1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Task-based RCU implementations.
5 * Copyright (C) 2020 Paul E. McKenney
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
11 ////////////////////////////////////////////////////////////////////////
13 // Generic data structures.
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25 * @cblist: Callback list.
26 * @lock: Lock protecting per-CPU callback list.
27 * @rtp_jiffies: Jiffies counter value for statistics.
28 * @lazy_timer: Timer to unlazify callbacks.
29 * @urgent_gp: Number of additional non-lazy grace periods.
30 * @rtp_n_lock_retries: Rough lock-contention statistic.
31 * @rtp_work: Work queue for invoking callbacks.
32 * @rtp_irq_work: IRQ work queue for deferred wakeups.
33 * @barrier_q_head: RCU callback for barrier operation.
34 * @rtp_blkd_tasks: List of tasks blocked as readers.
35 * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36 * @cpu: CPU number corresponding to this entry.
37 * @rtpp: Pointer to the rcu_tasks structure.
39 struct rcu_tasks_percpu {
40 struct rcu_segcblist cblist;
41 raw_spinlock_t __private lock;
42 unsigned long rtp_jiffies;
43 unsigned long rtp_n_lock_retries;
44 struct timer_list lazy_timer;
45 unsigned int urgent_gp;
46 struct work_struct rtp_work;
47 struct irq_work rtp_irq_work;
48 struct rcu_head barrier_q_head;
49 struct list_head rtp_blkd_tasks;
50 struct list_head rtp_exit_list;
52 struct rcu_tasks *rtpp;
56 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
57 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
58 * @cbs_gbl_lock: Lock protecting callback list.
59 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
60 * @gp_func: This flavor's grace-period-wait function.
61 * @gp_state: Grace period's most recent state transition (debugging).
62 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
63 * @init_fract: Initial backoff sleep interval.
64 * @gp_jiffies: Time of last @gp_state transition.
65 * @gp_start: Most recent grace-period start in jiffies.
66 * @tasks_gp_seq: Number of grace periods completed since boot.
67 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
68 * @n_ipis_fails: Number of IPI-send failures.
69 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
70 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
71 * @pregp_func: This flavor's pre-grace-period function (optional).
72 * @pertask_func: This flavor's per-task scan function (optional).
73 * @postscan_func: This flavor's post-task scan function (optional).
74 * @holdouts_func: This flavor's holdout-list scan function (optional).
75 * @postgp_func: This flavor's post-grace-period function (optional).
76 * @call_func: This flavor's call_rcu()-equivalent function.
77 * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE).
78 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
79 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
80 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
81 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
82 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
83 * @barrier_q_mutex: Serialize barrier operations.
84 * @barrier_q_count: Number of queues being waited on.
85 * @barrier_q_completion: Barrier wait/wakeup mechanism.
86 * @barrier_q_seq: Sequence number for barrier operations.
87 * @name: This flavor's textual name.
88 * @kname: This flavor's kthread name.
91 struct rcuwait cbs_wait;
92 raw_spinlock_t cbs_gbl_lock;
93 struct mutex tasks_gp_mutex;
97 unsigned long gp_jiffies;
98 unsigned long gp_start;
99 unsigned long tasks_gp_seq;
100 unsigned long n_ipis;
101 unsigned long n_ipis_fails;
102 struct task_struct *kthread_ptr;
103 unsigned long lazy_jiffies;
104 rcu_tasks_gp_func_t gp_func;
105 pregp_func_t pregp_func;
106 pertask_func_t pertask_func;
107 postscan_func_t postscan_func;
108 holdouts_func_t holdouts_func;
109 postgp_func_t postgp_func;
110 call_rcu_func_t call_func;
111 unsigned int wait_state;
112 struct rcu_tasks_percpu __percpu *rtpcpu;
113 int percpu_enqueue_shift;
114 int percpu_enqueue_lim;
115 int percpu_dequeue_lim;
116 unsigned long percpu_dequeue_gpseq;
117 struct mutex barrier_q_mutex;
118 atomic_t barrier_q_count;
119 struct completion barrier_q_completion;
120 unsigned long barrier_q_seq;
125 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
127 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
128 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \
129 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \
130 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \
132 static struct rcu_tasks rt_name = \
134 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \
135 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \
136 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \
139 .wait_state = TASK_UNINTERRUPTIBLE, \
140 .rtpcpu = &rt_name ## __percpu, \
141 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \
143 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \
144 .percpu_enqueue_lim = 1, \
145 .percpu_dequeue_lim = 1, \
146 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \
147 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \
151 #ifdef CONFIG_TASKS_RCU
153 /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */
154 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
155 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
158 /* Avoid IPIing CPUs early in the grace period. */
159 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
160 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
161 module_param(rcu_task_ipi_delay, int, 0644);
163 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
164 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
165 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
166 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
167 module_param(rcu_task_stall_timeout, int, 0644);
168 #define RCU_TASK_STALL_INFO (HZ * 10)
169 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
170 module_param(rcu_task_stall_info, int, 0644);
171 static int rcu_task_stall_info_mult __read_mostly = 3;
172 module_param(rcu_task_stall_info_mult, int, 0444);
174 static int rcu_task_enqueue_lim __read_mostly = -1;
175 module_param(rcu_task_enqueue_lim, int, 0444);
177 static bool rcu_task_cb_adjust;
178 static int rcu_task_contend_lim __read_mostly = 100;
179 module_param(rcu_task_contend_lim, int, 0444);
180 static int rcu_task_collapse_lim __read_mostly = 10;
181 module_param(rcu_task_collapse_lim, int, 0444);
182 static int rcu_task_lazy_lim __read_mostly = 32;
183 module_param(rcu_task_lazy_lim, int, 0444);
185 /* RCU tasks grace-period state for debugging. */
187 #define RTGS_WAIT_WAIT_CBS 1
188 #define RTGS_WAIT_GP 2
189 #define RTGS_PRE_WAIT_GP 3
190 #define RTGS_SCAN_TASKLIST 4
191 #define RTGS_POST_SCAN_TASKLIST 5
192 #define RTGS_WAIT_SCAN_HOLDOUTS 6
193 #define RTGS_SCAN_HOLDOUTS 7
194 #define RTGS_POST_GP 8
195 #define RTGS_WAIT_READERS 9
196 #define RTGS_INVOKE_CBS 10
197 #define RTGS_WAIT_CBS 11
198 #ifndef CONFIG_TINY_RCU
199 static const char * const rcu_tasks_gp_state_names[] = {
201 "RTGS_WAIT_WAIT_CBS",
204 "RTGS_SCAN_TASKLIST",
205 "RTGS_POST_SCAN_TASKLIST",
206 "RTGS_WAIT_SCAN_HOLDOUTS",
207 "RTGS_SCAN_HOLDOUTS",
213 #endif /* #ifndef CONFIG_TINY_RCU */
215 ////////////////////////////////////////////////////////////////////////
219 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
221 /* Record grace-period phase and time. */
222 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
224 rtp->gp_state = newstate;
225 rtp->gp_jiffies = jiffies;
228 #ifndef CONFIG_TINY_RCU
229 /* Return state name. */
230 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
232 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
233 int j = READ_ONCE(i); // Prevent the compiler from reading twice
235 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
237 return rcu_tasks_gp_state_names[j];
239 #endif /* #ifndef CONFIG_TINY_RCU */
241 // Initialize per-CPU callback lists for the specified flavor of
242 // Tasks RCU. Do not enqueue callbacks before this function is invoked.
243 static void cblist_init_generic(struct rcu_tasks *rtp)
249 if (rcu_task_enqueue_lim < 0) {
250 rcu_task_enqueue_lim = 1;
251 rcu_task_cb_adjust = true;
252 } else if (rcu_task_enqueue_lim == 0) {
253 rcu_task_enqueue_lim = 1;
255 lim = rcu_task_enqueue_lim;
257 if (lim > nr_cpu_ids)
259 shift = ilog2(nr_cpu_ids / lim);
260 if (((nr_cpu_ids - 1) >> shift) >= lim)
262 WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
263 WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
264 smp_store_release(&rtp->percpu_enqueue_lim, lim);
265 for_each_possible_cpu(cpu) {
266 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
268 WARN_ON_ONCE(!rtpcp);
270 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
271 if (rcu_segcblist_empty(&rtpcp->cblist))
272 rcu_segcblist_init(&rtpcp->cblist);
273 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
276 if (!rtpcp->rtp_blkd_tasks.next)
277 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
278 if (!rtpcp->rtp_exit_list.next)
279 INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
282 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name,
283 data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust);
286 // Compute wakeup time for lazy callback timer.
287 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
289 return jiffies + rtp->lazy_jiffies;
292 // Timer handler that unlazifies lazy callbacks.
293 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
296 bool needwake = false;
297 struct rcu_tasks *rtp;
298 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
301 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
302 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
303 if (!rtpcp->urgent_gp)
304 rtpcp->urgent_gp = 1;
306 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
308 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
310 rcuwait_wake_up(&rtp->cbs_wait);
313 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
314 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
316 struct rcu_tasks *rtp;
317 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
320 rcuwait_wake_up(&rtp->cbs_wait);
323 // Enqueue a callback for the specified flavor of Tasks RCU.
324 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
325 struct rcu_tasks *rtp)
329 bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
332 bool needadjust = false;
334 struct rcu_tasks_percpu *rtpcp;
338 local_irq_save(flags);
340 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
341 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
342 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
343 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
344 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
346 if (rtpcp->rtp_jiffies != j) {
347 rtpcp->rtp_jiffies = j;
348 rtpcp->rtp_n_lock_retries = 0;
350 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
351 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
352 needadjust = true; // Defer adjustment to avoid deadlock.
354 // Queuing callbacks before initialization not yet supported.
355 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
356 rcu_segcblist_init(&rtpcp->cblist);
357 needwake = (func == wakeme_after_rcu) ||
358 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
359 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
360 if (rtp->lazy_jiffies)
361 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
363 needwake = rcu_segcblist_empty(&rtpcp->cblist);
366 rtpcp->urgent_gp = 3;
367 rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
368 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
369 if (unlikely(needadjust)) {
370 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
371 if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
372 WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
373 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
374 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
375 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
377 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
380 /* We can't create the thread unless interrupts are enabled. */
381 if (needwake && READ_ONCE(rtp->kthread_ptr))
382 irq_work_queue(&rtpcp->rtp_irq_work);
385 // RCU callback function for rcu_barrier_tasks_generic().
386 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
388 struct rcu_tasks *rtp;
389 struct rcu_tasks_percpu *rtpcp;
391 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
393 if (atomic_dec_and_test(&rtp->barrier_q_count))
394 complete(&rtp->barrier_q_completion);
397 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
398 // Operates in a manner similar to rcu_barrier().
399 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
403 struct rcu_tasks_percpu *rtpcp;
404 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
406 mutex_lock(&rtp->barrier_q_mutex);
407 if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
409 mutex_unlock(&rtp->barrier_q_mutex);
412 rcu_seq_start(&rtp->barrier_q_seq);
413 init_completion(&rtp->barrier_q_completion);
414 atomic_set(&rtp->barrier_q_count, 2);
415 for_each_possible_cpu(cpu) {
416 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
418 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
419 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
420 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
421 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
422 atomic_inc(&rtp->barrier_q_count);
423 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
425 if (atomic_sub_and_test(2, &rtp->barrier_q_count))
426 complete(&rtp->barrier_q_completion);
427 wait_for_completion(&rtp->barrier_q_completion);
428 rcu_seq_end(&rtp->barrier_q_seq);
429 mutex_unlock(&rtp->barrier_q_mutex);
432 // Advance callbacks and indicate whether either a grace period or
433 // callback invocation is needed.
434 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
439 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
445 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
446 for (cpu = 0; cpu < dequeue_limit; cpu++) {
447 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
449 /* Advance and accelerate any new callbacks. */
450 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
452 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
453 // Should we shrink down to a single callback queue?
454 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
460 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
461 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
462 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
463 if (rtp->lazy_jiffies)
466 } else if (rcu_segcblist_empty(&rtpcp->cblist)) {
467 rtpcp->urgent_gp = 0;
469 if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
471 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
474 // Shrink down to a single callback queue if appropriate.
475 // This is done in two stages: (1) If there are no more than
476 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
477 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period,
478 // if there has not been an increase in callbacks, limit dequeuing
479 // to CPU 0. Note the matching RCU read-side critical section in
480 // call_rcu_tasks_generic().
481 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
482 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
483 if (rtp->percpu_enqueue_lim > 1) {
484 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
485 smp_store_release(&rtp->percpu_enqueue_lim, 1);
486 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
488 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
490 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
492 if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
493 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
494 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
495 WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
496 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
498 if (rtp->percpu_dequeue_lim == 1) {
499 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
500 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
502 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
505 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
511 // Advance callbacks and invoke any that are ready.
512 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
519 struct rcu_head *rhp;
520 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
521 struct rcu_tasks_percpu *rtpcp_next;
524 cpunext = cpu * 2 + 1;
525 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
526 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
527 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
528 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
530 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
531 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
532 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
533 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
537 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
539 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
540 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
541 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
542 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
544 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
545 debug_rcu_head_callback(rhp);
551 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
552 rcu_segcblist_add_len(&rtpcp->cblist, -len);
553 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
554 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
557 // Workqueue flood to advance callbacks and invoke any that are ready.
558 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
560 struct rcu_tasks *rtp;
561 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
564 rcu_tasks_invoke_cbs(rtp, rtpcp);
567 // Wait for one grace period.
568 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
572 mutex_lock(&rtp->tasks_gp_mutex);
574 // If there were none, wait a bit and start over.
575 if (unlikely(midboot)) {
578 mutex_unlock(&rtp->tasks_gp_mutex);
579 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
580 rcuwait_wait_event(&rtp->cbs_wait,
581 (needgpcb = rcu_tasks_need_gpcb(rtp)),
583 mutex_lock(&rtp->tasks_gp_mutex);
586 if (needgpcb & 0x2) {
587 // Wait for one grace period.
588 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
589 rtp->gp_start = jiffies;
590 rcu_seq_start(&rtp->tasks_gp_seq);
592 rcu_seq_end(&rtp->tasks_gp_seq);
596 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
597 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
598 mutex_unlock(&rtp->tasks_gp_mutex);
601 // RCU-tasks kthread that detects grace periods and invokes callbacks.
602 static int __noreturn rcu_tasks_kthread(void *arg)
605 struct rcu_tasks *rtp = arg;
607 for_each_possible_cpu(cpu) {
608 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
610 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
611 rtpcp->urgent_gp = 1;
614 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
615 housekeeping_affine(current, HK_TYPE_RCU);
616 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
619 * Each pass through the following loop makes one check for
620 * newly arrived callbacks, and, if there are some, waits for
621 * one RCU-tasks grace period and then invokes the callbacks.
622 * This loop is terminated by the system going down. ;-)
625 // Wait for one grace period and invoke any callbacks
627 rcu_tasks_one_gp(rtp, false);
629 // Paranoid sleep to keep this from entering a tight loop.
630 schedule_timeout_idle(rtp->gp_sleep);
634 // Wait for a grace period for the specified flavor of Tasks RCU.
635 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
637 /* Complain if the scheduler has not started. */
638 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
639 "synchronize_%s() called too soon", rtp->name))
642 // If the grace-period kthread is running, use it.
643 if (READ_ONCE(rtp->kthread_ptr)) {
644 wait_rcu_gp_state(rtp->wait_state, rtp->call_func);
647 rcu_tasks_one_gp(rtp, true);
650 /* Spawn RCU-tasks grace-period kthread. */
651 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
653 struct task_struct *t;
655 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
656 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
658 smp_mb(); /* Ensure others see full kthread. */
661 #ifndef CONFIG_TINY_RCU
664 * Print any non-default Tasks RCU settings.
666 static void __init rcu_tasks_bootup_oddness(void)
668 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
671 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
672 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
673 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
674 if (rtsimc != rcu_task_stall_info_mult) {
675 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
676 rcu_task_stall_info_mult = rtsimc;
678 #endif /* #ifdef CONFIG_TASKS_RCU */
679 #ifdef CONFIG_TASKS_RCU
680 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
681 #endif /* #ifdef CONFIG_TASKS_RCU */
682 #ifdef CONFIG_TASKS_RUDE_RCU
683 pr_info("\tRude variant of Tasks RCU enabled.\n");
684 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
685 #ifdef CONFIG_TASKS_TRACE_RCU
686 pr_info("\tTracing variant of Tasks RCU enabled.\n");
687 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
690 #endif /* #ifndef CONFIG_TINY_RCU */
692 #ifndef CONFIG_TINY_RCU
693 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
694 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
697 bool havecbs = false;
698 bool haveurgent = false;
699 bool haveurgentcbs = false;
701 for_each_possible_cpu(cpu) {
702 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
704 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
706 if (data_race(rtpcp->urgent_gp))
708 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
709 haveurgentcbs = true;
710 if (havecbs && haveurgent && haveurgentcbs)
713 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
715 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
716 jiffies - data_race(rtp->gp_jiffies),
717 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
718 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
719 ".k"[!!data_race(rtp->kthread_ptr)],
726 #endif // #ifndef CONFIG_TINY_RCU
728 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
730 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
732 ////////////////////////////////////////////////////////////////////////
734 // Shared code between task-list-scanning variants of Tasks RCU.
736 /* Wait for one RCU-tasks grace period. */
737 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
739 struct task_struct *g;
743 unsigned long lastinfo;
744 unsigned long lastreport;
745 bool reported = false;
747 struct task_struct *t;
749 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
750 rtp->pregp_func(&holdouts);
753 * There were callbacks, so we need to wait for an RCU-tasks
754 * grace period. Start off by scanning the task list for tasks
755 * that are not already voluntarily blocked. Mark these tasks
756 * and make a list of them in holdouts.
758 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
759 if (rtp->pertask_func) {
761 for_each_process_thread(g, t)
762 rtp->pertask_func(t, &holdouts);
766 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
767 rtp->postscan_func(&holdouts);
770 * Each pass through the following loop scans the list of holdout
771 * tasks, removing any that are no longer holdouts. When the list
772 * is empty, we are done.
774 lastreport = jiffies;
775 lastinfo = lastreport;
776 rtsi = READ_ONCE(rcu_task_stall_info);
778 // Start off with initial wait and slowly back off to 1 HZ wait.
779 fract = rtp->init_fract;
781 while (!list_empty(&holdouts)) {
787 // Slowly back off waiting for holdouts
788 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
789 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
790 schedule_timeout_idle(fract);
792 exp = jiffies_to_nsecs(fract);
793 __set_current_state(TASK_IDLE);
794 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
800 rtst = READ_ONCE(rcu_task_stall_timeout);
801 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
803 lastreport = jiffies;
807 WARN_ON(signal_pending(current));
808 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
809 rtp->holdouts_func(&holdouts, needreport, &firstreport);
811 // Print pre-stall informational messages if needed.
813 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
815 rtsi = rtsi * rcu_task_stall_info_mult;
816 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
817 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
821 set_tasks_gp_state(rtp, RTGS_POST_GP);
822 rtp->postgp_func(rtp);
825 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
827 #ifdef CONFIG_TASKS_RCU
829 ////////////////////////////////////////////////////////////////////////
831 // Simple variant of RCU whose quiescent states are voluntary context
832 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
833 // As such, grace periods can take one good long time. There are no
834 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
835 // because this implementation is intended to get the system into a safe
836 // state for some of the manipulations involved in tracing and the like.
837 // Finally, this implementation does not support high call_rcu_tasks()
838 // rates from multiple CPUs. If this is required, per-CPU callback lists
841 // The implementation uses rcu_tasks_wait_gp(), which relies on function
842 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
843 // function sets these function pointers up so that rcu_tasks_wait_gp()
844 // invokes these functions in this order:
846 // rcu_tasks_pregp_step():
847 // Invokes synchronize_rcu() in order to wait for all in-flight
848 // t->on_rq and t->nvcsw transitions to complete. This works because
849 // all such transitions are carried out with interrupts disabled.
850 // rcu_tasks_pertask(), invoked on every non-idle task:
851 // For every runnable non-idle task other than the current one, use
852 // get_task_struct() to pin down that task, snapshot that task's
853 // number of voluntary context switches, and add that task to the
855 // rcu_tasks_postscan():
856 // Gather per-CPU lists of tasks in do_exit() to ensure that all
857 // tasks that were in the process of exiting (and which thus might
858 // not know to synchronize with this RCU Tasks grace period) have
859 // completed exiting. The synchronize_rcu() in rcu_tasks_postgp()
860 // will take care of any tasks stuck in the non-preemptible region
861 // of do_exit() following its call to exit_tasks_rcu_stop().
862 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
863 // Scans the holdout list, attempting to identify a quiescent state
864 // for each task on the list. If there is a quiescent state, the
865 // corresponding task is removed from the holdout list.
866 // rcu_tasks_postgp():
867 // Invokes synchronize_rcu() in order to ensure that all prior
868 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
869 // to have happened before the end of this RCU Tasks grace period.
870 // Again, this works because all such transitions are carried out
871 // with interrupts disabled.
873 // For each exiting task, the exit_tasks_rcu_start() and
874 // exit_tasks_rcu_finish() functions add and remove, respectively, the
875 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must
876 // wait on. This is necessary because rcu_tasks_postscan() must wait on
877 // tasks that have already been removed from the global list of tasks.
879 // Pre-grace-period update-side code is ordered before the grace
880 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
881 // is ordered before the grace period via synchronize_rcu() call in
882 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
885 /* Pre-grace-period preparation. */
886 static void rcu_tasks_pregp_step(struct list_head *hop)
889 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
890 * to complete. Invoking synchronize_rcu() suffices because all
891 * these transitions occur with interrupts disabled. Without this
892 * synchronize_rcu(), a read-side critical section that started
893 * before the grace period might be incorrectly seen as having
894 * started after the grace period.
896 * This synchronize_rcu() also dispenses with the need for a
897 * memory barrier on the first store to t->rcu_tasks_holdout,
898 * as it forces the store to happen after the beginning of the
904 /* Check for quiescent states since the pregp's synchronize_rcu() */
905 static bool rcu_tasks_is_holdout(struct task_struct *t)
909 /* Has the task been seen voluntarily sleeping? */
910 if (!READ_ONCE(t->on_rq))
914 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
915 * quiescent states. But CPU boot code performed by the idle task
916 * isn't a quiescent state.
923 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
924 if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
930 /* Per-task initial processing. */
931 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
933 if (t != current && rcu_tasks_is_holdout(t)) {
935 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
936 WRITE_ONCE(t->rcu_tasks_holdout, true);
937 list_add(&t->rcu_tasks_holdout_list, hop);
941 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
942 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
944 /* Processing between scanning taskslist and draining the holdout list. */
945 static void rcu_tasks_postscan(struct list_head *hop)
948 int rtsi = READ_ONCE(rcu_task_stall_info);
950 if (!IS_ENABLED(CONFIG_TINY_RCU)) {
951 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
952 add_timer(&tasks_rcu_exit_srcu_stall_timer);
956 * Exiting tasks may escape the tasklist scan. Those are vulnerable
957 * until their final schedule() with TASK_DEAD state. To cope with
958 * this, divide the fragile exit path part in two intersecting
959 * read side critical sections:
961 * 1) A task_struct list addition before calling exit_notify(),
962 * which may remove the task from the tasklist, with the
963 * removal after the final preempt_disable() call in do_exit().
965 * 2) An _RCU_ read side starting with the final preempt_disable()
966 * call in do_exit() and ending with the final call to schedule()
967 * with TASK_DEAD state.
969 * This handles the part 1). And postgp will handle part 2) with a
970 * call to synchronize_rcu().
973 for_each_possible_cpu(cpu) {
974 unsigned long j = jiffies + 1;
975 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
976 struct task_struct *t;
977 struct task_struct *t1;
978 struct list_head tmp;
980 raw_spin_lock_irq_rcu_node(rtpcp);
981 list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
982 if (list_empty(&t->rcu_tasks_holdout_list))
983 rcu_tasks_pertask(t, hop);
985 // RT kernels need frequent pauses, otherwise
986 // pause at least once per pair of jiffies.
987 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
990 // Keep our place in the list while pausing.
991 // Nothing else traverses this list, so adding a
992 // bare list_head is OK.
993 list_add(&tmp, &t->rcu_tasks_exit_list);
994 raw_spin_unlock_irq_rcu_node(rtpcp);
995 cond_resched(); // For CONFIG_PREEMPT=n kernels
996 raw_spin_lock_irq_rcu_node(rtpcp);
997 t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
1001 raw_spin_unlock_irq_rcu_node(rtpcp);
1004 if (!IS_ENABLED(CONFIG_TINY_RCU))
1005 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
1008 /* See if tasks are still holding out, complain if so. */
1009 static void check_holdout_task(struct task_struct *t,
1010 bool needreport, bool *firstreport)
1014 if (!READ_ONCE(t->rcu_tasks_holdout) ||
1015 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1016 !rcu_tasks_is_holdout(t) ||
1017 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1018 !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
1019 WRITE_ONCE(t->rcu_tasks_holdout, false);
1020 list_del_init(&t->rcu_tasks_holdout_list);
1024 rcu_request_urgent_qs_task(t);
1028 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1029 *firstreport = false;
1032 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1033 t, ".I"[is_idle_task(t)],
1034 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1035 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1036 data_race(t->rcu_tasks_idle_cpu), cpu);
1040 /* Scan the holdout lists for tasks no longer holding out. */
1041 static void check_all_holdout_tasks(struct list_head *hop,
1042 bool needreport, bool *firstreport)
1044 struct task_struct *t, *t1;
1046 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1047 check_holdout_task(t, needreport, firstreport);
1052 /* Finish off the Tasks-RCU grace period. */
1053 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1056 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1057 * memory barriers prior to them in the schedule() path, memory
1058 * reordering on other CPUs could cause their RCU-tasks read-side
1059 * critical sections to extend past the end of the grace period.
1060 * However, because these ->nvcsw updates are carried out with
1061 * interrupts disabled, we can use synchronize_rcu() to force the
1062 * needed ordering on all such CPUs.
1064 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1065 * accesses to be within the grace period, avoiding the need for
1066 * memory barriers for ->rcu_tasks_holdout accesses.
1068 * In addition, this synchronize_rcu() waits for exiting tasks
1069 * to complete their final preempt_disable() region of execution,
1070 * enforcing the whole region before tasklist removal until
1071 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1072 * read side critical section.
1077 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1079 #ifndef CONFIG_TINY_RCU
1082 rtsi = READ_ONCE(rcu_task_stall_info);
1083 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1084 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1085 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1086 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1087 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1088 add_timer(&tasks_rcu_exit_srcu_stall_timer);
1089 #endif // #ifndef CONFIG_TINY_RCU
1093 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1094 * @rhp: structure to be used for queueing the RCU updates.
1095 * @func: actual callback function to be invoked after the grace period
1097 * The callback function will be invoked some time after a full grace
1098 * period elapses, in other words after all currently executing RCU
1099 * read-side critical sections have completed. call_rcu_tasks() assumes
1100 * that the read-side critical sections end at a voluntary context
1101 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1102 * or transition to usermode execution. As such, there are no read-side
1103 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1104 * this primitive is intended to determine that all tasks have passed
1105 * through a safe state, not so much for data-structure synchronization.
1107 * See the description of call_rcu() for more detailed information on
1108 * memory ordering guarantees.
1110 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1112 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1114 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1117 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1119 * Control will return to the caller some time after a full rcu-tasks
1120 * grace period has elapsed, in other words after all currently
1121 * executing rcu-tasks read-side critical sections have elapsed. These
1122 * read-side critical sections are delimited by calls to schedule(),
1123 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1124 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1126 * This is a very specialized primitive, intended only for a few uses in
1127 * tracing and other situations requiring manipulation of function
1128 * preambles and profiling hooks. The synchronize_rcu_tasks() function
1129 * is not (yet) intended for heavy use from multiple CPUs.
1131 * See the description of synchronize_rcu() for more detailed information
1132 * on memory ordering guarantees.
1134 void synchronize_rcu_tasks(void)
1136 synchronize_rcu_tasks_generic(&rcu_tasks);
1138 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1141 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1143 * Although the current implementation is guaranteed to wait, it is not
1144 * obligated to, for example, if there are no pending callbacks.
1146 void rcu_barrier_tasks(void)
1148 rcu_barrier_tasks_generic(&rcu_tasks);
1150 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1152 static int rcu_tasks_lazy_ms = -1;
1153 module_param(rcu_tasks_lazy_ms, int, 0444);
1155 static int __init rcu_spawn_tasks_kthread(void)
1157 rcu_tasks.gp_sleep = HZ / 10;
1158 rcu_tasks.init_fract = HZ / 10;
1159 if (rcu_tasks_lazy_ms >= 0)
1160 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1161 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1162 rcu_tasks.pertask_func = rcu_tasks_pertask;
1163 rcu_tasks.postscan_func = rcu_tasks_postscan;
1164 rcu_tasks.holdouts_func = check_all_holdout_tasks;
1165 rcu_tasks.postgp_func = rcu_tasks_postgp;
1166 rcu_tasks.wait_state = TASK_IDLE;
1167 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1171 #if !defined(CONFIG_TINY_RCU)
1172 void show_rcu_tasks_classic_gp_kthread(void)
1174 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1176 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1177 #endif // !defined(CONFIG_TINY_RCU)
1179 struct task_struct *get_rcu_tasks_gp_kthread(void)
1181 return rcu_tasks.kthread_ptr;
1183 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1185 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq)
1188 *gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq);
1190 EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data);
1193 * Protect against tasklist scan blind spot while the task is exiting and
1194 * may be removed from the tasklist. Do this by adding the task to yet
1197 * Note that the task will remove itself from this list, so there is no
1198 * need for get_task_struct(), except in the case where rcu_tasks_pertask()
1199 * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
1200 * the needed get_task_struct().
1202 void exit_tasks_rcu_start(void)
1204 unsigned long flags;
1205 struct rcu_tasks_percpu *rtpcp;
1206 struct task_struct *t = current;
1208 WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
1210 rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
1211 t->rcu_tasks_exit_cpu = smp_processor_id();
1212 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1213 WARN_ON_ONCE(!rtpcp->rtp_exit_list.next);
1214 list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
1215 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1220 * Remove the task from the "yet another list" because do_exit() is now
1221 * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
1223 void exit_tasks_rcu_stop(void)
1225 unsigned long flags;
1226 struct rcu_tasks_percpu *rtpcp;
1227 struct task_struct *t = current;
1229 WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
1230 rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
1231 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1232 list_del_init(&t->rcu_tasks_exit_list);
1233 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1237 * Contribute to protect against tasklist scan blind spot while the
1238 * task is exiting and may be removed from the tasklist. See
1239 * corresponding synchronize_srcu() for further details.
1241 void exit_tasks_rcu_finish(void)
1243 exit_tasks_rcu_stop();
1244 exit_tasks_rcu_finish_trace(current);
1247 #else /* #ifdef CONFIG_TASKS_RCU */
1248 void exit_tasks_rcu_start(void) { }
1249 void exit_tasks_rcu_stop(void) { }
1250 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1251 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1253 #ifdef CONFIG_TASKS_RUDE_RCU
1255 ////////////////////////////////////////////////////////////////////////
1257 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1258 // passing an empty function to schedule_on_each_cpu(). This approach
1259 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1260 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1261 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1262 // and induces otherwise unnecessary context switches on all online CPUs,
1263 // whether idle or not.
1265 // Callback handling is provided by the rcu_tasks_kthread() function.
1267 // Ordering is provided by the scheduler's context-switch code.
1269 // Empty function to allow workqueues to force a context switch.
1270 static void rcu_tasks_be_rude(struct work_struct *work)
1274 // Wait for one rude RCU-tasks grace period.
1275 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1277 rtp->n_ipis += cpumask_weight(cpu_online_mask);
1278 schedule_on_each_cpu(rcu_tasks_be_rude);
1281 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1282 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1286 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1287 * @rhp: structure to be used for queueing the RCU updates.
1288 * @func: actual callback function to be invoked after the grace period
1290 * The callback function will be invoked some time after a full grace
1291 * period elapses, in other words after all currently executing RCU
1292 * read-side critical sections have completed. call_rcu_tasks_rude()
1293 * assumes that the read-side critical sections end at context switch,
1294 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1295 * usermode execution is schedulable). As such, there are no read-side
1296 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1297 * this primitive is intended to determine that all tasks have passed
1298 * through a safe state, not so much for data-structure synchronization.
1300 * See the description of call_rcu() for more detailed information on
1301 * memory ordering guarantees.
1303 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1305 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1307 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1310 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1312 * Control will return to the caller some time after a rude rcu-tasks
1313 * grace period has elapsed, in other words after all currently
1314 * executing rcu-tasks read-side critical sections have elapsed. These
1315 * read-side critical sections are delimited by calls to schedule(),
1316 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1317 * context), and (in theory, anyway) cond_resched().
1319 * This is a very specialized primitive, intended only for a few uses in
1320 * tracing and other situations requiring manipulation of function preambles
1321 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
1322 * (yet) intended for heavy use from multiple CPUs.
1324 * See the description of synchronize_rcu() for more detailed information
1325 * on memory ordering guarantees.
1327 void synchronize_rcu_tasks_rude(void)
1329 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1331 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1334 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1336 * Although the current implementation is guaranteed to wait, it is not
1337 * obligated to, for example, if there are no pending callbacks.
1339 void rcu_barrier_tasks_rude(void)
1341 rcu_barrier_tasks_generic(&rcu_tasks_rude);
1343 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1345 int rcu_tasks_rude_lazy_ms = -1;
1346 module_param(rcu_tasks_rude_lazy_ms, int, 0444);
1348 static int __init rcu_spawn_tasks_rude_kthread(void)
1350 rcu_tasks_rude.gp_sleep = HZ / 10;
1351 if (rcu_tasks_rude_lazy_ms >= 0)
1352 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms);
1353 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1357 #if !defined(CONFIG_TINY_RCU)
1358 void show_rcu_tasks_rude_gp_kthread(void)
1360 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1362 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1363 #endif // !defined(CONFIG_TINY_RCU)
1365 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1367 return rcu_tasks_rude.kthread_ptr;
1369 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1371 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq)
1374 *gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq);
1376 EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data);
1378 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1380 ////////////////////////////////////////////////////////////////////////
1382 // Tracing variant of Tasks RCU. This variant is designed to be used
1383 // to protect tracing hooks, including those of BPF. This variant
1386 // 1. Has explicit read-side markers to allow finite grace periods
1387 // in the face of in-kernel loops for PREEMPT=n builds.
1389 // 2. Protects code in the idle loop, exception entry/exit, and
1390 // CPU-hotplug code paths, similar to the capabilities of SRCU.
1392 // 3. Avoids expensive read-side instructions, having overhead similar
1393 // to that of Preemptible RCU.
1395 // There are of course downsides. For example, the grace-period code
1396 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1397 // in nohz_full userspace. If needed, these downsides can be at least
1398 // partially remedied.
1400 // Perhaps most important, this variant of RCU does not affect the vanilla
1401 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
1402 // readers can operate from idle, offline, and exception entry/exit in no
1403 // way allows rcu_preempt and rcu_sched readers to also do so.
1405 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1406 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
1407 // function sets these function pointers up so that rcu_tasks_wait_gp()
1408 // invokes these functions in this order:
1410 // rcu_tasks_trace_pregp_step():
1411 // Disables CPU hotplug, adds all currently executing tasks to the
1412 // holdout list, then checks the state of all tasks that blocked
1413 // or were preempted within their current RCU Tasks Trace read-side
1414 // critical section, adding them to the holdout list if appropriate.
1415 // Finally, this function re-enables CPU hotplug.
1416 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1417 // rcu_tasks_trace_postscan():
1418 // Invokes synchronize_rcu() to wait for late-stage exiting tasks
1419 // to finish exiting.
1420 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1421 // Scans the holdout list, attempting to identify a quiescent state
1422 // for each task on the list. If there is a quiescent state, the
1423 // corresponding task is removed from the holdout list. Once this
1424 // list is empty, the grace period has completed.
1425 // rcu_tasks_trace_postgp():
1426 // Provides the needed full memory barrier and does debug checks.
1428 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1430 // Pre-grace-period update-side code is ordered before the grace period
1431 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period
1432 // read-side code is ordered before the grace period by atomic operations
1433 // on .b.need_qs flag of each task involved in this process, or by scheduler
1434 // context-switch ordering (for locked-down non-running readers).
1436 // The lockdep state must be outside of #ifdef to be useful.
1437 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1438 static struct lock_class_key rcu_lock_trace_key;
1439 struct lockdep_map rcu_trace_lock_map =
1440 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1441 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1442 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1444 #ifdef CONFIG_TASKS_TRACE_RCU
1446 // Record outstanding IPIs to each CPU. No point in sending two...
1447 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1449 // The number of detections of task quiescent state relying on
1450 // heavyweight readers executing explicit memory barriers.
1451 static unsigned long n_heavy_reader_attempts;
1452 static unsigned long n_heavy_reader_updates;
1453 static unsigned long n_heavy_reader_ofl_updates;
1454 static unsigned long n_trc_holdouts;
1456 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1457 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1460 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1461 static u8 rcu_ld_need_qs(struct task_struct *t)
1463 smp_mb(); // Enforce full grace-period ordering.
1464 return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1467 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1468 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1470 smp_store_release(&t->trc_reader_special.b.need_qs, v);
1471 smp_mb(); // Enforce full grace-period ordering.
1475 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1476 * the four-byte operand-size restriction of some platforms.
1478 * Returns the old value, which is often ignored.
1480 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1482 union rcu_special ret;
1483 union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1484 union rcu_special trs_new = trs_old;
1486 if (trs_old.b.need_qs != old)
1487 return trs_old.b.need_qs;
1488 trs_new.b.need_qs = new;
1490 // Although cmpxchg() appears to KCSAN to update all four bytes,
1491 // only the .b.need_qs byte actually changes.
1492 instrument_atomic_read_write(&t->trc_reader_special.b.need_qs,
1493 sizeof(t->trc_reader_special.b.need_qs));
1494 // Avoid false-positive KCSAN failures.
1495 ret.s = data_race(cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s));
1497 return ret.b.need_qs;
1499 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1502 * If we are the last reader, signal the grace-period kthread.
1503 * Also remove from the per-CPU list of blocked tasks.
1505 void rcu_read_unlock_trace_special(struct task_struct *t)
1507 unsigned long flags;
1508 struct rcu_tasks_percpu *rtpcp;
1509 union rcu_special trs;
1511 // Open-coded full-word version of rcu_ld_need_qs().
1512 smp_mb(); // Enforce full grace-period ordering.
1513 trs = smp_load_acquire(&t->trc_reader_special);
1515 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1516 smp_mb(); // Pairs with update-side barriers.
1517 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1518 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1519 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1520 TRC_NEED_QS_CHECKED);
1522 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1524 if (trs.b.blocked) {
1525 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1526 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1527 list_del_init(&t->trc_blkd_node);
1528 WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1529 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1531 WRITE_ONCE(t->trc_reader_nesting, 0);
1533 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1535 /* Add a newly blocked reader task to its CPU's list. */
1536 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1538 unsigned long flags;
1539 struct rcu_tasks_percpu *rtpcp;
1541 local_irq_save(flags);
1542 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1543 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1544 t->trc_blkd_cpu = smp_processor_id();
1545 if (!rtpcp->rtp_blkd_tasks.next)
1546 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1547 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1548 WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1549 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1551 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1553 /* Add a task to the holdout list, if it is not already on the list. */
1554 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1556 if (list_empty(&t->trc_holdout_list)) {
1558 list_add(&t->trc_holdout_list, bhp);
1563 /* Remove a task from the holdout list, if it is in fact present. */
1564 static void trc_del_holdout(struct task_struct *t)
1566 if (!list_empty(&t->trc_holdout_list)) {
1567 list_del_init(&t->trc_holdout_list);
1573 /* IPI handler to check task state. */
1574 static void trc_read_check_handler(void *t_in)
1577 struct task_struct *t = current;
1578 struct task_struct *texp = t_in;
1580 // If the task is no longer running on this CPU, leave.
1581 if (unlikely(texp != t))
1582 goto reset_ipi; // Already on holdout list, so will check later.
1584 // If the task is not in a read-side critical section, and
1585 // if this is the last reader, awaken the grace-period kthread.
1586 nesting = READ_ONCE(t->trc_reader_nesting);
1587 if (likely(!nesting)) {
1588 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1591 // If we are racing with an rcu_read_unlock_trace(), try again later.
1592 if (unlikely(nesting < 0))
1595 // Get here if the task is in a read-side critical section.
1596 // Set its state so that it will update state for the grace-period
1597 // kthread upon exit from that critical section.
1598 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1601 // Allow future IPIs to be sent on CPU and for task.
1602 // Also order this IPI handler against any later manipulations of
1603 // the intended task.
1604 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1605 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1608 /* Callback function for scheduler to check locked-down task. */
1609 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1611 struct list_head *bhp = bhp_in;
1612 int cpu = task_cpu(t);
1614 bool ofl = cpu_is_offline(cpu);
1616 if (task_curr(t) && !ofl) {
1617 // If no chance of heavyweight readers, do it the hard way.
1618 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1621 // If heavyweight readers are enabled on the remote task,
1622 // we can inspect its state despite its currently running.
1623 // However, we cannot safely change its state.
1624 n_heavy_reader_attempts++;
1625 // Check for "running" idle tasks on offline CPUs.
1626 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1627 return -EINVAL; // No quiescent state, do it the hard way.
1628 n_heavy_reader_updates++;
1631 // The task is not running, so C-language access is safe.
1632 nesting = t->trc_reader_nesting;
1633 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1634 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1635 n_heavy_reader_ofl_updates++;
1638 // If not exiting a read-side critical section, mark as checked
1639 // so that the grace-period kthread will remove it from the
1642 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1643 return 0; // In QS, so done.
1646 return -EINVAL; // Reader transitioning, try again later.
1648 // The task is in a read-side critical section, so set up its
1649 // state so that it will update state upon exit from that critical
1651 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1652 trc_add_holdout(t, bhp);
1656 /* Attempt to extract the state for the specified task. */
1657 static void trc_wait_for_one_reader(struct task_struct *t,
1658 struct list_head *bhp)
1662 // If a previous IPI is still in flight, let it complete.
1663 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1666 // The current task had better be in a quiescent state.
1668 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1669 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1673 // Attempt to nail down the task for inspection.
1675 if (!task_call_func(t, trc_inspect_reader, bhp)) {
1681 // If this task is not yet on the holdout list, then we are in
1682 // an RCU read-side critical section. Otherwise, the invocation of
1683 // trc_add_holdout() that added it to the list did the necessary
1684 // get_task_struct(). Either way, the task cannot be freed out
1685 // from under this code.
1687 // If currently running, send an IPI, either way, add to list.
1688 trc_add_holdout(t, bhp);
1690 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1691 // The task is currently running, so try IPIing it.
1694 // If there is already an IPI outstanding, let it happen.
1695 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1698 per_cpu(trc_ipi_to_cpu, cpu) = true;
1699 t->trc_ipi_to_cpu = cpu;
1700 rcu_tasks_trace.n_ipis++;
1701 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1702 // Just in case there is some other reason for
1703 // failure than the target CPU being offline.
1704 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1706 rcu_tasks_trace.n_ipis_fails++;
1707 per_cpu(trc_ipi_to_cpu, cpu) = false;
1708 t->trc_ipi_to_cpu = -1;
1714 * Initialize for first-round processing for the specified task.
1715 * Return false if task is NULL or already taken care of, true otherwise.
1717 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1719 // During early boot when there is only the one boot CPU, there
1720 // is no idle task for the other CPUs. Also, the grace-period
1721 // kthread is always in a quiescent state. In addition, just return
1722 // if this task is already on the list.
1723 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1726 rcu_st_need_qs(t, 0);
1727 t->trc_ipi_to_cpu = -1;
1731 /* Do first-round processing for the specified task. */
1732 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1734 if (rcu_tasks_trace_pertask_prep(t, true))
1735 trc_wait_for_one_reader(t, hop);
1738 /* Initialize for a new RCU-tasks-trace grace period. */
1739 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1741 LIST_HEAD(blkd_tasks);
1743 unsigned long flags;
1744 struct rcu_tasks_percpu *rtpcp;
1745 struct task_struct *t;
1747 // There shouldn't be any old IPIs, but...
1748 for_each_possible_cpu(cpu)
1749 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1751 // Disable CPU hotplug across the CPU scan for the benefit of
1752 // any IPIs that might be needed. This also waits for all readers
1753 // in CPU-hotplug code paths.
1756 // These rcu_tasks_trace_pertask_prep() calls are serialized to
1757 // allow safe access to the hop list.
1758 for_each_online_cpu(cpu) {
1760 t = cpu_curr_snapshot(cpu);
1761 if (rcu_tasks_trace_pertask_prep(t, true))
1762 trc_add_holdout(t, hop);
1764 cond_resched_tasks_rcu_qs();
1767 // Only after all running tasks have been accounted for is it
1768 // safe to take care of the tasks that have blocked within their
1769 // current RCU tasks trace read-side critical section.
1770 for_each_possible_cpu(cpu) {
1771 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1772 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1773 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1774 while (!list_empty(&blkd_tasks)) {
1776 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1777 list_del_init(&t->trc_blkd_node);
1778 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1779 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1780 rcu_tasks_trace_pertask(t, hop);
1782 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1784 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1785 cond_resched_tasks_rcu_qs();
1788 // Re-enable CPU hotplug now that the holdout list is populated.
1793 * Do intermediate processing between task and holdout scans.
1795 static void rcu_tasks_trace_postscan(struct list_head *hop)
1797 // Wait for late-stage exiting tasks to finish exiting.
1798 // These might have passed the call to exit_tasks_rcu_finish().
1800 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1802 // Any tasks that exit after this point will set
1803 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1806 /* Communicate task state back to the RCU tasks trace stall warning request. */
1807 struct trc_stall_chk_rdr {
1813 static int trc_check_slow_task(struct task_struct *t, void *arg)
1815 struct trc_stall_chk_rdr *trc_rdrp = arg;
1817 if (task_curr(t) && cpu_online(task_cpu(t)))
1818 return false; // It is running, so decline to inspect it.
1819 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1820 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1821 trc_rdrp->needqs = rcu_ld_need_qs(t);
1825 /* Show the state of a task stalling the current RCU tasks trace GP. */
1826 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1829 struct trc_stall_chk_rdr trc_rdr;
1830 bool is_idle_tsk = is_idle_task(t);
1833 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1834 *firstreport = false;
1837 if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1838 pr_alert("P%d: %c%c\n",
1840 ".I"[t->trc_ipi_to_cpu >= 0],
1843 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1845 ".I"[trc_rdr.ipi_to_cpu >= 0],
1847 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1848 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1850 " !CN"[trc_rdr.needqs & 0x3],
1851 " ?"[trc_rdr.needqs > 0x3],
1852 cpu, cpu_online(cpu) ? "" : "(offline)");
1856 /* List stalled IPIs for RCU tasks trace. */
1857 static void show_stalled_ipi_trace(void)
1861 for_each_possible_cpu(cpu)
1862 if (per_cpu(trc_ipi_to_cpu, cpu))
1863 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1866 /* Do one scan of the holdout list. */
1867 static void check_all_holdout_tasks_trace(struct list_head *hop,
1868 bool needreport, bool *firstreport)
1870 struct task_struct *g, *t;
1872 // Disable CPU hotplug across the holdout list scan for IPIs.
1875 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1876 // If safe and needed, try to check the current task.
1877 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1878 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1879 trc_wait_for_one_reader(t, hop);
1881 // If check succeeded, remove this task from the list.
1882 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1883 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1885 else if (needreport)
1886 show_stalled_task_trace(t, firstreport);
1887 cond_resched_tasks_rcu_qs();
1890 // Re-enable CPU hotplug now that the holdout list scan has completed.
1895 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1896 show_stalled_ipi_trace();
1900 static void rcu_tasks_trace_empty_fn(void *unused)
1904 /* Wait for grace period to complete and provide ordering. */
1905 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1909 // Wait for any lingering IPI handlers to complete. Note that
1910 // if a CPU has gone offline or transitioned to userspace in the
1911 // meantime, all IPI handlers should have been drained beforehand.
1912 // Yes, this assumes that CPUs process IPIs in order. If that ever
1913 // changes, there will need to be a recheck and/or timed wait.
1914 for_each_online_cpu(cpu)
1915 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1916 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1918 smp_mb(); // Caller's code must be ordered after wakeup.
1919 // Pairs with pretty much every ordering primitive.
1922 /* Report any needed quiescent state for this exiting task. */
1923 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1925 union rcu_special trs = READ_ONCE(t->trc_reader_special);
1927 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1928 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1929 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1930 rcu_read_unlock_trace_special(t);
1932 WRITE_ONCE(t->trc_reader_nesting, 0);
1936 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1937 * @rhp: structure to be used for queueing the RCU updates.
1938 * @func: actual callback function to be invoked after the grace period
1940 * The callback function will be invoked some time after a trace rcu-tasks
1941 * grace period elapses, in other words after all currently executing
1942 * trace rcu-tasks read-side critical sections have completed. These
1943 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1944 * and rcu_read_unlock_trace().
1946 * See the description of call_rcu() for more detailed information on
1947 * memory ordering guarantees.
1949 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1951 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1953 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1956 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1958 * Control will return to the caller some time after a trace rcu-tasks
1959 * grace period has elapsed, in other words after all currently executing
1960 * trace rcu-tasks read-side critical sections have elapsed. These read-side
1961 * critical sections are delimited by calls to rcu_read_lock_trace()
1962 * and rcu_read_unlock_trace().
1964 * This is a very specialized primitive, intended only for a few uses in
1965 * tracing and other situations requiring manipulation of function preambles
1966 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1967 * (yet) intended for heavy use from multiple CPUs.
1969 * See the description of synchronize_rcu() for more detailed information
1970 * on memory ordering guarantees.
1972 void synchronize_rcu_tasks_trace(void)
1974 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1975 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1977 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1980 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1982 * Although the current implementation is guaranteed to wait, it is not
1983 * obligated to, for example, if there are no pending callbacks.
1985 void rcu_barrier_tasks_trace(void)
1987 rcu_barrier_tasks_generic(&rcu_tasks_trace);
1989 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1991 int rcu_tasks_trace_lazy_ms = -1;
1992 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
1994 static int __init rcu_spawn_tasks_trace_kthread(void)
1996 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1997 rcu_tasks_trace.gp_sleep = HZ / 10;
1998 rcu_tasks_trace.init_fract = HZ / 10;
2000 rcu_tasks_trace.gp_sleep = HZ / 200;
2001 if (rcu_tasks_trace.gp_sleep <= 0)
2002 rcu_tasks_trace.gp_sleep = 1;
2003 rcu_tasks_trace.init_fract = HZ / 200;
2004 if (rcu_tasks_trace.init_fract <= 0)
2005 rcu_tasks_trace.init_fract = 1;
2007 if (rcu_tasks_trace_lazy_ms >= 0)
2008 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
2009 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
2010 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
2011 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
2012 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
2013 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
2017 #if !defined(CONFIG_TINY_RCU)
2018 void show_rcu_tasks_trace_gp_kthread(void)
2022 snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
2023 data_race(n_trc_holdouts),
2024 data_race(n_heavy_reader_ofl_updates),
2025 data_race(n_heavy_reader_updates),
2026 data_race(n_heavy_reader_attempts));
2027 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
2029 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
2030 #endif // !defined(CONFIG_TINY_RCU)
2032 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
2034 return rcu_tasks_trace.kthread_ptr;
2036 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
2038 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq)
2041 *gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq);
2043 EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data);
2045 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
2046 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2047 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2049 #ifndef CONFIG_TINY_RCU
2050 void show_rcu_tasks_gp_kthreads(void)
2052 show_rcu_tasks_classic_gp_kthread();
2053 show_rcu_tasks_rude_gp_kthread();
2054 show_rcu_tasks_trace_gp_kthread();
2056 #endif /* #ifndef CONFIG_TINY_RCU */
2058 #ifdef CONFIG_PROVE_RCU
2059 struct rcu_tasks_test_desc {
2063 unsigned long runstart;
2066 static struct rcu_tasks_test_desc tests[] = {
2068 .name = "call_rcu_tasks()",
2069 /* If not defined, the test is skipped. */
2070 .notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2073 .name = "call_rcu_tasks_rude()",
2074 /* If not defined, the test is skipped. */
2075 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
2078 .name = "call_rcu_tasks_trace()",
2079 /* If not defined, the test is skipped. */
2080 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2084 static void test_rcu_tasks_callback(struct rcu_head *rhp)
2086 struct rcu_tasks_test_desc *rttd =
2087 container_of(rhp, struct rcu_tasks_test_desc, rh);
2089 pr_info("Callback from %s invoked.\n", rttd->name);
2091 rttd->notrun = false;
2094 static void rcu_tasks_initiate_self_tests(void)
2096 #ifdef CONFIG_TASKS_RCU
2097 pr_info("Running RCU Tasks wait API self tests\n");
2098 tests[0].runstart = jiffies;
2099 synchronize_rcu_tasks();
2100 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2103 #ifdef CONFIG_TASKS_RUDE_RCU
2104 pr_info("Running RCU Tasks Rude wait API self tests\n");
2105 tests[1].runstart = jiffies;
2106 synchronize_rcu_tasks_rude();
2107 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
2110 #ifdef CONFIG_TASKS_TRACE_RCU
2111 pr_info("Running RCU Tasks Trace wait API self tests\n");
2112 tests[2].runstart = jiffies;
2113 synchronize_rcu_tasks_trace();
2114 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
2119 * Return: 0 - test passed
2120 * 1 - test failed, but have not timed out yet
2121 * -1 - test failed and timed out
2123 static int rcu_tasks_verify_self_tests(void)
2127 unsigned long bst = rcu_task_stall_timeout;
2129 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2130 bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2131 for (i = 0; i < ARRAY_SIZE(tests); i++) {
2132 while (tests[i].notrun) { // still hanging.
2133 if (time_after(jiffies, tests[i].runstart + bst)) {
2134 pr_err("%s has failed boot-time tests.\n", tests[i].name);
2148 * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2149 * test passes or has timed out.
2151 static struct delayed_work rcu_tasks_verify_work;
2152 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2154 int ret = rcu_tasks_verify_self_tests();
2159 /* Test fails but not timed out yet, reschedule another check */
2160 schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2163 static int rcu_tasks_verify_schedule_work(void)
2165 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2166 rcu_tasks_verify_work_fn(NULL);
2169 late_initcall(rcu_tasks_verify_schedule_work);
2170 #else /* #ifdef CONFIG_PROVE_RCU */
2171 static void rcu_tasks_initiate_self_tests(void) { }
2172 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2174 void __init tasks_cblist_init_generic(void)
2176 lockdep_assert_irqs_disabled();
2177 WARN_ON(num_online_cpus() > 1);
2179 #ifdef CONFIG_TASKS_RCU
2180 cblist_init_generic(&rcu_tasks);
2183 #ifdef CONFIG_TASKS_RUDE_RCU
2184 cblist_init_generic(&rcu_tasks_rude);
2187 #ifdef CONFIG_TASKS_TRACE_RCU
2188 cblist_init_generic(&rcu_tasks_trace);
2192 void __init rcu_init_tasks_generic(void)
2194 #ifdef CONFIG_TASKS_RCU
2195 rcu_spawn_tasks_kthread();
2198 #ifdef CONFIG_TASKS_RUDE_RCU
2199 rcu_spawn_tasks_rude_kthread();
2202 #ifdef CONFIG_TASKS_TRACE_RCU
2203 rcu_spawn_tasks_trace_kthread();
2206 // Run the self-tests.
2207 rcu_tasks_initiate_self_tests();
2210 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
2211 static inline void rcu_tasks_bootup_oddness(void) {}
2212 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */