2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
59 return obj->pin_global; /* currently in use by HW, keep flushed */
63 insert_mappable_node(struct i915_ggtt *ggtt,
64 struct drm_mm_node *node, u32 size)
66 memset(node, 0, sizeof(*node));
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
74 remove_mappable_node(struct drm_mm_node *node)
76 drm_mm_remove_node(node);
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 spin_lock(&dev_priv->mm.object_stat_lock);
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
86 spin_unlock(&dev_priv->mm.object_stat_lock);
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 !i915_reset_backoff(error),
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 } else if (ret < 0) {
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 struct drm_i915_private *dev_priv = to_i915(dev);
128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 struct drm_file *file)
143 struct drm_i915_private *dev_priv = to_i915(dev);
144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 struct drm_i915_gem_get_aperture *args = data;
146 struct i915_vma *vma;
149 pinned = ggtt->base.reserved;
150 mutex_lock(&dev->struct_mutex);
151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 if (i915_vma_is_pinned(vma))
153 pinned += vma->node.size;
154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 if (i915_vma_is_pinned(vma))
156 pinned += vma->node.size;
157 mutex_unlock(&dev->struct_mutex);
159 args->aper_size = ggtt->base.total;
160 args->aper_available_size = args->aper_size - pinned;
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
170 struct scatterlist *sg;
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
182 phys = drm_pci_alloc(obj->base.dev,
183 roundup_pow_of_two(obj->base.size),
184 roundup_pow_of_two(obj->base.size));
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
193 page = shmem_read_mapping_page(mapping, i);
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
208 i915_gem_chipset_flush(to_i915(obj->base.dev));
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
224 sg->length = obj->base.size;
226 sg_dma_address(sg) = phys->busaddr;
227 sg_dma_len(sg) = obj->base.size;
229 obj->phys_handle = phys;
231 __i915_gem_object_set_pages(obj, st, sg->length);
236 drm_pci_free(obj->base.dev, phys);
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
243 obj->read_domains = I915_GEM_DOMAIN_CPU;
244 obj->write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 struct sg_table *pages,
254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
260 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 drm_clflush_sg(pages);
264 __start_cpu_write(obj);
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
271 __i915_gem_object_release_shmem(obj, pages, false);
274 struct address_space *mapping = obj->base.filp->f_mapping;
275 char *vaddr = obj->phys_handle->vaddr;
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
282 page = shmem_read_mapping_page(mapping, i);
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
291 set_page_dirty(page);
292 if (obj->mm.madv == I915_MADV_WILLNEED)
293 mark_page_accessed(page);
297 obj->mm.dirty = false;
300 sg_free_table(pages);
303 drm_pci_free(obj->base.dev, obj->phys_handle);
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
309 i915_gem_object_unpin_pages(obj);
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
333 ret = i915_gem_object_set_to_cpu_domain(obj, false);
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
345 list_splice(&still_in_list, &obj->vma_list);
351 i915_gem_object_wait_fence(struct dma_fence *fence,
354 struct intel_rps_client *rps_client)
356 struct i915_request *rq;
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
368 rq = to_request(fence);
369 if (i915_request_completed(rq))
373 * This client is about to stall waiting for the GPU. In many cases
374 * this is undesirable and limits the throughput of the system, as
375 * many clients cannot continue processing user input/output whilst
376 * blocked. RPS autotuning may take tens of milliseconds to respond
377 * to the GPU load and thus incurs additional latency for the client.
378 * We can circumvent that by promoting the GPU frequency to maximum
379 * before we wait. This makes the GPU throttle up much more quickly
380 * (good for benchmarks and user experience, e.g. window animations),
381 * but at a cost of spending more power processing the workload
382 * (bad for battery). Not all clients even want their results
383 * immediately and for them we should just let the GPU select its own
384 * frequency to maximise efficiency. To prevent a single client from
385 * forcing the clocks too high for the whole system, we only allow
386 * each client to waitboost once in a busy period.
388 if (rps_client && !i915_request_started(rq)) {
389 if (INTEL_GEN(rq->i915) >= 6)
390 gen6_rps_boost(rq, rps_client);
393 timeout = i915_request_wait(rq, flags, timeout);
396 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
397 i915_request_retire_upto(rq);
403 i915_gem_object_wait_reservation(struct reservation_object *resv,
406 struct intel_rps_client *rps_client)
408 unsigned int seq = __read_seqcount_begin(&resv->seq);
409 struct dma_fence *excl;
410 bool prune_fences = false;
412 if (flags & I915_WAIT_ALL) {
413 struct dma_fence **shared;
414 unsigned int count, i;
417 ret = reservation_object_get_fences_rcu(resv,
418 &excl, &count, &shared);
422 for (i = 0; i < count; i++) {
423 timeout = i915_gem_object_wait_fence(shared[i],
429 dma_fence_put(shared[i]);
432 for (; i < count; i++)
433 dma_fence_put(shared[i]);
437 * If both shared fences and an exclusive fence exist,
438 * then by construction the shared fences must be later
439 * than the exclusive fence. If we successfully wait for
440 * all the shared fences, we know that the exclusive fence
441 * must all be signaled. If all the shared fences are
442 * signaled, we can prune the array and recover the
443 * floating references on the fences/requests.
445 prune_fences = count && timeout >= 0;
447 excl = reservation_object_get_excl_rcu(resv);
450 if (excl && timeout >= 0)
451 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
457 * Opportunistically prune the fences iff we know they have *all* been
458 * signaled and that the reservation object has not been changed (i.e.
459 * no new fences have been added).
461 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462 if (reservation_object_trylock(resv)) {
463 if (!__read_seqcount_retry(&resv->seq, seq))
464 reservation_object_add_excl_fence(resv, NULL);
465 reservation_object_unlock(resv);
472 static void __fence_set_priority(struct dma_fence *fence, int prio)
474 struct i915_request *rq;
475 struct intel_engine_cs *engine;
477 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
480 rq = to_request(fence);
484 if (engine->schedule)
485 engine->schedule(rq, prio);
489 static void fence_set_priority(struct dma_fence *fence, int prio)
491 /* Recurse once into a fence-array */
492 if (dma_fence_is_array(fence)) {
493 struct dma_fence_array *array = to_dma_fence_array(fence);
496 for (i = 0; i < array->num_fences; i++)
497 __fence_set_priority(array->fences[i], prio);
499 __fence_set_priority(fence, prio);
504 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
508 struct dma_fence *excl;
510 if (flags & I915_WAIT_ALL) {
511 struct dma_fence **shared;
512 unsigned int count, i;
515 ret = reservation_object_get_fences_rcu(obj->resv,
516 &excl, &count, &shared);
520 for (i = 0; i < count; i++) {
521 fence_set_priority(shared[i], prio);
522 dma_fence_put(shared[i]);
527 excl = reservation_object_get_excl_rcu(obj->resv);
531 fence_set_priority(excl, prio);
538 * Waits for rendering to the object to be completed
539 * @obj: i915 gem object
540 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
541 * @timeout: how long to wait
542 * @rps_client: client (user process) to charge for any waitboosting
545 i915_gem_object_wait(struct drm_i915_gem_object *obj,
548 struct intel_rps_client *rps_client)
551 #if IS_ENABLED(CONFIG_LOCKDEP)
552 GEM_BUG_ON(debug_locks &&
553 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
554 !!(flags & I915_WAIT_LOCKED));
556 GEM_BUG_ON(timeout < 0);
558 timeout = i915_gem_object_wait_reservation(obj->resv,
561 return timeout < 0 ? timeout : 0;
564 static struct intel_rps_client *to_rps_client(struct drm_file *file)
566 struct drm_i915_file_private *fpriv = file->driver_priv;
568 return &fpriv->rps_client;
572 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file)
576 void *vaddr = obj->phys_handle->vaddr + args->offset;
577 char __user *user_data = u64_to_user_ptr(args->data_ptr);
579 /* We manually control the domain here and pretend that it
580 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
582 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
583 if (copy_from_user(vaddr, user_data, args->size))
586 drm_clflush_virt_range(vaddr, args->size);
587 i915_gem_chipset_flush(to_i915(obj->base.dev));
589 intel_fb_obj_flush(obj, ORIGIN_CPU);
593 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
595 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
598 void i915_gem_object_free(struct drm_i915_gem_object *obj)
600 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
601 kmem_cache_free(dev_priv->objects, obj);
605 i915_gem_create(struct drm_file *file,
606 struct drm_i915_private *dev_priv,
610 struct drm_i915_gem_object *obj;
614 size = roundup(size, PAGE_SIZE);
618 /* Allocate the new object */
619 obj = i915_gem_object_create(dev_priv, size);
623 ret = drm_gem_handle_create(file, &obj->base, &handle);
624 /* drop reference from allocate - handle holds it now */
625 i915_gem_object_put(obj);
634 i915_gem_dumb_create(struct drm_file *file,
635 struct drm_device *dev,
636 struct drm_mode_create_dumb *args)
638 /* have to work out size/pitch and return them */
639 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
640 args->size = args->pitch * args->height;
641 return i915_gem_create(file, to_i915(dev),
642 args->size, &args->handle);
645 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
647 return !(obj->cache_level == I915_CACHE_NONE ||
648 obj->cache_level == I915_CACHE_WT);
652 * Creates a new mm object and returns a handle to it.
653 * @dev: drm device pointer
654 * @data: ioctl data blob
655 * @file: drm file pointer
658 i915_gem_create_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
661 struct drm_i915_private *dev_priv = to_i915(dev);
662 struct drm_i915_gem_create *args = data;
664 i915_gem_flush_free_objects(dev_priv);
666 return i915_gem_create(file, dev_priv,
667 args->size, &args->handle);
670 static inline enum fb_op_origin
671 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
673 return (domain == I915_GEM_DOMAIN_GTT ?
674 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
677 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
680 * No actual flushing is required for the GTT write domain for reads
681 * from the GTT domain. Writes to it "immediately" go to main memory
682 * as far as we know, so there's no chipset flush. It also doesn't
683 * land in the GPU render cache.
685 * However, we do have to enforce the order so that all writes through
686 * the GTT land before any writes to the device, such as updates to
689 * We also have to wait a bit for the writes to land from the GTT.
690 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
691 * timing. This issue has only been observed when switching quickly
692 * between GTT writes and CPU reads from inside the kernel on recent hw,
693 * and it appears to only affect discrete GTT blocks (i.e. on LLC
694 * system agents we cannot reproduce this behaviour, until Cannonlake
700 intel_runtime_pm_get(dev_priv);
701 spin_lock_irq(&dev_priv->uncore.lock);
703 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
705 spin_unlock_irq(&dev_priv->uncore.lock);
706 intel_runtime_pm_put(dev_priv);
710 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
712 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
713 struct i915_vma *vma;
715 if (!(obj->write_domain & flush_domains))
718 switch (obj->write_domain) {
719 case I915_GEM_DOMAIN_GTT:
720 i915_gem_flush_ggtt_writes(dev_priv);
722 intel_fb_obj_flush(obj,
723 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
725 for_each_ggtt_vma(vma, obj) {
729 i915_vma_unset_ggtt_write(vma);
733 case I915_GEM_DOMAIN_CPU:
734 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
737 case I915_GEM_DOMAIN_RENDER:
738 if (gpu_write_needs_clflush(obj))
739 obj->cache_dirty = true;
743 obj->write_domain = 0;
747 __copy_to_user_swizzled(char __user *cpu_vaddr,
748 const char *gpu_vaddr, int gpu_offset,
751 int ret, cpu_offset = 0;
754 int cacheline_end = ALIGN(gpu_offset + 1, 64);
755 int this_length = min(cacheline_end - gpu_offset, length);
756 int swizzled_gpu_offset = gpu_offset ^ 64;
758 ret = __copy_to_user(cpu_vaddr + cpu_offset,
759 gpu_vaddr + swizzled_gpu_offset,
764 cpu_offset += this_length;
765 gpu_offset += this_length;
766 length -= this_length;
773 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
774 const char __user *cpu_vaddr,
777 int ret, cpu_offset = 0;
780 int cacheline_end = ALIGN(gpu_offset + 1, 64);
781 int this_length = min(cacheline_end - gpu_offset, length);
782 int swizzled_gpu_offset = gpu_offset ^ 64;
784 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
785 cpu_vaddr + cpu_offset,
790 cpu_offset += this_length;
791 gpu_offset += this_length;
792 length -= this_length;
799 * Pins the specified object's pages and synchronizes the object with
800 * GPU accesses. Sets needs_clflush to non-zero if the caller should
801 * flush the object from the CPU cache.
803 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
804 unsigned int *needs_clflush)
808 lockdep_assert_held(&obj->base.dev->struct_mutex);
811 if (!i915_gem_object_has_struct_page(obj))
814 ret = i915_gem_object_wait(obj,
815 I915_WAIT_INTERRUPTIBLE |
817 MAX_SCHEDULE_TIMEOUT,
822 ret = i915_gem_object_pin_pages(obj);
826 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
827 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
828 ret = i915_gem_object_set_to_cpu_domain(obj, false);
835 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
837 /* If we're not in the cpu read domain, set ourself into the gtt
838 * read domain and manually flush cachelines (if required). This
839 * optimizes for the case when the gpu will dirty the data
840 * anyway again before the next pread happens.
842 if (!obj->cache_dirty &&
843 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
844 *needs_clflush = CLFLUSH_BEFORE;
847 /* return with the pages pinned */
851 i915_gem_object_unpin_pages(obj);
855 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
856 unsigned int *needs_clflush)
860 lockdep_assert_held(&obj->base.dev->struct_mutex);
863 if (!i915_gem_object_has_struct_page(obj))
866 ret = i915_gem_object_wait(obj,
867 I915_WAIT_INTERRUPTIBLE |
870 MAX_SCHEDULE_TIMEOUT,
875 ret = i915_gem_object_pin_pages(obj);
879 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
880 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
881 ret = i915_gem_object_set_to_cpu_domain(obj, true);
888 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
890 /* If we're not in the cpu write domain, set ourself into the
891 * gtt write domain and manually flush cachelines (as required).
892 * This optimizes for the case when the gpu will use the data
893 * right away and we therefore have to clflush anyway.
895 if (!obj->cache_dirty) {
896 *needs_clflush |= CLFLUSH_AFTER;
899 * Same trick applies to invalidate partially written
900 * cachelines read before writing.
902 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
903 *needs_clflush |= CLFLUSH_BEFORE;
907 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
908 obj->mm.dirty = true;
909 /* return with the pages pinned */
913 i915_gem_object_unpin_pages(obj);
918 shmem_clflush_swizzled_range(char *addr, unsigned long length,
921 if (unlikely(swizzled)) {
922 unsigned long start = (unsigned long) addr;
923 unsigned long end = (unsigned long) addr + length;
925 /* For swizzling simply ensure that we always flush both
926 * channels. Lame, but simple and it works. Swizzled
927 * pwrite/pread is far from a hotpath - current userspace
928 * doesn't use it at all. */
929 start = round_down(start, 128);
930 end = round_up(end, 128);
932 drm_clflush_virt_range((void *)start, end - start);
934 drm_clflush_virt_range(addr, length);
939 /* Only difference to the fast-path function is that this can handle bit17
940 * and uses non-atomic copy and kmap functions. */
942 shmem_pread_slow(struct page *page, int offset, int length,
943 char __user *user_data,
944 bool page_do_bit17_swizzling, bool needs_clflush)
951 shmem_clflush_swizzled_range(vaddr + offset, length,
952 page_do_bit17_swizzling);
954 if (page_do_bit17_swizzling)
955 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
957 ret = __copy_to_user(user_data, vaddr + offset, length);
960 return ret ? - EFAULT : 0;
964 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
965 bool page_do_bit17_swizzling, bool needs_clflush)
970 if (!page_do_bit17_swizzling) {
971 char *vaddr = kmap_atomic(page);
974 drm_clflush_virt_range(vaddr + offset, length);
975 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
976 kunmap_atomic(vaddr);
981 return shmem_pread_slow(page, offset, length, user_data,
982 page_do_bit17_swizzling, needs_clflush);
986 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
987 struct drm_i915_gem_pread *args)
989 char __user *user_data;
991 unsigned int obj_do_bit17_swizzling;
992 unsigned int needs_clflush;
993 unsigned int idx, offset;
996 obj_do_bit17_swizzling = 0;
997 if (i915_gem_object_needs_bit17_swizzle(obj))
998 obj_do_bit17_swizzling = BIT(17);
1000 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1004 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005 mutex_unlock(&obj->base.dev->struct_mutex);
1009 remain = args->size;
1010 user_data = u64_to_user_ptr(args->data_ptr);
1011 offset = offset_in_page(args->offset);
1012 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013 struct page *page = i915_gem_object_get_page(obj, idx);
1017 if (offset + length > PAGE_SIZE)
1018 length = PAGE_SIZE - offset;
1020 ret = shmem_pread(page, offset, length, user_data,
1021 page_to_phys(page) & obj_do_bit17_swizzling,
1027 user_data += length;
1031 i915_gem_obj_finish_shmem_access(obj);
1036 gtt_user_read(struct io_mapping *mapping,
1037 loff_t base, int offset,
1038 char __user *user_data, int length)
1040 void __iomem *vaddr;
1041 unsigned long unwritten;
1043 /* We can use the cpu mem copy function because this is X86. */
1044 vaddr = io_mapping_map_atomic_wc(mapping, base);
1045 unwritten = __copy_to_user_inatomic(user_data,
1046 (void __force *)vaddr + offset,
1048 io_mapping_unmap_atomic(vaddr);
1050 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051 unwritten = copy_to_user(user_data,
1052 (void __force *)vaddr + offset,
1054 io_mapping_unmap(vaddr);
1060 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061 const struct drm_i915_gem_pread *args)
1063 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064 struct i915_ggtt *ggtt = &i915->ggtt;
1065 struct drm_mm_node node;
1066 struct i915_vma *vma;
1067 void __user *user_data;
1071 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1075 intel_runtime_pm_get(i915);
1076 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1081 node.start = i915_ggtt_offset(vma);
1082 node.allocated = false;
1083 ret = i915_vma_put_fence(vma);
1085 i915_vma_unpin(vma);
1090 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1093 GEM_BUG_ON(!node.allocated);
1096 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1100 mutex_unlock(&i915->drm.struct_mutex);
1102 user_data = u64_to_user_ptr(args->data_ptr);
1103 remain = args->size;
1104 offset = args->offset;
1106 while (remain > 0) {
1107 /* Operation in this page
1109 * page_base = page offset within aperture
1110 * page_offset = offset within page
1111 * page_length = bytes to copy for this page
1113 u32 page_base = node.start;
1114 unsigned page_offset = offset_in_page(offset);
1115 unsigned page_length = PAGE_SIZE - page_offset;
1116 page_length = remain < page_length ? remain : page_length;
1117 if (node.allocated) {
1119 ggtt->base.insert_page(&ggtt->base,
1120 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121 node.start, I915_CACHE_NONE, 0);
1124 page_base += offset & PAGE_MASK;
1127 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128 user_data, page_length)) {
1133 remain -= page_length;
1134 user_data += page_length;
1135 offset += page_length;
1138 mutex_lock(&i915->drm.struct_mutex);
1140 if (node.allocated) {
1142 ggtt->base.clear_range(&ggtt->base,
1143 node.start, node.size);
1144 remove_mappable_node(&node);
1146 i915_vma_unpin(vma);
1149 intel_runtime_pm_put(i915);
1150 mutex_unlock(&i915->drm.struct_mutex);
1156 * Reads data from the object referenced by handle.
1157 * @dev: drm device pointer
1158 * @data: ioctl data blob
1159 * @file: drm file pointer
1161 * On error, the contents of *data are undefined.
1164 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165 struct drm_file *file)
1167 struct drm_i915_gem_pread *args = data;
1168 struct drm_i915_gem_object *obj;
1171 if (args->size == 0)
1174 if (!access_ok(VERIFY_WRITE,
1175 u64_to_user_ptr(args->data_ptr),
1179 obj = i915_gem_object_lookup(file, args->handle);
1183 /* Bounds check source. */
1184 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1189 trace_i915_gem_object_pread(obj, args->offset, args->size);
1191 ret = i915_gem_object_wait(obj,
1192 I915_WAIT_INTERRUPTIBLE,
1193 MAX_SCHEDULE_TIMEOUT,
1194 to_rps_client(file));
1198 ret = i915_gem_object_pin_pages(obj);
1202 ret = i915_gem_shmem_pread(obj, args);
1203 if (ret == -EFAULT || ret == -ENODEV)
1204 ret = i915_gem_gtt_pread(obj, args);
1206 i915_gem_object_unpin_pages(obj);
1208 i915_gem_object_put(obj);
1212 /* This is the fast write path which cannot handle
1213 * page faults in the source data
1217 ggtt_write(struct io_mapping *mapping,
1218 loff_t base, int offset,
1219 char __user *user_data, int length)
1221 void __iomem *vaddr;
1222 unsigned long unwritten;
1224 /* We can use the cpu mem copy function because this is X86. */
1225 vaddr = io_mapping_map_atomic_wc(mapping, base);
1226 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1228 io_mapping_unmap_atomic(vaddr);
1230 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231 unwritten = copy_from_user((void __force *)vaddr + offset,
1233 io_mapping_unmap(vaddr);
1240 * This is the fast pwrite path, where we copy the data directly from the
1241 * user into the GTT, uncached.
1242 * @obj: i915 GEM object
1243 * @args: pwrite arguments structure
1246 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247 const struct drm_i915_gem_pwrite *args)
1249 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250 struct i915_ggtt *ggtt = &i915->ggtt;
1251 struct drm_mm_node node;
1252 struct i915_vma *vma;
1254 void __user *user_data;
1257 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1261 if (i915_gem_object_has_struct_page(obj)) {
1263 * Avoid waking the device up if we can fallback, as
1264 * waking/resuming is very slow (worst-case 10-100 ms
1265 * depending on PCI sleeps and our own resume time).
1266 * This easily dwarfs any performance advantage from
1267 * using the cache bypass of indirect GGTT access.
1269 if (!intel_runtime_pm_get_if_in_use(i915)) {
1274 /* No backing pages, no fallback, we must force GGTT access */
1275 intel_runtime_pm_get(i915);
1278 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1283 node.start = i915_ggtt_offset(vma);
1284 node.allocated = false;
1285 ret = i915_vma_put_fence(vma);
1287 i915_vma_unpin(vma);
1292 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1295 GEM_BUG_ON(!node.allocated);
1298 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1302 mutex_unlock(&i915->drm.struct_mutex);
1304 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1306 user_data = u64_to_user_ptr(args->data_ptr);
1307 offset = args->offset;
1308 remain = args->size;
1310 /* Operation in this page
1312 * page_base = page offset within aperture
1313 * page_offset = offset within page
1314 * page_length = bytes to copy for this page
1316 u32 page_base = node.start;
1317 unsigned int page_offset = offset_in_page(offset);
1318 unsigned int page_length = PAGE_SIZE - page_offset;
1319 page_length = remain < page_length ? remain : page_length;
1320 if (node.allocated) {
1321 wmb(); /* flush the write before we modify the GGTT */
1322 ggtt->base.insert_page(&ggtt->base,
1323 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324 node.start, I915_CACHE_NONE, 0);
1325 wmb(); /* flush modifications to the GGTT (insert_page) */
1327 page_base += offset & PAGE_MASK;
1329 /* If we get a fault while copying data, then (presumably) our
1330 * source page isn't available. Return the error and we'll
1331 * retry in the slow path.
1332 * If the object is non-shmem backed, we retry again with the
1333 * path that handles page fault.
1335 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336 user_data, page_length)) {
1341 remain -= page_length;
1342 user_data += page_length;
1343 offset += page_length;
1345 intel_fb_obj_flush(obj, ORIGIN_CPU);
1347 mutex_lock(&i915->drm.struct_mutex);
1349 if (node.allocated) {
1351 ggtt->base.clear_range(&ggtt->base,
1352 node.start, node.size);
1353 remove_mappable_node(&node);
1355 i915_vma_unpin(vma);
1358 intel_runtime_pm_put(i915);
1360 mutex_unlock(&i915->drm.struct_mutex);
1365 shmem_pwrite_slow(struct page *page, int offset, int length,
1366 char __user *user_data,
1367 bool page_do_bit17_swizzling,
1368 bool needs_clflush_before,
1369 bool needs_clflush_after)
1375 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376 shmem_clflush_swizzled_range(vaddr + offset, length,
1377 page_do_bit17_swizzling);
1378 if (page_do_bit17_swizzling)
1379 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1382 ret = __copy_from_user(vaddr + offset, user_data, length);
1383 if (needs_clflush_after)
1384 shmem_clflush_swizzled_range(vaddr + offset, length,
1385 page_do_bit17_swizzling);
1388 return ret ? -EFAULT : 0;
1391 /* Per-page copy function for the shmem pwrite fastpath.
1392 * Flushes invalid cachelines before writing to the target if
1393 * needs_clflush_before is set and flushes out any written cachelines after
1394 * writing if needs_clflush is set.
1397 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398 bool page_do_bit17_swizzling,
1399 bool needs_clflush_before,
1400 bool needs_clflush_after)
1405 if (!page_do_bit17_swizzling) {
1406 char *vaddr = kmap_atomic(page);
1408 if (needs_clflush_before)
1409 drm_clflush_virt_range(vaddr + offset, len);
1410 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411 if (needs_clflush_after)
1412 drm_clflush_virt_range(vaddr + offset, len);
1414 kunmap_atomic(vaddr);
1419 return shmem_pwrite_slow(page, offset, len, user_data,
1420 page_do_bit17_swizzling,
1421 needs_clflush_before,
1422 needs_clflush_after);
1426 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427 const struct drm_i915_gem_pwrite *args)
1429 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430 void __user *user_data;
1432 unsigned int obj_do_bit17_swizzling;
1433 unsigned int partial_cacheline_write;
1434 unsigned int needs_clflush;
1435 unsigned int offset, idx;
1438 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1442 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443 mutex_unlock(&i915->drm.struct_mutex);
1447 obj_do_bit17_swizzling = 0;
1448 if (i915_gem_object_needs_bit17_swizzle(obj))
1449 obj_do_bit17_swizzling = BIT(17);
1451 /* If we don't overwrite a cacheline completely we need to be
1452 * careful to have up-to-date data by first clflushing. Don't
1453 * overcomplicate things and flush the entire patch.
1455 partial_cacheline_write = 0;
1456 if (needs_clflush & CLFLUSH_BEFORE)
1457 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1459 user_data = u64_to_user_ptr(args->data_ptr);
1460 remain = args->size;
1461 offset = offset_in_page(args->offset);
1462 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463 struct page *page = i915_gem_object_get_page(obj, idx);
1467 if (offset + length > PAGE_SIZE)
1468 length = PAGE_SIZE - offset;
1470 ret = shmem_pwrite(page, offset, length, user_data,
1471 page_to_phys(page) & obj_do_bit17_swizzling,
1472 (offset | length) & partial_cacheline_write,
1473 needs_clflush & CLFLUSH_AFTER);
1478 user_data += length;
1482 intel_fb_obj_flush(obj, ORIGIN_CPU);
1483 i915_gem_obj_finish_shmem_access(obj);
1488 * Writes data to the object referenced by handle.
1490 * @data: ioctl data blob
1493 * On error, the contents of the buffer that were to be modified are undefined.
1496 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497 struct drm_file *file)
1499 struct drm_i915_gem_pwrite *args = data;
1500 struct drm_i915_gem_object *obj;
1503 if (args->size == 0)
1506 if (!access_ok(VERIFY_READ,
1507 u64_to_user_ptr(args->data_ptr),
1511 obj = i915_gem_object_lookup(file, args->handle);
1515 /* Bounds check destination. */
1516 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1521 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1524 if (obj->ops->pwrite)
1525 ret = obj->ops->pwrite(obj, args);
1529 ret = i915_gem_object_wait(obj,
1530 I915_WAIT_INTERRUPTIBLE |
1532 MAX_SCHEDULE_TIMEOUT,
1533 to_rps_client(file));
1537 ret = i915_gem_object_pin_pages(obj);
1542 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1543 * it would end up going through the fenced access, and we'll get
1544 * different detiling behavior between reading and writing.
1545 * pread/pwrite currently are reading and writing from the CPU
1546 * perspective, requiring manual detiling by the client.
1548 if (!i915_gem_object_has_struct_page(obj) ||
1549 cpu_write_needs_clflush(obj))
1550 /* Note that the gtt paths might fail with non-page-backed user
1551 * pointers (e.g. gtt mappings when moving data between
1552 * textures). Fallback to the shmem path in that case.
1554 ret = i915_gem_gtt_pwrite_fast(obj, args);
1556 if (ret == -EFAULT || ret == -ENOSPC) {
1557 if (obj->phys_handle)
1558 ret = i915_gem_phys_pwrite(obj, args, file);
1560 ret = i915_gem_shmem_pwrite(obj, args);
1563 i915_gem_object_unpin_pages(obj);
1565 i915_gem_object_put(obj);
1569 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1571 struct drm_i915_private *i915;
1572 struct list_head *list;
1573 struct i915_vma *vma;
1575 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1577 for_each_ggtt_vma(vma, obj) {
1578 if (i915_vma_is_active(vma))
1581 if (!drm_mm_node_allocated(&vma->node))
1584 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1587 i915 = to_i915(obj->base.dev);
1588 spin_lock(&i915->mm.obj_lock);
1589 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590 list_move_tail(&obj->mm.link, list);
1591 spin_unlock(&i915->mm.obj_lock);
1595 * Called when user space prepares to use an object with the CPU, either
1596 * through the mmap ioctl's mapping or a GTT mapping.
1598 * @data: ioctl data blob
1602 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603 struct drm_file *file)
1605 struct drm_i915_gem_set_domain *args = data;
1606 struct drm_i915_gem_object *obj;
1607 uint32_t read_domains = args->read_domains;
1608 uint32_t write_domain = args->write_domain;
1611 /* Only handle setting domains to types used by the CPU. */
1612 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1615 /* Having something in the write domain implies it's in the read
1616 * domain, and only that read domain. Enforce that in the request.
1618 if (write_domain != 0 && read_domains != write_domain)
1621 obj = i915_gem_object_lookup(file, args->handle);
1625 /* Try to flush the object off the GPU without holding the lock.
1626 * We will repeat the flush holding the lock in the normal manner
1627 * to catch cases where we are gazumped.
1629 err = i915_gem_object_wait(obj,
1630 I915_WAIT_INTERRUPTIBLE |
1631 (write_domain ? I915_WAIT_ALL : 0),
1632 MAX_SCHEDULE_TIMEOUT,
1633 to_rps_client(file));
1638 * Proxy objects do not control access to the backing storage, ergo
1639 * they cannot be used as a means to manipulate the cache domain
1640 * tracking for that backing storage. The proxy object is always
1641 * considered to be outside of any cache domain.
1643 if (i915_gem_object_is_proxy(obj)) {
1649 * Flush and acquire obj->pages so that we are coherent through
1650 * direct access in memory with previous cached writes through
1651 * shmemfs and that our cache domain tracking remains valid.
1652 * For example, if the obj->filp was moved to swap without us
1653 * being notified and releasing the pages, we would mistakenly
1654 * continue to assume that the obj remained out of the CPU cached
1657 err = i915_gem_object_pin_pages(obj);
1661 err = i915_mutex_lock_interruptible(dev);
1665 if (read_domains & I915_GEM_DOMAIN_WC)
1666 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667 else if (read_domains & I915_GEM_DOMAIN_GTT)
1668 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1670 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1672 /* And bump the LRU for this access */
1673 i915_gem_object_bump_inactive_ggtt(obj);
1675 mutex_unlock(&dev->struct_mutex);
1677 if (write_domain != 0)
1678 intel_fb_obj_invalidate(obj,
1679 fb_write_origin(obj, write_domain));
1682 i915_gem_object_unpin_pages(obj);
1684 i915_gem_object_put(obj);
1689 * Called when user space has done writes to this buffer
1691 * @data: ioctl data blob
1695 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696 struct drm_file *file)
1698 struct drm_i915_gem_sw_finish *args = data;
1699 struct drm_i915_gem_object *obj;
1701 obj = i915_gem_object_lookup(file, args->handle);
1706 * Proxy objects are barred from CPU access, so there is no
1707 * need to ban sw_finish as it is a nop.
1710 /* Pinned buffers may be scanout, so flush the cache */
1711 i915_gem_object_flush_if_display(obj);
1712 i915_gem_object_put(obj);
1718 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1721 * @data: ioctl data blob
1724 * While the mapping holds a reference on the contents of the object, it doesn't
1725 * imply a ref on the object itself.
1729 * DRM driver writers who look a this function as an example for how to do GEM
1730 * mmap support, please don't implement mmap support like here. The modern way
1731 * to implement DRM mmap support is with an mmap offset ioctl (like
1732 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733 * That way debug tooling like valgrind will understand what's going on, hiding
1734 * the mmap call in a driver private ioctl will break that. The i915 driver only
1735 * does cpu mmaps this way because we didn't know better.
1738 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739 struct drm_file *file)
1741 struct drm_i915_gem_mmap *args = data;
1742 struct drm_i915_gem_object *obj;
1745 if (args->flags & ~(I915_MMAP_WC))
1748 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1751 obj = i915_gem_object_lookup(file, args->handle);
1755 /* prime objects have no backing filp to GEM mmap
1758 if (!obj->base.filp) {
1759 i915_gem_object_put(obj);
1763 addr = vm_mmap(obj->base.filp, 0, args->size,
1764 PROT_READ | PROT_WRITE, MAP_SHARED,
1766 if (args->flags & I915_MMAP_WC) {
1767 struct mm_struct *mm = current->mm;
1768 struct vm_area_struct *vma;
1770 if (down_write_killable(&mm->mmap_sem)) {
1771 i915_gem_object_put(obj);
1774 vma = find_vma(mm, addr);
1777 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1780 up_write(&mm->mmap_sem);
1782 /* This may race, but that's ok, it only gets set */
1783 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1785 i915_gem_object_put(obj);
1786 if (IS_ERR((void *)addr))
1789 args->addr_ptr = (uint64_t) addr;
1794 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1796 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1800 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1802 * A history of the GTT mmap interface:
1804 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805 * aligned and suitable for fencing, and still fit into the available
1806 * mappable space left by the pinned display objects. A classic problem
1807 * we called the page-fault-of-doom where we would ping-pong between
1808 * two objects that could not fit inside the GTT and so the memcpy
1809 * would page one object in at the expense of the other between every
1812 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814 * object is too large for the available space (or simply too large
1815 * for the mappable aperture!), a view is created instead and faulted
1816 * into userspace. (This view is aligned and sized appropriately for
1819 * 2 - Recognise WC as a separate cache domain so that we can flush the
1820 * delayed writes via GTT before performing direct access via WC.
1824 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1825 * hangs on some architectures, corruption on others. An attempt to service
1826 * a GTT page fault from a snoopable object will generate a SIGBUS.
1828 * * the object must be able to fit into RAM (physical memory, though no
1829 * limited to the mappable aperture).
1834 * * a new GTT page fault will synchronize rendering from the GPU and flush
1835 * all data to system memory. Subsequent access will not be synchronized.
1837 * * all mappings are revoked on runtime device suspend.
1839 * * there are only 8, 16 or 32 fence registers to share between all users
1840 * (older machines require fence register for display and blitter access
1841 * as well). Contention of the fence registers will cause the previous users
1842 * to be unmapped and any new access will generate new page faults.
1844 * * running out of memory while servicing a fault may generate a SIGBUS,
1845 * rather than the expected SIGSEGV.
1847 int i915_gem_mmap_gtt_version(void)
1852 static inline struct i915_ggtt_view
1853 compute_partial_view(struct drm_i915_gem_object *obj,
1854 pgoff_t page_offset,
1857 struct i915_ggtt_view view;
1859 if (i915_gem_object_is_tiled(obj))
1860 chunk = roundup(chunk, tile_row_pages(obj));
1862 view.type = I915_GGTT_VIEW_PARTIAL;
1863 view.partial.offset = rounddown(page_offset, chunk);
1865 min_t(unsigned int, chunk,
1866 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1868 /* If the partial covers the entire object, just create a normal VMA. */
1869 if (chunk >= obj->base.size >> PAGE_SHIFT)
1870 view.type = I915_GGTT_VIEW_NORMAL;
1876 * i915_gem_fault - fault a page into the GTT
1879 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880 * from userspace. The fault handler takes care of binding the object to
1881 * the GTT (if needed), allocating and programming a fence register (again,
1882 * only if needed based on whether the old reg is still valid or the object
1883 * is tiled) and inserting a new PTE into the faulting process.
1885 * Note that the faulting process may involve evicting existing objects
1886 * from the GTT and/or fence registers to make room. So performance may
1887 * suffer if the GTT working set is large or there are few fence registers
1890 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1893 int i915_gem_fault(struct vm_fault *vmf)
1895 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896 struct vm_area_struct *area = vmf->vma;
1897 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898 struct drm_device *dev = obj->base.dev;
1899 struct drm_i915_private *dev_priv = to_i915(dev);
1900 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1901 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902 struct i915_vma *vma;
1903 pgoff_t page_offset;
1907 /* We don't use vmf->pgoff since that has the fake offset */
1908 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1910 trace_i915_gem_object_fault(obj, page_offset, true, write);
1912 /* Try to flush the object off the GPU first without holding the lock.
1913 * Upon acquiring the lock, we will perform our sanity checks and then
1914 * repeat the flush holding the lock in the normal manner to catch cases
1915 * where we are gazumped.
1917 ret = i915_gem_object_wait(obj,
1918 I915_WAIT_INTERRUPTIBLE,
1919 MAX_SCHEDULE_TIMEOUT,
1924 ret = i915_gem_object_pin_pages(obj);
1928 intel_runtime_pm_get(dev_priv);
1930 ret = i915_mutex_lock_interruptible(dev);
1934 /* Access to snoopable pages through the GTT is incoherent. */
1935 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1940 /* If the object is smaller than a couple of partial vma, it is
1941 * not worth only creating a single partial vma - we may as well
1942 * clear enough space for the full object.
1944 flags = PIN_MAPPABLE;
1945 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1948 /* Now pin it into the GTT as needed */
1949 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1951 /* Use a partial view if it is bigger than available space */
1952 struct i915_ggtt_view view =
1953 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1955 /* Userspace is now writing through an untracked VMA, abandon
1956 * all hope that the hardware is able to track future writes.
1958 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1960 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1967 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1971 ret = i915_vma_pin_fence(vma);
1975 /* Finally, remap it using the new GTT offset */
1976 ret = remap_io_mapping(area,
1977 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979 min_t(u64, vma->size, area->vm_end - area->vm_start),
1984 /* Mark as being mmapped into userspace for later revocation */
1985 assert_rpm_wakelock_held(dev_priv);
1986 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988 GEM_BUG_ON(!obj->userfault_count);
1990 i915_vma_set_ggtt_write(vma);
1993 i915_vma_unpin_fence(vma);
1995 __i915_vma_unpin(vma);
1997 mutex_unlock(&dev->struct_mutex);
1999 intel_runtime_pm_put(dev_priv);
2000 i915_gem_object_unpin_pages(obj);
2005 * We eat errors when the gpu is terminally wedged to avoid
2006 * userspace unduly crashing (gl has no provisions for mmaps to
2007 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 * and so needs to be reported.
2010 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011 ret = VM_FAULT_SIGBUS;
2016 * EAGAIN means the gpu is hung and we'll wait for the error
2017 * handler to reset everything when re-faulting in
2018 * i915_mutex_lock_interruptible.
2025 * EBUSY is ok: this just means that another thread
2026 * already did the job.
2028 ret = VM_FAULT_NOPAGE;
2035 ret = VM_FAULT_SIGBUS;
2038 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039 ret = VM_FAULT_SIGBUS;
2045 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2047 struct i915_vma *vma;
2049 GEM_BUG_ON(!obj->userfault_count);
2051 obj->userfault_count = 0;
2052 list_del(&obj->userfault_link);
2053 drm_vma_node_unmap(&obj->base.vma_node,
2054 obj->base.dev->anon_inode->i_mapping);
2056 for_each_ggtt_vma(vma, obj)
2057 i915_vma_unset_userfault(vma);
2061 * i915_gem_release_mmap - remove physical page mappings
2062 * @obj: obj in question
2064 * Preserve the reservation of the mmapping with the DRM core code, but
2065 * relinquish ownership of the pages back to the system.
2067 * It is vital that we remove the page mapping if we have mapped a tiled
2068 * object through the GTT and then lose the fence register due to
2069 * resource pressure. Similarly if the object has been moved out of the
2070 * aperture, than pages mapped into userspace must be revoked. Removing the
2071 * mapping will then trigger a page fault on the next user access, allowing
2072 * fixup by i915_gem_fault().
2075 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2077 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2079 /* Serialisation between user GTT access and our code depends upon
2080 * revoking the CPU's PTE whilst the mutex is held. The next user
2081 * pagefault then has to wait until we release the mutex.
2083 * Note that RPM complicates somewhat by adding an additional
2084 * requirement that operations to the GGTT be made holding the RPM
2087 lockdep_assert_held(&i915->drm.struct_mutex);
2088 intel_runtime_pm_get(i915);
2090 if (!obj->userfault_count)
2093 __i915_gem_object_release_mmap(obj);
2095 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2096 * memory transactions from userspace before we return. The TLB
2097 * flushing implied above by changing the PTE above *should* be
2098 * sufficient, an extra barrier here just provides us with a bit
2099 * of paranoid documentation about our requirement to serialise
2100 * memory writes before touching registers / GSM.
2105 intel_runtime_pm_put(i915);
2108 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2110 struct drm_i915_gem_object *obj, *on;
2114 * Only called during RPM suspend. All users of the userfault_list
2115 * must be holding an RPM wakeref to ensure that this can not
2116 * run concurrently with themselves (and use the struct_mutex for
2117 * protection between themselves).
2120 list_for_each_entry_safe(obj, on,
2121 &dev_priv->mm.userfault_list, userfault_link)
2122 __i915_gem_object_release_mmap(obj);
2124 /* The fence will be lost when the device powers down. If any were
2125 * in use by hardware (i.e. they are pinned), we should not be powering
2126 * down! All other fences will be reacquired by the user upon waking.
2128 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2131 /* Ideally we want to assert that the fence register is not
2132 * live at this point (i.e. that no piece of code will be
2133 * trying to write through fence + GTT, as that both violates
2134 * our tracking of activity and associated locking/barriers,
2135 * but also is illegal given that the hw is powered down).
2137 * Previously we used reg->pin_count as a "liveness" indicator.
2138 * That is not sufficient, and we need a more fine-grained
2139 * tool if we want to have a sanity check here.
2145 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2150 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2152 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2155 err = drm_gem_create_mmap_offset(&obj->base);
2159 /* Attempt to reap some mmap space from dead objects */
2161 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2165 i915_gem_drain_freed_objects(dev_priv);
2166 err = drm_gem_create_mmap_offset(&obj->base);
2170 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2175 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2177 drm_gem_free_mmap_offset(&obj->base);
2181 i915_gem_mmap_gtt(struct drm_file *file,
2182 struct drm_device *dev,
2186 struct drm_i915_gem_object *obj;
2189 obj = i915_gem_object_lookup(file, handle);
2193 ret = i915_gem_object_create_mmap_offset(obj);
2195 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2197 i915_gem_object_put(obj);
2202 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2204 * @data: GTT mapping ioctl data
2205 * @file: GEM object info
2207 * Simply returns the fake offset to userspace so it can mmap it.
2208 * The mmap call will end up in drm_gem_mmap(), which will set things
2209 * up so we can get faults in the handler above.
2211 * The fault handler will take care of binding the object into the GTT
2212 * (since it may have been evicted to make room for something), allocating
2213 * a fence register, and mapping the appropriate aperture address into
2217 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218 struct drm_file *file)
2220 struct drm_i915_gem_mmap_gtt *args = data;
2222 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2225 /* Immediately discard the backing storage */
2227 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2229 i915_gem_object_free_mmap_offset(obj);
2231 if (obj->base.filp == NULL)
2234 /* Our goal here is to return as much of the memory as
2235 * is possible back to the system as we are called from OOM.
2236 * To do this we must instruct the shmfs to drop all of its
2237 * backing pages, *now*.
2239 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240 obj->mm.madv = __I915_MADV_PURGED;
2241 obj->mm.pages = ERR_PTR(-EFAULT);
2244 /* Try to discard unwanted pages */
2245 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2247 struct address_space *mapping;
2249 lockdep_assert_held(&obj->mm.lock);
2250 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2252 switch (obj->mm.madv) {
2253 case I915_MADV_DONTNEED:
2254 i915_gem_object_truncate(obj);
2255 case __I915_MADV_PURGED:
2259 if (obj->base.filp == NULL)
2262 mapping = obj->base.filp->f_mapping,
2263 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2267 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268 struct sg_table *pages)
2270 struct sgt_iter sgt_iter;
2273 __i915_gem_object_release_shmem(obj, pages, true);
2275 i915_gem_gtt_finish_pages(obj, pages);
2277 if (i915_gem_object_needs_bit17_swizzle(obj))
2278 i915_gem_object_save_bit_17_swizzle(obj, pages);
2280 for_each_sgt_page(page, sgt_iter, pages) {
2282 set_page_dirty(page);
2284 if (obj->mm.madv == I915_MADV_WILLNEED)
2285 mark_page_accessed(page);
2289 obj->mm.dirty = false;
2291 sg_free_table(pages);
2295 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2297 struct radix_tree_iter iter;
2301 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2306 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307 enum i915_mm_subclass subclass)
2309 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310 struct sg_table *pages;
2312 if (i915_gem_object_has_pinned_pages(obj))
2315 GEM_BUG_ON(obj->bind_count);
2316 if (!i915_gem_object_has_pages(obj))
2319 /* May be called by shrinker from within get_pages() (on another bo) */
2320 mutex_lock_nested(&obj->mm.lock, subclass);
2321 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2324 /* ->put_pages might need to allocate memory for the bit17 swizzle
2325 * array, hence protect them from being reaped by removing them from gtt
2327 pages = fetch_and_zero(&obj->mm.pages);
2330 spin_lock(&i915->mm.obj_lock);
2331 list_del(&obj->mm.link);
2332 spin_unlock(&i915->mm.obj_lock);
2334 if (obj->mm.mapping) {
2337 ptr = page_mask_bits(obj->mm.mapping);
2338 if (is_vmalloc_addr(ptr))
2341 kunmap(kmap_to_page(ptr));
2343 obj->mm.mapping = NULL;
2346 __i915_gem_object_reset_page_iter(obj);
2349 obj->ops->put_pages(obj, pages);
2351 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2354 mutex_unlock(&obj->mm.lock);
2357 static bool i915_sg_trim(struct sg_table *orig_st)
2359 struct sg_table new_st;
2360 struct scatterlist *sg, *new_sg;
2363 if (orig_st->nents == orig_st->orig_nents)
2366 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2369 new_sg = new_st.sgl;
2370 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372 /* called before being DMA mapped, no need to copy sg->dma_* */
2373 new_sg = sg_next(new_sg);
2375 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2377 sg_free_table(orig_st);
2383 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2385 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2388 struct address_space *mapping;
2389 struct sg_table *st;
2390 struct scatterlist *sg;
2391 struct sgt_iter sgt_iter;
2393 unsigned long last_pfn = 0; /* suppress gcc warning */
2394 unsigned int max_segment = i915_sg_segment_size();
2395 unsigned int sg_page_sizes;
2399 /* Assert that the object is not currently in any GPU domain. As it
2400 * wasn't in the GTT, there shouldn't be any way it could have been in
2403 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2404 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2406 st = kmalloc(sizeof(*st), GFP_KERNEL);
2411 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2416 /* Get the list of pages out of our struct file. They'll be pinned
2417 * at this point until we release them.
2419 * Fail silently without starting the shrinker
2421 mapping = obj->base.filp->f_mapping;
2422 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2428 for (i = 0; i < page_count; i++) {
2429 const unsigned int shrink[] = {
2430 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2433 gfp_t gfp = noreclaim;
2436 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437 if (likely(!IS_ERR(page)))
2441 ret = PTR_ERR(page);
2445 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2448 /* We've tried hard to allocate the memory by reaping
2449 * our own buffer, now let the real VM do its job and
2450 * go down in flames if truly OOM.
2452 * However, since graphics tend to be disposable,
2453 * defer the oom here by reporting the ENOMEM back
2457 /* reclaim and warn, but no oom */
2458 gfp = mapping_gfp_mask(mapping);
2460 /* Our bo are always dirty and so we require
2461 * kswapd to reclaim our pages (direct reclaim
2462 * does not effectively begin pageout of our
2463 * buffers on its own). However, direct reclaim
2464 * only waits for kswapd when under allocation
2465 * congestion. So as a result __GFP_RECLAIM is
2466 * unreliable and fails to actually reclaim our
2467 * dirty pages -- unless you try over and over
2468 * again with !__GFP_NORETRY. However, we still
2469 * want to fail this allocation rather than
2470 * trigger the out-of-memory killer and for
2471 * this we want __GFP_RETRY_MAYFAIL.
2473 gfp |= __GFP_RETRY_MAYFAIL;
2478 sg->length >= max_segment ||
2479 page_to_pfn(page) != last_pfn + 1) {
2481 sg_page_sizes |= sg->length;
2485 sg_set_page(sg, page, PAGE_SIZE, 0);
2487 sg->length += PAGE_SIZE;
2489 last_pfn = page_to_pfn(page);
2491 /* Check that the i965g/gm workaround works. */
2492 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2494 if (sg) { /* loop terminated early; short sg table */
2495 sg_page_sizes |= sg->length;
2499 /* Trim unused sg entries to avoid wasting memory. */
2502 ret = i915_gem_gtt_prepare_pages(obj, st);
2504 /* DMA remapping failed? One possible cause is that
2505 * it could not reserve enough large entries, asking
2506 * for PAGE_SIZE chunks instead may be helpful.
2508 if (max_segment > PAGE_SIZE) {
2509 for_each_sgt_page(page, sgt_iter, st)
2513 max_segment = PAGE_SIZE;
2516 dev_warn(&dev_priv->drm.pdev->dev,
2517 "Failed to DMA remap %lu pages\n",
2523 if (i915_gem_object_needs_bit17_swizzle(obj))
2524 i915_gem_object_do_bit_17_swizzle(obj, st);
2526 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2533 for_each_sgt_page(page, sgt_iter, st)
2538 /* shmemfs first checks if there is enough memory to allocate the page
2539 * and reports ENOSPC should there be insufficient, along with the usual
2540 * ENOMEM for a genuine allocation failure.
2542 * We use ENOSPC in our driver to mean that we have run out of aperture
2543 * space and so want to translate the error from shmemfs back to our
2544 * usual understanding of ENOMEM.
2552 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553 struct sg_table *pages,
2554 unsigned int sg_page_sizes)
2556 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2560 lockdep_assert_held(&obj->mm.lock);
2562 obj->mm.get_page.sg_pos = pages->sgl;
2563 obj->mm.get_page.sg_idx = 0;
2565 obj->mm.pages = pages;
2567 if (i915_gem_object_is_tiled(obj) &&
2568 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569 GEM_BUG_ON(obj->mm.quirked);
2570 __i915_gem_object_pin_pages(obj);
2571 obj->mm.quirked = true;
2574 GEM_BUG_ON(!sg_page_sizes);
2575 obj->mm.page_sizes.phys = sg_page_sizes;
2578 * Calculate the supported page-sizes which fit into the given
2579 * sg_page_sizes. This will give us the page-sizes which we may be able
2580 * to use opportunistically when later inserting into the GTT. For
2581 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582 * 64K or 4K pages, although in practice this will depend on a number of
2585 obj->mm.page_sizes.sg = 0;
2586 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587 if (obj->mm.page_sizes.phys & ~0u << i)
2588 obj->mm.page_sizes.sg |= BIT(i);
2590 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2592 spin_lock(&i915->mm.obj_lock);
2593 list_add(&obj->mm.link, &i915->mm.unbound_list);
2594 spin_unlock(&i915->mm.obj_lock);
2597 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2601 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2606 err = obj->ops->get_pages(obj);
2607 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2612 /* Ensure that the associated pages are gathered from the backing storage
2613 * and pinned into our object. i915_gem_object_pin_pages() may be called
2614 * multiple times before they are released by a single call to
2615 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616 * either as a result of memory pressure (reaping pages under the shrinker)
2617 * or as the object is itself released.
2619 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2623 err = mutex_lock_interruptible(&obj->mm.lock);
2627 if (unlikely(!i915_gem_object_has_pages(obj))) {
2628 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2630 err = ____i915_gem_object_get_pages(obj);
2634 smp_mb__before_atomic();
2636 atomic_inc(&obj->mm.pages_pin_count);
2639 mutex_unlock(&obj->mm.lock);
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645 enum i915_map_type type)
2647 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648 struct sg_table *sgt = obj->mm.pages;
2649 struct sgt_iter sgt_iter;
2651 struct page *stack_pages[32];
2652 struct page **pages = stack_pages;
2653 unsigned long i = 0;
2657 /* A single page can always be kmapped */
2658 if (n_pages == 1 && type == I915_MAP_WB)
2659 return kmap(sg_page(sgt->sgl));
2661 if (n_pages > ARRAY_SIZE(stack_pages)) {
2662 /* Too big for stack -- allocate temporary array instead */
2663 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2668 for_each_sgt_page(page, sgt_iter, sgt)
2671 /* Check that we have the expected number of pages */
2672 GEM_BUG_ON(i != n_pages);
2677 /* fallthrough to use PAGE_KERNEL anyway */
2679 pgprot = PAGE_KERNEL;
2682 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2685 addr = vmap(pages, n_pages, 0, pgprot);
2687 if (pages != stack_pages)
2693 /* get, pin, and map the pages of the object into kernel space */
2694 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695 enum i915_map_type type)
2697 enum i915_map_type has_type;
2702 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703 return ERR_PTR(-ENXIO);
2705 ret = mutex_lock_interruptible(&obj->mm.lock);
2707 return ERR_PTR(ret);
2709 pinned = !(type & I915_MAP_OVERRIDE);
2710 type &= ~I915_MAP_OVERRIDE;
2712 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713 if (unlikely(!i915_gem_object_has_pages(obj))) {
2714 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2716 ret = ____i915_gem_object_get_pages(obj);
2720 smp_mb__before_atomic();
2722 atomic_inc(&obj->mm.pages_pin_count);
2725 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2727 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728 if (ptr && has_type != type) {
2734 if (is_vmalloc_addr(ptr))
2737 kunmap(kmap_to_page(ptr));
2739 ptr = obj->mm.mapping = NULL;
2743 ptr = i915_gem_object_map(obj, type);
2749 obj->mm.mapping = page_pack_bits(ptr, type);
2753 mutex_unlock(&obj->mm.lock);
2757 atomic_dec(&obj->mm.pages_pin_count);
2764 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765 const struct drm_i915_gem_pwrite *arg)
2767 struct address_space *mapping = obj->base.filp->f_mapping;
2768 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2772 /* Before we instantiate/pin the backing store for our use, we
2773 * can prepopulate the shmemfs filp efficiently using a write into
2774 * the pagecache. We avoid the penalty of instantiating all the
2775 * pages, important if the user is just writing to a few and never
2776 * uses the object on the GPU, and using a direct write into shmemfs
2777 * allows it to avoid the cost of retrieving a page (either swapin
2778 * or clearing-before-use) before it is overwritten.
2780 if (i915_gem_object_has_pages(obj))
2783 if (obj->mm.madv != I915_MADV_WILLNEED)
2786 /* Before the pages are instantiated the object is treated as being
2787 * in the CPU domain. The pages will be clflushed as required before
2788 * use, and we can freely write into the pages directly. If userspace
2789 * races pwrite with any other operation; corruption will ensue -
2790 * that is userspace's prerogative!
2794 offset = arg->offset;
2795 pg = offset_in_page(offset);
2798 unsigned int len, unwritten;
2803 len = PAGE_SIZE - pg;
2807 err = pagecache_write_begin(obj->base.filp, mapping,
2814 unwritten = copy_from_user(vaddr + pg, user_data, len);
2817 err = pagecache_write_end(obj->base.filp, mapping,
2818 offset, len, len - unwritten,
2835 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2839 atomic_inc(&ctx->guilty_count);
2842 if (i915_gem_context_is_bannable(ctx)) {
2845 score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2847 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2849 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2850 ctx->name, score, yesno(banned));
2855 i915_gem_context_set_banned(ctx);
2856 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2857 atomic_inc(&ctx->file_priv->context_bans);
2858 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2859 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2863 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2865 atomic_inc(&ctx->active_count);
2868 struct i915_request *
2869 i915_gem_find_active_request(struct intel_engine_cs *engine)
2871 struct i915_request *request, *active = NULL;
2872 unsigned long flags;
2874 /* We are called by the error capture and reset at a random
2875 * point in time. In particular, note that neither is crucially
2876 * ordered with an interrupt. After a hang, the GPU is dead and we
2877 * assume that no more writes can happen (we waited long enough for
2878 * all writes that were in transaction to be flushed) - adding an
2879 * extra delay for a recent interrupt is pointless. Hence, we do
2880 * not need an engine->irq_seqno_barrier() before the seqno reads.
2882 spin_lock_irqsave(&engine->timeline->lock, flags);
2883 list_for_each_entry(request, &engine->timeline->requests, link) {
2884 if (__i915_request_completed(request, request->global_seqno))
2887 GEM_BUG_ON(request->engine != engine);
2888 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2889 &request->fence.flags));
2894 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2899 static bool engine_stalled(struct intel_engine_cs *engine)
2901 if (!engine->hangcheck.stalled)
2904 /* Check for possible seqno movement after hang declaration */
2905 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2906 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2914 * Ensure irq handler finishes, and not run again.
2915 * Also return the active request so that we only search for it once.
2917 struct i915_request *
2918 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2920 struct i915_request *request = NULL;
2923 * During the reset sequence, we must prevent the engine from
2924 * entering RC6. As the context state is undefined until we restart
2925 * the engine, if it does enter RC6 during the reset, the state
2926 * written to the powercontext is undefined and so we may lose
2927 * GPU state upon resume, i.e. fail to restart after a reset.
2929 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2932 * Prevent the signaler thread from updating the request
2933 * state (by calling dma_fence_signal) as we are processing
2934 * the reset. The write from the GPU of the seqno is
2935 * asynchronous and the signaler thread may see a different
2936 * value to us and declare the request complete, even though
2937 * the reset routine have picked that request as the active
2938 * (incomplete) request. This conflict is not handled
2941 kthread_park(engine->breadcrumbs.signaler);
2944 * Prevent request submission to the hardware until we have
2945 * completed the reset in i915_gem_reset_finish(). If a request
2946 * is completed by one engine, it may then queue a request
2947 * to a second via its execlists->tasklet *just* as we are
2948 * calling engine->init_hw() and also writing the ELSP.
2949 * Turning off the execlists->tasklet until the reset is over
2950 * prevents the race.
2952 * Note that this needs to be a single atomic operation on the
2953 * tasklet (flush existing tasks, prevent new tasks) to prevent
2954 * a race between reset and set-wedged. It is not, so we do the best
2955 * we can atm and make sure we don't lock the machine up in the more
2956 * common case of recursively being called from set-wedged from inside
2959 if (!atomic_read(&engine->execlists.tasklet.count))
2960 tasklet_kill(&engine->execlists.tasklet);
2961 tasklet_disable(&engine->execlists.tasklet);
2964 * We're using worker to queue preemption requests from the tasklet in
2965 * GuC submission mode.
2966 * Even though tasklet was disabled, we may still have a worker queued.
2967 * Let's make sure that all workers scheduled before disabling the
2968 * tasklet are completed before continuing with the reset.
2970 if (engine->i915->guc.preempt_wq)
2971 flush_workqueue(engine->i915->guc.preempt_wq);
2973 if (engine->irq_seqno_barrier)
2974 engine->irq_seqno_barrier(engine);
2976 request = i915_gem_find_active_request(engine);
2977 if (request && request->fence.error == -EIO)
2978 request = ERR_PTR(-EIO); /* Previous reset failed! */
2983 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2985 struct intel_engine_cs *engine;
2986 struct i915_request *request;
2987 enum intel_engine_id id;
2990 for_each_engine(engine, dev_priv, id) {
2991 request = i915_gem_reset_prepare_engine(engine);
2992 if (IS_ERR(request)) {
2993 err = PTR_ERR(request);
2997 engine->hangcheck.active_request = request;
3000 i915_gem_revoke_fences(dev_priv);
3005 static void skip_request(struct i915_request *request)
3007 void *vaddr = request->ring->vaddr;
3010 /* As this request likely depends on state from the lost
3011 * context, clear out all the user operations leaving the
3012 * breadcrumb at the end (so we get the fence notifications).
3014 head = request->head;
3015 if (request->postfix < head) {
3016 memset(vaddr + head, 0, request->ring->size - head);
3019 memset(vaddr + head, 0, request->postfix - head);
3021 dma_fence_set_error(&request->fence, -EIO);
3024 static void engine_skip_context(struct i915_request *request)
3026 struct intel_engine_cs *engine = request->engine;
3027 struct i915_gem_context *hung_ctx = request->ctx;
3028 struct intel_timeline *timeline;
3029 unsigned long flags;
3031 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3033 spin_lock_irqsave(&engine->timeline->lock, flags);
3034 spin_lock(&timeline->lock);
3036 list_for_each_entry_continue(request, &engine->timeline->requests, link)
3037 if (request->ctx == hung_ctx)
3038 skip_request(request);
3040 list_for_each_entry(request, &timeline->requests, link)
3041 skip_request(request);
3043 spin_unlock(&timeline->lock);
3044 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3047 /* Returns the request if it was guilty of the hang */
3048 static struct i915_request *
3049 i915_gem_reset_request(struct intel_engine_cs *engine,
3050 struct i915_request *request)
3052 /* The guilty request will get skipped on a hung engine.
3054 * Users of client default contexts do not rely on logical
3055 * state preserved between batches so it is safe to execute
3056 * queued requests following the hang. Non default contexts
3057 * rely on preserved state, so skipping a batch loses the
3058 * evolution of the state and it needs to be considered corrupted.
3059 * Executing more queued batches on top of corrupted state is
3060 * risky. But we take the risk by trying to advance through
3061 * the queued requests in order to make the client behaviour
3062 * more predictable around resets, by not throwing away random
3063 * amount of batches it has prepared for execution. Sophisticated
3064 * clients can use gem_reset_stats_ioctl and dma fence status
3065 * (exported via sync_file info ioctl on explicit fences) to observe
3066 * when it loses the context state and should rebuild accordingly.
3068 * The context ban, and ultimately the client ban, mechanism are safety
3069 * valves if client submission ends up resulting in nothing more than
3073 if (engine_stalled(engine)) {
3074 i915_gem_context_mark_guilty(request->ctx);
3075 skip_request(request);
3077 /* If this context is now banned, skip all pending requests. */
3078 if (i915_gem_context_is_banned(request->ctx))
3079 engine_skip_context(request);
3082 * Since this is not the hung engine, it may have advanced
3083 * since the hang declaration. Double check by refinding
3084 * the active request at the time of the reset.
3086 request = i915_gem_find_active_request(engine);
3088 i915_gem_context_mark_innocent(request->ctx);
3089 dma_fence_set_error(&request->fence, -EAGAIN);
3091 /* Rewind the engine to replay the incomplete rq */
3092 spin_lock_irq(&engine->timeline->lock);
3093 request = list_prev_entry(request, link);
3094 if (&request->link == &engine->timeline->requests)
3096 spin_unlock_irq(&engine->timeline->lock);
3103 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3104 struct i915_request *request)
3107 * Make sure this write is visible before we re-enable the interrupt
3108 * handlers on another CPU, as tasklet_enable() resolves to just
3109 * a compiler barrier which is insufficient for our purpose here.
3111 smp_store_mb(engine->irq_posted, 0);
3114 request = i915_gem_reset_request(engine, request);
3117 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3118 engine->name, request->global_seqno);
3121 /* Setup the CS to resume from the breadcrumb of the hung request */
3122 engine->reset_hw(engine, request);
3125 void i915_gem_reset(struct drm_i915_private *dev_priv)
3127 struct intel_engine_cs *engine;
3128 enum intel_engine_id id;
3130 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3132 i915_retire_requests(dev_priv);
3134 for_each_engine(engine, dev_priv, id) {
3135 struct i915_gem_context *ctx;
3137 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3138 ctx = fetch_and_zero(&engine->last_retired_context);
3140 engine->context_unpin(engine, ctx);
3143 * Ostensibily, we always want a context loaded for powersaving,
3144 * so if the engine is idle after the reset, send a request
3145 * to load our scratch kernel_context.
3147 * More mysteriously, if we leave the engine idle after a reset,
3148 * the next userspace batch may hang, with what appears to be
3149 * an incoherent read by the CS (presumably stale TLB). An
3150 * empty request appears sufficient to paper over the glitch.
3152 if (intel_engine_is_idle(engine)) {
3153 struct i915_request *rq;
3155 rq = i915_request_alloc(engine,
3156 dev_priv->kernel_context);
3158 __i915_request_add(rq, false);
3162 i915_gem_restore_fences(dev_priv);
3164 if (dev_priv->gt.awake) {
3165 intel_sanitize_gt_powersave(dev_priv);
3166 intel_enable_gt_powersave(dev_priv);
3167 if (INTEL_GEN(dev_priv) >= 6)
3168 gen6_rps_busy(dev_priv);
3172 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3174 tasklet_enable(&engine->execlists.tasklet);
3175 kthread_unpark(engine->breadcrumbs.signaler);
3177 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3180 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3182 struct intel_engine_cs *engine;
3183 enum intel_engine_id id;
3185 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3187 for_each_engine(engine, dev_priv, id) {
3188 engine->hangcheck.active_request = NULL;
3189 i915_gem_reset_finish_engine(engine);
3193 static void nop_submit_request(struct i915_request *request)
3195 dma_fence_set_error(&request->fence, -EIO);
3197 i915_request_submit(request);
3200 static void nop_complete_submit_request(struct i915_request *request)
3202 unsigned long flags;
3204 dma_fence_set_error(&request->fence, -EIO);
3206 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3207 __i915_request_submit(request);
3208 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3209 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3212 void i915_gem_set_wedged(struct drm_i915_private *i915)
3214 struct intel_engine_cs *engine;
3215 enum intel_engine_id id;
3217 if (drm_debug & DRM_UT_DRIVER) {
3218 struct drm_printer p = drm_debug_printer(__func__);
3220 for_each_engine(engine, i915, id)
3221 intel_engine_dump(engine, &p, "%s\n", engine->name);
3224 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3225 smp_mb__after_atomic();
3228 * First, stop submission to hw, but do not yet complete requests by
3229 * rolling the global seqno forward (since this would complete requests
3230 * for which we haven't set the fence error to EIO yet).
3232 for_each_engine(engine, i915, id) {
3233 i915_gem_reset_prepare_engine(engine);
3235 engine->submit_request = nop_submit_request;
3236 engine->schedule = NULL;
3238 i915->caps.scheduler = 0;
3241 * Make sure no one is running the old callback before we proceed with
3242 * cancelling requests and resetting the completion tracking. Otherwise
3243 * we might submit a request to the hardware which never completes.
3247 for_each_engine(engine, i915, id) {
3248 /* Mark all executing requests as skipped */
3249 engine->cancel_requests(engine);
3252 * Only once we've force-cancelled all in-flight requests can we
3253 * start to complete all requests.
3255 engine->submit_request = nop_complete_submit_request;
3259 * Make sure no request can slip through without getting completed by
3260 * either this call here to intel_engine_init_global_seqno, or the one
3261 * in nop_complete_submit_request.
3265 for_each_engine(engine, i915, id) {
3266 unsigned long flags;
3269 * Mark all pending requests as complete so that any concurrent
3270 * (lockless) lookup doesn't try and wait upon the request as we
3273 spin_lock_irqsave(&engine->timeline->lock, flags);
3274 intel_engine_init_global_seqno(engine,
3275 intel_engine_last_submit(engine));
3276 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3278 i915_gem_reset_finish_engine(engine);
3281 wake_up_all(&i915->gpu_error.reset_queue);
3284 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3286 struct i915_gem_timeline *tl;
3289 lockdep_assert_held(&i915->drm.struct_mutex);
3290 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3293 /* Before unwedging, make sure that all pending operations
3294 * are flushed and errored out - we may have requests waiting upon
3295 * third party fences. We marked all inflight requests as EIO, and
3296 * every execbuf since returned EIO, for consistency we want all
3297 * the currently pending requests to also be marked as EIO, which
3298 * is done inside our nop_submit_request - and so we must wait.
3300 * No more can be submitted until we reset the wedged bit.
3302 list_for_each_entry(tl, &i915->gt.timelines, link) {
3303 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3304 struct i915_request *rq;
3306 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3307 &i915->drm.struct_mutex);
3311 /* We can't use our normal waiter as we want to
3312 * avoid recursively trying to handle the current
3313 * reset. The basic dma_fence_default_wait() installs
3314 * a callback for dma_fence_signal(), which is
3315 * triggered by our nop handler (indirectly, the
3316 * callback enables the signaler thread which is
3317 * woken by the nop_submit_request() advancing the seqno
3318 * and when the seqno passes the fence, the signaler
3319 * then signals the fence waking us up).
3321 if (dma_fence_default_wait(&rq->fence, true,
3322 MAX_SCHEDULE_TIMEOUT) < 0)
3327 /* Undo nop_submit_request. We prevent all new i915 requests from
3328 * being queued (by disallowing execbuf whilst wedged) so having
3329 * waited for all active requests above, we know the system is idle
3330 * and do not have to worry about a thread being inside
3331 * engine->submit_request() as we swap over. So unlike installing
3332 * the nop_submit_request on reset, we can do this from normal
3333 * context and do not require stop_machine().
3335 intel_engines_reset_default_submission(i915);
3336 i915_gem_contexts_lost(i915);
3338 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3339 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3345 i915_gem_retire_work_handler(struct work_struct *work)
3347 struct drm_i915_private *dev_priv =
3348 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3349 struct drm_device *dev = &dev_priv->drm;
3351 /* Come back later if the device is busy... */
3352 if (mutex_trylock(&dev->struct_mutex)) {
3353 i915_retire_requests(dev_priv);
3354 mutex_unlock(&dev->struct_mutex);
3358 * Keep the retire handler running until we are finally idle.
3359 * We do not need to do this test under locking as in the worst-case
3360 * we queue the retire worker once too often.
3362 if (READ_ONCE(dev_priv->gt.awake))
3363 queue_delayed_work(dev_priv->wq,
3364 &dev_priv->gt.retire_work,
3365 round_jiffies_up_relative(HZ));
3368 static void shrink_caches(struct drm_i915_private *i915)
3371 * kmem_cache_shrink() discards empty slabs and reorders partially
3372 * filled slabs to prioritise allocating from the mostly full slabs,
3373 * with the aim of reducing fragmentation.
3375 kmem_cache_shrink(i915->priorities);
3376 kmem_cache_shrink(i915->dependencies);
3377 kmem_cache_shrink(i915->requests);
3378 kmem_cache_shrink(i915->luts);
3379 kmem_cache_shrink(i915->vmas);
3380 kmem_cache_shrink(i915->objects);
3383 struct sleep_rcu_work {
3385 struct rcu_head rcu;
3386 struct work_struct work;
3388 struct drm_i915_private *i915;
3393 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3396 * There is a small chance that the epoch wrapped since we started
3397 * sleeping. If we assume that epoch is at least a u32, then it will
3398 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3400 return epoch == READ_ONCE(i915->gt.epoch);
3403 static void __sleep_work(struct work_struct *work)
3405 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3406 struct drm_i915_private *i915 = s->i915;
3407 unsigned int epoch = s->epoch;
3410 if (same_epoch(i915, epoch))
3411 shrink_caches(i915);
3414 static void __sleep_rcu(struct rcu_head *rcu)
3416 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3417 struct drm_i915_private *i915 = s->i915;
3419 if (same_epoch(i915, s->epoch)) {
3420 INIT_WORK(&s->work, __sleep_work);
3421 queue_work(i915->wq, &s->work);
3428 new_requests_since_last_retire(const struct drm_i915_private *i915)
3430 return (READ_ONCE(i915->gt.active_requests) ||
3431 work_pending(&i915->gt.idle_work.work));
3435 i915_gem_idle_work_handler(struct work_struct *work)
3437 struct drm_i915_private *dev_priv =
3438 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3439 unsigned int epoch = I915_EPOCH_INVALID;
3440 bool rearm_hangcheck;
3442 if (!READ_ONCE(dev_priv->gt.awake))
3446 * Wait for last execlists context complete, but bail out in case a
3447 * new request is submitted. As we don't trust the hardware, we
3448 * continue on if the wait times out. This is necessary to allow
3449 * the machine to suspend even if the hardware dies, and we will
3450 * try to recover in resume (after depriving the hardware of power,
3451 * it may be in a better mmod).
3453 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3454 intel_engines_are_idle(dev_priv),
3455 I915_IDLE_ENGINES_TIMEOUT * 1000,
3459 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3461 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3462 /* Currently busy, come back later */
3463 mod_delayed_work(dev_priv->wq,
3464 &dev_priv->gt.idle_work,
3465 msecs_to_jiffies(50));
3470 * New request retired after this work handler started, extend active
3471 * period until next instance of the work.
3473 if (new_requests_since_last_retire(dev_priv))
3477 * Be paranoid and flush a concurrent interrupt to make sure
3478 * we don't reactivate any irq tasklets after parking.
3480 * FIXME: Note that even though we have waited for execlists to be idle,
3481 * there may still be an in-flight interrupt even though the CSB
3482 * is now empty. synchronize_irq() makes sure that a residual interrupt
3483 * is completed before we continue, but it doesn't prevent the HW from
3484 * raising a spurious interrupt later. To complete the shield we should
3485 * coordinate disabling the CS irq with flushing the interrupts.
3487 synchronize_irq(dev_priv->drm.irq);
3489 intel_engines_park(dev_priv);
3490 i915_gem_timelines_park(dev_priv);
3492 i915_pmu_gt_parked(dev_priv);
3494 GEM_BUG_ON(!dev_priv->gt.awake);
3495 dev_priv->gt.awake = false;
3496 epoch = dev_priv->gt.epoch;
3497 GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3498 rearm_hangcheck = false;
3500 if (INTEL_GEN(dev_priv) >= 6)
3501 gen6_rps_idle(dev_priv);
3503 intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3505 intel_runtime_pm_put(dev_priv);
3507 mutex_unlock(&dev_priv->drm.struct_mutex);
3510 if (rearm_hangcheck) {
3511 GEM_BUG_ON(!dev_priv->gt.awake);
3512 i915_queue_hangcheck(dev_priv);
3516 * When we are idle, it is an opportune time to reap our caches.
3517 * However, we have many objects that utilise RCU and the ordered
3518 * i915->wq that this work is executing on. To try and flush any
3519 * pending frees now we are idle, we first wait for an RCU grace
3520 * period, and then queue a task (that will run last on the wq) to
3521 * shrink and re-optimize the caches.
3523 if (same_epoch(dev_priv, epoch)) {
3524 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3528 call_rcu(&s->rcu, __sleep_rcu);
3533 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3535 struct drm_i915_private *i915 = to_i915(gem->dev);
3536 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3537 struct drm_i915_file_private *fpriv = file->driver_priv;
3538 struct i915_lut_handle *lut, *ln;
3540 mutex_lock(&i915->drm.struct_mutex);
3542 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3543 struct i915_gem_context *ctx = lut->ctx;
3544 struct i915_vma *vma;
3546 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3547 if (ctx->file_priv != fpriv)
3550 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3551 GEM_BUG_ON(vma->obj != obj);
3553 /* We allow the process to have multiple handles to the same
3554 * vma, in the same fd namespace, by virtue of flink/open.
3556 GEM_BUG_ON(!vma->open_count);
3557 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3558 i915_vma_close(vma);
3560 list_del(&lut->obj_link);
3561 list_del(&lut->ctx_link);
3563 kmem_cache_free(i915->luts, lut);
3564 __i915_gem_object_release_unless_active(obj);
3567 mutex_unlock(&i915->drm.struct_mutex);
3570 static unsigned long to_wait_timeout(s64 timeout_ns)
3573 return MAX_SCHEDULE_TIMEOUT;
3575 if (timeout_ns == 0)
3578 return nsecs_to_jiffies_timeout(timeout_ns);
3582 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3583 * @dev: drm device pointer
3584 * @data: ioctl data blob
3585 * @file: drm file pointer
3587 * Returns 0 if successful, else an error is returned with the remaining time in
3588 * the timeout parameter.
3589 * -ETIME: object is still busy after timeout
3590 * -ERESTARTSYS: signal interrupted the wait
3591 * -ENONENT: object doesn't exist
3592 * Also possible, but rare:
3593 * -EAGAIN: incomplete, restart syscall
3595 * -ENODEV: Internal IRQ fail
3596 * -E?: The add request failed
3598 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3599 * non-zero timeout parameter the wait ioctl will wait for the given number of
3600 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3601 * without holding struct_mutex the object may become re-busied before this
3602 * function completes. A similar but shorter * race condition exists in the busy
3606 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3608 struct drm_i915_gem_wait *args = data;
3609 struct drm_i915_gem_object *obj;
3613 if (args->flags != 0)
3616 obj = i915_gem_object_lookup(file, args->bo_handle);
3620 start = ktime_get();
3622 ret = i915_gem_object_wait(obj,
3623 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3624 to_wait_timeout(args->timeout_ns),
3625 to_rps_client(file));
3627 if (args->timeout_ns > 0) {
3628 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3629 if (args->timeout_ns < 0)
3630 args->timeout_ns = 0;
3633 * Apparently ktime isn't accurate enough and occasionally has a
3634 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3635 * things up to make the test happy. We allow up to 1 jiffy.
3637 * This is a regression from the timespec->ktime conversion.
3639 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3640 args->timeout_ns = 0;
3642 /* Asked to wait beyond the jiffie/scheduler precision? */
3643 if (ret == -ETIME && args->timeout_ns)
3647 i915_gem_object_put(obj);
3651 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3655 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3656 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3664 static int wait_for_engines(struct drm_i915_private *i915)
3666 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3667 dev_err(i915->drm.dev,
3668 "Failed to idle engines, declaring wedged!\n");
3669 if (drm_debug & DRM_UT_DRIVER) {
3670 struct drm_printer p = drm_debug_printer(__func__);
3671 struct intel_engine_cs *engine;
3672 enum intel_engine_id id;
3674 for_each_engine(engine, i915, id)
3675 intel_engine_dump(engine, &p,
3676 "%s\n", engine->name);
3679 i915_gem_set_wedged(i915);
3686 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3690 /* If the device is asleep, we have no requests outstanding */
3691 if (!READ_ONCE(i915->gt.awake))
3694 if (flags & I915_WAIT_LOCKED) {
3695 struct i915_gem_timeline *tl;
3697 lockdep_assert_held(&i915->drm.struct_mutex);
3699 list_for_each_entry(tl, &i915->gt.timelines, link) {
3700 ret = wait_for_timeline(tl, flags);
3704 i915_retire_requests(i915);
3706 ret = wait_for_engines(i915);
3708 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3714 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3717 * We manually flush the CPU domain so that we can override and
3718 * force the flush for the display, and perform it asyncrhonously.
3720 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3721 if (obj->cache_dirty)
3722 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3723 obj->write_domain = 0;
3726 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3728 if (!READ_ONCE(obj->pin_global))
3731 mutex_lock(&obj->base.dev->struct_mutex);
3732 __i915_gem_object_flush_for_display(obj);
3733 mutex_unlock(&obj->base.dev->struct_mutex);
3737 * Moves a single object to the WC read, and possibly write domain.
3738 * @obj: object to act on
3739 * @write: ask for write access or read only
3741 * This function returns when the move is complete, including waiting on
3745 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3749 lockdep_assert_held(&obj->base.dev->struct_mutex);
3751 ret = i915_gem_object_wait(obj,
3752 I915_WAIT_INTERRUPTIBLE |
3754 (write ? I915_WAIT_ALL : 0),
3755 MAX_SCHEDULE_TIMEOUT,
3760 if (obj->write_domain == I915_GEM_DOMAIN_WC)
3763 /* Flush and acquire obj->pages so that we are coherent through
3764 * direct access in memory with previous cached writes through
3765 * shmemfs and that our cache domain tracking remains valid.
3766 * For example, if the obj->filp was moved to swap without us
3767 * being notified and releasing the pages, we would mistakenly
3768 * continue to assume that the obj remained out of the CPU cached
3771 ret = i915_gem_object_pin_pages(obj);
3775 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3777 /* Serialise direct access to this object with the barriers for
3778 * coherent writes from the GPU, by effectively invalidating the
3779 * WC domain upon first access.
3781 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3784 /* It should now be out of any other write domains, and we can update
3785 * the domain values for our changes.
3787 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3788 obj->read_domains |= I915_GEM_DOMAIN_WC;
3790 obj->read_domains = I915_GEM_DOMAIN_WC;
3791 obj->write_domain = I915_GEM_DOMAIN_WC;
3792 obj->mm.dirty = true;
3795 i915_gem_object_unpin_pages(obj);
3800 * Moves a single object to the GTT read, and possibly write domain.
3801 * @obj: object to act on
3802 * @write: ask for write access or read only
3804 * This function returns when the move is complete, including waiting on
3808 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3812 lockdep_assert_held(&obj->base.dev->struct_mutex);
3814 ret = i915_gem_object_wait(obj,
3815 I915_WAIT_INTERRUPTIBLE |
3817 (write ? I915_WAIT_ALL : 0),
3818 MAX_SCHEDULE_TIMEOUT,
3823 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3826 /* Flush and acquire obj->pages so that we are coherent through
3827 * direct access in memory with previous cached writes through
3828 * shmemfs and that our cache domain tracking remains valid.
3829 * For example, if the obj->filp was moved to swap without us
3830 * being notified and releasing the pages, we would mistakenly
3831 * continue to assume that the obj remained out of the CPU cached
3834 ret = i915_gem_object_pin_pages(obj);
3838 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3840 /* Serialise direct access to this object with the barriers for
3841 * coherent writes from the GPU, by effectively invalidating the
3842 * GTT domain upon first access.
3844 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3847 /* It should now be out of any other write domains, and we can update
3848 * the domain values for our changes.
3850 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3851 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3853 obj->read_domains = I915_GEM_DOMAIN_GTT;
3854 obj->write_domain = I915_GEM_DOMAIN_GTT;
3855 obj->mm.dirty = true;
3858 i915_gem_object_unpin_pages(obj);
3863 * Changes the cache-level of an object across all VMA.
3864 * @obj: object to act on
3865 * @cache_level: new cache level to set for the object
3867 * After this function returns, the object will be in the new cache-level
3868 * across all GTT and the contents of the backing storage will be coherent,
3869 * with respect to the new cache-level. In order to keep the backing storage
3870 * coherent for all users, we only allow a single cache level to be set
3871 * globally on the object and prevent it from being changed whilst the
3872 * hardware is reading from the object. That is if the object is currently
3873 * on the scanout it will be set to uncached (or equivalent display
3874 * cache coherency) and all non-MOCS GPU access will also be uncached so
3875 * that all direct access to the scanout remains coherent.
3877 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3878 enum i915_cache_level cache_level)
3880 struct i915_vma *vma;
3883 lockdep_assert_held(&obj->base.dev->struct_mutex);
3885 if (obj->cache_level == cache_level)
3888 /* Inspect the list of currently bound VMA and unbind any that would
3889 * be invalid given the new cache-level. This is principally to
3890 * catch the issue of the CS prefetch crossing page boundaries and
3891 * reading an invalid PTE on older architectures.
3894 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3895 if (!drm_mm_node_allocated(&vma->node))
3898 if (i915_vma_is_pinned(vma)) {
3899 DRM_DEBUG("can not change the cache level of pinned objects\n");
3903 if (!i915_vma_is_closed(vma) &&
3904 i915_gem_valid_gtt_space(vma, cache_level))
3907 ret = i915_vma_unbind(vma);
3911 /* As unbinding may affect other elements in the
3912 * obj->vma_list (due to side-effects from retiring
3913 * an active vma), play safe and restart the iterator.
3918 /* We can reuse the existing drm_mm nodes but need to change the
3919 * cache-level on the PTE. We could simply unbind them all and
3920 * rebind with the correct cache-level on next use. However since
3921 * we already have a valid slot, dma mapping, pages etc, we may as
3922 * rewrite the PTE in the belief that doing so tramples upon less
3923 * state and so involves less work.
3925 if (obj->bind_count) {
3926 /* Before we change the PTE, the GPU must not be accessing it.
3927 * If we wait upon the object, we know that all the bound
3928 * VMA are no longer active.
3930 ret = i915_gem_object_wait(obj,
3931 I915_WAIT_INTERRUPTIBLE |
3934 MAX_SCHEDULE_TIMEOUT,
3939 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3940 cache_level != I915_CACHE_NONE) {
3941 /* Access to snoopable pages through the GTT is
3942 * incoherent and on some machines causes a hard
3943 * lockup. Relinquish the CPU mmaping to force
3944 * userspace to refault in the pages and we can
3945 * then double check if the GTT mapping is still
3946 * valid for that pointer access.
3948 i915_gem_release_mmap(obj);
3950 /* As we no longer need a fence for GTT access,
3951 * we can relinquish it now (and so prevent having
3952 * to steal a fence from someone else on the next
3953 * fence request). Note GPU activity would have
3954 * dropped the fence as all snoopable access is
3955 * supposed to be linear.
3957 for_each_ggtt_vma(vma, obj) {
3958 ret = i915_vma_put_fence(vma);
3963 /* We either have incoherent backing store and
3964 * so no GTT access or the architecture is fully
3965 * coherent. In such cases, existing GTT mmaps
3966 * ignore the cache bit in the PTE and we can
3967 * rewrite it without confusing the GPU or having
3968 * to force userspace to fault back in its mmaps.
3972 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3973 if (!drm_mm_node_allocated(&vma->node))
3976 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3982 list_for_each_entry(vma, &obj->vma_list, obj_link)
3983 vma->node.color = cache_level;
3984 i915_gem_object_set_cache_coherency(obj, cache_level);
3985 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3990 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3991 struct drm_file *file)
3993 struct drm_i915_gem_caching *args = data;
3994 struct drm_i915_gem_object *obj;
3998 obj = i915_gem_object_lookup_rcu(file, args->handle);
4004 switch (obj->cache_level) {
4005 case I915_CACHE_LLC:
4006 case I915_CACHE_L3_LLC:
4007 args->caching = I915_CACHING_CACHED;
4011 args->caching = I915_CACHING_DISPLAY;
4015 args->caching = I915_CACHING_NONE;
4023 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4024 struct drm_file *file)
4026 struct drm_i915_private *i915 = to_i915(dev);
4027 struct drm_i915_gem_caching *args = data;
4028 struct drm_i915_gem_object *obj;
4029 enum i915_cache_level level;
4032 switch (args->caching) {
4033 case I915_CACHING_NONE:
4034 level = I915_CACHE_NONE;
4036 case I915_CACHING_CACHED:
4038 * Due to a HW issue on BXT A stepping, GPU stores via a
4039 * snooped mapping may leave stale data in a corresponding CPU
4040 * cacheline, whereas normally such cachelines would get
4043 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4046 level = I915_CACHE_LLC;
4048 case I915_CACHING_DISPLAY:
4049 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4055 obj = i915_gem_object_lookup(file, args->handle);
4060 * The caching mode of proxy object is handled by its generator, and
4061 * not allowed to be changed by userspace.
4063 if (i915_gem_object_is_proxy(obj)) {
4068 if (obj->cache_level == level)
4071 ret = i915_gem_object_wait(obj,
4072 I915_WAIT_INTERRUPTIBLE,
4073 MAX_SCHEDULE_TIMEOUT,
4074 to_rps_client(file));
4078 ret = i915_mutex_lock_interruptible(dev);
4082 ret = i915_gem_object_set_cache_level(obj, level);
4083 mutex_unlock(&dev->struct_mutex);
4086 i915_gem_object_put(obj);
4091 * Prepare buffer for display plane (scanout, cursors, etc).
4092 * Can be called from an uninterruptible phase (modesetting) and allows
4093 * any flushes to be pipelined (for pageflips).
4096 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4098 const struct i915_ggtt_view *view,
4101 struct i915_vma *vma;
4104 lockdep_assert_held(&obj->base.dev->struct_mutex);
4106 /* Mark the global pin early so that we account for the
4107 * display coherency whilst setting up the cache domains.
4111 /* The display engine is not coherent with the LLC cache on gen6. As
4112 * a result, we make sure that the pinning that is about to occur is
4113 * done with uncached PTEs. This is lowest common denominator for all
4116 * However for gen6+, we could do better by using the GFDT bit instead
4117 * of uncaching, which would allow us to flush all the LLC-cached data
4118 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4120 ret = i915_gem_object_set_cache_level(obj,
4121 HAS_WT(to_i915(obj->base.dev)) ?
4122 I915_CACHE_WT : I915_CACHE_NONE);
4125 goto err_unpin_global;
4128 /* As the user may map the buffer once pinned in the display plane
4129 * (e.g. libkms for the bootup splash), we have to ensure that we
4130 * always use map_and_fenceable for all scanout buffers. However,
4131 * it may simply be too big to fit into mappable, in which case
4132 * put it anyway and hope that userspace can cope (but always first
4133 * try to preserve the existing ABI).
4135 vma = ERR_PTR(-ENOSPC);
4136 if ((flags & PIN_MAPPABLE) == 0 &&
4137 (!view || view->type == I915_GGTT_VIEW_NORMAL))
4138 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4143 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4145 goto err_unpin_global;
4147 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4149 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4150 __i915_gem_object_flush_for_display(obj);
4151 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4153 /* It should now be out of any other write domains, and we can update
4154 * the domain values for our changes.
4156 obj->read_domains |= I915_GEM_DOMAIN_GTT;
4166 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4168 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4170 if (WARN_ON(vma->obj->pin_global == 0))
4173 if (--vma->obj->pin_global == 0)
4174 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4176 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4177 i915_gem_object_bump_inactive_ggtt(vma->obj);
4179 i915_vma_unpin(vma);
4183 * Moves a single object to the CPU read, and possibly write domain.
4184 * @obj: object to act on
4185 * @write: requesting write or read-only access
4187 * This function returns when the move is complete, including waiting on
4191 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4195 lockdep_assert_held(&obj->base.dev->struct_mutex);
4197 ret = i915_gem_object_wait(obj,
4198 I915_WAIT_INTERRUPTIBLE |
4200 (write ? I915_WAIT_ALL : 0),
4201 MAX_SCHEDULE_TIMEOUT,
4206 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4208 /* Flush the CPU cache if it's still invalid. */
4209 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4210 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4211 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4214 /* It should now be out of any other write domains, and we can update
4215 * the domain values for our changes.
4217 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4219 /* If we're writing through the CPU, then the GPU read domains will
4220 * need to be invalidated at next use.
4223 __start_cpu_write(obj);
4228 /* Throttle our rendering by waiting until the ring has completed our requests
4229 * emitted over 20 msec ago.
4231 * Note that if we were to use the current jiffies each time around the loop,
4232 * we wouldn't escape the function with any frames outstanding if the time to
4233 * render a frame was over 20ms.
4235 * This should get us reasonable parallelism between CPU and GPU but also
4236 * relatively low latency when blocking on a particular request to finish.
4239 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4241 struct drm_i915_private *dev_priv = to_i915(dev);
4242 struct drm_i915_file_private *file_priv = file->driver_priv;
4243 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4244 struct i915_request *request, *target = NULL;
4247 /* ABI: return -EIO if already wedged */
4248 if (i915_terminally_wedged(&dev_priv->gpu_error))
4251 spin_lock(&file_priv->mm.lock);
4252 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4253 if (time_after_eq(request->emitted_jiffies, recent_enough))
4257 list_del(&target->client_link);
4258 target->file_priv = NULL;
4264 i915_request_get(target);
4265 spin_unlock(&file_priv->mm.lock);
4270 ret = i915_request_wait(target,
4271 I915_WAIT_INTERRUPTIBLE,
4272 MAX_SCHEDULE_TIMEOUT);
4273 i915_request_put(target);
4275 return ret < 0 ? ret : 0;
4279 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280 const struct i915_ggtt_view *view,
4285 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4286 struct i915_address_space *vm = &dev_priv->ggtt.base;
4287 struct i915_vma *vma;
4290 lockdep_assert_held(&obj->base.dev->struct_mutex);
4292 if (flags & PIN_MAPPABLE &&
4293 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4294 /* If the required space is larger than the available
4295 * aperture, we will not able to find a slot for the
4296 * object and unbinding the object now will be in
4297 * vain. Worse, doing so may cause us to ping-pong
4298 * the object in and out of the Global GTT and
4299 * waste a lot of cycles under the mutex.
4301 if (obj->base.size > dev_priv->ggtt.mappable_end)
4302 return ERR_PTR(-E2BIG);
4304 /* If NONBLOCK is set the caller is optimistically
4305 * trying to cache the full object within the mappable
4306 * aperture, and *must* have a fallback in place for
4307 * situations where we cannot bind the object. We
4308 * can be a little more lax here and use the fallback
4309 * more often to avoid costly migrations of ourselves
4310 * and other objects within the aperture.
4312 * Half-the-aperture is used as a simple heuristic.
4313 * More interesting would to do search for a free
4314 * block prior to making the commitment to unbind.
4315 * That caters for the self-harm case, and with a
4316 * little more heuristics (e.g. NOFAULT, NOEVICT)
4317 * we could try to minimise harm to others.
4319 if (flags & PIN_NONBLOCK &&
4320 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4321 return ERR_PTR(-ENOSPC);
4324 vma = i915_vma_instance(obj, vm, view);
4325 if (unlikely(IS_ERR(vma)))
4328 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4329 if (flags & PIN_NONBLOCK) {
4330 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4331 return ERR_PTR(-ENOSPC);
4333 if (flags & PIN_MAPPABLE &&
4334 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4335 return ERR_PTR(-ENOSPC);
4338 WARN(i915_vma_is_pinned(vma),
4339 "bo is already pinned in ggtt with incorrect alignment:"
4340 " offset=%08x, req.alignment=%llx,"
4341 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4342 i915_ggtt_offset(vma), alignment,
4343 !!(flags & PIN_MAPPABLE),
4344 i915_vma_is_map_and_fenceable(vma));
4345 ret = i915_vma_unbind(vma);
4347 return ERR_PTR(ret);
4350 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4352 return ERR_PTR(ret);
4357 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4359 /* Note that we could alias engines in the execbuf API, but
4360 * that would be very unwise as it prevents userspace from
4361 * fine control over engine selection. Ahem.
4363 * This should be something like EXEC_MAX_ENGINE instead of
4366 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4367 return 0x10000 << id;
4370 static __always_inline unsigned int __busy_write_id(unsigned int id)
4372 /* The uABI guarantees an active writer is also amongst the read
4373 * engines. This would be true if we accessed the activity tracking
4374 * under the lock, but as we perform the lookup of the object and
4375 * its activity locklessly we can not guarantee that the last_write
4376 * being active implies that we have set the same engine flag from
4377 * last_read - hence we always set both read and write busy for
4380 return id | __busy_read_flag(id);
4383 static __always_inline unsigned int
4384 __busy_set_if_active(const struct dma_fence *fence,
4385 unsigned int (*flag)(unsigned int id))
4387 struct i915_request *rq;
4389 /* We have to check the current hw status of the fence as the uABI
4390 * guarantees forward progress. We could rely on the idle worker
4391 * to eventually flush us, but to minimise latency just ask the
4394 * Note we only report on the status of native fences.
4396 if (!dma_fence_is_i915(fence))
4399 /* opencode to_request() in order to avoid const warnings */
4400 rq = container_of(fence, struct i915_request, fence);
4401 if (i915_request_completed(rq))
4404 return flag(rq->engine->uabi_id);
4407 static __always_inline unsigned int
4408 busy_check_reader(const struct dma_fence *fence)
4410 return __busy_set_if_active(fence, __busy_read_flag);
4413 static __always_inline unsigned int
4414 busy_check_writer(const struct dma_fence *fence)
4419 return __busy_set_if_active(fence, __busy_write_id);
4423 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4424 struct drm_file *file)
4426 struct drm_i915_gem_busy *args = data;
4427 struct drm_i915_gem_object *obj;
4428 struct reservation_object_list *list;
4434 obj = i915_gem_object_lookup_rcu(file, args->handle);
4438 /* A discrepancy here is that we do not report the status of
4439 * non-i915 fences, i.e. even though we may report the object as idle,
4440 * a call to set-domain may still stall waiting for foreign rendering.
4441 * This also means that wait-ioctl may report an object as busy,
4442 * where busy-ioctl considers it idle.
4444 * We trade the ability to warn of foreign fences to report on which
4445 * i915 engines are active for the object.
4447 * Alternatively, we can trade that extra information on read/write
4450 * !reservation_object_test_signaled_rcu(obj->resv, true);
4451 * to report the overall busyness. This is what the wait-ioctl does.
4455 seq = raw_read_seqcount(&obj->resv->seq);
4457 /* Translate the exclusive fence to the READ *and* WRITE engine */
4458 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4460 /* Translate shared fences to READ set of engines */
4461 list = rcu_dereference(obj->resv->fence);
4463 unsigned int shared_count = list->shared_count, i;
4465 for (i = 0; i < shared_count; ++i) {
4466 struct dma_fence *fence =
4467 rcu_dereference(list->shared[i]);
4469 args->busy |= busy_check_reader(fence);
4473 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4483 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4484 struct drm_file *file_priv)
4486 return i915_gem_ring_throttle(dev, file_priv);
4490 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4491 struct drm_file *file_priv)
4493 struct drm_i915_private *dev_priv = to_i915(dev);
4494 struct drm_i915_gem_madvise *args = data;
4495 struct drm_i915_gem_object *obj;
4498 switch (args->madv) {
4499 case I915_MADV_DONTNEED:
4500 case I915_MADV_WILLNEED:
4506 obj = i915_gem_object_lookup(file_priv, args->handle);
4510 err = mutex_lock_interruptible(&obj->mm.lock);
4514 if (i915_gem_object_has_pages(obj) &&
4515 i915_gem_object_is_tiled(obj) &&
4516 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4517 if (obj->mm.madv == I915_MADV_WILLNEED) {
4518 GEM_BUG_ON(!obj->mm.quirked);
4519 __i915_gem_object_unpin_pages(obj);
4520 obj->mm.quirked = false;
4522 if (args->madv == I915_MADV_WILLNEED) {
4523 GEM_BUG_ON(obj->mm.quirked);
4524 __i915_gem_object_pin_pages(obj);
4525 obj->mm.quirked = true;
4529 if (obj->mm.madv != __I915_MADV_PURGED)
4530 obj->mm.madv = args->madv;
4532 /* if the object is no longer attached, discard its backing storage */
4533 if (obj->mm.madv == I915_MADV_DONTNEED &&
4534 !i915_gem_object_has_pages(obj))
4535 i915_gem_object_truncate(obj);
4537 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4538 mutex_unlock(&obj->mm.lock);
4541 i915_gem_object_put(obj);
4546 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4548 struct drm_i915_gem_object *obj =
4549 container_of(active, typeof(*obj), frontbuffer_write);
4551 intel_fb_obj_flush(obj, ORIGIN_CS);
4554 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4555 const struct drm_i915_gem_object_ops *ops)
4557 mutex_init(&obj->mm.lock);
4559 INIT_LIST_HEAD(&obj->vma_list);
4560 INIT_LIST_HEAD(&obj->lut_list);
4561 INIT_LIST_HEAD(&obj->batch_pool_link);
4565 reservation_object_init(&obj->__builtin_resv);
4566 obj->resv = &obj->__builtin_resv;
4568 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4569 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4571 obj->mm.madv = I915_MADV_WILLNEED;
4572 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4573 mutex_init(&obj->mm.get_page.lock);
4575 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4578 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4579 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4580 I915_GEM_OBJECT_IS_SHRINKABLE,
4582 .get_pages = i915_gem_object_get_pages_gtt,
4583 .put_pages = i915_gem_object_put_pages_gtt,
4585 .pwrite = i915_gem_object_pwrite_gtt,
4588 static int i915_gem_object_create_shmem(struct drm_device *dev,
4589 struct drm_gem_object *obj,
4592 struct drm_i915_private *i915 = to_i915(dev);
4593 unsigned long flags = VM_NORESERVE;
4596 drm_gem_private_object_init(dev, obj, size);
4599 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4602 filp = shmem_file_setup("i915", size, flags);
4605 return PTR_ERR(filp);
4612 struct drm_i915_gem_object *
4613 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4615 struct drm_i915_gem_object *obj;
4616 struct address_space *mapping;
4617 unsigned int cache_level;
4621 /* There is a prevalence of the assumption that we fit the object's
4622 * page count inside a 32bit _signed_ variable. Let's document this and
4623 * catch if we ever need to fix it. In the meantime, if you do spot
4624 * such a local variable, please consider fixing!
4626 if (size >> PAGE_SHIFT > INT_MAX)
4627 return ERR_PTR(-E2BIG);
4629 if (overflows_type(size, obj->base.size))
4630 return ERR_PTR(-E2BIG);
4632 obj = i915_gem_object_alloc(dev_priv);
4634 return ERR_PTR(-ENOMEM);
4636 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4640 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4641 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4642 /* 965gm cannot relocate objects above 4GiB. */
4643 mask &= ~__GFP_HIGHMEM;
4644 mask |= __GFP_DMA32;
4647 mapping = obj->base.filp->f_mapping;
4648 mapping_set_gfp_mask(mapping, mask);
4649 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4651 i915_gem_object_init(obj, &i915_gem_object_ops);
4653 obj->write_domain = I915_GEM_DOMAIN_CPU;
4654 obj->read_domains = I915_GEM_DOMAIN_CPU;
4656 if (HAS_LLC(dev_priv))
4657 /* On some devices, we can have the GPU use the LLC (the CPU
4658 * cache) for about a 10% performance improvement
4659 * compared to uncached. Graphics requests other than
4660 * display scanout are coherent with the CPU in
4661 * accessing this cache. This means in this mode we
4662 * don't need to clflush on the CPU side, and on the
4663 * GPU side we only need to flush internal caches to
4664 * get data visible to the CPU.
4666 * However, we maintain the display planes as UC, and so
4667 * need to rebind when first used as such.
4669 cache_level = I915_CACHE_LLC;
4671 cache_level = I915_CACHE_NONE;
4673 i915_gem_object_set_cache_coherency(obj, cache_level);
4675 trace_i915_gem_object_create(obj);
4680 i915_gem_object_free(obj);
4681 return ERR_PTR(ret);
4684 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4686 /* If we are the last user of the backing storage (be it shmemfs
4687 * pages or stolen etc), we know that the pages are going to be
4688 * immediately released. In this case, we can then skip copying
4689 * back the contents from the GPU.
4692 if (obj->mm.madv != I915_MADV_WILLNEED)
4695 if (obj->base.filp == NULL)
4698 /* At first glance, this looks racy, but then again so would be
4699 * userspace racing mmap against close. However, the first external
4700 * reference to the filp can only be obtained through the
4701 * i915_gem_mmap_ioctl() which safeguards us against the user
4702 * acquiring such a reference whilst we are in the middle of
4703 * freeing the object.
4705 return atomic_long_read(&obj->base.filp->f_count) == 1;
4708 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4709 struct llist_node *freed)
4711 struct drm_i915_gem_object *obj, *on;
4713 intel_runtime_pm_get(i915);
4714 llist_for_each_entry_safe(obj, on, freed, freed) {
4715 struct i915_vma *vma, *vn;
4717 trace_i915_gem_object_destroy(obj);
4719 mutex_lock(&i915->drm.struct_mutex);
4721 GEM_BUG_ON(i915_gem_object_is_active(obj));
4722 list_for_each_entry_safe(vma, vn,
4723 &obj->vma_list, obj_link) {
4724 GEM_BUG_ON(i915_vma_is_active(vma));
4725 vma->flags &= ~I915_VMA_PIN_MASK;
4726 i915_vma_close(vma);
4728 GEM_BUG_ON(!list_empty(&obj->vma_list));
4729 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4731 /* This serializes freeing with the shrinker. Since the free
4732 * is delayed, first by RCU then by the workqueue, we want the
4733 * shrinker to be able to free pages of unreferenced objects,
4734 * or else we may oom whilst there are plenty of deferred
4737 if (i915_gem_object_has_pages(obj)) {
4738 spin_lock(&i915->mm.obj_lock);
4739 list_del_init(&obj->mm.link);
4740 spin_unlock(&i915->mm.obj_lock);
4743 mutex_unlock(&i915->drm.struct_mutex);
4745 GEM_BUG_ON(obj->bind_count);
4746 GEM_BUG_ON(obj->userfault_count);
4747 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4748 GEM_BUG_ON(!list_empty(&obj->lut_list));
4750 if (obj->ops->release)
4751 obj->ops->release(obj);
4753 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4754 atomic_set(&obj->mm.pages_pin_count, 0);
4755 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4756 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4758 if (obj->base.import_attach)
4759 drm_prime_gem_destroy(&obj->base, NULL);
4761 reservation_object_fini(&obj->__builtin_resv);
4762 drm_gem_object_release(&obj->base);
4763 i915_gem_info_remove_obj(i915, obj->base.size);
4766 i915_gem_object_free(obj);
4768 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4769 atomic_dec(&i915->mm.free_count);
4774 intel_runtime_pm_put(i915);
4777 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4779 struct llist_node *freed;
4781 /* Free the oldest, most stale object to keep the free_list short */
4783 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4784 /* Only one consumer of llist_del_first() allowed */
4785 spin_lock(&i915->mm.free_lock);
4786 freed = llist_del_first(&i915->mm.free_list);
4787 spin_unlock(&i915->mm.free_lock);
4789 if (unlikely(freed)) {
4791 __i915_gem_free_objects(i915, freed);
4795 static void __i915_gem_free_work(struct work_struct *work)
4797 struct drm_i915_private *i915 =
4798 container_of(work, struct drm_i915_private, mm.free_work);
4799 struct llist_node *freed;
4802 * All file-owned VMA should have been released by this point through
4803 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4804 * However, the object may also be bound into the global GTT (e.g.
4805 * older GPUs without per-process support, or for direct access through
4806 * the GTT either for the user or for scanout). Those VMA still need to
4810 spin_lock(&i915->mm.free_lock);
4811 while ((freed = llist_del_all(&i915->mm.free_list))) {
4812 spin_unlock(&i915->mm.free_lock);
4814 __i915_gem_free_objects(i915, freed);
4818 spin_lock(&i915->mm.free_lock);
4820 spin_unlock(&i915->mm.free_lock);
4823 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4825 struct drm_i915_gem_object *obj =
4826 container_of(head, typeof(*obj), rcu);
4827 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4830 * Since we require blocking on struct_mutex to unbind the freed
4831 * object from the GPU before releasing resources back to the
4832 * system, we can not do that directly from the RCU callback (which may
4833 * be a softirq context), but must instead then defer that work onto a
4834 * kthread. We use the RCU callback rather than move the freed object
4835 * directly onto the work queue so that we can mix between using the
4836 * worker and performing frees directly from subsequent allocations for
4837 * crude but effective memory throttling.
4839 if (llist_add(&obj->freed, &i915->mm.free_list))
4840 queue_work(i915->wq, &i915->mm.free_work);
4843 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4845 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4847 if (obj->mm.quirked)
4848 __i915_gem_object_unpin_pages(obj);
4850 if (discard_backing_storage(obj))
4851 obj->mm.madv = I915_MADV_DONTNEED;
4854 * Before we free the object, make sure any pure RCU-only
4855 * read-side critical sections are complete, e.g.
4856 * i915_gem_busy_ioctl(). For the corresponding synchronized
4857 * lookup see i915_gem_object_lookup_rcu().
4859 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4860 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4863 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4865 lockdep_assert_held(&obj->base.dev->struct_mutex);
4867 if (!i915_gem_object_has_active_reference(obj) &&
4868 i915_gem_object_is_active(obj))
4869 i915_gem_object_set_active_reference(obj);
4871 i915_gem_object_put(obj);
4874 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4876 struct i915_gem_context *kernel_context = i915->kernel_context;
4877 struct intel_engine_cs *engine;
4878 enum intel_engine_id id;
4880 for_each_engine(engine, i915, id) {
4881 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4882 GEM_BUG_ON(engine->last_retired_context != kernel_context);
4886 void i915_gem_sanitize(struct drm_i915_private *i915)
4888 if (i915_terminally_wedged(&i915->gpu_error)) {
4889 mutex_lock(&i915->drm.struct_mutex);
4890 i915_gem_unset_wedged(i915);
4891 mutex_unlock(&i915->drm.struct_mutex);
4895 * If we inherit context state from the BIOS or earlier occupants
4896 * of the GPU, the GPU may be in an inconsistent state when we
4897 * try to take over. The only way to remove the earlier state
4898 * is by resetting. However, resetting on earlier gen is tricky as
4899 * it may impact the display and we are uncertain about the stability
4900 * of the reset, so this could be applied to even earlier gen.
4902 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4903 WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4906 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4908 struct drm_device *dev = &dev_priv->drm;
4911 intel_runtime_pm_get(dev_priv);
4912 intel_suspend_gt_powersave(dev_priv);
4914 mutex_lock(&dev->struct_mutex);
4916 /* We have to flush all the executing contexts to main memory so
4917 * that they can saved in the hibernation image. To ensure the last
4918 * context image is coherent, we have to switch away from it. That
4919 * leaves the dev_priv->kernel_context still active when
4920 * we actually suspend, and its image in memory may not match the GPU
4921 * state. Fortunately, the kernel_context is disposable and we do
4922 * not rely on its state.
4924 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4925 ret = i915_gem_switch_to_kernel_context(dev_priv);
4929 ret = i915_gem_wait_for_idle(dev_priv,
4930 I915_WAIT_INTERRUPTIBLE |
4932 if (ret && ret != -EIO)
4935 assert_kernel_context_is_current(dev_priv);
4937 i915_gem_contexts_lost(dev_priv);
4938 mutex_unlock(&dev->struct_mutex);
4940 intel_uc_suspend(dev_priv);
4942 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4943 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4945 /* As the idle_work is rearming if it detects a race, play safe and
4946 * repeat the flush until it is definitely idle.
4948 drain_delayed_work(&dev_priv->gt.idle_work);
4950 /* Assert that we sucessfully flushed all the work and
4951 * reset the GPU back to its idle, low power state.
4953 WARN_ON(dev_priv->gt.awake);
4954 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4955 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4958 * Neither the BIOS, ourselves or any other kernel
4959 * expects the system to be in execlists mode on startup,
4960 * so we need to reset the GPU back to legacy mode. And the only
4961 * known way to disable logical contexts is through a GPU reset.
4963 * So in order to leave the system in a known default configuration,
4964 * always reset the GPU upon unload and suspend. Afterwards we then
4965 * clean up the GEM state tracking, flushing off the requests and
4966 * leaving the system in a known idle state.
4968 * Note that is of the upmost importance that the GPU is idle and
4969 * all stray writes are flushed *before* we dismantle the backing
4970 * storage for the pinned objects.
4972 * However, since we are uncertain that resetting the GPU on older
4973 * machines is a good idea, we don't - just in case it leaves the
4974 * machine in an unusable condition.
4976 i915_gem_sanitize(dev_priv);
4978 intel_runtime_pm_put(dev_priv);
4982 mutex_unlock(&dev->struct_mutex);
4983 intel_runtime_pm_put(dev_priv);
4987 void i915_gem_resume(struct drm_i915_private *i915)
4989 WARN_ON(i915->gt.awake);
4991 mutex_lock(&i915->drm.struct_mutex);
4992 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4994 i915_gem_restore_gtt_mappings(i915);
4995 i915_gem_restore_fences(i915);
4998 * As we didn't flush the kernel context before suspend, we cannot
4999 * guarantee that the context image is complete. So let's just reset
5000 * it and start again.
5002 i915->gt.resume(i915);
5004 if (i915_gem_init_hw(i915))
5007 intel_uc_resume(i915);
5009 /* Always reload a context for powersaving. */
5010 if (i915_gem_switch_to_kernel_context(i915))
5014 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5015 mutex_unlock(&i915->drm.struct_mutex);
5019 if (!i915_terminally_wedged(&i915->gpu_error)) {
5020 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5021 i915_gem_set_wedged(i915);
5026 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5028 if (INTEL_GEN(dev_priv) < 5 ||
5029 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5032 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5033 DISP_TILE_SURFACE_SWIZZLING);
5035 if (IS_GEN5(dev_priv))
5038 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5039 if (IS_GEN6(dev_priv))
5040 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5041 else if (IS_GEN7(dev_priv))
5042 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5043 else if (IS_GEN8(dev_priv))
5044 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5049 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5051 I915_WRITE(RING_CTL(base), 0);
5052 I915_WRITE(RING_HEAD(base), 0);
5053 I915_WRITE(RING_TAIL(base), 0);
5054 I915_WRITE(RING_START(base), 0);
5057 static void init_unused_rings(struct drm_i915_private *dev_priv)
5059 if (IS_I830(dev_priv)) {
5060 init_unused_ring(dev_priv, PRB1_BASE);
5061 init_unused_ring(dev_priv, SRB0_BASE);
5062 init_unused_ring(dev_priv, SRB1_BASE);
5063 init_unused_ring(dev_priv, SRB2_BASE);
5064 init_unused_ring(dev_priv, SRB3_BASE);
5065 } else if (IS_GEN2(dev_priv)) {
5066 init_unused_ring(dev_priv, SRB0_BASE);
5067 init_unused_ring(dev_priv, SRB1_BASE);
5068 } else if (IS_GEN3(dev_priv)) {
5069 init_unused_ring(dev_priv, PRB1_BASE);
5070 init_unused_ring(dev_priv, PRB2_BASE);
5074 static int __i915_gem_restart_engines(void *data)
5076 struct drm_i915_private *i915 = data;
5077 struct intel_engine_cs *engine;
5078 enum intel_engine_id id;
5081 for_each_engine(engine, i915, id) {
5082 err = engine->init_hw(engine);
5084 DRM_ERROR("Failed to restart %s (%d)\n",
5093 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5097 dev_priv->gt.last_init_time = ktime_get();
5099 /* Double layer security blanket, see i915_gem_init() */
5100 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5102 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5103 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5105 if (IS_HASWELL(dev_priv))
5106 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5107 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5109 if (HAS_PCH_NOP(dev_priv)) {
5110 if (IS_IVYBRIDGE(dev_priv)) {
5111 u32 temp = I915_READ(GEN7_MSG_CTL);
5112 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5113 I915_WRITE(GEN7_MSG_CTL, temp);
5114 } else if (INTEL_GEN(dev_priv) >= 7) {
5115 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5116 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5117 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5121 i915_gem_init_swizzling(dev_priv);
5124 * At least 830 can leave some of the unused rings
5125 * "active" (ie. head != tail) after resume which
5126 * will prevent c3 entry. Makes sure all unused rings
5129 init_unused_rings(dev_priv);
5131 BUG_ON(!dev_priv->kernel_context);
5132 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5137 ret = i915_ppgtt_init_hw(dev_priv);
5139 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5143 /* We can't enable contexts until all firmware is loaded */
5144 ret = intel_uc_init_hw(dev_priv);
5146 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5150 intel_mocs_init_l3cc_table(dev_priv);
5152 /* Only when the HW is re-initialised, can we replay the requests */
5153 ret = __i915_gem_restart_engines(dev_priv);
5155 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5159 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5161 struct i915_gem_context *ctx;
5162 struct intel_engine_cs *engine;
5163 enum intel_engine_id id;
5167 * As we reset the gpu during very early sanitisation, the current
5168 * register state on the GPU should reflect its defaults values.
5169 * We load a context onto the hw (with restore-inhibit), then switch
5170 * over to a second context to save that default register state. We
5171 * can then prime every new context with that state so they all start
5172 * from the same default HW values.
5175 ctx = i915_gem_context_create_kernel(i915, 0);
5177 return PTR_ERR(ctx);
5179 for_each_engine(engine, i915, id) {
5180 struct i915_request *rq;
5182 rq = i915_request_alloc(engine, ctx);
5189 if (engine->init_context)
5190 err = engine->init_context(rq);
5192 __i915_request_add(rq, true);
5197 err = i915_gem_switch_to_kernel_context(i915);
5201 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5205 assert_kernel_context_is_current(i915);
5207 for_each_engine(engine, i915, id) {
5208 struct i915_vma *state;
5210 state = ctx->engine[id].state;
5215 * As we will hold a reference to the logical state, it will
5216 * not be torn down with the context, and importantly the
5217 * object will hold onto its vma (making it possible for a
5218 * stray GTT write to corrupt our defaults). Unmap the vma
5219 * from the GTT to prevent such accidents and reclaim the
5222 err = i915_vma_unbind(state);
5226 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5230 engine->default_state = i915_gem_object_get(state->obj);
5233 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5234 unsigned int found = intel_engines_has_context_isolation(i915);
5237 * Make sure that classes with multiple engine instances all
5238 * share the same basic configuration.
5240 for_each_engine(engine, i915, id) {
5241 unsigned int bit = BIT(engine->uabi_class);
5242 unsigned int expected = engine->default_state ? bit : 0;
5244 if ((found & bit) != expected) {
5245 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5246 engine->uabi_class, engine->name);
5252 i915_gem_context_set_closed(ctx);
5253 i915_gem_context_put(ctx);
5258 * If we have to abandon now, we expect the engines to be idle
5259 * and ready to be torn-down. First try to flush any remaining
5260 * request, ensure we are pointing at the kernel context and
5263 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5266 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5269 i915_gem_contexts_lost(i915);
5273 int i915_gem_init(struct drm_i915_private *dev_priv)
5278 * We need to fallback to 4K pages since gvt gtt handling doesn't
5279 * support huge page entries - we will need to check either hypervisor
5280 * mm can support huge guest page or just do emulation in gvt.
5282 if (intel_vgpu_active(dev_priv))
5283 mkwrite_device_info(dev_priv)->page_sizes =
5284 I915_GTT_PAGE_SIZE_4K;
5286 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5288 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5289 dev_priv->gt.resume = intel_lr_context_resume;
5290 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5292 dev_priv->gt.resume = intel_legacy_submission_resume;
5293 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5296 ret = i915_gem_init_userptr(dev_priv);
5300 ret = intel_uc_init_misc(dev_priv);
5304 /* This is just a security blanket to placate dragons.
5305 * On some systems, we very sporadically observe that the first TLBs
5306 * used by the CS may be stale, despite us poking the TLB reset. If
5307 * we hold the forcewake during initialisation these problems
5308 * just magically go away.
5310 mutex_lock(&dev_priv->drm.struct_mutex);
5311 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5313 ret = i915_gem_init_ggtt(dev_priv);
5315 GEM_BUG_ON(ret == -EIO);
5319 ret = i915_gem_contexts_init(dev_priv);
5321 GEM_BUG_ON(ret == -EIO);
5325 ret = intel_engines_init(dev_priv);
5327 GEM_BUG_ON(ret == -EIO);
5331 intel_init_gt_powersave(dev_priv);
5333 ret = intel_uc_init(dev_priv);
5337 ret = i915_gem_init_hw(dev_priv);
5342 * Despite its name intel_init_clock_gating applies both display
5343 * clock gating workarounds; GT mmio workarounds and the occasional
5344 * GT power context workaround. Worse, sometimes it includes a context
5345 * register workaround which we need to apply before we record the
5346 * default HW state for all contexts.
5348 * FIXME: break up the workarounds and apply them at the right time!
5350 intel_init_clock_gating(dev_priv);
5352 ret = __intel_engines_record_defaults(dev_priv);
5356 if (i915_inject_load_failure()) {
5361 if (i915_inject_load_failure()) {
5366 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5367 mutex_unlock(&dev_priv->drm.struct_mutex);
5372 * Unwinding is complicated by that we want to handle -EIO to mean
5373 * disable GPU submission but keep KMS alive. We want to mark the
5374 * HW as irrevisibly wedged, but keep enough state around that the
5375 * driver doesn't explode during runtime.
5378 i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5379 i915_gem_contexts_lost(dev_priv);
5380 intel_uc_fini_hw(dev_priv);
5382 intel_uc_fini(dev_priv);
5385 intel_cleanup_gt_powersave(dev_priv);
5386 i915_gem_cleanup_engines(dev_priv);
5390 i915_gem_contexts_fini(dev_priv);
5393 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5394 mutex_unlock(&dev_priv->drm.struct_mutex);
5396 intel_uc_fini_misc(dev_priv);
5399 i915_gem_cleanup_userptr(dev_priv);
5403 * Allow engine initialisation to fail by marking the GPU as
5404 * wedged. But we only want to do this where the GPU is angry,
5405 * for all other failure, such as an allocation failure, bail.
5407 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5408 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5409 i915_gem_set_wedged(dev_priv);
5414 i915_gem_drain_freed_objects(dev_priv);
5418 void i915_gem_init_mmio(struct drm_i915_private *i915)
5420 i915_gem_sanitize(i915);
5424 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5426 struct intel_engine_cs *engine;
5427 enum intel_engine_id id;
5429 for_each_engine(engine, dev_priv, id)
5430 dev_priv->gt.cleanup_engine(engine);
5434 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5438 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5439 !IS_CHERRYVIEW(dev_priv))
5440 dev_priv->num_fence_regs = 32;
5441 else if (INTEL_GEN(dev_priv) >= 4 ||
5442 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5443 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5444 dev_priv->num_fence_regs = 16;
5446 dev_priv->num_fence_regs = 8;
5448 if (intel_vgpu_active(dev_priv))
5449 dev_priv->num_fence_regs =
5450 I915_READ(vgtif_reg(avail_rs.fence_num));
5452 /* Initialize fence registers to zero */
5453 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5454 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5456 fence->i915 = dev_priv;
5458 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5460 i915_gem_restore_fences(dev_priv);
5462 i915_gem_detect_bit_6_swizzle(dev_priv);
5465 static void i915_gem_init__mm(struct drm_i915_private *i915)
5467 spin_lock_init(&i915->mm.object_stat_lock);
5468 spin_lock_init(&i915->mm.obj_lock);
5469 spin_lock_init(&i915->mm.free_lock);
5471 init_llist_head(&i915->mm.free_list);
5473 INIT_LIST_HEAD(&i915->mm.unbound_list);
5474 INIT_LIST_HEAD(&i915->mm.bound_list);
5475 INIT_LIST_HEAD(&i915->mm.fence_list);
5476 INIT_LIST_HEAD(&i915->mm.userfault_list);
5478 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5482 i915_gem_load_init(struct drm_i915_private *dev_priv)
5486 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5487 if (!dev_priv->objects)
5490 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5491 if (!dev_priv->vmas)
5494 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5495 if (!dev_priv->luts)
5498 dev_priv->requests = KMEM_CACHE(i915_request,
5499 SLAB_HWCACHE_ALIGN |
5500 SLAB_RECLAIM_ACCOUNT |
5501 SLAB_TYPESAFE_BY_RCU);
5502 if (!dev_priv->requests)
5505 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5506 SLAB_HWCACHE_ALIGN |
5507 SLAB_RECLAIM_ACCOUNT);
5508 if (!dev_priv->dependencies)
5511 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5512 if (!dev_priv->priorities)
5513 goto err_dependencies;
5515 mutex_lock(&dev_priv->drm.struct_mutex);
5516 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5517 err = i915_gem_timeline_init__global(dev_priv);
5518 mutex_unlock(&dev_priv->drm.struct_mutex);
5520 goto err_priorities;
5522 i915_gem_init__mm(dev_priv);
5524 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5525 i915_gem_retire_work_handler);
5526 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5527 i915_gem_idle_work_handler);
5528 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5529 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5531 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5533 spin_lock_init(&dev_priv->fb_tracking.lock);
5535 err = i915_gemfs_init(dev_priv);
5537 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5542 kmem_cache_destroy(dev_priv->priorities);
5544 kmem_cache_destroy(dev_priv->dependencies);
5546 kmem_cache_destroy(dev_priv->requests);
5548 kmem_cache_destroy(dev_priv->luts);
5550 kmem_cache_destroy(dev_priv->vmas);
5552 kmem_cache_destroy(dev_priv->objects);
5557 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5559 i915_gem_drain_freed_objects(dev_priv);
5560 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5561 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5562 WARN_ON(dev_priv->mm.object_count);
5564 mutex_lock(&dev_priv->drm.struct_mutex);
5565 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5566 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5567 mutex_unlock(&dev_priv->drm.struct_mutex);
5569 kmem_cache_destroy(dev_priv->priorities);
5570 kmem_cache_destroy(dev_priv->dependencies);
5571 kmem_cache_destroy(dev_priv->requests);
5572 kmem_cache_destroy(dev_priv->luts);
5573 kmem_cache_destroy(dev_priv->vmas);
5574 kmem_cache_destroy(dev_priv->objects);
5576 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5579 i915_gemfs_fini(dev_priv);
5582 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5584 /* Discard all purgeable objects, let userspace recover those as
5585 * required after resuming.
5587 i915_gem_shrink_all(dev_priv);
5592 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5594 struct drm_i915_gem_object *obj;
5595 struct list_head *phases[] = {
5596 &dev_priv->mm.unbound_list,
5597 &dev_priv->mm.bound_list,
5601 /* Called just before we write the hibernation image.
5603 * We need to update the domain tracking to reflect that the CPU
5604 * will be accessing all the pages to create and restore from the
5605 * hibernation, and so upon restoration those pages will be in the
5608 * To make sure the hibernation image contains the latest state,
5609 * we update that state just before writing out the image.
5611 * To try and reduce the hibernation image, we manually shrink
5612 * the objects as well, see i915_gem_freeze()
5615 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5616 i915_gem_drain_freed_objects(dev_priv);
5618 spin_lock(&dev_priv->mm.obj_lock);
5619 for (p = phases; *p; p++) {
5620 list_for_each_entry(obj, *p, mm.link)
5621 __start_cpu_write(obj);
5623 spin_unlock(&dev_priv->mm.obj_lock);
5628 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5630 struct drm_i915_file_private *file_priv = file->driver_priv;
5631 struct i915_request *request;
5633 /* Clean up our request list when the client is going away, so that
5634 * later retire_requests won't dereference our soon-to-be-gone
5637 spin_lock(&file_priv->mm.lock);
5638 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5639 request->file_priv = NULL;
5640 spin_unlock(&file_priv->mm.lock);
5643 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5645 struct drm_i915_file_private *file_priv;
5650 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5654 file->driver_priv = file_priv;
5655 file_priv->dev_priv = i915;
5656 file_priv->file = file;
5658 spin_lock_init(&file_priv->mm.lock);
5659 INIT_LIST_HEAD(&file_priv->mm.request_list);
5661 file_priv->bsd_engine = -1;
5663 ret = i915_gem_context_open(i915, file);
5671 * i915_gem_track_fb - update frontbuffer tracking
5672 * @old: current GEM buffer for the frontbuffer slots
5673 * @new: new GEM buffer for the frontbuffer slots
5674 * @frontbuffer_bits: bitmask of frontbuffer slots
5676 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5677 * from @old and setting them in @new. Both @old and @new can be NULL.
5679 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5680 struct drm_i915_gem_object *new,
5681 unsigned frontbuffer_bits)
5683 /* Control of individual bits within the mask are guarded by
5684 * the owning plane->mutex, i.e. we can never see concurrent
5685 * manipulation of individual bits. But since the bitfield as a whole
5686 * is updated using RMW, we need to use atomics in order to update
5689 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5690 sizeof(atomic_t) * BITS_PER_BYTE);
5693 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5694 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5698 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5699 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5703 /* Allocate a new GEM object and fill it with the supplied data */
5704 struct drm_i915_gem_object *
5705 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5706 const void *data, size_t size)
5708 struct drm_i915_gem_object *obj;
5713 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5717 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5719 file = obj->base.filp;
5722 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5724 void *pgdata, *vaddr;
5726 err = pagecache_write_begin(file, file->f_mapping,
5733 memcpy(vaddr, data, len);
5736 err = pagecache_write_end(file, file->f_mapping,
5750 i915_gem_object_put(obj);
5751 return ERR_PTR(err);
5754 struct scatterlist *
5755 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5757 unsigned int *offset)
5759 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5760 struct scatterlist *sg;
5761 unsigned int idx, count;
5764 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5765 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5767 /* As we iterate forward through the sg, we record each entry in a
5768 * radixtree for quick repeated (backwards) lookups. If we have seen
5769 * this index previously, we will have an entry for it.
5771 * Initial lookup is O(N), but this is amortized to O(1) for
5772 * sequential page access (where each new request is consecutive
5773 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5774 * i.e. O(1) with a large constant!
5776 if (n < READ_ONCE(iter->sg_idx))
5779 mutex_lock(&iter->lock);
5781 /* We prefer to reuse the last sg so that repeated lookup of this
5782 * (or the subsequent) sg are fast - comparing against the last
5783 * sg is faster than going through the radixtree.
5788 count = __sg_page_count(sg);
5790 while (idx + count <= n) {
5791 unsigned long exception, i;
5794 /* If we cannot allocate and insert this entry, or the
5795 * individual pages from this range, cancel updating the
5796 * sg_idx so that on this lookup we are forced to linearly
5797 * scan onwards, but on future lookups we will try the
5798 * insertion again (in which case we need to be careful of
5799 * the error return reporting that we have already inserted
5802 ret = radix_tree_insert(&iter->radix, idx, sg);
5803 if (ret && ret != -EEXIST)
5807 RADIX_TREE_EXCEPTIONAL_ENTRY |
5808 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5809 for (i = 1; i < count; i++) {
5810 ret = radix_tree_insert(&iter->radix, idx + i,
5812 if (ret && ret != -EEXIST)
5817 sg = ____sg_next(sg);
5818 count = __sg_page_count(sg);
5825 mutex_unlock(&iter->lock);
5827 if (unlikely(n < idx)) /* insertion completed by another thread */
5830 /* In case we failed to insert the entry into the radixtree, we need
5831 * to look beyond the current sg.
5833 while (idx + count <= n) {
5835 sg = ____sg_next(sg);
5836 count = __sg_page_count(sg);
5845 sg = radix_tree_lookup(&iter->radix, n);
5848 /* If this index is in the middle of multi-page sg entry,
5849 * the radixtree will contain an exceptional entry that points
5850 * to the start of that range. We will return the pointer to
5851 * the base page and the offset of this page within the
5855 if (unlikely(radix_tree_exception(sg))) {
5856 unsigned long base =
5857 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5859 sg = radix_tree_lookup(&iter->radix, base);
5871 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5873 struct scatterlist *sg;
5874 unsigned int offset;
5876 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5878 sg = i915_gem_object_get_sg(obj, n, &offset);
5879 return nth_page(sg_page(sg), offset);
5882 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5884 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5889 page = i915_gem_object_get_page(obj, n);
5891 set_page_dirty(page);
5897 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5900 struct scatterlist *sg;
5901 unsigned int offset;
5903 sg = i915_gem_object_get_sg(obj, n, &offset);
5904 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5907 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5909 struct sg_table *pages;
5912 if (align > obj->base.size)
5915 if (obj->ops == &i915_gem_phys_ops)
5918 if (obj->ops != &i915_gem_object_ops)
5921 err = i915_gem_object_unbind(obj);
5925 mutex_lock(&obj->mm.lock);
5927 if (obj->mm.madv != I915_MADV_WILLNEED) {
5932 if (obj->mm.quirked) {
5937 if (obj->mm.mapping) {
5942 pages = fetch_and_zero(&obj->mm.pages);
5944 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5946 __i915_gem_object_reset_page_iter(obj);
5948 spin_lock(&i915->mm.obj_lock);
5949 list_del(&obj->mm.link);
5950 spin_unlock(&i915->mm.obj_lock);
5953 obj->ops = &i915_gem_phys_ops;
5955 err = ____i915_gem_object_get_pages(obj);
5959 /* Perma-pin (until release) the physical set of pages */
5960 __i915_gem_object_pin_pages(obj);
5962 if (!IS_ERR_OR_NULL(pages))
5963 i915_gem_object_ops.put_pages(obj, pages);
5964 mutex_unlock(&obj->mm.lock);
5968 obj->ops = &i915_gem_object_ops;
5969 obj->mm.pages = pages;
5971 mutex_unlock(&obj->mm.lock);
5975 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5976 #include "selftests/scatterlist.c"
5977 #include "selftests/mock_gem_device.c"
5978 #include "selftests/huge_gem_object.c"
5979 #include "selftests/huge_pages.c"
5980 #include "selftests/i915_gem_object.c"
5981 #include "selftests/i915_gem_coherency.c"