f2fs_trace_ios(fio, 0);
867 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
869 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
872 bio = __bio_alloc(fio, BIO_MAX_PAGES);
873 bio_set_op_attrs(bio, fio->op, fio->op_flags);
875 add_bio_entry(fio->sbi, bio, page, fio->temp);
877 if (add_ipu_page(fio->sbi, &bio, page))
882 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
884 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
886 *fio->last_block = fio->new_blkaddr;
892 void f2fs_submit_page_write(struct f2fs_io_info *fio)
894 struct f2fs_sb_info *sbi = fio->sbi;
895 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
896 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
897 struct page *bio_page;
899 f2fs_bug_on(sbi, is_read_io(fio->op));
901 down_write(&io->io_rwsem);
904 spin_lock(&io->io_lock);
905 if (list_empty(&io->io_list)) {
906 spin_unlock(&io->io_lock);
909 fio = list_first_entry(&io->io_list,
910 struct f2fs_io_info, list);
911 list_del(&fio->list);
912 spin_unlock(&io->io_lock);
915 verify_fio_blkaddr(fio);
917 if (fio->encrypted_page)
918 bio_page = fio->encrypted_page;
919 else if (fio->compressed_page)
920 bio_page = fio->compressed_page;
922 bio_page = fio->page;
924 /* set submitted = true as a return value */
925 fio->submitted = true;
927 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
929 if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
930 io->last_block_in_bio, fio->new_blkaddr))
931 __submit_merged_bio(io);
933 if (io->bio == NULL) {
934 if (F2FS_IO_ALIGNED(sbi) &&
935 (fio->type == DATA || fio->type == NODE) &&
936 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
937 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
941 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
945 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
946 __submit_merged_bio(io);
951 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
953 io->last_block_in_bio = fio->new_blkaddr;
954 f2fs_trace_ios(fio, 0);
956 trace_f2fs_submit_page_write(fio->page, fio);
961 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
962 !f2fs_is_checkpoint_ready(sbi))
963 __submit_merged_bio(io);
964 up_write(&io->io_rwsem);
967 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
969 return fsverity_active(inode) &&
970 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
973 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
974 unsigned nr_pages, unsigned op_flag,
975 pgoff_t first_idx, bool for_write)
977 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
979 struct bio_post_read_ctx *ctx;
980 unsigned int post_read_steps = 0;
982 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
985 return ERR_PTR(-ENOMEM);
986 f2fs_target_device(sbi, blkaddr, bio);
987 bio->bi_end_io = f2fs_read_end_io;
988 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
990 if (f2fs_encrypted_file(inode))
991 post_read_steps |= 1 << STEP_DECRYPT;
992 if (f2fs_compressed_file(inode))
993 post_read_steps |= 1 << STEP_DECOMPRESS;
994 if (f2fs_need_verity(inode, first_idx))
995 post_read_steps |= 1 << STEP_VERITY;
997 if (post_read_steps) {
998 /* Due to the mempool, this never fails. */
999 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1002 ctx->enabled_steps = post_read_steps;
1003 bio->bi_private = ctx;
1009 static void f2fs_release_read_bio(struct bio *bio)
1011 if (bio->bi_private)
1012 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1016 /* This can handle encryption stuffs */
1017 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1018 block_t blkaddr, bool for_write)
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1023 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index, for_write);
1025 return PTR_ERR(bio);
1027 /* wait for GCed page writeback via META_MAPPING */
1028 f2fs_wait_on_block_writeback(inode, blkaddr);
1030 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1034 ClearPageError(page);
1035 inc_page_count(sbi, F2FS_RD_DATA);
1036 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1037 __submit_bio(sbi, bio, DATA);
1041 static void __set_data_blkaddr(struct dnode_of_data *dn)
1043 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1047 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1048 base = get_extra_isize(dn->inode);
1050 /* Get physical address of data block */
1051 addr_array = blkaddr_in_node(rn);
1052 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1056 * Lock ordering for the change of data block address:
1059 * update block addresses in the node page
1061 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1063 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1064 __set_data_blkaddr(dn);
1065 if (set_page_dirty(dn->node_page))
1066 dn->node_changed = true;
1069 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1071 dn->data_blkaddr = blkaddr;
1072 f2fs_set_data_blkaddr(dn);
1073 f2fs_update_extent_cache(dn);
1076 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1077 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1079 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1085 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1087 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1090 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1091 dn->ofs_in_node, count);
1093 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1095 for (; count > 0; dn->ofs_in_node++) {
1096 block_t blkaddr = f2fs_data_blkaddr(dn);
1097 if (blkaddr == NULL_ADDR) {
1098 dn->data_blkaddr = NEW_ADDR;
1099 __set_data_blkaddr(dn);
1104 if (set_page_dirty(dn->node_page))
1105 dn->node_changed = true;
1109 /* Should keep dn->ofs_in_node unchanged */
1110 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1112 unsigned int ofs_in_node = dn->ofs_in_node;
1115 ret = f2fs_reserve_new_blocks(dn, 1);
1116 dn->ofs_in_node = ofs_in_node;
1120 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1122 bool need_put = dn->inode_page ? false : true;
1125 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1129 if (dn->data_blkaddr == NULL_ADDR)
1130 err = f2fs_reserve_new_block(dn);
1131 if (err || need_put)
1136 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1138 struct extent_info ei = {0,0,0};
1139 struct inode *inode = dn->inode;
1141 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1142 dn->data_blkaddr = ei.blk + index - ei.fofs;
1146 return f2fs_reserve_block(dn, index);
1149 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1150 int op_flags, bool for_write)
1152 struct address_space *mapping = inode->i_mapping;
1153 struct dnode_of_data dn;
1155 struct extent_info ei = {0,0,0};
1158 page = f2fs_grab_cache_page(mapping, index, for_write);
1160 return ERR_PTR(-ENOMEM);
1162 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1163 dn.data_blkaddr = ei.blk + index - ei.fofs;
1164 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1165 DATA_GENERIC_ENHANCE_READ)) {
1166 err = -EFSCORRUPTED;
1172 set_new_dnode(&dn, inode, NULL, NULL, 0);
1173 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1176 f2fs_put_dnode(&dn);
1178 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1182 if (dn.data_blkaddr != NEW_ADDR &&
1183 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1185 DATA_GENERIC_ENHANCE)) {
1186 err = -EFSCORRUPTED;
1190 if (PageUptodate(page)) {
1196 * A new dentry page is allocated but not able to be written, since its
1197 * new inode page couldn't be allocated due to -ENOSPC.
1198 * In such the case, its blkaddr can be remained as NEW_ADDR.
1199 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1200 * f2fs_init_inode_metadata.
1202 if (dn.data_blkaddr == NEW_ADDR) {
1203 zero_user_segment(page, 0, PAGE_SIZE);
1204 if (!PageUptodate(page))
1205 SetPageUptodate(page);
1210 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, for_write);
1216 f2fs_put_page(page, 1);
1217 return ERR_PTR(err);
1220 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1222 struct address_space *mapping = inode->i_mapping;
1225 page = find_get_page(mapping, index);
1226 if (page && PageUptodate(page))
1228 f2fs_put_page(page, 0);
1230 page = f2fs_get_read_data_page(inode, index, 0, false);
1234 if (PageUptodate(page))
1237 wait_on_page_locked(page);
1238 if (unlikely(!PageUptodate(page))) {
1239 f2fs_put_page(page, 0);
1240 return ERR_PTR(-EIO);
1246 * If it tries to access a hole, return an error.
1247 * Because, the callers, functions in dir.c and GC, should be able to know
1248 * whether this page exists or not.
1250 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1253 struct address_space *mapping = inode->i_mapping;
1256 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1260 /* wait for read completion */
1262 if (unlikely(page->mapping != mapping)) {
1263 f2fs_put_page(page, 1);
1266 if (unlikely(!PageUptodate(page))) {
1267 f2fs_put_page(page, 1);
1268 return ERR_PTR(-EIO);
1274 * Caller ensures that this data page is never allocated.
1275 * A new zero-filled data page is allocated in the page cache.
1277 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1279 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1280 * ipage should be released by this function.
1282 struct page *f2fs_get_new_data_page(struct inode *inode,
1283 struct page *ipage, pgoff_t index, bool new_i_size)
1285 struct address_space *mapping = inode->i_mapping;
1287 struct dnode_of_data dn;
1290 page = f2fs_grab_cache_page(mapping, index, true);
1293 * before exiting, we should make sure ipage will be released
1294 * if any error occur.
1296 f2fs_put_page(ipage, 1);
1297 return ERR_PTR(-ENOMEM);
1300 set_new_dnode(&dn, inode, ipage, NULL, 0);
1301 err = f2fs_reserve_block(&dn, index);
1303 f2fs_put_page(page, 1);
1304 return ERR_PTR(err);
1307 f2fs_put_dnode(&dn);
1309 if (PageUptodate(page))
1312 if (dn.data_blkaddr == NEW_ADDR) {
1313 zero_user_segment(page, 0, PAGE_SIZE);
1314 if (!PageUptodate(page))
1315 SetPageUptodate(page);
1317 f2fs_put_page(page, 1);
1319 /* if ipage exists, blkaddr should be NEW_ADDR */
1320 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1321 page = f2fs_get_lock_data_page(inode, index, true);
1326 if (new_i_size && i_size_read(inode) <
1327 ((loff_t)(index + 1) << PAGE_SHIFT))
1328 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1332 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1334 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1335 struct f2fs_summary sum;
1336 struct node_info ni;
1337 block_t old_blkaddr;
1341 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1344 err = f2fs_get_node_info(sbi, dn->nid, &ni);
1348 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1349 if (dn->data_blkaddr != NULL_ADDR)
1352 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1356 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1357 old_blkaddr = dn->data_blkaddr;
1358 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1359 &sum, seg_type, NULL, false);
1360 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1361 invalidate_mapping_pages(META_MAPPING(sbi),
1362 old_blkaddr, old_blkaddr);
1363 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1366 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1367 * data from unwritten block via dio_read.
1372 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1374 struct inode *inode = file_inode(iocb->ki_filp);
1375 struct f2fs_map_blocks map;
1378 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1380 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1381 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1382 if (map.m_len > map.m_lblk)
1383 map.m_len -= map.m_lblk;
1387 map.m_next_pgofs = NULL;
1388 map.m_next_extent = NULL;
1389 map.m_seg_type = NO_CHECK_TYPE;
1390 map.m_may_create = true;
1393 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1394 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1395 F2FS_GET_BLOCK_PRE_AIO :
1396 F2FS_GET_BLOCK_PRE_DIO;
1399 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1400 err = f2fs_convert_inline_inode(inode);
1404 if (f2fs_has_inline_data(inode))
1407 flag = F2FS_GET_BLOCK_PRE_AIO;
1410 err = f2fs_map_blocks(inode, &map, 1, flag);
1411 if (map.m_len > 0 && err == -ENOSPC) {
1413 set_inode_flag(inode, FI_NO_PREALLOC);
1419 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1421 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1423 down_read(&sbi->node_change);
1425 up_read(&sbi->node_change);
1430 f2fs_unlock_op(sbi);
1435 * f2fs_map_blocks() tries to find or build mapping relationship which
1436 * maps continuous logical blocks to physical blocks, and return such
1437 * info via f2fs_map_blocks structure.
1439 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1440 int create, int flag)
1442 unsigned int maxblocks = map->m_len;
1443 struct dnode_of_data dn;
1444 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1445 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1446 pgoff_t pgofs, end_offset, end;
1447 int err = 0, ofs = 1;
1448 unsigned int ofs_in_node, last_ofs_in_node;
1450 struct extent_info ei = {0,0,0};
1452 unsigned int start_pgofs;
1460 /* it only supports block size == page size */
1461 pgofs = (pgoff_t)map->m_lblk;
1462 end = pgofs + maxblocks;
1464 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1465 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1469 map->m_pblk = ei.blk + pgofs - ei.fofs;
1470 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1471 map->m_flags = F2FS_MAP_MAPPED;
1472 if (map->m_next_extent)
1473 *map->m_next_extent = pgofs + map->m_len;
1475 /* for hardware encryption, but to avoid potential issue in future */
1476 if (flag == F2FS_GET_BLOCK_DIO)
1477 f2fs_wait_on_block_writeback_range(inode,
1478 map->m_pblk, map->m_len);
1483 if (map->m_may_create)
1484 __do_map_lock(sbi, flag, true);
1486 /* When reading holes, we need its node page */
1487 set_new_dnode(&dn, inode, NULL, NULL, 0);
1488 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1490 if (flag == F2FS_GET_BLOCK_BMAP)
1492 if (err == -ENOENT) {
1494 if (map->m_next_pgofs)
1495 *map->m_next_pgofs =
1496 f2fs_get_next_page_offset(&dn, pgofs);
1497 if (map->m_next_extent)
1498 *map->m_next_extent =
1499 f2fs_get_next_page_offset(&dn, pgofs);
1504 start_pgofs = pgofs;
1506 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1507 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1510 blkaddr = f2fs_data_blkaddr(&dn);
1512 if (__is_valid_data_blkaddr(blkaddr) &&
1513 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1514 err = -EFSCORRUPTED;
1518 if (__is_valid_data_blkaddr(blkaddr)) {
1519 /* use out-place-update for driect IO under LFS mode */
1520 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1521 map->m_may_create) {
1522 err = __allocate_data_block(&dn, map->m_seg_type);
1525 blkaddr = dn.data_blkaddr;
1526 set_inode_flag(inode, FI_APPEND_WRITE);
1530 if (unlikely(f2fs_cp_error(sbi))) {
1534 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1535 if (blkaddr == NULL_ADDR) {
1537 last_ofs_in_node = dn.ofs_in_node;
1540 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1541 flag != F2FS_GET_BLOCK_DIO);
1542 err = __allocate_data_block(&dn,
1545 set_inode_flag(inode, FI_APPEND_WRITE);
1549 map->m_flags |= F2FS_MAP_NEW;
1550 blkaddr = dn.data_blkaddr;
1552 if (flag == F2FS_GET_BLOCK_BMAP) {
1556 if (flag == F2FS_GET_BLOCK_PRECACHE)
1558 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1559 blkaddr == NULL_ADDR) {
1560 if (map->m_next_pgofs)
1561 *map->m_next_pgofs = pgofs + 1;
1564 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1565 /* for defragment case */
1566 if (map->m_next_pgofs)
1567 *map->m_next_pgofs = pgofs + 1;
1573 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1576 if (map->m_len == 0) {
1577 /* preallocated unwritten block should be mapped for fiemap. */
1578 if (blkaddr == NEW_ADDR)
1579 map->m_flags |= F2FS_MAP_UNWRITTEN;
1580 map->m_flags |= F2FS_MAP_MAPPED;
1582 map->m_pblk = blkaddr;
1584 } else if ((map->m_pblk != NEW_ADDR &&
1585 blkaddr == (map->m_pblk + ofs)) ||
1586 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1587 flag == F2FS_GET_BLOCK_PRE_DIO) {
1598 /* preallocate blocks in batch for one dnode page */
1599 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1600 (pgofs == end || dn.ofs_in_node == end_offset)) {
1602 dn.ofs_in_node = ofs_in_node;
1603 err = f2fs_reserve_new_blocks(&dn, prealloc);
1607 map->m_len += dn.ofs_in_node - ofs_in_node;
1608 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1612 dn.ofs_in_node = end_offset;
1617 else if (dn.ofs_in_node < end_offset)
1620 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1621 if (map->m_flags & F2FS_MAP_MAPPED) {
1622 unsigned int ofs = start_pgofs - map->m_lblk;
1624 f2fs_update_extent_cache_range(&dn,
1625 start_pgofs, map->m_pblk + ofs,
1630 f2fs_put_dnode(&dn);
1632 if (map->m_may_create) {
1633 __do_map_lock(sbi, flag, false);
1634 f2fs_balance_fs(sbi, dn.node_changed);
1640 /* for hardware encryption, but to avoid potential issue in future */
1641 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1642 f2fs_wait_on_block_writeback_range(inode,
1643 map->m_pblk, map->m_len);
1645 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1646 if (map->m_flags & F2FS_MAP_MAPPED) {
1647 unsigned int ofs = start_pgofs - map->m_lblk;
1649 f2fs_update_extent_cache_range(&dn,
1650 start_pgofs, map->m_pblk + ofs,
1653 if (map->m_next_extent)
1654 *map->m_next_extent = pgofs + 1;
1656 f2fs_put_dnode(&dn);
1658 if (map->m_may_create) {
1659 __do_map_lock(sbi, flag, false);
1660 f2fs_balance_fs(sbi, dn.node_changed);
1663 trace_f2fs_map_blocks(inode, map, err);
1667 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1669 struct f2fs_map_blocks map;
1673 if (pos + len > i_size_read(inode))
1676 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1677 map.m_next_pgofs = NULL;
1678 map.m_next_extent = NULL;
1679 map.m_seg_type = NO_CHECK_TYPE;
1680 map.m_may_create = false;
1681 last_lblk = F2FS_BLK_ALIGN(pos + len);
1683 while (map.m_lblk < last_lblk) {
1684 map.m_len = last_lblk - map.m_lblk;
1685 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1686 if (err || map.m_len == 0)
1688 map.m_lblk += map.m_len;
1693 static int __get_data_block(struct inode *inode, sector_t iblock,
1694 struct buffer_head *bh, int create, int flag,
1695 pgoff_t *next_pgofs, int seg_type, bool may_write)
1697 struct f2fs_map_blocks map;
1700 map.m_lblk = iblock;
1701 map.m_len = bh->b_size >> inode->i_blkbits;
1702 map.m_next_pgofs = next_pgofs;
1703 map.m_next_extent = NULL;
1704 map.m_seg_type = seg_type;
1705 map.m_may_create = may_write;
1707 err = f2fs_map_blocks(inode, &map, create, flag);
1709 map_bh(bh, inode->i_sb, map.m_pblk);
1710 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1711 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1716 static int get_data_block(struct inode *inode, sector_t iblock,
1717 struct buffer_head *bh_result, int create, int flag,
1718 pgoff_t *next_pgofs)
1720 return __get_data_block(inode, iblock, bh_result, create,
1722 NO_CHECK_TYPE, create);
1725 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1726 struct buffer_head *bh_result, int create)
1728 return __get_data_block(inode, iblock, bh_result, create,
1729 F2FS_GET_BLOCK_DIO, NULL,
1730 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1731 IS_SWAPFILE(inode) ? false : true);
1734 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1735 struct buffer_head *bh_result, int create)
1737 return __get_data_block(inode, iblock, bh_result, create,
1738 F2FS_GET_BLOCK_DIO, NULL,
1739 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1743 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1744 struct buffer_head *bh_result, int create)
1746 /* Block number less than F2FS MAX BLOCKS */
1747 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1750 return __get_data_block(inode, iblock, bh_result, create,
1751 F2FS_GET_BLOCK_BMAP, NULL,
1752 NO_CHECK_TYPE, create);
1755 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1757 return (offset >> inode->i_blkbits);
1760 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1762 return (blk << inode->i_blkbits);
1765 static int f2fs_xattr_fiemap(struct inode *inode,
1766 struct fiemap_extent_info *fieinfo)
1768 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1770 struct node_info ni;
1771 __u64 phys = 0, len;
1773 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1776 if (f2fs_has_inline_xattr(inode)) {
1779 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1780 inode->i_ino, false);
1784 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1786 f2fs_put_page(page, 1);
1790 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1791 offset = offsetof(struct f2fs_inode, i_addr) +
1792 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1793 get_inline_xattr_addrs(inode));
1796 len = inline_xattr_size(inode);
1798 f2fs_put_page(page, 1);
1800 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1803 flags |= FIEMAP_EXTENT_LAST;
1805 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1806 if (err || err == 1)
1811 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1815 err = f2fs_get_node_info(sbi, xnid, &ni);
1817 f2fs_put_page(page, 1);
1821 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1822 len = inode->i_sb->s_blocksize;
1824 f2fs_put_page(page, 1);
1826 flags = FIEMAP_EXTENT_LAST;
1830 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1832 return (err < 0 ? err : 0);
1835 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1838 struct buffer_head map_bh;
1839 sector_t start_blk, last_blk;
1841 u64 logical = 0, phys = 0, size = 0;
1845 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1846 ret = f2fs_precache_extents(inode);
1851 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1857 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1858 ret = f2fs_xattr_fiemap(inode, fieinfo);
1862 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1863 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1868 if (logical_to_blk(inode, len) == 0)
1869 len = blk_to_logical(inode, 1);
1871 start_blk = logical_to_blk(inode, start);
1872 last_blk = logical_to_blk(inode, start + len - 1);
1875 memset(&map_bh, 0, sizeof(struct buffer_head));
1876 map_bh.b_size = len;
1878 ret = get_data_block(inode, start_blk, &map_bh, 0,
1879 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1884 if (!buffer_mapped(&map_bh)) {
1885 start_blk = next_pgofs;
1887 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1888 F2FS_I_SB(inode)->max_file_blocks))
1891 flags |= FIEMAP_EXTENT_LAST;
1895 if (IS_ENCRYPTED(inode))
1896 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1898 ret = fiemap_fill_next_extent(fieinfo, logical,
1902 if (start_blk > last_blk || ret)
1905 logical = blk_to_logical(inode, start_blk);
1906 phys = blk_to_logical(inode, map_bh.b_blocknr);
1907 size = map_bh.b_size;
1909 if (buffer_unwritten(&map_bh))
1910 flags = FIEMAP_EXTENT_UNWRITTEN;
1912 start_blk += logical_to_blk(inode, size);
1916 if (fatal_signal_pending(current))
1924 inode_unlock(inode);
1928 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1930 if (IS_ENABLED(CONFIG_FS_VERITY) &&
1931 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1932 return inode->i_sb->s_maxbytes;
1934 return i_size_read(inode);
1937 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1939 struct f2fs_map_blocks *map,
1940 struct bio **bio_ret,
1941 sector_t *last_block_in_bio,
1944 struct bio *bio = *bio_ret;
1945 const unsigned blkbits = inode->i_blkbits;
1946 const unsigned blocksize = 1 << blkbits;
1947 sector_t block_in_file;
1948 sector_t last_block;
1949 sector_t last_block_in_file;
1953 block_in_file = (sector_t)page_index(page);
1954 last_block = block_in_file + nr_pages;
1955 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1957 if (last_block > last_block_in_file)
1958 last_block = last_block_in_file;
1960 /* just zeroing out page which is beyond EOF */
1961 if (block_in_file >= last_block)
1964 * Map blocks using the previous result first.
1966 if ((map->m_flags & F2FS_MAP_MAPPED) &&
1967 block_in_file > map->m_lblk &&
1968 block_in_file < (map->m_lblk + map->m_len))
1972 * Then do more f2fs_map_blocks() calls until we are
1973 * done with this page.
1975 map->m_lblk = block_in_file;
1976 map->m_len = last_block - block_in_file;
1978 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1982 if ((map->m_flags & F2FS_MAP_MAPPED)) {
1983 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1984 SetPageMappedToDisk(page);
1986 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1987 !cleancache_get_page(page))) {
1988 SetPageUptodate(page);
1992 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1993 DATA_GENERIC_ENHANCE_READ)) {
1994 ret = -EFSCORRUPTED;
1999 zero_user_segment(page, 0, PAGE_SIZE);
2000 if (f2fs_need_verity(inode, page->index) &&
2001 !fsverity_verify_page(page)) {
2005 if (!PageUptodate(page))
2006 SetPageUptodate(page);
2012 * This page will go to BIO. Do we need to send this
2015 if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
2016 *last_block_in_bio, block_nr)) {
2018 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2022 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2023 is_readahead ? REQ_RAHEAD : 0, page->index,
2033 * If the page is under writeback, we need to wait for
2034 * its completion to see the correct decrypted data.
2036 f2fs_wait_on_block_writeback(inode, block_nr);
2038 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2039 goto submit_and_realloc;
2041 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2042 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2043 ClearPageError(page);
2044 *last_block_in_bio = block_nr;
2048 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2057 #ifdef CONFIG_F2FS_FS_COMPRESSION
2058 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2059 unsigned nr_pages, sector_t *last_block_in_bio,
2060 bool is_readahead, bool for_write)
2062 struct dnode_of_data dn;
2063 struct inode *inode = cc->inode;
2064 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2065 struct bio *bio = *bio_ret;
2066 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2067 sector_t last_block_in_file;
2068 const unsigned blkbits = inode->i_blkbits;
2069 const unsigned blocksize = 1 << blkbits;
2070 struct decompress_io_ctx *dic = NULL;
2074 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2076 last_block_in_file = (f2fs_readpage_limit(inode) +
2077 blocksize - 1) >> blkbits;
2079 /* get rid of pages beyond EOF */
2080 for (i = 0; i < cc->cluster_size; i++) {
2081 struct page *page = cc->rpages[i];
2085 if ((sector_t)page->index >= last_block_in_file) {
2086 zero_user_segment(page, 0, PAGE_SIZE);
2087 if (!PageUptodate(page))
2088 SetPageUptodate(page);
2089 } else if (!PageUptodate(page)) {
2093 cc->rpages[i] = NULL;
2097 /* we are done since all pages are beyond EOF */
2098 if (f2fs_cluster_is_empty(cc))
2101 set_new_dnode(&dn, inode, NULL, NULL, 0);
2102 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2106 /* cluster was overwritten as normal cluster */
2107 if (dn.data_blkaddr != COMPRESS_ADDR)
2110 for (i = 1; i < cc->cluster_size; i++) {
2113 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2114 dn.ofs_in_node + i);
2116 if (!__is_valid_data_blkaddr(blkaddr))
2119 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2126 /* nothing to decompress */
2127 if (cc->nr_cpages == 0) {
2132 dic = f2fs_alloc_dic(cc);
2138 for (i = 0; i < dic->nr_cpages; i++) {
2139 struct page *page = dic->cpages[i];
2142 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2143 dn.ofs_in_node + i + 1);
2145 if (bio && !page_is_mergeable(sbi, bio,
2146 *last_block_in_bio, blkaddr)) {
2148 __submit_bio(sbi, bio, DATA);
2153 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2154 is_readahead ? REQ_RAHEAD : 0,
2155 page->index, for_write);
2160 if (refcount_sub_and_test(dic->nr_cpages - i,
2162 f2fs_decompress_end_io(dic->rpages,
2163 cc->cluster_size, true,
2166 f2fs_put_dnode(&dn);
2172 f2fs_wait_on_block_writeback(inode, blkaddr);
2174 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2175 goto submit_and_realloc;
2177 inc_page_count(sbi, F2FS_RD_DATA);
2178 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2179 ClearPageError(page);
2180 *last_block_in_bio = blkaddr;
2183 f2fs_put_dnode(&dn);
2189 f2fs_put_dnode(&dn);
2191 f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2198 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2199 * Major change was from block_size == page_size in f2fs by default.
2201 * Note that the aops->readpages() function is ONLY used for read-ahead. If
2202 * this function ever deviates from doing just read-ahead, it should either
2203 * use ->readpage() or do the necessary surgery to decouple ->readpages()
2206 int f2fs_mpage_readpages(struct address_space *mapping,
2207 struct list_head *pages, struct page *page,
2208 unsigned nr_pages, bool is_readahead)
2210 struct bio *bio = NULL;
2211 sector_t last_block_in_bio = 0;
2212 struct inode *inode = mapping->host;
2213 struct f2fs_map_blocks map;
2214 #ifdef CONFIG_F2FS_FS_COMPRESSION
2215 struct compress_ctx cc = {
2217 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2218 .cluster_size = F2FS_I(inode)->i_cluster_size,
2219 .cluster_idx = NULL_CLUSTER,
2226 unsigned max_nr_pages = nr_pages;
2233 map.m_next_pgofs = NULL;
2234 map.m_next_extent = NULL;
2235 map.m_seg_type = NO_CHECK_TYPE;
2236 map.m_may_create = false;
2238 for (; nr_pages; nr_pages--) {
2240 page = list_last_entry(pages, struct page, lru);
2242 prefetchw(&page->flags);
2243 list_del(&page->lru);
2244 if (add_to_page_cache_lru(page, mapping,
2246 readahead_gfp_mask(mapping)))
2250 #ifdef CONFIG_F2FS_FS_COMPRESSION
2251 if (f2fs_compressed_file(inode)) {
2252 /* there are remained comressed pages, submit them */
2253 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2254 ret = f2fs_read_multi_pages(&cc, &bio,
2257 is_readahead, false);
2258 f2fs_destroy_compress_ctx(&cc);
2260 goto set_error_page;
2262 ret = f2fs_is_compressed_cluster(inode, page->index);
2264 goto set_error_page;
2266 goto read_single_page;
2268 ret = f2fs_init_compress_ctx(&cc);
2270 goto set_error_page;
2272 f2fs_compress_ctx_add_page(&cc, page);
2279 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2280 &bio, &last_block_in_bio, is_readahead);
2282 #ifdef CONFIG_F2FS_FS_COMPRESSION
2286 zero_user_segment(page, 0, PAGE_SIZE);
2293 #ifdef CONFIG_F2FS_FS_COMPRESSION
2294 if (f2fs_compressed_file(inode)) {
2296 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2297 ret = f2fs_read_multi_pages(&cc, &bio,
2300 is_readahead, false);
2301 f2fs_destroy_compress_ctx(&cc);
2306 BUG_ON(pages && !list_empty(pages));
2308 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2309 return pages ? 0 : ret;
2312 static int f2fs_read_data_page(struct file *file, struct page *page)
2314 struct inode *inode = page_file_mapping(page)->host;
2317 trace_f2fs_readpage(page, DATA);
2319 if (!f2fs_is_compress_backend_ready(inode)) {
2324 /* If the file has inline data, try to read it directly */
2325 if (f2fs_has_inline_data(inode))
2326 ret = f2fs_read_inline_data(inode, page);
2328 ret = f2fs_mpage_readpages(page_file_mapping(page),
2329 NULL, page, 1, false);
2333 static int f2fs_read_data_pages(struct file *file,
2334 struct address_space *mapping,
2335 struct list_head *pages, unsigned nr_pages)
2337 struct inode *inode = mapping->host;
2338 struct page *page = list_last_entry(pages, struct page, lru);
2340 trace_f2fs_readpages(inode, page, nr_pages);
2342 if (!f2fs_is_compress_backend_ready(inode))
2345 /* If the file has inline data, skip readpages */
2346 if (f2fs_has_inline_data(inode))
2349 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
2352 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2354 struct inode *inode = fio->page->mapping->host;
2355 struct page *mpage, *page;
2356 gfp_t gfp_flags = GFP_NOFS;
2358 if (!f2fs_encrypted_file(inode))
2361 page = fio->compressed_page ? fio->compressed_page : fio->page;
2363 /* wait for GCed page writeback via META_MAPPING */
2364 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2367 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2368 PAGE_SIZE, 0, gfp_flags);
2369 if (IS_ERR(fio->encrypted_page)) {
2370 /* flush pending IOs and wait for a while in the ENOMEM case */
2371 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2372 f2fs_flush_merged_writes(fio->sbi);
2373 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2374 gfp_flags |= __GFP_NOFAIL;
2377 return PTR_ERR(fio->encrypted_page);
2380 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2382 if (PageUptodate(mpage))
2383 memcpy(page_address(mpage),
2384 page_address(fio->encrypted_page), PAGE_SIZE);
2385 f2fs_put_page(mpage, 1);
2390 static inline bool check_inplace_update_policy(struct inode *inode,
2391 struct f2fs_io_info *fio)
2393 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2394 unsigned int policy = SM_I(sbi)->ipu_policy;
2396 if (policy & (0x1 << F2FS_IPU_FORCE))
2398 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2400 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2401 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2403 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2404 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2408 * IPU for rewrite async pages
2410 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2411 fio && fio->op == REQ_OP_WRITE &&
2412 !(fio->op_flags & REQ_SYNC) &&
2413 !IS_ENCRYPTED(inode))
2416 /* this is only set during fdatasync */
2417 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2418 is_inode_flag_set(inode, FI_NEED_IPU))
2421 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2422 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2428 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2430 if (f2fs_is_pinned_file(inode))
2433 /* if this is cold file, we should overwrite to avoid fragmentation */
2434 if (file_is_cold(inode))
2437 return check_inplace_update_policy(inode, fio);
2440 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2442 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 if (f2fs_lfs_mode(sbi))
2446 if (S_ISDIR(inode->i_mode))
2448 if (IS_NOQUOTA(inode))
2450 if (f2fs_is_atomic_file(inode))
2453 if (is_cold_data(fio->page))
2455 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2457 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2458 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2464 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2466 struct inode *inode = fio->page->mapping->host;
2468 if (f2fs_should_update_outplace(inode, fio))
2471 return f2fs_should_update_inplace(inode, fio);
2474 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2476 struct page *page = fio->page;
2477 struct inode *inode = page->mapping->host;
2478 struct dnode_of_data dn;
2479 struct extent_info ei = {0,0,0};
2480 struct node_info ni;
2481 bool ipu_force = false;
2484 set_new_dnode(&dn, inode, NULL, NULL, 0);
2485 if (need_inplace_update(fio) &&
2486 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2487 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2489 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2490 DATA_GENERIC_ENHANCE))
2491 return -EFSCORRUPTED;
2494 fio->need_lock = LOCK_DONE;
2498 /* Deadlock due to between page->lock and f2fs_lock_op */
2499 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2502 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2506 fio->old_blkaddr = dn.data_blkaddr;
2508 /* This page is already truncated */
2509 if (fio->old_blkaddr == NULL_ADDR) {
2510 ClearPageUptodate(page);
2511 clear_cold_data(page);
2515 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2516 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2517 DATA_GENERIC_ENHANCE)) {
2518 err = -EFSCORRUPTED;
2522 * If current allocation needs SSR,
2523 * it had better in-place writes for updated data.
2526 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2527 need_inplace_update(fio))) {
2528 err = f2fs_encrypt_one_page(fio);
2532 set_page_writeback(page);
2533 ClearPageError(page);
2534 f2fs_put_dnode(&dn);
2535 if (fio->need_lock == LOCK_REQ)
2536 f2fs_unlock_op(fio->sbi);
2537 err = f2fs_inplace_write_data(fio);
2539 if (f2fs_encrypted_file(inode))
2540 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2541 if (PageWriteback(page))
2542 end_page_writeback(page);
2544 set_inode_flag(inode, FI_UPDATE_WRITE);
2546 trace_f2fs_do_write_data_page(fio->page, IPU);
2550 if (fio->need_lock == LOCK_RETRY) {
2551 if (!f2fs_trylock_op(fio->sbi)) {
2555 fio->need_lock = LOCK_REQ;
2558 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2562 fio->version = ni.version;
2564 err = f2fs_encrypt_one_page(fio);
2568 set_page_writeback(page);
2569 ClearPageError(page);
2571 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2572 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2574 /* LFS mode write path */
2575 f2fs_outplace_write_data(&dn, fio);
2576 trace_f2fs_do_write_data_page(page, OPU);
2577 set_inode_flag(inode, FI_APPEND_WRITE);
2578 if (page->index == 0)
2579 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2581 f2fs_put_dnode(&dn);
2583 if (fio->need_lock == LOCK_REQ)
2584 f2fs_unlock_op(fio->sbi);
2588 int f2fs_write_single_data_page(struct page *page, int *submitted,
2590 sector_t *last_block,
2591 struct writeback_control *wbc,
2592 enum iostat_type io_type,
2595 struct inode *inode = page->mapping->host;
2596 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2597 loff_t i_size = i_size_read(inode);
2598 const pgoff_t end_index = ((unsigned long long)i_size)
2600 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2601 unsigned offset = 0;
2602 bool need_balance_fs = false;
2604 struct f2fs_io_info fio = {
2606 .ino = inode->i_ino,
2609 .op_flags = wbc_to_write_flags(wbc),
2610 .old_blkaddr = NULL_ADDR,
2612 .encrypted_page = NULL,
2614 .compr_blocks = compr_blocks,
2615 .need_lock = LOCK_RETRY,
2619 .last_block = last_block,
2622 trace_f2fs_writepage(page, DATA);
2624 /* we should bypass data pages to proceed the kworkder jobs */
2625 if (unlikely(f2fs_cp_error(sbi))) {
2626 mapping_set_error(page->mapping, -EIO);
2628 * don't drop any dirty dentry pages for keeping lastest
2629 * directory structure.
2631 if (S_ISDIR(inode->i_mode))
2636 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2639 if (page->index < end_index ||
2640 f2fs_verity_in_progress(inode) ||
2645 * If the offset is out-of-range of file size,
2646 * this page does not have to be written to disk.
2648 offset = i_size & (PAGE_SIZE - 1);
2649 if ((page->index >= end_index + 1) || !offset)
2652 zero_user_segment(page, offset, PAGE_SIZE);
2654 if (f2fs_is_drop_cache(inode))
2656 /* we should not write 0'th page having journal header */
2657 if (f2fs_is_volatile_file(inode) && (!page->index ||
2658 (!wbc->for_reclaim &&
2659 f2fs_available_free_memory(sbi, BASE_CHECK))))
2662 /* Dentry/quota blocks are controlled by checkpoint */
2663 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2664 fio.need_lock = LOCK_DONE;
2665 err = f2fs_do_write_data_page(&fio);
2669 if (!wbc->for_reclaim)
2670 need_balance_fs = true;
2671 else if (has_not_enough_free_secs(sbi, 0, 0))
2674 set_inode_flag(inode, FI_HOT_DATA);
2677 if (f2fs_has_inline_data(inode)) {
2678 err = f2fs_write_inline_data(inode, page);
2683 if (err == -EAGAIN) {
2684 err = f2fs_do_write_data_page(&fio);
2685 if (err == -EAGAIN) {
2686 fio.need_lock = LOCK_REQ;
2687 err = f2fs_do_write_data_page(&fio);
2692 file_set_keep_isize(inode);
2694 spin_lock(&F2FS_I(inode)->i_size_lock);
2695 if (F2FS_I(inode)->last_disk_size < psize)
2696 F2FS_I(inode)->last_disk_size = psize;
2697 spin_unlock(&F2FS_I(inode)->i_size_lock);
2701 if (err && err != -ENOENT)
2705 inode_dec_dirty_pages(inode);
2707 ClearPageUptodate(page);
2708 clear_cold_data(page);
2711 if (wbc->for_reclaim) {
2712 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2713 clear_inode_flag(inode, FI_HOT_DATA);
2714 f2fs_remove_dirty_inode(inode);
2718 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2719 !F2FS_I(inode)->cp_task)
2720 f2fs_balance_fs(sbi, need_balance_fs);
2722 if (unlikely(f2fs_cp_error(sbi))) {
2723 f2fs_submit_merged_write(sbi, DATA);
2724 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2729 *submitted = fio.submitted ? 1 : 0;
2734 redirty_page_for_writepage(wbc, page);
2736 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2737 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2738 * file_write_and_wait_range() will see EIO error, which is critical
2739 * to return value of fsync() followed by atomic_write failure to user.
2741 if (!err || wbc->for_reclaim)
2742 return AOP_WRITEPAGE_ACTIVATE;
2747 static int f2fs_write_data_page(struct page *page,
2748 struct writeback_control *wbc)
2750 #ifdef CONFIG_F2FS_FS_COMPRESSION
2751 struct inode *inode = page->mapping->host;
2753 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2756 if (f2fs_compressed_file(inode)) {
2757 if (f2fs_is_compressed_cluster(inode, page->index)) {
2758 redirty_page_for_writepage(wbc, page);
2759 return AOP_WRITEPAGE_ACTIVATE;
2765 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2766 wbc, FS_DATA_IO, 0);
2770 * This function was copied from write_cche_pages from mm/page-writeback.c.
2771 * The major change is making write step of cold data page separately from
2772 * warm/hot data page.
2774 static int f2fs_write_cache_pages(struct address_space *mapping,
2775 struct writeback_control *wbc,
2776 enum iostat_type io_type)
2779 int done = 0, retry = 0;
2780 struct pagevec pvec;
2781 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2782 struct bio *bio = NULL;
2783 sector_t last_block;
2784 #ifdef CONFIG_F2FS_FS_COMPRESSION
2785 struct inode *inode = mapping->host;
2786 struct compress_ctx cc = {
2788 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2789 .cluster_size = F2FS_I(inode)->i_cluster_size,
2790 .cluster_idx = NULL_CLUSTER,
2796 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2801 pgoff_t uninitialized_var(writeback_index);
2803 pgoff_t end; /* Inclusive */
2806 int range_whole = 0;
2812 pagevec_init(&pvec);
2814 if (get_dirty_pages(mapping->host) <=
2815 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2816 set_inode_flag(mapping->host, FI_HOT_DATA);
2818 clear_inode_flag(mapping->host, FI_HOT_DATA);
2820 if (wbc->range_cyclic) {
2821 writeback_index = mapping->writeback_index; /* prev offset */
2822 index = writeback_index;
2829 index = wbc->range_start >> PAGE_SHIFT;
2830 end = wbc->range_end >> PAGE_SHIFT;
2831 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2833 cycled = 1; /* ignore range_cyclic tests */
2835 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2836 tag = PAGECACHE_TAG_TOWRITE;
2838 tag = PAGECACHE_TAG_DIRTY;
2841 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2842 tag_pages_for_writeback(mapping, index, end);
2844 while (!done && !retry && (index <= end)) {
2845 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2850 for (i = 0; i < nr_pages; i++) {
2851 struct page *page = pvec.pages[i];
2855 #ifdef CONFIG_F2FS_FS_COMPRESSION
2856 if (f2fs_compressed_file(inode)) {
2857 ret = f2fs_init_compress_ctx(&cc);
2863 if (!f2fs_cluster_can_merge_page(&cc,
2865 ret = f2fs_write_multi_pages(&cc,
2866 &submitted, wbc, io_type);
2872 if (unlikely(f2fs_cp_error(sbi)))
2875 if (f2fs_cluster_is_empty(&cc)) {
2876 void *fsdata = NULL;
2880 ret2 = f2fs_prepare_compress_overwrite(
2882 page->index, &fsdata);
2888 !f2fs_compress_write_end(inode,
2889 fsdata, page->index,
2899 /* give a priority to WB_SYNC threads */
2900 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2901 wbc->sync_mode == WB_SYNC_NONE) {
2905 #ifdef CONFIG_F2FS_FS_COMPRESSION
2908 done_index = page->index;
2912 if (unlikely(page->mapping != mapping)) {
2918 if (!PageDirty(page)) {
2919 /* someone wrote it for us */
2920 goto continue_unlock;
2923 if (PageWriteback(page)) {
2924 if (wbc->sync_mode != WB_SYNC_NONE)
2925 f2fs_wait_on_page_writeback(page,
2928 goto continue_unlock;
2931 if (!clear_page_dirty_for_io(page))
2932 goto continue_unlock;
2934 #ifdef CONFIG_F2FS_FS_COMPRESSION
2935 if (f2fs_compressed_file(inode)) {
2937 f2fs_compress_ctx_add_page(&cc, page);
2941 ret = f2fs_write_single_data_page(page, &submitted,
2942 &bio, &last_block, wbc, io_type, 0);
2943 if (ret == AOP_WRITEPAGE_ACTIVATE)
2945 #ifdef CONFIG_F2FS_FS_COMPRESSION
2948 nwritten += submitted;
2949 wbc->nr_to_write -= submitted;
2951 if (unlikely(ret)) {
2953 * keep nr_to_write, since vfs uses this to
2954 * get # of written pages.
2956 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2959 } else if (ret == -EAGAIN) {
2961 if (wbc->sync_mode == WB_SYNC_ALL) {
2963 congestion_wait(BLK_RW_ASYNC,
2964 DEFAULT_IO_TIMEOUT);
2969 done_index = page->index + 1;
2974 if (wbc->nr_to_write <= 0 &&
2975 wbc->sync_mode == WB_SYNC_NONE) {
2983 pagevec_release(&pvec);
2986 #ifdef CONFIG_F2FS_FS_COMPRESSION
2987 /* flush remained pages in compress cluster */
2988 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
2989 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
2990 nwritten += submitted;
2991 wbc->nr_to_write -= submitted;
2998 if ((!cycled && !done) || retry) {
3001 end = writeback_index - 1;
3004 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3005 mapping->writeback_index = done_index;
3008 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3010 /* submit cached bio of IPU write */
3012 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3017 static inline bool __should_serialize_io(struct inode *inode,
3018 struct writeback_control *wbc)
3020 /* to avoid deadlock in path of data flush */
3021 if (F2FS_I(inode)->cp_task)
3024 if (!S_ISREG(inode->i_mode))
3026 if (IS_NOQUOTA(inode))
3029 if (f2fs_compressed_file(inode))
3031 if (wbc->sync_mode != WB_SYNC_ALL)
3033 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3038 static int __f2fs_write_data_pages(struct address_space *mapping,
3039 struct writeback_control *wbc,
3040 enum iostat_type io_type)
3042 struct inode *inode = mapping->host;
3043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3044 struct blk_plug plug;
3046 bool locked = false;
3048 /* deal with chardevs and other special file */
3049 if (!mapping->a_ops->writepage)
3052 /* skip writing if there is no dirty page in this inode */
3053 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3056 /* during POR, we don't need to trigger writepage at all. */
3057 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3060 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3061 wbc->sync_mode == WB_SYNC_NONE &&
3062 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3063 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3066 /* skip writing during file defragment */
3067 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3070 trace_f2fs_writepages(mapping->host, wbc, DATA);
3072 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3073 if (wbc->sync_mode == WB_SYNC_ALL)
3074 atomic_inc(&sbi->wb_sync_req[DATA]);
3075 else if (atomic_read(&sbi->wb_sync_req[DATA]))
3078 if (__should_serialize_io(inode, wbc)) {
3079 mutex_lock(&sbi->writepages);
3083 blk_start_plug(&plug);
3084 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3085 blk_finish_plug(&plug);
3088 mutex_unlock(&sbi->writepages);
3090 if (wbc->sync_mode == WB_SYNC_ALL)
3091 atomic_dec(&sbi->wb_sync_req[DATA]);
3093 * if some pages were truncated, we cannot guarantee its mapping->host
3094 * to detect pending bios.
3097 f2fs_remove_dirty_inode(inode);
3101 wbc->pages_skipped += get_dirty_pages(inode);
3102 trace_f2fs_writepages(mapping->host, wbc, DATA);
3106 static int f2fs_write_data_pages(struct address_space *mapping,
3107 struct writeback_control *wbc)
3109 struct inode *inode = mapping->host;
3111 return __f2fs_write_data_pages(mapping, wbc,
3112 F2FS_I(inode)->cp_task == current ?
3113 FS_CP_DATA_IO : FS_DATA_IO);
3116 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3118 struct inode *inode = mapping->host;
3119 loff_t i_size = i_size_read(inode);
3121 if (IS_NOQUOTA(inode))
3124 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3125 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3126 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3127 down_write(&F2FS_I(inode)->i_mmap_sem);
3129 truncate_pagecache(inode, i_size);
3130 f2fs_truncate_blocks(inode, i_size, true);
3132 up_write(&F2FS_I(inode)->i_mmap_sem);
3133 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3137 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3138 struct page *page, loff_t pos, unsigned len,
3139 block_t *blk_addr, bool *node_changed)
3141 struct inode *inode = page->mapping->host;
3142 pgoff_t index = page->index;
3143 struct dnode_of_data dn;
3145 bool locked = false;
3146 struct extent_info ei = {0,0,0};
3151 * we already allocated all the blocks, so we don't need to get
3152 * the block addresses when there is no need to fill the page.
3154 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3155 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3156 !f2fs_verity_in_progress(inode))
3159 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3160 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3161 flag = F2FS_GET_BLOCK_DEFAULT;
3163 flag = F2FS_GET_BLOCK_PRE_AIO;
3165 if (f2fs_has_inline_data(inode) ||
3166 (pos & PAGE_MASK) >= i_size_read(inode)) {
3167 __do_map_lock(sbi, flag, true);
3172 /* check inline_data */
3173 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3174 if (IS_ERR(ipage)) {
3175 err = PTR_ERR(ipage);
3179 set_new_dnode(&dn, inode, ipage, ipage, 0);
3181 if (f2fs_has_inline_data(inode)) {
3182 if (pos + len <= MAX_INLINE_DATA(inode)) {
3183 f2fs_do_read_inline_data(page, ipage);
3184 set_inode_flag(inode, FI_DATA_EXIST);
3186 set_inline_node(ipage);
3188 err = f2fs_convert_inline_page(&dn, page);
3191 if (dn.data_blkaddr == NULL_ADDR)
3192 err = f2fs_get_block(&dn, index);
3194 } else if (locked) {
3195 err = f2fs_get_block(&dn, index);
3197 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3198 dn.data_blkaddr = ei.blk + index - ei.fofs;
3201 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3202 if (err || dn.data_blkaddr == NULL_ADDR) {
3203 f2fs_put_dnode(&dn);
3204 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3206 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3213 /* convert_inline_page can make node_changed */
3214 *blk_addr = dn.data_blkaddr;
3215 *node_changed = dn.node_changed;
3217 f2fs_put_dnode(&dn);
3220 __do_map_lock(sbi, flag, false);
3224 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3225 loff_t pos, unsigned len, unsigned flags,
3226 struct page **pagep, void **fsdata)
3228 struct inode *inode = mapping->host;
3229 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3230 struct page *page = NULL;
3231 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3232 bool need_balance = false, drop_atomic = false;
3233 block_t blkaddr = NULL_ADDR;
3236 trace_f2fs_write_begin(inode, pos, len, flags);
3238 if (!f2fs_is_checkpoint_ready(sbi)) {
3243 if ((f2fs_is_atomic_file(inode) &&
3244 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3245 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3252 * We should check this at this moment to avoid deadlock on inode page
3253 * and #0 page. The locking rule for inline_data conversion should be:
3254 * lock_page(page #0) -> lock_page(inode_page)
3257 err = f2fs_convert_inline_inode(inode);
3262 #ifdef CONFIG_F2FS_FS_COMPRESSION
3263 if (f2fs_compressed_file(inode)) {
3268 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3281 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3282 * wait_for_stable_page. Will wait that below with our IO control.
3284 page = f2fs_pagecache_get_page(mapping, index,
3285 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3291 /* TODO: cluster can be compressed due to race with .writepage */
3295 err = prepare_write_begin(sbi, page, pos, len,
3296 &blkaddr, &need_balance);
3300 if (need_balance && !IS_NOQUOTA(inode) &&
3301 has_not_enough_free_secs(sbi, 0, 0)) {
3303 f2fs_balance_fs(sbi, true);
3305 if (page->mapping != mapping) {
3306 /* The page got truncated from under us */
3307 f2fs_put_page(page, 1);
3312 f2fs_wait_on_page_writeback(page, DATA, false, true);
3314 if (len == PAGE_SIZE || PageUptodate(page))
3317 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3318 !f2fs_verity_in_progress(inode)) {
3319 zero_user_segment(page, len, PAGE_SIZE);
3323 if (blkaddr == NEW_ADDR) {
3324 zero_user_segment(page, 0, PAGE_SIZE);
3325 SetPageUptodate(page);
3327 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3328 DATA_GENERIC_ENHANCE_READ)) {
3329 err = -EFSCORRUPTED;
3332 err = f2fs_submit_page_read(inode, page, blkaddr, true);
3337 if (unlikely(page->mapping != mapping)) {
3338 f2fs_put_page(page, 1);
3341 if (unlikely(!PageUptodate(page))) {
3349 f2fs_put_page(page, 1);
3350 f2fs_write_failed(mapping, pos + len);
3352 f2fs_drop_inmem_pages_all(sbi, false);
3356 static int f2fs_write_end(struct file *file,
3357 struct address_space *mapping,
3358 loff_t pos, unsigned len, unsigned copied,
3359 struct page *page, void *fsdata)
3361 struct inode *inode = page->mapping->host;
3363 trace_f2fs_write_end(inode, pos, len, copied);
3366 * This should be come from len == PAGE_SIZE, and we expect copied
3367 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3368 * let generic_perform_write() try to copy data again through copied=0.
3370 if (!PageUptodate(page)) {
3371 if (unlikely(copied != len))
3374 SetPageUptodate(page);
3377 #ifdef CONFIG_F2FS_FS_COMPRESSION
3378 /* overwrite compressed file */
3379 if (f2fs_compressed_file(inode) && fsdata) {
3380 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3381 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3389 set_page_dirty(page);
3391 if (pos + copied > i_size_read(inode) &&
3392 !f2fs_verity_in_progress(inode))
3393 f2fs_i_size_write(inode, pos + copied);
3395 f2fs_put_page(page, 1);
3396 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3400 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3403 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3404 unsigned blkbits = i_blkbits;
3405 unsigned blocksize_mask = (1 << blkbits) - 1;
3406 unsigned long align = offset | iov_iter_alignment(iter);
3407 struct block_device *bdev = inode->i_sb->s_bdev;
3409 if (align & blocksize_mask) {
3411 blkbits = blksize_bits(bdev_logical_block_size(bdev));
3412 blocksize_mask = (1 << blkbits) - 1;
3413 if (align & blocksize_mask)
3420 static void f2fs_dio_end_io(struct bio *bio)
3422 struct f2fs_private_dio *dio = bio->bi_private;
3424 dec_page_count(F2FS_I_SB(dio->inode),
3425 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3427 bio->bi_private = dio->orig_private;
3428 bio->bi_end_io = dio->orig_end_io;
3435 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3438 struct f2fs_private_dio *dio;
3439 bool write = (bio_op(bio) == REQ_OP_WRITE);
3441 dio = f2fs_kzalloc(F2FS_I_SB(inode),
3442 sizeof(struct f2fs_private_dio), GFP_NOFS);
3447 dio->orig_end_io = bio->bi_end_io;
3448 dio->orig_private = bio->bi_private;
3451 bio->bi_end_io = f2fs_dio_end_io;
3452 bio->bi_private = dio;
3454 inc_page_count(F2FS_I_SB(inode),
3455 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3460 bio->bi_status = BLK_STS_IOERR;
3464 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3466 struct address_space *mapping = iocb->ki_filp->f_mapping;
3467 struct inode *inode = mapping->host;
3468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3469 struct f2fs_inode_info *fi = F2FS_I(inode);
3470 size_t count = iov_iter_count(iter);
3471 loff_t offset = iocb->ki_pos;
3472 int rw = iov_iter_rw(iter);
3474 enum rw_hint hint = iocb->ki_hint;
3475 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3478 err = check_direct_IO(inode, iter, offset);
3480 return err < 0 ? err : 0;
3482 if (f2fs_force_buffered_io(inode, iocb, iter))
3485 do_opu = allow_outplace_dio(inode, iocb, iter);
3487 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3489 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3490 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3492 if (iocb->ki_flags & IOCB_NOWAIT) {
3493 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3494 iocb->ki_hint = hint;
3498 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3499 up_read(&fi->i_gc_rwsem[rw]);
3500 iocb->ki_hint = hint;
3505 down_read(&fi->i_gc_rwsem[rw]);
3507 down_read(&fi->i_gc_rwsem[READ]);
3510 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3511 iter, rw == WRITE ? get_data_block_dio_write :
3512 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3513 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3517 up_read(&fi->i_gc_rwsem[READ]);
3519 up_read(&fi->i_gc_rwsem[rw]);
3522 if (whint_mode == WHINT_MODE_OFF)
3523 iocb->ki_hint = hint;
3525 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3528 set_inode_flag(inode, FI_UPDATE_WRITE);
3529 } else if (err < 0) {
3530 f2fs_write_failed(mapping, offset + count);
3534 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3538 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3543 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3544 unsigned int length)
3546 struct inode *inode = page->mapping->host;
3547 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3549 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3550 (offset % PAGE_SIZE || length != PAGE_SIZE))
3553 if (PageDirty(page)) {
3554 if (inode->i_ino == F2FS_META_INO(sbi)) {
3555 dec_page_count(sbi, F2FS_DIRTY_META);
3556 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3557 dec_page_count(sbi, F2FS_DIRTY_NODES);
3559 inode_dec_dirty_pages(inode);
3560 f2fs_remove_dirty_inode(inode);
3564 clear_cold_data(page);
3566 if (IS_ATOMIC_WRITTEN_PAGE(page))
3567 return f2fs_drop_inmem_page(inode, page);
3569 f2fs_clear_page_private(page);
3572 int f2fs_release_page(struct page *page, gfp_t wait)
3574 /* If this is dirty page, keep PagePrivate */
3575 if (PageDirty(page))
3578 /* This is atomic written page, keep Private */
3579 if (IS_ATOMIC_WRITTEN_PAGE(page))
3582 clear_cold_data(page);
3583 f2fs_clear_page_private(page);
3587 static int f2fs_set_data_page_dirty(struct page *page)
3589 struct inode *inode = page_file_mapping(page)->host;
3591 trace_f2fs_set_page_dirty(page, DATA);
3593 if (!PageUptodate(page))
3594 SetPageUptodate(page);
3595 if (PageSwapCache(page))
3596 return __set_page_dirty_nobuffers(page);
3598 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3599 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3600 f2fs_register_inmem_page(inode, page);
3604 * Previously, this page has been registered, we just
3610 if (!PageDirty(page)) {
3611 __set_page_dirty_nobuffers(page);
3612 f2fs_update_dirty_page(inode, page);
3618 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3620 struct inode *inode = mapping->host;
3622 if (f2fs_has_inline_data(inode))
3625 /* make sure allocating whole blocks */
3626 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3627 filemap_write_and_wait(mapping);
3629 return generic_block_bmap(mapping, block, get_data_block_bmap);
3632 #ifdef CONFIG_MIGRATION
3633 #include <linux/migrate.h>
3635 int f2fs_migrate_page(struct address_space *mapping,
3636 struct page *newpage, struct page *page, enum migrate_mode mode)
3638 int rc, extra_count;
3639 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3640 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3642 BUG_ON(PageWriteback(page));
3644 /* migrating an atomic written page is safe with the inmem_lock hold */
3645 if (atomic_written) {
3646 if (mode != MIGRATE_SYNC)
3648 if (!mutex_trylock(&fi->inmem_lock))
3652 /* one extra reference was held for atomic_write page */
3653 extra_count = atomic_written ? 1 : 0;
3654 rc = migrate_page_move_mapping(mapping, newpage,
3656 if (rc != MIGRATEPAGE_SUCCESS) {
3658 mutex_unlock(&fi->inmem_lock);
3662 if (atomic_written) {
3663 struct inmem_pages *cur;
3664 list_for_each_entry(cur, &fi->inmem_pages, list)
3665 if (cur->page == page) {
3666 cur->page = newpage;
3669 mutex_unlock(&fi->inmem_lock);
3674 if (PagePrivate(page)) {
3675 f2fs_set_page_private(newpage, page_private(page));
3676 f2fs_clear_page_private(page);
3679 if (mode != MIGRATE_SYNC_NO_COPY)
3680 migrate_page_copy(newpage, page);
3682 migrate_page_states(newpage, page);
3684 return MIGRATEPAGE_SUCCESS;
3689 /* Copied from generic_swapfile_activate() to check any holes */
3690 static int check_swap_activate(struct swap_info_struct *sis,
3691 struct file *swap_file, sector_t *span)
3693 struct address_space *mapping = swap_file->f_mapping;
3694 struct inode *inode = mapping->host;
3695 unsigned blocks_per_page;
3696 unsigned long page_no;
3698 sector_t probe_block;
3699 sector_t last_block;
3700 sector_t lowest_block = -1;
3701 sector_t highest_block = 0;
3705 blkbits = inode->i_blkbits;
3706 blocks_per_page = PAGE_SIZE >> blkbits;
3709 * Map all the blocks into the extent list. This code doesn't try
3714 last_block = i_size_read(inode) >> blkbits;
3715 while ((probe_block + blocks_per_page) <= last_block &&
3716 page_no < sis->max) {
3717 unsigned block_in_page;
3718 sector_t first_block;
3724 block = probe_block;
3725 err = bmap(inode, &block);
3728 first_block = block;
3731 * It must be PAGE_SIZE aligned on-disk
3733 if (first_block & (blocks_per_page - 1)) {
3738 for (block_in_page = 1; block_in_page < blocks_per_page;
3741 block = probe_block + block_in_page;
3742 err = bmap(inode, &block);
3747 if (block != first_block + block_in_page) {
3754 first_block >>= (PAGE_SHIFT - blkbits);
3755 if (page_no) { /* exclude the header page */
3756 if (first_block < lowest_block)
3757 lowest_block = first_block;
3758 if (first_block > highest_block)
3759 highest_block = first_block;
3763 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3765 ret = add_swap_extent(sis, page_no, 1, first_block);
3770 probe_block += blocks_per_page;
3775 *span = 1 + highest_block - lowest_block;
3777 page_no = 1; /* force Empty message */
3779 sis->pages = page_no - 1;
3780 sis->highest_bit = page_no - 1;
3784 pr_err("swapon: swapfile has holes\n");
3788 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3791 struct inode *inode = file_inode(file);
3794 if (!S_ISREG(inode->i_mode))
3797 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3800 ret = f2fs_convert_inline_inode(inode);
3804 if (f2fs_disable_compressed_file(inode))
3807 ret = check_swap_activate(sis, file, span);
3811 set_inode_flag(inode, FI_PIN_FILE);
3812 f2fs_precache_extents(inode);
3813 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3817 static void f2fs_swap_deactivate(struct file *file)
3819 struct inode *inode = file_inode(file);
3821 clear_inode_flag(inode, FI_PIN_FILE);
3824 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3830 static void f2fs_swap_deactivate(struct file *file)
3835 const struct address_space_operations f2fs_dblock_aops = {
3836 .readpage = f2fs_read_data_page,
3837 .readpages = f2fs_read_data_pages,
3838 .writepage = f2fs_write_data_page,
3839 .writepages = f2fs_write_data_pages,
3840 .write_begin = f2fs_write_begin,
3841 .write_end = f2fs_write_end,
3842 .set_page_dirty = f2fs_set_data_page_dirty,
3843 .invalidatepage = f2fs_invalidate_page,
3844 .releasepage = f2fs_release_page,
3845 .direct_IO = f2fs_direct_IO,
3847 .swap_activate = f2fs_swap_activate,
3848 .swap_deactivate = f2fs_swap_deactivate,
3849 #ifdef CONFIG_MIGRATION
3850 .migratepage = f2fs_migrate_page,
3854 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3856 struct address_space *mapping = page_mapping(page);
3857 unsigned long flags;
3859 xa_lock_irqsave(&mapping->i_pages, flags);
3860 __xa_clear_mark(&mapping->i_pages, page_index(page),
3861 PAGECACHE_TAG_DIRTY);
3862 xa_unlock_irqrestore(&mapping->i_pages, flags);
3865 int __init f2fs_init_post_read_processing(void)
3867 bio_post_read_ctx_cache =
3868 kmem_cache_create("f2fs_bio_post_read_ctx",
3869 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3870 if (!bio_post_read_ctx_cache)
3872 bio_post_read_ctx_pool =
3873 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3874 bio_post_read_ctx_cache);
3875 if (!bio_post_read_ctx_pool)
3876 goto fail_free_cache;
3880 kmem_cache_destroy(bio_post_read_ctx_cache);
3885 void f2fs_destroy_post_read_processing(void)
3887 mempool_destroy(bio_post_read_ctx_pool);
3888 kmem_cache_destroy(bio_post_read_ctx_cache);
3891 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3893 if (!f2fs_sb_has_encrypt(sbi) &&
3894 !f2fs_sb_has_verity(sbi) &&
3895 !f2fs_sb_has_compression(sbi))
3898 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
3899 WQ_UNBOUND | WQ_HIGHPRI,
3901 if (!sbi->post_read_wq)
3906 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
3908 if (sbi->post_read_wq)
3909 destroy_workqueue(sbi->post_read_wq);
3912 int __init f2fs_init_bio_entry_cache(void)
3914 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
3915 sizeof(struct bio_entry));
3916 if (!bio_entry_slab)
3921 void f2fs_destroy_bio_entry_cache(void)
3923 kmem_cache_destroy(bio_entry_slab);