]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-for-v4.17' of git://people.freedesktop.org/~airlied/linux
[linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52 {
53         if (obj->cache_dirty)
54                 return false;
55
56         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57                 return true;
58
59         return obj->pin_global; /* currently in use by HW, keep flushed */
60 }
61
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64                      struct drm_mm_node *node, u32 size)
65 {
66         memset(node, 0, sizeof(*node));
67         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68                                            size, 0, I915_COLOR_UNEVICTABLE,
69                                            0, ggtt->mappable_end,
70                                            DRM_MM_INSERT_LOW);
71 }
72
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
75 {
76         drm_mm_remove_node(node);
77 }
78
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81                                   u64 size)
82 {
83         spin_lock(&dev_priv->mm.object_stat_lock);
84         dev_priv->mm.object_count++;
85         dev_priv->mm.object_memory += size;
86         spin_unlock(&dev_priv->mm.object_stat_lock);
87 }
88
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90                                      u64 size)
91 {
92         spin_lock(&dev_priv->mm.object_stat_lock);
93         dev_priv->mm.object_count--;
94         dev_priv->mm.object_memory -= size;
95         spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
100 {
101         int ret;
102
103         might_sleep();
104
105         /*
106          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107          * userspace. If it takes that long something really bad is going on and
108          * we should simply try to bail out and fail as gracefully as possible.
109          */
110         ret = wait_event_interruptible_timeout(error->reset_queue,
111                                                !i915_reset_backoff(error),
112                                                I915_RESET_TIMEOUT);
113         if (ret == 0) {
114                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115                 return -EIO;
116         } else if (ret < 0) {
117                 return ret;
118         } else {
119                 return 0;
120         }
121 }
122
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 {
125         struct drm_i915_private *dev_priv = to_i915(dev);
126         int ret;
127
128         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129         if (ret)
130                 return ret;
131
132         ret = mutex_lock_interruptible(&dev->struct_mutex);
133         if (ret)
134                 return ret;
135
136         return 0;
137 }
138
139 int
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141                             struct drm_file *file)
142 {
143         struct drm_i915_private *dev_priv = to_i915(dev);
144         struct i915_ggtt *ggtt = &dev_priv->ggtt;
145         struct drm_i915_gem_get_aperture *args = data;
146         struct i915_vma *vma;
147         u64 pinned;
148
149         pinned = ggtt->base.reserved;
150         mutex_lock(&dev->struct_mutex);
151         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152                 if (i915_vma_is_pinned(vma))
153                         pinned += vma->node.size;
154         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155                 if (i915_vma_is_pinned(vma))
156                         pinned += vma->node.size;
157         mutex_unlock(&dev->struct_mutex);
158
159         args->aper_size = ggtt->base.total;
160         args->aper_available_size = args->aper_size - pinned;
161
162         return 0;
163 }
164
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173         int err;
174
175         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176                 return -EINVAL;
177
178         /* Always aligning to the object size, allows a single allocation
179          * to handle all possible callers, and given typical object sizes,
180          * the alignment of the buddy allocation will naturally match.
181          */
182         phys = drm_pci_alloc(obj->base.dev,
183                              roundup_pow_of_two(obj->base.size),
184                              roundup_pow_of_two(obj->base.size));
185         if (!phys)
186                 return -ENOMEM;
187
188         vaddr = phys->vaddr;
189         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190                 struct page *page;
191                 char *src;
192
193                 page = shmem_read_mapping_page(mapping, i);
194                 if (IS_ERR(page)) {
195                         err = PTR_ERR(page);
196                         goto err_phys;
197                 }
198
199                 src = kmap_atomic(page);
200                 memcpy(vaddr, src, PAGE_SIZE);
201                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202                 kunmap_atomic(src);
203
204                 put_page(page);
205                 vaddr += PAGE_SIZE;
206         }
207
208         i915_gem_chipset_flush(to_i915(obj->base.dev));
209
210         st = kmalloc(sizeof(*st), GFP_KERNEL);
211         if (!st) {
212                 err = -ENOMEM;
213                 goto err_phys;
214         }
215
216         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217                 kfree(st);
218                 err = -ENOMEM;
219                 goto err_phys;
220         }
221
222         sg = st->sgl;
223         sg->offset = 0;
224         sg->length = obj->base.size;
225
226         sg_dma_address(sg) = phys->busaddr;
227         sg_dma_len(sg) = obj->base.size;
228
229         obj->phys_handle = phys;
230
231         __i915_gem_object_set_pages(obj, st, sg->length);
232
233         return 0;
234
235 err_phys:
236         drm_pci_free(obj->base.dev, phys);
237
238         return err;
239 }
240
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
242 {
243         obj->read_domains = I915_GEM_DOMAIN_CPU;
244         obj->write_domain = I915_GEM_DOMAIN_CPU;
245         if (cpu_write_needs_clflush(obj))
246                 obj->cache_dirty = true;
247 }
248
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251                                 struct sg_table *pages,
252                                 bool needs_clflush)
253 {
254         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255
256         if (obj->mm.madv == I915_MADV_DONTNEED)
257                 obj->mm.dirty = false;
258
259         if (needs_clflush &&
260             (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262                 drm_clflush_sg(pages);
263
264         __start_cpu_write(obj);
265 }
266
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269                                struct sg_table *pages)
270 {
271         __i915_gem_object_release_shmem(obj, pages, false);
272
273         if (obj->mm.dirty) {
274                 struct address_space *mapping = obj->base.filp->f_mapping;
275                 char *vaddr = obj->phys_handle->vaddr;
276                 int i;
277
278                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279                         struct page *page;
280                         char *dst;
281
282                         page = shmem_read_mapping_page(mapping, i);
283                         if (IS_ERR(page))
284                                 continue;
285
286                         dst = kmap_atomic(page);
287                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
288                         memcpy(dst, vaddr, PAGE_SIZE);
289                         kunmap_atomic(dst);
290
291                         set_page_dirty(page);
292                         if (obj->mm.madv == I915_MADV_WILLNEED)
293                                 mark_page_accessed(page);
294                         put_page(page);
295                         vaddr += PAGE_SIZE;
296                 }
297                 obj->mm.dirty = false;
298         }
299
300         sg_free_table(pages);
301         kfree(pages);
302
303         drm_pci_free(obj->base.dev, obj->phys_handle);
304 }
305
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 {
309         i915_gem_object_unpin_pages(obj);
310 }
311
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313         .get_pages = i915_gem_object_get_pages_phys,
314         .put_pages = i915_gem_object_put_pages_phys,
315         .release = i915_gem_object_release_phys,
316 };
317
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 {
322         struct i915_vma *vma;
323         LIST_HEAD(still_in_list);
324         int ret;
325
326         lockdep_assert_held(&obj->base.dev->struct_mutex);
327
328         /* Closed vma are removed from the obj->vma_list - but they may
329          * still have an active binding on the object. To remove those we
330          * must wait for all rendering to complete to the object (as unbinding
331          * must anyway), and retire the requests.
332          */
333         ret = i915_gem_object_set_to_cpu_domain(obj, false);
334         if (ret)
335                 return ret;
336
337         while ((vma = list_first_entry_or_null(&obj->vma_list,
338                                                struct i915_vma,
339                                                obj_link))) {
340                 list_move_tail(&vma->obj_link, &still_in_list);
341                 ret = i915_vma_unbind(vma);
342                 if (ret)
343                         break;
344         }
345         list_splice(&still_in_list, &obj->vma_list);
346
347         return ret;
348 }
349
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352                            unsigned int flags,
353                            long timeout,
354                            struct intel_rps_client *rps_client)
355 {
356         struct i915_request *rq;
357
358         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359
360         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361                 return timeout;
362
363         if (!dma_fence_is_i915(fence))
364                 return dma_fence_wait_timeout(fence,
365                                               flags & I915_WAIT_INTERRUPTIBLE,
366                                               timeout);
367
368         rq = to_request(fence);
369         if (i915_request_completed(rq))
370                 goto out;
371
372         /*
373          * This client is about to stall waiting for the GPU. In many cases
374          * this is undesirable and limits the throughput of the system, as
375          * many clients cannot continue processing user input/output whilst
376          * blocked. RPS autotuning may take tens of milliseconds to respond
377          * to the GPU load and thus incurs additional latency for the client.
378          * We can circumvent that by promoting the GPU frequency to maximum
379          * before we wait. This makes the GPU throttle up much more quickly
380          * (good for benchmarks and user experience, e.g. window animations),
381          * but at a cost of spending more power processing the workload
382          * (bad for battery). Not all clients even want their results
383          * immediately and for them we should just let the GPU select its own
384          * frequency to maximise efficiency. To prevent a single client from
385          * forcing the clocks too high for the whole system, we only allow
386          * each client to waitboost once in a busy period.
387          */
388         if (rps_client && !i915_request_started(rq)) {
389                 if (INTEL_GEN(rq->i915) >= 6)
390                         gen6_rps_boost(rq, rps_client);
391         }
392
393         timeout = i915_request_wait(rq, flags, timeout);
394
395 out:
396         if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
397                 i915_request_retire_upto(rq);
398
399         return timeout;
400 }
401
402 static long
403 i915_gem_object_wait_reservation(struct reservation_object *resv,
404                                  unsigned int flags,
405                                  long timeout,
406                                  struct intel_rps_client *rps_client)
407 {
408         unsigned int seq = __read_seqcount_begin(&resv->seq);
409         struct dma_fence *excl;
410         bool prune_fences = false;
411
412         if (flags & I915_WAIT_ALL) {
413                 struct dma_fence **shared;
414                 unsigned int count, i;
415                 int ret;
416
417                 ret = reservation_object_get_fences_rcu(resv,
418                                                         &excl, &count, &shared);
419                 if (ret)
420                         return ret;
421
422                 for (i = 0; i < count; i++) {
423                         timeout = i915_gem_object_wait_fence(shared[i],
424                                                              flags, timeout,
425                                                              rps_client);
426                         if (timeout < 0)
427                                 break;
428
429                         dma_fence_put(shared[i]);
430                 }
431
432                 for (; i < count; i++)
433                         dma_fence_put(shared[i]);
434                 kfree(shared);
435
436                 /*
437                  * If both shared fences and an exclusive fence exist,
438                  * then by construction the shared fences must be later
439                  * than the exclusive fence. If we successfully wait for
440                  * all the shared fences, we know that the exclusive fence
441                  * must all be signaled. If all the shared fences are
442                  * signaled, we can prune the array and recover the
443                  * floating references on the fences/requests.
444                  */
445                 prune_fences = count && timeout >= 0;
446         } else {
447                 excl = reservation_object_get_excl_rcu(resv);
448         }
449
450         if (excl && timeout >= 0)
451                 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
452                                                      rps_client);
453
454         dma_fence_put(excl);
455
456         /*
457          * Opportunistically prune the fences iff we know they have *all* been
458          * signaled and that the reservation object has not been changed (i.e.
459          * no new fences have been added).
460          */
461         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462                 if (reservation_object_trylock(resv)) {
463                         if (!__read_seqcount_retry(&resv->seq, seq))
464                                 reservation_object_add_excl_fence(resv, NULL);
465                         reservation_object_unlock(resv);
466                 }
467         }
468
469         return timeout;
470 }
471
472 static void __fence_set_priority(struct dma_fence *fence, int prio)
473 {
474         struct i915_request *rq;
475         struct intel_engine_cs *engine;
476
477         if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
478                 return;
479
480         rq = to_request(fence);
481         engine = rq->engine;
482
483         rcu_read_lock();
484         if (engine->schedule)
485                 engine->schedule(rq, prio);
486         rcu_read_unlock();
487 }
488
489 static void fence_set_priority(struct dma_fence *fence, int prio)
490 {
491         /* Recurse once into a fence-array */
492         if (dma_fence_is_array(fence)) {
493                 struct dma_fence_array *array = to_dma_fence_array(fence);
494                 int i;
495
496                 for (i = 0; i < array->num_fences; i++)
497                         __fence_set_priority(array->fences[i], prio);
498         } else {
499                 __fence_set_priority(fence, prio);
500         }
501 }
502
503 int
504 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
505                               unsigned int flags,
506                               int prio)
507 {
508         struct dma_fence *excl;
509
510         if (flags & I915_WAIT_ALL) {
511                 struct dma_fence **shared;
512                 unsigned int count, i;
513                 int ret;
514
515                 ret = reservation_object_get_fences_rcu(obj->resv,
516                                                         &excl, &count, &shared);
517                 if (ret)
518                         return ret;
519
520                 for (i = 0; i < count; i++) {
521                         fence_set_priority(shared[i], prio);
522                         dma_fence_put(shared[i]);
523                 }
524
525                 kfree(shared);
526         } else {
527                 excl = reservation_object_get_excl_rcu(obj->resv);
528         }
529
530         if (excl) {
531                 fence_set_priority(excl, prio);
532                 dma_fence_put(excl);
533         }
534         return 0;
535 }
536
537 /**
538  * Waits for rendering to the object to be completed
539  * @obj: i915 gem object
540  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
541  * @timeout: how long to wait
542  * @rps_client: client (user process) to charge for any waitboosting
543  */
544 int
545 i915_gem_object_wait(struct drm_i915_gem_object *obj,
546                      unsigned int flags,
547                      long timeout,
548                      struct intel_rps_client *rps_client)
549 {
550         might_sleep();
551 #if IS_ENABLED(CONFIG_LOCKDEP)
552         GEM_BUG_ON(debug_locks &&
553                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
554                    !!(flags & I915_WAIT_LOCKED));
555 #endif
556         GEM_BUG_ON(timeout < 0);
557
558         timeout = i915_gem_object_wait_reservation(obj->resv,
559                                                    flags, timeout,
560                                                    rps_client);
561         return timeout < 0 ? timeout : 0;
562 }
563
564 static struct intel_rps_client *to_rps_client(struct drm_file *file)
565 {
566         struct drm_i915_file_private *fpriv = file->driver_priv;
567
568         return &fpriv->rps_client;
569 }
570
571 static int
572 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
573                      struct drm_i915_gem_pwrite *args,
574                      struct drm_file *file)
575 {
576         void *vaddr = obj->phys_handle->vaddr + args->offset;
577         char __user *user_data = u64_to_user_ptr(args->data_ptr);
578
579         /* We manually control the domain here and pretend that it
580          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
581          */
582         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
583         if (copy_from_user(vaddr, user_data, args->size))
584                 return -EFAULT;
585
586         drm_clflush_virt_range(vaddr, args->size);
587         i915_gem_chipset_flush(to_i915(obj->base.dev));
588
589         intel_fb_obj_flush(obj, ORIGIN_CPU);
590         return 0;
591 }
592
593 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
594 {
595         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
596 }
597
598 void i915_gem_object_free(struct drm_i915_gem_object *obj)
599 {
600         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
601         kmem_cache_free(dev_priv->objects, obj);
602 }
603
604 static int
605 i915_gem_create(struct drm_file *file,
606                 struct drm_i915_private *dev_priv,
607                 uint64_t size,
608                 uint32_t *handle_p)
609 {
610         struct drm_i915_gem_object *obj;
611         int ret;
612         u32 handle;
613
614         size = roundup(size, PAGE_SIZE);
615         if (size == 0)
616                 return -EINVAL;
617
618         /* Allocate the new object */
619         obj = i915_gem_object_create(dev_priv, size);
620         if (IS_ERR(obj))
621                 return PTR_ERR(obj);
622
623         ret = drm_gem_handle_create(file, &obj->base, &handle);
624         /* drop reference from allocate - handle holds it now */
625         i915_gem_object_put(obj);
626         if (ret)
627                 return ret;
628
629         *handle_p = handle;
630         return 0;
631 }
632
633 int
634 i915_gem_dumb_create(struct drm_file *file,
635                      struct drm_device *dev,
636                      struct drm_mode_create_dumb *args)
637 {
638         /* have to work out size/pitch and return them */
639         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
640         args->size = args->pitch * args->height;
641         return i915_gem_create(file, to_i915(dev),
642                                args->size, &args->handle);
643 }
644
645 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
646 {
647         return !(obj->cache_level == I915_CACHE_NONE ||
648                  obj->cache_level == I915_CACHE_WT);
649 }
650
651 /**
652  * Creates a new mm object and returns a handle to it.
653  * @dev: drm device pointer
654  * @data: ioctl data blob
655  * @file: drm file pointer
656  */
657 int
658 i915_gem_create_ioctl(struct drm_device *dev, void *data,
659                       struct drm_file *file)
660 {
661         struct drm_i915_private *dev_priv = to_i915(dev);
662         struct drm_i915_gem_create *args = data;
663
664         i915_gem_flush_free_objects(dev_priv);
665
666         return i915_gem_create(file, dev_priv,
667                                args->size, &args->handle);
668 }
669
670 static inline enum fb_op_origin
671 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
672 {
673         return (domain == I915_GEM_DOMAIN_GTT ?
674                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
675 }
676
677 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
678 {
679         /*
680          * No actual flushing is required for the GTT write domain for reads
681          * from the GTT domain. Writes to it "immediately" go to main memory
682          * as far as we know, so there's no chipset flush. It also doesn't
683          * land in the GPU render cache.
684          *
685          * However, we do have to enforce the order so that all writes through
686          * the GTT land before any writes to the device, such as updates to
687          * the GATT itself.
688          *
689          * We also have to wait a bit for the writes to land from the GTT.
690          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
691          * timing. This issue has only been observed when switching quickly
692          * between GTT writes and CPU reads from inside the kernel on recent hw,
693          * and it appears to only affect discrete GTT blocks (i.e. on LLC
694          * system agents we cannot reproduce this behaviour, until Cannonlake
695          * that was!).
696          */
697
698         wmb();
699
700         intel_runtime_pm_get(dev_priv);
701         spin_lock_irq(&dev_priv->uncore.lock);
702
703         POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
704
705         spin_unlock_irq(&dev_priv->uncore.lock);
706         intel_runtime_pm_put(dev_priv);
707 }
708
709 static void
710 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
711 {
712         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
713         struct i915_vma *vma;
714
715         if (!(obj->write_domain & flush_domains))
716                 return;
717
718         switch (obj->write_domain) {
719         case I915_GEM_DOMAIN_GTT:
720                 i915_gem_flush_ggtt_writes(dev_priv);
721
722                 intel_fb_obj_flush(obj,
723                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
724
725                 for_each_ggtt_vma(vma, obj) {
726                         if (vma->iomap)
727                                 continue;
728
729                         i915_vma_unset_ggtt_write(vma);
730                 }
731                 break;
732
733         case I915_GEM_DOMAIN_CPU:
734                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
735                 break;
736
737         case I915_GEM_DOMAIN_RENDER:
738                 if (gpu_write_needs_clflush(obj))
739                         obj->cache_dirty = true;
740                 break;
741         }
742
743         obj->write_domain = 0;
744 }
745
746 static inline int
747 __copy_to_user_swizzled(char __user *cpu_vaddr,
748                         const char *gpu_vaddr, int gpu_offset,
749                         int length)
750 {
751         int ret, cpu_offset = 0;
752
753         while (length > 0) {
754                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
755                 int this_length = min(cacheline_end - gpu_offset, length);
756                 int swizzled_gpu_offset = gpu_offset ^ 64;
757
758                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
759                                      gpu_vaddr + swizzled_gpu_offset,
760                                      this_length);
761                 if (ret)
762                         return ret + length;
763
764                 cpu_offset += this_length;
765                 gpu_offset += this_length;
766                 length -= this_length;
767         }
768
769         return 0;
770 }
771
772 static inline int
773 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
774                           const char __user *cpu_vaddr,
775                           int length)
776 {
777         int ret, cpu_offset = 0;
778
779         while (length > 0) {
780                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
781                 int this_length = min(cacheline_end - gpu_offset, length);
782                 int swizzled_gpu_offset = gpu_offset ^ 64;
783
784                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
785                                        cpu_vaddr + cpu_offset,
786                                        this_length);
787                 if (ret)
788                         return ret + length;
789
790                 cpu_offset += this_length;
791                 gpu_offset += this_length;
792                 length -= this_length;
793         }
794
795         return 0;
796 }
797
798 /*
799  * Pins the specified object's pages and synchronizes the object with
800  * GPU accesses. Sets needs_clflush to non-zero if the caller should
801  * flush the object from the CPU cache.
802  */
803 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
804                                     unsigned int *needs_clflush)
805 {
806         int ret;
807
808         lockdep_assert_held(&obj->base.dev->struct_mutex);
809
810         *needs_clflush = 0;
811         if (!i915_gem_object_has_struct_page(obj))
812                 return -ENODEV;
813
814         ret = i915_gem_object_wait(obj,
815                                    I915_WAIT_INTERRUPTIBLE |
816                                    I915_WAIT_LOCKED,
817                                    MAX_SCHEDULE_TIMEOUT,
818                                    NULL);
819         if (ret)
820                 return ret;
821
822         ret = i915_gem_object_pin_pages(obj);
823         if (ret)
824                 return ret;
825
826         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
827             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
828                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
829                 if (ret)
830                         goto err_unpin;
831                 else
832                         goto out;
833         }
834
835         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
836
837         /* If we're not in the cpu read domain, set ourself into the gtt
838          * read domain and manually flush cachelines (if required). This
839          * optimizes for the case when the gpu will dirty the data
840          * anyway again before the next pread happens.
841          */
842         if (!obj->cache_dirty &&
843             !(obj->read_domains & I915_GEM_DOMAIN_CPU))
844                 *needs_clflush = CLFLUSH_BEFORE;
845
846 out:
847         /* return with the pages pinned */
848         return 0;
849
850 err_unpin:
851         i915_gem_object_unpin_pages(obj);
852         return ret;
853 }
854
855 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
856                                      unsigned int *needs_clflush)
857 {
858         int ret;
859
860         lockdep_assert_held(&obj->base.dev->struct_mutex);
861
862         *needs_clflush = 0;
863         if (!i915_gem_object_has_struct_page(obj))
864                 return -ENODEV;
865
866         ret = i915_gem_object_wait(obj,
867                                    I915_WAIT_INTERRUPTIBLE |
868                                    I915_WAIT_LOCKED |
869                                    I915_WAIT_ALL,
870                                    MAX_SCHEDULE_TIMEOUT,
871                                    NULL);
872         if (ret)
873                 return ret;
874
875         ret = i915_gem_object_pin_pages(obj);
876         if (ret)
877                 return ret;
878
879         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
880             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
881                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
882                 if (ret)
883                         goto err_unpin;
884                 else
885                         goto out;
886         }
887
888         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
889
890         /* If we're not in the cpu write domain, set ourself into the
891          * gtt write domain and manually flush cachelines (as required).
892          * This optimizes for the case when the gpu will use the data
893          * right away and we therefore have to clflush anyway.
894          */
895         if (!obj->cache_dirty) {
896                 *needs_clflush |= CLFLUSH_AFTER;
897
898                 /*
899                  * Same trick applies to invalidate partially written
900                  * cachelines read before writing.
901                  */
902                 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
903                         *needs_clflush |= CLFLUSH_BEFORE;
904         }
905
906 out:
907         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
908         obj->mm.dirty = true;
909         /* return with the pages pinned */
910         return 0;
911
912 err_unpin:
913         i915_gem_object_unpin_pages(obj);
914         return ret;
915 }
916
917 static void
918 shmem_clflush_swizzled_range(char *addr, unsigned long length,
919                              bool swizzled)
920 {
921         if (unlikely(swizzled)) {
922                 unsigned long start = (unsigned long) addr;
923                 unsigned long end = (unsigned long) addr + length;
924
925                 /* For swizzling simply ensure that we always flush both
926                  * channels. Lame, but simple and it works. Swizzled
927                  * pwrite/pread is far from a hotpath - current userspace
928                  * doesn't use it at all. */
929                 start = round_down(start, 128);
930                 end = round_up(end, 128);
931
932                 drm_clflush_virt_range((void *)start, end - start);
933         } else {
934                 drm_clflush_virt_range(addr, length);
935         }
936
937 }
938
939 /* Only difference to the fast-path function is that this can handle bit17
940  * and uses non-atomic copy and kmap functions. */
941 static int
942 shmem_pread_slow(struct page *page, int offset, int length,
943                  char __user *user_data,
944                  bool page_do_bit17_swizzling, bool needs_clflush)
945 {
946         char *vaddr;
947         int ret;
948
949         vaddr = kmap(page);
950         if (needs_clflush)
951                 shmem_clflush_swizzled_range(vaddr + offset, length,
952                                              page_do_bit17_swizzling);
953
954         if (page_do_bit17_swizzling)
955                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
956         else
957                 ret = __copy_to_user(user_data, vaddr + offset, length);
958         kunmap(page);
959
960         return ret ? - EFAULT : 0;
961 }
962
963 static int
964 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
965             bool page_do_bit17_swizzling, bool needs_clflush)
966 {
967         int ret;
968
969         ret = -ENODEV;
970         if (!page_do_bit17_swizzling) {
971                 char *vaddr = kmap_atomic(page);
972
973                 if (needs_clflush)
974                         drm_clflush_virt_range(vaddr + offset, length);
975                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
976                 kunmap_atomic(vaddr);
977         }
978         if (ret == 0)
979                 return 0;
980
981         return shmem_pread_slow(page, offset, length, user_data,
982                                 page_do_bit17_swizzling, needs_clflush);
983 }
984
985 static int
986 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
987                      struct drm_i915_gem_pread *args)
988 {
989         char __user *user_data;
990         u64 remain;
991         unsigned int obj_do_bit17_swizzling;
992         unsigned int needs_clflush;
993         unsigned int idx, offset;
994         int ret;
995
996         obj_do_bit17_swizzling = 0;
997         if (i915_gem_object_needs_bit17_swizzle(obj))
998                 obj_do_bit17_swizzling = BIT(17);
999
1000         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1001         if (ret)
1002                 return ret;
1003
1004         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005         mutex_unlock(&obj->base.dev->struct_mutex);
1006         if (ret)
1007                 return ret;
1008
1009         remain = args->size;
1010         user_data = u64_to_user_ptr(args->data_ptr);
1011         offset = offset_in_page(args->offset);
1012         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013                 struct page *page = i915_gem_object_get_page(obj, idx);
1014                 int length;
1015
1016                 length = remain;
1017                 if (offset + length > PAGE_SIZE)
1018                         length = PAGE_SIZE - offset;
1019
1020                 ret = shmem_pread(page, offset, length, user_data,
1021                                   page_to_phys(page) & obj_do_bit17_swizzling,
1022                                   needs_clflush);
1023                 if (ret)
1024                         break;
1025
1026                 remain -= length;
1027                 user_data += length;
1028                 offset = 0;
1029         }
1030
1031         i915_gem_obj_finish_shmem_access(obj);
1032         return ret;
1033 }
1034
1035 static inline bool
1036 gtt_user_read(struct io_mapping *mapping,
1037               loff_t base, int offset,
1038               char __user *user_data, int length)
1039 {
1040         void __iomem *vaddr;
1041         unsigned long unwritten;
1042
1043         /* We can use the cpu mem copy function because this is X86. */
1044         vaddr = io_mapping_map_atomic_wc(mapping, base);
1045         unwritten = __copy_to_user_inatomic(user_data,
1046                                             (void __force *)vaddr + offset,
1047                                             length);
1048         io_mapping_unmap_atomic(vaddr);
1049         if (unwritten) {
1050                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051                 unwritten = copy_to_user(user_data,
1052                                          (void __force *)vaddr + offset,
1053                                          length);
1054                 io_mapping_unmap(vaddr);
1055         }
1056         return unwritten;
1057 }
1058
1059 static int
1060 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061                    const struct drm_i915_gem_pread *args)
1062 {
1063         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064         struct i915_ggtt *ggtt = &i915->ggtt;
1065         struct drm_mm_node node;
1066         struct i915_vma *vma;
1067         void __user *user_data;
1068         u64 remain, offset;
1069         int ret;
1070
1071         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1072         if (ret)
1073                 return ret;
1074
1075         intel_runtime_pm_get(i915);
1076         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077                                        PIN_MAPPABLE |
1078                                        PIN_NONFAULT |
1079                                        PIN_NONBLOCK);
1080         if (!IS_ERR(vma)) {
1081                 node.start = i915_ggtt_offset(vma);
1082                 node.allocated = false;
1083                 ret = i915_vma_put_fence(vma);
1084                 if (ret) {
1085                         i915_vma_unpin(vma);
1086                         vma = ERR_PTR(ret);
1087                 }
1088         }
1089         if (IS_ERR(vma)) {
1090                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091                 if (ret)
1092                         goto out_unlock;
1093                 GEM_BUG_ON(!node.allocated);
1094         }
1095
1096         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1097         if (ret)
1098                 goto out_unpin;
1099
1100         mutex_unlock(&i915->drm.struct_mutex);
1101
1102         user_data = u64_to_user_ptr(args->data_ptr);
1103         remain = args->size;
1104         offset = args->offset;
1105
1106         while (remain > 0) {
1107                 /* Operation in this page
1108                  *
1109                  * page_base = page offset within aperture
1110                  * page_offset = offset within page
1111                  * page_length = bytes to copy for this page
1112                  */
1113                 u32 page_base = node.start;
1114                 unsigned page_offset = offset_in_page(offset);
1115                 unsigned page_length = PAGE_SIZE - page_offset;
1116                 page_length = remain < page_length ? remain : page_length;
1117                 if (node.allocated) {
1118                         wmb();
1119                         ggtt->base.insert_page(&ggtt->base,
1120                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121                                                node.start, I915_CACHE_NONE, 0);
1122                         wmb();
1123                 } else {
1124                         page_base += offset & PAGE_MASK;
1125                 }
1126
1127                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128                                   user_data, page_length)) {
1129                         ret = -EFAULT;
1130                         break;
1131                 }
1132
1133                 remain -= page_length;
1134                 user_data += page_length;
1135                 offset += page_length;
1136         }
1137
1138         mutex_lock(&i915->drm.struct_mutex);
1139 out_unpin:
1140         if (node.allocated) {
1141                 wmb();
1142                 ggtt->base.clear_range(&ggtt->base,
1143                                        node.start, node.size);
1144                 remove_mappable_node(&node);
1145         } else {
1146                 i915_vma_unpin(vma);
1147         }
1148 out_unlock:
1149         intel_runtime_pm_put(i915);
1150         mutex_unlock(&i915->drm.struct_mutex);
1151
1152         return ret;
1153 }
1154
1155 /**
1156  * Reads data from the object referenced by handle.
1157  * @dev: drm device pointer
1158  * @data: ioctl data blob
1159  * @file: drm file pointer
1160  *
1161  * On error, the contents of *data are undefined.
1162  */
1163 int
1164 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165                      struct drm_file *file)
1166 {
1167         struct drm_i915_gem_pread *args = data;
1168         struct drm_i915_gem_object *obj;
1169         int ret;
1170
1171         if (args->size == 0)
1172                 return 0;
1173
1174         if (!access_ok(VERIFY_WRITE,
1175                        u64_to_user_ptr(args->data_ptr),
1176                        args->size))
1177                 return -EFAULT;
1178
1179         obj = i915_gem_object_lookup(file, args->handle);
1180         if (!obj)
1181                 return -ENOENT;
1182
1183         /* Bounds check source.  */
1184         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1185                 ret = -EINVAL;
1186                 goto out;
1187         }
1188
1189         trace_i915_gem_object_pread(obj, args->offset, args->size);
1190
1191         ret = i915_gem_object_wait(obj,
1192                                    I915_WAIT_INTERRUPTIBLE,
1193                                    MAX_SCHEDULE_TIMEOUT,
1194                                    to_rps_client(file));
1195         if (ret)
1196                 goto out;
1197
1198         ret = i915_gem_object_pin_pages(obj);
1199         if (ret)
1200                 goto out;
1201
1202         ret = i915_gem_shmem_pread(obj, args);
1203         if (ret == -EFAULT || ret == -ENODEV)
1204                 ret = i915_gem_gtt_pread(obj, args);
1205
1206         i915_gem_object_unpin_pages(obj);
1207 out:
1208         i915_gem_object_put(obj);
1209         return ret;
1210 }
1211
1212 /* This is the fast write path which cannot handle
1213  * page faults in the source data
1214  */
1215
1216 static inline bool
1217 ggtt_write(struct io_mapping *mapping,
1218            loff_t base, int offset,
1219            char __user *user_data, int length)
1220 {
1221         void __iomem *vaddr;
1222         unsigned long unwritten;
1223
1224         /* We can use the cpu mem copy function because this is X86. */
1225         vaddr = io_mapping_map_atomic_wc(mapping, base);
1226         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227                                                       user_data, length);
1228         io_mapping_unmap_atomic(vaddr);
1229         if (unwritten) {
1230                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231                 unwritten = copy_from_user((void __force *)vaddr + offset,
1232                                            user_data, length);
1233                 io_mapping_unmap(vaddr);
1234         }
1235
1236         return unwritten;
1237 }
1238
1239 /**
1240  * This is the fast pwrite path, where we copy the data directly from the
1241  * user into the GTT, uncached.
1242  * @obj: i915 GEM object
1243  * @args: pwrite arguments structure
1244  */
1245 static int
1246 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247                          const struct drm_i915_gem_pwrite *args)
1248 {
1249         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250         struct i915_ggtt *ggtt = &i915->ggtt;
1251         struct drm_mm_node node;
1252         struct i915_vma *vma;
1253         u64 remain, offset;
1254         void __user *user_data;
1255         int ret;
1256
1257         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1258         if (ret)
1259                 return ret;
1260
1261         if (i915_gem_object_has_struct_page(obj)) {
1262                 /*
1263                  * Avoid waking the device up if we can fallback, as
1264                  * waking/resuming is very slow (worst-case 10-100 ms
1265                  * depending on PCI sleeps and our own resume time).
1266                  * This easily dwarfs any performance advantage from
1267                  * using the cache bypass of indirect GGTT access.
1268                  */
1269                 if (!intel_runtime_pm_get_if_in_use(i915)) {
1270                         ret = -EFAULT;
1271                         goto out_unlock;
1272                 }
1273         } else {
1274                 /* No backing pages, no fallback, we must force GGTT access */
1275                 intel_runtime_pm_get(i915);
1276         }
1277
1278         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279                                        PIN_MAPPABLE |
1280                                        PIN_NONFAULT |
1281                                        PIN_NONBLOCK);
1282         if (!IS_ERR(vma)) {
1283                 node.start = i915_ggtt_offset(vma);
1284                 node.allocated = false;
1285                 ret = i915_vma_put_fence(vma);
1286                 if (ret) {
1287                         i915_vma_unpin(vma);
1288                         vma = ERR_PTR(ret);
1289                 }
1290         }
1291         if (IS_ERR(vma)) {
1292                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293                 if (ret)
1294                         goto out_rpm;
1295                 GEM_BUG_ON(!node.allocated);
1296         }
1297
1298         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1299         if (ret)
1300                 goto out_unpin;
1301
1302         mutex_unlock(&i915->drm.struct_mutex);
1303
1304         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1305
1306         user_data = u64_to_user_ptr(args->data_ptr);
1307         offset = args->offset;
1308         remain = args->size;
1309         while (remain) {
1310                 /* Operation in this page
1311                  *
1312                  * page_base = page offset within aperture
1313                  * page_offset = offset within page
1314                  * page_length = bytes to copy for this page
1315                  */
1316                 u32 page_base = node.start;
1317                 unsigned int page_offset = offset_in_page(offset);
1318                 unsigned int page_length = PAGE_SIZE - page_offset;
1319                 page_length = remain < page_length ? remain : page_length;
1320                 if (node.allocated) {
1321                         wmb(); /* flush the write before we modify the GGTT */
1322                         ggtt->base.insert_page(&ggtt->base,
1323                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324                                                node.start, I915_CACHE_NONE, 0);
1325                         wmb(); /* flush modifications to the GGTT (insert_page) */
1326                 } else {
1327                         page_base += offset & PAGE_MASK;
1328                 }
1329                 /* If we get a fault while copying data, then (presumably) our
1330                  * source page isn't available.  Return the error and we'll
1331                  * retry in the slow path.
1332                  * If the object is non-shmem backed, we retry again with the
1333                  * path that handles page fault.
1334                  */
1335                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336                                user_data, page_length)) {
1337                         ret = -EFAULT;
1338                         break;
1339                 }
1340
1341                 remain -= page_length;
1342                 user_data += page_length;
1343                 offset += page_length;
1344         }
1345         intel_fb_obj_flush(obj, ORIGIN_CPU);
1346
1347         mutex_lock(&i915->drm.struct_mutex);
1348 out_unpin:
1349         if (node.allocated) {
1350                 wmb();
1351                 ggtt->base.clear_range(&ggtt->base,
1352                                        node.start, node.size);
1353                 remove_mappable_node(&node);
1354         } else {
1355                 i915_vma_unpin(vma);
1356         }
1357 out_rpm:
1358         intel_runtime_pm_put(i915);
1359 out_unlock:
1360         mutex_unlock(&i915->drm.struct_mutex);
1361         return ret;
1362 }
1363
1364 static int
1365 shmem_pwrite_slow(struct page *page, int offset, int length,
1366                   char __user *user_data,
1367                   bool page_do_bit17_swizzling,
1368                   bool needs_clflush_before,
1369                   bool needs_clflush_after)
1370 {
1371         char *vaddr;
1372         int ret;
1373
1374         vaddr = kmap(page);
1375         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376                 shmem_clflush_swizzled_range(vaddr + offset, length,
1377                                              page_do_bit17_swizzling);
1378         if (page_do_bit17_swizzling)
1379                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1380                                                 length);
1381         else
1382                 ret = __copy_from_user(vaddr + offset, user_data, length);
1383         if (needs_clflush_after)
1384                 shmem_clflush_swizzled_range(vaddr + offset, length,
1385                                              page_do_bit17_swizzling);
1386         kunmap(page);
1387
1388         return ret ? -EFAULT : 0;
1389 }
1390
1391 /* Per-page copy function for the shmem pwrite fastpath.
1392  * Flushes invalid cachelines before writing to the target if
1393  * needs_clflush_before is set and flushes out any written cachelines after
1394  * writing if needs_clflush is set.
1395  */
1396 static int
1397 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398              bool page_do_bit17_swizzling,
1399              bool needs_clflush_before,
1400              bool needs_clflush_after)
1401 {
1402         int ret;
1403
1404         ret = -ENODEV;
1405         if (!page_do_bit17_swizzling) {
1406                 char *vaddr = kmap_atomic(page);
1407
1408                 if (needs_clflush_before)
1409                         drm_clflush_virt_range(vaddr + offset, len);
1410                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411                 if (needs_clflush_after)
1412                         drm_clflush_virt_range(vaddr + offset, len);
1413
1414                 kunmap_atomic(vaddr);
1415         }
1416         if (ret == 0)
1417                 return ret;
1418
1419         return shmem_pwrite_slow(page, offset, len, user_data,
1420                                  page_do_bit17_swizzling,
1421                                  needs_clflush_before,
1422                                  needs_clflush_after);
1423 }
1424
1425 static int
1426 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427                       const struct drm_i915_gem_pwrite *args)
1428 {
1429         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430         void __user *user_data;
1431         u64 remain;
1432         unsigned int obj_do_bit17_swizzling;
1433         unsigned int partial_cacheline_write;
1434         unsigned int needs_clflush;
1435         unsigned int offset, idx;
1436         int ret;
1437
1438         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439         if (ret)
1440                 return ret;
1441
1442         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443         mutex_unlock(&i915->drm.struct_mutex);
1444         if (ret)
1445                 return ret;
1446
1447         obj_do_bit17_swizzling = 0;
1448         if (i915_gem_object_needs_bit17_swizzle(obj))
1449                 obj_do_bit17_swizzling = BIT(17);
1450
1451         /* If we don't overwrite a cacheline completely we need to be
1452          * careful to have up-to-date data by first clflushing. Don't
1453          * overcomplicate things and flush the entire patch.
1454          */
1455         partial_cacheline_write = 0;
1456         if (needs_clflush & CLFLUSH_BEFORE)
1457                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1458
1459         user_data = u64_to_user_ptr(args->data_ptr);
1460         remain = args->size;
1461         offset = offset_in_page(args->offset);
1462         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463                 struct page *page = i915_gem_object_get_page(obj, idx);
1464                 int length;
1465
1466                 length = remain;
1467                 if (offset + length > PAGE_SIZE)
1468                         length = PAGE_SIZE - offset;
1469
1470                 ret = shmem_pwrite(page, offset, length, user_data,
1471                                    page_to_phys(page) & obj_do_bit17_swizzling,
1472                                    (offset | length) & partial_cacheline_write,
1473                                    needs_clflush & CLFLUSH_AFTER);
1474                 if (ret)
1475                         break;
1476
1477                 remain -= length;
1478                 user_data += length;
1479                 offset = 0;
1480         }
1481
1482         intel_fb_obj_flush(obj, ORIGIN_CPU);
1483         i915_gem_obj_finish_shmem_access(obj);
1484         return ret;
1485 }
1486
1487 /**
1488  * Writes data to the object referenced by handle.
1489  * @dev: drm device
1490  * @data: ioctl data blob
1491  * @file: drm file
1492  *
1493  * On error, the contents of the buffer that were to be modified are undefined.
1494  */
1495 int
1496 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497                       struct drm_file *file)
1498 {
1499         struct drm_i915_gem_pwrite *args = data;
1500         struct drm_i915_gem_object *obj;
1501         int ret;
1502
1503         if (args->size == 0)
1504                 return 0;
1505
1506         if (!access_ok(VERIFY_READ,
1507                        u64_to_user_ptr(args->data_ptr),
1508                        args->size))
1509                 return -EFAULT;
1510
1511         obj = i915_gem_object_lookup(file, args->handle);
1512         if (!obj)
1513                 return -ENOENT;
1514
1515         /* Bounds check destination. */
1516         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1517                 ret = -EINVAL;
1518                 goto err;
1519         }
1520
1521         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1522
1523         ret = -ENODEV;
1524         if (obj->ops->pwrite)
1525                 ret = obj->ops->pwrite(obj, args);
1526         if (ret != -ENODEV)
1527                 goto err;
1528
1529         ret = i915_gem_object_wait(obj,
1530                                    I915_WAIT_INTERRUPTIBLE |
1531                                    I915_WAIT_ALL,
1532                                    MAX_SCHEDULE_TIMEOUT,
1533                                    to_rps_client(file));
1534         if (ret)
1535                 goto err;
1536
1537         ret = i915_gem_object_pin_pages(obj);
1538         if (ret)
1539                 goto err;
1540
1541         ret = -EFAULT;
1542         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1543          * it would end up going through the fenced access, and we'll get
1544          * different detiling behavior between reading and writing.
1545          * pread/pwrite currently are reading and writing from the CPU
1546          * perspective, requiring manual detiling by the client.
1547          */
1548         if (!i915_gem_object_has_struct_page(obj) ||
1549             cpu_write_needs_clflush(obj))
1550                 /* Note that the gtt paths might fail with non-page-backed user
1551                  * pointers (e.g. gtt mappings when moving data between
1552                  * textures). Fallback to the shmem path in that case.
1553                  */
1554                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1555
1556         if (ret == -EFAULT || ret == -ENOSPC) {
1557                 if (obj->phys_handle)
1558                         ret = i915_gem_phys_pwrite(obj, args, file);
1559                 else
1560                         ret = i915_gem_shmem_pwrite(obj, args);
1561         }
1562
1563         i915_gem_object_unpin_pages(obj);
1564 err:
1565         i915_gem_object_put(obj);
1566         return ret;
1567 }
1568
1569 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1570 {
1571         struct drm_i915_private *i915;
1572         struct list_head *list;
1573         struct i915_vma *vma;
1574
1575         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1576
1577         for_each_ggtt_vma(vma, obj) {
1578                 if (i915_vma_is_active(vma))
1579                         continue;
1580
1581                 if (!drm_mm_node_allocated(&vma->node))
1582                         continue;
1583
1584                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1585         }
1586
1587         i915 = to_i915(obj->base.dev);
1588         spin_lock(&i915->mm.obj_lock);
1589         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590         list_move_tail(&obj->mm.link, list);
1591         spin_unlock(&i915->mm.obj_lock);
1592 }
1593
1594 /**
1595  * Called when user space prepares to use an object with the CPU, either
1596  * through the mmap ioctl's mapping or a GTT mapping.
1597  * @dev: drm device
1598  * @data: ioctl data blob
1599  * @file: drm file
1600  */
1601 int
1602 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603                           struct drm_file *file)
1604 {
1605         struct drm_i915_gem_set_domain *args = data;
1606         struct drm_i915_gem_object *obj;
1607         uint32_t read_domains = args->read_domains;
1608         uint32_t write_domain = args->write_domain;
1609         int err;
1610
1611         /* Only handle setting domains to types used by the CPU. */
1612         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1613                 return -EINVAL;
1614
1615         /* Having something in the write domain implies it's in the read
1616          * domain, and only that read domain.  Enforce that in the request.
1617          */
1618         if (write_domain != 0 && read_domains != write_domain)
1619                 return -EINVAL;
1620
1621         obj = i915_gem_object_lookup(file, args->handle);
1622         if (!obj)
1623                 return -ENOENT;
1624
1625         /* Try to flush the object off the GPU without holding the lock.
1626          * We will repeat the flush holding the lock in the normal manner
1627          * to catch cases where we are gazumped.
1628          */
1629         err = i915_gem_object_wait(obj,
1630                                    I915_WAIT_INTERRUPTIBLE |
1631                                    (write_domain ? I915_WAIT_ALL : 0),
1632                                    MAX_SCHEDULE_TIMEOUT,
1633                                    to_rps_client(file));
1634         if (err)
1635                 goto out;
1636
1637         /*
1638          * Proxy objects do not control access to the backing storage, ergo
1639          * they cannot be used as a means to manipulate the cache domain
1640          * tracking for that backing storage. The proxy object is always
1641          * considered to be outside of any cache domain.
1642          */
1643         if (i915_gem_object_is_proxy(obj)) {
1644                 err = -ENXIO;
1645                 goto out;
1646         }
1647
1648         /*
1649          * Flush and acquire obj->pages so that we are coherent through
1650          * direct access in memory with previous cached writes through
1651          * shmemfs and that our cache domain tracking remains valid.
1652          * For example, if the obj->filp was moved to swap without us
1653          * being notified and releasing the pages, we would mistakenly
1654          * continue to assume that the obj remained out of the CPU cached
1655          * domain.
1656          */
1657         err = i915_gem_object_pin_pages(obj);
1658         if (err)
1659                 goto out;
1660
1661         err = i915_mutex_lock_interruptible(dev);
1662         if (err)
1663                 goto out_unpin;
1664
1665         if (read_domains & I915_GEM_DOMAIN_WC)
1666                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667         else if (read_domains & I915_GEM_DOMAIN_GTT)
1668                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669         else
1670                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1671
1672         /* And bump the LRU for this access */
1673         i915_gem_object_bump_inactive_ggtt(obj);
1674
1675         mutex_unlock(&dev->struct_mutex);
1676
1677         if (write_domain != 0)
1678                 intel_fb_obj_invalidate(obj,
1679                                         fb_write_origin(obj, write_domain));
1680
1681 out_unpin:
1682         i915_gem_object_unpin_pages(obj);
1683 out:
1684         i915_gem_object_put(obj);
1685         return err;
1686 }
1687
1688 /**
1689  * Called when user space has done writes to this buffer
1690  * @dev: drm device
1691  * @data: ioctl data blob
1692  * @file: drm file
1693  */
1694 int
1695 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696                          struct drm_file *file)
1697 {
1698         struct drm_i915_gem_sw_finish *args = data;
1699         struct drm_i915_gem_object *obj;
1700
1701         obj = i915_gem_object_lookup(file, args->handle);
1702         if (!obj)
1703                 return -ENOENT;
1704
1705         /*
1706          * Proxy objects are barred from CPU access, so there is no
1707          * need to ban sw_finish as it is a nop.
1708          */
1709
1710         /* Pinned buffers may be scanout, so flush the cache */
1711         i915_gem_object_flush_if_display(obj);
1712         i915_gem_object_put(obj);
1713
1714         return 0;
1715 }
1716
1717 /**
1718  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1719  *                       it is mapped to.
1720  * @dev: drm device
1721  * @data: ioctl data blob
1722  * @file: drm file
1723  *
1724  * While the mapping holds a reference on the contents of the object, it doesn't
1725  * imply a ref on the object itself.
1726  *
1727  * IMPORTANT:
1728  *
1729  * DRM driver writers who look a this function as an example for how to do GEM
1730  * mmap support, please don't implement mmap support like here. The modern way
1731  * to implement DRM mmap support is with an mmap offset ioctl (like
1732  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733  * That way debug tooling like valgrind will understand what's going on, hiding
1734  * the mmap call in a driver private ioctl will break that. The i915 driver only
1735  * does cpu mmaps this way because we didn't know better.
1736  */
1737 int
1738 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739                     struct drm_file *file)
1740 {
1741         struct drm_i915_gem_mmap *args = data;
1742         struct drm_i915_gem_object *obj;
1743         unsigned long addr;
1744
1745         if (args->flags & ~(I915_MMAP_WC))
1746                 return -EINVAL;
1747
1748         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749                 return -ENODEV;
1750
1751         obj = i915_gem_object_lookup(file, args->handle);
1752         if (!obj)
1753                 return -ENOENT;
1754
1755         /* prime objects have no backing filp to GEM mmap
1756          * pages from.
1757          */
1758         if (!obj->base.filp) {
1759                 i915_gem_object_put(obj);
1760                 return -ENXIO;
1761         }
1762
1763         addr = vm_mmap(obj->base.filp, 0, args->size,
1764                        PROT_READ | PROT_WRITE, MAP_SHARED,
1765                        args->offset);
1766         if (args->flags & I915_MMAP_WC) {
1767                 struct mm_struct *mm = current->mm;
1768                 struct vm_area_struct *vma;
1769
1770                 if (down_write_killable(&mm->mmap_sem)) {
1771                         i915_gem_object_put(obj);
1772                         return -EINTR;
1773                 }
1774                 vma = find_vma(mm, addr);
1775                 if (vma)
1776                         vma->vm_page_prot =
1777                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1778                 else
1779                         addr = -ENOMEM;
1780                 up_write(&mm->mmap_sem);
1781
1782                 /* This may race, but that's ok, it only gets set */
1783                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1784         }
1785         i915_gem_object_put(obj);
1786         if (IS_ERR((void *)addr))
1787                 return addr;
1788
1789         args->addr_ptr = (uint64_t) addr;
1790
1791         return 0;
1792 }
1793
1794 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1795 {
1796         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1797 }
1798
1799 /**
1800  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1801  *
1802  * A history of the GTT mmap interface:
1803  *
1804  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805  *     aligned and suitable for fencing, and still fit into the available
1806  *     mappable space left by the pinned display objects. A classic problem
1807  *     we called the page-fault-of-doom where we would ping-pong between
1808  *     two objects that could not fit inside the GTT and so the memcpy
1809  *     would page one object in at the expense of the other between every
1810  *     single byte.
1811  *
1812  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814  *     object is too large for the available space (or simply too large
1815  *     for the mappable aperture!), a view is created instead and faulted
1816  *     into userspace. (This view is aligned and sized appropriately for
1817  *     fenced access.)
1818  *
1819  * 2 - Recognise WC as a separate cache domain so that we can flush the
1820  *     delayed writes via GTT before performing direct access via WC.
1821  *
1822  * Restrictions:
1823  *
1824  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1825  *    hangs on some architectures, corruption on others. An attempt to service
1826  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1827  *
1828  *  * the object must be able to fit into RAM (physical memory, though no
1829  *    limited to the mappable aperture).
1830  *
1831  *
1832  * Caveats:
1833  *
1834  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1835  *    all data to system memory. Subsequent access will not be synchronized.
1836  *
1837  *  * all mappings are revoked on runtime device suspend.
1838  *
1839  *  * there are only 8, 16 or 32 fence registers to share between all users
1840  *    (older machines require fence register for display and blitter access
1841  *    as well). Contention of the fence registers will cause the previous users
1842  *    to be unmapped and any new access will generate new page faults.
1843  *
1844  *  * running out of memory while servicing a fault may generate a SIGBUS,
1845  *    rather than the expected SIGSEGV.
1846  */
1847 int i915_gem_mmap_gtt_version(void)
1848 {
1849         return 2;
1850 }
1851
1852 static inline struct i915_ggtt_view
1853 compute_partial_view(struct drm_i915_gem_object *obj,
1854                      pgoff_t page_offset,
1855                      unsigned int chunk)
1856 {
1857         struct i915_ggtt_view view;
1858
1859         if (i915_gem_object_is_tiled(obj))
1860                 chunk = roundup(chunk, tile_row_pages(obj));
1861
1862         view.type = I915_GGTT_VIEW_PARTIAL;
1863         view.partial.offset = rounddown(page_offset, chunk);
1864         view.partial.size =
1865                 min_t(unsigned int, chunk,
1866                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1867
1868         /* If the partial covers the entire object, just create a normal VMA. */
1869         if (chunk >= obj->base.size >> PAGE_SHIFT)
1870                 view.type = I915_GGTT_VIEW_NORMAL;
1871
1872         return view;
1873 }
1874
1875 /**
1876  * i915_gem_fault - fault a page into the GTT
1877  * @vmf: fault info
1878  *
1879  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880  * from userspace.  The fault handler takes care of binding the object to
1881  * the GTT (if needed), allocating and programming a fence register (again,
1882  * only if needed based on whether the old reg is still valid or the object
1883  * is tiled) and inserting a new PTE into the faulting process.
1884  *
1885  * Note that the faulting process may involve evicting existing objects
1886  * from the GTT and/or fence registers to make room.  So performance may
1887  * suffer if the GTT working set is large or there are few fence registers
1888  * left.
1889  *
1890  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1892  */
1893 int i915_gem_fault(struct vm_fault *vmf)
1894 {
1895 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896         struct vm_area_struct *area = vmf->vma;
1897         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898         struct drm_device *dev = obj->base.dev;
1899         struct drm_i915_private *dev_priv = to_i915(dev);
1900         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1901         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902         struct i915_vma *vma;
1903         pgoff_t page_offset;
1904         unsigned int flags;
1905         int ret;
1906
1907         /* We don't use vmf->pgoff since that has the fake offset */
1908         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1909
1910         trace_i915_gem_object_fault(obj, page_offset, true, write);
1911
1912         /* Try to flush the object off the GPU first without holding the lock.
1913          * Upon acquiring the lock, we will perform our sanity checks and then
1914          * repeat the flush holding the lock in the normal manner to catch cases
1915          * where we are gazumped.
1916          */
1917         ret = i915_gem_object_wait(obj,
1918                                    I915_WAIT_INTERRUPTIBLE,
1919                                    MAX_SCHEDULE_TIMEOUT,
1920                                    NULL);
1921         if (ret)
1922                 goto err;
1923
1924         ret = i915_gem_object_pin_pages(obj);
1925         if (ret)
1926                 goto err;
1927
1928         intel_runtime_pm_get(dev_priv);
1929
1930         ret = i915_mutex_lock_interruptible(dev);
1931         if (ret)
1932                 goto err_rpm;
1933
1934         /* Access to snoopable pages through the GTT is incoherent. */
1935         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936                 ret = -EFAULT;
1937                 goto err_unlock;
1938         }
1939
1940         /* If the object is smaller than a couple of partial vma, it is
1941          * not worth only creating a single partial vma - we may as well
1942          * clear enough space for the full object.
1943          */
1944         flags = PIN_MAPPABLE;
1945         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1947
1948         /* Now pin it into the GTT as needed */
1949         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950         if (IS_ERR(vma)) {
1951                 /* Use a partial view if it is bigger than available space */
1952                 struct i915_ggtt_view view =
1953                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1954
1955                 /* Userspace is now writing through an untracked VMA, abandon
1956                  * all hope that the hardware is able to track future writes.
1957                  */
1958                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1959
1960                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1961         }
1962         if (IS_ERR(vma)) {
1963                 ret = PTR_ERR(vma);
1964                 goto err_unlock;
1965         }
1966
1967         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968         if (ret)
1969                 goto err_unpin;
1970
1971         ret = i915_vma_pin_fence(vma);
1972         if (ret)
1973                 goto err_unpin;
1974
1975         /* Finally, remap it using the new GTT offset */
1976         ret = remap_io_mapping(area,
1977                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978                                (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1980                                &ggtt->iomap);
1981         if (ret)
1982                 goto err_fence;
1983
1984         /* Mark as being mmapped into userspace for later revocation */
1985         assert_rpm_wakelock_held(dev_priv);
1986         if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988         GEM_BUG_ON(!obj->userfault_count);
1989
1990         i915_vma_set_ggtt_write(vma);
1991
1992 err_fence:
1993         i915_vma_unpin_fence(vma);
1994 err_unpin:
1995         __i915_vma_unpin(vma);
1996 err_unlock:
1997         mutex_unlock(&dev->struct_mutex);
1998 err_rpm:
1999         intel_runtime_pm_put(dev_priv);
2000         i915_gem_object_unpin_pages(obj);
2001 err:
2002         switch (ret) {
2003         case -EIO:
2004                 /*
2005                  * We eat errors when the gpu is terminally wedged to avoid
2006                  * userspace unduly crashing (gl has no provisions for mmaps to
2007                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008                  * and so needs to be reported.
2009                  */
2010                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011                         ret = VM_FAULT_SIGBUS;
2012                         break;
2013                 }
2014         case -EAGAIN:
2015                 /*
2016                  * EAGAIN means the gpu is hung and we'll wait for the error
2017                  * handler to reset everything when re-faulting in
2018                  * i915_mutex_lock_interruptible.
2019                  */
2020         case 0:
2021         case -ERESTARTSYS:
2022         case -EINTR:
2023         case -EBUSY:
2024                 /*
2025                  * EBUSY is ok: this just means that another thread
2026                  * already did the job.
2027                  */
2028                 ret = VM_FAULT_NOPAGE;
2029                 break;
2030         case -ENOMEM:
2031                 ret = VM_FAULT_OOM;
2032                 break;
2033         case -ENOSPC:
2034         case -EFAULT:
2035                 ret = VM_FAULT_SIGBUS;
2036                 break;
2037         default:
2038                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039                 ret = VM_FAULT_SIGBUS;
2040                 break;
2041         }
2042         return ret;
2043 }
2044
2045 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2046 {
2047         struct i915_vma *vma;
2048
2049         GEM_BUG_ON(!obj->userfault_count);
2050
2051         obj->userfault_count = 0;
2052         list_del(&obj->userfault_link);
2053         drm_vma_node_unmap(&obj->base.vma_node,
2054                            obj->base.dev->anon_inode->i_mapping);
2055
2056         for_each_ggtt_vma(vma, obj)
2057                 i915_vma_unset_userfault(vma);
2058 }
2059
2060 /**
2061  * i915_gem_release_mmap - remove physical page mappings
2062  * @obj: obj in question
2063  *
2064  * Preserve the reservation of the mmapping with the DRM core code, but
2065  * relinquish ownership of the pages back to the system.
2066  *
2067  * It is vital that we remove the page mapping if we have mapped a tiled
2068  * object through the GTT and then lose the fence register due to
2069  * resource pressure. Similarly if the object has been moved out of the
2070  * aperture, than pages mapped into userspace must be revoked. Removing the
2071  * mapping will then trigger a page fault on the next user access, allowing
2072  * fixup by i915_gem_fault().
2073  */
2074 void
2075 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2076 {
2077         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2078
2079         /* Serialisation between user GTT access and our code depends upon
2080          * revoking the CPU's PTE whilst the mutex is held. The next user
2081          * pagefault then has to wait until we release the mutex.
2082          *
2083          * Note that RPM complicates somewhat by adding an additional
2084          * requirement that operations to the GGTT be made holding the RPM
2085          * wakeref.
2086          */
2087         lockdep_assert_held(&i915->drm.struct_mutex);
2088         intel_runtime_pm_get(i915);
2089
2090         if (!obj->userfault_count)
2091                 goto out;
2092
2093         __i915_gem_object_release_mmap(obj);
2094
2095         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2096          * memory transactions from userspace before we return. The TLB
2097          * flushing implied above by changing the PTE above *should* be
2098          * sufficient, an extra barrier here just provides us with a bit
2099          * of paranoid documentation about our requirement to serialise
2100          * memory writes before touching registers / GSM.
2101          */
2102         wmb();
2103
2104 out:
2105         intel_runtime_pm_put(i915);
2106 }
2107
2108 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2109 {
2110         struct drm_i915_gem_object *obj, *on;
2111         int i;
2112
2113         /*
2114          * Only called during RPM suspend. All users of the userfault_list
2115          * must be holding an RPM wakeref to ensure that this can not
2116          * run concurrently with themselves (and use the struct_mutex for
2117          * protection between themselves).
2118          */
2119
2120         list_for_each_entry_safe(obj, on,
2121                                  &dev_priv->mm.userfault_list, userfault_link)
2122                 __i915_gem_object_release_mmap(obj);
2123
2124         /* The fence will be lost when the device powers down. If any were
2125          * in use by hardware (i.e. they are pinned), we should not be powering
2126          * down! All other fences will be reacquired by the user upon waking.
2127          */
2128         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2130
2131                 /* Ideally we want to assert that the fence register is not
2132                  * live at this point (i.e. that no piece of code will be
2133                  * trying to write through fence + GTT, as that both violates
2134                  * our tracking of activity and associated locking/barriers,
2135                  * but also is illegal given that the hw is powered down).
2136                  *
2137                  * Previously we used reg->pin_count as a "liveness" indicator.
2138                  * That is not sufficient, and we need a more fine-grained
2139                  * tool if we want to have a sanity check here.
2140                  */
2141
2142                 if (!reg->vma)
2143                         continue;
2144
2145                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146                 reg->dirty = true;
2147         }
2148 }
2149
2150 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2151 {
2152         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153         int err;
2154
2155         err = drm_gem_create_mmap_offset(&obj->base);
2156         if (likely(!err))
2157                 return 0;
2158
2159         /* Attempt to reap some mmap space from dead objects */
2160         do {
2161                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2162                 if (err)
2163                         break;
2164
2165                 i915_gem_drain_freed_objects(dev_priv);
2166                 err = drm_gem_create_mmap_offset(&obj->base);
2167                 if (!err)
2168                         break;
2169
2170         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2171
2172         return err;
2173 }
2174
2175 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2176 {
2177         drm_gem_free_mmap_offset(&obj->base);
2178 }
2179
2180 int
2181 i915_gem_mmap_gtt(struct drm_file *file,
2182                   struct drm_device *dev,
2183                   uint32_t handle,
2184                   uint64_t *offset)
2185 {
2186         struct drm_i915_gem_object *obj;
2187         int ret;
2188
2189         obj = i915_gem_object_lookup(file, handle);
2190         if (!obj)
2191                 return -ENOENT;
2192
2193         ret = i915_gem_object_create_mmap_offset(obj);
2194         if (ret == 0)
2195                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2196
2197         i915_gem_object_put(obj);
2198         return ret;
2199 }
2200
2201 /**
2202  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2203  * @dev: DRM device
2204  * @data: GTT mapping ioctl data
2205  * @file: GEM object info
2206  *
2207  * Simply returns the fake offset to userspace so it can mmap it.
2208  * The mmap call will end up in drm_gem_mmap(), which will set things
2209  * up so we can get faults in the handler above.
2210  *
2211  * The fault handler will take care of binding the object into the GTT
2212  * (since it may have been evicted to make room for something), allocating
2213  * a fence register, and mapping the appropriate aperture address into
2214  * userspace.
2215  */
2216 int
2217 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218                         struct drm_file *file)
2219 {
2220         struct drm_i915_gem_mmap_gtt *args = data;
2221
2222         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2223 }
2224
2225 /* Immediately discard the backing storage */
2226 static void
2227 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2228 {
2229         i915_gem_object_free_mmap_offset(obj);
2230
2231         if (obj->base.filp == NULL)
2232                 return;
2233
2234         /* Our goal here is to return as much of the memory as
2235          * is possible back to the system as we are called from OOM.
2236          * To do this we must instruct the shmfs to drop all of its
2237          * backing pages, *now*.
2238          */
2239         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240         obj->mm.madv = __I915_MADV_PURGED;
2241         obj->mm.pages = ERR_PTR(-EFAULT);
2242 }
2243
2244 /* Try to discard unwanted pages */
2245 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2246 {
2247         struct address_space *mapping;
2248
2249         lockdep_assert_held(&obj->mm.lock);
2250         GEM_BUG_ON(i915_gem_object_has_pages(obj));
2251
2252         switch (obj->mm.madv) {
2253         case I915_MADV_DONTNEED:
2254                 i915_gem_object_truncate(obj);
2255         case __I915_MADV_PURGED:
2256                 return;
2257         }
2258
2259         if (obj->base.filp == NULL)
2260                 return;
2261
2262         mapping = obj->base.filp->f_mapping,
2263         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2264 }
2265
2266 static void
2267 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268                               struct sg_table *pages)
2269 {
2270         struct sgt_iter sgt_iter;
2271         struct page *page;
2272
2273         __i915_gem_object_release_shmem(obj, pages, true);
2274
2275         i915_gem_gtt_finish_pages(obj, pages);
2276
2277         if (i915_gem_object_needs_bit17_swizzle(obj))
2278                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2279
2280         for_each_sgt_page(page, sgt_iter, pages) {
2281                 if (obj->mm.dirty)
2282                         set_page_dirty(page);
2283
2284                 if (obj->mm.madv == I915_MADV_WILLNEED)
2285                         mark_page_accessed(page);
2286
2287                 put_page(page);
2288         }
2289         obj->mm.dirty = false;
2290
2291         sg_free_table(pages);
2292         kfree(pages);
2293 }
2294
2295 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2296 {
2297         struct radix_tree_iter iter;
2298         void __rcu **slot;
2299
2300         rcu_read_lock();
2301         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303         rcu_read_unlock();
2304 }
2305
2306 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307                                  enum i915_mm_subclass subclass)
2308 {
2309         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310         struct sg_table *pages;
2311
2312         if (i915_gem_object_has_pinned_pages(obj))
2313                 return;
2314
2315         GEM_BUG_ON(obj->bind_count);
2316         if (!i915_gem_object_has_pages(obj))
2317                 return;
2318
2319         /* May be called by shrinker from within get_pages() (on another bo) */
2320         mutex_lock_nested(&obj->mm.lock, subclass);
2321         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2322                 goto unlock;
2323
2324         /* ->put_pages might need to allocate memory for the bit17 swizzle
2325          * array, hence protect them from being reaped by removing them from gtt
2326          * lists early. */
2327         pages = fetch_and_zero(&obj->mm.pages);
2328         GEM_BUG_ON(!pages);
2329
2330         spin_lock(&i915->mm.obj_lock);
2331         list_del(&obj->mm.link);
2332         spin_unlock(&i915->mm.obj_lock);
2333
2334         if (obj->mm.mapping) {
2335                 void *ptr;
2336
2337                 ptr = page_mask_bits(obj->mm.mapping);
2338                 if (is_vmalloc_addr(ptr))
2339                         vunmap(ptr);
2340                 else
2341                         kunmap(kmap_to_page(ptr));
2342
2343                 obj->mm.mapping = NULL;
2344         }
2345
2346         __i915_gem_object_reset_page_iter(obj);
2347
2348         if (!IS_ERR(pages))
2349                 obj->ops->put_pages(obj, pages);
2350
2351         obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2352
2353 unlock:
2354         mutex_unlock(&obj->mm.lock);
2355 }
2356
2357 static bool i915_sg_trim(struct sg_table *orig_st)
2358 {
2359         struct sg_table new_st;
2360         struct scatterlist *sg, *new_sg;
2361         unsigned int i;
2362
2363         if (orig_st->nents == orig_st->orig_nents)
2364                 return false;
2365
2366         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367                 return false;
2368
2369         new_sg = new_st.sgl;
2370         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372                 /* called before being DMA mapped, no need to copy sg->dma_* */
2373                 new_sg = sg_next(new_sg);
2374         }
2375         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2376
2377         sg_free_table(orig_st);
2378
2379         *orig_st = new_st;
2380         return true;
2381 }
2382
2383 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2384 {
2385         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2387         unsigned long i;
2388         struct address_space *mapping;
2389         struct sg_table *st;
2390         struct scatterlist *sg;
2391         struct sgt_iter sgt_iter;
2392         struct page *page;
2393         unsigned long last_pfn = 0;     /* suppress gcc warning */
2394         unsigned int max_segment = i915_sg_segment_size();
2395         unsigned int sg_page_sizes;
2396         gfp_t noreclaim;
2397         int ret;
2398
2399         /* Assert that the object is not currently in any GPU domain. As it
2400          * wasn't in the GTT, there shouldn't be any way it could have been in
2401          * a GPU cache
2402          */
2403         GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2404         GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2405
2406         st = kmalloc(sizeof(*st), GFP_KERNEL);
2407         if (st == NULL)
2408                 return -ENOMEM;
2409
2410 rebuild_st:
2411         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2412                 kfree(st);
2413                 return -ENOMEM;
2414         }
2415
2416         /* Get the list of pages out of our struct file.  They'll be pinned
2417          * at this point until we release them.
2418          *
2419          * Fail silently without starting the shrinker
2420          */
2421         mapping = obj->base.filp->f_mapping;
2422         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2424
2425         sg = st->sgl;
2426         st->nents = 0;
2427         sg_page_sizes = 0;
2428         for (i = 0; i < page_count; i++) {
2429                 const unsigned int shrink[] = {
2430                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2431                         0,
2432                 }, *s = shrink;
2433                 gfp_t gfp = noreclaim;
2434
2435                 do {
2436                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437                         if (likely(!IS_ERR(page)))
2438                                 break;
2439
2440                         if (!*s) {
2441                                 ret = PTR_ERR(page);
2442                                 goto err_sg;
2443                         }
2444
2445                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446                         cond_resched();
2447
2448                         /* We've tried hard to allocate the memory by reaping
2449                          * our own buffer, now let the real VM do its job and
2450                          * go down in flames if truly OOM.
2451                          *
2452                          * However, since graphics tend to be disposable,
2453                          * defer the oom here by reporting the ENOMEM back
2454                          * to userspace.
2455                          */
2456                         if (!*s) {
2457                                 /* reclaim and warn, but no oom */
2458                                 gfp = mapping_gfp_mask(mapping);
2459
2460                                 /* Our bo are always dirty and so we require
2461                                  * kswapd to reclaim our pages (direct reclaim
2462                                  * does not effectively begin pageout of our
2463                                  * buffers on its own). However, direct reclaim
2464                                  * only waits for kswapd when under allocation
2465                                  * congestion. So as a result __GFP_RECLAIM is
2466                                  * unreliable and fails to actually reclaim our
2467                                  * dirty pages -- unless you try over and over
2468                                  * again with !__GFP_NORETRY. However, we still
2469                                  * want to fail this allocation rather than
2470                                  * trigger the out-of-memory killer and for
2471                                  * this we want __GFP_RETRY_MAYFAIL.
2472                                  */
2473                                 gfp |= __GFP_RETRY_MAYFAIL;
2474                         }
2475                 } while (1);
2476
2477                 if (!i ||
2478                     sg->length >= max_segment ||
2479                     page_to_pfn(page) != last_pfn + 1) {
2480                         if (i) {
2481                                 sg_page_sizes |= sg->length;
2482                                 sg = sg_next(sg);
2483                         }
2484                         st->nents++;
2485                         sg_set_page(sg, page, PAGE_SIZE, 0);
2486                 } else {
2487                         sg->length += PAGE_SIZE;
2488                 }
2489                 last_pfn = page_to_pfn(page);
2490
2491                 /* Check that the i965g/gm workaround works. */
2492                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2493         }
2494         if (sg) { /* loop terminated early; short sg table */
2495                 sg_page_sizes |= sg->length;
2496                 sg_mark_end(sg);
2497         }
2498
2499         /* Trim unused sg entries to avoid wasting memory. */
2500         i915_sg_trim(st);
2501
2502         ret = i915_gem_gtt_prepare_pages(obj, st);
2503         if (ret) {
2504                 /* DMA remapping failed? One possible cause is that
2505                  * it could not reserve enough large entries, asking
2506                  * for PAGE_SIZE chunks instead may be helpful.
2507                  */
2508                 if (max_segment > PAGE_SIZE) {
2509                         for_each_sgt_page(page, sgt_iter, st)
2510                                 put_page(page);
2511                         sg_free_table(st);
2512
2513                         max_segment = PAGE_SIZE;
2514                         goto rebuild_st;
2515                 } else {
2516                         dev_warn(&dev_priv->drm.pdev->dev,
2517                                  "Failed to DMA remap %lu pages\n",
2518                                  page_count);
2519                         goto err_pages;
2520                 }
2521         }
2522
2523         if (i915_gem_object_needs_bit17_swizzle(obj))
2524                 i915_gem_object_do_bit_17_swizzle(obj, st);
2525
2526         __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2527
2528         return 0;
2529
2530 err_sg:
2531         sg_mark_end(sg);
2532 err_pages:
2533         for_each_sgt_page(page, sgt_iter, st)
2534                 put_page(page);
2535         sg_free_table(st);
2536         kfree(st);
2537
2538         /* shmemfs first checks if there is enough memory to allocate the page
2539          * and reports ENOSPC should there be insufficient, along with the usual
2540          * ENOMEM for a genuine allocation failure.
2541          *
2542          * We use ENOSPC in our driver to mean that we have run out of aperture
2543          * space and so want to translate the error from shmemfs back to our
2544          * usual understanding of ENOMEM.
2545          */
2546         if (ret == -ENOSPC)
2547                 ret = -ENOMEM;
2548
2549         return ret;
2550 }
2551
2552 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553                                  struct sg_table *pages,
2554                                  unsigned int sg_page_sizes)
2555 {
2556         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557         unsigned long supported = INTEL_INFO(i915)->page_sizes;
2558         int i;
2559
2560         lockdep_assert_held(&obj->mm.lock);
2561
2562         obj->mm.get_page.sg_pos = pages->sgl;
2563         obj->mm.get_page.sg_idx = 0;
2564
2565         obj->mm.pages = pages;
2566
2567         if (i915_gem_object_is_tiled(obj) &&
2568             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569                 GEM_BUG_ON(obj->mm.quirked);
2570                 __i915_gem_object_pin_pages(obj);
2571                 obj->mm.quirked = true;
2572         }
2573
2574         GEM_BUG_ON(!sg_page_sizes);
2575         obj->mm.page_sizes.phys = sg_page_sizes;
2576
2577         /*
2578          * Calculate the supported page-sizes which fit into the given
2579          * sg_page_sizes. This will give us the page-sizes which we may be able
2580          * to use opportunistically when later inserting into the GTT. For
2581          * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582          * 64K or 4K pages, although in practice this will depend on a number of
2583          * other factors.
2584          */
2585         obj->mm.page_sizes.sg = 0;
2586         for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587                 if (obj->mm.page_sizes.phys & ~0u << i)
2588                         obj->mm.page_sizes.sg |= BIT(i);
2589         }
2590         GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2591
2592         spin_lock(&i915->mm.obj_lock);
2593         list_add(&obj->mm.link, &i915->mm.unbound_list);
2594         spin_unlock(&i915->mm.obj_lock);
2595 }
2596
2597 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2598 {
2599         int err;
2600
2601         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2603                 return -EFAULT;
2604         }
2605
2606         err = obj->ops->get_pages(obj);
2607         GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2608
2609         return err;
2610 }
2611
2612 /* Ensure that the associated pages are gathered from the backing storage
2613  * and pinned into our object. i915_gem_object_pin_pages() may be called
2614  * multiple times before they are released by a single call to
2615  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616  * either as a result of memory pressure (reaping pages under the shrinker)
2617  * or as the object is itself released.
2618  */
2619 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620 {
2621         int err;
2622
2623         err = mutex_lock_interruptible(&obj->mm.lock);
2624         if (err)
2625                 return err;
2626
2627         if (unlikely(!i915_gem_object_has_pages(obj))) {
2628                 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2629
2630                 err = ____i915_gem_object_get_pages(obj);
2631                 if (err)
2632                         goto unlock;
2633
2634                 smp_mb__before_atomic();
2635         }
2636         atomic_inc(&obj->mm.pages_pin_count);
2637
2638 unlock:
2639         mutex_unlock(&obj->mm.lock);
2640         return err;
2641 }
2642
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645                                  enum i915_map_type type)
2646 {
2647         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648         struct sg_table *sgt = obj->mm.pages;
2649         struct sgt_iter sgt_iter;
2650         struct page *page;
2651         struct page *stack_pages[32];
2652         struct page **pages = stack_pages;
2653         unsigned long i = 0;
2654         pgprot_t pgprot;
2655         void *addr;
2656
2657         /* A single page can always be kmapped */
2658         if (n_pages == 1 && type == I915_MAP_WB)
2659                 return kmap(sg_page(sgt->sgl));
2660
2661         if (n_pages > ARRAY_SIZE(stack_pages)) {
2662                 /* Too big for stack -- allocate temporary array instead */
2663                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664                 if (!pages)
2665                         return NULL;
2666         }
2667
2668         for_each_sgt_page(page, sgt_iter, sgt)
2669                 pages[i++] = page;
2670
2671         /* Check that we have the expected number of pages */
2672         GEM_BUG_ON(i != n_pages);
2673
2674         switch (type) {
2675         default:
2676                 MISSING_CASE(type);
2677                 /* fallthrough to use PAGE_KERNEL anyway */
2678         case I915_MAP_WB:
2679                 pgprot = PAGE_KERNEL;
2680                 break;
2681         case I915_MAP_WC:
2682                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2683                 break;
2684         }
2685         addr = vmap(pages, n_pages, 0, pgprot);
2686
2687         if (pages != stack_pages)
2688                 kvfree(pages);
2689
2690         return addr;
2691 }
2692
2693 /* get, pin, and map the pages of the object into kernel space */
2694 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695                               enum i915_map_type type)
2696 {
2697         enum i915_map_type has_type;
2698         bool pinned;
2699         void *ptr;
2700         int ret;
2701
2702         if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703                 return ERR_PTR(-ENXIO);
2704
2705         ret = mutex_lock_interruptible(&obj->mm.lock);
2706         if (ret)
2707                 return ERR_PTR(ret);
2708
2709         pinned = !(type & I915_MAP_OVERRIDE);
2710         type &= ~I915_MAP_OVERRIDE;
2711
2712         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713                 if (unlikely(!i915_gem_object_has_pages(obj))) {
2714                         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2715
2716                         ret = ____i915_gem_object_get_pages(obj);
2717                         if (ret)
2718                                 goto err_unlock;
2719
2720                         smp_mb__before_atomic();
2721                 }
2722                 atomic_inc(&obj->mm.pages_pin_count);
2723                 pinned = false;
2724         }
2725         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2726
2727         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728         if (ptr && has_type != type) {
2729                 if (pinned) {
2730                         ret = -EBUSY;
2731                         goto err_unpin;
2732                 }
2733
2734                 if (is_vmalloc_addr(ptr))
2735                         vunmap(ptr);
2736                 else
2737                         kunmap(kmap_to_page(ptr));
2738
2739                 ptr = obj->mm.mapping = NULL;
2740         }
2741
2742         if (!ptr) {
2743                 ptr = i915_gem_object_map(obj, type);
2744                 if (!ptr) {
2745                         ret = -ENOMEM;
2746                         goto err_unpin;
2747                 }
2748
2749                 obj->mm.mapping = page_pack_bits(ptr, type);
2750         }
2751
2752 out_unlock:
2753         mutex_unlock(&obj->mm.lock);
2754         return ptr;
2755
2756 err_unpin:
2757         atomic_dec(&obj->mm.pages_pin_count);
2758 err_unlock:
2759         ptr = ERR_PTR(ret);
2760         goto out_unlock;
2761 }
2762
2763 static int
2764 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765                            const struct drm_i915_gem_pwrite *arg)
2766 {
2767         struct address_space *mapping = obj->base.filp->f_mapping;
2768         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2769         u64 remain, offset;
2770         unsigned int pg;
2771
2772         /* Before we instantiate/pin the backing store for our use, we
2773          * can prepopulate the shmemfs filp efficiently using a write into
2774          * the pagecache. We avoid the penalty of instantiating all the
2775          * pages, important if the user is just writing to a few and never
2776          * uses the object on the GPU, and using a direct write into shmemfs
2777          * allows it to avoid the cost of retrieving a page (either swapin
2778          * or clearing-before-use) before it is overwritten.
2779          */
2780         if (i915_gem_object_has_pages(obj))
2781                 return -ENODEV;
2782
2783         if (obj->mm.madv != I915_MADV_WILLNEED)
2784                 return -EFAULT;
2785
2786         /* Before the pages are instantiated the object is treated as being
2787          * in the CPU domain. The pages will be clflushed as required before
2788          * use, and we can freely write into the pages directly. If userspace
2789          * races pwrite with any other operation; corruption will ensue -
2790          * that is userspace's prerogative!
2791          */
2792
2793         remain = arg->size;
2794         offset = arg->offset;
2795         pg = offset_in_page(offset);
2796
2797         do {
2798                 unsigned int len, unwritten;
2799                 struct page *page;
2800                 void *data, *vaddr;
2801                 int err;
2802
2803                 len = PAGE_SIZE - pg;
2804                 if (len > remain)
2805                         len = remain;
2806
2807                 err = pagecache_write_begin(obj->base.filp, mapping,
2808                                             offset, len, 0,
2809                                             &page, &data);
2810                 if (err < 0)
2811                         return err;
2812
2813                 vaddr = kmap(page);
2814                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2815                 kunmap(page);
2816
2817                 err = pagecache_write_end(obj->base.filp, mapping,
2818                                           offset, len, len - unwritten,
2819                                           page, data);
2820                 if (err < 0)
2821                         return err;
2822
2823                 if (unwritten)
2824                         return -EFAULT;
2825
2826                 remain -= len;
2827                 user_data += len;
2828                 offset += len;
2829                 pg = 0;
2830         } while (remain);
2831
2832         return 0;
2833 }
2834
2835 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2836 {
2837         bool banned;
2838
2839         atomic_inc(&ctx->guilty_count);
2840
2841         banned = false;
2842         if (i915_gem_context_is_bannable(ctx)) {
2843                 unsigned int score;
2844
2845                 score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2846                                           &ctx->ban_score);
2847                 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2848
2849                 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2850                                  ctx->name, score, yesno(banned));
2851         }
2852         if (!banned)
2853                 return;
2854
2855         i915_gem_context_set_banned(ctx);
2856         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2857                 atomic_inc(&ctx->file_priv->context_bans);
2858                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2859                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2860         }
2861 }
2862
2863 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2864 {
2865         atomic_inc(&ctx->active_count);
2866 }
2867
2868 struct i915_request *
2869 i915_gem_find_active_request(struct intel_engine_cs *engine)
2870 {
2871         struct i915_request *request, *active = NULL;
2872         unsigned long flags;
2873
2874         /* We are called by the error capture and reset at a random
2875          * point in time. In particular, note that neither is crucially
2876          * ordered with an interrupt. After a hang, the GPU is dead and we
2877          * assume that no more writes can happen (we waited long enough for
2878          * all writes that were in transaction to be flushed) - adding an
2879          * extra delay for a recent interrupt is pointless. Hence, we do
2880          * not need an engine->irq_seqno_barrier() before the seqno reads.
2881          */
2882         spin_lock_irqsave(&engine->timeline->lock, flags);
2883         list_for_each_entry(request, &engine->timeline->requests, link) {
2884                 if (__i915_request_completed(request, request->global_seqno))
2885                         continue;
2886
2887                 GEM_BUG_ON(request->engine != engine);
2888                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2889                                     &request->fence.flags));
2890
2891                 active = request;
2892                 break;
2893         }
2894         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2895
2896         return active;
2897 }
2898
2899 static bool engine_stalled(struct intel_engine_cs *engine)
2900 {
2901         if (!engine->hangcheck.stalled)
2902                 return false;
2903
2904         /* Check for possible seqno movement after hang declaration */
2905         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2906                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2907                 return false;
2908         }
2909
2910         return true;
2911 }
2912
2913 /*
2914  * Ensure irq handler finishes, and not run again.
2915  * Also return the active request so that we only search for it once.
2916  */
2917 struct i915_request *
2918 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2919 {
2920         struct i915_request *request = NULL;
2921
2922         /*
2923          * During the reset sequence, we must prevent the engine from
2924          * entering RC6. As the context state is undefined until we restart
2925          * the engine, if it does enter RC6 during the reset, the state
2926          * written to the powercontext is undefined and so we may lose
2927          * GPU state upon resume, i.e. fail to restart after a reset.
2928          */
2929         intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2930
2931         /*
2932          * Prevent the signaler thread from updating the request
2933          * state (by calling dma_fence_signal) as we are processing
2934          * the reset. The write from the GPU of the seqno is
2935          * asynchronous and the signaler thread may see a different
2936          * value to us and declare the request complete, even though
2937          * the reset routine have picked that request as the active
2938          * (incomplete) request. This conflict is not handled
2939          * gracefully!
2940          */
2941         kthread_park(engine->breadcrumbs.signaler);
2942
2943         /*
2944          * Prevent request submission to the hardware until we have
2945          * completed the reset in i915_gem_reset_finish(). If a request
2946          * is completed by one engine, it may then queue a request
2947          * to a second via its execlists->tasklet *just* as we are
2948          * calling engine->init_hw() and also writing the ELSP.
2949          * Turning off the execlists->tasklet until the reset is over
2950          * prevents the race.
2951          *
2952          * Note that this needs to be a single atomic operation on the
2953          * tasklet (flush existing tasks, prevent new tasks) to prevent
2954          * a race between reset and set-wedged. It is not, so we do the best
2955          * we can atm and make sure we don't lock the machine up in the more
2956          * common case of recursively being called from set-wedged from inside
2957          * i915_reset.
2958          */
2959         if (!atomic_read(&engine->execlists.tasklet.count))
2960                 tasklet_kill(&engine->execlists.tasklet);
2961         tasklet_disable(&engine->execlists.tasklet);
2962
2963         /*
2964          * We're using worker to queue preemption requests from the tasklet in
2965          * GuC submission mode.
2966          * Even though tasklet was disabled, we may still have a worker queued.
2967          * Let's make sure that all workers scheduled before disabling the
2968          * tasklet are completed before continuing with the reset.
2969          */
2970         if (engine->i915->guc.preempt_wq)
2971                 flush_workqueue(engine->i915->guc.preempt_wq);
2972
2973         if (engine->irq_seqno_barrier)
2974                 engine->irq_seqno_barrier(engine);
2975
2976         request = i915_gem_find_active_request(engine);
2977         if (request && request->fence.error == -EIO)
2978                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2979
2980         return request;
2981 }
2982
2983 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2984 {
2985         struct intel_engine_cs *engine;
2986         struct i915_request *request;
2987         enum intel_engine_id id;
2988         int err = 0;
2989
2990         for_each_engine(engine, dev_priv, id) {
2991                 request = i915_gem_reset_prepare_engine(engine);
2992                 if (IS_ERR(request)) {
2993                         err = PTR_ERR(request);
2994                         continue;
2995                 }
2996
2997                 engine->hangcheck.active_request = request;
2998         }
2999
3000         i915_gem_revoke_fences(dev_priv);
3001
3002         return err;
3003 }
3004
3005 static void skip_request(struct i915_request *request)
3006 {
3007         void *vaddr = request->ring->vaddr;
3008         u32 head;
3009
3010         /* As this request likely depends on state from the lost
3011          * context, clear out all the user operations leaving the
3012          * breadcrumb at the end (so we get the fence notifications).
3013          */
3014         head = request->head;
3015         if (request->postfix < head) {
3016                 memset(vaddr + head, 0, request->ring->size - head);
3017                 head = 0;
3018         }
3019         memset(vaddr + head, 0, request->postfix - head);
3020
3021         dma_fence_set_error(&request->fence, -EIO);
3022 }
3023
3024 static void engine_skip_context(struct i915_request *request)
3025 {
3026         struct intel_engine_cs *engine = request->engine;
3027         struct i915_gem_context *hung_ctx = request->ctx;
3028         struct intel_timeline *timeline;
3029         unsigned long flags;
3030
3031         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3032
3033         spin_lock_irqsave(&engine->timeline->lock, flags);
3034         spin_lock(&timeline->lock);
3035
3036         list_for_each_entry_continue(request, &engine->timeline->requests, link)
3037                 if (request->ctx == hung_ctx)
3038                         skip_request(request);
3039
3040         list_for_each_entry(request, &timeline->requests, link)
3041                 skip_request(request);
3042
3043         spin_unlock(&timeline->lock);
3044         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3045 }
3046
3047 /* Returns the request if it was guilty of the hang */
3048 static struct i915_request *
3049 i915_gem_reset_request(struct intel_engine_cs *engine,
3050                        struct i915_request *request)
3051 {
3052         /* The guilty request will get skipped on a hung engine.
3053          *
3054          * Users of client default contexts do not rely on logical
3055          * state preserved between batches so it is safe to execute
3056          * queued requests following the hang. Non default contexts
3057          * rely on preserved state, so skipping a batch loses the
3058          * evolution of the state and it needs to be considered corrupted.
3059          * Executing more queued batches on top of corrupted state is
3060          * risky. But we take the risk by trying to advance through
3061          * the queued requests in order to make the client behaviour
3062          * more predictable around resets, by not throwing away random
3063          * amount of batches it has prepared for execution. Sophisticated
3064          * clients can use gem_reset_stats_ioctl and dma fence status
3065          * (exported via sync_file info ioctl on explicit fences) to observe
3066          * when it loses the context state and should rebuild accordingly.
3067          *
3068          * The context ban, and ultimately the client ban, mechanism are safety
3069          * valves if client submission ends up resulting in nothing more than
3070          * subsequent hangs.
3071          */
3072
3073         if (engine_stalled(engine)) {
3074                 i915_gem_context_mark_guilty(request->ctx);
3075                 skip_request(request);
3076
3077                 /* If this context is now banned, skip all pending requests. */
3078                 if (i915_gem_context_is_banned(request->ctx))
3079                         engine_skip_context(request);
3080         } else {
3081                 /*
3082                  * Since this is not the hung engine, it may have advanced
3083                  * since the hang declaration. Double check by refinding
3084                  * the active request at the time of the reset.
3085                  */
3086                 request = i915_gem_find_active_request(engine);
3087                 if (request) {
3088                         i915_gem_context_mark_innocent(request->ctx);
3089                         dma_fence_set_error(&request->fence, -EAGAIN);
3090
3091                         /* Rewind the engine to replay the incomplete rq */
3092                         spin_lock_irq(&engine->timeline->lock);
3093                         request = list_prev_entry(request, link);
3094                         if (&request->link == &engine->timeline->requests)
3095                                 request = NULL;
3096                         spin_unlock_irq(&engine->timeline->lock);
3097                 }
3098         }
3099
3100         return request;
3101 }
3102
3103 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3104                            struct i915_request *request)
3105 {
3106         /*
3107          * Make sure this write is visible before we re-enable the interrupt
3108          * handlers on another CPU, as tasklet_enable() resolves to just
3109          * a compiler barrier which is insufficient for our purpose here.
3110          */
3111         smp_store_mb(engine->irq_posted, 0);
3112
3113         if (request)
3114                 request = i915_gem_reset_request(engine, request);
3115
3116         if (request) {
3117                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3118                                  engine->name, request->global_seqno);
3119         }
3120
3121         /* Setup the CS to resume from the breadcrumb of the hung request */
3122         engine->reset_hw(engine, request);
3123 }
3124
3125 void i915_gem_reset(struct drm_i915_private *dev_priv)
3126 {
3127         struct intel_engine_cs *engine;
3128         enum intel_engine_id id;
3129
3130         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3131
3132         i915_retire_requests(dev_priv);
3133
3134         for_each_engine(engine, dev_priv, id) {
3135                 struct i915_gem_context *ctx;
3136
3137                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3138                 ctx = fetch_and_zero(&engine->last_retired_context);
3139                 if (ctx)
3140                         engine->context_unpin(engine, ctx);
3141
3142                 /*
3143                  * Ostensibily, we always want a context loaded for powersaving,
3144                  * so if the engine is idle after the reset, send a request
3145                  * to load our scratch kernel_context.
3146                  *
3147                  * More mysteriously, if we leave the engine idle after a reset,
3148                  * the next userspace batch may hang, with what appears to be
3149                  * an incoherent read by the CS (presumably stale TLB). An
3150                  * empty request appears sufficient to paper over the glitch.
3151                  */
3152                 if (intel_engine_is_idle(engine)) {
3153                         struct i915_request *rq;
3154
3155                         rq = i915_request_alloc(engine,
3156                                                 dev_priv->kernel_context);
3157                         if (!IS_ERR(rq))
3158                                 __i915_request_add(rq, false);
3159                 }
3160         }
3161
3162         i915_gem_restore_fences(dev_priv);
3163
3164         if (dev_priv->gt.awake) {
3165                 intel_sanitize_gt_powersave(dev_priv);
3166                 intel_enable_gt_powersave(dev_priv);
3167                 if (INTEL_GEN(dev_priv) >= 6)
3168                         gen6_rps_busy(dev_priv);
3169         }
3170 }
3171
3172 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3173 {
3174         tasklet_enable(&engine->execlists.tasklet);
3175         kthread_unpark(engine->breadcrumbs.signaler);
3176
3177         intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3178 }
3179
3180 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3181 {
3182         struct intel_engine_cs *engine;
3183         enum intel_engine_id id;
3184
3185         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3186
3187         for_each_engine(engine, dev_priv, id) {
3188                 engine->hangcheck.active_request = NULL;
3189                 i915_gem_reset_finish_engine(engine);
3190         }
3191 }
3192
3193 static void nop_submit_request(struct i915_request *request)
3194 {
3195         dma_fence_set_error(&request->fence, -EIO);
3196
3197         i915_request_submit(request);
3198 }
3199
3200 static void nop_complete_submit_request(struct i915_request *request)
3201 {
3202         unsigned long flags;
3203
3204         dma_fence_set_error(&request->fence, -EIO);
3205
3206         spin_lock_irqsave(&request->engine->timeline->lock, flags);
3207         __i915_request_submit(request);
3208         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3209         spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3210 }
3211
3212 void i915_gem_set_wedged(struct drm_i915_private *i915)
3213 {
3214         struct intel_engine_cs *engine;
3215         enum intel_engine_id id;
3216
3217         if (drm_debug & DRM_UT_DRIVER) {
3218                 struct drm_printer p = drm_debug_printer(__func__);
3219
3220                 for_each_engine(engine, i915, id)
3221                         intel_engine_dump(engine, &p, "%s\n", engine->name);
3222         }
3223
3224         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3225         smp_mb__after_atomic();
3226
3227         /*
3228          * First, stop submission to hw, but do not yet complete requests by
3229          * rolling the global seqno forward (since this would complete requests
3230          * for which we haven't set the fence error to EIO yet).
3231          */
3232         for_each_engine(engine, i915, id) {
3233                 i915_gem_reset_prepare_engine(engine);
3234
3235                 engine->submit_request = nop_submit_request;
3236                 engine->schedule = NULL;
3237         }
3238         i915->caps.scheduler = 0;
3239
3240         /*
3241          * Make sure no one is running the old callback before we proceed with
3242          * cancelling requests and resetting the completion tracking. Otherwise
3243          * we might submit a request to the hardware which never completes.
3244          */
3245         synchronize_rcu();
3246
3247         for_each_engine(engine, i915, id) {
3248                 /* Mark all executing requests as skipped */
3249                 engine->cancel_requests(engine);
3250
3251                 /*
3252                  * Only once we've force-cancelled all in-flight requests can we
3253                  * start to complete all requests.
3254                  */
3255                 engine->submit_request = nop_complete_submit_request;
3256         }
3257
3258         /*
3259          * Make sure no request can slip through without getting completed by
3260          * either this call here to intel_engine_init_global_seqno, or the one
3261          * in nop_complete_submit_request.
3262          */
3263         synchronize_rcu();
3264
3265         for_each_engine(engine, i915, id) {
3266                 unsigned long flags;
3267
3268                 /*
3269                  * Mark all pending requests as complete so that any concurrent
3270                  * (lockless) lookup doesn't try and wait upon the request as we
3271                  * reset it.
3272                  */
3273                 spin_lock_irqsave(&engine->timeline->lock, flags);
3274                 intel_engine_init_global_seqno(engine,
3275                                                intel_engine_last_submit(engine));
3276                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3277
3278                 i915_gem_reset_finish_engine(engine);
3279         }
3280
3281         wake_up_all(&i915->gpu_error.reset_queue);
3282 }
3283
3284 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3285 {
3286         struct i915_gem_timeline *tl;
3287         int i;
3288
3289         lockdep_assert_held(&i915->drm.struct_mutex);
3290         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3291                 return true;
3292
3293         /* Before unwedging, make sure that all pending operations
3294          * are flushed and errored out - we may have requests waiting upon
3295          * third party fences. We marked all inflight requests as EIO, and
3296          * every execbuf since returned EIO, for consistency we want all
3297          * the currently pending requests to also be marked as EIO, which
3298          * is done inside our nop_submit_request - and so we must wait.
3299          *
3300          * No more can be submitted until we reset the wedged bit.
3301          */
3302         list_for_each_entry(tl, &i915->gt.timelines, link) {
3303                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3304                         struct i915_request *rq;
3305
3306                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3307                                                   &i915->drm.struct_mutex);
3308                         if (!rq)
3309                                 continue;
3310
3311                         /* We can't use our normal waiter as we want to
3312                          * avoid recursively trying to handle the current
3313                          * reset. The basic dma_fence_default_wait() installs
3314                          * a callback for dma_fence_signal(), which is
3315                          * triggered by our nop handler (indirectly, the
3316                          * callback enables the signaler thread which is
3317                          * woken by the nop_submit_request() advancing the seqno
3318                          * and when the seqno passes the fence, the signaler
3319                          * then signals the fence waking us up).
3320                          */
3321                         if (dma_fence_default_wait(&rq->fence, true,
3322                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3323                                 return false;
3324                 }
3325         }
3326
3327         /* Undo nop_submit_request. We prevent all new i915 requests from
3328          * being queued (by disallowing execbuf whilst wedged) so having
3329          * waited for all active requests above, we know the system is idle
3330          * and do not have to worry about a thread being inside
3331          * engine->submit_request() as we swap over. So unlike installing
3332          * the nop_submit_request on reset, we can do this from normal
3333          * context and do not require stop_machine().
3334          */
3335         intel_engines_reset_default_submission(i915);
3336         i915_gem_contexts_lost(i915);
3337
3338         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3339         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3340
3341         return true;
3342 }
3343
3344 static void
3345 i915_gem_retire_work_handler(struct work_struct *work)
3346 {
3347         struct drm_i915_private *dev_priv =
3348                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3349         struct drm_device *dev = &dev_priv->drm;
3350
3351         /* Come back later if the device is busy... */
3352         if (mutex_trylock(&dev->struct_mutex)) {
3353                 i915_retire_requests(dev_priv);
3354                 mutex_unlock(&dev->struct_mutex);
3355         }
3356
3357         /*
3358          * Keep the retire handler running until we are finally idle.
3359          * We do not need to do this test under locking as in the worst-case
3360          * we queue the retire worker once too often.
3361          */
3362         if (READ_ONCE(dev_priv->gt.awake))
3363                 queue_delayed_work(dev_priv->wq,
3364                                    &dev_priv->gt.retire_work,
3365                                    round_jiffies_up_relative(HZ));
3366 }
3367
3368 static void shrink_caches(struct drm_i915_private *i915)
3369 {
3370         /*
3371          * kmem_cache_shrink() discards empty slabs and reorders partially
3372          * filled slabs to prioritise allocating from the mostly full slabs,
3373          * with the aim of reducing fragmentation.
3374          */
3375         kmem_cache_shrink(i915->priorities);
3376         kmem_cache_shrink(i915->dependencies);
3377         kmem_cache_shrink(i915->requests);
3378         kmem_cache_shrink(i915->luts);
3379         kmem_cache_shrink(i915->vmas);
3380         kmem_cache_shrink(i915->objects);
3381 }
3382
3383 struct sleep_rcu_work {
3384         union {
3385                 struct rcu_head rcu;
3386                 struct work_struct work;
3387         };
3388         struct drm_i915_private *i915;
3389         unsigned int epoch;
3390 };
3391
3392 static inline bool
3393 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3394 {
3395         /*
3396          * There is a small chance that the epoch wrapped since we started
3397          * sleeping. If we assume that epoch is at least a u32, then it will
3398          * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3399          */
3400         return epoch == READ_ONCE(i915->gt.epoch);
3401 }
3402
3403 static void __sleep_work(struct work_struct *work)
3404 {
3405         struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3406         struct drm_i915_private *i915 = s->i915;
3407         unsigned int epoch = s->epoch;
3408
3409         kfree(s);
3410         if (same_epoch(i915, epoch))
3411                 shrink_caches(i915);
3412 }
3413
3414 static void __sleep_rcu(struct rcu_head *rcu)
3415 {
3416         struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3417         struct drm_i915_private *i915 = s->i915;
3418
3419         if (same_epoch(i915, s->epoch)) {
3420                 INIT_WORK(&s->work, __sleep_work);
3421                 queue_work(i915->wq, &s->work);
3422         } else {
3423                 kfree(s);
3424         }
3425 }
3426
3427 static inline bool
3428 new_requests_since_last_retire(const struct drm_i915_private *i915)
3429 {
3430         return (READ_ONCE(i915->gt.active_requests) ||
3431                 work_pending(&i915->gt.idle_work.work));
3432 }
3433
3434 static void
3435 i915_gem_idle_work_handler(struct work_struct *work)
3436 {
3437         struct drm_i915_private *dev_priv =
3438                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3439         unsigned int epoch = I915_EPOCH_INVALID;
3440         bool rearm_hangcheck;
3441
3442         if (!READ_ONCE(dev_priv->gt.awake))
3443                 return;
3444
3445         /*
3446          * Wait for last execlists context complete, but bail out in case a
3447          * new request is submitted. As we don't trust the hardware, we
3448          * continue on if the wait times out. This is necessary to allow
3449          * the machine to suspend even if the hardware dies, and we will
3450          * try to recover in resume (after depriving the hardware of power,
3451          * it may be in a better mmod).
3452          */
3453         __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3454                    intel_engines_are_idle(dev_priv),
3455                    I915_IDLE_ENGINES_TIMEOUT * 1000,
3456                    10, 500);
3457
3458         rearm_hangcheck =
3459                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3460
3461         if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3462                 /* Currently busy, come back later */
3463                 mod_delayed_work(dev_priv->wq,
3464                                  &dev_priv->gt.idle_work,
3465                                  msecs_to_jiffies(50));
3466                 goto out_rearm;
3467         }
3468
3469         /*
3470          * New request retired after this work handler started, extend active
3471          * period until next instance of the work.
3472          */
3473         if (new_requests_since_last_retire(dev_priv))
3474                 goto out_unlock;
3475
3476         /*
3477          * Be paranoid and flush a concurrent interrupt to make sure
3478          * we don't reactivate any irq tasklets after parking.
3479          *
3480          * FIXME: Note that even though we have waited for execlists to be idle,
3481          * there may still be an in-flight interrupt even though the CSB
3482          * is now empty. synchronize_irq() makes sure that a residual interrupt
3483          * is completed before we continue, but it doesn't prevent the HW from
3484          * raising a spurious interrupt later. To complete the shield we should
3485          * coordinate disabling the CS irq with flushing the interrupts.
3486          */
3487         synchronize_irq(dev_priv->drm.irq);
3488
3489         intel_engines_park(dev_priv);
3490         i915_gem_timelines_park(dev_priv);
3491
3492         i915_pmu_gt_parked(dev_priv);
3493
3494         GEM_BUG_ON(!dev_priv->gt.awake);
3495         dev_priv->gt.awake = false;
3496         epoch = dev_priv->gt.epoch;
3497         GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3498         rearm_hangcheck = false;
3499
3500         if (INTEL_GEN(dev_priv) >= 6)
3501                 gen6_rps_idle(dev_priv);
3502
3503         intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3504
3505         intel_runtime_pm_put(dev_priv);
3506 out_unlock:
3507         mutex_unlock(&dev_priv->drm.struct_mutex);
3508
3509 out_rearm:
3510         if (rearm_hangcheck) {
3511                 GEM_BUG_ON(!dev_priv->gt.awake);
3512                 i915_queue_hangcheck(dev_priv);
3513         }
3514
3515         /*
3516          * When we are idle, it is an opportune time to reap our caches.
3517          * However, we have many objects that utilise RCU and the ordered
3518          * i915->wq that this work is executing on. To try and flush any
3519          * pending frees now we are idle, we first wait for an RCU grace
3520          * period, and then queue a task (that will run last on the wq) to
3521          * shrink and re-optimize the caches.
3522          */
3523         if (same_epoch(dev_priv, epoch)) {
3524                 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3525                 if (s) {
3526                         s->i915 = dev_priv;
3527                         s->epoch = epoch;
3528                         call_rcu(&s->rcu, __sleep_rcu);
3529                 }
3530         }
3531 }
3532
3533 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3534 {
3535         struct drm_i915_private *i915 = to_i915(gem->dev);
3536         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3537         struct drm_i915_file_private *fpriv = file->driver_priv;
3538         struct i915_lut_handle *lut, *ln;
3539
3540         mutex_lock(&i915->drm.struct_mutex);
3541
3542         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3543                 struct i915_gem_context *ctx = lut->ctx;
3544                 struct i915_vma *vma;
3545
3546                 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3547                 if (ctx->file_priv != fpriv)
3548                         continue;
3549
3550                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3551                 GEM_BUG_ON(vma->obj != obj);
3552
3553                 /* We allow the process to have multiple handles to the same
3554                  * vma, in the same fd namespace, by virtue of flink/open.
3555                  */
3556                 GEM_BUG_ON(!vma->open_count);
3557                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3558                         i915_vma_close(vma);
3559
3560                 list_del(&lut->obj_link);
3561                 list_del(&lut->ctx_link);
3562
3563                 kmem_cache_free(i915->luts, lut);
3564                 __i915_gem_object_release_unless_active(obj);
3565         }
3566
3567         mutex_unlock(&i915->drm.struct_mutex);
3568 }
3569
3570 static unsigned long to_wait_timeout(s64 timeout_ns)
3571 {
3572         if (timeout_ns < 0)
3573                 return MAX_SCHEDULE_TIMEOUT;
3574
3575         if (timeout_ns == 0)
3576                 return 0;
3577
3578         return nsecs_to_jiffies_timeout(timeout_ns);
3579 }
3580
3581 /**
3582  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3583  * @dev: drm device pointer
3584  * @data: ioctl data blob
3585  * @file: drm file pointer
3586  *
3587  * Returns 0 if successful, else an error is returned with the remaining time in
3588  * the timeout parameter.
3589  *  -ETIME: object is still busy after timeout
3590  *  -ERESTARTSYS: signal interrupted the wait
3591  *  -ENONENT: object doesn't exist
3592  * Also possible, but rare:
3593  *  -EAGAIN: incomplete, restart syscall
3594  *  -ENOMEM: damn
3595  *  -ENODEV: Internal IRQ fail
3596  *  -E?: The add request failed
3597  *
3598  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3599  * non-zero timeout parameter the wait ioctl will wait for the given number of
3600  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3601  * without holding struct_mutex the object may become re-busied before this
3602  * function completes. A similar but shorter * race condition exists in the busy
3603  * ioctl
3604  */
3605 int
3606 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3607 {
3608         struct drm_i915_gem_wait *args = data;
3609         struct drm_i915_gem_object *obj;
3610         ktime_t start;
3611         long ret;
3612
3613         if (args->flags != 0)
3614                 return -EINVAL;
3615
3616         obj = i915_gem_object_lookup(file, args->bo_handle);
3617         if (!obj)
3618                 return -ENOENT;
3619
3620         start = ktime_get();
3621
3622         ret = i915_gem_object_wait(obj,
3623                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3624                                    to_wait_timeout(args->timeout_ns),
3625                                    to_rps_client(file));
3626
3627         if (args->timeout_ns > 0) {
3628                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3629                 if (args->timeout_ns < 0)
3630                         args->timeout_ns = 0;
3631
3632                 /*
3633                  * Apparently ktime isn't accurate enough and occasionally has a
3634                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3635                  * things up to make the test happy. We allow up to 1 jiffy.
3636                  *
3637                  * This is a regression from the timespec->ktime conversion.
3638                  */
3639                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3640                         args->timeout_ns = 0;
3641
3642                 /* Asked to wait beyond the jiffie/scheduler precision? */
3643                 if (ret == -ETIME && args->timeout_ns)
3644                         ret = -EAGAIN;
3645         }
3646
3647         i915_gem_object_put(obj);
3648         return ret;
3649 }
3650
3651 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3652 {
3653         int ret, i;
3654
3655         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3656                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3657                 if (ret)
3658                         return ret;
3659         }
3660
3661         return 0;
3662 }
3663
3664 static int wait_for_engines(struct drm_i915_private *i915)
3665 {
3666         if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3667                 dev_err(i915->drm.dev,
3668                         "Failed to idle engines, declaring wedged!\n");
3669                 if (drm_debug & DRM_UT_DRIVER) {
3670                         struct drm_printer p = drm_debug_printer(__func__);
3671                         struct intel_engine_cs *engine;
3672                         enum intel_engine_id id;
3673
3674                         for_each_engine(engine, i915, id)
3675                                 intel_engine_dump(engine, &p,
3676                                                   "%s\n", engine->name);
3677                 }
3678
3679                 i915_gem_set_wedged(i915);
3680                 return -EIO;
3681         }
3682
3683         return 0;
3684 }
3685
3686 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3687 {
3688         int ret;
3689
3690         /* If the device is asleep, we have no requests outstanding */
3691         if (!READ_ONCE(i915->gt.awake))
3692                 return 0;
3693
3694         if (flags & I915_WAIT_LOCKED) {
3695                 struct i915_gem_timeline *tl;
3696
3697                 lockdep_assert_held(&i915->drm.struct_mutex);
3698
3699                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3700                         ret = wait_for_timeline(tl, flags);
3701                         if (ret)
3702                                 return ret;
3703                 }
3704                 i915_retire_requests(i915);
3705
3706                 ret = wait_for_engines(i915);
3707         } else {
3708                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3709         }
3710
3711         return ret;
3712 }
3713
3714 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3715 {
3716         /*
3717          * We manually flush the CPU domain so that we can override and
3718          * force the flush for the display, and perform it asyncrhonously.
3719          */
3720         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3721         if (obj->cache_dirty)
3722                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3723         obj->write_domain = 0;
3724 }
3725
3726 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3727 {
3728         if (!READ_ONCE(obj->pin_global))
3729                 return;
3730
3731         mutex_lock(&obj->base.dev->struct_mutex);
3732         __i915_gem_object_flush_for_display(obj);
3733         mutex_unlock(&obj->base.dev->struct_mutex);
3734 }
3735
3736 /**
3737  * Moves a single object to the WC read, and possibly write domain.
3738  * @obj: object to act on
3739  * @write: ask for write access or read only
3740  *
3741  * This function returns when the move is complete, including waiting on
3742  * flushes to occur.
3743  */
3744 int
3745 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3746 {
3747         int ret;
3748
3749         lockdep_assert_held(&obj->base.dev->struct_mutex);
3750
3751         ret = i915_gem_object_wait(obj,
3752                                    I915_WAIT_INTERRUPTIBLE |
3753                                    I915_WAIT_LOCKED |
3754                                    (write ? I915_WAIT_ALL : 0),
3755                                    MAX_SCHEDULE_TIMEOUT,
3756                                    NULL);
3757         if (ret)
3758                 return ret;
3759
3760         if (obj->write_domain == I915_GEM_DOMAIN_WC)
3761                 return 0;
3762
3763         /* Flush and acquire obj->pages so that we are coherent through
3764          * direct access in memory with previous cached writes through
3765          * shmemfs and that our cache domain tracking remains valid.
3766          * For example, if the obj->filp was moved to swap without us
3767          * being notified and releasing the pages, we would mistakenly
3768          * continue to assume that the obj remained out of the CPU cached
3769          * domain.
3770          */
3771         ret = i915_gem_object_pin_pages(obj);
3772         if (ret)
3773                 return ret;
3774
3775         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3776
3777         /* Serialise direct access to this object with the barriers for
3778          * coherent writes from the GPU, by effectively invalidating the
3779          * WC domain upon first access.
3780          */
3781         if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3782                 mb();
3783
3784         /* It should now be out of any other write domains, and we can update
3785          * the domain values for our changes.
3786          */
3787         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3788         obj->read_domains |= I915_GEM_DOMAIN_WC;
3789         if (write) {
3790                 obj->read_domains = I915_GEM_DOMAIN_WC;
3791                 obj->write_domain = I915_GEM_DOMAIN_WC;
3792                 obj->mm.dirty = true;
3793         }
3794
3795         i915_gem_object_unpin_pages(obj);
3796         return 0;
3797 }
3798
3799 /**
3800  * Moves a single object to the GTT read, and possibly write domain.
3801  * @obj: object to act on
3802  * @write: ask for write access or read only
3803  *
3804  * This function returns when the move is complete, including waiting on
3805  * flushes to occur.
3806  */
3807 int
3808 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3809 {
3810         int ret;
3811
3812         lockdep_assert_held(&obj->base.dev->struct_mutex);
3813
3814         ret = i915_gem_object_wait(obj,
3815                                    I915_WAIT_INTERRUPTIBLE |
3816                                    I915_WAIT_LOCKED |
3817                                    (write ? I915_WAIT_ALL : 0),
3818                                    MAX_SCHEDULE_TIMEOUT,
3819                                    NULL);
3820         if (ret)
3821                 return ret;
3822
3823         if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3824                 return 0;
3825
3826         /* Flush and acquire obj->pages so that we are coherent through
3827          * direct access in memory with previous cached writes through
3828          * shmemfs and that our cache domain tracking remains valid.
3829          * For example, if the obj->filp was moved to swap without us
3830          * being notified and releasing the pages, we would mistakenly
3831          * continue to assume that the obj remained out of the CPU cached
3832          * domain.
3833          */
3834         ret = i915_gem_object_pin_pages(obj);
3835         if (ret)
3836                 return ret;
3837
3838         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3839
3840         /* Serialise direct access to this object with the barriers for
3841          * coherent writes from the GPU, by effectively invalidating the
3842          * GTT domain upon first access.
3843          */
3844         if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3845                 mb();
3846
3847         /* It should now be out of any other write domains, and we can update
3848          * the domain values for our changes.
3849          */
3850         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3851         obj->read_domains |= I915_GEM_DOMAIN_GTT;
3852         if (write) {
3853                 obj->read_domains = I915_GEM_DOMAIN_GTT;
3854                 obj->write_domain = I915_GEM_DOMAIN_GTT;
3855                 obj->mm.dirty = true;
3856         }
3857
3858         i915_gem_object_unpin_pages(obj);
3859         return 0;
3860 }
3861
3862 /**
3863  * Changes the cache-level of an object across all VMA.
3864  * @obj: object to act on
3865  * @cache_level: new cache level to set for the object
3866  *
3867  * After this function returns, the object will be in the new cache-level
3868  * across all GTT and the contents of the backing storage will be coherent,
3869  * with respect to the new cache-level. In order to keep the backing storage
3870  * coherent for all users, we only allow a single cache level to be set
3871  * globally on the object and prevent it from being changed whilst the
3872  * hardware is reading from the object. That is if the object is currently
3873  * on the scanout it will be set to uncached (or equivalent display
3874  * cache coherency) and all non-MOCS GPU access will also be uncached so
3875  * that all direct access to the scanout remains coherent.
3876  */
3877 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3878                                     enum i915_cache_level cache_level)
3879 {
3880         struct i915_vma *vma;
3881         int ret;
3882
3883         lockdep_assert_held(&obj->base.dev->struct_mutex);
3884
3885         if (obj->cache_level == cache_level)
3886                 return 0;
3887
3888         /* Inspect the list of currently bound VMA and unbind any that would
3889          * be invalid given the new cache-level. This is principally to
3890          * catch the issue of the CS prefetch crossing page boundaries and
3891          * reading an invalid PTE on older architectures.
3892          */
3893 restart:
3894         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3895                 if (!drm_mm_node_allocated(&vma->node))
3896                         continue;
3897
3898                 if (i915_vma_is_pinned(vma)) {
3899                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3900                         return -EBUSY;
3901                 }
3902
3903                 if (!i915_vma_is_closed(vma) &&
3904                     i915_gem_valid_gtt_space(vma, cache_level))
3905                         continue;
3906
3907                 ret = i915_vma_unbind(vma);
3908                 if (ret)
3909                         return ret;
3910
3911                 /* As unbinding may affect other elements in the
3912                  * obj->vma_list (due to side-effects from retiring
3913                  * an active vma), play safe and restart the iterator.
3914                  */
3915                 goto restart;
3916         }
3917
3918         /* We can reuse the existing drm_mm nodes but need to change the
3919          * cache-level on the PTE. We could simply unbind them all and
3920          * rebind with the correct cache-level on next use. However since
3921          * we already have a valid slot, dma mapping, pages etc, we may as
3922          * rewrite the PTE in the belief that doing so tramples upon less
3923          * state and so involves less work.
3924          */
3925         if (obj->bind_count) {
3926                 /* Before we change the PTE, the GPU must not be accessing it.
3927                  * If we wait upon the object, we know that all the bound
3928                  * VMA are no longer active.
3929                  */
3930                 ret = i915_gem_object_wait(obj,
3931                                            I915_WAIT_INTERRUPTIBLE |
3932                                            I915_WAIT_LOCKED |
3933                                            I915_WAIT_ALL,
3934                                            MAX_SCHEDULE_TIMEOUT,
3935                                            NULL);
3936                 if (ret)
3937                         return ret;
3938
3939                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3940                     cache_level != I915_CACHE_NONE) {
3941                         /* Access to snoopable pages through the GTT is
3942                          * incoherent and on some machines causes a hard
3943                          * lockup. Relinquish the CPU mmaping to force
3944                          * userspace to refault in the pages and we can
3945                          * then double check if the GTT mapping is still
3946                          * valid for that pointer access.
3947                          */
3948                         i915_gem_release_mmap(obj);
3949
3950                         /* As we no longer need a fence for GTT access,
3951                          * we can relinquish it now (and so prevent having
3952                          * to steal a fence from someone else on the next
3953                          * fence request). Note GPU activity would have
3954                          * dropped the fence as all snoopable access is
3955                          * supposed to be linear.
3956                          */
3957                         for_each_ggtt_vma(vma, obj) {
3958                                 ret = i915_vma_put_fence(vma);
3959                                 if (ret)
3960                                         return ret;
3961                         }
3962                 } else {
3963                         /* We either have incoherent backing store and
3964                          * so no GTT access or the architecture is fully
3965                          * coherent. In such cases, existing GTT mmaps
3966                          * ignore the cache bit in the PTE and we can
3967                          * rewrite it without confusing the GPU or having
3968                          * to force userspace to fault back in its mmaps.
3969                          */
3970                 }
3971
3972                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3973                         if (!drm_mm_node_allocated(&vma->node))
3974                                 continue;
3975
3976                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3977                         if (ret)
3978                                 return ret;
3979                 }
3980         }
3981
3982         list_for_each_entry(vma, &obj->vma_list, obj_link)
3983                 vma->node.color = cache_level;
3984         i915_gem_object_set_cache_coherency(obj, cache_level);
3985         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3986
3987         return 0;
3988 }
3989
3990 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3991                                struct drm_file *file)
3992 {
3993         struct drm_i915_gem_caching *args = data;
3994         struct drm_i915_gem_object *obj;
3995         int err = 0;
3996
3997         rcu_read_lock();
3998         obj = i915_gem_object_lookup_rcu(file, args->handle);
3999         if (!obj) {
4000                 err = -ENOENT;
4001                 goto out;
4002         }
4003
4004         switch (obj->cache_level) {
4005         case I915_CACHE_LLC:
4006         case I915_CACHE_L3_LLC:
4007                 args->caching = I915_CACHING_CACHED;
4008                 break;
4009
4010         case I915_CACHE_WT:
4011                 args->caching = I915_CACHING_DISPLAY;
4012                 break;
4013
4014         default:
4015                 args->caching = I915_CACHING_NONE;
4016                 break;
4017         }
4018 out:
4019         rcu_read_unlock();
4020         return err;
4021 }
4022
4023 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4024                                struct drm_file *file)
4025 {
4026         struct drm_i915_private *i915 = to_i915(dev);
4027         struct drm_i915_gem_caching *args = data;
4028         struct drm_i915_gem_object *obj;
4029         enum i915_cache_level level;
4030         int ret = 0;
4031
4032         switch (args->caching) {
4033         case I915_CACHING_NONE:
4034                 level = I915_CACHE_NONE;
4035                 break;
4036         case I915_CACHING_CACHED:
4037                 /*
4038                  * Due to a HW issue on BXT A stepping, GPU stores via a
4039                  * snooped mapping may leave stale data in a corresponding CPU
4040                  * cacheline, whereas normally such cachelines would get
4041                  * invalidated.
4042                  */
4043                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4044                         return -ENODEV;
4045
4046                 level = I915_CACHE_LLC;
4047                 break;
4048         case I915_CACHING_DISPLAY:
4049                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4050                 break;
4051         default:
4052                 return -EINVAL;
4053         }
4054
4055         obj = i915_gem_object_lookup(file, args->handle);
4056         if (!obj)
4057                 return -ENOENT;
4058
4059         /*
4060          * The caching mode of proxy object is handled by its generator, and
4061          * not allowed to be changed by userspace.
4062          */
4063         if (i915_gem_object_is_proxy(obj)) {
4064                 ret = -ENXIO;
4065                 goto out;
4066         }
4067
4068         if (obj->cache_level == level)
4069                 goto out;
4070
4071         ret = i915_gem_object_wait(obj,
4072                                    I915_WAIT_INTERRUPTIBLE,
4073                                    MAX_SCHEDULE_TIMEOUT,
4074                                    to_rps_client(file));
4075         if (ret)
4076                 goto out;
4077
4078         ret = i915_mutex_lock_interruptible(dev);
4079         if (ret)
4080                 goto out;
4081
4082         ret = i915_gem_object_set_cache_level(obj, level);
4083         mutex_unlock(&dev->struct_mutex);
4084
4085 out:
4086         i915_gem_object_put(obj);
4087         return ret;
4088 }
4089
4090 /*
4091  * Prepare buffer for display plane (scanout, cursors, etc).
4092  * Can be called from an uninterruptible phase (modesetting) and allows
4093  * any flushes to be pipelined (for pageflips).
4094  */
4095 struct i915_vma *
4096 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4097                                      u32 alignment,
4098                                      const struct i915_ggtt_view *view,
4099                                      unsigned int flags)
4100 {
4101         struct i915_vma *vma;
4102         int ret;
4103
4104         lockdep_assert_held(&obj->base.dev->struct_mutex);
4105
4106         /* Mark the global pin early so that we account for the
4107          * display coherency whilst setting up the cache domains.
4108          */
4109         obj->pin_global++;
4110
4111         /* The display engine is not coherent with the LLC cache on gen6.  As
4112          * a result, we make sure that the pinning that is about to occur is
4113          * done with uncached PTEs. This is lowest common denominator for all
4114          * chipsets.
4115          *
4116          * However for gen6+, we could do better by using the GFDT bit instead
4117          * of uncaching, which would allow us to flush all the LLC-cached data
4118          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4119          */
4120         ret = i915_gem_object_set_cache_level(obj,
4121                                               HAS_WT(to_i915(obj->base.dev)) ?
4122                                               I915_CACHE_WT : I915_CACHE_NONE);
4123         if (ret) {
4124                 vma = ERR_PTR(ret);
4125                 goto err_unpin_global;
4126         }
4127
4128         /* As the user may map the buffer once pinned in the display plane
4129          * (e.g. libkms for the bootup splash), we have to ensure that we
4130          * always use map_and_fenceable for all scanout buffers. However,
4131          * it may simply be too big to fit into mappable, in which case
4132          * put it anyway and hope that userspace can cope (but always first
4133          * try to preserve the existing ABI).
4134          */
4135         vma = ERR_PTR(-ENOSPC);
4136         if ((flags & PIN_MAPPABLE) == 0 &&
4137             (!view || view->type == I915_GGTT_VIEW_NORMAL))
4138                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4139                                                flags |
4140                                                PIN_MAPPABLE |
4141                                                PIN_NONBLOCK);
4142         if (IS_ERR(vma))
4143                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4144         if (IS_ERR(vma))
4145                 goto err_unpin_global;
4146
4147         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4148
4149         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4150         __i915_gem_object_flush_for_display(obj);
4151         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4152
4153         /* It should now be out of any other write domains, and we can update
4154          * the domain values for our changes.
4155          */
4156         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4157
4158         return vma;
4159
4160 err_unpin_global:
4161         obj->pin_global--;
4162         return vma;
4163 }
4164
4165 void
4166 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4167 {
4168         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4169
4170         if (WARN_ON(vma->obj->pin_global == 0))
4171                 return;
4172
4173         if (--vma->obj->pin_global == 0)
4174                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4175
4176         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
4177         i915_gem_object_bump_inactive_ggtt(vma->obj);
4178
4179         i915_vma_unpin(vma);
4180 }
4181
4182 /**
4183  * Moves a single object to the CPU read, and possibly write domain.
4184  * @obj: object to act on
4185  * @write: requesting write or read-only access
4186  *
4187  * This function returns when the move is complete, including waiting on
4188  * flushes to occur.
4189  */
4190 int
4191 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4192 {
4193         int ret;
4194
4195         lockdep_assert_held(&obj->base.dev->struct_mutex);
4196
4197         ret = i915_gem_object_wait(obj,
4198                                    I915_WAIT_INTERRUPTIBLE |
4199                                    I915_WAIT_LOCKED |
4200                                    (write ? I915_WAIT_ALL : 0),
4201                                    MAX_SCHEDULE_TIMEOUT,
4202                                    NULL);
4203         if (ret)
4204                 return ret;
4205
4206         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4207
4208         /* Flush the CPU cache if it's still invalid. */
4209         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4210                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4211                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4212         }
4213
4214         /* It should now be out of any other write domains, and we can update
4215          * the domain values for our changes.
4216          */
4217         GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4218
4219         /* If we're writing through the CPU, then the GPU read domains will
4220          * need to be invalidated at next use.
4221          */
4222         if (write)
4223                 __start_cpu_write(obj);
4224
4225         return 0;
4226 }
4227
4228 /* Throttle our rendering by waiting until the ring has completed our requests
4229  * emitted over 20 msec ago.
4230  *
4231  * Note that if we were to use the current jiffies each time around the loop,
4232  * we wouldn't escape the function with any frames outstanding if the time to
4233  * render a frame was over 20ms.
4234  *
4235  * This should get us reasonable parallelism between CPU and GPU but also
4236  * relatively low latency when blocking on a particular request to finish.
4237  */
4238 static int
4239 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4240 {
4241         struct drm_i915_private *dev_priv = to_i915(dev);
4242         struct drm_i915_file_private *file_priv = file->driver_priv;
4243         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4244         struct i915_request *request, *target = NULL;
4245         long ret;
4246
4247         /* ABI: return -EIO if already wedged */
4248         if (i915_terminally_wedged(&dev_priv->gpu_error))
4249                 return -EIO;
4250
4251         spin_lock(&file_priv->mm.lock);
4252         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4253                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4254                         break;
4255
4256                 if (target) {
4257                         list_del(&target->client_link);
4258                         target->file_priv = NULL;
4259                 }
4260
4261                 target = request;
4262         }
4263         if (target)
4264                 i915_request_get(target);
4265         spin_unlock(&file_priv->mm.lock);
4266
4267         if (target == NULL)
4268                 return 0;
4269
4270         ret = i915_request_wait(target,
4271                                 I915_WAIT_INTERRUPTIBLE,
4272                                 MAX_SCHEDULE_TIMEOUT);
4273         i915_request_put(target);
4274
4275         return ret < 0 ? ret : 0;
4276 }
4277
4278 struct i915_vma *
4279 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280                          const struct i915_ggtt_view *view,
4281                          u64 size,
4282                          u64 alignment,
4283                          u64 flags)
4284 {
4285         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4286         struct i915_address_space *vm = &dev_priv->ggtt.base;
4287         struct i915_vma *vma;
4288         int ret;
4289
4290         lockdep_assert_held(&obj->base.dev->struct_mutex);
4291
4292         if (flags & PIN_MAPPABLE &&
4293             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4294                 /* If the required space is larger than the available
4295                  * aperture, we will not able to find a slot for the
4296                  * object and unbinding the object now will be in
4297                  * vain. Worse, doing so may cause us to ping-pong
4298                  * the object in and out of the Global GTT and
4299                  * waste a lot of cycles under the mutex.
4300                  */
4301                 if (obj->base.size > dev_priv->ggtt.mappable_end)
4302                         return ERR_PTR(-E2BIG);
4303
4304                 /* If NONBLOCK is set the caller is optimistically
4305                  * trying to cache the full object within the mappable
4306                  * aperture, and *must* have a fallback in place for
4307                  * situations where we cannot bind the object. We
4308                  * can be a little more lax here and use the fallback
4309                  * more often to avoid costly migrations of ourselves
4310                  * and other objects within the aperture.
4311                  *
4312                  * Half-the-aperture is used as a simple heuristic.
4313                  * More interesting would to do search for a free
4314                  * block prior to making the commitment to unbind.
4315                  * That caters for the self-harm case, and with a
4316                  * little more heuristics (e.g. NOFAULT, NOEVICT)
4317                  * we could try to minimise harm to others.
4318                  */
4319                 if (flags & PIN_NONBLOCK &&
4320                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
4321                         return ERR_PTR(-ENOSPC);
4322         }
4323
4324         vma = i915_vma_instance(obj, vm, view);
4325         if (unlikely(IS_ERR(vma)))
4326                 return vma;
4327
4328         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4329                 if (flags & PIN_NONBLOCK) {
4330                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4331                                 return ERR_PTR(-ENOSPC);
4332
4333                         if (flags & PIN_MAPPABLE &&
4334                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4335                                 return ERR_PTR(-ENOSPC);
4336                 }
4337
4338                 WARN(i915_vma_is_pinned(vma),
4339                      "bo is already pinned in ggtt with incorrect alignment:"
4340                      " offset=%08x, req.alignment=%llx,"
4341                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4342                      i915_ggtt_offset(vma), alignment,
4343                      !!(flags & PIN_MAPPABLE),
4344                      i915_vma_is_map_and_fenceable(vma));
4345                 ret = i915_vma_unbind(vma);
4346                 if (ret)
4347                         return ERR_PTR(ret);
4348         }
4349
4350         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4351         if (ret)
4352                 return ERR_PTR(ret);
4353
4354         return vma;
4355 }
4356
4357 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4358 {
4359         /* Note that we could alias engines in the execbuf API, but
4360          * that would be very unwise as it prevents userspace from
4361          * fine control over engine selection. Ahem.
4362          *
4363          * This should be something like EXEC_MAX_ENGINE instead of
4364          * I915_NUM_ENGINES.
4365          */
4366         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4367         return 0x10000 << id;
4368 }
4369
4370 static __always_inline unsigned int __busy_write_id(unsigned int id)
4371 {
4372         /* The uABI guarantees an active writer is also amongst the read
4373          * engines. This would be true if we accessed the activity tracking
4374          * under the lock, but as we perform the lookup of the object and
4375          * its activity locklessly we can not guarantee that the last_write
4376          * being active implies that we have set the same engine flag from
4377          * last_read - hence we always set both read and write busy for
4378          * last_write.
4379          */
4380         return id | __busy_read_flag(id);
4381 }
4382
4383 static __always_inline unsigned int
4384 __busy_set_if_active(const struct dma_fence *fence,
4385                      unsigned int (*flag)(unsigned int id))
4386 {
4387         struct i915_request *rq;
4388
4389         /* We have to check the current hw status of the fence as the uABI
4390          * guarantees forward progress. We could rely on the idle worker
4391          * to eventually flush us, but to minimise latency just ask the
4392          * hardware.
4393          *
4394          * Note we only report on the status of native fences.
4395          */
4396         if (!dma_fence_is_i915(fence))
4397                 return 0;
4398
4399         /* opencode to_request() in order to avoid const warnings */
4400         rq = container_of(fence, struct i915_request, fence);
4401         if (i915_request_completed(rq))
4402                 return 0;
4403
4404         return flag(rq->engine->uabi_id);
4405 }
4406
4407 static __always_inline unsigned int
4408 busy_check_reader(const struct dma_fence *fence)
4409 {
4410         return __busy_set_if_active(fence, __busy_read_flag);
4411 }
4412
4413 static __always_inline unsigned int
4414 busy_check_writer(const struct dma_fence *fence)
4415 {
4416         if (!fence)
4417                 return 0;
4418
4419         return __busy_set_if_active(fence, __busy_write_id);
4420 }
4421
4422 int
4423 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4424                     struct drm_file *file)
4425 {
4426         struct drm_i915_gem_busy *args = data;
4427         struct drm_i915_gem_object *obj;
4428         struct reservation_object_list *list;
4429         unsigned int seq;
4430         int err;
4431
4432         err = -ENOENT;
4433         rcu_read_lock();
4434         obj = i915_gem_object_lookup_rcu(file, args->handle);
4435         if (!obj)
4436                 goto out;
4437
4438         /* A discrepancy here is that we do not report the status of
4439          * non-i915 fences, i.e. even though we may report the object as idle,
4440          * a call to set-domain may still stall waiting for foreign rendering.
4441          * This also means that wait-ioctl may report an object as busy,
4442          * where busy-ioctl considers it idle.
4443          *
4444          * We trade the ability to warn of foreign fences to report on which
4445          * i915 engines are active for the object.
4446          *
4447          * Alternatively, we can trade that extra information on read/write
4448          * activity with
4449          *      args->busy =
4450          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4451          * to report the overall busyness. This is what the wait-ioctl does.
4452          *
4453          */
4454 retry:
4455         seq = raw_read_seqcount(&obj->resv->seq);
4456
4457         /* Translate the exclusive fence to the READ *and* WRITE engine */
4458         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4459
4460         /* Translate shared fences to READ set of engines */
4461         list = rcu_dereference(obj->resv->fence);
4462         if (list) {
4463                 unsigned int shared_count = list->shared_count, i;
4464
4465                 for (i = 0; i < shared_count; ++i) {
4466                         struct dma_fence *fence =
4467                                 rcu_dereference(list->shared[i]);
4468
4469                         args->busy |= busy_check_reader(fence);
4470                 }
4471         }
4472
4473         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4474                 goto retry;
4475
4476         err = 0;
4477 out:
4478         rcu_read_unlock();
4479         return err;
4480 }
4481
4482 int
4483 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4484                         struct drm_file *file_priv)
4485 {
4486         return i915_gem_ring_throttle(dev, file_priv);
4487 }
4488
4489 int
4490 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4491                        struct drm_file *file_priv)
4492 {
4493         struct drm_i915_private *dev_priv = to_i915(dev);
4494         struct drm_i915_gem_madvise *args = data;
4495         struct drm_i915_gem_object *obj;
4496         int err;
4497
4498         switch (args->madv) {
4499         case I915_MADV_DONTNEED:
4500         case I915_MADV_WILLNEED:
4501             break;
4502         default:
4503             return -EINVAL;
4504         }
4505
4506         obj = i915_gem_object_lookup(file_priv, args->handle);
4507         if (!obj)
4508                 return -ENOENT;
4509
4510         err = mutex_lock_interruptible(&obj->mm.lock);
4511         if (err)
4512                 goto out;
4513
4514         if (i915_gem_object_has_pages(obj) &&
4515             i915_gem_object_is_tiled(obj) &&
4516             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4517                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4518                         GEM_BUG_ON(!obj->mm.quirked);
4519                         __i915_gem_object_unpin_pages(obj);
4520                         obj->mm.quirked = false;
4521                 }
4522                 if (args->madv == I915_MADV_WILLNEED) {
4523                         GEM_BUG_ON(obj->mm.quirked);
4524                         __i915_gem_object_pin_pages(obj);
4525                         obj->mm.quirked = true;
4526                 }
4527         }
4528
4529         if (obj->mm.madv != __I915_MADV_PURGED)
4530                 obj->mm.madv = args->madv;
4531
4532         /* if the object is no longer attached, discard its backing storage */
4533         if (obj->mm.madv == I915_MADV_DONTNEED &&
4534             !i915_gem_object_has_pages(obj))
4535                 i915_gem_object_truncate(obj);
4536
4537         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4538         mutex_unlock(&obj->mm.lock);
4539
4540 out:
4541         i915_gem_object_put(obj);
4542         return err;
4543 }
4544
4545 static void
4546 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4547 {
4548         struct drm_i915_gem_object *obj =
4549                 container_of(active, typeof(*obj), frontbuffer_write);
4550
4551         intel_fb_obj_flush(obj, ORIGIN_CS);
4552 }
4553
4554 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4555                           const struct drm_i915_gem_object_ops *ops)
4556 {
4557         mutex_init(&obj->mm.lock);
4558
4559         INIT_LIST_HEAD(&obj->vma_list);
4560         INIT_LIST_HEAD(&obj->lut_list);
4561         INIT_LIST_HEAD(&obj->batch_pool_link);
4562
4563         obj->ops = ops;
4564
4565         reservation_object_init(&obj->__builtin_resv);
4566         obj->resv = &obj->__builtin_resv;
4567
4568         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4569         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4570
4571         obj->mm.madv = I915_MADV_WILLNEED;
4572         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4573         mutex_init(&obj->mm.get_page.lock);
4574
4575         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4576 }
4577
4578 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4579         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4580                  I915_GEM_OBJECT_IS_SHRINKABLE,
4581
4582         .get_pages = i915_gem_object_get_pages_gtt,
4583         .put_pages = i915_gem_object_put_pages_gtt,
4584
4585         .pwrite = i915_gem_object_pwrite_gtt,
4586 };
4587
4588 static int i915_gem_object_create_shmem(struct drm_device *dev,
4589                                         struct drm_gem_object *obj,
4590                                         size_t size)
4591 {
4592         struct drm_i915_private *i915 = to_i915(dev);
4593         unsigned long flags = VM_NORESERVE;
4594         struct file *filp;
4595
4596         drm_gem_private_object_init(dev, obj, size);
4597
4598         if (i915->mm.gemfs)
4599                 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4600                                                  flags);
4601         else
4602                 filp = shmem_file_setup("i915", size, flags);
4603
4604         if (IS_ERR(filp))
4605                 return PTR_ERR(filp);
4606
4607         obj->filp = filp;
4608
4609         return 0;
4610 }
4611
4612 struct drm_i915_gem_object *
4613 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4614 {
4615         struct drm_i915_gem_object *obj;
4616         struct address_space *mapping;
4617         unsigned int cache_level;
4618         gfp_t mask;
4619         int ret;
4620
4621         /* There is a prevalence of the assumption that we fit the object's
4622          * page count inside a 32bit _signed_ variable. Let's document this and
4623          * catch if we ever need to fix it. In the meantime, if you do spot
4624          * such a local variable, please consider fixing!
4625          */
4626         if (size >> PAGE_SHIFT > INT_MAX)
4627                 return ERR_PTR(-E2BIG);
4628
4629         if (overflows_type(size, obj->base.size))
4630                 return ERR_PTR(-E2BIG);
4631
4632         obj = i915_gem_object_alloc(dev_priv);
4633         if (obj == NULL)
4634                 return ERR_PTR(-ENOMEM);
4635
4636         ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4637         if (ret)
4638                 goto fail;
4639
4640         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4641         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4642                 /* 965gm cannot relocate objects above 4GiB. */
4643                 mask &= ~__GFP_HIGHMEM;
4644                 mask |= __GFP_DMA32;
4645         }
4646
4647         mapping = obj->base.filp->f_mapping;
4648         mapping_set_gfp_mask(mapping, mask);
4649         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4650
4651         i915_gem_object_init(obj, &i915_gem_object_ops);
4652
4653         obj->write_domain = I915_GEM_DOMAIN_CPU;
4654         obj->read_domains = I915_GEM_DOMAIN_CPU;
4655
4656         if (HAS_LLC(dev_priv))
4657                 /* On some devices, we can have the GPU use the LLC (the CPU
4658                  * cache) for about a 10% performance improvement
4659                  * compared to uncached.  Graphics requests other than
4660                  * display scanout are coherent with the CPU in
4661                  * accessing this cache.  This means in this mode we
4662                  * don't need to clflush on the CPU side, and on the
4663                  * GPU side we only need to flush internal caches to
4664                  * get data visible to the CPU.
4665                  *
4666                  * However, we maintain the display planes as UC, and so
4667                  * need to rebind when first used as such.
4668                  */
4669                 cache_level = I915_CACHE_LLC;
4670         else
4671                 cache_level = I915_CACHE_NONE;
4672
4673         i915_gem_object_set_cache_coherency(obj, cache_level);
4674
4675         trace_i915_gem_object_create(obj);
4676
4677         return obj;
4678
4679 fail:
4680         i915_gem_object_free(obj);
4681         return ERR_PTR(ret);
4682 }
4683
4684 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4685 {
4686         /* If we are the last user of the backing storage (be it shmemfs
4687          * pages or stolen etc), we know that the pages are going to be
4688          * immediately released. In this case, we can then skip copying
4689          * back the contents from the GPU.
4690          */
4691
4692         if (obj->mm.madv != I915_MADV_WILLNEED)
4693                 return false;
4694
4695         if (obj->base.filp == NULL)
4696                 return true;
4697
4698         /* At first glance, this looks racy, but then again so would be
4699          * userspace racing mmap against close. However, the first external
4700          * reference to the filp can only be obtained through the
4701          * i915_gem_mmap_ioctl() which safeguards us against the user
4702          * acquiring such a reference whilst we are in the middle of
4703          * freeing the object.
4704          */
4705         return atomic_long_read(&obj->base.filp->f_count) == 1;
4706 }
4707
4708 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4709                                     struct llist_node *freed)
4710 {
4711         struct drm_i915_gem_object *obj, *on;
4712
4713         intel_runtime_pm_get(i915);
4714         llist_for_each_entry_safe(obj, on, freed, freed) {
4715                 struct i915_vma *vma, *vn;
4716
4717                 trace_i915_gem_object_destroy(obj);
4718
4719                 mutex_lock(&i915->drm.struct_mutex);
4720
4721                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4722                 list_for_each_entry_safe(vma, vn,
4723                                          &obj->vma_list, obj_link) {
4724                         GEM_BUG_ON(i915_vma_is_active(vma));
4725                         vma->flags &= ~I915_VMA_PIN_MASK;
4726                         i915_vma_close(vma);
4727                 }
4728                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4729                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4730
4731                 /* This serializes freeing with the shrinker. Since the free
4732                  * is delayed, first by RCU then by the workqueue, we want the
4733                  * shrinker to be able to free pages of unreferenced objects,
4734                  * or else we may oom whilst there are plenty of deferred
4735                  * freed objects.
4736                  */
4737                 if (i915_gem_object_has_pages(obj)) {
4738                         spin_lock(&i915->mm.obj_lock);
4739                         list_del_init(&obj->mm.link);
4740                         spin_unlock(&i915->mm.obj_lock);
4741                 }
4742
4743                 mutex_unlock(&i915->drm.struct_mutex);
4744
4745                 GEM_BUG_ON(obj->bind_count);
4746                 GEM_BUG_ON(obj->userfault_count);
4747                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4748                 GEM_BUG_ON(!list_empty(&obj->lut_list));
4749
4750                 if (obj->ops->release)
4751                         obj->ops->release(obj);
4752
4753                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4754                         atomic_set(&obj->mm.pages_pin_count, 0);
4755                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4756                 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4757
4758                 if (obj->base.import_attach)
4759                         drm_prime_gem_destroy(&obj->base, NULL);
4760
4761                 reservation_object_fini(&obj->__builtin_resv);
4762                 drm_gem_object_release(&obj->base);
4763                 i915_gem_info_remove_obj(i915, obj->base.size);
4764
4765                 kfree(obj->bit_17);
4766                 i915_gem_object_free(obj);
4767
4768                 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4769                 atomic_dec(&i915->mm.free_count);
4770
4771                 if (on)
4772                         cond_resched();
4773         }
4774         intel_runtime_pm_put(i915);
4775 }
4776
4777 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4778 {
4779         struct llist_node *freed;
4780
4781         /* Free the oldest, most stale object to keep the free_list short */
4782         freed = NULL;
4783         if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4784                 /* Only one consumer of llist_del_first() allowed */
4785                 spin_lock(&i915->mm.free_lock);
4786                 freed = llist_del_first(&i915->mm.free_list);
4787                 spin_unlock(&i915->mm.free_lock);
4788         }
4789         if (unlikely(freed)) {
4790                 freed->next = NULL;
4791                 __i915_gem_free_objects(i915, freed);
4792         }
4793 }
4794
4795 static void __i915_gem_free_work(struct work_struct *work)
4796 {
4797         struct drm_i915_private *i915 =
4798                 container_of(work, struct drm_i915_private, mm.free_work);
4799         struct llist_node *freed;
4800
4801         /*
4802          * All file-owned VMA should have been released by this point through
4803          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4804          * However, the object may also be bound into the global GTT (e.g.
4805          * older GPUs without per-process support, or for direct access through
4806          * the GTT either for the user or for scanout). Those VMA still need to
4807          * unbound now.
4808          */
4809
4810         spin_lock(&i915->mm.free_lock);
4811         while ((freed = llist_del_all(&i915->mm.free_list))) {
4812                 spin_unlock(&i915->mm.free_lock);
4813
4814                 __i915_gem_free_objects(i915, freed);
4815                 if (need_resched())
4816                         return;
4817
4818                 spin_lock(&i915->mm.free_lock);
4819         }
4820         spin_unlock(&i915->mm.free_lock);
4821 }
4822
4823 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4824 {
4825         struct drm_i915_gem_object *obj =
4826                 container_of(head, typeof(*obj), rcu);
4827         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4828
4829         /*
4830          * Since we require blocking on struct_mutex to unbind the freed
4831          * object from the GPU before releasing resources back to the
4832          * system, we can not do that directly from the RCU callback (which may
4833          * be a softirq context), but must instead then defer that work onto a
4834          * kthread. We use the RCU callback rather than move the freed object
4835          * directly onto the work queue so that we can mix between using the
4836          * worker and performing frees directly from subsequent allocations for
4837          * crude but effective memory throttling.
4838          */
4839         if (llist_add(&obj->freed, &i915->mm.free_list))
4840                 queue_work(i915->wq, &i915->mm.free_work);
4841 }
4842
4843 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4844 {
4845         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4846
4847         if (obj->mm.quirked)
4848                 __i915_gem_object_unpin_pages(obj);
4849
4850         if (discard_backing_storage(obj))
4851                 obj->mm.madv = I915_MADV_DONTNEED;
4852
4853         /*
4854          * Before we free the object, make sure any pure RCU-only
4855          * read-side critical sections are complete, e.g.
4856          * i915_gem_busy_ioctl(). For the corresponding synchronized
4857          * lookup see i915_gem_object_lookup_rcu().
4858          */
4859         atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4860         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4861 }
4862
4863 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4864 {
4865         lockdep_assert_held(&obj->base.dev->struct_mutex);
4866
4867         if (!i915_gem_object_has_active_reference(obj) &&
4868             i915_gem_object_is_active(obj))
4869                 i915_gem_object_set_active_reference(obj);
4870         else
4871                 i915_gem_object_put(obj);
4872 }
4873
4874 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4875 {
4876         struct i915_gem_context *kernel_context = i915->kernel_context;
4877         struct intel_engine_cs *engine;
4878         enum intel_engine_id id;
4879
4880         for_each_engine(engine, i915, id) {
4881                 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4882                 GEM_BUG_ON(engine->last_retired_context != kernel_context);
4883         }
4884 }
4885
4886 void i915_gem_sanitize(struct drm_i915_private *i915)
4887 {
4888         if (i915_terminally_wedged(&i915->gpu_error)) {
4889                 mutex_lock(&i915->drm.struct_mutex);
4890                 i915_gem_unset_wedged(i915);
4891                 mutex_unlock(&i915->drm.struct_mutex);
4892         }
4893
4894         /*
4895          * If we inherit context state from the BIOS or earlier occupants
4896          * of the GPU, the GPU may be in an inconsistent state when we
4897          * try to take over. The only way to remove the earlier state
4898          * is by resetting. However, resetting on earlier gen is tricky as
4899          * it may impact the display and we are uncertain about the stability
4900          * of the reset, so this could be applied to even earlier gen.
4901          */
4902         if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4903                 WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4904 }
4905
4906 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4907 {
4908         struct drm_device *dev = &dev_priv->drm;
4909         int ret;
4910
4911         intel_runtime_pm_get(dev_priv);
4912         intel_suspend_gt_powersave(dev_priv);
4913
4914         mutex_lock(&dev->struct_mutex);
4915
4916         /* We have to flush all the executing contexts to main memory so
4917          * that they can saved in the hibernation image. To ensure the last
4918          * context image is coherent, we have to switch away from it. That
4919          * leaves the dev_priv->kernel_context still active when
4920          * we actually suspend, and its image in memory may not match the GPU
4921          * state. Fortunately, the kernel_context is disposable and we do
4922          * not rely on its state.
4923          */
4924         if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4925                 ret = i915_gem_switch_to_kernel_context(dev_priv);
4926                 if (ret)
4927                         goto err_unlock;
4928
4929                 ret = i915_gem_wait_for_idle(dev_priv,
4930                                              I915_WAIT_INTERRUPTIBLE |
4931                                              I915_WAIT_LOCKED);
4932                 if (ret && ret != -EIO)
4933                         goto err_unlock;
4934
4935                 assert_kernel_context_is_current(dev_priv);
4936         }
4937         i915_gem_contexts_lost(dev_priv);
4938         mutex_unlock(&dev->struct_mutex);
4939
4940         intel_uc_suspend(dev_priv);
4941
4942         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4943         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4944
4945         /* As the idle_work is rearming if it detects a race, play safe and
4946          * repeat the flush until it is definitely idle.
4947          */
4948         drain_delayed_work(&dev_priv->gt.idle_work);
4949
4950         /* Assert that we sucessfully flushed all the work and
4951          * reset the GPU back to its idle, low power state.
4952          */
4953         WARN_ON(dev_priv->gt.awake);
4954         if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4955                 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4956
4957         /*
4958          * Neither the BIOS, ourselves or any other kernel
4959          * expects the system to be in execlists mode on startup,
4960          * so we need to reset the GPU back to legacy mode. And the only
4961          * known way to disable logical contexts is through a GPU reset.
4962          *
4963          * So in order to leave the system in a known default configuration,
4964          * always reset the GPU upon unload and suspend. Afterwards we then
4965          * clean up the GEM state tracking, flushing off the requests and
4966          * leaving the system in a known idle state.
4967          *
4968          * Note that is of the upmost importance that the GPU is idle and
4969          * all stray writes are flushed *before* we dismantle the backing
4970          * storage for the pinned objects.
4971          *
4972          * However, since we are uncertain that resetting the GPU on older
4973          * machines is a good idea, we don't - just in case it leaves the
4974          * machine in an unusable condition.
4975          */
4976         i915_gem_sanitize(dev_priv);
4977
4978         intel_runtime_pm_put(dev_priv);
4979         return 0;
4980
4981 err_unlock:
4982         mutex_unlock(&dev->struct_mutex);
4983         intel_runtime_pm_put(dev_priv);
4984         return ret;
4985 }
4986
4987 void i915_gem_resume(struct drm_i915_private *i915)
4988 {
4989         WARN_ON(i915->gt.awake);
4990
4991         mutex_lock(&i915->drm.struct_mutex);
4992         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4993
4994         i915_gem_restore_gtt_mappings(i915);
4995         i915_gem_restore_fences(i915);
4996
4997         /*
4998          * As we didn't flush the kernel context before suspend, we cannot
4999          * guarantee that the context image is complete. So let's just reset
5000          * it and start again.
5001          */
5002         i915->gt.resume(i915);
5003
5004         if (i915_gem_init_hw(i915))
5005                 goto err_wedged;
5006
5007         intel_uc_resume(i915);
5008
5009         /* Always reload a context for powersaving. */
5010         if (i915_gem_switch_to_kernel_context(i915))
5011                 goto err_wedged;
5012
5013 out_unlock:
5014         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5015         mutex_unlock(&i915->drm.struct_mutex);
5016         return;
5017
5018 err_wedged:
5019         if (!i915_terminally_wedged(&i915->gpu_error)) {
5020                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5021                 i915_gem_set_wedged(i915);
5022         }
5023         goto out_unlock;
5024 }
5025
5026 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5027 {
5028         if (INTEL_GEN(dev_priv) < 5 ||
5029             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5030                 return;
5031
5032         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5033                                  DISP_TILE_SURFACE_SWIZZLING);
5034
5035         if (IS_GEN5(dev_priv))
5036                 return;
5037
5038         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5039         if (IS_GEN6(dev_priv))
5040                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5041         else if (IS_GEN7(dev_priv))
5042                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5043         else if (IS_GEN8(dev_priv))
5044                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5045         else
5046                 BUG();
5047 }
5048
5049 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5050 {
5051         I915_WRITE(RING_CTL(base), 0);
5052         I915_WRITE(RING_HEAD(base), 0);
5053         I915_WRITE(RING_TAIL(base), 0);
5054         I915_WRITE(RING_START(base), 0);
5055 }
5056
5057 static void init_unused_rings(struct drm_i915_private *dev_priv)
5058 {
5059         if (IS_I830(dev_priv)) {
5060                 init_unused_ring(dev_priv, PRB1_BASE);
5061                 init_unused_ring(dev_priv, SRB0_BASE);
5062                 init_unused_ring(dev_priv, SRB1_BASE);
5063                 init_unused_ring(dev_priv, SRB2_BASE);
5064                 init_unused_ring(dev_priv, SRB3_BASE);
5065         } else if (IS_GEN2(dev_priv)) {
5066                 init_unused_ring(dev_priv, SRB0_BASE);
5067                 init_unused_ring(dev_priv, SRB1_BASE);
5068         } else if (IS_GEN3(dev_priv)) {
5069                 init_unused_ring(dev_priv, PRB1_BASE);
5070                 init_unused_ring(dev_priv, PRB2_BASE);
5071         }
5072 }
5073
5074 static int __i915_gem_restart_engines(void *data)
5075 {
5076         struct drm_i915_private *i915 = data;
5077         struct intel_engine_cs *engine;
5078         enum intel_engine_id id;
5079         int err;
5080
5081         for_each_engine(engine, i915, id) {
5082                 err = engine->init_hw(engine);
5083                 if (err) {
5084                         DRM_ERROR("Failed to restart %s (%d)\n",
5085                                   engine->name, err);
5086                         return err;
5087                 }
5088         }
5089
5090         return 0;
5091 }
5092
5093 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5094 {
5095         int ret;
5096
5097         dev_priv->gt.last_init_time = ktime_get();
5098
5099         /* Double layer security blanket, see i915_gem_init() */
5100         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5101
5102         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5103                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5104
5105         if (IS_HASWELL(dev_priv))
5106                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5107                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5108
5109         if (HAS_PCH_NOP(dev_priv)) {
5110                 if (IS_IVYBRIDGE(dev_priv)) {
5111                         u32 temp = I915_READ(GEN7_MSG_CTL);
5112                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5113                         I915_WRITE(GEN7_MSG_CTL, temp);
5114                 } else if (INTEL_GEN(dev_priv) >= 7) {
5115                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5116                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5117                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5118                 }
5119         }
5120
5121         i915_gem_init_swizzling(dev_priv);
5122
5123         /*
5124          * At least 830 can leave some of the unused rings
5125          * "active" (ie. head != tail) after resume which
5126          * will prevent c3 entry. Makes sure all unused rings
5127          * are totally idle.
5128          */
5129         init_unused_rings(dev_priv);
5130
5131         BUG_ON(!dev_priv->kernel_context);
5132         if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5133                 ret = -EIO;
5134                 goto out;
5135         }
5136
5137         ret = i915_ppgtt_init_hw(dev_priv);
5138         if (ret) {
5139                 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5140                 goto out;
5141         }
5142
5143         /* We can't enable contexts until all firmware is loaded */
5144         ret = intel_uc_init_hw(dev_priv);
5145         if (ret) {
5146                 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5147                 goto out;
5148         }
5149
5150         intel_mocs_init_l3cc_table(dev_priv);
5151
5152         /* Only when the HW is re-initialised, can we replay the requests */
5153         ret = __i915_gem_restart_engines(dev_priv);
5154 out:
5155         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5156         return ret;
5157 }
5158
5159 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5160 {
5161         struct i915_gem_context *ctx;
5162         struct intel_engine_cs *engine;
5163         enum intel_engine_id id;
5164         int err;
5165
5166         /*
5167          * As we reset the gpu during very early sanitisation, the current
5168          * register state on the GPU should reflect its defaults values.
5169          * We load a context onto the hw (with restore-inhibit), then switch
5170          * over to a second context to save that default register state. We
5171          * can then prime every new context with that state so they all start
5172          * from the same default HW values.
5173          */
5174
5175         ctx = i915_gem_context_create_kernel(i915, 0);
5176         if (IS_ERR(ctx))
5177                 return PTR_ERR(ctx);
5178
5179         for_each_engine(engine, i915, id) {
5180                 struct i915_request *rq;
5181
5182                 rq = i915_request_alloc(engine, ctx);
5183                 if (IS_ERR(rq)) {
5184                         err = PTR_ERR(rq);
5185                         goto out_ctx;
5186                 }
5187
5188                 err = 0;
5189                 if (engine->init_context)
5190                         err = engine->init_context(rq);
5191
5192                 __i915_request_add(rq, true);
5193                 if (err)
5194                         goto err_active;
5195         }
5196
5197         err = i915_gem_switch_to_kernel_context(i915);
5198         if (err)
5199                 goto err_active;
5200
5201         err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5202         if (err)
5203                 goto err_active;
5204
5205         assert_kernel_context_is_current(i915);
5206
5207         for_each_engine(engine, i915, id) {
5208                 struct i915_vma *state;
5209
5210                 state = ctx->engine[id].state;
5211                 if (!state)
5212                         continue;
5213
5214                 /*
5215                  * As we will hold a reference to the logical state, it will
5216                  * not be torn down with the context, and importantly the
5217                  * object will hold onto its vma (making it possible for a
5218                  * stray GTT write to corrupt our defaults). Unmap the vma
5219                  * from the GTT to prevent such accidents and reclaim the
5220                  * space.
5221                  */
5222                 err = i915_vma_unbind(state);
5223                 if (err)
5224                         goto err_active;
5225
5226                 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5227                 if (err)
5228                         goto err_active;
5229
5230                 engine->default_state = i915_gem_object_get(state->obj);
5231         }
5232
5233         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5234                 unsigned int found = intel_engines_has_context_isolation(i915);
5235
5236                 /*
5237                  * Make sure that classes with multiple engine instances all
5238                  * share the same basic configuration.
5239                  */
5240                 for_each_engine(engine, i915, id) {
5241                         unsigned int bit = BIT(engine->uabi_class);
5242                         unsigned int expected = engine->default_state ? bit : 0;
5243
5244                         if ((found & bit) != expected) {
5245                                 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5246                                           engine->uabi_class, engine->name);
5247                         }
5248                 }
5249         }
5250
5251 out_ctx:
5252         i915_gem_context_set_closed(ctx);
5253         i915_gem_context_put(ctx);
5254         return err;
5255
5256 err_active:
5257         /*
5258          * If we have to abandon now, we expect the engines to be idle
5259          * and ready to be torn-down. First try to flush any remaining
5260          * request, ensure we are pointing at the kernel context and
5261          * then remove it.
5262          */
5263         if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5264                 goto out_ctx;
5265
5266         if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5267                 goto out_ctx;
5268
5269         i915_gem_contexts_lost(i915);
5270         goto out_ctx;
5271 }
5272
5273 int i915_gem_init(struct drm_i915_private *dev_priv)
5274 {
5275         int ret;
5276
5277         /*
5278          * We need to fallback to 4K pages since gvt gtt handling doesn't
5279          * support huge page entries - we will need to check either hypervisor
5280          * mm can support huge guest page or just do emulation in gvt.
5281          */
5282         if (intel_vgpu_active(dev_priv))
5283                 mkwrite_device_info(dev_priv)->page_sizes =
5284                         I915_GTT_PAGE_SIZE_4K;
5285
5286         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5287
5288         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5289                 dev_priv->gt.resume = intel_lr_context_resume;
5290                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5291         } else {
5292                 dev_priv->gt.resume = intel_legacy_submission_resume;
5293                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5294         }
5295
5296         ret = i915_gem_init_userptr(dev_priv);
5297         if (ret)
5298                 return ret;
5299
5300         ret = intel_uc_init_misc(dev_priv);
5301         if (ret)
5302                 return ret;
5303
5304         /* This is just a security blanket to placate dragons.
5305          * On some systems, we very sporadically observe that the first TLBs
5306          * used by the CS may be stale, despite us poking the TLB reset. If
5307          * we hold the forcewake during initialisation these problems
5308          * just magically go away.
5309          */
5310         mutex_lock(&dev_priv->drm.struct_mutex);
5311         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312
5313         ret = i915_gem_init_ggtt(dev_priv);
5314         if (ret) {
5315                 GEM_BUG_ON(ret == -EIO);
5316                 goto err_unlock;
5317         }
5318
5319         ret = i915_gem_contexts_init(dev_priv);
5320         if (ret) {
5321                 GEM_BUG_ON(ret == -EIO);
5322                 goto err_ggtt;
5323         }
5324
5325         ret = intel_engines_init(dev_priv);
5326         if (ret) {
5327                 GEM_BUG_ON(ret == -EIO);
5328                 goto err_context;
5329         }
5330
5331         intel_init_gt_powersave(dev_priv);
5332
5333         ret = intel_uc_init(dev_priv);
5334         if (ret)
5335                 goto err_pm;
5336
5337         ret = i915_gem_init_hw(dev_priv);
5338         if (ret)
5339                 goto err_uc_init;
5340
5341         /*
5342          * Despite its name intel_init_clock_gating applies both display
5343          * clock gating workarounds; GT mmio workarounds and the occasional
5344          * GT power context workaround. Worse, sometimes it includes a context
5345          * register workaround which we need to apply before we record the
5346          * default HW state for all contexts.
5347          *
5348          * FIXME: break up the workarounds and apply them at the right time!
5349          */
5350         intel_init_clock_gating(dev_priv);
5351
5352         ret = __intel_engines_record_defaults(dev_priv);
5353         if (ret)
5354                 goto err_init_hw;
5355
5356         if (i915_inject_load_failure()) {
5357                 ret = -ENODEV;
5358                 goto err_init_hw;
5359         }
5360
5361         if (i915_inject_load_failure()) {
5362                 ret = -EIO;
5363                 goto err_init_hw;
5364         }
5365
5366         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5367         mutex_unlock(&dev_priv->drm.struct_mutex);
5368
5369         return 0;
5370
5371         /*
5372          * Unwinding is complicated by that we want to handle -EIO to mean
5373          * disable GPU submission but keep KMS alive. We want to mark the
5374          * HW as irrevisibly wedged, but keep enough state around that the
5375          * driver doesn't explode during runtime.
5376          */
5377 err_init_hw:
5378         i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5379         i915_gem_contexts_lost(dev_priv);
5380         intel_uc_fini_hw(dev_priv);
5381 err_uc_init:
5382         intel_uc_fini(dev_priv);
5383 err_pm:
5384         if (ret != -EIO) {
5385                 intel_cleanup_gt_powersave(dev_priv);
5386                 i915_gem_cleanup_engines(dev_priv);
5387         }
5388 err_context:
5389         if (ret != -EIO)
5390                 i915_gem_contexts_fini(dev_priv);
5391 err_ggtt:
5392 err_unlock:
5393         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5394         mutex_unlock(&dev_priv->drm.struct_mutex);
5395
5396         intel_uc_fini_misc(dev_priv);
5397
5398         if (ret != -EIO)
5399                 i915_gem_cleanup_userptr(dev_priv);
5400
5401         if (ret == -EIO) {
5402                 /*
5403                  * Allow engine initialisation to fail by marking the GPU as
5404                  * wedged. But we only want to do this where the GPU is angry,
5405                  * for all other failure, such as an allocation failure, bail.
5406                  */
5407                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5408                         DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5409                         i915_gem_set_wedged(dev_priv);
5410                 }
5411                 ret = 0;
5412         }
5413
5414         i915_gem_drain_freed_objects(dev_priv);
5415         return ret;
5416 }
5417
5418 void i915_gem_init_mmio(struct drm_i915_private *i915)
5419 {
5420         i915_gem_sanitize(i915);
5421 }
5422
5423 void
5424 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5425 {
5426         struct intel_engine_cs *engine;
5427         enum intel_engine_id id;
5428
5429         for_each_engine(engine, dev_priv, id)
5430                 dev_priv->gt.cleanup_engine(engine);
5431 }
5432
5433 void
5434 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5435 {
5436         int i;
5437
5438         if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5439             !IS_CHERRYVIEW(dev_priv))
5440                 dev_priv->num_fence_regs = 32;
5441         else if (INTEL_GEN(dev_priv) >= 4 ||
5442                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5443                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5444                 dev_priv->num_fence_regs = 16;
5445         else
5446                 dev_priv->num_fence_regs = 8;
5447
5448         if (intel_vgpu_active(dev_priv))
5449                 dev_priv->num_fence_regs =
5450                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5451
5452         /* Initialize fence registers to zero */
5453         for (i = 0; i < dev_priv->num_fence_regs; i++) {
5454                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5455
5456                 fence->i915 = dev_priv;
5457                 fence->id = i;
5458                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5459         }
5460         i915_gem_restore_fences(dev_priv);
5461
5462         i915_gem_detect_bit_6_swizzle(dev_priv);
5463 }
5464
5465 static void i915_gem_init__mm(struct drm_i915_private *i915)
5466 {
5467         spin_lock_init(&i915->mm.object_stat_lock);
5468         spin_lock_init(&i915->mm.obj_lock);
5469         spin_lock_init(&i915->mm.free_lock);
5470
5471         init_llist_head(&i915->mm.free_list);
5472
5473         INIT_LIST_HEAD(&i915->mm.unbound_list);
5474         INIT_LIST_HEAD(&i915->mm.bound_list);
5475         INIT_LIST_HEAD(&i915->mm.fence_list);
5476         INIT_LIST_HEAD(&i915->mm.userfault_list);
5477
5478         INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5479 }
5480
5481 int
5482 i915_gem_load_init(struct drm_i915_private *dev_priv)
5483 {
5484         int err = -ENOMEM;
5485
5486         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5487         if (!dev_priv->objects)
5488                 goto err_out;
5489
5490         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5491         if (!dev_priv->vmas)
5492                 goto err_objects;
5493
5494         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5495         if (!dev_priv->luts)
5496                 goto err_vmas;
5497
5498         dev_priv->requests = KMEM_CACHE(i915_request,
5499                                         SLAB_HWCACHE_ALIGN |
5500                                         SLAB_RECLAIM_ACCOUNT |
5501                                         SLAB_TYPESAFE_BY_RCU);
5502         if (!dev_priv->requests)
5503                 goto err_luts;
5504
5505         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5506                                             SLAB_HWCACHE_ALIGN |
5507                                             SLAB_RECLAIM_ACCOUNT);
5508         if (!dev_priv->dependencies)
5509                 goto err_requests;
5510
5511         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5512         if (!dev_priv->priorities)
5513                 goto err_dependencies;
5514
5515         mutex_lock(&dev_priv->drm.struct_mutex);
5516         INIT_LIST_HEAD(&dev_priv->gt.timelines);
5517         err = i915_gem_timeline_init__global(dev_priv);
5518         mutex_unlock(&dev_priv->drm.struct_mutex);
5519         if (err)
5520                 goto err_priorities;
5521
5522         i915_gem_init__mm(dev_priv);
5523
5524         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5525                           i915_gem_retire_work_handler);
5526         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5527                           i915_gem_idle_work_handler);
5528         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5529         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5530
5531         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5532
5533         spin_lock_init(&dev_priv->fb_tracking.lock);
5534
5535         err = i915_gemfs_init(dev_priv);
5536         if (err)
5537                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5538
5539         return 0;
5540
5541 err_priorities:
5542         kmem_cache_destroy(dev_priv->priorities);
5543 err_dependencies:
5544         kmem_cache_destroy(dev_priv->dependencies);
5545 err_requests:
5546         kmem_cache_destroy(dev_priv->requests);
5547 err_luts:
5548         kmem_cache_destroy(dev_priv->luts);
5549 err_vmas:
5550         kmem_cache_destroy(dev_priv->vmas);
5551 err_objects:
5552         kmem_cache_destroy(dev_priv->objects);
5553 err_out:
5554         return err;
5555 }
5556
5557 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5558 {
5559         i915_gem_drain_freed_objects(dev_priv);
5560         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5561         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5562         WARN_ON(dev_priv->mm.object_count);
5563
5564         mutex_lock(&dev_priv->drm.struct_mutex);
5565         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5566         WARN_ON(!list_empty(&dev_priv->gt.timelines));
5567         mutex_unlock(&dev_priv->drm.struct_mutex);
5568
5569         kmem_cache_destroy(dev_priv->priorities);
5570         kmem_cache_destroy(dev_priv->dependencies);
5571         kmem_cache_destroy(dev_priv->requests);
5572         kmem_cache_destroy(dev_priv->luts);
5573         kmem_cache_destroy(dev_priv->vmas);
5574         kmem_cache_destroy(dev_priv->objects);
5575
5576         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5577         rcu_barrier();
5578
5579         i915_gemfs_fini(dev_priv);
5580 }
5581
5582 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5583 {
5584         /* Discard all purgeable objects, let userspace recover those as
5585          * required after resuming.
5586          */
5587         i915_gem_shrink_all(dev_priv);
5588
5589         return 0;
5590 }
5591
5592 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5593 {
5594         struct drm_i915_gem_object *obj;
5595         struct list_head *phases[] = {
5596                 &dev_priv->mm.unbound_list,
5597                 &dev_priv->mm.bound_list,
5598                 NULL
5599         }, **p;
5600
5601         /* Called just before we write the hibernation image.
5602          *
5603          * We need to update the domain tracking to reflect that the CPU
5604          * will be accessing all the pages to create and restore from the
5605          * hibernation, and so upon restoration those pages will be in the
5606          * CPU domain.
5607          *
5608          * To make sure the hibernation image contains the latest state,
5609          * we update that state just before writing out the image.
5610          *
5611          * To try and reduce the hibernation image, we manually shrink
5612          * the objects as well, see i915_gem_freeze()
5613          */
5614
5615         i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5616         i915_gem_drain_freed_objects(dev_priv);
5617
5618         spin_lock(&dev_priv->mm.obj_lock);
5619         for (p = phases; *p; p++) {
5620                 list_for_each_entry(obj, *p, mm.link)
5621                         __start_cpu_write(obj);
5622         }
5623         spin_unlock(&dev_priv->mm.obj_lock);
5624
5625         return 0;
5626 }
5627
5628 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5629 {
5630         struct drm_i915_file_private *file_priv = file->driver_priv;
5631         struct i915_request *request;
5632
5633         /* Clean up our request list when the client is going away, so that
5634          * later retire_requests won't dereference our soon-to-be-gone
5635          * file_priv.
5636          */
5637         spin_lock(&file_priv->mm.lock);
5638         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5639                 request->file_priv = NULL;
5640         spin_unlock(&file_priv->mm.lock);
5641 }
5642
5643 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5644 {
5645         struct drm_i915_file_private *file_priv;
5646         int ret;
5647
5648         DRM_DEBUG("\n");
5649
5650         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5651         if (!file_priv)
5652                 return -ENOMEM;
5653
5654         file->driver_priv = file_priv;
5655         file_priv->dev_priv = i915;
5656         file_priv->file = file;
5657
5658         spin_lock_init(&file_priv->mm.lock);
5659         INIT_LIST_HEAD(&file_priv->mm.request_list);
5660
5661         file_priv->bsd_engine = -1;
5662
5663         ret = i915_gem_context_open(i915, file);
5664         if (ret)
5665                 kfree(file_priv);
5666
5667         return ret;
5668 }
5669
5670 /**
5671  * i915_gem_track_fb - update frontbuffer tracking
5672  * @old: current GEM buffer for the frontbuffer slots
5673  * @new: new GEM buffer for the frontbuffer slots
5674  * @frontbuffer_bits: bitmask of frontbuffer slots
5675  *
5676  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5677  * from @old and setting them in @new. Both @old and @new can be NULL.
5678  */
5679 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5680                        struct drm_i915_gem_object *new,
5681                        unsigned frontbuffer_bits)
5682 {
5683         /* Control of individual bits within the mask are guarded by
5684          * the owning plane->mutex, i.e. we can never see concurrent
5685          * manipulation of individual bits. But since the bitfield as a whole
5686          * is updated using RMW, we need to use atomics in order to update
5687          * the bits.
5688          */
5689         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5690                      sizeof(atomic_t) * BITS_PER_BYTE);
5691
5692         if (old) {
5693                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5694                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5695         }
5696
5697         if (new) {
5698                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5699                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5700         }
5701 }
5702
5703 /* Allocate a new GEM object and fill it with the supplied data */
5704 struct drm_i915_gem_object *
5705 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5706                                  const void *data, size_t size)
5707 {
5708         struct drm_i915_gem_object *obj;
5709         struct file *file;
5710         size_t offset;
5711         int err;
5712
5713         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5714         if (IS_ERR(obj))
5715                 return obj;
5716
5717         GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5718
5719         file = obj->base.filp;
5720         offset = 0;
5721         do {
5722                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5723                 struct page *page;
5724                 void *pgdata, *vaddr;
5725
5726                 err = pagecache_write_begin(file, file->f_mapping,
5727                                             offset, len, 0,
5728                                             &page, &pgdata);
5729                 if (err < 0)
5730                         goto fail;
5731
5732                 vaddr = kmap(page);
5733                 memcpy(vaddr, data, len);
5734                 kunmap(page);
5735
5736                 err = pagecache_write_end(file, file->f_mapping,
5737                                           offset, len, len,
5738                                           page, pgdata);
5739                 if (err < 0)
5740                         goto fail;
5741
5742                 size -= len;
5743                 data += len;
5744                 offset += len;
5745         } while (size);
5746
5747         return obj;
5748
5749 fail:
5750         i915_gem_object_put(obj);
5751         return ERR_PTR(err);
5752 }
5753
5754 struct scatterlist *
5755 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5756                        unsigned int n,
5757                        unsigned int *offset)
5758 {
5759         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5760         struct scatterlist *sg;
5761         unsigned int idx, count;
5762
5763         might_sleep();
5764         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5765         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5766
5767         /* As we iterate forward through the sg, we record each entry in a
5768          * radixtree for quick repeated (backwards) lookups. If we have seen
5769          * this index previously, we will have an entry for it.
5770          *
5771          * Initial lookup is O(N), but this is amortized to O(1) for
5772          * sequential page access (where each new request is consecutive
5773          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5774          * i.e. O(1) with a large constant!
5775          */
5776         if (n < READ_ONCE(iter->sg_idx))
5777                 goto lookup;
5778
5779         mutex_lock(&iter->lock);
5780
5781         /* We prefer to reuse the last sg so that repeated lookup of this
5782          * (or the subsequent) sg are fast - comparing against the last
5783          * sg is faster than going through the radixtree.
5784          */
5785
5786         sg = iter->sg_pos;
5787         idx = iter->sg_idx;
5788         count = __sg_page_count(sg);
5789
5790         while (idx + count <= n) {
5791                 unsigned long exception, i;
5792                 int ret;
5793
5794                 /* If we cannot allocate and insert this entry, or the
5795                  * individual pages from this range, cancel updating the
5796                  * sg_idx so that on this lookup we are forced to linearly
5797                  * scan onwards, but on future lookups we will try the
5798                  * insertion again (in which case we need to be careful of
5799                  * the error return reporting that we have already inserted
5800                  * this index).
5801                  */
5802                 ret = radix_tree_insert(&iter->radix, idx, sg);
5803                 if (ret && ret != -EEXIST)
5804                         goto scan;
5805
5806                 exception =
5807                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5808                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5809                 for (i = 1; i < count; i++) {
5810                         ret = radix_tree_insert(&iter->radix, idx + i,
5811                                                 (void *)exception);
5812                         if (ret && ret != -EEXIST)
5813                                 goto scan;
5814                 }
5815
5816                 idx += count;
5817                 sg = ____sg_next(sg);
5818                 count = __sg_page_count(sg);
5819         }
5820
5821 scan:
5822         iter->sg_pos = sg;
5823         iter->sg_idx = idx;
5824
5825         mutex_unlock(&iter->lock);
5826
5827         if (unlikely(n < idx)) /* insertion completed by another thread */
5828                 goto lookup;
5829
5830         /* In case we failed to insert the entry into the radixtree, we need
5831          * to look beyond the current sg.
5832          */
5833         while (idx + count <= n) {
5834                 idx += count;
5835                 sg = ____sg_next(sg);
5836                 count = __sg_page_count(sg);
5837         }
5838
5839         *offset = n - idx;
5840         return sg;
5841
5842 lookup:
5843         rcu_read_lock();
5844
5845         sg = radix_tree_lookup(&iter->radix, n);
5846         GEM_BUG_ON(!sg);
5847
5848         /* If this index is in the middle of multi-page sg entry,
5849          * the radixtree will contain an exceptional entry that points
5850          * to the start of that range. We will return the pointer to
5851          * the base page and the offset of this page within the
5852          * sg entry's range.
5853          */
5854         *offset = 0;
5855         if (unlikely(radix_tree_exception(sg))) {
5856                 unsigned long base =
5857                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5858
5859                 sg = radix_tree_lookup(&iter->radix, base);
5860                 GEM_BUG_ON(!sg);
5861
5862                 *offset = n - base;
5863         }
5864
5865         rcu_read_unlock();
5866
5867         return sg;
5868 }
5869
5870 struct page *
5871 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5872 {
5873         struct scatterlist *sg;
5874         unsigned int offset;
5875
5876         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5877
5878         sg = i915_gem_object_get_sg(obj, n, &offset);
5879         return nth_page(sg_page(sg), offset);
5880 }
5881
5882 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5883 struct page *
5884 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5885                                unsigned int n)
5886 {
5887         struct page *page;
5888
5889         page = i915_gem_object_get_page(obj, n);
5890         if (!obj->mm.dirty)
5891                 set_page_dirty(page);
5892
5893         return page;
5894 }
5895
5896 dma_addr_t
5897 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5898                                 unsigned long n)
5899 {
5900         struct scatterlist *sg;
5901         unsigned int offset;
5902
5903         sg = i915_gem_object_get_sg(obj, n, &offset);
5904         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5905 }
5906
5907 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5908 {
5909         struct sg_table *pages;
5910         int err;
5911
5912         if (align > obj->base.size)
5913                 return -EINVAL;
5914
5915         if (obj->ops == &i915_gem_phys_ops)
5916                 return 0;
5917
5918         if (obj->ops != &i915_gem_object_ops)
5919                 return -EINVAL;
5920
5921         err = i915_gem_object_unbind(obj);
5922         if (err)
5923                 return err;
5924
5925         mutex_lock(&obj->mm.lock);
5926
5927         if (obj->mm.madv != I915_MADV_WILLNEED) {
5928                 err = -EFAULT;
5929                 goto err_unlock;
5930         }
5931
5932         if (obj->mm.quirked) {
5933                 err = -EFAULT;
5934                 goto err_unlock;
5935         }
5936
5937         if (obj->mm.mapping) {
5938                 err = -EBUSY;
5939                 goto err_unlock;
5940         }
5941
5942         pages = fetch_and_zero(&obj->mm.pages);
5943         if (pages) {
5944                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5945
5946                 __i915_gem_object_reset_page_iter(obj);
5947
5948                 spin_lock(&i915->mm.obj_lock);
5949                 list_del(&obj->mm.link);
5950                 spin_unlock(&i915->mm.obj_lock);
5951         }
5952
5953         obj->ops = &i915_gem_phys_ops;
5954
5955         err = ____i915_gem_object_get_pages(obj);
5956         if (err)
5957                 goto err_xfer;
5958
5959         /* Perma-pin (until release) the physical set of pages */
5960         __i915_gem_object_pin_pages(obj);
5961
5962         if (!IS_ERR_OR_NULL(pages))
5963                 i915_gem_object_ops.put_pages(obj, pages);
5964         mutex_unlock(&obj->mm.lock);
5965         return 0;
5966
5967 err_xfer:
5968         obj->ops = &i915_gem_object_ops;
5969         obj->mm.pages = pages;
5970 err_unlock:
5971         mutex_unlock(&obj->mm.lock);
5972         return err;
5973 }
5974
5975 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5976 #include "selftests/scatterlist.c"
5977 #include "selftests/mock_gem_device.c"
5978 #include "selftests/huge_gem_object.c"
5979 #include "selftests/huge_pages.c"
5980 #include "selftests/i915_gem_object.c"
5981 #include "selftests/i915_gem_coherency.c"
5982 #endif
This page took 0.38672 seconds and 4 git commands to generate.