1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2020 ARM Ltd.
6 #include <linux/bitops.h>
8 #include <linux/kernel.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
29 #ifdef CONFIG_KASAN_HW_TAGS
31 * The asynchronous and asymmetric MTE modes have the same behavior for
32 * store operations. This flag is set when either of these modes is enabled.
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
38 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
39 bool check_swap, bool pte_is_tagged)
41 if (check_swap && is_swap_pte(old_pte)) {
42 swp_entry_t entry = pte_to_swp_entry(old_pte);
44 if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
51 page_kasan_tag_reset(page);
53 * We need smp_wmb() in between setting the flags and clearing the
54 * tags because if another thread reads page->flags and builds a
55 * tagged address out of it, there is an actual dependency to the
56 * memory access, but on the current thread we do not guarantee that
57 * the new page->flags are visible before the tags were updated.
60 mte_clear_page_tags(page_address(page));
63 void mte_sync_tags(pte_t old_pte, pte_t pte)
65 struct page *page = pte_page(pte);
66 long i, nr_pages = compound_nr(page);
67 bool check_swap = nr_pages == 1;
68 bool pte_is_tagged = pte_tagged(pte);
70 /* Early out if there's nothing to do */
71 if (!check_swap && !pte_is_tagged)
74 /* if PG_mte_tagged is set, tags have already been initialised */
75 for (i = 0; i < nr_pages; i++, page++) {
76 if (!test_and_set_bit(PG_mte_tagged, &page->flags))
77 mte_sync_page_tags(page, old_pte, check_swap,
81 /* ensure the tags are visible before the PTE is set */
85 int memcmp_pages(struct page *page1, struct page *page2)
90 addr1 = page_address(page1);
91 addr2 = page_address(page2);
92 ret = memcmp(addr1, addr2, PAGE_SIZE);
94 if (!system_supports_mte() || ret)
98 * If the page content is identical but at least one of the pages is
99 * tagged, return non-zero to avoid KSM merging. If only one of the
100 * pages is tagged, set_pte_at() may zero or change the tags of the
101 * other page via mte_sync_tags().
103 if (test_bit(PG_mte_tagged, &page1->flags) ||
104 test_bit(PG_mte_tagged, &page2->flags))
105 return addr1 != addr2;
110 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
112 /* Enable MTE Sync Mode for EL1. */
113 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
114 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
117 pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
120 #ifdef CONFIG_KASAN_HW_TAGS
121 void mte_enable_kernel_sync(void)
124 * Make sure we enter this function when no PE has set
125 * async mode previously.
127 WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
128 "MTE async mode enabled system wide!");
130 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
133 void mte_enable_kernel_async(void)
135 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
138 * MTE async mode is set system wide by the first PE that
139 * executes this function.
141 * Note: If in future KASAN acquires a runtime switching
142 * mode in between sync and async, this strategy needs
145 if (!system_uses_mte_async_or_asymm_mode())
146 static_branch_enable(&mte_async_or_asymm_mode);
149 void mte_enable_kernel_asymm(void)
151 if (cpus_have_cap(ARM64_MTE_ASYMM)) {
152 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
155 * MTE asymm mode behaves as async mode for store
156 * operations. The mode is set system wide by the
157 * first PE that executes this function.
159 * Note: If in future KASAN acquires a runtime switching
160 * mode in between sync and async, this strategy needs
163 if (!system_uses_mte_async_or_asymm_mode())
164 static_branch_enable(&mte_async_or_asymm_mode);
167 * If the CPU does not support MTE asymmetric mode the
168 * kernel falls back on synchronous mode which is the
169 * default for kasan=on.
171 mte_enable_kernel_sync();
176 #ifdef CONFIG_KASAN_HW_TAGS
177 void mte_check_tfsr_el1(void)
179 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
181 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
183 * Note: isb() is not required after this direct write
184 * because there is no indirect read subsequent to it
185 * (per ARM DDI 0487F.c table D13-1).
187 write_sysreg_s(0, SYS_TFSR_EL1);
189 kasan_report_async();
195 * This is where we actually resolve the system and process MTE mode
196 * configuration into an actual value in SCTLR_EL1 that affects
199 static void mte_update_sctlr_user(struct task_struct *task)
202 * This must be called with preemption disabled and can only be called
203 * on the current or next task since the CPU must match where the thread
204 * is going to run. The caller is responsible for calling
205 * update_sctlr_el1() later in the same preemption disabled block.
207 unsigned long sctlr = task->thread.sctlr_user;
208 unsigned long mte_ctrl = task->thread.mte_ctrl;
209 unsigned long pref, resolved_mte_tcf;
211 pref = __this_cpu_read(mte_tcf_preferred);
213 * If there is no overlap between the system preferred and
214 * program requested values go with what was requested.
216 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
217 sctlr &= ~SCTLR_EL1_TCF0_MASK;
219 * Pick an actual setting. The order in which we check for
220 * set bits and map into register values determines our
223 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
224 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
225 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
226 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
227 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
228 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
229 task->thread.sctlr_user = sctlr;
232 static void mte_update_gcr_excl(struct task_struct *task)
235 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
236 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
238 if (kasan_hw_tags_enabled())
242 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
243 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
247 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
248 __le32 *updptr, int nr_inst)
250 BUG_ON(nr_inst != 1); /* Branch -> NOP */
252 if (kasan_hw_tags_enabled())
253 *updptr = cpu_to_le32(aarch64_insn_gen_nop());
256 void mte_thread_init_user(void)
258 if (!system_supports_mte())
261 /* clear any pending asynchronous tag fault */
263 write_sysreg_s(0, SYS_TFSRE0_EL1);
264 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
265 /* disable tag checking and reset tag generation mask */
266 set_mte_ctrl(current, 0);
269 void mte_thread_switch(struct task_struct *next)
271 if (!system_supports_mte())
274 mte_update_sctlr_user(next);
275 mte_update_gcr_excl(next);
277 /* TCO may not have been disabled on exception entry for the current task. */
278 mte_disable_tco_entry(next);
281 * Check if an async tag exception occurred at EL1.
283 * Note: On the context switch path we rely on the dsb() present
284 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
285 * are synchronized before this point.
288 mte_check_tfsr_el1();
291 void mte_suspend_enter(void)
293 if (!system_supports_mte())
297 * The barriers are required to guarantee that the indirect writes
298 * to TFSR_EL1 are synchronized before we report the state.
303 /* Report SYS_TFSR_EL1 before suspend entry */
304 mte_check_tfsr_el1();
307 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
309 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
310 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
312 if (!system_supports_mte())
315 if (arg & PR_MTE_TCF_ASYNC)
316 mte_ctrl |= MTE_CTRL_TCF_ASYNC;
317 if (arg & PR_MTE_TCF_SYNC)
318 mte_ctrl |= MTE_CTRL_TCF_SYNC;
321 * If the system supports it and both sync and async modes are
322 * specified then implicitly enable asymmetric mode.
323 * Userspace could see a mix of both sync and async anyway due
324 * to differing or changing defaults on CPUs.
326 if (cpus_have_cap(ARM64_MTE_ASYMM) &&
327 (arg & PR_MTE_TCF_ASYNC) &&
328 (arg & PR_MTE_TCF_SYNC))
329 mte_ctrl |= MTE_CTRL_TCF_ASYMM;
331 task->thread.mte_ctrl = mte_ctrl;
332 if (task == current) {
334 mte_update_sctlr_user(task);
335 mte_update_gcr_excl(task);
336 update_sctlr_el1(task->thread.sctlr_user);
343 long get_mte_ctrl(struct task_struct *task)
346 u64 mte_ctrl = task->thread.mte_ctrl;
347 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
348 SYS_GCR_EL1_EXCL_MASK;
350 if (!system_supports_mte())
353 ret = incl << PR_MTE_TAG_SHIFT;
354 if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
355 ret |= PR_MTE_TCF_ASYNC;
356 if (mte_ctrl & MTE_CTRL_TCF_SYNC)
357 ret |= PR_MTE_TCF_SYNC;
363 * Access MTE tags in another process' address space as given in mm. Update
364 * the number of tags copied. Return 0 if any tags copied, error otherwise.
365 * Inspired by __access_remote_vm().
367 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
368 struct iovec *kiov, unsigned int gup_flags)
370 struct vm_area_struct *vma;
371 void __user *buf = kiov->iov_base;
372 size_t len = kiov->iov_len;
374 int write = gup_flags & FOLL_WRITE;
376 if (!access_ok(buf, len))
379 if (mmap_read_lock_killable(mm))
383 unsigned long tags, offset;
385 struct page *page = NULL;
387 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
393 * Only copy tags if the page has been mapped as PROT_MTE
394 * (PG_mte_tagged set). Otherwise the tags are not valid and
395 * not accessible to user. Moreover, an mprotect(PROT_MTE)
396 * would cause the existing tags to be cleared if the page
397 * was never mapped with PROT_MTE.
399 if (!(vma->vm_flags & VM_MTE)) {
404 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
406 /* limit access to the end of the page */
407 offset = offset_in_page(addr);
408 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
410 maddr = page_address(page);
412 tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
413 set_page_dirty_lock(page);
415 tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
419 /* error accessing the tracer's buffer */
425 addr += tags * MTE_GRANULE_SIZE;
427 mmap_read_unlock(mm);
429 /* return an error if no tags copied */
430 kiov->iov_len = buf - kiov->iov_base;
431 if (!kiov->iov_len) {
432 /* check for error accessing the tracee's address space */
443 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
444 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
446 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
447 struct iovec *kiov, unsigned int gup_flags)
449 struct mm_struct *mm;
452 mm = get_task_mm(tsk);
456 if (!tsk->ptrace || (current != tsk->parent) ||
457 ((get_dumpable(mm) != SUID_DUMP_USER) &&
458 !ptracer_capable(tsk, mm->user_ns))) {
463 ret = __access_remote_tags(mm, addr, kiov, gup_flags);
469 int mte_ptrace_copy_tags(struct task_struct *child, long request,
470 unsigned long addr, unsigned long data)
474 struct iovec __user *uiov = (void __user *)data;
475 unsigned int gup_flags = FOLL_FORCE;
477 if (!system_supports_mte())
480 if (get_user(kiov.iov_base, &uiov->iov_base) ||
481 get_user(kiov.iov_len, &uiov->iov_len))
484 if (request == PTRACE_POKEMTETAGS)
485 gup_flags |= FOLL_WRITE;
487 /* align addr to the MTE tag granule */
488 addr &= MTE_GRANULE_MASK;
490 ret = access_remote_tags(child, addr, &kiov, gup_flags);
492 ret = put_user(kiov.iov_len, &uiov->iov_len);
497 static ssize_t mte_tcf_preferred_show(struct device *dev,
498 struct device_attribute *attr, char *buf)
500 switch (per_cpu(mte_tcf_preferred, dev->id)) {
501 case MTE_CTRL_TCF_ASYNC:
502 return sysfs_emit(buf, "async\n");
503 case MTE_CTRL_TCF_SYNC:
504 return sysfs_emit(buf, "sync\n");
505 case MTE_CTRL_TCF_ASYMM:
506 return sysfs_emit(buf, "asymm\n");
508 return sysfs_emit(buf, "???\n");
512 static ssize_t mte_tcf_preferred_store(struct device *dev,
513 struct device_attribute *attr,
514 const char *buf, size_t count)
518 if (sysfs_streq(buf, "async"))
519 tcf = MTE_CTRL_TCF_ASYNC;
520 else if (sysfs_streq(buf, "sync"))
521 tcf = MTE_CTRL_TCF_SYNC;
522 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
523 tcf = MTE_CTRL_TCF_ASYMM;
528 per_cpu(mte_tcf_preferred, dev->id) = tcf;
533 static DEVICE_ATTR_RW(mte_tcf_preferred);
535 static int register_mte_tcf_preferred_sysctl(void)
539 if (!system_supports_mte())
542 for_each_possible_cpu(cpu) {
543 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
544 device_create_file(get_cpu_device(cpu),
545 &dev_attr_mte_tcf_preferred);
550 subsys_initcall(register_mte_tcf_preferred_sysctl);
553 * Return 0 on success, the number of bytes not probed otherwise.
555 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
557 const char __user *end = uaddr + size;
561 __raw_get_user(val, uaddr, err);
565 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
566 while (uaddr < end) {
568 * A read is sufficient for mte, the caller should have probed
569 * for the pte write permission if required.
571 __raw_get_user(val, uaddr, err);
574 uaddr += MTE_GRANULE_SIZE;