]> Git Repo - linux.git/blob - net/core/dev.c
net: use listified RX for handling GRO_NORMAL skbs
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183
1184         /* Some auto-enslaved devices e.g. failover slaves are
1185          * special, as userspace might rename the device after
1186          * the interface had been brought up and running since
1187          * the point kernel initiated auto-enslavement. Allow
1188          * live name change even when these slave devices are
1189          * up and running.
1190          *
1191          * Typically, users of these auto-enslaving devices
1192          * don't actually care about slave name change, as
1193          * they are supposed to operate on master interface
1194          * directly.
1195          */
1196         if (dev->flags & IFF_UP &&
1197             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198                 return -EBUSY;
1199
1200         write_seqcount_begin(&devnet_rename_seq);
1201
1202         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203                 write_seqcount_end(&devnet_rename_seq);
1204                 return 0;
1205         }
1206
1207         memcpy(oldname, dev->name, IFNAMSIZ);
1208
1209         err = dev_get_valid_name(net, dev, newname);
1210         if (err < 0) {
1211                 write_seqcount_end(&devnet_rename_seq);
1212                 return err;
1213         }
1214
1215         if (oldname[0] && !strchr(oldname, '%'))
1216                 netdev_info(dev, "renamed from %s\n", oldname);
1217
1218         old_assign_type = dev->name_assign_type;
1219         dev->name_assign_type = NET_NAME_RENAMED;
1220
1221 rollback:
1222         ret = device_rename(&dev->dev, dev->name);
1223         if (ret) {
1224                 memcpy(dev->name, oldname, IFNAMSIZ);
1225                 dev->name_assign_type = old_assign_type;
1226                 write_seqcount_end(&devnet_rename_seq);
1227                 return ret;
1228         }
1229
1230         write_seqcount_end(&devnet_rename_seq);
1231
1232         netdev_adjacent_rename_links(dev, oldname);
1233
1234         write_lock_bh(&dev_base_lock);
1235         hlist_del_rcu(&dev->name_hlist);
1236         write_unlock_bh(&dev_base_lock);
1237
1238         synchronize_rcu();
1239
1240         write_lock_bh(&dev_base_lock);
1241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242         write_unlock_bh(&dev_base_lock);
1243
1244         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245         ret = notifier_to_errno(ret);
1246
1247         if (ret) {
1248                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249                 if (err >= 0) {
1250                         err = ret;
1251                         write_seqcount_begin(&devnet_rename_seq);
1252                         memcpy(dev->name, oldname, IFNAMSIZ);
1253                         memcpy(oldname, newname, IFNAMSIZ);
1254                         dev->name_assign_type = old_assign_type;
1255                         old_assign_type = NET_NAME_RENAMED;
1256                         goto rollback;
1257                 } else {
1258                         pr_err("%s: name change rollback failed: %d\n",
1259                                dev->name, ret);
1260                 }
1261         }
1262
1263         return err;
1264 }
1265
1266 /**
1267  *      dev_set_alias - change ifalias of a device
1268  *      @dev: device
1269  *      @alias: name up to IFALIASZ
1270  *      @len: limit of bytes to copy from info
1271  *
1272  *      Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276         struct dev_ifalias *new_alias = NULL;
1277
1278         if (len >= IFALIASZ)
1279                 return -EINVAL;
1280
1281         if (len) {
1282                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283                 if (!new_alias)
1284                         return -ENOMEM;
1285
1286                 memcpy(new_alias->ifalias, alias, len);
1287                 new_alias->ifalias[len] = 0;
1288         }
1289
1290         mutex_lock(&ifalias_mutex);
1291         rcu_swap_protected(dev->ifalias, new_alias,
1292                            mutex_is_locked(&ifalias_mutex));
1293         mutex_unlock(&ifalias_mutex);
1294
1295         if (new_alias)
1296                 kfree_rcu(new_alias, rcuhead);
1297
1298         return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301
1302 /**
1303  *      dev_get_alias - get ifalias of a device
1304  *      @dev: device
1305  *      @name: buffer to store name of ifalias
1306  *      @len: size of buffer
1307  *
1308  *      get ifalias for a device.  Caller must make sure dev cannot go
1309  *      away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313         const struct dev_ifalias *alias;
1314         int ret = 0;
1315
1316         rcu_read_lock();
1317         alias = rcu_dereference(dev->ifalias);
1318         if (alias)
1319                 ret = snprintf(name, len, "%s", alias->ifalias);
1320         rcu_read_unlock();
1321
1322         return ret;
1323 }
1324
1325 /**
1326  *      netdev_features_change - device changes features
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336
1337 /**
1338  *      netdev_state_change - device changes state
1339  *      @dev: device to cause notification
1340  *
1341  *      Called to indicate a device has changed state. This function calls
1342  *      the notifier chains for netdev_chain and sends a NEWLINK message
1343  *      to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347         if (dev->flags & IFF_UP) {
1348                 struct netdev_notifier_change_info change_info = {
1349                         .info.dev = dev,
1350                 };
1351
1352                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353                                               &change_info.info);
1354                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355         }
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371         rtnl_lock();
1372         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380         const struct net_device_ops *ops = dev->netdev_ops;
1381         int ret;
1382
1383         ASSERT_RTNL();
1384
1385         if (!netif_device_present(dev))
1386                 return -ENODEV;
1387
1388         /* Block netpoll from trying to do any rx path servicing.
1389          * If we don't do this there is a chance ndo_poll_controller
1390          * or ndo_poll may be running while we open the device
1391          */
1392         netpoll_poll_disable(dev);
1393
1394         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395         ret = notifier_to_errno(ret);
1396         if (ret)
1397                 return ret;
1398
1399         set_bit(__LINK_STATE_START, &dev->state);
1400
1401         if (ops->ndo_validate_addr)
1402                 ret = ops->ndo_validate_addr(dev);
1403
1404         if (!ret && ops->ndo_open)
1405                 ret = ops->ndo_open(dev);
1406
1407         netpoll_poll_enable(dev);
1408
1409         if (ret)
1410                 clear_bit(__LINK_STATE_START, &dev->state);
1411         else {
1412                 dev->flags |= IFF_UP;
1413                 dev_set_rx_mode(dev);
1414                 dev_activate(dev);
1415                 add_device_randomness(dev->dev_addr, dev->addr_len);
1416         }
1417
1418         return ret;
1419 }
1420
1421 /**
1422  *      dev_open        - prepare an interface for use.
1423  *      @dev: device to open
1424  *      @extack: netlink extended ack
1425  *
1426  *      Takes a device from down to up state. The device's private open
1427  *      function is invoked and then the multicast lists are loaded. Finally
1428  *      the device is moved into the up state and a %NETDEV_UP message is
1429  *      sent to the netdev notifier chain.
1430  *
1431  *      Calling this function on an active interface is a nop. On a failure
1432  *      a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436         int ret;
1437
1438         if (dev->flags & IFF_UP)
1439                 return 0;
1440
1441         ret = __dev_open(dev, extack);
1442         if (ret < 0)
1443                 return ret;
1444
1445         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446         call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448         return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454         struct net_device *dev;
1455
1456         ASSERT_RTNL();
1457         might_sleep();
1458
1459         list_for_each_entry(dev, head, close_list) {
1460                 /* Temporarily disable netpoll until the interface is down */
1461                 netpoll_poll_disable(dev);
1462
1463                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464
1465                 clear_bit(__LINK_STATE_START, &dev->state);
1466
1467                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468                  * can be even on different cpu. So just clear netif_running().
1469                  *
1470                  * dev->stop() will invoke napi_disable() on all of it's
1471                  * napi_struct instances on this device.
1472                  */
1473                 smp_mb__after_atomic(); /* Commit netif_running(). */
1474         }
1475
1476         dev_deactivate_many(head);
1477
1478         list_for_each_entry(dev, head, close_list) {
1479                 const struct net_device_ops *ops = dev->netdev_ops;
1480
1481                 /*
1482                  *      Call the device specific close. This cannot fail.
1483                  *      Only if device is UP
1484                  *
1485                  *      We allow it to be called even after a DETACH hot-plug
1486                  *      event.
1487                  */
1488                 if (ops->ndo_stop)
1489                         ops->ndo_stop(dev);
1490
1491                 dev->flags &= ~IFF_UP;
1492                 netpoll_poll_enable(dev);
1493         }
1494 }
1495
1496 static void __dev_close(struct net_device *dev)
1497 {
1498         LIST_HEAD(single);
1499
1500         list_add(&dev->close_list, &single);
1501         __dev_close_many(&single);
1502         list_del(&single);
1503 }
1504
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507         struct net_device *dev, *tmp;
1508
1509         /* Remove the devices that don't need to be closed */
1510         list_for_each_entry_safe(dev, tmp, head, close_list)
1511                 if (!(dev->flags & IFF_UP))
1512                         list_del_init(&dev->close_list);
1513
1514         __dev_close_many(head);
1515
1516         list_for_each_entry_safe(dev, tmp, head, close_list) {
1517                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1519                 if (unlink)
1520                         list_del_init(&dev->close_list);
1521         }
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524
1525 /**
1526  *      dev_close - shutdown an interface.
1527  *      @dev: device to shutdown
1528  *
1529  *      This function moves an active device into down state. A
1530  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *      chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536         if (dev->flags & IFF_UP) {
1537                 LIST_HEAD(single);
1538
1539                 list_add(&dev->close_list, &single);
1540                 dev_close_many(&single, true);
1541                 list_del(&single);
1542         }
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545
1546
1547 /**
1548  *      dev_disable_lro - disable Large Receive Offload on a device
1549  *      @dev: device
1550  *
1551  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *      called under RTNL.  This is needed if received packets may be
1553  *      forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557         struct net_device *lower_dev;
1558         struct list_head *iter;
1559
1560         dev->wanted_features &= ~NETIF_F_LRO;
1561         netdev_update_features(dev);
1562
1563         if (unlikely(dev->features & NETIF_F_LRO))
1564                 netdev_WARN(dev, "failed to disable LRO!\n");
1565
1566         netdev_for_each_lower_dev(dev, lower_dev, iter)
1567                 dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570
1571 /**
1572  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *      @dev: device
1574  *
1575  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *      called under RTNL.  This is needed if Generic XDP is installed on
1577  *      the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581         dev->wanted_features &= ~NETIF_F_GRO_HW;
1582         netdev_update_features(dev);
1583
1584         if (unlikely(dev->features & NETIF_F_GRO_HW))
1585                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val)                                          \
1591         case NETDEV_##val:                              \
1592                 return "NETDEV_" __stringify(val);
1593         switch (cmd) {
1594         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603         N(PRE_CHANGEADDR)
1604         }
1605 #undef N
1606         return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611                                    struct net_device *dev)
1612 {
1613         struct netdev_notifier_info info = {
1614                 .dev = dev,
1615         };
1616
1617         return nb->notifier_call(nb, val, &info);
1618 }
1619
1620 static int dev_boot_phase = 1;
1621
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638         struct net_device *dev;
1639         struct net_device *last;
1640         struct net *net;
1641         int err;
1642
1643         /* Close race with setup_net() and cleanup_net() */
1644         down_write(&pernet_ops_rwsem);
1645         rtnl_lock();
1646         err = raw_notifier_chain_register(&netdev_chain, nb);
1647         if (err)
1648                 goto unlock;
1649         if (dev_boot_phase)
1650                 goto unlock;
1651         for_each_net(net) {
1652                 for_each_netdev(net, dev) {
1653                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654                         err = notifier_to_errno(err);
1655                         if (err)
1656                                 goto rollback;
1657
1658                         if (!(dev->flags & IFF_UP))
1659                                 continue;
1660
1661                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662                 }
1663         }
1664
1665 unlock:
1666         rtnl_unlock();
1667         up_write(&pernet_ops_rwsem);
1668         return err;
1669
1670 rollback:
1671         last = dev;
1672         for_each_net(net) {
1673                 for_each_netdev(net, dev) {
1674                         if (dev == last)
1675                                 goto outroll;
1676
1677                         if (dev->flags & IFF_UP) {
1678                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679                                                         dev);
1680                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681                         }
1682                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683                 }
1684         }
1685
1686 outroll:
1687         raw_notifier_chain_unregister(&netdev_chain, nb);
1688         goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708         struct net_device *dev;
1709         struct net *net;
1710         int err;
1711
1712         /* Close race with setup_net() and cleanup_net() */
1713         down_write(&pernet_ops_rwsem);
1714         rtnl_lock();
1715         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716         if (err)
1717                 goto unlock;
1718
1719         for_each_net(net) {
1720                 for_each_netdev(net, dev) {
1721                         if (dev->flags & IFF_UP) {
1722                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                                         dev);
1724                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725                         }
1726                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727                 }
1728         }
1729 unlock:
1730         rtnl_unlock();
1731         up_write(&pernet_ops_rwsem);
1732         return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735
1736 /**
1737  *      call_netdevice_notifiers_info - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @info: notifier information data
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746                                          struct netdev_notifier_info *info)
1747 {
1748         ASSERT_RTNL();
1749         return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753                                            struct net_device *dev,
1754                                            struct netlink_ext_ack *extack)
1755 {
1756         struct netdev_notifier_info info = {
1757                 .dev = dev,
1758                 .extack = extack,
1759         };
1760
1761         return call_netdevice_notifiers_info(val, &info);
1762 }
1763
1764 /**
1765  *      call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *      Call all network notifier blocks.  Parameters and return value
1770  *      are as for raw_notifier_call_chain().
1771  */
1772
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775         return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778
1779 /**
1780  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *      @val: value passed unmodified to notifier function
1782  *      @dev: net_device pointer passed unmodified to notifier function
1783  *      @arg: additional u32 argument passed to the notifier function
1784  *
1785  *      Call all network notifier blocks.  Parameters and return value
1786  *      are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789                                         struct net_device *dev, u32 arg)
1790 {
1791         struct netdev_notifier_info_ext info = {
1792                 .info.dev = dev,
1793                 .ext.mtu = arg,
1794         };
1795
1796         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798         return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803
1804 void net_inc_ingress_queue(void)
1805 {
1806         static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810 void net_dec_ingress_queue(void)
1811 {
1812         static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819
1820 void net_inc_egress_queue(void)
1821 {
1822         static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826 void net_dec_egress_queue(void)
1827 {
1828         static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840         int wanted;
1841
1842         wanted = atomic_add_return(deferred, &netstamp_wanted);
1843         if (wanted > 0)
1844                 static_branch_enable(&netstamp_needed_key);
1845         else
1846                 static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854         int wanted;
1855
1856         while (1) {
1857                 wanted = atomic_read(&netstamp_wanted);
1858                 if (wanted <= 0)
1859                         break;
1860                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861                         return;
1862         }
1863         atomic_inc(&netstamp_needed_deferred);
1864         schedule_work(&netstamp_work);
1865 #else
1866         static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874         int wanted;
1875
1876         while (1) {
1877                 wanted = atomic_read(&netstamp_wanted);
1878                 if (wanted <= 1)
1879                         break;
1880                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881                         return;
1882         }
1883         atomic_dec(&netstamp_needed_deferred);
1884         schedule_work(&netstamp_work);
1885 #else
1886         static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893         skb->tstamp = 0;
1894         if (static_branch_unlikely(&netstamp_needed_key))
1895                 __net_timestamp(skb);
1896 }
1897
1898 #define net_timestamp_check(COND, SKB)                          \
1899         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1900                 if ((COND) && !(SKB)->tstamp)                   \
1901                         __net_timestamp(SKB);                   \
1902         }                                                       \
1903
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906         unsigned int len;
1907
1908         if (!(dev->flags & IFF_UP))
1909                 return false;
1910
1911         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912         if (skb->len <= len)
1913                 return true;
1914
1915         /* if TSO is enabled, we don't care about the length as the packet
1916          * could be forwarded without being segmented before
1917          */
1918         if (skb_is_gso(skb))
1919                 return true;
1920
1921         return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927         int ret = ____dev_forward_skb(dev, skb);
1928
1929         if (likely(!ret)) {
1930                 skb->protocol = eth_type_trans(skb, dev);
1931                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932         }
1933
1934         return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *      NET_RX_SUCCESS  (no congestion)
1946  *      NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
1962 static inline int deliver_skb(struct sk_buff *skb,
1963                               struct packet_type *pt_prev,
1964                               struct net_device *orig_dev)
1965 {
1966         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967                 return -ENOMEM;
1968         refcount_inc(&skb->users);
1969         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973                                           struct packet_type **pt,
1974                                           struct net_device *orig_dev,
1975                                           __be16 type,
1976                                           struct list_head *ptype_list)
1977 {
1978         struct packet_type *ptype, *pt_prev = *pt;
1979
1980         list_for_each_entry_rcu(ptype, ptype_list, list) {
1981                 if (ptype->type != type)
1982                         continue;
1983                 if (pt_prev)
1984                         deliver_skb(skb, pt_prev, orig_dev);
1985                 pt_prev = ptype;
1986         }
1987         *pt = pt_prev;
1988 }
1989
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992         if (!ptype->af_packet_priv || !skb->sk)
1993                 return false;
1994
1995         if (ptype->id_match)
1996                 return ptype->id_match(ptype, skb->sk);
1997         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998                 return true;
1999
2000         return false;
2001 }
2002
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013
2014 /*
2015  *      Support routine. Sends outgoing frames to any network
2016  *      taps currently in use.
2017  */
2018
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021         struct packet_type *ptype;
2022         struct sk_buff *skb2 = NULL;
2023         struct packet_type *pt_prev = NULL;
2024         struct list_head *ptype_list = &ptype_all;
2025
2026         rcu_read_lock();
2027 again:
2028         list_for_each_entry_rcu(ptype, ptype_list, list) {
2029                 if (ptype->ignore_outgoing)
2030                         continue;
2031
2032                 /* Never send packets back to the socket
2033                  * they originated from - MvS ([email protected])
2034                  */
2035                 if (skb_loop_sk(ptype, skb))
2036                         continue;
2037
2038                 if (pt_prev) {
2039                         deliver_skb(skb2, pt_prev, skb->dev);
2040                         pt_prev = ptype;
2041                         continue;
2042                 }
2043
2044                 /* need to clone skb, done only once */
2045                 skb2 = skb_clone(skb, GFP_ATOMIC);
2046                 if (!skb2)
2047                         goto out_unlock;
2048
2049                 net_timestamp_set(skb2);
2050
2051                 /* skb->nh should be correctly
2052                  * set by sender, so that the second statement is
2053                  * just protection against buggy protocols.
2054                  */
2055                 skb_reset_mac_header(skb2);
2056
2057                 if (skb_network_header(skb2) < skb2->data ||
2058                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060                                              ntohs(skb2->protocol),
2061                                              dev->name);
2062                         skb_reset_network_header(skb2);
2063                 }
2064
2065                 skb2->transport_header = skb2->network_header;
2066                 skb2->pkt_type = PACKET_OUTGOING;
2067                 pt_prev = ptype;
2068         }
2069
2070         if (ptype_list == &ptype_all) {
2071                 ptype_list = &dev->ptype_all;
2072                 goto again;
2073         }
2074 out_unlock:
2075         if (pt_prev) {
2076                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078                 else
2079                         kfree_skb(skb2);
2080         }
2081         rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100         int i;
2101         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103         /* If TC0 is invalidated disable TC mapping */
2104         if (tc->offset + tc->count > txq) {
2105                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106                 dev->num_tc = 0;
2107                 return;
2108         }
2109
2110         /* Invalidated prio to tc mappings set to TC0 */
2111         for (i = 1; i < TC_BITMASK + 1; i++) {
2112                 int q = netdev_get_prio_tc_map(dev, i);
2113
2114                 tc = &dev->tc_to_txq[q];
2115                 if (tc->offset + tc->count > txq) {
2116                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117                                 i, q);
2118                         netdev_set_prio_tc_map(dev, i, 0);
2119                 }
2120         }
2121 }
2122
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125         if (dev->num_tc) {
2126                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127                 int i;
2128
2129                 /* walk through the TCs and see if it falls into any of them */
2130                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131                         if ((txq - tc->offset) < tc->count)
2132                                 return i;
2133                 }
2134
2135                 /* didn't find it, just return -1 to indicate no match */
2136                 return -1;
2137         }
2138
2139         return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)             \
2150         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153                              int tci, u16 index)
2154 {
2155         struct xps_map *map = NULL;
2156         int pos;
2157
2158         if (dev_maps)
2159                 map = xmap_dereference(dev_maps->attr_map[tci]);
2160         if (!map)
2161                 return false;
2162
2163         for (pos = map->len; pos--;) {
2164                 if (map->queues[pos] != index)
2165                         continue;
2166
2167                 if (map->len > 1) {
2168                         map->queues[pos] = map->queues[--map->len];
2169                         break;
2170                 }
2171
2172                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173                 kfree_rcu(map, rcu);
2174                 return false;
2175         }
2176
2177         return true;
2178 }
2179
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181                                  struct xps_dev_maps *dev_maps,
2182                                  int cpu, u16 offset, u16 count)
2183 {
2184         int num_tc = dev->num_tc ? : 1;
2185         bool active = false;
2186         int tci;
2187
2188         for (tci = cpu * num_tc; num_tc--; tci++) {
2189                 int i, j;
2190
2191                 for (i = count, j = offset; i--; j++) {
2192                         if (!remove_xps_queue(dev_maps, tci, j))
2193                                 break;
2194                 }
2195
2196                 active |= i < 0;
2197         }
2198
2199         return active;
2200 }
2201
2202 static void reset_xps_maps(struct net_device *dev,
2203                            struct xps_dev_maps *dev_maps,
2204                            bool is_rxqs_map)
2205 {
2206         if (is_rxqs_map) {
2207                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209         } else {
2210                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211         }
2212         static_key_slow_dec_cpuslocked(&xps_needed);
2213         kfree_rcu(dev_maps, rcu);
2214 }
2215
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218                            u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220         bool active = false;
2221         int i, j;
2222
2223         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224              j < nr_ids;)
2225                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226                                                count);
2227         if (!active)
2228                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229
2230         if (!is_rxqs_map) {
2231                 for (i = offset + (count - 1); count--; i--) {
2232                         netdev_queue_numa_node_write(
2233                                 netdev_get_tx_queue(dev, i),
2234                                 NUMA_NO_NODE);
2235                 }
2236         }
2237 }
2238
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240                                    u16 count)
2241 {
2242         const unsigned long *possible_mask = NULL;
2243         struct xps_dev_maps *dev_maps;
2244         unsigned int nr_ids;
2245
2246         if (!static_key_false(&xps_needed))
2247                 return;
2248
2249         cpus_read_lock();
2250         mutex_lock(&xps_map_mutex);
2251
2252         if (static_key_false(&xps_rxqs_needed)) {
2253                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254                 if (dev_maps) {
2255                         nr_ids = dev->num_rx_queues;
2256                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257                                        offset, count, true);
2258                 }
2259         }
2260
2261         dev_maps = xmap_dereference(dev->xps_cpus_map);
2262         if (!dev_maps)
2263                 goto out_no_maps;
2264
2265         if (num_possible_cpus() > 1)
2266                 possible_mask = cpumask_bits(cpu_possible_mask);
2267         nr_ids = nr_cpu_ids;
2268         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269                        false);
2270
2271 out_no_maps:
2272         mutex_unlock(&xps_map_mutex);
2273         cpus_read_unlock();
2274 }
2275
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282                                       u16 index, bool is_rxqs_map)
2283 {
2284         struct xps_map *new_map;
2285         int alloc_len = XPS_MIN_MAP_ALLOC;
2286         int i, pos;
2287
2288         for (pos = 0; map && pos < map->len; pos++) {
2289                 if (map->queues[pos] != index)
2290                         continue;
2291                 return map;
2292         }
2293
2294         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295         if (map) {
2296                 if (pos < map->alloc_len)
2297                         return map;
2298
2299                 alloc_len = map->alloc_len * 2;
2300         }
2301
2302         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303          *  map
2304          */
2305         if (is_rxqs_map)
2306                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307         else
2308                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309                                        cpu_to_node(attr_index));
2310         if (!new_map)
2311                 return NULL;
2312
2313         for (i = 0; i < pos; i++)
2314                 new_map->queues[i] = map->queues[i];
2315         new_map->alloc_len = alloc_len;
2316         new_map->len = pos;
2317
2318         return new_map;
2319 }
2320
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323                           u16 index, bool is_rxqs_map)
2324 {
2325         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327         int i, j, tci, numa_node_id = -2;
2328         int maps_sz, num_tc = 1, tc = 0;
2329         struct xps_map *map, *new_map;
2330         bool active = false;
2331         unsigned int nr_ids;
2332
2333         if (dev->num_tc) {
2334                 /* Do not allow XPS on subordinate device directly */
2335                 num_tc = dev->num_tc;
2336                 if (num_tc < 0)
2337                         return -EINVAL;
2338
2339                 /* If queue belongs to subordinate dev use its map */
2340                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
2342                 tc = netdev_txq_to_tc(dev, index);
2343                 if (tc < 0)
2344                         return -EINVAL;
2345         }
2346
2347         mutex_lock(&xps_map_mutex);
2348         if (is_rxqs_map) {
2349                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351                 nr_ids = dev->num_rx_queues;
2352         } else {
2353                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354                 if (num_possible_cpus() > 1) {
2355                         online_mask = cpumask_bits(cpu_online_mask);
2356                         possible_mask = cpumask_bits(cpu_possible_mask);
2357                 }
2358                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359                 nr_ids = nr_cpu_ids;
2360         }
2361
2362         if (maps_sz < L1_CACHE_BYTES)
2363                 maps_sz = L1_CACHE_BYTES;
2364
2365         /* allocate memory for queue storage */
2366         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367              j < nr_ids;) {
2368                 if (!new_dev_maps)
2369                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370                 if (!new_dev_maps) {
2371                         mutex_unlock(&xps_map_mutex);
2372                         return -ENOMEM;
2373                 }
2374
2375                 tci = j * num_tc + tc;
2376                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377                                  NULL;
2378
2379                 map = expand_xps_map(map, j, index, is_rxqs_map);
2380                 if (!map)
2381                         goto error;
2382
2383                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384         }
2385
2386         if (!new_dev_maps)
2387                 goto out_no_new_maps;
2388
2389         if (!dev_maps) {
2390                 /* Increment static keys at most once per type */
2391                 static_key_slow_inc_cpuslocked(&xps_needed);
2392                 if (is_rxqs_map)
2393                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394         }
2395
2396         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397              j < nr_ids;) {
2398                 /* copy maps belonging to foreign traffic classes */
2399                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400                         /* fill in the new device map from the old device map */
2401                         map = xmap_dereference(dev_maps->attr_map[tci]);
2402                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403                 }
2404
2405                 /* We need to explicitly update tci as prevous loop
2406                  * could break out early if dev_maps is NULL.
2407                  */
2408                 tci = j * num_tc + tc;
2409
2410                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411                     netif_attr_test_online(j, online_mask, nr_ids)) {
2412                         /* add tx-queue to CPU/rx-queue maps */
2413                         int pos = 0;
2414
2415                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416                         while ((pos < map->len) && (map->queues[pos] != index))
2417                                 pos++;
2418
2419                         if (pos == map->len)
2420                                 map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422                         if (!is_rxqs_map) {
2423                                 if (numa_node_id == -2)
2424                                         numa_node_id = cpu_to_node(j);
2425                                 else if (numa_node_id != cpu_to_node(j))
2426                                         numa_node_id = -1;
2427                         }
2428 #endif
2429                 } else if (dev_maps) {
2430                         /* fill in the new device map from the old device map */
2431                         map = xmap_dereference(dev_maps->attr_map[tci]);
2432                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433                 }
2434
2435                 /* copy maps belonging to foreign traffic classes */
2436                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437                         /* fill in the new device map from the old device map */
2438                         map = xmap_dereference(dev_maps->attr_map[tci]);
2439                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440                 }
2441         }
2442
2443         if (is_rxqs_map)
2444                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445         else
2446                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447
2448         /* Cleanup old maps */
2449         if (!dev_maps)
2450                 goto out_no_old_maps;
2451
2452         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453              j < nr_ids;) {
2454                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456                         map = xmap_dereference(dev_maps->attr_map[tci]);
2457                         if (map && map != new_map)
2458                                 kfree_rcu(map, rcu);
2459                 }
2460         }
2461
2462         kfree_rcu(dev_maps, rcu);
2463
2464 out_no_old_maps:
2465         dev_maps = new_dev_maps;
2466         active = true;
2467
2468 out_no_new_maps:
2469         if (!is_rxqs_map) {
2470                 /* update Tx queue numa node */
2471                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472                                              (numa_node_id >= 0) ?
2473                                              numa_node_id : NUMA_NO_NODE);
2474         }
2475
2476         if (!dev_maps)
2477                 goto out_no_maps;
2478
2479         /* removes tx-queue from unused CPUs/rx-queues */
2480         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481              j < nr_ids;) {
2482                 for (i = tc, tci = j * num_tc; i--; tci++)
2483                         active |= remove_xps_queue(dev_maps, tci, index);
2484                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485                     !netif_attr_test_online(j, online_mask, nr_ids))
2486                         active |= remove_xps_queue(dev_maps, tci, index);
2487                 for (i = num_tc - tc, tci++; --i; tci++)
2488                         active |= remove_xps_queue(dev_maps, tci, index);
2489         }
2490
2491         /* free map if not active */
2492         if (!active)
2493                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494
2495 out_no_maps:
2496         mutex_unlock(&xps_map_mutex);
2497
2498         return 0;
2499 error:
2500         /* remove any maps that we added */
2501         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502              j < nr_ids;) {
2503                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505                         map = dev_maps ?
2506                               xmap_dereference(dev_maps->attr_map[tci]) :
2507                               NULL;
2508                         if (new_map && new_map != map)
2509                                 kfree(new_map);
2510                 }
2511         }
2512
2513         mutex_unlock(&xps_map_mutex);
2514
2515         kfree(new_dev_maps);
2516         return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521                         u16 index)
2522 {
2523         int ret;
2524
2525         cpus_read_lock();
2526         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527         cpus_read_unlock();
2528
2529         return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538         /* Unbind any subordinate channels */
2539         while (txq-- != &dev->_tx[0]) {
2540                 if (txq->sb_dev)
2541                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2542         }
2543 }
2544
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548         netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550         netdev_unbind_all_sb_channels(dev);
2551
2552         /* Reset TC configuration of device */
2553         dev->num_tc = 0;
2554         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561         if (tc >= dev->num_tc)
2562                 return -EINVAL;
2563
2564 #ifdef CONFIG_XPS
2565         netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567         dev->tc_to_txq[tc].count = count;
2568         dev->tc_to_txq[tc].offset = offset;
2569         return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575         if (num_tc > TC_MAX_QUEUE)
2576                 return -EINVAL;
2577
2578 #ifdef CONFIG_XPS
2579         netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581         netdev_unbind_all_sb_channels(dev);
2582
2583         dev->num_tc = num_tc;
2584         return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589                               struct net_device *sb_dev)
2590 {
2591         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593 #ifdef CONFIG_XPS
2594         netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599         while (txq-- != &dev->_tx[0]) {
2600                 if (txq->sb_dev == sb_dev)
2601                         txq->sb_dev = NULL;
2602         }
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607                                  struct net_device *sb_dev,
2608                                  u8 tc, u16 count, u16 offset)
2609 {
2610         /* Make certain the sb_dev and dev are already configured */
2611         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612                 return -EINVAL;
2613
2614         /* We cannot hand out queues we don't have */
2615         if ((offset + count) > dev->real_num_tx_queues)
2616                 return -EINVAL;
2617
2618         /* Record the mapping */
2619         sb_dev->tc_to_txq[tc].count = count;
2620         sb_dev->tc_to_txq[tc].offset = offset;
2621
2622         /* Provide a way for Tx queue to find the tc_to_txq map or
2623          * XPS map for itself.
2624          */
2625         while (count--)
2626                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628         return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634         /* Do not use a multiqueue device to represent a subordinate channel */
2635         if (netif_is_multiqueue(dev))
2636                 return -ENODEV;
2637
2638         /* We allow channels 1 - 32767 to be used for subordinate channels.
2639          * Channel 0 is meant to be "native" mode and used only to represent
2640          * the main root device. We allow writing 0 to reset the device back
2641          * to normal mode after being used as a subordinate channel.
2642          */
2643         if (channel > S16_MAX)
2644                 return -EINVAL;
2645
2646         dev->num_tc = -channel;
2647
2648         return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658         bool disabling;
2659         int rc;
2660
2661         disabling = txq < dev->real_num_tx_queues;
2662
2663         if (txq < 1 || txq > dev->num_tx_queues)
2664                 return -EINVAL;
2665
2666         if (dev->reg_state == NETREG_REGISTERED ||
2667             dev->reg_state == NETREG_UNREGISTERING) {
2668                 ASSERT_RTNL();
2669
2670                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671                                                   txq);
2672                 if (rc)
2673                         return rc;
2674
2675                 if (dev->num_tc)
2676                         netif_setup_tc(dev, txq);
2677
2678                 dev->real_num_tx_queues = txq;
2679
2680                 if (disabling) {
2681                         synchronize_net();
2682                         qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684                         netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686                 }
2687         } else {
2688                 dev->real_num_tx_queues = txq;
2689         }
2690
2691         return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *      @dev: Network device
2699  *      @rxq: Actual number of RX queues
2700  *
2701  *      This must be called either with the rtnl_lock held or before
2702  *      registration of the net device.  Returns 0 on success, or a
2703  *      negative error code.  If called before registration, it always
2704  *      succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708         int rc;
2709
2710         if (rxq < 1 || rxq > dev->num_rx_queues)
2711                 return -EINVAL;
2712
2713         if (dev->reg_state == NETREG_REGISTERED) {
2714                 ASSERT_RTNL();
2715
2716                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717                                                   rxq);
2718                 if (rc)
2719                         return rc;
2720         }
2721
2722         dev->real_num_rx_queues = rxq;
2723         return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736         return is_kdump_kernel() ?
2737                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743         struct softnet_data *sd;
2744         unsigned long flags;
2745
2746         local_irq_save(flags);
2747         sd = this_cpu_ptr(&softnet_data);
2748         q->next_sched = NULL;
2749         *sd->output_queue_tailp = q;
2750         sd->output_queue_tailp = &q->next_sched;
2751         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752         local_irq_restore(flags);
2753 }
2754
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758                 __netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761
2762 struct dev_kfree_skb_cb {
2763         enum skb_free_reason reason;
2764 };
2765
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768         return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773         rcu_read_lock();
2774         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777                 __netif_schedule(q);
2778         }
2779         rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786                 struct Qdisc *q;
2787
2788                 rcu_read_lock();
2789                 q = rcu_dereference(dev_queue->qdisc);
2790                 __netif_schedule(q);
2791                 rcu_read_unlock();
2792         }
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798         unsigned long flags;
2799
2800         if (unlikely(!skb))
2801                 return;
2802
2803         if (likely(refcount_read(&skb->users) == 1)) {
2804                 smp_rmb();
2805                 refcount_set(&skb->users, 0);
2806         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2807                 return;
2808         }
2809         get_kfree_skb_cb(skb)->reason = reason;
2810         local_irq_save(flags);
2811         skb->next = __this_cpu_read(softnet_data.completion_queue);
2812         __this_cpu_write(softnet_data.completion_queue, skb);
2813         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814         local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820         if (in_irq() || irqs_disabled())
2821                 __dev_kfree_skb_irq(skb, reason);
2822         else
2823                 dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826
2827
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837             netif_running(dev)) {
2838                 netif_tx_stop_all_queues(dev);
2839         }
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852             netif_running(dev)) {
2853                 netif_tx_wake_all_queues(dev);
2854                 __netdev_watchdog_up(dev);
2855         }
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864                        const struct net_device *sb_dev,
2865                        struct sk_buff *skb)
2866 {
2867         u32 hash;
2868         u16 qoffset = 0;
2869         u16 qcount = dev->real_num_tx_queues;
2870
2871         if (dev->num_tc) {
2872                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874                 qoffset = sb_dev->tc_to_txq[tc].offset;
2875                 qcount = sb_dev->tc_to_txq[tc].count;
2876         }
2877
2878         if (skb_rx_queue_recorded(skb)) {
2879                 hash = skb_get_rx_queue(skb);
2880                 while (unlikely(hash >= qcount))
2881                         hash -= qcount;
2882                 return hash + qoffset;
2883         }
2884
2885         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890         static const netdev_features_t null_features;
2891         struct net_device *dev = skb->dev;
2892         const char *name = "";
2893
2894         if (!net_ratelimit())
2895                 return;
2896
2897         if (dev) {
2898                 if (dev->dev.parent)
2899                         name = dev_driver_string(dev->dev.parent);
2900                 else
2901                         name = netdev_name(dev);
2902         }
2903         skb_dump(KERN_WARNING, skb, false);
2904         WARN(1, "%s: caps=(%pNF, %pNF)\n",
2905              name, dev ? &dev->features : &null_features,
2906              skb->sk ? &skb->sk->sk_route_caps : &null_features);
2907 }
2908
2909 /*
2910  * Invalidate hardware checksum when packet is to be mangled, and
2911  * complete checksum manually on outgoing path.
2912  */
2913 int skb_checksum_help(struct sk_buff *skb)
2914 {
2915         __wsum csum;
2916         int ret = 0, offset;
2917
2918         if (skb->ip_summed == CHECKSUM_COMPLETE)
2919                 goto out_set_summed;
2920
2921         if (unlikely(skb_shinfo(skb)->gso_size)) {
2922                 skb_warn_bad_offload(skb);
2923                 return -EINVAL;
2924         }
2925
2926         /* Before computing a checksum, we should make sure no frag could
2927          * be modified by an external entity : checksum could be wrong.
2928          */
2929         if (skb_has_shared_frag(skb)) {
2930                 ret = __skb_linearize(skb);
2931                 if (ret)
2932                         goto out;
2933         }
2934
2935         offset = skb_checksum_start_offset(skb);
2936         BUG_ON(offset >= skb_headlen(skb));
2937         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2938
2939         offset += skb->csum_offset;
2940         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2941
2942         if (skb_cloned(skb) &&
2943             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2944                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945                 if (ret)
2946                         goto out;
2947         }
2948
2949         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2950 out_set_summed:
2951         skb->ip_summed = CHECKSUM_NONE;
2952 out:
2953         return ret;
2954 }
2955 EXPORT_SYMBOL(skb_checksum_help);
2956
2957 int skb_crc32c_csum_help(struct sk_buff *skb)
2958 {
2959         __le32 crc32c_csum;
2960         int ret = 0, offset, start;
2961
2962         if (skb->ip_summed != CHECKSUM_PARTIAL)
2963                 goto out;
2964
2965         if (unlikely(skb_is_gso(skb)))
2966                 goto out;
2967
2968         /* Before computing a checksum, we should make sure no frag could
2969          * be modified by an external entity : checksum could be wrong.
2970          */
2971         if (unlikely(skb_has_shared_frag(skb))) {
2972                 ret = __skb_linearize(skb);
2973                 if (ret)
2974                         goto out;
2975         }
2976         start = skb_checksum_start_offset(skb);
2977         offset = start + offsetof(struct sctphdr, checksum);
2978         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2979                 ret = -EINVAL;
2980                 goto out;
2981         }
2982         if (skb_cloned(skb) &&
2983             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2985                 if (ret)
2986                         goto out;
2987         }
2988         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989                                                   skb->len - start, ~(__u32)0,
2990                                                   crc32c_csum_stub));
2991         *(__le32 *)(skb->data + offset) = crc32c_csum;
2992         skb->ip_summed = CHECKSUM_NONE;
2993         skb->csum_not_inet = 0;
2994 out:
2995         return ret;
2996 }
2997
2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2999 {
3000         __be16 type = skb->protocol;
3001
3002         /* Tunnel gso handlers can set protocol to ethernet. */
3003         if (type == htons(ETH_P_TEB)) {
3004                 struct ethhdr *eth;
3005
3006                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3007                         return 0;
3008
3009                 eth = (struct ethhdr *)skb->data;
3010                 type = eth->h_proto;
3011         }
3012
3013         return __vlan_get_protocol(skb, type, depth);
3014 }
3015
3016 /**
3017  *      skb_mac_gso_segment - mac layer segmentation handler.
3018  *      @skb: buffer to segment
3019  *      @features: features for the output path (see dev->features)
3020  */
3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022                                     netdev_features_t features)
3023 {
3024         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025         struct packet_offload *ptype;
3026         int vlan_depth = skb->mac_len;
3027         __be16 type = skb_network_protocol(skb, &vlan_depth);
3028
3029         if (unlikely(!type))
3030                 return ERR_PTR(-EINVAL);
3031
3032         __skb_pull(skb, vlan_depth);
3033
3034         rcu_read_lock();
3035         list_for_each_entry_rcu(ptype, &offload_base, list) {
3036                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3037                         segs = ptype->callbacks.gso_segment(skb, features);
3038                         break;
3039                 }
3040         }
3041         rcu_read_unlock();
3042
3043         __skb_push(skb, skb->data - skb_mac_header(skb));
3044
3045         return segs;
3046 }
3047 EXPORT_SYMBOL(skb_mac_gso_segment);
3048
3049
3050 /* openvswitch calls this on rx path, so we need a different check.
3051  */
3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3053 {
3054         if (tx_path)
3055                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3056                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3057
3058         return skb->ip_summed == CHECKSUM_NONE;
3059 }
3060
3061 /**
3062  *      __skb_gso_segment - Perform segmentation on skb.
3063  *      @skb: buffer to segment
3064  *      @features: features for the output path (see dev->features)
3065  *      @tx_path: whether it is called in TX path
3066  *
3067  *      This function segments the given skb and returns a list of segments.
3068  *
3069  *      It may return NULL if the skb requires no segmentation.  This is
3070  *      only possible when GSO is used for verifying header integrity.
3071  *
3072  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3073  */
3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075                                   netdev_features_t features, bool tx_path)
3076 {
3077         struct sk_buff *segs;
3078
3079         if (unlikely(skb_needs_check(skb, tx_path))) {
3080                 int err;
3081
3082                 /* We're going to init ->check field in TCP or UDP header */
3083                 err = skb_cow_head(skb, 0);
3084                 if (err < 0)
3085                         return ERR_PTR(err);
3086         }
3087
3088         /* Only report GSO partial support if it will enable us to
3089          * support segmentation on this frame without needing additional
3090          * work.
3091          */
3092         if (features & NETIF_F_GSO_PARTIAL) {
3093                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094                 struct net_device *dev = skb->dev;
3095
3096                 partial_features |= dev->features & dev->gso_partial_features;
3097                 if (!skb_gso_ok(skb, features | partial_features))
3098                         features &= ~NETIF_F_GSO_PARTIAL;
3099         }
3100
3101         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3103
3104         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3105         SKB_GSO_CB(skb)->encap_level = 0;
3106
3107         skb_reset_mac_header(skb);
3108         skb_reset_mac_len(skb);
3109
3110         segs = skb_mac_gso_segment(skb, features);
3111
3112         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3113                 skb_warn_bad_offload(skb);
3114
3115         return segs;
3116 }
3117 EXPORT_SYMBOL(__skb_gso_segment);
3118
3119 /* Take action when hardware reception checksum errors are detected. */
3120 #ifdef CONFIG_BUG
3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3122 {
3123         if (net_ratelimit()) {
3124                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3125                 skb_dump(KERN_ERR, skb, true);
3126                 dump_stack();
3127         }
3128 }
3129 EXPORT_SYMBOL(netdev_rx_csum_fault);
3130 #endif
3131
3132 /* XXX: check that highmem exists at all on the given machine. */
3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3134 {
3135 #ifdef CONFIG_HIGHMEM
3136         int i;
3137
3138         if (!(dev->features & NETIF_F_HIGHDMA)) {
3139                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3141
3142                         if (PageHighMem(skb_frag_page(frag)))
3143                                 return 1;
3144                 }
3145         }
3146 #endif
3147         return 0;
3148 }
3149
3150 /* If MPLS offload request, verify we are testing hardware MPLS features
3151  * instead of standard features for the netdev.
3152  */
3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3154 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155                                            netdev_features_t features,
3156                                            __be16 type)
3157 {
3158         if (eth_p_mpls(type))
3159                 features &= skb->dev->mpls_features;
3160
3161         return features;
3162 }
3163 #else
3164 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165                                            netdev_features_t features,
3166                                            __be16 type)
3167 {
3168         return features;
3169 }
3170 #endif
3171
3172 static netdev_features_t harmonize_features(struct sk_buff *skb,
3173         netdev_features_t features)
3174 {
3175         int tmp;
3176         __be16 type;
3177
3178         type = skb_network_protocol(skb, &tmp);
3179         features = net_mpls_features(skb, features, type);
3180
3181         if (skb->ip_summed != CHECKSUM_NONE &&
3182             !can_checksum_protocol(features, type)) {
3183                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3184         }
3185         if (illegal_highdma(skb->dev, skb))
3186                 features &= ~NETIF_F_SG;
3187
3188         return features;
3189 }
3190
3191 netdev_features_t passthru_features_check(struct sk_buff *skb,
3192                                           struct net_device *dev,
3193                                           netdev_features_t features)
3194 {
3195         return features;
3196 }
3197 EXPORT_SYMBOL(passthru_features_check);
3198
3199 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3200                                              struct net_device *dev,
3201                                              netdev_features_t features)
3202 {
3203         return vlan_features_check(skb, features);
3204 }
3205
3206 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207                                             struct net_device *dev,
3208                                             netdev_features_t features)
3209 {
3210         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3211
3212         if (gso_segs > dev->gso_max_segs)
3213                 return features & ~NETIF_F_GSO_MASK;
3214
3215         /* Support for GSO partial features requires software
3216          * intervention before we can actually process the packets
3217          * so we need to strip support for any partial features now
3218          * and we can pull them back in after we have partially
3219          * segmented the frame.
3220          */
3221         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222                 features &= ~dev->gso_partial_features;
3223
3224         /* Make sure to clear the IPv4 ID mangling feature if the
3225          * IPv4 header has the potential to be fragmented.
3226          */
3227         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228                 struct iphdr *iph = skb->encapsulation ?
3229                                     inner_ip_hdr(skb) : ip_hdr(skb);
3230
3231                 if (!(iph->frag_off & htons(IP_DF)))
3232                         features &= ~NETIF_F_TSO_MANGLEID;
3233         }
3234
3235         return features;
3236 }
3237
3238 netdev_features_t netif_skb_features(struct sk_buff *skb)
3239 {
3240         struct net_device *dev = skb->dev;
3241         netdev_features_t features = dev->features;
3242
3243         if (skb_is_gso(skb))
3244                 features = gso_features_check(skb, dev, features);
3245
3246         /* If encapsulation offload request, verify we are testing
3247          * hardware encapsulation features instead of standard
3248          * features for the netdev
3249          */
3250         if (skb->encapsulation)
3251                 features &= dev->hw_enc_features;
3252
3253         if (skb_vlan_tagged(skb))
3254                 features = netdev_intersect_features(features,
3255                                                      dev->vlan_features |
3256                                                      NETIF_F_HW_VLAN_CTAG_TX |
3257                                                      NETIF_F_HW_VLAN_STAG_TX);
3258
3259         if (dev->netdev_ops->ndo_features_check)
3260                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3261                                                                 features);
3262         else
3263                 features &= dflt_features_check(skb, dev, features);
3264
3265         return harmonize_features(skb, features);
3266 }
3267 EXPORT_SYMBOL(netif_skb_features);
3268
3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3270                     struct netdev_queue *txq, bool more)
3271 {
3272         unsigned int len;
3273         int rc;
3274
3275         if (dev_nit_active(dev))
3276                 dev_queue_xmit_nit(skb, dev);
3277
3278         len = skb->len;
3279         trace_net_dev_start_xmit(skb, dev);
3280         rc = netdev_start_xmit(skb, dev, txq, more);
3281         trace_net_dev_xmit(skb, rc, dev, len);
3282
3283         return rc;
3284 }
3285
3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287                                     struct netdev_queue *txq, int *ret)
3288 {
3289         struct sk_buff *skb = first;
3290         int rc = NETDEV_TX_OK;
3291
3292         while (skb) {
3293                 struct sk_buff *next = skb->next;
3294
3295                 skb_mark_not_on_list(skb);
3296                 rc = xmit_one(skb, dev, txq, next != NULL);
3297                 if (unlikely(!dev_xmit_complete(rc))) {
3298                         skb->next = next;
3299                         goto out;
3300                 }
3301
3302                 skb = next;
3303                 if (netif_tx_queue_stopped(txq) && skb) {
3304                         rc = NETDEV_TX_BUSY;
3305                         break;
3306                 }
3307         }
3308
3309 out:
3310         *ret = rc;
3311         return skb;
3312 }
3313
3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315                                           netdev_features_t features)
3316 {
3317         if (skb_vlan_tag_present(skb) &&
3318             !vlan_hw_offload_capable(features, skb->vlan_proto))
3319                 skb = __vlan_hwaccel_push_inside(skb);
3320         return skb;
3321 }
3322
3323 int skb_csum_hwoffload_help(struct sk_buff *skb,
3324                             const netdev_features_t features)
3325 {
3326         if (unlikely(skb->csum_not_inet))
3327                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328                         skb_crc32c_csum_help(skb);
3329
3330         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3331 }
3332 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3333
3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3335 {
3336         netdev_features_t features;
3337
3338         features = netif_skb_features(skb);
3339         skb = validate_xmit_vlan(skb, features);
3340         if (unlikely(!skb))
3341                 goto out_null;
3342
3343         skb = sk_validate_xmit_skb(skb, dev);
3344         if (unlikely(!skb))
3345                 goto out_null;
3346
3347         if (netif_needs_gso(skb, features)) {
3348                 struct sk_buff *segs;
3349
3350                 segs = skb_gso_segment(skb, features);
3351                 if (IS_ERR(segs)) {
3352                         goto out_kfree_skb;
3353                 } else if (segs) {
3354                         consume_skb(skb);
3355                         skb = segs;
3356                 }
3357         } else {
3358                 if (skb_needs_linearize(skb, features) &&
3359                     __skb_linearize(skb))
3360                         goto out_kfree_skb;
3361
3362                 /* If packet is not checksummed and device does not
3363                  * support checksumming for this protocol, complete
3364                  * checksumming here.
3365                  */
3366                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367                         if (skb->encapsulation)
3368                                 skb_set_inner_transport_header(skb,
3369                                                                skb_checksum_start_offset(skb));
3370                         else
3371                                 skb_set_transport_header(skb,
3372                                                          skb_checksum_start_offset(skb));
3373                         if (skb_csum_hwoffload_help(skb, features))
3374                                 goto out_kfree_skb;
3375                 }
3376         }
3377
3378         skb = validate_xmit_xfrm(skb, features, again);
3379
3380         return skb;
3381
3382 out_kfree_skb:
3383         kfree_skb(skb);
3384 out_null:
3385         atomic_long_inc(&dev->tx_dropped);
3386         return NULL;
3387 }
3388
3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3390 {
3391         struct sk_buff *next, *head = NULL, *tail;
3392
3393         for (; skb != NULL; skb = next) {
3394                 next = skb->next;
3395                 skb_mark_not_on_list(skb);
3396
3397                 /* in case skb wont be segmented, point to itself */
3398                 skb->prev = skb;
3399
3400                 skb = validate_xmit_skb(skb, dev, again);
3401                 if (!skb)
3402                         continue;
3403
3404                 if (!head)
3405                         head = skb;
3406                 else
3407                         tail->next = skb;
3408                 /* If skb was segmented, skb->prev points to
3409                  * the last segment. If not, it still contains skb.
3410                  */
3411                 tail = skb->prev;
3412         }
3413         return head;
3414 }
3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3416
3417 static void qdisc_pkt_len_init(struct sk_buff *skb)
3418 {
3419         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3420
3421         qdisc_skb_cb(skb)->pkt_len = skb->len;
3422
3423         /* To get more precise estimation of bytes sent on wire,
3424          * we add to pkt_len the headers size of all segments
3425          */
3426         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3427                 unsigned int hdr_len;
3428                 u16 gso_segs = shinfo->gso_segs;
3429
3430                 /* mac layer + network layer */
3431                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3432
3433                 /* + transport layer */
3434                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435                         const struct tcphdr *th;
3436                         struct tcphdr _tcphdr;
3437
3438                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3439                                                 sizeof(_tcphdr), &_tcphdr);
3440                         if (likely(th))
3441                                 hdr_len += __tcp_hdrlen(th);
3442                 } else {
3443                         struct udphdr _udphdr;
3444
3445                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3446                                                sizeof(_udphdr), &_udphdr))
3447                                 hdr_len += sizeof(struct udphdr);
3448                 }
3449
3450                 if (shinfo->gso_type & SKB_GSO_DODGY)
3451                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3452                                                 shinfo->gso_size);
3453
3454                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3455         }
3456 }
3457
3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459                                  struct net_device *dev,
3460                                  struct netdev_queue *txq)
3461 {
3462         spinlock_t *root_lock = qdisc_lock(q);
3463         struct sk_buff *to_free = NULL;
3464         bool contended;
3465         int rc;
3466
3467         qdisc_calculate_pkt_len(skb, q);
3468
3469         if (q->flags & TCQ_F_NOLOCK) {
3470                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471                         __qdisc_drop(skb, &to_free);
3472                         rc = NET_XMIT_DROP;
3473                 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3474                            qdisc_run_begin(q)) {
3475                         qdisc_bstats_cpu_update(q, skb);
3476
3477                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3478                                 __qdisc_run(q);
3479
3480                         qdisc_run_end(q);
3481                         rc = NET_XMIT_SUCCESS;
3482                 } else {
3483                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3484                         qdisc_run(q);
3485                 }
3486
3487                 if (unlikely(to_free))
3488                         kfree_skb_list(to_free);
3489                 return rc;
3490         }
3491
3492         /*
3493          * Heuristic to force contended enqueues to serialize on a
3494          * separate lock before trying to get qdisc main lock.
3495          * This permits qdisc->running owner to get the lock more
3496          * often and dequeue packets faster.
3497          */
3498         contended = qdisc_is_running(q);
3499         if (unlikely(contended))
3500                 spin_lock(&q->busylock);
3501
3502         spin_lock(root_lock);
3503         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3504                 __qdisc_drop(skb, &to_free);
3505                 rc = NET_XMIT_DROP;
3506         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3507                    qdisc_run_begin(q)) {
3508                 /*
3509                  * This is a work-conserving queue; there are no old skbs
3510                  * waiting to be sent out; and the qdisc is not running -
3511                  * xmit the skb directly.
3512                  */
3513
3514                 qdisc_bstats_update(q, skb);
3515
3516                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3517                         if (unlikely(contended)) {
3518                                 spin_unlock(&q->busylock);
3519                                 contended = false;
3520                         }
3521                         __qdisc_run(q);
3522                 }
3523
3524                 qdisc_run_end(q);
3525                 rc = NET_XMIT_SUCCESS;
3526         } else {
3527                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3528                 if (qdisc_run_begin(q)) {
3529                         if (unlikely(contended)) {
3530                                 spin_unlock(&q->busylock);
3531                                 contended = false;
3532                         }
3533                         __qdisc_run(q);
3534                         qdisc_run_end(q);
3535                 }
3536         }
3537         spin_unlock(root_lock);
3538         if (unlikely(to_free))
3539                 kfree_skb_list(to_free);
3540         if (unlikely(contended))
3541                 spin_unlock(&q->busylock);
3542         return rc;
3543 }
3544
3545 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3546 static void skb_update_prio(struct sk_buff *skb)
3547 {
3548         const struct netprio_map *map;
3549         const struct sock *sk;
3550         unsigned int prioidx;
3551
3552         if (skb->priority)
3553                 return;
3554         map = rcu_dereference_bh(skb->dev->priomap);
3555         if (!map)
3556                 return;
3557         sk = skb_to_full_sk(skb);
3558         if (!sk)
3559                 return;
3560
3561         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3562
3563         if (prioidx < map->priomap_len)
3564                 skb->priority = map->priomap[prioidx];
3565 }
3566 #else
3567 #define skb_update_prio(skb)
3568 #endif
3569
3570 /**
3571  *      dev_loopback_xmit - loop back @skb
3572  *      @net: network namespace this loopback is happening in
3573  *      @sk:  sk needed to be a netfilter okfn
3574  *      @skb: buffer to transmit
3575  */
3576 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3577 {
3578         skb_reset_mac_header(skb);
3579         __skb_pull(skb, skb_network_offset(skb));
3580         skb->pkt_type = PACKET_LOOPBACK;
3581         skb->ip_summed = CHECKSUM_UNNECESSARY;
3582         WARN_ON(!skb_dst(skb));
3583         skb_dst_force(skb);
3584         netif_rx_ni(skb);
3585         return 0;
3586 }
3587 EXPORT_SYMBOL(dev_loopback_xmit);
3588
3589 #ifdef CONFIG_NET_EGRESS
3590 static struct sk_buff *
3591 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3592 {
3593         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3594         struct tcf_result cl_res;
3595
3596         if (!miniq)
3597                 return skb;
3598
3599         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3600         mini_qdisc_bstats_cpu_update(miniq, skb);
3601
3602         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3603         case TC_ACT_OK:
3604         case TC_ACT_RECLASSIFY:
3605                 skb->tc_index = TC_H_MIN(cl_res.classid);
3606                 break;
3607         case TC_ACT_SHOT:
3608                 mini_qdisc_qstats_cpu_drop(miniq);
3609                 *ret = NET_XMIT_DROP;
3610                 kfree_skb(skb);
3611                 return NULL;
3612         case TC_ACT_STOLEN:
3613         case TC_ACT_QUEUED:
3614         case TC_ACT_TRAP:
3615                 *ret = NET_XMIT_SUCCESS;
3616                 consume_skb(skb);
3617                 return NULL;
3618         case TC_ACT_REDIRECT:
3619                 /* No need to push/pop skb's mac_header here on egress! */
3620                 skb_do_redirect(skb);
3621                 *ret = NET_XMIT_SUCCESS;
3622                 return NULL;
3623         default:
3624                 break;
3625         }
3626
3627         return skb;
3628 }
3629 #endif /* CONFIG_NET_EGRESS */
3630
3631 #ifdef CONFIG_XPS
3632 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3633                                struct xps_dev_maps *dev_maps, unsigned int tci)
3634 {
3635         struct xps_map *map;
3636         int queue_index = -1;
3637
3638         if (dev->num_tc) {
3639                 tci *= dev->num_tc;
3640                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3641         }
3642
3643         map = rcu_dereference(dev_maps->attr_map[tci]);
3644         if (map) {
3645                 if (map->len == 1)
3646                         queue_index = map->queues[0];
3647                 else
3648                         queue_index = map->queues[reciprocal_scale(
3649                                                 skb_get_hash(skb), map->len)];
3650                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3651                         queue_index = -1;
3652         }
3653         return queue_index;
3654 }
3655 #endif
3656
3657 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3658                          struct sk_buff *skb)
3659 {
3660 #ifdef CONFIG_XPS
3661         struct xps_dev_maps *dev_maps;
3662         struct sock *sk = skb->sk;
3663         int queue_index = -1;
3664
3665         if (!static_key_false(&xps_needed))
3666                 return -1;
3667
3668         rcu_read_lock();
3669         if (!static_key_false(&xps_rxqs_needed))
3670                 goto get_cpus_map;
3671
3672         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3673         if (dev_maps) {
3674                 int tci = sk_rx_queue_get(sk);
3675
3676                 if (tci >= 0 && tci < dev->num_rx_queues)
3677                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3678                                                           tci);
3679         }
3680
3681 get_cpus_map:
3682         if (queue_index < 0) {
3683                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3684                 if (dev_maps) {
3685                         unsigned int tci = skb->sender_cpu - 1;
3686
3687                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3688                                                           tci);
3689                 }
3690         }
3691         rcu_read_unlock();
3692
3693         return queue_index;
3694 #else
3695         return -1;
3696 #endif
3697 }
3698
3699 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3700                      struct net_device *sb_dev)
3701 {
3702         return 0;
3703 }
3704 EXPORT_SYMBOL(dev_pick_tx_zero);
3705
3706 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3707                        struct net_device *sb_dev)
3708 {
3709         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3710 }
3711 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3712
3713 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3714                      struct net_device *sb_dev)
3715 {
3716         struct sock *sk = skb->sk;
3717         int queue_index = sk_tx_queue_get(sk);
3718
3719         sb_dev = sb_dev ? : dev;
3720
3721         if (queue_index < 0 || skb->ooo_okay ||
3722             queue_index >= dev->real_num_tx_queues) {
3723                 int new_index = get_xps_queue(dev, sb_dev, skb);
3724
3725                 if (new_index < 0)
3726                         new_index = skb_tx_hash(dev, sb_dev, skb);
3727
3728                 if (queue_index != new_index && sk &&
3729                     sk_fullsock(sk) &&
3730                     rcu_access_pointer(sk->sk_dst_cache))
3731                         sk_tx_queue_set(sk, new_index);
3732
3733                 queue_index = new_index;
3734         }
3735
3736         return queue_index;
3737 }
3738 EXPORT_SYMBOL(netdev_pick_tx);
3739
3740 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3741                                          struct sk_buff *skb,
3742                                          struct net_device *sb_dev)
3743 {
3744         int queue_index = 0;
3745
3746 #ifdef CONFIG_XPS
3747         u32 sender_cpu = skb->sender_cpu - 1;
3748
3749         if (sender_cpu >= (u32)NR_CPUS)
3750                 skb->sender_cpu = raw_smp_processor_id() + 1;
3751 #endif
3752
3753         if (dev->real_num_tx_queues != 1) {
3754                 const struct net_device_ops *ops = dev->netdev_ops;
3755
3756                 if (ops->ndo_select_queue)
3757                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3758                 else
3759                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3760
3761                 queue_index = netdev_cap_txqueue(dev, queue_index);
3762         }
3763
3764         skb_set_queue_mapping(skb, queue_index);
3765         return netdev_get_tx_queue(dev, queue_index);
3766 }
3767
3768 /**
3769  *      __dev_queue_xmit - transmit a buffer
3770  *      @skb: buffer to transmit
3771  *      @sb_dev: suboordinate device used for L2 forwarding offload
3772  *
3773  *      Queue a buffer for transmission to a network device. The caller must
3774  *      have set the device and priority and built the buffer before calling
3775  *      this function. The function can be called from an interrupt.
3776  *
3777  *      A negative errno code is returned on a failure. A success does not
3778  *      guarantee the frame will be transmitted as it may be dropped due
3779  *      to congestion or traffic shaping.
3780  *
3781  * -----------------------------------------------------------------------------------
3782  *      I notice this method can also return errors from the queue disciplines,
3783  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3784  *      be positive.
3785  *
3786  *      Regardless of the return value, the skb is consumed, so it is currently
3787  *      difficult to retry a send to this method.  (You can bump the ref count
3788  *      before sending to hold a reference for retry if you are careful.)
3789  *
3790  *      When calling this method, interrupts MUST be enabled.  This is because
3791  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3792  *          --BLG
3793  */
3794 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3795 {
3796         struct net_device *dev = skb->dev;
3797         struct netdev_queue *txq;
3798         struct Qdisc *q;
3799         int rc = -ENOMEM;
3800         bool again = false;
3801
3802         skb_reset_mac_header(skb);
3803
3804         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3805                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3806
3807         /* Disable soft irqs for various locks below. Also
3808          * stops preemption for RCU.
3809          */
3810         rcu_read_lock_bh();
3811
3812         skb_update_prio(skb);
3813
3814         qdisc_pkt_len_init(skb);
3815 #ifdef CONFIG_NET_CLS_ACT
3816         skb->tc_at_ingress = 0;
3817 # ifdef CONFIG_NET_EGRESS
3818         if (static_branch_unlikely(&egress_needed_key)) {
3819                 skb = sch_handle_egress(skb, &rc, dev);
3820                 if (!skb)
3821                         goto out;
3822         }
3823 # endif
3824 #endif
3825         /* If device/qdisc don't need skb->dst, release it right now while
3826          * its hot in this cpu cache.
3827          */
3828         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3829                 skb_dst_drop(skb);
3830         else
3831                 skb_dst_force(skb);
3832
3833         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3834         q = rcu_dereference_bh(txq->qdisc);
3835
3836         trace_net_dev_queue(skb);
3837         if (q->enqueue) {
3838                 rc = __dev_xmit_skb(skb, q, dev, txq);
3839                 goto out;
3840         }
3841
3842         /* The device has no queue. Common case for software devices:
3843          * loopback, all the sorts of tunnels...
3844
3845          * Really, it is unlikely that netif_tx_lock protection is necessary
3846          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3847          * counters.)
3848          * However, it is possible, that they rely on protection
3849          * made by us here.
3850
3851          * Check this and shot the lock. It is not prone from deadlocks.
3852          *Either shot noqueue qdisc, it is even simpler 8)
3853          */
3854         if (dev->flags & IFF_UP) {
3855                 int cpu = smp_processor_id(); /* ok because BHs are off */
3856
3857                 if (txq->xmit_lock_owner != cpu) {
3858                         if (dev_xmit_recursion())
3859                                 goto recursion_alert;
3860
3861                         skb = validate_xmit_skb(skb, dev, &again);
3862                         if (!skb)
3863                                 goto out;
3864
3865                         HARD_TX_LOCK(dev, txq, cpu);
3866
3867                         if (!netif_xmit_stopped(txq)) {
3868                                 dev_xmit_recursion_inc();
3869                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3870                                 dev_xmit_recursion_dec();
3871                                 if (dev_xmit_complete(rc)) {
3872                                         HARD_TX_UNLOCK(dev, txq);
3873                                         goto out;
3874                                 }
3875                         }
3876                         HARD_TX_UNLOCK(dev, txq);
3877                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3878                                              dev->name);
3879                 } else {
3880                         /* Recursion is detected! It is possible,
3881                          * unfortunately
3882                          */
3883 recursion_alert:
3884                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3885                                              dev->name);
3886                 }
3887         }
3888
3889         rc = -ENETDOWN;
3890         rcu_read_unlock_bh();
3891
3892         atomic_long_inc(&dev->tx_dropped);
3893         kfree_skb_list(skb);
3894         return rc;
3895 out:
3896         rcu_read_unlock_bh();
3897         return rc;
3898 }
3899
3900 int dev_queue_xmit(struct sk_buff *skb)
3901 {
3902         return __dev_queue_xmit(skb, NULL);
3903 }
3904 EXPORT_SYMBOL(dev_queue_xmit);
3905
3906 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3907 {
3908         return __dev_queue_xmit(skb, sb_dev);
3909 }
3910 EXPORT_SYMBOL(dev_queue_xmit_accel);
3911
3912 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3913 {
3914         struct net_device *dev = skb->dev;
3915         struct sk_buff *orig_skb = skb;
3916         struct netdev_queue *txq;
3917         int ret = NETDEV_TX_BUSY;
3918         bool again = false;
3919
3920         if (unlikely(!netif_running(dev) ||
3921                      !netif_carrier_ok(dev)))
3922                 goto drop;
3923
3924         skb = validate_xmit_skb_list(skb, dev, &again);
3925         if (skb != orig_skb)
3926                 goto drop;
3927
3928         skb_set_queue_mapping(skb, queue_id);
3929         txq = skb_get_tx_queue(dev, skb);
3930
3931         local_bh_disable();
3932
3933         HARD_TX_LOCK(dev, txq, smp_processor_id());
3934         if (!netif_xmit_frozen_or_drv_stopped(txq))
3935                 ret = netdev_start_xmit(skb, dev, txq, false);
3936         HARD_TX_UNLOCK(dev, txq);
3937
3938         local_bh_enable();
3939
3940         if (!dev_xmit_complete(ret))
3941                 kfree_skb(skb);
3942
3943         return ret;
3944 drop:
3945         atomic_long_inc(&dev->tx_dropped);
3946         kfree_skb_list(skb);
3947         return NET_XMIT_DROP;
3948 }
3949 EXPORT_SYMBOL(dev_direct_xmit);
3950
3951 /*************************************************************************
3952  *                      Receiver routines
3953  *************************************************************************/
3954
3955 int netdev_max_backlog __read_mostly = 1000;
3956 EXPORT_SYMBOL(netdev_max_backlog);
3957
3958 int netdev_tstamp_prequeue __read_mostly = 1;
3959 int netdev_budget __read_mostly = 300;
3960 unsigned int __read_mostly netdev_budget_usecs = 2000;
3961 int weight_p __read_mostly = 64;           /* old backlog weight */
3962 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3963 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3964 int dev_rx_weight __read_mostly = 64;
3965 int dev_tx_weight __read_mostly = 64;
3966 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3967 int gro_normal_batch __read_mostly = 8;
3968
3969 /* Called with irq disabled */
3970 static inline void ____napi_schedule(struct softnet_data *sd,
3971                                      struct napi_struct *napi)
3972 {
3973         list_add_tail(&napi->poll_list, &sd->poll_list);
3974         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3975 }
3976
3977 #ifdef CONFIG_RPS
3978
3979 /* One global table that all flow-based protocols share. */
3980 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3981 EXPORT_SYMBOL(rps_sock_flow_table);
3982 u32 rps_cpu_mask __read_mostly;
3983 EXPORT_SYMBOL(rps_cpu_mask);
3984
3985 struct static_key_false rps_needed __read_mostly;
3986 EXPORT_SYMBOL(rps_needed);
3987 struct static_key_false rfs_needed __read_mostly;
3988 EXPORT_SYMBOL(rfs_needed);
3989
3990 static struct rps_dev_flow *
3991 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3992             struct rps_dev_flow *rflow, u16 next_cpu)
3993 {
3994         if (next_cpu < nr_cpu_ids) {
3995 #ifdef CONFIG_RFS_ACCEL
3996                 struct netdev_rx_queue *rxqueue;
3997                 struct rps_dev_flow_table *flow_table;
3998                 struct rps_dev_flow *old_rflow;
3999                 u32 flow_id;
4000                 u16 rxq_index;
4001                 int rc;
4002
4003                 /* Should we steer this flow to a different hardware queue? */
4004                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4005                     !(dev->features & NETIF_F_NTUPLE))
4006                         goto out;
4007                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4008                 if (rxq_index == skb_get_rx_queue(skb))
4009                         goto out;
4010
4011                 rxqueue = dev->_rx + rxq_index;
4012                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4013                 if (!flow_table)
4014                         goto out;
4015                 flow_id = skb_get_hash(skb) & flow_table->mask;
4016                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4017                                                         rxq_index, flow_id);
4018                 if (rc < 0)
4019                         goto out;
4020                 old_rflow = rflow;
4021                 rflow = &flow_table->flows[flow_id];
4022                 rflow->filter = rc;
4023                 if (old_rflow->filter == rflow->filter)
4024                         old_rflow->filter = RPS_NO_FILTER;
4025         out:
4026 #endif
4027                 rflow->last_qtail =
4028                         per_cpu(softnet_data, next_cpu).input_queue_head;
4029         }
4030
4031         rflow->cpu = next_cpu;
4032         return rflow;
4033 }
4034
4035 /*
4036  * get_rps_cpu is called from netif_receive_skb and returns the target
4037  * CPU from the RPS map of the receiving queue for a given skb.
4038  * rcu_read_lock must be held on entry.
4039  */
4040 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4041                        struct rps_dev_flow **rflowp)
4042 {
4043         const struct rps_sock_flow_table *sock_flow_table;
4044         struct netdev_rx_queue *rxqueue = dev->_rx;
4045         struct rps_dev_flow_table *flow_table;
4046         struct rps_map *map;
4047         int cpu = -1;
4048         u32 tcpu;
4049         u32 hash;
4050
4051         if (skb_rx_queue_recorded(skb)) {
4052                 u16 index = skb_get_rx_queue(skb);
4053
4054                 if (unlikely(index >= dev->real_num_rx_queues)) {
4055                         WARN_ONCE(dev->real_num_rx_queues > 1,
4056                                   "%s received packet on queue %u, but number "
4057                                   "of RX queues is %u\n",
4058                                   dev->name, index, dev->real_num_rx_queues);
4059                         goto done;
4060                 }
4061                 rxqueue += index;
4062         }
4063
4064         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4065
4066         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4067         map = rcu_dereference(rxqueue->rps_map);
4068         if (!flow_table && !map)
4069                 goto done;
4070
4071         skb_reset_network_header(skb);
4072         hash = skb_get_hash(skb);
4073         if (!hash)
4074                 goto done;
4075
4076         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4077         if (flow_table && sock_flow_table) {
4078                 struct rps_dev_flow *rflow;
4079                 u32 next_cpu;
4080                 u32 ident;
4081
4082                 /* First check into global flow table if there is a match */
4083                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4084                 if ((ident ^ hash) & ~rps_cpu_mask)
4085                         goto try_rps;
4086
4087                 next_cpu = ident & rps_cpu_mask;
4088
4089                 /* OK, now we know there is a match,
4090                  * we can look at the local (per receive queue) flow table
4091                  */
4092                 rflow = &flow_table->flows[hash & flow_table->mask];
4093                 tcpu = rflow->cpu;
4094
4095                 /*
4096                  * If the desired CPU (where last recvmsg was done) is
4097                  * different from current CPU (one in the rx-queue flow
4098                  * table entry), switch if one of the following holds:
4099                  *   - Current CPU is unset (>= nr_cpu_ids).
4100                  *   - Current CPU is offline.
4101                  *   - The current CPU's queue tail has advanced beyond the
4102                  *     last packet that was enqueued using this table entry.
4103                  *     This guarantees that all previous packets for the flow
4104                  *     have been dequeued, thus preserving in order delivery.
4105                  */
4106                 if (unlikely(tcpu != next_cpu) &&
4107                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4108                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4109                       rflow->last_qtail)) >= 0)) {
4110                         tcpu = next_cpu;
4111                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4112                 }
4113
4114                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4115                         *rflowp = rflow;
4116                         cpu = tcpu;
4117                         goto done;
4118                 }
4119         }
4120
4121 try_rps:
4122
4123         if (map) {
4124                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4125                 if (cpu_online(tcpu)) {
4126                         cpu = tcpu;
4127                         goto done;
4128                 }
4129         }
4130
4131 done:
4132         return cpu;
4133 }
4134
4135 #ifdef CONFIG_RFS_ACCEL
4136
4137 /**
4138  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4139  * @dev: Device on which the filter was set
4140  * @rxq_index: RX queue index
4141  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4142  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4143  *
4144  * Drivers that implement ndo_rx_flow_steer() should periodically call
4145  * this function for each installed filter and remove the filters for
4146  * which it returns %true.
4147  */
4148 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4149                          u32 flow_id, u16 filter_id)
4150 {
4151         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4152         struct rps_dev_flow_table *flow_table;
4153         struct rps_dev_flow *rflow;
4154         bool expire = true;
4155         unsigned int cpu;
4156
4157         rcu_read_lock();
4158         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4159         if (flow_table && flow_id <= flow_table->mask) {
4160                 rflow = &flow_table->flows[flow_id];
4161                 cpu = READ_ONCE(rflow->cpu);
4162                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4163                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4164                            rflow->last_qtail) <
4165                      (int)(10 * flow_table->mask)))
4166                         expire = false;
4167         }
4168         rcu_read_unlock();
4169         return expire;
4170 }
4171 EXPORT_SYMBOL(rps_may_expire_flow);
4172
4173 #endif /* CONFIG_RFS_ACCEL */
4174
4175 /* Called from hardirq (IPI) context */
4176 static void rps_trigger_softirq(void *data)
4177 {
4178         struct softnet_data *sd = data;
4179
4180         ____napi_schedule(sd, &sd->backlog);
4181         sd->received_rps++;
4182 }
4183
4184 #endif /* CONFIG_RPS */
4185
4186 /*
4187  * Check if this softnet_data structure is another cpu one
4188  * If yes, queue it to our IPI list and return 1
4189  * If no, return 0
4190  */
4191 static int rps_ipi_queued(struct softnet_data *sd)
4192 {
4193 #ifdef CONFIG_RPS
4194         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4195
4196         if (sd != mysd) {
4197                 sd->rps_ipi_next = mysd->rps_ipi_list;
4198                 mysd->rps_ipi_list = sd;
4199
4200                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4201                 return 1;
4202         }
4203 #endif /* CONFIG_RPS */
4204         return 0;
4205 }
4206
4207 #ifdef CONFIG_NET_FLOW_LIMIT
4208 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4209 #endif
4210
4211 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4212 {
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214         struct sd_flow_limit *fl;
4215         struct softnet_data *sd;
4216         unsigned int old_flow, new_flow;
4217
4218         if (qlen < (netdev_max_backlog >> 1))
4219                 return false;
4220
4221         sd = this_cpu_ptr(&softnet_data);
4222
4223         rcu_read_lock();
4224         fl = rcu_dereference(sd->flow_limit);
4225         if (fl) {
4226                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4227                 old_flow = fl->history[fl->history_head];
4228                 fl->history[fl->history_head] = new_flow;
4229
4230                 fl->history_head++;
4231                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4232
4233                 if (likely(fl->buckets[old_flow]))
4234                         fl->buckets[old_flow]--;
4235
4236                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4237                         fl->count++;
4238                         rcu_read_unlock();
4239                         return true;
4240                 }
4241         }
4242         rcu_read_unlock();
4243 #endif
4244         return false;
4245 }
4246
4247 /*
4248  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4249  * queue (may be a remote CPU queue).
4250  */
4251 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4252                               unsigned int *qtail)
4253 {
4254         struct softnet_data *sd;
4255         unsigned long flags;
4256         unsigned int qlen;
4257
4258         sd = &per_cpu(softnet_data, cpu);
4259
4260         local_irq_save(flags);
4261
4262         rps_lock(sd);
4263         if (!netif_running(skb->dev))
4264                 goto drop;
4265         qlen = skb_queue_len(&sd->input_pkt_queue);
4266         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4267                 if (qlen) {
4268 enqueue:
4269                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4270                         input_queue_tail_incr_save(sd, qtail);
4271                         rps_unlock(sd);
4272                         local_irq_restore(flags);
4273                         return NET_RX_SUCCESS;
4274                 }
4275
4276                 /* Schedule NAPI for backlog device
4277                  * We can use non atomic operation since we own the queue lock
4278                  */
4279                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4280                         if (!rps_ipi_queued(sd))
4281                                 ____napi_schedule(sd, &sd->backlog);
4282                 }
4283                 goto enqueue;
4284         }
4285
4286 drop:
4287         sd->dropped++;
4288         rps_unlock(sd);
4289
4290         local_irq_restore(flags);
4291
4292         atomic_long_inc(&skb->dev->rx_dropped);
4293         kfree_skb(skb);
4294         return NET_RX_DROP;
4295 }
4296
4297 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4298 {
4299         struct net_device *dev = skb->dev;
4300         struct netdev_rx_queue *rxqueue;
4301
4302         rxqueue = dev->_rx;
4303
4304         if (skb_rx_queue_recorded(skb)) {
4305                 u16 index = skb_get_rx_queue(skb);
4306
4307                 if (unlikely(index >= dev->real_num_rx_queues)) {
4308                         WARN_ONCE(dev->real_num_rx_queues > 1,
4309                                   "%s received packet on queue %u, but number "
4310                                   "of RX queues is %u\n",
4311                                   dev->name, index, dev->real_num_rx_queues);
4312
4313                         return rxqueue; /* Return first rxqueue */
4314                 }
4315                 rxqueue += index;
4316         }
4317         return rxqueue;
4318 }
4319
4320 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4321                                      struct xdp_buff *xdp,
4322                                      struct bpf_prog *xdp_prog)
4323 {
4324         struct netdev_rx_queue *rxqueue;
4325         void *orig_data, *orig_data_end;
4326         u32 metalen, act = XDP_DROP;
4327         __be16 orig_eth_type;
4328         struct ethhdr *eth;
4329         bool orig_bcast;
4330         int hlen, off;
4331         u32 mac_len;
4332
4333         /* Reinjected packets coming from act_mirred or similar should
4334          * not get XDP generic processing.
4335          */
4336         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4337                 return XDP_PASS;
4338
4339         /* XDP packets must be linear and must have sufficient headroom
4340          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4341          * native XDP provides, thus we need to do it here as well.
4342          */
4343         if (skb_is_nonlinear(skb) ||
4344             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4345                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4346                 int troom = skb->tail + skb->data_len - skb->end;
4347
4348                 /* In case we have to go down the path and also linearize,
4349                  * then lets do the pskb_expand_head() work just once here.
4350                  */
4351                 if (pskb_expand_head(skb,
4352                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4353                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4354                         goto do_drop;
4355                 if (skb_linearize(skb))
4356                         goto do_drop;
4357         }
4358
4359         /* The XDP program wants to see the packet starting at the MAC
4360          * header.
4361          */
4362         mac_len = skb->data - skb_mac_header(skb);
4363         hlen = skb_headlen(skb) + mac_len;
4364         xdp->data = skb->data - mac_len;
4365         xdp->data_meta = xdp->data;
4366         xdp->data_end = xdp->data + hlen;
4367         xdp->data_hard_start = skb->data - skb_headroom(skb);
4368         orig_data_end = xdp->data_end;
4369         orig_data = xdp->data;
4370         eth = (struct ethhdr *)xdp->data;
4371         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4372         orig_eth_type = eth->h_proto;
4373
4374         rxqueue = netif_get_rxqueue(skb);
4375         xdp->rxq = &rxqueue->xdp_rxq;
4376
4377         act = bpf_prog_run_xdp(xdp_prog, xdp);
4378
4379         /* check if bpf_xdp_adjust_head was used */
4380         off = xdp->data - orig_data;
4381         if (off) {
4382                 if (off > 0)
4383                         __skb_pull(skb, off);
4384                 else if (off < 0)
4385                         __skb_push(skb, -off);
4386
4387                 skb->mac_header += off;
4388                 skb_reset_network_header(skb);
4389         }
4390
4391         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4392          * pckt.
4393          */
4394         off = orig_data_end - xdp->data_end;
4395         if (off != 0) {
4396                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4397                 skb->len -= off;
4398
4399         }
4400
4401         /* check if XDP changed eth hdr such SKB needs update */
4402         eth = (struct ethhdr *)xdp->data;
4403         if ((orig_eth_type != eth->h_proto) ||
4404             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4405                 __skb_push(skb, ETH_HLEN);
4406                 skb->protocol = eth_type_trans(skb, skb->dev);
4407         }
4408
4409         switch (act) {
4410         case XDP_REDIRECT:
4411         case XDP_TX:
4412                 __skb_push(skb, mac_len);
4413                 break;
4414         case XDP_PASS:
4415                 metalen = xdp->data - xdp->data_meta;
4416                 if (metalen)
4417                         skb_metadata_set(skb, metalen);
4418                 break;
4419         default:
4420                 bpf_warn_invalid_xdp_action(act);
4421                 /* fall through */
4422         case XDP_ABORTED:
4423                 trace_xdp_exception(skb->dev, xdp_prog, act);
4424                 /* fall through */
4425         case XDP_DROP:
4426         do_drop:
4427                 kfree_skb(skb);
4428                 break;
4429         }
4430
4431         return act;
4432 }
4433
4434 /* When doing generic XDP we have to bypass the qdisc layer and the
4435  * network taps in order to match in-driver-XDP behavior.
4436  */
4437 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4438 {
4439         struct net_device *dev = skb->dev;
4440         struct netdev_queue *txq;
4441         bool free_skb = true;
4442         int cpu, rc;
4443
4444         txq = netdev_core_pick_tx(dev, skb, NULL);
4445         cpu = smp_processor_id();
4446         HARD_TX_LOCK(dev, txq, cpu);
4447         if (!netif_xmit_stopped(txq)) {
4448                 rc = netdev_start_xmit(skb, dev, txq, 0);
4449                 if (dev_xmit_complete(rc))
4450                         free_skb = false;
4451         }
4452         HARD_TX_UNLOCK(dev, txq);
4453         if (free_skb) {
4454                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4455                 kfree_skb(skb);
4456         }
4457 }
4458 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4459
4460 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4461
4462 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4463 {
4464         if (xdp_prog) {
4465                 struct xdp_buff xdp;
4466                 u32 act;
4467                 int err;
4468
4469                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4470                 if (act != XDP_PASS) {
4471                         switch (act) {
4472                         case XDP_REDIRECT:
4473                                 err = xdp_do_generic_redirect(skb->dev, skb,
4474                                                               &xdp, xdp_prog);
4475                                 if (err)
4476                                         goto out_redir;
4477                                 break;
4478                         case XDP_TX:
4479                                 generic_xdp_tx(skb, xdp_prog);
4480                                 break;
4481                         }
4482                         return XDP_DROP;
4483                 }
4484         }
4485         return XDP_PASS;
4486 out_redir:
4487         kfree_skb(skb);
4488         return XDP_DROP;
4489 }
4490 EXPORT_SYMBOL_GPL(do_xdp_generic);
4491
4492 static int netif_rx_internal(struct sk_buff *skb)
4493 {
4494         int ret;
4495
4496         net_timestamp_check(netdev_tstamp_prequeue, skb);
4497
4498         trace_netif_rx(skb);
4499
4500 #ifdef CONFIG_RPS
4501         if (static_branch_unlikely(&rps_needed)) {
4502                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4503                 int cpu;
4504
4505                 preempt_disable();
4506                 rcu_read_lock();
4507
4508                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4509                 if (cpu < 0)
4510                         cpu = smp_processor_id();
4511
4512                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4513
4514                 rcu_read_unlock();
4515                 preempt_enable();
4516         } else
4517 #endif
4518         {
4519                 unsigned int qtail;
4520
4521                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4522                 put_cpu();
4523         }
4524         return ret;
4525 }
4526
4527 /**
4528  *      netif_rx        -       post buffer to the network code
4529  *      @skb: buffer to post
4530  *
4531  *      This function receives a packet from a device driver and queues it for
4532  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4533  *      may be dropped during processing for congestion control or by the
4534  *      protocol layers.
4535  *
4536  *      return values:
4537  *      NET_RX_SUCCESS  (no congestion)
4538  *      NET_RX_DROP     (packet was dropped)
4539  *
4540  */
4541
4542 int netif_rx(struct sk_buff *skb)
4543 {
4544         int ret;
4545
4546         trace_netif_rx_entry(skb);
4547
4548         ret = netif_rx_internal(skb);
4549         trace_netif_rx_exit(ret);
4550
4551         return ret;
4552 }
4553 EXPORT_SYMBOL(netif_rx);
4554
4555 int netif_rx_ni(struct sk_buff *skb)
4556 {
4557         int err;
4558
4559         trace_netif_rx_ni_entry(skb);
4560
4561         preempt_disable();
4562         err = netif_rx_internal(skb);
4563         if (local_softirq_pending())
4564                 do_softirq();
4565         preempt_enable();
4566         trace_netif_rx_ni_exit(err);
4567
4568         return err;
4569 }
4570 EXPORT_SYMBOL(netif_rx_ni);
4571
4572 static __latent_entropy void net_tx_action(struct softirq_action *h)
4573 {
4574         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4575
4576         if (sd->completion_queue) {
4577                 struct sk_buff *clist;
4578
4579                 local_irq_disable();
4580                 clist = sd->completion_queue;
4581                 sd->completion_queue = NULL;
4582                 local_irq_enable();
4583
4584                 while (clist) {
4585                         struct sk_buff *skb = clist;
4586
4587                         clist = clist->next;
4588
4589                         WARN_ON(refcount_read(&skb->users));
4590                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4591                                 trace_consume_skb(skb);
4592                         else
4593                                 trace_kfree_skb(skb, net_tx_action);
4594
4595                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4596                                 __kfree_skb(skb);
4597                         else
4598                                 __kfree_skb_defer(skb);
4599                 }
4600
4601                 __kfree_skb_flush();
4602         }
4603
4604         if (sd->output_queue) {
4605                 struct Qdisc *head;
4606
4607                 local_irq_disable();
4608                 head = sd->output_queue;
4609                 sd->output_queue = NULL;
4610                 sd->output_queue_tailp = &sd->output_queue;
4611                 local_irq_enable();
4612
4613                 while (head) {
4614                         struct Qdisc *q = head;
4615                         spinlock_t *root_lock = NULL;
4616
4617                         head = head->next_sched;
4618
4619                         if (!(q->flags & TCQ_F_NOLOCK)) {
4620                                 root_lock = qdisc_lock(q);
4621                                 spin_lock(root_lock);
4622                         }
4623                         /* We need to make sure head->next_sched is read
4624                          * before clearing __QDISC_STATE_SCHED
4625                          */
4626                         smp_mb__before_atomic();
4627                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4628                         qdisc_run(q);
4629                         if (root_lock)
4630                                 spin_unlock(root_lock);
4631                 }
4632         }
4633
4634         xfrm_dev_backlog(sd);
4635 }
4636
4637 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4638 /* This hook is defined here for ATM LANE */
4639 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4640                              unsigned char *addr) __read_mostly;
4641 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4642 #endif
4643
4644 static inline struct sk_buff *
4645 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4646                    struct net_device *orig_dev)
4647 {
4648 #ifdef CONFIG_NET_CLS_ACT
4649         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4650         struct tcf_result cl_res;
4651
4652         /* If there's at least one ingress present somewhere (so
4653          * we get here via enabled static key), remaining devices
4654          * that are not configured with an ingress qdisc will bail
4655          * out here.
4656          */
4657         if (!miniq)
4658                 return skb;
4659
4660         if (*pt_prev) {
4661                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4662                 *pt_prev = NULL;
4663         }
4664
4665         qdisc_skb_cb(skb)->pkt_len = skb->len;
4666         skb->tc_at_ingress = 1;
4667         mini_qdisc_bstats_cpu_update(miniq, skb);
4668
4669         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4670         case TC_ACT_OK:
4671         case TC_ACT_RECLASSIFY:
4672                 skb->tc_index = TC_H_MIN(cl_res.classid);
4673                 break;
4674         case TC_ACT_SHOT:
4675                 mini_qdisc_qstats_cpu_drop(miniq);
4676                 kfree_skb(skb);
4677                 return NULL;
4678         case TC_ACT_STOLEN:
4679         case TC_ACT_QUEUED:
4680         case TC_ACT_TRAP:
4681                 consume_skb(skb);
4682                 return NULL;
4683         case TC_ACT_REDIRECT:
4684                 /* skb_mac_header check was done by cls/act_bpf, so
4685                  * we can safely push the L2 header back before
4686                  * redirecting to another netdev
4687                  */
4688                 __skb_push(skb, skb->mac_len);
4689                 skb_do_redirect(skb);
4690                 return NULL;
4691         case TC_ACT_CONSUMED:
4692                 return NULL;
4693         default:
4694                 break;
4695         }
4696 #endif /* CONFIG_NET_CLS_ACT */
4697         return skb;
4698 }
4699
4700 /**
4701  *      netdev_is_rx_handler_busy - check if receive handler is registered
4702  *      @dev: device to check
4703  *
4704  *      Check if a receive handler is already registered for a given device.
4705  *      Return true if there one.
4706  *
4707  *      The caller must hold the rtnl_mutex.
4708  */
4709 bool netdev_is_rx_handler_busy(struct net_device *dev)
4710 {
4711         ASSERT_RTNL();
4712         return dev && rtnl_dereference(dev->rx_handler);
4713 }
4714 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4715
4716 /**
4717  *      netdev_rx_handler_register - register receive handler
4718  *      @dev: device to register a handler for
4719  *      @rx_handler: receive handler to register
4720  *      @rx_handler_data: data pointer that is used by rx handler
4721  *
4722  *      Register a receive handler for a device. This handler will then be
4723  *      called from __netif_receive_skb. A negative errno code is returned
4724  *      on a failure.
4725  *
4726  *      The caller must hold the rtnl_mutex.
4727  *
4728  *      For a general description of rx_handler, see enum rx_handler_result.
4729  */
4730 int netdev_rx_handler_register(struct net_device *dev,
4731                                rx_handler_func_t *rx_handler,
4732                                void *rx_handler_data)
4733 {
4734         if (netdev_is_rx_handler_busy(dev))
4735                 return -EBUSY;
4736
4737         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4738                 return -EINVAL;
4739
4740         /* Note: rx_handler_data must be set before rx_handler */
4741         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4742         rcu_assign_pointer(dev->rx_handler, rx_handler);
4743
4744         return 0;
4745 }
4746 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4747
4748 /**
4749  *      netdev_rx_handler_unregister - unregister receive handler
4750  *      @dev: device to unregister a handler from
4751  *
4752  *      Unregister a receive handler from a device.
4753  *
4754  *      The caller must hold the rtnl_mutex.
4755  */
4756 void netdev_rx_handler_unregister(struct net_device *dev)
4757 {
4758
4759         ASSERT_RTNL();
4760         RCU_INIT_POINTER(dev->rx_handler, NULL);
4761         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4762          * section has a guarantee to see a non NULL rx_handler_data
4763          * as well.
4764          */
4765         synchronize_net();
4766         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4767 }
4768 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4769
4770 /*
4771  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4772  * the special handling of PFMEMALLOC skbs.
4773  */
4774 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4775 {
4776         switch (skb->protocol) {
4777         case htons(ETH_P_ARP):
4778         case htons(ETH_P_IP):
4779         case htons(ETH_P_IPV6):
4780         case htons(ETH_P_8021Q):
4781         case htons(ETH_P_8021AD):
4782                 return true;
4783         default:
4784                 return false;
4785         }
4786 }
4787
4788 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4789                              int *ret, struct net_device *orig_dev)
4790 {
4791 #ifdef CONFIG_NETFILTER_INGRESS
4792         if (nf_hook_ingress_active(skb)) {
4793                 int ingress_retval;
4794
4795                 if (*pt_prev) {
4796                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4797                         *pt_prev = NULL;
4798                 }
4799
4800                 rcu_read_lock();
4801                 ingress_retval = nf_hook_ingress(skb);
4802                 rcu_read_unlock();
4803                 return ingress_retval;
4804         }
4805 #endif /* CONFIG_NETFILTER_INGRESS */
4806         return 0;
4807 }
4808
4809 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4810                                     struct packet_type **ppt_prev)
4811 {
4812         struct packet_type *ptype, *pt_prev;
4813         rx_handler_func_t *rx_handler;
4814         struct net_device *orig_dev;
4815         bool deliver_exact = false;
4816         int ret = NET_RX_DROP;
4817         __be16 type;
4818
4819         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4820
4821         trace_netif_receive_skb(skb);
4822
4823         orig_dev = skb->dev;
4824
4825         skb_reset_network_header(skb);
4826         if (!skb_transport_header_was_set(skb))
4827                 skb_reset_transport_header(skb);
4828         skb_reset_mac_len(skb);
4829
4830         pt_prev = NULL;
4831
4832 another_round:
4833         skb->skb_iif = skb->dev->ifindex;
4834
4835         __this_cpu_inc(softnet_data.processed);
4836
4837         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4838                 int ret2;
4839
4840                 preempt_disable();
4841                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4842                 preempt_enable();
4843
4844                 if (ret2 != XDP_PASS)
4845                         return NET_RX_DROP;
4846                 skb_reset_mac_len(skb);
4847         }
4848
4849         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4850             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4851                 skb = skb_vlan_untag(skb);
4852                 if (unlikely(!skb))
4853                         goto out;
4854         }
4855
4856         if (skb_skip_tc_classify(skb))
4857                 goto skip_classify;
4858
4859         if (pfmemalloc)
4860                 goto skip_taps;
4861
4862         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4863                 if (pt_prev)
4864                         ret = deliver_skb(skb, pt_prev, orig_dev);
4865                 pt_prev = ptype;
4866         }
4867
4868         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4869                 if (pt_prev)
4870                         ret = deliver_skb(skb, pt_prev, orig_dev);
4871                 pt_prev = ptype;
4872         }
4873
4874 skip_taps:
4875 #ifdef CONFIG_NET_INGRESS
4876         if (static_branch_unlikely(&ingress_needed_key)) {
4877                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4878                 if (!skb)
4879                         goto out;
4880
4881                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4882                         goto out;
4883         }
4884 #endif
4885         skb_reset_tc(skb);
4886 skip_classify:
4887         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4888                 goto drop;
4889
4890         if (skb_vlan_tag_present(skb)) {
4891                 if (pt_prev) {
4892                         ret = deliver_skb(skb, pt_prev, orig_dev);
4893                         pt_prev = NULL;
4894                 }
4895                 if (vlan_do_receive(&skb))
4896                         goto another_round;
4897                 else if (unlikely(!skb))
4898                         goto out;
4899         }
4900
4901         rx_handler = rcu_dereference(skb->dev->rx_handler);
4902         if (rx_handler) {
4903                 if (pt_prev) {
4904                         ret = deliver_skb(skb, pt_prev, orig_dev);
4905                         pt_prev = NULL;
4906                 }
4907                 switch (rx_handler(&skb)) {
4908                 case RX_HANDLER_CONSUMED:
4909                         ret = NET_RX_SUCCESS;
4910                         goto out;
4911                 case RX_HANDLER_ANOTHER:
4912                         goto another_round;
4913                 case RX_HANDLER_EXACT:
4914                         deliver_exact = true;
4915                 case RX_HANDLER_PASS:
4916                         break;
4917                 default:
4918                         BUG();
4919                 }
4920         }
4921
4922         if (unlikely(skb_vlan_tag_present(skb))) {
4923 check_vlan_id:
4924                 if (skb_vlan_tag_get_id(skb)) {
4925                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
4926                          * find vlan device.
4927                          */
4928                         skb->pkt_type = PACKET_OTHERHOST;
4929                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4930                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4931                         /* Outer header is 802.1P with vlan 0, inner header is
4932                          * 802.1Q or 802.1AD and vlan_do_receive() above could
4933                          * not find vlan dev for vlan id 0.
4934                          */
4935                         __vlan_hwaccel_clear_tag(skb);
4936                         skb = skb_vlan_untag(skb);
4937                         if (unlikely(!skb))
4938                                 goto out;
4939                         if (vlan_do_receive(&skb))
4940                                 /* After stripping off 802.1P header with vlan 0
4941                                  * vlan dev is found for inner header.
4942                                  */
4943                                 goto another_round;
4944                         else if (unlikely(!skb))
4945                                 goto out;
4946                         else
4947                                 /* We have stripped outer 802.1P vlan 0 header.
4948                                  * But could not find vlan dev.
4949                                  * check again for vlan id to set OTHERHOST.
4950                                  */
4951                                 goto check_vlan_id;
4952                 }
4953                 /* Note: we might in the future use prio bits
4954                  * and set skb->priority like in vlan_do_receive()
4955                  * For the time being, just ignore Priority Code Point
4956                  */
4957                 __vlan_hwaccel_clear_tag(skb);
4958         }
4959
4960         type = skb->protocol;
4961
4962         /* deliver only exact match when indicated */
4963         if (likely(!deliver_exact)) {
4964                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4965                                        &ptype_base[ntohs(type) &
4966                                                    PTYPE_HASH_MASK]);
4967         }
4968
4969         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4970                                &orig_dev->ptype_specific);
4971
4972         if (unlikely(skb->dev != orig_dev)) {
4973                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4974                                        &skb->dev->ptype_specific);
4975         }
4976
4977         if (pt_prev) {
4978                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4979                         goto drop;
4980                 *ppt_prev = pt_prev;
4981         } else {
4982 drop:
4983                 if (!deliver_exact)
4984                         atomic_long_inc(&skb->dev->rx_dropped);
4985                 else
4986                         atomic_long_inc(&skb->dev->rx_nohandler);
4987                 kfree_skb(skb);
4988                 /* Jamal, now you will not able to escape explaining
4989                  * me how you were going to use this. :-)
4990                  */
4991                 ret = NET_RX_DROP;
4992         }
4993
4994 out:
4995         return ret;
4996 }
4997
4998 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4999 {
5000         struct net_device *orig_dev = skb->dev;
5001         struct packet_type *pt_prev = NULL;
5002         int ret;
5003
5004         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5005         if (pt_prev)
5006                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5007                                          skb->dev, pt_prev, orig_dev);
5008         return ret;
5009 }
5010
5011 /**
5012  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5013  *      @skb: buffer to process
5014  *
5015  *      More direct receive version of netif_receive_skb().  It should
5016  *      only be used by callers that have a need to skip RPS and Generic XDP.
5017  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5018  *
5019  *      This function may only be called from softirq context and interrupts
5020  *      should be enabled.
5021  *
5022  *      Return values (usually ignored):
5023  *      NET_RX_SUCCESS: no congestion
5024  *      NET_RX_DROP: packet was dropped
5025  */
5026 int netif_receive_skb_core(struct sk_buff *skb)
5027 {
5028         int ret;
5029
5030         rcu_read_lock();
5031         ret = __netif_receive_skb_one_core(skb, false);
5032         rcu_read_unlock();
5033
5034         return ret;
5035 }
5036 EXPORT_SYMBOL(netif_receive_skb_core);
5037
5038 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5039                                                   struct packet_type *pt_prev,
5040                                                   struct net_device *orig_dev)
5041 {
5042         struct sk_buff *skb, *next;
5043
5044         if (!pt_prev)
5045                 return;
5046         if (list_empty(head))
5047                 return;
5048         if (pt_prev->list_func != NULL)
5049                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5050                                    ip_list_rcv, head, pt_prev, orig_dev);
5051         else
5052                 list_for_each_entry_safe(skb, next, head, list) {
5053                         skb_list_del_init(skb);
5054                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5055                 }
5056 }
5057
5058 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5059 {
5060         /* Fast-path assumptions:
5061          * - There is no RX handler.
5062          * - Only one packet_type matches.
5063          * If either of these fails, we will end up doing some per-packet
5064          * processing in-line, then handling the 'last ptype' for the whole
5065          * sublist.  This can't cause out-of-order delivery to any single ptype,
5066          * because the 'last ptype' must be constant across the sublist, and all
5067          * other ptypes are handled per-packet.
5068          */
5069         /* Current (common) ptype of sublist */
5070         struct packet_type *pt_curr = NULL;
5071         /* Current (common) orig_dev of sublist */
5072         struct net_device *od_curr = NULL;
5073         struct list_head sublist;
5074         struct sk_buff *skb, *next;
5075
5076         INIT_LIST_HEAD(&sublist);
5077         list_for_each_entry_safe(skb, next, head, list) {
5078                 struct net_device *orig_dev = skb->dev;
5079                 struct packet_type *pt_prev = NULL;
5080
5081                 skb_list_del_init(skb);
5082                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5083                 if (!pt_prev)
5084                         continue;
5085                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5086                         /* dispatch old sublist */
5087                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5088                         /* start new sublist */
5089                         INIT_LIST_HEAD(&sublist);
5090                         pt_curr = pt_prev;
5091                         od_curr = orig_dev;
5092                 }
5093                 list_add_tail(&skb->list, &sublist);
5094         }
5095
5096         /* dispatch final sublist */
5097         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5098 }
5099
5100 static int __netif_receive_skb(struct sk_buff *skb)
5101 {
5102         int ret;
5103
5104         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5105                 unsigned int noreclaim_flag;
5106
5107                 /*
5108                  * PFMEMALLOC skbs are special, they should
5109                  * - be delivered to SOCK_MEMALLOC sockets only
5110                  * - stay away from userspace
5111                  * - have bounded memory usage
5112                  *
5113                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5114                  * context down to all allocation sites.
5115                  */
5116                 noreclaim_flag = memalloc_noreclaim_save();
5117                 ret = __netif_receive_skb_one_core(skb, true);
5118                 memalloc_noreclaim_restore(noreclaim_flag);
5119         } else
5120                 ret = __netif_receive_skb_one_core(skb, false);
5121
5122         return ret;
5123 }
5124
5125 static void __netif_receive_skb_list(struct list_head *head)
5126 {
5127         unsigned long noreclaim_flag = 0;
5128         struct sk_buff *skb, *next;
5129         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5130
5131         list_for_each_entry_safe(skb, next, head, list) {
5132                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5133                         struct list_head sublist;
5134
5135                         /* Handle the previous sublist */
5136                         list_cut_before(&sublist, head, &skb->list);
5137                         if (!list_empty(&sublist))
5138                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5139                         pfmemalloc = !pfmemalloc;
5140                         /* See comments in __netif_receive_skb */
5141                         if (pfmemalloc)
5142                                 noreclaim_flag = memalloc_noreclaim_save();
5143                         else
5144                                 memalloc_noreclaim_restore(noreclaim_flag);
5145                 }
5146         }
5147         /* Handle the remaining sublist */
5148         if (!list_empty(head))
5149                 __netif_receive_skb_list_core(head, pfmemalloc);
5150         /* Restore pflags */
5151         if (pfmemalloc)
5152                 memalloc_noreclaim_restore(noreclaim_flag);
5153 }
5154
5155 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5156 {
5157         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5158         struct bpf_prog *new = xdp->prog;
5159         int ret = 0;
5160
5161         switch (xdp->command) {
5162         case XDP_SETUP_PROG:
5163                 rcu_assign_pointer(dev->xdp_prog, new);
5164                 if (old)
5165                         bpf_prog_put(old);
5166
5167                 if (old && !new) {
5168                         static_branch_dec(&generic_xdp_needed_key);
5169                 } else if (new && !old) {
5170                         static_branch_inc(&generic_xdp_needed_key);
5171                         dev_disable_lro(dev);
5172                         dev_disable_gro_hw(dev);
5173                 }
5174                 break;
5175
5176         case XDP_QUERY_PROG:
5177                 xdp->prog_id = old ? old->aux->id : 0;
5178                 break;
5179
5180         default:
5181                 ret = -EINVAL;
5182                 break;
5183         }
5184
5185         return ret;
5186 }
5187
5188 static int netif_receive_skb_internal(struct sk_buff *skb)
5189 {
5190         int ret;
5191
5192         net_timestamp_check(netdev_tstamp_prequeue, skb);
5193
5194         if (skb_defer_rx_timestamp(skb))
5195                 return NET_RX_SUCCESS;
5196
5197         rcu_read_lock();
5198 #ifdef CONFIG_RPS
5199         if (static_branch_unlikely(&rps_needed)) {
5200                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5201                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5202
5203                 if (cpu >= 0) {
5204                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5205                         rcu_read_unlock();
5206                         return ret;
5207                 }
5208         }
5209 #endif
5210         ret = __netif_receive_skb(skb);
5211         rcu_read_unlock();
5212         return ret;
5213 }
5214
5215 static void netif_receive_skb_list_internal(struct list_head *head)
5216 {
5217         struct sk_buff *skb, *next;
5218         struct list_head sublist;
5219
5220         INIT_LIST_HEAD(&sublist);
5221         list_for_each_entry_safe(skb, next, head, list) {
5222                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5223                 skb_list_del_init(skb);
5224                 if (!skb_defer_rx_timestamp(skb))
5225                         list_add_tail(&skb->list, &sublist);
5226         }
5227         list_splice_init(&sublist, head);
5228
5229         rcu_read_lock();
5230 #ifdef CONFIG_RPS
5231         if (static_branch_unlikely(&rps_needed)) {
5232                 list_for_each_entry_safe(skb, next, head, list) {
5233                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5234                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5235
5236                         if (cpu >= 0) {
5237                                 /* Will be handled, remove from list */
5238                                 skb_list_del_init(skb);
5239                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5240                         }
5241                 }
5242         }
5243 #endif
5244         __netif_receive_skb_list(head);
5245         rcu_read_unlock();
5246 }
5247
5248 /**
5249  *      netif_receive_skb - process receive buffer from network
5250  *      @skb: buffer to process
5251  *
5252  *      netif_receive_skb() is the main receive data processing function.
5253  *      It always succeeds. The buffer may be dropped during processing
5254  *      for congestion control or by the protocol layers.
5255  *
5256  *      This function may only be called from softirq context and interrupts
5257  *      should be enabled.
5258  *
5259  *      Return values (usually ignored):
5260  *      NET_RX_SUCCESS: no congestion
5261  *      NET_RX_DROP: packet was dropped
5262  */
5263 int netif_receive_skb(struct sk_buff *skb)
5264 {
5265         int ret;
5266
5267         trace_netif_receive_skb_entry(skb);
5268
5269         ret = netif_receive_skb_internal(skb);
5270         trace_netif_receive_skb_exit(ret);
5271
5272         return ret;
5273 }
5274 EXPORT_SYMBOL(netif_receive_skb);
5275
5276 /**
5277  *      netif_receive_skb_list - process many receive buffers from network
5278  *      @head: list of skbs to process.
5279  *
5280  *      Since return value of netif_receive_skb() is normally ignored, and
5281  *      wouldn't be meaningful for a list, this function returns void.
5282  *
5283  *      This function may only be called from softirq context and interrupts
5284  *      should be enabled.
5285  */
5286 void netif_receive_skb_list(struct list_head *head)
5287 {
5288         struct sk_buff *skb;
5289
5290         if (list_empty(head))
5291                 return;
5292         if (trace_netif_receive_skb_list_entry_enabled()) {
5293                 list_for_each_entry(skb, head, list)
5294                         trace_netif_receive_skb_list_entry(skb);
5295         }
5296         netif_receive_skb_list_internal(head);
5297         trace_netif_receive_skb_list_exit(0);
5298 }
5299 EXPORT_SYMBOL(netif_receive_skb_list);
5300
5301 DEFINE_PER_CPU(struct work_struct, flush_works);
5302
5303 /* Network device is going away, flush any packets still pending */
5304 static void flush_backlog(struct work_struct *work)
5305 {
5306         struct sk_buff *skb, *tmp;
5307         struct softnet_data *sd;
5308
5309         local_bh_disable();
5310         sd = this_cpu_ptr(&softnet_data);
5311
5312         local_irq_disable();
5313         rps_lock(sd);
5314         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5315                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5316                         __skb_unlink(skb, &sd->input_pkt_queue);
5317                         kfree_skb(skb);
5318                         input_queue_head_incr(sd);
5319                 }
5320         }
5321         rps_unlock(sd);
5322         local_irq_enable();
5323
5324         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5325                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5326                         __skb_unlink(skb, &sd->process_queue);
5327                         kfree_skb(skb);
5328                         input_queue_head_incr(sd);
5329                 }
5330         }
5331         local_bh_enable();
5332 }
5333
5334 static void flush_all_backlogs(void)
5335 {
5336         unsigned int cpu;
5337
5338         get_online_cpus();
5339
5340         for_each_online_cpu(cpu)
5341                 queue_work_on(cpu, system_highpri_wq,
5342                               per_cpu_ptr(&flush_works, cpu));
5343
5344         for_each_online_cpu(cpu)
5345                 flush_work(per_cpu_ptr(&flush_works, cpu));
5346
5347         put_online_cpus();
5348 }
5349
5350 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5351 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5352 static int napi_gro_complete(struct sk_buff *skb)
5353 {
5354         struct packet_offload *ptype;
5355         __be16 type = skb->protocol;
5356         struct list_head *head = &offload_base;
5357         int err = -ENOENT;
5358
5359         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5360
5361         if (NAPI_GRO_CB(skb)->count == 1) {
5362                 skb_shinfo(skb)->gso_size = 0;
5363                 goto out;
5364         }
5365
5366         rcu_read_lock();
5367         list_for_each_entry_rcu(ptype, head, list) {
5368                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5369                         continue;
5370
5371                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5372                                          ipv6_gro_complete, inet_gro_complete,
5373                                          skb, 0);
5374                 break;
5375         }
5376         rcu_read_unlock();
5377
5378         if (err) {
5379                 WARN_ON(&ptype->list == head);
5380                 kfree_skb(skb);
5381                 return NET_RX_SUCCESS;
5382         }
5383
5384 out:
5385         return netif_receive_skb_internal(skb);
5386 }
5387
5388 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5389                                    bool flush_old)
5390 {
5391         struct list_head *head = &napi->gro_hash[index].list;
5392         struct sk_buff *skb, *p;
5393
5394         list_for_each_entry_safe_reverse(skb, p, head, list) {
5395                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5396                         return;
5397                 skb_list_del_init(skb);
5398                 napi_gro_complete(skb);
5399                 napi->gro_hash[index].count--;
5400         }
5401
5402         if (!napi->gro_hash[index].count)
5403                 __clear_bit(index, &napi->gro_bitmask);
5404 }
5405
5406 /* napi->gro_hash[].list contains packets ordered by age.
5407  * youngest packets at the head of it.
5408  * Complete skbs in reverse order to reduce latencies.
5409  */
5410 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5411 {
5412         unsigned long bitmask = napi->gro_bitmask;
5413         unsigned int i, base = ~0U;
5414
5415         while ((i = ffs(bitmask)) != 0) {
5416                 bitmask >>= i;
5417                 base += i;
5418                 __napi_gro_flush_chain(napi, base, flush_old);
5419         }
5420 }
5421 EXPORT_SYMBOL(napi_gro_flush);
5422
5423 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5424                                           struct sk_buff *skb)
5425 {
5426         unsigned int maclen = skb->dev->hard_header_len;
5427         u32 hash = skb_get_hash_raw(skb);
5428         struct list_head *head;
5429         struct sk_buff *p;
5430
5431         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5432         list_for_each_entry(p, head, list) {
5433                 unsigned long diffs;
5434
5435                 NAPI_GRO_CB(p)->flush = 0;
5436
5437                 if (hash != skb_get_hash_raw(p)) {
5438                         NAPI_GRO_CB(p)->same_flow = 0;
5439                         continue;
5440                 }
5441
5442                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5443                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5444                 if (skb_vlan_tag_present(p))
5445                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5446                 diffs |= skb_metadata_dst_cmp(p, skb);
5447                 diffs |= skb_metadata_differs(p, skb);
5448                 if (maclen == ETH_HLEN)
5449                         diffs |= compare_ether_header(skb_mac_header(p),
5450                                                       skb_mac_header(skb));
5451                 else if (!diffs)
5452                         diffs = memcmp(skb_mac_header(p),
5453                                        skb_mac_header(skb),
5454                                        maclen);
5455                 NAPI_GRO_CB(p)->same_flow = !diffs;
5456         }
5457
5458         return head;
5459 }
5460
5461 static void skb_gro_reset_offset(struct sk_buff *skb)
5462 {
5463         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5464         const skb_frag_t *frag0 = &pinfo->frags[0];
5465
5466         NAPI_GRO_CB(skb)->data_offset = 0;
5467         NAPI_GRO_CB(skb)->frag0 = NULL;
5468         NAPI_GRO_CB(skb)->frag0_len = 0;
5469
5470         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5471             pinfo->nr_frags &&
5472             !PageHighMem(skb_frag_page(frag0))) {
5473                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5474                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5475                                                     skb_frag_size(frag0),
5476                                                     skb->end - skb->tail);
5477         }
5478 }
5479
5480 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5481 {
5482         struct skb_shared_info *pinfo = skb_shinfo(skb);
5483
5484         BUG_ON(skb->end - skb->tail < grow);
5485
5486         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5487
5488         skb->data_len -= grow;
5489         skb->tail += grow;
5490
5491         skb_frag_off_add(&pinfo->frags[0], grow);
5492         skb_frag_size_sub(&pinfo->frags[0], grow);
5493
5494         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5495                 skb_frag_unref(skb, 0);
5496                 memmove(pinfo->frags, pinfo->frags + 1,
5497                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5498         }
5499 }
5500
5501 static void gro_flush_oldest(struct list_head *head)
5502 {
5503         struct sk_buff *oldest;
5504
5505         oldest = list_last_entry(head, struct sk_buff, list);
5506
5507         /* We are called with head length >= MAX_GRO_SKBS, so this is
5508          * impossible.
5509          */
5510         if (WARN_ON_ONCE(!oldest))
5511                 return;
5512
5513         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5514          * SKB to the chain.
5515          */
5516         skb_list_del_init(oldest);
5517         napi_gro_complete(oldest);
5518 }
5519
5520 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5521                                                            struct sk_buff *));
5522 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5523                                                            struct sk_buff *));
5524 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5525 {
5526         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5527         struct list_head *head = &offload_base;
5528         struct packet_offload *ptype;
5529         __be16 type = skb->protocol;
5530         struct list_head *gro_head;
5531         struct sk_buff *pp = NULL;
5532         enum gro_result ret;
5533         int same_flow;
5534         int grow;
5535
5536         if (netif_elide_gro(skb->dev))
5537                 goto normal;
5538
5539         gro_head = gro_list_prepare(napi, skb);
5540
5541         rcu_read_lock();
5542         list_for_each_entry_rcu(ptype, head, list) {
5543                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5544                         continue;
5545
5546                 skb_set_network_header(skb, skb_gro_offset(skb));
5547                 skb_reset_mac_len(skb);
5548                 NAPI_GRO_CB(skb)->same_flow = 0;
5549                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5550                 NAPI_GRO_CB(skb)->free = 0;
5551                 NAPI_GRO_CB(skb)->encap_mark = 0;
5552                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5553                 NAPI_GRO_CB(skb)->is_fou = 0;
5554                 NAPI_GRO_CB(skb)->is_atomic = 1;
5555                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5556
5557                 /* Setup for GRO checksum validation */
5558                 switch (skb->ip_summed) {
5559                 case CHECKSUM_COMPLETE:
5560                         NAPI_GRO_CB(skb)->csum = skb->csum;
5561                         NAPI_GRO_CB(skb)->csum_valid = 1;
5562                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5563                         break;
5564                 case CHECKSUM_UNNECESSARY:
5565                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5566                         NAPI_GRO_CB(skb)->csum_valid = 0;
5567                         break;
5568                 default:
5569                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5570                         NAPI_GRO_CB(skb)->csum_valid = 0;
5571                 }
5572
5573                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5574                                         ipv6_gro_receive, inet_gro_receive,
5575                                         gro_head, skb);
5576                 break;
5577         }
5578         rcu_read_unlock();
5579
5580         if (&ptype->list == head)
5581                 goto normal;
5582
5583         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5584                 ret = GRO_CONSUMED;
5585                 goto ok;
5586         }
5587
5588         same_flow = NAPI_GRO_CB(skb)->same_flow;
5589         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5590
5591         if (pp) {
5592                 skb_list_del_init(pp);
5593                 napi_gro_complete(pp);
5594                 napi->gro_hash[hash].count--;
5595         }
5596
5597         if (same_flow)
5598                 goto ok;
5599
5600         if (NAPI_GRO_CB(skb)->flush)
5601                 goto normal;
5602
5603         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5604                 gro_flush_oldest(gro_head);
5605         } else {
5606                 napi->gro_hash[hash].count++;
5607         }
5608         NAPI_GRO_CB(skb)->count = 1;
5609         NAPI_GRO_CB(skb)->age = jiffies;
5610         NAPI_GRO_CB(skb)->last = skb;
5611         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5612         list_add(&skb->list, gro_head);
5613         ret = GRO_HELD;
5614
5615 pull:
5616         grow = skb_gro_offset(skb) - skb_headlen(skb);
5617         if (grow > 0)
5618                 gro_pull_from_frag0(skb, grow);
5619 ok:
5620         if (napi->gro_hash[hash].count) {
5621                 if (!test_bit(hash, &napi->gro_bitmask))
5622                         __set_bit(hash, &napi->gro_bitmask);
5623         } else if (test_bit(hash, &napi->gro_bitmask)) {
5624                 __clear_bit(hash, &napi->gro_bitmask);
5625         }
5626
5627         return ret;
5628
5629 normal:
5630         ret = GRO_NORMAL;
5631         goto pull;
5632 }
5633
5634 struct packet_offload *gro_find_receive_by_type(__be16 type)
5635 {
5636         struct list_head *offload_head = &offload_base;
5637         struct packet_offload *ptype;
5638
5639         list_for_each_entry_rcu(ptype, offload_head, list) {
5640                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5641                         continue;
5642                 return ptype;
5643         }
5644         return NULL;
5645 }
5646 EXPORT_SYMBOL(gro_find_receive_by_type);
5647
5648 struct packet_offload *gro_find_complete_by_type(__be16 type)
5649 {
5650         struct list_head *offload_head = &offload_base;
5651         struct packet_offload *ptype;
5652
5653         list_for_each_entry_rcu(ptype, offload_head, list) {
5654                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5655                         continue;
5656                 return ptype;
5657         }
5658         return NULL;
5659 }
5660 EXPORT_SYMBOL(gro_find_complete_by_type);
5661
5662 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5663 {
5664         skb_dst_drop(skb);
5665         secpath_reset(skb);
5666         kmem_cache_free(skbuff_head_cache, skb);
5667 }
5668
5669 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5670 {
5671         switch (ret) {
5672         case GRO_NORMAL:
5673                 if (netif_receive_skb_internal(skb))
5674                         ret = GRO_DROP;
5675                 break;
5676
5677         case GRO_DROP:
5678                 kfree_skb(skb);
5679                 break;
5680
5681         case GRO_MERGED_FREE:
5682                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5683                         napi_skb_free_stolen_head(skb);
5684                 else
5685                         __kfree_skb(skb);
5686                 break;
5687
5688         case GRO_HELD:
5689         case GRO_MERGED:
5690         case GRO_CONSUMED:
5691                 break;
5692         }
5693
5694         return ret;
5695 }
5696
5697 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5698 {
5699         gro_result_t ret;
5700
5701         skb_mark_napi_id(skb, napi);
5702         trace_napi_gro_receive_entry(skb);
5703
5704         skb_gro_reset_offset(skb);
5705
5706         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5707         trace_napi_gro_receive_exit(ret);
5708
5709         return ret;
5710 }
5711 EXPORT_SYMBOL(napi_gro_receive);
5712
5713 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5714 {
5715         if (unlikely(skb->pfmemalloc)) {
5716                 consume_skb(skb);
5717                 return;
5718         }
5719         __skb_pull(skb, skb_headlen(skb));
5720         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5721         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5722         __vlan_hwaccel_clear_tag(skb);
5723         skb->dev = napi->dev;
5724         skb->skb_iif = 0;
5725
5726         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5727         skb->pkt_type = PACKET_HOST;
5728
5729         skb->encapsulation = 0;
5730         skb_shinfo(skb)->gso_type = 0;
5731         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5732         secpath_reset(skb);
5733
5734         napi->skb = skb;
5735 }
5736
5737 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5738 {
5739         struct sk_buff *skb = napi->skb;
5740
5741         if (!skb) {
5742                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5743                 if (skb) {
5744                         napi->skb = skb;
5745                         skb_mark_napi_id(skb, napi);
5746                 }
5747         }
5748         return skb;
5749 }
5750 EXPORT_SYMBOL(napi_get_frags);
5751
5752 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5753 static void gro_normal_list(struct napi_struct *napi)
5754 {
5755         if (!napi->rx_count)
5756                 return;
5757         netif_receive_skb_list_internal(&napi->rx_list);
5758         INIT_LIST_HEAD(&napi->rx_list);
5759         napi->rx_count = 0;
5760 }
5761
5762 /* Queue one GRO_NORMAL SKB up for list processing.  If batch size exceeded,
5763  * pass the whole batch up to the stack.
5764  */
5765 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5766 {
5767         list_add_tail(&skb->list, &napi->rx_list);
5768         if (++napi->rx_count >= gro_normal_batch)
5769                 gro_normal_list(napi);
5770 }
5771
5772 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5773                                       struct sk_buff *skb,
5774                                       gro_result_t ret)
5775 {
5776         switch (ret) {
5777         case GRO_NORMAL:
5778         case GRO_HELD:
5779                 __skb_push(skb, ETH_HLEN);
5780                 skb->protocol = eth_type_trans(skb, skb->dev);
5781                 if (ret == GRO_NORMAL)
5782                         gro_normal_one(napi, skb);
5783                 break;
5784
5785         case GRO_DROP:
5786                 napi_reuse_skb(napi, skb);
5787                 break;
5788
5789         case GRO_MERGED_FREE:
5790                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5791                         napi_skb_free_stolen_head(skb);
5792                 else
5793                         napi_reuse_skb(napi, skb);
5794                 break;
5795
5796         case GRO_MERGED:
5797         case GRO_CONSUMED:
5798                 break;
5799         }
5800
5801         return ret;
5802 }
5803
5804 /* Upper GRO stack assumes network header starts at gro_offset=0
5805  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5806  * We copy ethernet header into skb->data to have a common layout.
5807  */
5808 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5809 {
5810         struct sk_buff *skb = napi->skb;
5811         const struct ethhdr *eth;
5812         unsigned int hlen = sizeof(*eth);
5813
5814         napi->skb = NULL;
5815
5816         skb_reset_mac_header(skb);
5817         skb_gro_reset_offset(skb);
5818
5819         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5820                 eth = skb_gro_header_slow(skb, hlen, 0);
5821                 if (unlikely(!eth)) {
5822                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5823                                              __func__, napi->dev->name);
5824                         napi_reuse_skb(napi, skb);
5825                         return NULL;
5826                 }
5827         } else {
5828                 eth = (const struct ethhdr *)skb->data;
5829                 gro_pull_from_frag0(skb, hlen);
5830                 NAPI_GRO_CB(skb)->frag0 += hlen;
5831                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5832         }
5833         __skb_pull(skb, hlen);
5834
5835         /*
5836          * This works because the only protocols we care about don't require
5837          * special handling.
5838          * We'll fix it up properly in napi_frags_finish()
5839          */
5840         skb->protocol = eth->h_proto;
5841
5842         return skb;
5843 }
5844
5845 gro_result_t napi_gro_frags(struct napi_struct *napi)
5846 {
5847         gro_result_t ret;
5848         struct sk_buff *skb = napi_frags_skb(napi);
5849
5850         if (!skb)
5851                 return GRO_DROP;
5852
5853         trace_napi_gro_frags_entry(skb);
5854
5855         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5856         trace_napi_gro_frags_exit(ret);
5857
5858         return ret;
5859 }
5860 EXPORT_SYMBOL(napi_gro_frags);
5861
5862 /* Compute the checksum from gro_offset and return the folded value
5863  * after adding in any pseudo checksum.
5864  */
5865 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5866 {
5867         __wsum wsum;
5868         __sum16 sum;
5869
5870         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5871
5872         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5873         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5874         /* See comments in __skb_checksum_complete(). */
5875         if (likely(!sum)) {
5876                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5877                     !skb->csum_complete_sw)
5878                         netdev_rx_csum_fault(skb->dev, skb);
5879         }
5880
5881         NAPI_GRO_CB(skb)->csum = wsum;
5882         NAPI_GRO_CB(skb)->csum_valid = 1;
5883
5884         return sum;
5885 }
5886 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5887
5888 static void net_rps_send_ipi(struct softnet_data *remsd)
5889 {
5890 #ifdef CONFIG_RPS
5891         while (remsd) {
5892                 struct softnet_data *next = remsd->rps_ipi_next;
5893
5894                 if (cpu_online(remsd->cpu))
5895                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5896                 remsd = next;
5897         }
5898 #endif
5899 }
5900
5901 /*
5902  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5903  * Note: called with local irq disabled, but exits with local irq enabled.
5904  */
5905 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5906 {
5907 #ifdef CONFIG_RPS
5908         struct softnet_data *remsd = sd->rps_ipi_list;
5909
5910         if (remsd) {
5911                 sd->rps_ipi_list = NULL;
5912
5913                 local_irq_enable();
5914
5915                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5916                 net_rps_send_ipi(remsd);
5917         } else
5918 #endif
5919                 local_irq_enable();
5920 }
5921
5922 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5923 {
5924 #ifdef CONFIG_RPS
5925         return sd->rps_ipi_list != NULL;
5926 #else
5927         return false;
5928 #endif
5929 }
5930
5931 static int process_backlog(struct napi_struct *napi, int quota)
5932 {
5933         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5934         bool again = true;
5935         int work = 0;
5936
5937         /* Check if we have pending ipi, its better to send them now,
5938          * not waiting net_rx_action() end.
5939          */
5940         if (sd_has_rps_ipi_waiting(sd)) {
5941                 local_irq_disable();
5942                 net_rps_action_and_irq_enable(sd);
5943         }
5944
5945         napi->weight = dev_rx_weight;
5946         while (again) {
5947                 struct sk_buff *skb;
5948
5949                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5950                         rcu_read_lock();
5951                         __netif_receive_skb(skb);
5952                         rcu_read_unlock();
5953                         input_queue_head_incr(sd);
5954                         if (++work >= quota)
5955                                 return work;
5956
5957                 }
5958
5959                 local_irq_disable();
5960                 rps_lock(sd);
5961                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5962                         /*
5963                          * Inline a custom version of __napi_complete().
5964                          * only current cpu owns and manipulates this napi,
5965                          * and NAPI_STATE_SCHED is the only possible flag set
5966                          * on backlog.
5967                          * We can use a plain write instead of clear_bit(),
5968                          * and we dont need an smp_mb() memory barrier.
5969                          */
5970                         napi->state = 0;
5971                         again = false;
5972                 } else {
5973                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5974                                                    &sd->process_queue);
5975                 }
5976                 rps_unlock(sd);
5977                 local_irq_enable();
5978         }
5979
5980         return work;
5981 }
5982
5983 /**
5984  * __napi_schedule - schedule for receive
5985  * @n: entry to schedule
5986  *
5987  * The entry's receive function will be scheduled to run.
5988  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5989  */
5990 void __napi_schedule(struct napi_struct *n)
5991 {
5992         unsigned long flags;
5993
5994         local_irq_save(flags);
5995         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5996         local_irq_restore(flags);
5997 }
5998 EXPORT_SYMBOL(__napi_schedule);
5999
6000 /**
6001  *      napi_schedule_prep - check if napi can be scheduled
6002  *      @n: napi context
6003  *
6004  * Test if NAPI routine is already running, and if not mark
6005  * it as running.  This is used as a condition variable
6006  * insure only one NAPI poll instance runs.  We also make
6007  * sure there is no pending NAPI disable.
6008  */
6009 bool napi_schedule_prep(struct napi_struct *n)
6010 {
6011         unsigned long val, new;
6012
6013         do {
6014                 val = READ_ONCE(n->state);
6015                 if (unlikely(val & NAPIF_STATE_DISABLE))
6016                         return false;
6017                 new = val | NAPIF_STATE_SCHED;
6018
6019                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6020                  * This was suggested by Alexander Duyck, as compiler
6021                  * emits better code than :
6022                  * if (val & NAPIF_STATE_SCHED)
6023                  *     new |= NAPIF_STATE_MISSED;
6024                  */
6025                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6026                                                    NAPIF_STATE_MISSED;
6027         } while (cmpxchg(&n->state, val, new) != val);
6028
6029         return !(val & NAPIF_STATE_SCHED);
6030 }
6031 EXPORT_SYMBOL(napi_schedule_prep);
6032
6033 /**
6034  * __napi_schedule_irqoff - schedule for receive
6035  * @n: entry to schedule
6036  *
6037  * Variant of __napi_schedule() assuming hard irqs are masked
6038  */
6039 void __napi_schedule_irqoff(struct napi_struct *n)
6040 {
6041         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6042 }
6043 EXPORT_SYMBOL(__napi_schedule_irqoff);
6044
6045 bool napi_complete_done(struct napi_struct *n, int work_done)
6046 {
6047         unsigned long flags, val, new;
6048
6049         /*
6050          * 1) Don't let napi dequeue from the cpu poll list
6051          *    just in case its running on a different cpu.
6052          * 2) If we are busy polling, do nothing here, we have
6053          *    the guarantee we will be called later.
6054          */
6055         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6056                                  NAPIF_STATE_IN_BUSY_POLL)))
6057                 return false;
6058
6059         gro_normal_list(n);
6060
6061         if (n->gro_bitmask) {
6062                 unsigned long timeout = 0;
6063
6064                 if (work_done)
6065                         timeout = n->dev->gro_flush_timeout;
6066
6067                 /* When the NAPI instance uses a timeout and keeps postponing
6068                  * it, we need to bound somehow the time packets are kept in
6069                  * the GRO layer
6070                  */
6071                 napi_gro_flush(n, !!timeout);
6072                 if (timeout)
6073                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6074                                       HRTIMER_MODE_REL_PINNED);
6075         }
6076         if (unlikely(!list_empty(&n->poll_list))) {
6077                 /* If n->poll_list is not empty, we need to mask irqs */
6078                 local_irq_save(flags);
6079                 list_del_init(&n->poll_list);
6080                 local_irq_restore(flags);
6081         }
6082
6083         do {
6084                 val = READ_ONCE(n->state);
6085
6086                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6087
6088                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6089
6090                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6091                  * because we will call napi->poll() one more time.
6092                  * This C code was suggested by Alexander Duyck to help gcc.
6093                  */
6094                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6095                                                     NAPIF_STATE_SCHED;
6096         } while (cmpxchg(&n->state, val, new) != val);
6097
6098         if (unlikely(val & NAPIF_STATE_MISSED)) {
6099                 __napi_schedule(n);
6100                 return false;
6101         }
6102
6103         return true;
6104 }
6105 EXPORT_SYMBOL(napi_complete_done);
6106
6107 /* must be called under rcu_read_lock(), as we dont take a reference */
6108 static struct napi_struct *napi_by_id(unsigned int napi_id)
6109 {
6110         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6111         struct napi_struct *napi;
6112
6113         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6114                 if (napi->napi_id == napi_id)
6115                         return napi;
6116
6117         return NULL;
6118 }
6119
6120 #if defined(CONFIG_NET_RX_BUSY_POLL)
6121
6122 #define BUSY_POLL_BUDGET 8
6123
6124 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6125 {
6126         int rc;
6127
6128         /* Busy polling means there is a high chance device driver hard irq
6129          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6130          * set in napi_schedule_prep().
6131          * Since we are about to call napi->poll() once more, we can safely
6132          * clear NAPI_STATE_MISSED.
6133          *
6134          * Note: x86 could use a single "lock and ..." instruction
6135          * to perform these two clear_bit()
6136          */
6137         clear_bit(NAPI_STATE_MISSED, &napi->state);
6138         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6139
6140         local_bh_disable();
6141
6142         /* All we really want here is to re-enable device interrupts.
6143          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6144          */
6145         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6146         /* We can't gro_normal_list() here, because napi->poll() might have
6147          * rearmed the napi (napi_complete_done()) in which case it could
6148          * already be running on another CPU.
6149          */
6150         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6151         netpoll_poll_unlock(have_poll_lock);
6152         if (rc == BUSY_POLL_BUDGET) {
6153                 /* As the whole budget was spent, we still own the napi so can
6154                  * safely handle the rx_list.
6155                  */
6156                 gro_normal_list(napi);
6157                 __napi_schedule(napi);
6158         }
6159         local_bh_enable();
6160 }
6161
6162 void napi_busy_loop(unsigned int napi_id,
6163                     bool (*loop_end)(void *, unsigned long),
6164                     void *loop_end_arg)
6165 {
6166         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6167         int (*napi_poll)(struct napi_struct *napi, int budget);
6168         void *have_poll_lock = NULL;
6169         struct napi_struct *napi;
6170
6171 restart:
6172         napi_poll = NULL;
6173
6174         rcu_read_lock();
6175
6176         napi = napi_by_id(napi_id);
6177         if (!napi)
6178                 goto out;
6179
6180         preempt_disable();
6181         for (;;) {
6182                 int work = 0;
6183
6184                 local_bh_disable();
6185                 if (!napi_poll) {
6186                         unsigned long val = READ_ONCE(napi->state);
6187
6188                         /* If multiple threads are competing for this napi,
6189                          * we avoid dirtying napi->state as much as we can.
6190                          */
6191                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6192                                    NAPIF_STATE_IN_BUSY_POLL))
6193                                 goto count;
6194                         if (cmpxchg(&napi->state, val,
6195                                     val | NAPIF_STATE_IN_BUSY_POLL |
6196                                           NAPIF_STATE_SCHED) != val)
6197                                 goto count;
6198                         have_poll_lock = netpoll_poll_lock(napi);
6199                         napi_poll = napi->poll;
6200                 }
6201                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6202                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6203                 gro_normal_list(napi);
6204 count:
6205                 if (work > 0)
6206                         __NET_ADD_STATS(dev_net(napi->dev),
6207                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6208                 local_bh_enable();
6209
6210                 if (!loop_end || loop_end(loop_end_arg, start_time))
6211                         break;
6212
6213                 if (unlikely(need_resched())) {
6214                         if (napi_poll)
6215                                 busy_poll_stop(napi, have_poll_lock);
6216                         preempt_enable();
6217                         rcu_read_unlock();
6218                         cond_resched();
6219                         if (loop_end(loop_end_arg, start_time))
6220                                 return;
6221                         goto restart;
6222                 }
6223                 cpu_relax();
6224         }
6225         if (napi_poll)
6226                 busy_poll_stop(napi, have_poll_lock);
6227         preempt_enable();
6228 out:
6229         rcu_read_unlock();
6230 }
6231 EXPORT_SYMBOL(napi_busy_loop);
6232
6233 #endif /* CONFIG_NET_RX_BUSY_POLL */
6234
6235 static void napi_hash_add(struct napi_struct *napi)
6236 {
6237         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6238             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6239                 return;
6240
6241         spin_lock(&napi_hash_lock);
6242
6243         /* 0..NR_CPUS range is reserved for sender_cpu use */
6244         do {
6245                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6246                         napi_gen_id = MIN_NAPI_ID;
6247         } while (napi_by_id(napi_gen_id));
6248         napi->napi_id = napi_gen_id;
6249
6250         hlist_add_head_rcu(&napi->napi_hash_node,
6251                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6252
6253         spin_unlock(&napi_hash_lock);
6254 }
6255
6256 /* Warning : caller is responsible to make sure rcu grace period
6257  * is respected before freeing memory containing @napi
6258  */
6259 bool napi_hash_del(struct napi_struct *napi)
6260 {
6261         bool rcu_sync_needed = false;
6262
6263         spin_lock(&napi_hash_lock);
6264
6265         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6266                 rcu_sync_needed = true;
6267                 hlist_del_rcu(&napi->napi_hash_node);
6268         }
6269         spin_unlock(&napi_hash_lock);
6270         return rcu_sync_needed;
6271 }
6272 EXPORT_SYMBOL_GPL(napi_hash_del);
6273
6274 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6275 {
6276         struct napi_struct *napi;
6277
6278         napi = container_of(timer, struct napi_struct, timer);
6279
6280         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6281          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6282          */
6283         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6284             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6285                 __napi_schedule_irqoff(napi);
6286
6287         return HRTIMER_NORESTART;
6288 }
6289
6290 static void init_gro_hash(struct napi_struct *napi)
6291 {
6292         int i;
6293
6294         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6295                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6296                 napi->gro_hash[i].count = 0;
6297         }
6298         napi->gro_bitmask = 0;
6299 }
6300
6301 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6302                     int (*poll)(struct napi_struct *, int), int weight)
6303 {
6304         INIT_LIST_HEAD(&napi->poll_list);
6305         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6306         napi->timer.function = napi_watchdog;
6307         init_gro_hash(napi);
6308         napi->skb = NULL;
6309         INIT_LIST_HEAD(&napi->rx_list);
6310         napi->rx_count = 0;
6311         napi->poll = poll;
6312         if (weight > NAPI_POLL_WEIGHT)
6313                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6314                                 weight);
6315         napi->weight = weight;
6316         list_add(&napi->dev_list, &dev->napi_list);
6317         napi->dev = dev;
6318 #ifdef CONFIG_NETPOLL
6319         napi->poll_owner = -1;
6320 #endif
6321         set_bit(NAPI_STATE_SCHED, &napi->state);
6322         napi_hash_add(napi);
6323 }
6324 EXPORT_SYMBOL(netif_napi_add);
6325
6326 void napi_disable(struct napi_struct *n)
6327 {
6328         might_sleep();
6329         set_bit(NAPI_STATE_DISABLE, &n->state);
6330
6331         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6332                 msleep(1);
6333         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6334                 msleep(1);
6335
6336         hrtimer_cancel(&n->timer);
6337
6338         clear_bit(NAPI_STATE_DISABLE, &n->state);
6339 }
6340 EXPORT_SYMBOL(napi_disable);
6341
6342 static void flush_gro_hash(struct napi_struct *napi)
6343 {
6344         int i;
6345
6346         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6347                 struct sk_buff *skb, *n;
6348
6349                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6350                         kfree_skb(skb);
6351                 napi->gro_hash[i].count = 0;
6352         }
6353 }
6354
6355 /* Must be called in process context */
6356 void netif_napi_del(struct napi_struct *napi)
6357 {
6358         might_sleep();
6359         if (napi_hash_del(napi))
6360                 synchronize_net();
6361         list_del_init(&napi->dev_list);
6362         napi_free_frags(napi);
6363
6364         flush_gro_hash(napi);
6365         napi->gro_bitmask = 0;
6366 }
6367 EXPORT_SYMBOL(netif_napi_del);
6368
6369 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6370 {
6371         void *have;
6372         int work, weight;
6373
6374         list_del_init(&n->poll_list);
6375
6376         have = netpoll_poll_lock(n);
6377
6378         weight = n->weight;
6379
6380         /* This NAPI_STATE_SCHED test is for avoiding a race
6381          * with netpoll's poll_napi().  Only the entity which
6382          * obtains the lock and sees NAPI_STATE_SCHED set will
6383          * actually make the ->poll() call.  Therefore we avoid
6384          * accidentally calling ->poll() when NAPI is not scheduled.
6385          */
6386         work = 0;
6387         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6388                 work = n->poll(n, weight);
6389                 trace_napi_poll(n, work, weight);
6390         }
6391
6392         WARN_ON_ONCE(work > weight);
6393
6394         if (likely(work < weight))
6395                 goto out_unlock;
6396
6397         /* Drivers must not modify the NAPI state if they
6398          * consume the entire weight.  In such cases this code
6399          * still "owns" the NAPI instance and therefore can
6400          * move the instance around on the list at-will.
6401          */
6402         if (unlikely(napi_disable_pending(n))) {
6403                 napi_complete(n);
6404                 goto out_unlock;
6405         }
6406
6407         gro_normal_list(n);
6408
6409         if (n->gro_bitmask) {
6410                 /* flush too old packets
6411                  * If HZ < 1000, flush all packets.
6412                  */
6413                 napi_gro_flush(n, HZ >= 1000);
6414         }
6415
6416         /* Some drivers may have called napi_schedule
6417          * prior to exhausting their budget.
6418          */
6419         if (unlikely(!list_empty(&n->poll_list))) {
6420                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6421                              n->dev ? n->dev->name : "backlog");
6422                 goto out_unlock;
6423         }
6424
6425         list_add_tail(&n->poll_list, repoll);
6426
6427 out_unlock:
6428         netpoll_poll_unlock(have);
6429
6430         return work;
6431 }
6432
6433 static __latent_entropy void net_rx_action(struct softirq_action *h)
6434 {
6435         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6436         unsigned long time_limit = jiffies +
6437                 usecs_to_jiffies(netdev_budget_usecs);
6438         int budget = netdev_budget;
6439         LIST_HEAD(list);
6440         LIST_HEAD(repoll);
6441
6442         local_irq_disable();
6443         list_splice_init(&sd->poll_list, &list);
6444         local_irq_enable();
6445
6446         for (;;) {
6447                 struct napi_struct *n;
6448
6449                 if (list_empty(&list)) {
6450                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6451                                 goto out;
6452                         break;
6453                 }
6454
6455                 n = list_first_entry(&list, struct napi_struct, poll_list);
6456                 budget -= napi_poll(n, &repoll);
6457
6458                 /* If softirq window is exhausted then punt.
6459                  * Allow this to run for 2 jiffies since which will allow
6460                  * an average latency of 1.5/HZ.
6461                  */
6462                 if (unlikely(budget <= 0 ||
6463                              time_after_eq(jiffies, time_limit))) {
6464                         sd->time_squeeze++;
6465                         break;
6466                 }
6467         }
6468
6469         local_irq_disable();
6470
6471         list_splice_tail_init(&sd->poll_list, &list);
6472         list_splice_tail(&repoll, &list);
6473         list_splice(&list, &sd->poll_list);
6474         if (!list_empty(&sd->poll_list))
6475                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6476
6477         net_rps_action_and_irq_enable(sd);
6478 out:
6479         __kfree_skb_flush();
6480 }
6481
6482 struct netdev_adjacent {
6483         struct net_device *dev;
6484
6485         /* upper master flag, there can only be one master device per list */
6486         bool master;
6487
6488         /* counter for the number of times this device was added to us */
6489         u16 ref_nr;
6490
6491         /* private field for the users */
6492         void *private;
6493
6494         struct list_head list;
6495         struct rcu_head rcu;
6496 };
6497
6498 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6499                                                  struct list_head *adj_list)
6500 {
6501         struct netdev_adjacent *adj;
6502
6503         list_for_each_entry(adj, adj_list, list) {
6504                 if (adj->dev == adj_dev)
6505                         return adj;
6506         }
6507         return NULL;
6508 }
6509
6510 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6511 {
6512         struct net_device *dev = data;
6513
6514         return upper_dev == dev;
6515 }
6516
6517 /**
6518  * netdev_has_upper_dev - Check if device is linked to an upper device
6519  * @dev: device
6520  * @upper_dev: upper device to check
6521  *
6522  * Find out if a device is linked to specified upper device and return true
6523  * in case it is. Note that this checks only immediate upper device,
6524  * not through a complete stack of devices. The caller must hold the RTNL lock.
6525  */
6526 bool netdev_has_upper_dev(struct net_device *dev,
6527                           struct net_device *upper_dev)
6528 {
6529         ASSERT_RTNL();
6530
6531         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6532                                              upper_dev);
6533 }
6534 EXPORT_SYMBOL(netdev_has_upper_dev);
6535
6536 /**
6537  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6538  * @dev: device
6539  * @upper_dev: upper device to check
6540  *
6541  * Find out if a device is linked to specified upper device and return true
6542  * in case it is. Note that this checks the entire upper device chain.
6543  * The caller must hold rcu lock.
6544  */
6545
6546 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6547                                   struct net_device *upper_dev)
6548 {
6549         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6550                                                upper_dev);
6551 }
6552 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6553
6554 /**
6555  * netdev_has_any_upper_dev - Check if device is linked to some device
6556  * @dev: device
6557  *
6558  * Find out if a device is linked to an upper device and return true in case
6559  * it is. The caller must hold the RTNL lock.
6560  */
6561 bool netdev_has_any_upper_dev(struct net_device *dev)
6562 {
6563         ASSERT_RTNL();
6564
6565         return !list_empty(&dev->adj_list.upper);
6566 }
6567 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6568
6569 /**
6570  * netdev_master_upper_dev_get - Get master upper device
6571  * @dev: device
6572  *
6573  * Find a master upper device and return pointer to it or NULL in case
6574  * it's not there. The caller must hold the RTNL lock.
6575  */
6576 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6577 {
6578         struct netdev_adjacent *upper;
6579
6580         ASSERT_RTNL();
6581
6582         if (list_empty(&dev->adj_list.upper))
6583                 return NULL;
6584
6585         upper = list_first_entry(&dev->adj_list.upper,
6586                                  struct netdev_adjacent, list);
6587         if (likely(upper->master))
6588                 return upper->dev;
6589         return NULL;
6590 }
6591 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6592
6593 /**
6594  * netdev_has_any_lower_dev - Check if device is linked to some device
6595  * @dev: device
6596  *
6597  * Find out if a device is linked to a lower device and return true in case
6598  * it is. The caller must hold the RTNL lock.
6599  */
6600 static bool netdev_has_any_lower_dev(struct net_device *dev)
6601 {
6602         ASSERT_RTNL();
6603
6604         return !list_empty(&dev->adj_list.lower);
6605 }
6606
6607 void *netdev_adjacent_get_private(struct list_head *adj_list)
6608 {
6609         struct netdev_adjacent *adj;
6610
6611         adj = list_entry(adj_list, struct netdev_adjacent, list);
6612
6613         return adj->private;
6614 }
6615 EXPORT_SYMBOL(netdev_adjacent_get_private);
6616
6617 /**
6618  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6619  * @dev: device
6620  * @iter: list_head ** of the current position
6621  *
6622  * Gets the next device from the dev's upper list, starting from iter
6623  * position. The caller must hold RCU read lock.
6624  */
6625 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6626                                                  struct list_head **iter)
6627 {
6628         struct netdev_adjacent *upper;
6629
6630         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6631
6632         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6633
6634         if (&upper->list == &dev->adj_list.upper)
6635                 return NULL;
6636
6637         *iter = &upper->list;
6638
6639         return upper->dev;
6640 }
6641 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6642
6643 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6644                                                     struct list_head **iter)
6645 {
6646         struct netdev_adjacent *upper;
6647
6648         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6649
6650         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6651
6652         if (&upper->list == &dev->adj_list.upper)
6653                 return NULL;
6654
6655         *iter = &upper->list;
6656
6657         return upper->dev;
6658 }
6659
6660 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6661                                   int (*fn)(struct net_device *dev,
6662                                             void *data),
6663                                   void *data)
6664 {
6665         struct net_device *udev;
6666         struct list_head *iter;
6667         int ret;
6668
6669         for (iter = &dev->adj_list.upper,
6670              udev = netdev_next_upper_dev_rcu(dev, &iter);
6671              udev;
6672              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6673                 /* first is the upper device itself */
6674                 ret = fn(udev, data);
6675                 if (ret)
6676                         return ret;
6677
6678                 /* then look at all of its upper devices */
6679                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6680                 if (ret)
6681                         return ret;
6682         }
6683
6684         return 0;
6685 }
6686 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6687
6688 /**
6689  * netdev_lower_get_next_private - Get the next ->private from the
6690  *                                 lower neighbour list
6691  * @dev: device
6692  * @iter: list_head ** of the current position
6693  *
6694  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6695  * list, starting from iter position. The caller must hold either hold the
6696  * RTNL lock or its own locking that guarantees that the neighbour lower
6697  * list will remain unchanged.
6698  */
6699 void *netdev_lower_get_next_private(struct net_device *dev,
6700                                     struct list_head **iter)
6701 {
6702         struct netdev_adjacent *lower;
6703
6704         lower = list_entry(*iter, struct netdev_adjacent, list);
6705
6706         if (&lower->list == &dev->adj_list.lower)
6707                 return NULL;
6708
6709         *iter = lower->list.next;
6710
6711         return lower->private;
6712 }
6713 EXPORT_SYMBOL(netdev_lower_get_next_private);
6714
6715 /**
6716  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6717  *                                     lower neighbour list, RCU
6718  *                                     variant
6719  * @dev: device
6720  * @iter: list_head ** of the current position
6721  *
6722  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6723  * list, starting from iter position. The caller must hold RCU read lock.
6724  */
6725 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6726                                         struct list_head **iter)
6727 {
6728         struct netdev_adjacent *lower;
6729
6730         WARN_ON_ONCE(!rcu_read_lock_held());
6731
6732         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6733
6734         if (&lower->list == &dev->adj_list.lower)
6735                 return NULL;
6736
6737         *iter = &lower->list;
6738
6739         return lower->private;
6740 }
6741 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6742
6743 /**
6744  * netdev_lower_get_next - Get the next device from the lower neighbour
6745  *                         list
6746  * @dev: device
6747  * @iter: list_head ** of the current position
6748  *
6749  * Gets the next netdev_adjacent from the dev's lower neighbour
6750  * list, starting from iter position. The caller must hold RTNL lock or
6751  * its own locking that guarantees that the neighbour lower
6752  * list will remain unchanged.
6753  */
6754 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6755 {
6756         struct netdev_adjacent *lower;
6757
6758         lower = list_entry(*iter, struct netdev_adjacent, list);
6759
6760         if (&lower->list == &dev->adj_list.lower)
6761                 return NULL;
6762
6763         *iter = lower->list.next;
6764
6765         return lower->dev;
6766 }
6767 EXPORT_SYMBOL(netdev_lower_get_next);
6768
6769 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6770                                                 struct list_head **iter)
6771 {
6772         struct netdev_adjacent *lower;
6773
6774         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6775
6776         if (&lower->list == &dev->adj_list.lower)
6777                 return NULL;
6778
6779         *iter = &lower->list;
6780
6781         return lower->dev;
6782 }
6783
6784 int netdev_walk_all_lower_dev(struct net_device *dev,
6785                               int (*fn)(struct net_device *dev,
6786                                         void *data),
6787                               void *data)
6788 {
6789         struct net_device *ldev;
6790         struct list_head *iter;
6791         int ret;
6792
6793         for (iter = &dev->adj_list.lower,
6794              ldev = netdev_next_lower_dev(dev, &iter);
6795              ldev;
6796              ldev = netdev_next_lower_dev(dev, &iter)) {
6797                 /* first is the lower device itself */
6798                 ret = fn(ldev, data);
6799                 if (ret)
6800                         return ret;
6801
6802                 /* then look at all of its lower devices */
6803                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6804                 if (ret)
6805                         return ret;
6806         }
6807
6808         return 0;
6809 }
6810 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6811
6812 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6813                                                     struct list_head **iter)
6814 {
6815         struct netdev_adjacent *lower;
6816
6817         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6818         if (&lower->list == &dev->adj_list.lower)
6819                 return NULL;
6820
6821         *iter = &lower->list;
6822
6823         return lower->dev;
6824 }
6825
6826 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6827                                   int (*fn)(struct net_device *dev,
6828                                             void *data),
6829                                   void *data)
6830 {
6831         struct net_device *ldev;
6832         struct list_head *iter;
6833         int ret;
6834
6835         for (iter = &dev->adj_list.lower,
6836              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6837              ldev;
6838              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6839                 /* first is the lower device itself */
6840                 ret = fn(ldev, data);
6841                 if (ret)
6842                         return ret;
6843
6844                 /* then look at all of its lower devices */
6845                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6846                 if (ret)
6847                         return ret;
6848         }
6849
6850         return 0;
6851 }
6852 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6853
6854 /**
6855  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6856  *                                     lower neighbour list, RCU
6857  *                                     variant
6858  * @dev: device
6859  *
6860  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6861  * list. The caller must hold RCU read lock.
6862  */
6863 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6864 {
6865         struct netdev_adjacent *lower;
6866
6867         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6868                         struct netdev_adjacent, list);
6869         if (lower)
6870                 return lower->private;
6871         return NULL;
6872 }
6873 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6874
6875 /**
6876  * netdev_master_upper_dev_get_rcu - Get master upper device
6877  * @dev: device
6878  *
6879  * Find a master upper device and return pointer to it or NULL in case
6880  * it's not there. The caller must hold the RCU read lock.
6881  */
6882 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6883 {
6884         struct netdev_adjacent *upper;
6885
6886         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6887                                        struct netdev_adjacent, list);
6888         if (upper && likely(upper->master))
6889                 return upper->dev;
6890         return NULL;
6891 }
6892 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6893
6894 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6895                               struct net_device *adj_dev,
6896                               struct list_head *dev_list)
6897 {
6898         char linkname[IFNAMSIZ+7];
6899
6900         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6901                 "upper_%s" : "lower_%s", adj_dev->name);
6902         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6903                                  linkname);
6904 }
6905 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6906                                char *name,
6907                                struct list_head *dev_list)
6908 {
6909         char linkname[IFNAMSIZ+7];
6910
6911         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6912                 "upper_%s" : "lower_%s", name);
6913         sysfs_remove_link(&(dev->dev.kobj), linkname);
6914 }
6915
6916 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6917                                                  struct net_device *adj_dev,
6918                                                  struct list_head *dev_list)
6919 {
6920         return (dev_list == &dev->adj_list.upper ||
6921                 dev_list == &dev->adj_list.lower) &&
6922                 net_eq(dev_net(dev), dev_net(adj_dev));
6923 }
6924
6925 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6926                                         struct net_device *adj_dev,
6927                                         struct list_head *dev_list,
6928                                         void *private, bool master)
6929 {
6930         struct netdev_adjacent *adj;
6931         int ret;
6932
6933         adj = __netdev_find_adj(adj_dev, dev_list);
6934
6935         if (adj) {
6936                 adj->ref_nr += 1;
6937                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6938                          dev->name, adj_dev->name, adj->ref_nr);
6939
6940                 return 0;
6941         }
6942
6943         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6944         if (!adj)
6945                 return -ENOMEM;
6946
6947         adj->dev = adj_dev;
6948         adj->master = master;
6949         adj->ref_nr = 1;
6950         adj->private = private;
6951         dev_hold(adj_dev);
6952
6953         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6954                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6955
6956         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6957                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6958                 if (ret)
6959                         goto free_adj;
6960         }
6961
6962         /* Ensure that master link is always the first item in list. */
6963         if (master) {
6964                 ret = sysfs_create_link(&(dev->dev.kobj),
6965                                         &(adj_dev->dev.kobj), "master");
6966                 if (ret)
6967                         goto remove_symlinks;
6968
6969                 list_add_rcu(&adj->list, dev_list);
6970         } else {
6971                 list_add_tail_rcu(&adj->list, dev_list);
6972         }
6973
6974         return 0;
6975
6976 remove_symlinks:
6977         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6978                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6979 free_adj:
6980         kfree(adj);
6981         dev_put(adj_dev);
6982
6983         return ret;
6984 }
6985
6986 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6987                                          struct net_device *adj_dev,
6988                                          u16 ref_nr,
6989                                          struct list_head *dev_list)
6990 {
6991         struct netdev_adjacent *adj;
6992
6993         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6994                  dev->name, adj_dev->name, ref_nr);
6995
6996         adj = __netdev_find_adj(adj_dev, dev_list);
6997
6998         if (!adj) {
6999                 pr_err("Adjacency does not exist for device %s from %s\n",
7000                        dev->name, adj_dev->name);
7001                 WARN_ON(1);
7002                 return;
7003         }
7004
7005         if (adj->ref_nr > ref_nr) {
7006                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7007                          dev->name, adj_dev->name, ref_nr,
7008                          adj->ref_nr - ref_nr);
7009                 adj->ref_nr -= ref_nr;
7010                 return;
7011         }
7012
7013         if (adj->master)
7014                 sysfs_remove_link(&(dev->dev.kobj), "master");
7015
7016         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7017                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7018
7019         list_del_rcu(&adj->list);
7020         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7021                  adj_dev->name, dev->name, adj_dev->name);
7022         dev_put(adj_dev);
7023         kfree_rcu(adj, rcu);
7024 }
7025
7026 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7027                                             struct net_device *upper_dev,
7028                                             struct list_head *up_list,
7029                                             struct list_head *down_list,
7030                                             void *private, bool master)
7031 {
7032         int ret;
7033
7034         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7035                                            private, master);
7036         if (ret)
7037                 return ret;
7038
7039         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7040                                            private, false);
7041         if (ret) {
7042                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7043                 return ret;
7044         }
7045
7046         return 0;
7047 }
7048
7049 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7050                                                struct net_device *upper_dev,
7051                                                u16 ref_nr,
7052                                                struct list_head *up_list,
7053                                                struct list_head *down_list)
7054 {
7055         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7056         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7057 }
7058
7059 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7060                                                 struct net_device *upper_dev,
7061                                                 void *private, bool master)
7062 {
7063         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7064                                                 &dev->adj_list.upper,
7065                                                 &upper_dev->adj_list.lower,
7066                                                 private, master);
7067 }
7068
7069 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7070                                                    struct net_device *upper_dev)
7071 {
7072         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7073                                            &dev->adj_list.upper,
7074                                            &upper_dev->adj_list.lower);
7075 }
7076
7077 static int __netdev_upper_dev_link(struct net_device *dev,
7078                                    struct net_device *upper_dev, bool master,
7079                                    void *upper_priv, void *upper_info,
7080                                    struct netlink_ext_ack *extack)
7081 {
7082         struct netdev_notifier_changeupper_info changeupper_info = {
7083                 .info = {
7084                         .dev = dev,
7085                         .extack = extack,
7086                 },
7087                 .upper_dev = upper_dev,
7088                 .master = master,
7089                 .linking = true,
7090                 .upper_info = upper_info,
7091         };
7092         struct net_device *master_dev;
7093         int ret = 0;
7094
7095         ASSERT_RTNL();
7096
7097         if (dev == upper_dev)
7098                 return -EBUSY;
7099
7100         /* To prevent loops, check if dev is not upper device to upper_dev. */
7101         if (netdev_has_upper_dev(upper_dev, dev))
7102                 return -EBUSY;
7103
7104         if (!master) {
7105                 if (netdev_has_upper_dev(dev, upper_dev))
7106                         return -EEXIST;
7107         } else {
7108                 master_dev = netdev_master_upper_dev_get(dev);
7109                 if (master_dev)
7110                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7111         }
7112
7113         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7114                                             &changeupper_info.info);
7115         ret = notifier_to_errno(ret);
7116         if (ret)
7117                 return ret;
7118
7119         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7120                                                    master);
7121         if (ret)
7122                 return ret;
7123
7124         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7125                                             &changeupper_info.info);
7126         ret = notifier_to_errno(ret);
7127         if (ret)
7128                 goto rollback;
7129
7130         return 0;
7131
7132 rollback:
7133         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7134
7135         return ret;
7136 }
7137
7138 /**
7139  * netdev_upper_dev_link - Add a link to the upper device
7140  * @dev: device
7141  * @upper_dev: new upper device
7142  * @extack: netlink extended ack
7143  *
7144  * Adds a link to device which is upper to this one. The caller must hold
7145  * the RTNL lock. On a failure a negative errno code is returned.
7146  * On success the reference counts are adjusted and the function
7147  * returns zero.
7148  */
7149 int netdev_upper_dev_link(struct net_device *dev,
7150                           struct net_device *upper_dev,
7151                           struct netlink_ext_ack *extack)
7152 {
7153         return __netdev_upper_dev_link(dev, upper_dev, false,
7154                                        NULL, NULL, extack);
7155 }
7156 EXPORT_SYMBOL(netdev_upper_dev_link);
7157
7158 /**
7159  * netdev_master_upper_dev_link - Add a master link to the upper device
7160  * @dev: device
7161  * @upper_dev: new upper device
7162  * @upper_priv: upper device private
7163  * @upper_info: upper info to be passed down via notifier
7164  * @extack: netlink extended ack
7165  *
7166  * Adds a link to device which is upper to this one. In this case, only
7167  * one master upper device can be linked, although other non-master devices
7168  * might be linked as well. The caller must hold the RTNL lock.
7169  * On a failure a negative errno code is returned. On success the reference
7170  * counts are adjusted and the function returns zero.
7171  */
7172 int netdev_master_upper_dev_link(struct net_device *dev,
7173                                  struct net_device *upper_dev,
7174                                  void *upper_priv, void *upper_info,
7175                                  struct netlink_ext_ack *extack)
7176 {
7177         return __netdev_upper_dev_link(dev, upper_dev, true,
7178                                        upper_priv, upper_info, extack);
7179 }
7180 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7181
7182 /**
7183  * netdev_upper_dev_unlink - Removes a link to upper device
7184  * @dev: device
7185  * @upper_dev: new upper device
7186  *
7187  * Removes a link to device which is upper to this one. The caller must hold
7188  * the RTNL lock.
7189  */
7190 void netdev_upper_dev_unlink(struct net_device *dev,
7191                              struct net_device *upper_dev)
7192 {
7193         struct netdev_notifier_changeupper_info changeupper_info = {
7194                 .info = {
7195                         .dev = dev,
7196                 },
7197                 .upper_dev = upper_dev,
7198                 .linking = false,
7199         };
7200
7201         ASSERT_RTNL();
7202
7203         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7204
7205         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7206                                       &changeupper_info.info);
7207
7208         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7209
7210         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7211                                       &changeupper_info.info);
7212 }
7213 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7214
7215 /**
7216  * netdev_bonding_info_change - Dispatch event about slave change
7217  * @dev: device
7218  * @bonding_info: info to dispatch
7219  *
7220  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7221  * The caller must hold the RTNL lock.
7222  */
7223 void netdev_bonding_info_change(struct net_device *dev,
7224                                 struct netdev_bonding_info *bonding_info)
7225 {
7226         struct netdev_notifier_bonding_info info = {
7227                 .info.dev = dev,
7228         };
7229
7230         memcpy(&info.bonding_info, bonding_info,
7231                sizeof(struct netdev_bonding_info));
7232         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7233                                       &info.info);
7234 }
7235 EXPORT_SYMBOL(netdev_bonding_info_change);
7236
7237 static void netdev_adjacent_add_links(struct net_device *dev)
7238 {
7239         struct netdev_adjacent *iter;
7240
7241         struct net *net = dev_net(dev);
7242
7243         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7244                 if (!net_eq(net, dev_net(iter->dev)))
7245                         continue;
7246                 netdev_adjacent_sysfs_add(iter->dev, dev,
7247                                           &iter->dev->adj_list.lower);
7248                 netdev_adjacent_sysfs_add(dev, iter->dev,
7249                                           &dev->adj_list.upper);
7250         }
7251
7252         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7253                 if (!net_eq(net, dev_net(iter->dev)))
7254                         continue;
7255                 netdev_adjacent_sysfs_add(iter->dev, dev,
7256                                           &iter->dev->adj_list.upper);
7257                 netdev_adjacent_sysfs_add(dev, iter->dev,
7258                                           &dev->adj_list.lower);
7259         }
7260 }
7261
7262 static void netdev_adjacent_del_links(struct net_device *dev)
7263 {
7264         struct netdev_adjacent *iter;
7265
7266         struct net *net = dev_net(dev);
7267
7268         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7269                 if (!net_eq(net, dev_net(iter->dev)))
7270                         continue;
7271                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7272                                           &iter->dev->adj_list.lower);
7273                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7274                                           &dev->adj_list.upper);
7275         }
7276
7277         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7278                 if (!net_eq(net, dev_net(iter->dev)))
7279                         continue;
7280                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7281                                           &iter->dev->adj_list.upper);
7282                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7283                                           &dev->adj_list.lower);
7284         }
7285 }
7286
7287 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7288 {
7289         struct netdev_adjacent *iter;
7290
7291         struct net *net = dev_net(dev);
7292
7293         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7294                 if (!net_eq(net, dev_net(iter->dev)))
7295                         continue;
7296                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7297                                           &iter->dev->adj_list.lower);
7298                 netdev_adjacent_sysfs_add(iter->dev, dev,
7299                                           &iter->dev->adj_list.lower);
7300         }
7301
7302         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7303                 if (!net_eq(net, dev_net(iter->dev)))
7304                         continue;
7305                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7306                                           &iter->dev->adj_list.upper);
7307                 netdev_adjacent_sysfs_add(iter->dev, dev,
7308                                           &iter->dev->adj_list.upper);
7309         }
7310 }
7311
7312 void *netdev_lower_dev_get_private(struct net_device *dev,
7313                                    struct net_device *lower_dev)
7314 {
7315         struct netdev_adjacent *lower;
7316
7317         if (!lower_dev)
7318                 return NULL;
7319         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7320         if (!lower)
7321                 return NULL;
7322
7323         return lower->private;
7324 }
7325 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7326
7327
7328 int dev_get_nest_level(struct net_device *dev)
7329 {
7330         struct net_device *lower = NULL;
7331         struct list_head *iter;
7332         int max_nest = -1;
7333         int nest;
7334
7335         ASSERT_RTNL();
7336
7337         netdev_for_each_lower_dev(dev, lower, iter) {
7338                 nest = dev_get_nest_level(lower);
7339                 if (max_nest < nest)
7340                         max_nest = nest;
7341         }
7342
7343         return max_nest + 1;
7344 }
7345 EXPORT_SYMBOL(dev_get_nest_level);
7346
7347 /**
7348  * netdev_lower_change - Dispatch event about lower device state change
7349  * @lower_dev: device
7350  * @lower_state_info: state to dispatch
7351  *
7352  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7353  * The caller must hold the RTNL lock.
7354  */
7355 void netdev_lower_state_changed(struct net_device *lower_dev,
7356                                 void *lower_state_info)
7357 {
7358         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7359                 .info.dev = lower_dev,
7360         };
7361
7362         ASSERT_RTNL();
7363         changelowerstate_info.lower_state_info = lower_state_info;
7364         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7365                                       &changelowerstate_info.info);
7366 }
7367 EXPORT_SYMBOL(netdev_lower_state_changed);
7368
7369 static void dev_change_rx_flags(struct net_device *dev, int flags)
7370 {
7371         const struct net_device_ops *ops = dev->netdev_ops;
7372
7373         if (ops->ndo_change_rx_flags)
7374                 ops->ndo_change_rx_flags(dev, flags);
7375 }
7376
7377 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7378 {
7379         unsigned int old_flags = dev->flags;
7380         kuid_t uid;
7381         kgid_t gid;
7382
7383         ASSERT_RTNL();
7384
7385         dev->flags |= IFF_PROMISC;
7386         dev->promiscuity += inc;
7387         if (dev->promiscuity == 0) {
7388                 /*
7389                  * Avoid overflow.
7390                  * If inc causes overflow, untouch promisc and return error.
7391                  */
7392                 if (inc < 0)
7393                         dev->flags &= ~IFF_PROMISC;
7394                 else {
7395                         dev->promiscuity -= inc;
7396                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7397                                 dev->name);
7398                         return -EOVERFLOW;
7399                 }
7400         }
7401         if (dev->flags != old_flags) {
7402                 pr_info("device %s %s promiscuous mode\n",
7403                         dev->name,
7404                         dev->flags & IFF_PROMISC ? "entered" : "left");
7405                 if (audit_enabled) {
7406                         current_uid_gid(&uid, &gid);
7407                         audit_log(audit_context(), GFP_ATOMIC,
7408                                   AUDIT_ANOM_PROMISCUOUS,
7409                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7410                                   dev->name, (dev->flags & IFF_PROMISC),
7411                                   (old_flags & IFF_PROMISC),
7412                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7413                                   from_kuid(&init_user_ns, uid),
7414                                   from_kgid(&init_user_ns, gid),
7415                                   audit_get_sessionid(current));
7416                 }
7417
7418                 dev_change_rx_flags(dev, IFF_PROMISC);
7419         }
7420         if (notify)
7421                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7422         return 0;
7423 }
7424
7425 /**
7426  *      dev_set_promiscuity     - update promiscuity count on a device
7427  *      @dev: device
7428  *      @inc: modifier
7429  *
7430  *      Add or remove promiscuity from a device. While the count in the device
7431  *      remains above zero the interface remains promiscuous. Once it hits zero
7432  *      the device reverts back to normal filtering operation. A negative inc
7433  *      value is used to drop promiscuity on the device.
7434  *      Return 0 if successful or a negative errno code on error.
7435  */
7436 int dev_set_promiscuity(struct net_device *dev, int inc)
7437 {
7438         unsigned int old_flags = dev->flags;
7439         int err;
7440
7441         err = __dev_set_promiscuity(dev, inc, true);
7442         if (err < 0)
7443                 return err;
7444         if (dev->flags != old_flags)
7445                 dev_set_rx_mode(dev);
7446         return err;
7447 }
7448 EXPORT_SYMBOL(dev_set_promiscuity);
7449
7450 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7451 {
7452         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7453
7454         ASSERT_RTNL();
7455
7456         dev->flags |= IFF_ALLMULTI;
7457         dev->allmulti += inc;
7458         if (dev->allmulti == 0) {
7459                 /*
7460                  * Avoid overflow.
7461                  * If inc causes overflow, untouch allmulti and return error.
7462                  */
7463                 if (inc < 0)
7464                         dev->flags &= ~IFF_ALLMULTI;
7465                 else {
7466                         dev->allmulti -= inc;
7467                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7468                                 dev->name);
7469                         return -EOVERFLOW;
7470                 }
7471         }
7472         if (dev->flags ^ old_flags) {
7473                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7474                 dev_set_rx_mode(dev);
7475                 if (notify)
7476                         __dev_notify_flags(dev, old_flags,
7477                                            dev->gflags ^ old_gflags);
7478         }
7479         return 0;
7480 }
7481
7482 /**
7483  *      dev_set_allmulti        - update allmulti count on a device
7484  *      @dev: device
7485  *      @inc: modifier
7486  *
7487  *      Add or remove reception of all multicast frames to a device. While the
7488  *      count in the device remains above zero the interface remains listening
7489  *      to all interfaces. Once it hits zero the device reverts back to normal
7490  *      filtering operation. A negative @inc value is used to drop the counter
7491  *      when releasing a resource needing all multicasts.
7492  *      Return 0 if successful or a negative errno code on error.
7493  */
7494
7495 int dev_set_allmulti(struct net_device *dev, int inc)
7496 {
7497         return __dev_set_allmulti(dev, inc, true);
7498 }
7499 EXPORT_SYMBOL(dev_set_allmulti);
7500
7501 /*
7502  *      Upload unicast and multicast address lists to device and
7503  *      configure RX filtering. When the device doesn't support unicast
7504  *      filtering it is put in promiscuous mode while unicast addresses
7505  *      are present.
7506  */
7507 void __dev_set_rx_mode(struct net_device *dev)
7508 {
7509         const struct net_device_ops *ops = dev->netdev_ops;
7510
7511         /* dev_open will call this function so the list will stay sane. */
7512         if (!(dev->flags&IFF_UP))
7513                 return;
7514
7515         if (!netif_device_present(dev))
7516                 return;
7517
7518         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7519                 /* Unicast addresses changes may only happen under the rtnl,
7520                  * therefore calling __dev_set_promiscuity here is safe.
7521                  */
7522                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7523                         __dev_set_promiscuity(dev, 1, false);
7524                         dev->uc_promisc = true;
7525                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7526                         __dev_set_promiscuity(dev, -1, false);
7527                         dev->uc_promisc = false;
7528                 }
7529         }
7530
7531         if (ops->ndo_set_rx_mode)
7532                 ops->ndo_set_rx_mode(dev);
7533 }
7534
7535 void dev_set_rx_mode(struct net_device *dev)
7536 {
7537         netif_addr_lock_bh(dev);
7538         __dev_set_rx_mode(dev);
7539         netif_addr_unlock_bh(dev);
7540 }
7541
7542 /**
7543  *      dev_get_flags - get flags reported to userspace
7544  *      @dev: device
7545  *
7546  *      Get the combination of flag bits exported through APIs to userspace.
7547  */
7548 unsigned int dev_get_flags(const struct net_device *dev)
7549 {
7550         unsigned int flags;
7551
7552         flags = (dev->flags & ~(IFF_PROMISC |
7553                                 IFF_ALLMULTI |
7554                                 IFF_RUNNING |
7555                                 IFF_LOWER_UP |
7556                                 IFF_DORMANT)) |
7557                 (dev->gflags & (IFF_PROMISC |
7558                                 IFF_ALLMULTI));
7559
7560         if (netif_running(dev)) {
7561                 if (netif_oper_up(dev))
7562                         flags |= IFF_RUNNING;
7563                 if (netif_carrier_ok(dev))
7564                         flags |= IFF_LOWER_UP;
7565                 if (netif_dormant(dev))
7566                         flags |= IFF_DORMANT;
7567         }
7568
7569         return flags;
7570 }
7571 EXPORT_SYMBOL(dev_get_flags);
7572
7573 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7574                        struct netlink_ext_ack *extack)
7575 {
7576         unsigned int old_flags = dev->flags;
7577         int ret;
7578
7579         ASSERT_RTNL();
7580
7581         /*
7582          *      Set the flags on our device.
7583          */
7584
7585         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7586                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7587                                IFF_AUTOMEDIA)) |
7588                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7589                                     IFF_ALLMULTI));
7590
7591         /*
7592          *      Load in the correct multicast list now the flags have changed.
7593          */
7594
7595         if ((old_flags ^ flags) & IFF_MULTICAST)
7596                 dev_change_rx_flags(dev, IFF_MULTICAST);
7597
7598         dev_set_rx_mode(dev);
7599
7600         /*
7601          *      Have we downed the interface. We handle IFF_UP ourselves
7602          *      according to user attempts to set it, rather than blindly
7603          *      setting it.
7604          */
7605
7606         ret = 0;
7607         if ((old_flags ^ flags) & IFF_UP) {
7608                 if (old_flags & IFF_UP)
7609                         __dev_close(dev);
7610                 else
7611                         ret = __dev_open(dev, extack);
7612         }
7613
7614         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7615                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7616                 unsigned int old_flags = dev->flags;
7617
7618                 dev->gflags ^= IFF_PROMISC;
7619
7620                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7621                         if (dev->flags != old_flags)
7622                                 dev_set_rx_mode(dev);
7623         }
7624
7625         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7626          * is important. Some (broken) drivers set IFF_PROMISC, when
7627          * IFF_ALLMULTI is requested not asking us and not reporting.
7628          */
7629         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7630                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7631
7632                 dev->gflags ^= IFF_ALLMULTI;
7633                 __dev_set_allmulti(dev, inc, false);
7634         }
7635
7636         return ret;
7637 }
7638
7639 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7640                         unsigned int gchanges)
7641 {
7642         unsigned int changes = dev->flags ^ old_flags;
7643
7644         if (gchanges)
7645                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7646
7647         if (changes & IFF_UP) {
7648                 if (dev->flags & IFF_UP)
7649                         call_netdevice_notifiers(NETDEV_UP, dev);
7650                 else
7651                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7652         }
7653
7654         if (dev->flags & IFF_UP &&
7655             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7656                 struct netdev_notifier_change_info change_info = {
7657                         .info = {
7658                                 .dev = dev,
7659                         },
7660                         .flags_changed = changes,
7661                 };
7662
7663                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7664         }
7665 }
7666
7667 /**
7668  *      dev_change_flags - change device settings
7669  *      @dev: device
7670  *      @flags: device state flags
7671  *      @extack: netlink extended ack
7672  *
7673  *      Change settings on device based state flags. The flags are
7674  *      in the userspace exported format.
7675  */
7676 int dev_change_flags(struct net_device *dev, unsigned int flags,
7677                      struct netlink_ext_ack *extack)
7678 {
7679         int ret;
7680         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7681
7682         ret = __dev_change_flags(dev, flags, extack);
7683         if (ret < 0)
7684                 return ret;
7685
7686         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7687         __dev_notify_flags(dev, old_flags, changes);
7688         return ret;
7689 }
7690 EXPORT_SYMBOL(dev_change_flags);
7691
7692 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7693 {
7694         const struct net_device_ops *ops = dev->netdev_ops;
7695
7696         if (ops->ndo_change_mtu)
7697                 return ops->ndo_change_mtu(dev, new_mtu);
7698
7699         dev->mtu = new_mtu;
7700         return 0;
7701 }
7702 EXPORT_SYMBOL(__dev_set_mtu);
7703
7704 /**
7705  *      dev_set_mtu_ext - Change maximum transfer unit
7706  *      @dev: device
7707  *      @new_mtu: new transfer unit
7708  *      @extack: netlink extended ack
7709  *
7710  *      Change the maximum transfer size of the network device.
7711  */
7712 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7713                     struct netlink_ext_ack *extack)
7714 {
7715         int err, orig_mtu;
7716
7717         if (new_mtu == dev->mtu)
7718                 return 0;
7719
7720         /* MTU must be positive, and in range */
7721         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7722                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7723                 return -EINVAL;
7724         }
7725
7726         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7727                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7728                 return -EINVAL;
7729         }
7730
7731         if (!netif_device_present(dev))
7732                 return -ENODEV;
7733
7734         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7735         err = notifier_to_errno(err);
7736         if (err)
7737                 return err;
7738
7739         orig_mtu = dev->mtu;
7740         err = __dev_set_mtu(dev, new_mtu);
7741
7742         if (!err) {
7743                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7744                                                    orig_mtu);
7745                 err = notifier_to_errno(err);
7746                 if (err) {
7747                         /* setting mtu back and notifying everyone again,
7748                          * so that they have a chance to revert changes.
7749                          */
7750                         __dev_set_mtu(dev, orig_mtu);
7751                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7752                                                      new_mtu);
7753                 }
7754         }
7755         return err;
7756 }
7757
7758 int dev_set_mtu(struct net_device *dev, int new_mtu)
7759 {
7760         struct netlink_ext_ack extack;
7761         int err;
7762
7763         memset(&extack, 0, sizeof(extack));
7764         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7765         if (err && extack._msg)
7766                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7767         return err;
7768 }
7769 EXPORT_SYMBOL(dev_set_mtu);
7770
7771 /**
7772  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7773  *      @dev: device
7774  *      @new_len: new tx queue length
7775  */
7776 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7777 {
7778         unsigned int orig_len = dev->tx_queue_len;
7779         int res;
7780
7781         if (new_len != (unsigned int)new_len)
7782                 return -ERANGE;
7783
7784         if (new_len != orig_len) {
7785                 dev->tx_queue_len = new_len;
7786                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7787                 res = notifier_to_errno(res);
7788                 if (res)
7789                         goto err_rollback;
7790                 res = dev_qdisc_change_tx_queue_len(dev);
7791                 if (res)
7792                         goto err_rollback;
7793         }
7794
7795         return 0;
7796
7797 err_rollback:
7798         netdev_err(dev, "refused to change device tx_queue_len\n");
7799         dev->tx_queue_len = orig_len;
7800         return res;
7801 }
7802
7803 /**
7804  *      dev_set_group - Change group this device belongs to
7805  *      @dev: device
7806  *      @new_group: group this device should belong to
7807  */
7808 void dev_set_group(struct net_device *dev, int new_group)
7809 {
7810         dev->group = new_group;
7811 }
7812 EXPORT_SYMBOL(dev_set_group);
7813
7814 /**
7815  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7816  *      @dev: device
7817  *      @addr: new address
7818  *      @extack: netlink extended ack
7819  */
7820 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7821                               struct netlink_ext_ack *extack)
7822 {
7823         struct netdev_notifier_pre_changeaddr_info info = {
7824                 .info.dev = dev,
7825                 .info.extack = extack,
7826                 .dev_addr = addr,
7827         };
7828         int rc;
7829
7830         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7831         return notifier_to_errno(rc);
7832 }
7833 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7834
7835 /**
7836  *      dev_set_mac_address - Change Media Access Control Address
7837  *      @dev: device
7838  *      @sa: new address
7839  *      @extack: netlink extended ack
7840  *
7841  *      Change the hardware (MAC) address of the device
7842  */
7843 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7844                         struct netlink_ext_ack *extack)
7845 {
7846         const struct net_device_ops *ops = dev->netdev_ops;
7847         int err;
7848
7849         if (!ops->ndo_set_mac_address)
7850                 return -EOPNOTSUPP;
7851         if (sa->sa_family != dev->type)
7852                 return -EINVAL;
7853         if (!netif_device_present(dev))
7854                 return -ENODEV;
7855         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7856         if (err)
7857                 return err;
7858         err = ops->ndo_set_mac_address(dev, sa);
7859         if (err)
7860                 return err;
7861         dev->addr_assign_type = NET_ADDR_SET;
7862         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7863         add_device_randomness(dev->dev_addr, dev->addr_len);
7864         return 0;
7865 }
7866 EXPORT_SYMBOL(dev_set_mac_address);
7867
7868 /**
7869  *      dev_change_carrier - Change device carrier
7870  *      @dev: device
7871  *      @new_carrier: new value
7872  *
7873  *      Change device carrier
7874  */
7875 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7876 {
7877         const struct net_device_ops *ops = dev->netdev_ops;
7878
7879         if (!ops->ndo_change_carrier)
7880                 return -EOPNOTSUPP;
7881         if (!netif_device_present(dev))
7882                 return -ENODEV;
7883         return ops->ndo_change_carrier(dev, new_carrier);
7884 }
7885 EXPORT_SYMBOL(dev_change_carrier);
7886
7887 /**
7888  *      dev_get_phys_port_id - Get device physical port ID
7889  *      @dev: device
7890  *      @ppid: port ID
7891  *
7892  *      Get device physical port ID
7893  */
7894 int dev_get_phys_port_id(struct net_device *dev,
7895                          struct netdev_phys_item_id *ppid)
7896 {
7897         const struct net_device_ops *ops = dev->netdev_ops;
7898
7899         if (!ops->ndo_get_phys_port_id)
7900                 return -EOPNOTSUPP;
7901         return ops->ndo_get_phys_port_id(dev, ppid);
7902 }
7903 EXPORT_SYMBOL(dev_get_phys_port_id);
7904
7905 /**
7906  *      dev_get_phys_port_name - Get device physical port name
7907  *      @dev: device
7908  *      @name: port name
7909  *      @len: limit of bytes to copy to name
7910  *
7911  *      Get device physical port name
7912  */
7913 int dev_get_phys_port_name(struct net_device *dev,
7914                            char *name, size_t len)
7915 {
7916         const struct net_device_ops *ops = dev->netdev_ops;
7917         int err;
7918
7919         if (ops->ndo_get_phys_port_name) {
7920                 err = ops->ndo_get_phys_port_name(dev, name, len);
7921                 if (err != -EOPNOTSUPP)
7922                         return err;
7923         }
7924         return devlink_compat_phys_port_name_get(dev, name, len);
7925 }
7926 EXPORT_SYMBOL(dev_get_phys_port_name);
7927
7928 /**
7929  *      dev_get_port_parent_id - Get the device's port parent identifier
7930  *      @dev: network device
7931  *      @ppid: pointer to a storage for the port's parent identifier
7932  *      @recurse: allow/disallow recursion to lower devices
7933  *
7934  *      Get the devices's port parent identifier
7935  */
7936 int dev_get_port_parent_id(struct net_device *dev,
7937                            struct netdev_phys_item_id *ppid,
7938                            bool recurse)
7939 {
7940         const struct net_device_ops *ops = dev->netdev_ops;
7941         struct netdev_phys_item_id first = { };
7942         struct net_device *lower_dev;
7943         struct list_head *iter;
7944         int err;
7945
7946         if (ops->ndo_get_port_parent_id) {
7947                 err = ops->ndo_get_port_parent_id(dev, ppid);
7948                 if (err != -EOPNOTSUPP)
7949                         return err;
7950         }
7951
7952         err = devlink_compat_switch_id_get(dev, ppid);
7953         if (!err || err != -EOPNOTSUPP)
7954                 return err;
7955
7956         if (!recurse)
7957                 return -EOPNOTSUPP;
7958
7959         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7960                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7961                 if (err)
7962                         break;
7963                 if (!first.id_len)
7964                         first = *ppid;
7965                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7966                         return -ENODATA;
7967         }
7968
7969         return err;
7970 }
7971 EXPORT_SYMBOL(dev_get_port_parent_id);
7972
7973 /**
7974  *      netdev_port_same_parent_id - Indicate if two network devices have
7975  *      the same port parent identifier
7976  *      @a: first network device
7977  *      @b: second network device
7978  */
7979 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7980 {
7981         struct netdev_phys_item_id a_id = { };
7982         struct netdev_phys_item_id b_id = { };
7983
7984         if (dev_get_port_parent_id(a, &a_id, true) ||
7985             dev_get_port_parent_id(b, &b_id, true))
7986                 return false;
7987
7988         return netdev_phys_item_id_same(&a_id, &b_id);
7989 }
7990 EXPORT_SYMBOL(netdev_port_same_parent_id);
7991
7992 /**
7993  *      dev_change_proto_down - update protocol port state information
7994  *      @dev: device
7995  *      @proto_down: new value
7996  *
7997  *      This info can be used by switch drivers to set the phys state of the
7998  *      port.
7999  */
8000 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8001 {
8002         const struct net_device_ops *ops = dev->netdev_ops;
8003
8004         if (!ops->ndo_change_proto_down)
8005                 return -EOPNOTSUPP;
8006         if (!netif_device_present(dev))
8007                 return -ENODEV;
8008         return ops->ndo_change_proto_down(dev, proto_down);
8009 }
8010 EXPORT_SYMBOL(dev_change_proto_down);
8011
8012 /**
8013  *      dev_change_proto_down_generic - generic implementation for
8014  *      ndo_change_proto_down that sets carrier according to
8015  *      proto_down.
8016  *
8017  *      @dev: device
8018  *      @proto_down: new value
8019  */
8020 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8021 {
8022         if (proto_down)
8023                 netif_carrier_off(dev);
8024         else
8025                 netif_carrier_on(dev);
8026         dev->proto_down = proto_down;
8027         return 0;
8028 }
8029 EXPORT_SYMBOL(dev_change_proto_down_generic);
8030
8031 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8032                     enum bpf_netdev_command cmd)
8033 {
8034         struct netdev_bpf xdp;
8035
8036         if (!bpf_op)
8037                 return 0;
8038
8039         memset(&xdp, 0, sizeof(xdp));
8040         xdp.command = cmd;
8041
8042         /* Query must always succeed. */
8043         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8044
8045         return xdp.prog_id;
8046 }
8047
8048 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8049                            struct netlink_ext_ack *extack, u32 flags,
8050                            struct bpf_prog *prog)
8051 {
8052         struct netdev_bpf xdp;
8053
8054         memset(&xdp, 0, sizeof(xdp));
8055         if (flags & XDP_FLAGS_HW_MODE)
8056                 xdp.command = XDP_SETUP_PROG_HW;
8057         else
8058                 xdp.command = XDP_SETUP_PROG;
8059         xdp.extack = extack;
8060         xdp.flags = flags;
8061         xdp.prog = prog;
8062
8063         return bpf_op(dev, &xdp);
8064 }
8065
8066 static void dev_xdp_uninstall(struct net_device *dev)
8067 {
8068         struct netdev_bpf xdp;
8069         bpf_op_t ndo_bpf;
8070
8071         /* Remove generic XDP */
8072         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8073
8074         /* Remove from the driver */
8075         ndo_bpf = dev->netdev_ops->ndo_bpf;
8076         if (!ndo_bpf)
8077                 return;
8078
8079         memset(&xdp, 0, sizeof(xdp));
8080         xdp.command = XDP_QUERY_PROG;
8081         WARN_ON(ndo_bpf(dev, &xdp));
8082         if (xdp.prog_id)
8083                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8084                                         NULL));
8085
8086         /* Remove HW offload */
8087         memset(&xdp, 0, sizeof(xdp));
8088         xdp.command = XDP_QUERY_PROG_HW;
8089         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8090                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8091                                         NULL));
8092 }
8093
8094 /**
8095  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8096  *      @dev: device
8097  *      @extack: netlink extended ack
8098  *      @fd: new program fd or negative value to clear
8099  *      @flags: xdp-related flags
8100  *
8101  *      Set or clear a bpf program for a device
8102  */
8103 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8104                       int fd, u32 flags)
8105 {
8106         const struct net_device_ops *ops = dev->netdev_ops;
8107         enum bpf_netdev_command query;
8108         struct bpf_prog *prog = NULL;
8109         bpf_op_t bpf_op, bpf_chk;
8110         bool offload;
8111         int err;
8112
8113         ASSERT_RTNL();
8114
8115         offload = flags & XDP_FLAGS_HW_MODE;
8116         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8117
8118         bpf_op = bpf_chk = ops->ndo_bpf;
8119         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8120                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8121                 return -EOPNOTSUPP;
8122         }
8123         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8124                 bpf_op = generic_xdp_install;
8125         if (bpf_op == bpf_chk)
8126                 bpf_chk = generic_xdp_install;
8127
8128         if (fd >= 0) {
8129                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8130                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8131                         return -EEXIST;
8132                 }
8133                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8134                     __dev_xdp_query(dev, bpf_op, query)) {
8135                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8136                         return -EBUSY;
8137                 }
8138
8139                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8140                                              bpf_op == ops->ndo_bpf);
8141                 if (IS_ERR(prog))
8142                         return PTR_ERR(prog);
8143
8144                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8145                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8146                         bpf_prog_put(prog);
8147                         return -EINVAL;
8148                 }
8149         }
8150
8151         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8152         if (err < 0 && prog)
8153                 bpf_prog_put(prog);
8154
8155         return err;
8156 }
8157
8158 /**
8159  *      dev_new_index   -       allocate an ifindex
8160  *      @net: the applicable net namespace
8161  *
8162  *      Returns a suitable unique value for a new device interface
8163  *      number.  The caller must hold the rtnl semaphore or the
8164  *      dev_base_lock to be sure it remains unique.
8165  */
8166 static int dev_new_index(struct net *net)
8167 {
8168         int ifindex = net->ifindex;
8169
8170         for (;;) {
8171                 if (++ifindex <= 0)
8172                         ifindex = 1;
8173                 if (!__dev_get_by_index(net, ifindex))
8174                         return net->ifindex = ifindex;
8175         }
8176 }
8177
8178 /* Delayed registration/unregisteration */
8179 static LIST_HEAD(net_todo_list);
8180 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8181
8182 static void net_set_todo(struct net_device *dev)
8183 {
8184         list_add_tail(&dev->todo_list, &net_todo_list);
8185         dev_net(dev)->dev_unreg_count++;
8186 }
8187
8188 static void rollback_registered_many(struct list_head *head)
8189 {
8190         struct net_device *dev, *tmp;
8191         LIST_HEAD(close_head);
8192
8193         BUG_ON(dev_boot_phase);
8194         ASSERT_RTNL();
8195
8196         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8197                 /* Some devices call without registering
8198                  * for initialization unwind. Remove those
8199                  * devices and proceed with the remaining.
8200                  */
8201                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8202                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8203                                  dev->name, dev);
8204
8205                         WARN_ON(1);
8206                         list_del(&dev->unreg_list);
8207                         continue;
8208                 }
8209                 dev->dismantle = true;
8210                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8211         }
8212
8213         /* If device is running, close it first. */
8214         list_for_each_entry(dev, head, unreg_list)
8215                 list_add_tail(&dev->close_list, &close_head);
8216         dev_close_many(&close_head, true);
8217
8218         list_for_each_entry(dev, head, unreg_list) {
8219                 /* And unlink it from device chain. */
8220                 unlist_netdevice(dev);
8221
8222                 dev->reg_state = NETREG_UNREGISTERING;
8223         }
8224         flush_all_backlogs();
8225
8226         synchronize_net();
8227
8228         list_for_each_entry(dev, head, unreg_list) {
8229                 struct sk_buff *skb = NULL;
8230
8231                 /* Shutdown queueing discipline. */
8232                 dev_shutdown(dev);
8233
8234                 dev_xdp_uninstall(dev);
8235
8236                 /* Notify protocols, that we are about to destroy
8237                  * this device. They should clean all the things.
8238                  */
8239                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8240
8241                 if (!dev->rtnl_link_ops ||
8242                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8243                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8244                                                      GFP_KERNEL, NULL, 0);
8245
8246                 /*
8247                  *      Flush the unicast and multicast chains
8248                  */
8249                 dev_uc_flush(dev);
8250                 dev_mc_flush(dev);
8251
8252                 if (dev->netdev_ops->ndo_uninit)
8253                         dev->netdev_ops->ndo_uninit(dev);
8254
8255                 if (skb)
8256                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8257
8258                 /* Notifier chain MUST detach us all upper devices. */
8259                 WARN_ON(netdev_has_any_upper_dev(dev));
8260                 WARN_ON(netdev_has_any_lower_dev(dev));
8261
8262                 /* Remove entries from kobject tree */
8263                 netdev_unregister_kobject(dev);
8264 #ifdef CONFIG_XPS
8265                 /* Remove XPS queueing entries */
8266                 netif_reset_xps_queues_gt(dev, 0);
8267 #endif
8268         }
8269
8270         synchronize_net();
8271
8272         list_for_each_entry(dev, head, unreg_list)
8273                 dev_put(dev);
8274 }
8275
8276 static void rollback_registered(struct net_device *dev)
8277 {
8278         LIST_HEAD(single);
8279
8280         list_add(&dev->unreg_list, &single);
8281         rollback_registered_many(&single);
8282         list_del(&single);
8283 }
8284
8285 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8286         struct net_device *upper, netdev_features_t features)
8287 {
8288         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8289         netdev_features_t feature;
8290         int feature_bit;
8291
8292         for_each_netdev_feature(upper_disables, feature_bit) {
8293                 feature = __NETIF_F_BIT(feature_bit);
8294                 if (!(upper->wanted_features & feature)
8295                     && (features & feature)) {
8296                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8297                                    &feature, upper->name);
8298                         features &= ~feature;
8299                 }
8300         }
8301
8302         return features;
8303 }
8304
8305 static void netdev_sync_lower_features(struct net_device *upper,
8306         struct net_device *lower, netdev_features_t features)
8307 {
8308         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8309         netdev_features_t feature;
8310         int feature_bit;
8311
8312         for_each_netdev_feature(upper_disables, feature_bit) {
8313                 feature = __NETIF_F_BIT(feature_bit);
8314                 if (!(features & feature) && (lower->features & feature)) {
8315                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8316                                    &feature, lower->name);
8317                         lower->wanted_features &= ~feature;
8318                         netdev_update_features(lower);
8319
8320                         if (unlikely(lower->features & feature))
8321                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8322                                             &feature, lower->name);
8323                 }
8324         }
8325 }
8326
8327 static netdev_features_t netdev_fix_features(struct net_device *dev,
8328         netdev_features_t features)
8329 {
8330         /* Fix illegal checksum combinations */
8331         if ((features & NETIF_F_HW_CSUM) &&
8332             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8333                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8334                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8335         }
8336
8337         /* TSO requires that SG is present as well. */
8338         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8339                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8340                 features &= ~NETIF_F_ALL_TSO;
8341         }
8342
8343         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8344                                         !(features & NETIF_F_IP_CSUM)) {
8345                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8346                 features &= ~NETIF_F_TSO;
8347                 features &= ~NETIF_F_TSO_ECN;
8348         }
8349
8350         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8351                                          !(features & NETIF_F_IPV6_CSUM)) {
8352                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8353                 features &= ~NETIF_F_TSO6;
8354         }
8355
8356         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8357         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8358                 features &= ~NETIF_F_TSO_MANGLEID;
8359
8360         /* TSO ECN requires that TSO is present as well. */
8361         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8362                 features &= ~NETIF_F_TSO_ECN;
8363
8364         /* Software GSO depends on SG. */
8365         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8366                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8367                 features &= ~NETIF_F_GSO;
8368         }
8369
8370         /* GSO partial features require GSO partial be set */
8371         if ((features & dev->gso_partial_features) &&
8372             !(features & NETIF_F_GSO_PARTIAL)) {
8373                 netdev_dbg(dev,
8374                            "Dropping partially supported GSO features since no GSO partial.\n");
8375                 features &= ~dev->gso_partial_features;
8376         }
8377
8378         if (!(features & NETIF_F_RXCSUM)) {
8379                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8380                  * successfully merged by hardware must also have the
8381                  * checksum verified by hardware.  If the user does not
8382                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8383                  */
8384                 if (features & NETIF_F_GRO_HW) {
8385                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8386                         features &= ~NETIF_F_GRO_HW;
8387                 }
8388         }
8389
8390         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8391         if (features & NETIF_F_RXFCS) {
8392                 if (features & NETIF_F_LRO) {
8393                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8394                         features &= ~NETIF_F_LRO;
8395                 }
8396
8397                 if (features & NETIF_F_GRO_HW) {
8398                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8399                         features &= ~NETIF_F_GRO_HW;
8400                 }
8401         }
8402
8403         return features;
8404 }
8405
8406 int __netdev_update_features(struct net_device *dev)
8407 {
8408         struct net_device *upper, *lower;
8409         netdev_features_t features;
8410         struct list_head *iter;
8411         int err = -1;
8412
8413         ASSERT_RTNL();
8414
8415         features = netdev_get_wanted_features(dev);
8416
8417         if (dev->netdev_ops->ndo_fix_features)
8418                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8419
8420         /* driver might be less strict about feature dependencies */
8421         features = netdev_fix_features(dev, features);
8422
8423         /* some features can't be enabled if they're off an an upper device */
8424         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8425                 features = netdev_sync_upper_features(dev, upper, features);
8426
8427         if (dev->features == features)
8428                 goto sync_lower;
8429
8430         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8431                 &dev->features, &features);
8432
8433         if (dev->netdev_ops->ndo_set_features)
8434                 err = dev->netdev_ops->ndo_set_features(dev, features);
8435         else
8436                 err = 0;
8437
8438         if (unlikely(err < 0)) {
8439                 netdev_err(dev,
8440                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8441                         err, &features, &dev->features);
8442                 /* return non-0 since some features might have changed and
8443                  * it's better to fire a spurious notification than miss it
8444                  */
8445                 return -1;
8446         }
8447
8448 sync_lower:
8449         /* some features must be disabled on lower devices when disabled
8450          * on an upper device (think: bonding master or bridge)
8451          */
8452         netdev_for_each_lower_dev(dev, lower, iter)
8453                 netdev_sync_lower_features(dev, lower, features);
8454
8455         if (!err) {
8456                 netdev_features_t diff = features ^ dev->features;
8457
8458                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8459                         /* udp_tunnel_{get,drop}_rx_info both need
8460                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8461                          * device, or they won't do anything.
8462                          * Thus we need to update dev->features
8463                          * *before* calling udp_tunnel_get_rx_info,
8464                          * but *after* calling udp_tunnel_drop_rx_info.
8465                          */
8466                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8467                                 dev->features = features;
8468                                 udp_tunnel_get_rx_info(dev);
8469                         } else {
8470                                 udp_tunnel_drop_rx_info(dev);
8471                         }
8472                 }
8473
8474                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8475                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8476                                 dev->features = features;
8477                                 err |= vlan_get_rx_ctag_filter_info(dev);
8478                         } else {
8479                                 vlan_drop_rx_ctag_filter_info(dev);
8480                         }
8481                 }
8482
8483                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8484                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8485                                 dev->features = features;
8486                                 err |= vlan_get_rx_stag_filter_info(dev);
8487                         } else {
8488                                 vlan_drop_rx_stag_filter_info(dev);
8489                         }
8490                 }
8491
8492                 dev->features = features;
8493         }
8494
8495         return err < 0 ? 0 : 1;
8496 }
8497
8498 /**
8499  *      netdev_update_features - recalculate device features
8500  *      @dev: the device to check
8501  *
8502  *      Recalculate dev->features set and send notifications if it
8503  *      has changed. Should be called after driver or hardware dependent
8504  *      conditions might have changed that influence the features.
8505  */
8506 void netdev_update_features(struct net_device *dev)
8507 {
8508         if (__netdev_update_features(dev))
8509                 netdev_features_change(dev);
8510 }
8511 EXPORT_SYMBOL(netdev_update_features);
8512
8513 /**
8514  *      netdev_change_features - recalculate device features
8515  *      @dev: the device to check
8516  *
8517  *      Recalculate dev->features set and send notifications even
8518  *      if they have not changed. Should be called instead of
8519  *      netdev_update_features() if also dev->vlan_features might
8520  *      have changed to allow the changes to be propagated to stacked
8521  *      VLAN devices.
8522  */
8523 void netdev_change_features(struct net_device *dev)
8524 {
8525         __netdev_update_features(dev);
8526         netdev_features_change(dev);
8527 }
8528 EXPORT_SYMBOL(netdev_change_features);
8529
8530 /**
8531  *      netif_stacked_transfer_operstate -      transfer operstate
8532  *      @rootdev: the root or lower level device to transfer state from
8533  *      @dev: the device to transfer operstate to
8534  *
8535  *      Transfer operational state from root to device. This is normally
8536  *      called when a stacking relationship exists between the root
8537  *      device and the device(a leaf device).
8538  */
8539 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8540                                         struct net_device *dev)
8541 {
8542         if (rootdev->operstate == IF_OPER_DORMANT)
8543                 netif_dormant_on(dev);
8544         else
8545                 netif_dormant_off(dev);
8546
8547         if (netif_carrier_ok(rootdev))
8548                 netif_carrier_on(dev);
8549         else
8550                 netif_carrier_off(dev);
8551 }
8552 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8553
8554 static int netif_alloc_rx_queues(struct net_device *dev)
8555 {
8556         unsigned int i, count = dev->num_rx_queues;
8557         struct netdev_rx_queue *rx;
8558         size_t sz = count * sizeof(*rx);
8559         int err = 0;
8560
8561         BUG_ON(count < 1);
8562
8563         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8564         if (!rx)
8565                 return -ENOMEM;
8566
8567         dev->_rx = rx;
8568
8569         for (i = 0; i < count; i++) {
8570                 rx[i].dev = dev;
8571
8572                 /* XDP RX-queue setup */
8573                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8574                 if (err < 0)
8575                         goto err_rxq_info;
8576         }
8577         return 0;
8578
8579 err_rxq_info:
8580         /* Rollback successful reg's and free other resources */
8581         while (i--)
8582                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8583         kvfree(dev->_rx);
8584         dev->_rx = NULL;
8585         return err;
8586 }
8587
8588 static void netif_free_rx_queues(struct net_device *dev)
8589 {
8590         unsigned int i, count = dev->num_rx_queues;
8591
8592         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8593         if (!dev->_rx)
8594                 return;
8595
8596         for (i = 0; i < count; i++)
8597                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8598
8599         kvfree(dev->_rx);
8600 }
8601
8602 static void netdev_init_one_queue(struct net_device *dev,
8603                                   struct netdev_queue *queue, void *_unused)
8604 {
8605         /* Initialize queue lock */
8606         spin_lock_init(&queue->_xmit_lock);
8607         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8608         queue->xmit_lock_owner = -1;
8609         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8610         queue->dev = dev;
8611 #ifdef CONFIG_BQL
8612         dql_init(&queue->dql, HZ);
8613 #endif
8614 }
8615
8616 static void netif_free_tx_queues(struct net_device *dev)
8617 {
8618         kvfree(dev->_tx);
8619 }
8620
8621 static int netif_alloc_netdev_queues(struct net_device *dev)
8622 {
8623         unsigned int count = dev->num_tx_queues;
8624         struct netdev_queue *tx;
8625         size_t sz = count * sizeof(*tx);
8626
8627         if (count < 1 || count > 0xffff)
8628                 return -EINVAL;
8629
8630         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8631         if (!tx)
8632                 return -ENOMEM;
8633
8634         dev->_tx = tx;
8635
8636         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8637         spin_lock_init(&dev->tx_global_lock);
8638
8639         return 0;
8640 }
8641
8642 void netif_tx_stop_all_queues(struct net_device *dev)
8643 {
8644         unsigned int i;
8645
8646         for (i = 0; i < dev->num_tx_queues; i++) {
8647                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8648
8649                 netif_tx_stop_queue(txq);
8650         }
8651 }
8652 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8653
8654 /**
8655  *      register_netdevice      - register a network device
8656  *      @dev: device to register
8657  *
8658  *      Take a completed network device structure and add it to the kernel
8659  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8660  *      chain. 0 is returned on success. A negative errno code is returned
8661  *      on a failure to set up the device, or if the name is a duplicate.
8662  *
8663  *      Callers must hold the rtnl semaphore. You may want
8664  *      register_netdev() instead of this.
8665  *
8666  *      BUGS:
8667  *      The locking appears insufficient to guarantee two parallel registers
8668  *      will not get the same name.
8669  */
8670
8671 int register_netdevice(struct net_device *dev)
8672 {
8673         int ret;
8674         struct net *net = dev_net(dev);
8675
8676         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8677                      NETDEV_FEATURE_COUNT);
8678         BUG_ON(dev_boot_phase);
8679         ASSERT_RTNL();
8680
8681         might_sleep();
8682
8683         /* When net_device's are persistent, this will be fatal. */
8684         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8685         BUG_ON(!net);
8686
8687         spin_lock_init(&dev->addr_list_lock);
8688         netdev_set_addr_lockdep_class(dev);
8689
8690         ret = dev_get_valid_name(net, dev, dev->name);
8691         if (ret < 0)
8692                 goto out;
8693
8694         /* Init, if this function is available */
8695         if (dev->netdev_ops->ndo_init) {
8696                 ret = dev->netdev_ops->ndo_init(dev);
8697                 if (ret) {
8698                         if (ret > 0)
8699                                 ret = -EIO;
8700                         goto out;
8701                 }
8702         }
8703
8704         if (((dev->hw_features | dev->features) &
8705              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8706             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8707              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8708                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8709                 ret = -EINVAL;
8710                 goto err_uninit;
8711         }
8712
8713         ret = -EBUSY;
8714         if (!dev->ifindex)
8715                 dev->ifindex = dev_new_index(net);
8716         else if (__dev_get_by_index(net, dev->ifindex))
8717                 goto err_uninit;
8718
8719         /* Transfer changeable features to wanted_features and enable
8720          * software offloads (GSO and GRO).
8721          */
8722         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8723         dev->features |= NETIF_F_SOFT_FEATURES;
8724
8725         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8726                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8727                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8728         }
8729
8730         dev->wanted_features = dev->features & dev->hw_features;
8731
8732         if (!(dev->flags & IFF_LOOPBACK))
8733                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8734
8735         /* If IPv4 TCP segmentation offload is supported we should also
8736          * allow the device to enable segmenting the frame with the option
8737          * of ignoring a static IP ID value.  This doesn't enable the
8738          * feature itself but allows the user to enable it later.
8739          */
8740         if (dev->hw_features & NETIF_F_TSO)
8741                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8742         if (dev->vlan_features & NETIF_F_TSO)
8743                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8744         if (dev->mpls_features & NETIF_F_TSO)
8745                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8746         if (dev->hw_enc_features & NETIF_F_TSO)
8747                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8748
8749         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8750          */
8751         dev->vlan_features |= NETIF_F_HIGHDMA;
8752
8753         /* Make NETIF_F_SG inheritable to tunnel devices.
8754          */
8755         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8756
8757         /* Make NETIF_F_SG inheritable to MPLS.
8758          */
8759         dev->mpls_features |= NETIF_F_SG;
8760
8761         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8762         ret = notifier_to_errno(ret);
8763         if (ret)
8764                 goto err_uninit;
8765
8766         ret = netdev_register_kobject(dev);
8767         if (ret)
8768                 goto err_uninit;
8769         dev->reg_state = NETREG_REGISTERED;
8770
8771         __netdev_update_features(dev);
8772
8773         /*
8774          *      Default initial state at registry is that the
8775          *      device is present.
8776          */
8777
8778         set_bit(__LINK_STATE_PRESENT, &dev->state);
8779
8780         linkwatch_init_dev(dev);
8781
8782         dev_init_scheduler(dev);
8783         dev_hold(dev);
8784         list_netdevice(dev);
8785         add_device_randomness(dev->dev_addr, dev->addr_len);
8786
8787         /* If the device has permanent device address, driver should
8788          * set dev_addr and also addr_assign_type should be set to
8789          * NET_ADDR_PERM (default value).
8790          */
8791         if (dev->addr_assign_type == NET_ADDR_PERM)
8792                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8793
8794         /* Notify protocols, that a new device appeared. */
8795         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8796         ret = notifier_to_errno(ret);
8797         if (ret) {
8798                 rollback_registered(dev);
8799                 dev->reg_state = NETREG_UNREGISTERED;
8800         }
8801         /*
8802          *      Prevent userspace races by waiting until the network
8803          *      device is fully setup before sending notifications.
8804          */
8805         if (!dev->rtnl_link_ops ||
8806             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8807                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8808
8809 out:
8810         return ret;
8811
8812 err_uninit:
8813         if (dev->netdev_ops->ndo_uninit)
8814                 dev->netdev_ops->ndo_uninit(dev);
8815         if (dev->priv_destructor)
8816                 dev->priv_destructor(dev);
8817         goto out;
8818 }
8819 EXPORT_SYMBOL(register_netdevice);
8820
8821 /**
8822  *      init_dummy_netdev       - init a dummy network device for NAPI
8823  *      @dev: device to init
8824  *
8825  *      This takes a network device structure and initialize the minimum
8826  *      amount of fields so it can be used to schedule NAPI polls without
8827  *      registering a full blown interface. This is to be used by drivers
8828  *      that need to tie several hardware interfaces to a single NAPI
8829  *      poll scheduler due to HW limitations.
8830  */
8831 int init_dummy_netdev(struct net_device *dev)
8832 {
8833         /* Clear everything. Note we don't initialize spinlocks
8834          * are they aren't supposed to be taken by any of the
8835          * NAPI code and this dummy netdev is supposed to be
8836          * only ever used for NAPI polls
8837          */
8838         memset(dev, 0, sizeof(struct net_device));
8839
8840         /* make sure we BUG if trying to hit standard
8841          * register/unregister code path
8842          */
8843         dev->reg_state = NETREG_DUMMY;
8844
8845         /* NAPI wants this */
8846         INIT_LIST_HEAD(&dev->napi_list);
8847
8848         /* a dummy interface is started by default */
8849         set_bit(__LINK_STATE_PRESENT, &dev->state);
8850         set_bit(__LINK_STATE_START, &dev->state);
8851
8852         /* napi_busy_loop stats accounting wants this */
8853         dev_net_set(dev, &init_net);
8854
8855         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8856          * because users of this 'device' dont need to change
8857          * its refcount.
8858          */
8859
8860         return 0;
8861 }
8862 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8863
8864
8865 /**
8866  *      register_netdev - register a network device
8867  *      @dev: device to register
8868  *
8869  *      Take a completed network device structure and add it to the kernel
8870  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8871  *      chain. 0 is returned on success. A negative errno code is returned
8872  *      on a failure to set up the device, or if the name is a duplicate.
8873  *
8874  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8875  *      and expands the device name if you passed a format string to
8876  *      alloc_netdev.
8877  */
8878 int register_netdev(struct net_device *dev)
8879 {
8880         int err;
8881
8882         if (rtnl_lock_killable())
8883                 return -EINTR;
8884         err = register_netdevice(dev);
8885         rtnl_unlock();
8886         return err;
8887 }
8888 EXPORT_SYMBOL(register_netdev);
8889
8890 int netdev_refcnt_read(const struct net_device *dev)
8891 {
8892         int i, refcnt = 0;
8893
8894         for_each_possible_cpu(i)
8895                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8896         return refcnt;
8897 }
8898 EXPORT_SYMBOL(netdev_refcnt_read);
8899
8900 /**
8901  * netdev_wait_allrefs - wait until all references are gone.
8902  * @dev: target net_device
8903  *
8904  * This is called when unregistering network devices.
8905  *
8906  * Any protocol or device that holds a reference should register
8907  * for netdevice notification, and cleanup and put back the
8908  * reference if they receive an UNREGISTER event.
8909  * We can get stuck here if buggy protocols don't correctly
8910  * call dev_put.
8911  */
8912 static void netdev_wait_allrefs(struct net_device *dev)
8913 {
8914         unsigned long rebroadcast_time, warning_time;
8915         int refcnt;
8916
8917         linkwatch_forget_dev(dev);
8918
8919         rebroadcast_time = warning_time = jiffies;
8920         refcnt = netdev_refcnt_read(dev);
8921
8922         while (refcnt != 0) {
8923                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8924                         rtnl_lock();
8925
8926                         /* Rebroadcast unregister notification */
8927                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8928
8929                         __rtnl_unlock();
8930                         rcu_barrier();
8931                         rtnl_lock();
8932
8933                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8934                                      &dev->state)) {
8935                                 /* We must not have linkwatch events
8936                                  * pending on unregister. If this
8937                                  * happens, we simply run the queue
8938                                  * unscheduled, resulting in a noop
8939                                  * for this device.
8940                                  */
8941                                 linkwatch_run_queue();
8942                         }
8943
8944                         __rtnl_unlock();
8945
8946                         rebroadcast_time = jiffies;
8947                 }
8948
8949                 msleep(250);
8950
8951                 refcnt = netdev_refcnt_read(dev);
8952
8953                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8954                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8955                                  dev->name, refcnt);
8956                         warning_time = jiffies;
8957                 }
8958         }
8959 }
8960
8961 /* The sequence is:
8962  *
8963  *      rtnl_lock();
8964  *      ...
8965  *      register_netdevice(x1);
8966  *      register_netdevice(x2);
8967  *      ...
8968  *      unregister_netdevice(y1);
8969  *      unregister_netdevice(y2);
8970  *      ...
8971  *      rtnl_unlock();
8972  *      free_netdev(y1);
8973  *      free_netdev(y2);
8974  *
8975  * We are invoked by rtnl_unlock().
8976  * This allows us to deal with problems:
8977  * 1) We can delete sysfs objects which invoke hotplug
8978  *    without deadlocking with linkwatch via keventd.
8979  * 2) Since we run with the RTNL semaphore not held, we can sleep
8980  *    safely in order to wait for the netdev refcnt to drop to zero.
8981  *
8982  * We must not return until all unregister events added during
8983  * the interval the lock was held have been completed.
8984  */
8985 void netdev_run_todo(void)
8986 {
8987         struct list_head list;
8988
8989         /* Snapshot list, allow later requests */
8990         list_replace_init(&net_todo_list, &list);
8991
8992         __rtnl_unlock();
8993
8994
8995         /* Wait for rcu callbacks to finish before next phase */
8996         if (!list_empty(&list))
8997                 rcu_barrier();
8998
8999         while (!list_empty(&list)) {
9000                 struct net_device *dev
9001                         = list_first_entry(&list, struct net_device, todo_list);
9002                 list_del(&dev->todo_list);
9003
9004                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9005                         pr_err("network todo '%s' but state %d\n",
9006                                dev->name, dev->reg_state);
9007                         dump_stack();
9008                         continue;
9009                 }
9010
9011                 dev->reg_state = NETREG_UNREGISTERED;
9012
9013                 netdev_wait_allrefs(dev);
9014
9015                 /* paranoia */
9016                 BUG_ON(netdev_refcnt_read(dev));
9017                 BUG_ON(!list_empty(&dev->ptype_all));
9018                 BUG_ON(!list_empty(&dev->ptype_specific));
9019                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9020                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9021 #if IS_ENABLED(CONFIG_DECNET)
9022                 WARN_ON(dev->dn_ptr);
9023 #endif
9024                 if (dev->priv_destructor)
9025                         dev->priv_destructor(dev);
9026                 if (dev->needs_free_netdev)
9027                         free_netdev(dev);
9028
9029                 /* Report a network device has been unregistered */
9030                 rtnl_lock();
9031                 dev_net(dev)->dev_unreg_count--;
9032                 __rtnl_unlock();
9033                 wake_up(&netdev_unregistering_wq);
9034
9035                 /* Free network device */
9036                 kobject_put(&dev->dev.kobj);
9037         }
9038 }
9039
9040 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9041  * all the same fields in the same order as net_device_stats, with only
9042  * the type differing, but rtnl_link_stats64 may have additional fields
9043  * at the end for newer counters.
9044  */
9045 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9046                              const struct net_device_stats *netdev_stats)
9047 {
9048 #if BITS_PER_LONG == 64
9049         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9050         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9051         /* zero out counters that only exist in rtnl_link_stats64 */
9052         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9053                sizeof(*stats64) - sizeof(*netdev_stats));
9054 #else
9055         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9056         const unsigned long *src = (const unsigned long *)netdev_stats;
9057         u64 *dst = (u64 *)stats64;
9058
9059         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9060         for (i = 0; i < n; i++)
9061                 dst[i] = src[i];
9062         /* zero out counters that only exist in rtnl_link_stats64 */
9063         memset((char *)stats64 + n * sizeof(u64), 0,
9064                sizeof(*stats64) - n * sizeof(u64));
9065 #endif
9066 }
9067 EXPORT_SYMBOL(netdev_stats_to_stats64);
9068
9069 /**
9070  *      dev_get_stats   - get network device statistics
9071  *      @dev: device to get statistics from
9072  *      @storage: place to store stats
9073  *
9074  *      Get network statistics from device. Return @storage.
9075  *      The device driver may provide its own method by setting
9076  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9077  *      otherwise the internal statistics structure is used.
9078  */
9079 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9080                                         struct rtnl_link_stats64 *storage)
9081 {
9082         const struct net_device_ops *ops = dev->netdev_ops;
9083
9084         if (ops->ndo_get_stats64) {
9085                 memset(storage, 0, sizeof(*storage));
9086                 ops->ndo_get_stats64(dev, storage);
9087         } else if (ops->ndo_get_stats) {
9088                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9089         } else {
9090                 netdev_stats_to_stats64(storage, &dev->stats);
9091         }
9092         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9093         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9094         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9095         return storage;
9096 }
9097 EXPORT_SYMBOL(dev_get_stats);
9098
9099 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9100 {
9101         struct netdev_queue *queue = dev_ingress_queue(dev);
9102
9103 #ifdef CONFIG_NET_CLS_ACT
9104         if (queue)
9105                 return queue;
9106         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9107         if (!queue)
9108                 return NULL;
9109         netdev_init_one_queue(dev, queue, NULL);
9110         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9111         queue->qdisc_sleeping = &noop_qdisc;
9112         rcu_assign_pointer(dev->ingress_queue, queue);
9113 #endif
9114         return queue;
9115 }
9116
9117 static const struct ethtool_ops default_ethtool_ops;
9118
9119 void netdev_set_default_ethtool_ops(struct net_device *dev,
9120                                     const struct ethtool_ops *ops)
9121 {
9122         if (dev->ethtool_ops == &default_ethtool_ops)
9123                 dev->ethtool_ops = ops;
9124 }
9125 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9126
9127 void netdev_freemem(struct net_device *dev)
9128 {
9129         char *addr = (char *)dev - dev->padded;
9130
9131         kvfree(addr);
9132 }
9133
9134 /**
9135  * alloc_netdev_mqs - allocate network device
9136  * @sizeof_priv: size of private data to allocate space for
9137  * @name: device name format string
9138  * @name_assign_type: origin of device name
9139  * @setup: callback to initialize device
9140  * @txqs: the number of TX subqueues to allocate
9141  * @rxqs: the number of RX subqueues to allocate
9142  *
9143  * Allocates a struct net_device with private data area for driver use
9144  * and performs basic initialization.  Also allocates subqueue structs
9145  * for each queue on the device.
9146  */
9147 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9148                 unsigned char name_assign_type,
9149                 void (*setup)(struct net_device *),
9150                 unsigned int txqs, unsigned int rxqs)
9151 {
9152         struct net_device *dev;
9153         unsigned int alloc_size;
9154         struct net_device *p;
9155
9156         BUG_ON(strlen(name) >= sizeof(dev->name));
9157
9158         if (txqs < 1) {
9159                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9160                 return NULL;
9161         }
9162
9163         if (rxqs < 1) {
9164                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9165                 return NULL;
9166         }
9167
9168         alloc_size = sizeof(struct net_device);
9169         if (sizeof_priv) {
9170                 /* ensure 32-byte alignment of private area */
9171                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9172                 alloc_size += sizeof_priv;
9173         }
9174         /* ensure 32-byte alignment of whole construct */
9175         alloc_size += NETDEV_ALIGN - 1;
9176
9177         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9178         if (!p)
9179                 return NULL;
9180
9181         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9182         dev->padded = (char *)dev - (char *)p;
9183
9184         dev->pcpu_refcnt = alloc_percpu(int);
9185         if (!dev->pcpu_refcnt)
9186                 goto free_dev;
9187
9188         if (dev_addr_init(dev))
9189                 goto free_pcpu;
9190
9191         dev_mc_init(dev);
9192         dev_uc_init(dev);
9193
9194         dev_net_set(dev, &init_net);
9195
9196         dev->gso_max_size = GSO_MAX_SIZE;
9197         dev->gso_max_segs = GSO_MAX_SEGS;
9198
9199         INIT_LIST_HEAD(&dev->napi_list);
9200         INIT_LIST_HEAD(&dev->unreg_list);
9201         INIT_LIST_HEAD(&dev->close_list);
9202         INIT_LIST_HEAD(&dev->link_watch_list);
9203         INIT_LIST_HEAD(&dev->adj_list.upper);
9204         INIT_LIST_HEAD(&dev->adj_list.lower);
9205         INIT_LIST_HEAD(&dev->ptype_all);
9206         INIT_LIST_HEAD(&dev->ptype_specific);
9207 #ifdef CONFIG_NET_SCHED
9208         hash_init(dev->qdisc_hash);
9209 #endif
9210         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9211         setup(dev);
9212
9213         if (!dev->tx_queue_len) {
9214                 dev->priv_flags |= IFF_NO_QUEUE;
9215                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9216         }
9217
9218         dev->num_tx_queues = txqs;
9219         dev->real_num_tx_queues = txqs;
9220         if (netif_alloc_netdev_queues(dev))
9221                 goto free_all;
9222
9223         dev->num_rx_queues = rxqs;
9224         dev->real_num_rx_queues = rxqs;
9225         if (netif_alloc_rx_queues(dev))
9226                 goto free_all;
9227
9228         strcpy(dev->name, name);
9229         dev->name_assign_type = name_assign_type;
9230         dev->group = INIT_NETDEV_GROUP;
9231         if (!dev->ethtool_ops)
9232                 dev->ethtool_ops = &default_ethtool_ops;
9233
9234         nf_hook_ingress_init(dev);
9235
9236         return dev;
9237
9238 free_all:
9239         free_netdev(dev);
9240         return NULL;
9241
9242 free_pcpu:
9243         free_percpu(dev->pcpu_refcnt);
9244 free_dev:
9245         netdev_freemem(dev);
9246         return NULL;
9247 }
9248 EXPORT_SYMBOL(alloc_netdev_mqs);
9249
9250 /**
9251  * free_netdev - free network device
9252  * @dev: device
9253  *
9254  * This function does the last stage of destroying an allocated device
9255  * interface. The reference to the device object is released. If this
9256  * is the last reference then it will be freed.Must be called in process
9257  * context.
9258  */
9259 void free_netdev(struct net_device *dev)
9260 {
9261         struct napi_struct *p, *n;
9262
9263         might_sleep();
9264         netif_free_tx_queues(dev);
9265         netif_free_rx_queues(dev);
9266
9267         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9268
9269         /* Flush device addresses */
9270         dev_addr_flush(dev);
9271
9272         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9273                 netif_napi_del(p);
9274
9275         free_percpu(dev->pcpu_refcnt);
9276         dev->pcpu_refcnt = NULL;
9277
9278         /*  Compatibility with error handling in drivers */
9279         if (dev->reg_state == NETREG_UNINITIALIZED) {
9280                 netdev_freemem(dev);
9281                 return;
9282         }
9283
9284         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9285         dev->reg_state = NETREG_RELEASED;
9286
9287         /* will free via device release */
9288         put_device(&dev->dev);
9289 }
9290 EXPORT_SYMBOL(free_netdev);
9291
9292 /**
9293  *      synchronize_net -  Synchronize with packet receive processing
9294  *
9295  *      Wait for packets currently being received to be done.
9296  *      Does not block later packets from starting.
9297  */
9298 void synchronize_net(void)
9299 {
9300         might_sleep();
9301         if (rtnl_is_locked())
9302                 synchronize_rcu_expedited();
9303         else
9304                 synchronize_rcu();
9305 }
9306 EXPORT_SYMBOL(synchronize_net);
9307
9308 /**
9309  *      unregister_netdevice_queue - remove device from the kernel
9310  *      @dev: device
9311  *      @head: list
9312  *
9313  *      This function shuts down a device interface and removes it
9314  *      from the kernel tables.
9315  *      If head not NULL, device is queued to be unregistered later.
9316  *
9317  *      Callers must hold the rtnl semaphore.  You may want
9318  *      unregister_netdev() instead of this.
9319  */
9320
9321 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9322 {
9323         ASSERT_RTNL();
9324
9325         if (head) {
9326                 list_move_tail(&dev->unreg_list, head);
9327         } else {
9328                 rollback_registered(dev);
9329                 /* Finish processing unregister after unlock */
9330                 net_set_todo(dev);
9331         }
9332 }
9333 EXPORT_SYMBOL(unregister_netdevice_queue);
9334
9335 /**
9336  *      unregister_netdevice_many - unregister many devices
9337  *      @head: list of devices
9338  *
9339  *  Note: As most callers use a stack allocated list_head,
9340  *  we force a list_del() to make sure stack wont be corrupted later.
9341  */
9342 void unregister_netdevice_many(struct list_head *head)
9343 {
9344         struct net_device *dev;
9345
9346         if (!list_empty(head)) {
9347                 rollback_registered_many(head);
9348                 list_for_each_entry(dev, head, unreg_list)
9349                         net_set_todo(dev);
9350                 list_del(head);
9351         }
9352 }
9353 EXPORT_SYMBOL(unregister_netdevice_many);
9354
9355 /**
9356  *      unregister_netdev - remove device from the kernel
9357  *      @dev: device
9358  *
9359  *      This function shuts down a device interface and removes it
9360  *      from the kernel tables.
9361  *
9362  *      This is just a wrapper for unregister_netdevice that takes
9363  *      the rtnl semaphore.  In general you want to use this and not
9364  *      unregister_netdevice.
9365  */
9366 void unregister_netdev(struct net_device *dev)
9367 {
9368         rtnl_lock();
9369         unregister_netdevice(dev);
9370         rtnl_unlock();
9371 }
9372 EXPORT_SYMBOL(unregister_netdev);
9373
9374 /**
9375  *      dev_change_net_namespace - move device to different nethost namespace
9376  *      @dev: device
9377  *      @net: network namespace
9378  *      @pat: If not NULL name pattern to try if the current device name
9379  *            is already taken in the destination network namespace.
9380  *
9381  *      This function shuts down a device interface and moves it
9382  *      to a new network namespace. On success 0 is returned, on
9383  *      a failure a netagive errno code is returned.
9384  *
9385  *      Callers must hold the rtnl semaphore.
9386  */
9387
9388 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9389 {
9390         int err, new_nsid, new_ifindex;
9391
9392         ASSERT_RTNL();
9393
9394         /* Don't allow namespace local devices to be moved. */
9395         err = -EINVAL;
9396         if (dev->features & NETIF_F_NETNS_LOCAL)
9397                 goto out;
9398
9399         /* Ensure the device has been registrered */
9400         if (dev->reg_state != NETREG_REGISTERED)
9401                 goto out;
9402
9403         /* Get out if there is nothing todo */
9404         err = 0;
9405         if (net_eq(dev_net(dev), net))
9406                 goto out;
9407
9408         /* Pick the destination device name, and ensure
9409          * we can use it in the destination network namespace.
9410          */
9411         err = -EEXIST;
9412         if (__dev_get_by_name(net, dev->name)) {
9413                 /* We get here if we can't use the current device name */
9414                 if (!pat)
9415                         goto out;
9416                 err = dev_get_valid_name(net, dev, pat);
9417                 if (err < 0)
9418                         goto out;
9419         }
9420
9421         /*
9422          * And now a mini version of register_netdevice unregister_netdevice.
9423          */
9424
9425         /* If device is running close it first. */
9426         dev_close(dev);
9427
9428         /* And unlink it from device chain */
9429         unlist_netdevice(dev);
9430
9431         synchronize_net();
9432
9433         /* Shutdown queueing discipline. */
9434         dev_shutdown(dev);
9435
9436         /* Notify protocols, that we are about to destroy
9437          * this device. They should clean all the things.
9438          *
9439          * Note that dev->reg_state stays at NETREG_REGISTERED.
9440          * This is wanted because this way 8021q and macvlan know
9441          * the device is just moving and can keep their slaves up.
9442          */
9443         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9444         rcu_barrier();
9445
9446         new_nsid = peernet2id_alloc(dev_net(dev), net);
9447         /* If there is an ifindex conflict assign a new one */
9448         if (__dev_get_by_index(net, dev->ifindex))
9449                 new_ifindex = dev_new_index(net);
9450         else
9451                 new_ifindex = dev->ifindex;
9452
9453         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9454                             new_ifindex);
9455
9456         /*
9457          *      Flush the unicast and multicast chains
9458          */
9459         dev_uc_flush(dev);
9460         dev_mc_flush(dev);
9461
9462         /* Send a netdev-removed uevent to the old namespace */
9463         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9464         netdev_adjacent_del_links(dev);
9465
9466         /* Actually switch the network namespace */
9467         dev_net_set(dev, net);
9468         dev->ifindex = new_ifindex;
9469
9470         /* Send a netdev-add uevent to the new namespace */
9471         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9472         netdev_adjacent_add_links(dev);
9473
9474         /* Fixup kobjects */
9475         err = device_rename(&dev->dev, dev->name);
9476         WARN_ON(err);
9477
9478         /* Add the device back in the hashes */
9479         list_netdevice(dev);
9480
9481         /* Notify protocols, that a new device appeared. */
9482         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9483
9484         /*
9485          *      Prevent userspace races by waiting until the network
9486          *      device is fully setup before sending notifications.
9487          */
9488         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9489
9490         synchronize_net();
9491         err = 0;
9492 out:
9493         return err;
9494 }
9495 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9496
9497 static int dev_cpu_dead(unsigned int oldcpu)
9498 {
9499         struct sk_buff **list_skb;
9500         struct sk_buff *skb;
9501         unsigned int cpu;
9502         struct softnet_data *sd, *oldsd, *remsd = NULL;
9503
9504         local_irq_disable();
9505         cpu = smp_processor_id();
9506         sd = &per_cpu(softnet_data, cpu);
9507         oldsd = &per_cpu(softnet_data, oldcpu);
9508
9509         /* Find end of our completion_queue. */
9510         list_skb = &sd->completion_queue;
9511         while (*list_skb)
9512                 list_skb = &(*list_skb)->next;
9513         /* Append completion queue from offline CPU. */
9514         *list_skb = oldsd->completion_queue;
9515         oldsd->completion_queue = NULL;
9516
9517         /* Append output queue from offline CPU. */
9518         if (oldsd->output_queue) {
9519                 *sd->output_queue_tailp = oldsd->output_queue;
9520                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9521                 oldsd->output_queue = NULL;
9522                 oldsd->output_queue_tailp = &oldsd->output_queue;
9523         }
9524         /* Append NAPI poll list from offline CPU, with one exception :
9525          * process_backlog() must be called by cpu owning percpu backlog.
9526          * We properly handle process_queue & input_pkt_queue later.
9527          */
9528         while (!list_empty(&oldsd->poll_list)) {
9529                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9530                                                             struct napi_struct,
9531                                                             poll_list);
9532
9533                 list_del_init(&napi->poll_list);
9534                 if (napi->poll == process_backlog)
9535                         napi->state = 0;
9536                 else
9537                         ____napi_schedule(sd, napi);
9538         }
9539
9540         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9541         local_irq_enable();
9542
9543 #ifdef CONFIG_RPS
9544         remsd = oldsd->rps_ipi_list;
9545         oldsd->rps_ipi_list = NULL;
9546 #endif
9547         /* send out pending IPI's on offline CPU */
9548         net_rps_send_ipi(remsd);
9549
9550         /* Process offline CPU's input_pkt_queue */
9551         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9552                 netif_rx_ni(skb);
9553                 input_queue_head_incr(oldsd);
9554         }
9555         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9556                 netif_rx_ni(skb);
9557                 input_queue_head_incr(oldsd);
9558         }
9559
9560         return 0;
9561 }
9562
9563 /**
9564  *      netdev_increment_features - increment feature set by one
9565  *      @all: current feature set
9566  *      @one: new feature set
9567  *      @mask: mask feature set
9568  *
9569  *      Computes a new feature set after adding a device with feature set
9570  *      @one to the master device with current feature set @all.  Will not
9571  *      enable anything that is off in @mask. Returns the new feature set.
9572  */
9573 netdev_features_t netdev_increment_features(netdev_features_t all,
9574         netdev_features_t one, netdev_features_t mask)
9575 {
9576         if (mask & NETIF_F_HW_CSUM)
9577                 mask |= NETIF_F_CSUM_MASK;
9578         mask |= NETIF_F_VLAN_CHALLENGED;
9579
9580         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9581         all &= one | ~NETIF_F_ALL_FOR_ALL;
9582
9583         /* If one device supports hw checksumming, set for all. */
9584         if (all & NETIF_F_HW_CSUM)
9585                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9586
9587         return all;
9588 }
9589 EXPORT_SYMBOL(netdev_increment_features);
9590
9591 static struct hlist_head * __net_init netdev_create_hash(void)
9592 {
9593         int i;
9594         struct hlist_head *hash;
9595
9596         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9597         if (hash != NULL)
9598                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9599                         INIT_HLIST_HEAD(&hash[i]);
9600
9601         return hash;
9602 }
9603
9604 /* Initialize per network namespace state */
9605 static int __net_init netdev_init(struct net *net)
9606 {
9607         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9608                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9609
9610         if (net != &init_net)
9611                 INIT_LIST_HEAD(&net->dev_base_head);
9612
9613         net->dev_name_head = netdev_create_hash();
9614         if (net->dev_name_head == NULL)
9615                 goto err_name;
9616
9617         net->dev_index_head = netdev_create_hash();
9618         if (net->dev_index_head == NULL)
9619                 goto err_idx;
9620
9621         return 0;
9622
9623 err_idx:
9624         kfree(net->dev_name_head);
9625 err_name:
9626         return -ENOMEM;
9627 }
9628
9629 /**
9630  *      netdev_drivername - network driver for the device
9631  *      @dev: network device
9632  *
9633  *      Determine network driver for device.
9634  */
9635 const char *netdev_drivername(const struct net_device *dev)
9636 {
9637         const struct device_driver *driver;
9638         const struct device *parent;
9639         const char *empty = "";
9640
9641         parent = dev->dev.parent;
9642         if (!parent)
9643                 return empty;
9644
9645         driver = parent->driver;
9646         if (driver && driver->name)
9647                 return driver->name;
9648         return empty;
9649 }
9650
9651 static void __netdev_printk(const char *level, const struct net_device *dev,
9652                             struct va_format *vaf)
9653 {
9654         if (dev && dev->dev.parent) {
9655                 dev_printk_emit(level[1] - '0',
9656                                 dev->dev.parent,
9657                                 "%s %s %s%s: %pV",
9658                                 dev_driver_string(dev->dev.parent),
9659                                 dev_name(dev->dev.parent),
9660                                 netdev_name(dev), netdev_reg_state(dev),
9661                                 vaf);
9662         } else if (dev) {
9663                 printk("%s%s%s: %pV",
9664                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9665         } else {
9666                 printk("%s(NULL net_device): %pV", level, vaf);
9667         }
9668 }
9669
9670 void netdev_printk(const char *level, const struct net_device *dev,
9671                    const char *format, ...)
9672 {
9673         struct va_format vaf;
9674         va_list args;
9675
9676         va_start(args, format);
9677
9678         vaf.fmt = format;
9679         vaf.va = &args;
9680
9681         __netdev_printk(level, dev, &vaf);
9682
9683         va_end(args);
9684 }
9685 EXPORT_SYMBOL(netdev_printk);
9686
9687 #define define_netdev_printk_level(func, level)                 \
9688 void func(const struct net_device *dev, const char *fmt, ...)   \
9689 {                                                               \
9690         struct va_format vaf;                                   \
9691         va_list args;                                           \
9692                                                                 \
9693         va_start(args, fmt);                                    \
9694                                                                 \
9695         vaf.fmt = fmt;                                          \
9696         vaf.va = &args;                                         \
9697                                                                 \
9698         __netdev_printk(level, dev, &vaf);                      \
9699                                                                 \
9700         va_end(args);                                           \
9701 }                                                               \
9702 EXPORT_SYMBOL(func);
9703
9704 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9705 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9706 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9707 define_netdev_printk_level(netdev_err, KERN_ERR);
9708 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9709 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9710 define_netdev_printk_level(netdev_info, KERN_INFO);
9711
9712 static void __net_exit netdev_exit(struct net *net)
9713 {
9714         kfree(net->dev_name_head);
9715         kfree(net->dev_index_head);
9716         if (net != &init_net)
9717                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9718 }
9719
9720 static struct pernet_operations __net_initdata netdev_net_ops = {
9721         .init = netdev_init,
9722         .exit = netdev_exit,
9723 };
9724
9725 static void __net_exit default_device_exit(struct net *net)
9726 {
9727         struct net_device *dev, *aux;
9728         /*
9729          * Push all migratable network devices back to the
9730          * initial network namespace
9731          */
9732         rtnl_lock();
9733         for_each_netdev_safe(net, dev, aux) {
9734                 int err;
9735                 char fb_name[IFNAMSIZ];
9736
9737                 /* Ignore unmoveable devices (i.e. loopback) */
9738                 if (dev->features & NETIF_F_NETNS_LOCAL)
9739                         continue;
9740
9741                 /* Leave virtual devices for the generic cleanup */
9742                 if (dev->rtnl_link_ops)
9743                         continue;
9744
9745                 /* Push remaining network devices to init_net */
9746                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9747                 if (__dev_get_by_name(&init_net, fb_name))
9748                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
9749                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9750                 if (err) {
9751                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9752                                  __func__, dev->name, err);
9753                         BUG();
9754                 }
9755         }
9756         rtnl_unlock();
9757 }
9758
9759 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9760 {
9761         /* Return with the rtnl_lock held when there are no network
9762          * devices unregistering in any network namespace in net_list.
9763          */
9764         struct net *net;
9765         bool unregistering;
9766         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9767
9768         add_wait_queue(&netdev_unregistering_wq, &wait);
9769         for (;;) {
9770                 unregistering = false;
9771                 rtnl_lock();
9772                 list_for_each_entry(net, net_list, exit_list) {
9773                         if (net->dev_unreg_count > 0) {
9774                                 unregistering = true;
9775                                 break;
9776                         }
9777                 }
9778                 if (!unregistering)
9779                         break;
9780                 __rtnl_unlock();
9781
9782                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9783         }
9784         remove_wait_queue(&netdev_unregistering_wq, &wait);
9785 }
9786
9787 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9788 {
9789         /* At exit all network devices most be removed from a network
9790          * namespace.  Do this in the reverse order of registration.
9791          * Do this across as many network namespaces as possible to
9792          * improve batching efficiency.
9793          */
9794         struct net_device *dev;
9795         struct net *net;
9796         LIST_HEAD(dev_kill_list);
9797
9798         /* To prevent network device cleanup code from dereferencing
9799          * loopback devices or network devices that have been freed
9800          * wait here for all pending unregistrations to complete,
9801          * before unregistring the loopback device and allowing the
9802          * network namespace be freed.
9803          *
9804          * The netdev todo list containing all network devices
9805          * unregistrations that happen in default_device_exit_batch
9806          * will run in the rtnl_unlock() at the end of
9807          * default_device_exit_batch.
9808          */
9809         rtnl_lock_unregistering(net_list);
9810         list_for_each_entry(net, net_list, exit_list) {
9811                 for_each_netdev_reverse(net, dev) {
9812                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9813                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9814                         else
9815                                 unregister_netdevice_queue(dev, &dev_kill_list);
9816                 }
9817         }
9818         unregister_netdevice_many(&dev_kill_list);
9819         rtnl_unlock();
9820 }
9821
9822 static struct pernet_operations __net_initdata default_device_ops = {
9823         .exit = default_device_exit,
9824         .exit_batch = default_device_exit_batch,
9825 };
9826
9827 /*
9828  *      Initialize the DEV module. At boot time this walks the device list and
9829  *      unhooks any devices that fail to initialise (normally hardware not
9830  *      present) and leaves us with a valid list of present and active devices.
9831  *
9832  */
9833
9834 /*
9835  *       This is called single threaded during boot, so no need
9836  *       to take the rtnl semaphore.
9837  */
9838 static int __init net_dev_init(void)
9839 {
9840         int i, rc = -ENOMEM;
9841
9842         BUG_ON(!dev_boot_phase);
9843
9844         if (dev_proc_init())
9845                 goto out;
9846
9847         if (netdev_kobject_init())
9848                 goto out;
9849
9850         INIT_LIST_HEAD(&ptype_all);
9851         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9852                 INIT_LIST_HEAD(&ptype_base[i]);
9853
9854         INIT_LIST_HEAD(&offload_base);
9855
9856         if (register_pernet_subsys(&netdev_net_ops))
9857                 goto out;
9858
9859         /*
9860          *      Initialise the packet receive queues.
9861          */
9862
9863         for_each_possible_cpu(i) {
9864                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9865                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9866
9867                 INIT_WORK(flush, flush_backlog);
9868
9869                 skb_queue_head_init(&sd->input_pkt_queue);
9870                 skb_queue_head_init(&sd->process_queue);
9871 #ifdef CONFIG_XFRM_OFFLOAD
9872                 skb_queue_head_init(&sd->xfrm_backlog);
9873 #endif
9874                 INIT_LIST_HEAD(&sd->poll_list);
9875                 sd->output_queue_tailp = &sd->output_queue;
9876 #ifdef CONFIG_RPS
9877                 sd->csd.func = rps_trigger_softirq;
9878                 sd->csd.info = sd;
9879                 sd->cpu = i;
9880 #endif
9881
9882                 init_gro_hash(&sd->backlog);
9883                 sd->backlog.poll = process_backlog;
9884                 sd->backlog.weight = weight_p;
9885         }
9886
9887         dev_boot_phase = 0;
9888
9889         /* The loopback device is special if any other network devices
9890          * is present in a network namespace the loopback device must
9891          * be present. Since we now dynamically allocate and free the
9892          * loopback device ensure this invariant is maintained by
9893          * keeping the loopback device as the first device on the
9894          * list of network devices.  Ensuring the loopback devices
9895          * is the first device that appears and the last network device
9896          * that disappears.
9897          */
9898         if (register_pernet_device(&loopback_net_ops))
9899                 goto out;
9900
9901         if (register_pernet_device(&default_device_ops))
9902                 goto out;
9903
9904         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9905         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9906
9907         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9908                                        NULL, dev_cpu_dead);
9909         WARN_ON(rc < 0);
9910         rc = 0;
9911 out:
9912         return rc;
9913 }
9914
9915 subsys_initcall(net_dev_init);
This page took 0.591447 seconds and 4 git commands to generate.