1 // SPDX-License-Identifier: GPL-2.0-only
3 * FP/SIMD context switching and fault handling
5 * Copyright (C) 2012 ARM Ltd.
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
41 #include <asm/processor.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94 * run but prevent them to use FPSIMD.
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
121 struct fpsimd_last_state_struct {
122 struct user_fpsimd_state *st;
130 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
132 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
133 #ifdef CONFIG_ARM64_SVE
135 .type = ARM64_VEC_SVE,
137 .min_vl = SVE_VL_MIN,
138 .max_vl = SVE_VL_MIN,
139 .max_virtualisable_vl = SVE_VL_MIN,
142 #ifdef CONFIG_ARM64_SME
144 .type = ARM64_VEC_SME,
150 static unsigned int vec_vl_inherit_flag(enum vec_type type)
154 return TIF_SVE_VL_INHERIT;
156 return TIF_SME_VL_INHERIT;
164 int __default_vl; /* Default VL for tasks */
167 static struct vl_config vl_config[ARM64_VEC_MAX];
169 static inline int get_default_vl(enum vec_type type)
171 return READ_ONCE(vl_config[type].__default_vl);
174 #ifdef CONFIG_ARM64_SVE
176 static inline int get_sve_default_vl(void)
178 return get_default_vl(ARM64_VEC_SVE);
181 static inline void set_default_vl(enum vec_type type, int val)
183 WRITE_ONCE(vl_config[type].__default_vl, val);
186 static inline void set_sve_default_vl(int val)
188 set_default_vl(ARM64_VEC_SVE, val);
191 static void __percpu *efi_sve_state;
193 #else /* ! CONFIG_ARM64_SVE */
195 /* Dummy declaration for code that will be optimised out: */
196 extern void __percpu *efi_sve_state;
198 #endif /* ! CONFIG_ARM64_SVE */
200 #ifdef CONFIG_ARM64_SME
202 static int get_sme_default_vl(void)
204 return get_default_vl(ARM64_VEC_SME);
207 static void set_sme_default_vl(int val)
209 set_default_vl(ARM64_VEC_SME, val);
212 static void sme_free(struct task_struct *);
216 static inline void sme_free(struct task_struct *t) { }
220 DEFINE_PER_CPU(bool, fpsimd_context_busy);
221 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
223 static void fpsimd_bind_task_to_cpu(void);
225 static void __get_cpu_fpsimd_context(void)
227 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
233 * Claim ownership of the CPU FPSIMD context for use by the calling context.
235 * The caller may freely manipulate the FPSIMD context metadata until
236 * put_cpu_fpsimd_context() is called.
238 * The double-underscore version must only be called if you know the task
239 * can't be preempted.
241 * On RT kernels local_bh_disable() is not sufficient because it only
242 * serializes soft interrupt related sections via a local lock, but stays
243 * preemptible. Disabling preemption is the right choice here as bottom
244 * half processing is always in thread context on RT kernels so it
245 * implicitly prevents bottom half processing as well.
247 static void get_cpu_fpsimd_context(void)
249 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
253 __get_cpu_fpsimd_context();
256 static void __put_cpu_fpsimd_context(void)
258 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
260 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
264 * Release the CPU FPSIMD context.
266 * Must be called from a context in which get_cpu_fpsimd_context() was
267 * previously called, with no call to put_cpu_fpsimd_context() in the
270 static void put_cpu_fpsimd_context(void)
272 __put_cpu_fpsimd_context();
273 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
279 static bool have_cpu_fpsimd_context(void)
281 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
284 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
286 return task->thread.vl[type];
289 void task_set_vl(struct task_struct *task, enum vec_type type,
292 task->thread.vl[type] = vl;
295 unsigned int task_get_vl_onexec(const struct task_struct *task,
298 return task->thread.vl_onexec[type];
301 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
304 task->thread.vl_onexec[type] = vl;
308 * TIF_SME controls whether a task can use SME without trapping while
309 * in userspace, when TIF_SME is set then we must have storage
310 * alocated in sve_state and za_state to store the contents of both ZA
311 * and the SVE registers for both streaming and non-streaming modes.
313 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
314 * may disable TIF_SME and reenable traps.
319 * TIF_SVE controls whether a task can use SVE without trapping while
320 * in userspace, and also (together with TIF_SME) the way a task's
321 * FPSIMD/SVE state is stored in thread_struct.
323 * The kernel uses this flag to track whether a user task is actively
324 * using SVE, and therefore whether full SVE register state needs to
325 * be tracked. If not, the cheaper FPSIMD context handling code can
326 * be used instead of the more costly SVE equivalents.
328 * * TIF_SVE or SVCR.SM set:
330 * The task can execute SVE instructions while in userspace without
331 * trapping to the kernel.
333 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
334 * corresponding Zn), P0-P15 and FFR are encoded in in
335 * task->thread.sve_state, formatted appropriately for vector
336 * length task->thread.sve_vl or, if SVCR.SM is set,
337 * task->thread.sme_vl.
339 * task->thread.sve_state must point to a valid buffer at least
340 * sve_state_size(task) bytes in size.
342 * During any syscall, the kernel may optionally clear TIF_SVE and
343 * discard the vector state except for the FPSIMD subset.
347 * An attempt by the user task to execute an SVE instruction causes
348 * do_sve_acc() to be called, which does some preparation and then
351 * When stored, FPSIMD registers V0-V31 are encoded in
352 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
353 * logically zero but not stored anywhere; P0-P15 and FFR are not
354 * stored and have unspecified values from userspace's point of
355 * view. For hygiene purposes, the kernel zeroes them on next use,
356 * but userspace is discouraged from relying on this.
358 * task->thread.sve_state does not need to be non-NULL, valid or any
359 * particular size: it must not be dereferenced.
361 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
362 * irrespective of whether TIF_SVE is clear or set, since these are
363 * not vector length dependent.
367 * Update current's FPSIMD/SVE registers from thread_struct.
369 * This function should be called only when the FPSIMD/SVE state in
370 * thread_struct is known to be up to date, when preparing to enter
373 static void task_fpsimd_load(void)
375 bool restore_sve_regs = false;
378 WARN_ON(!system_supports_fpsimd());
379 WARN_ON(!have_cpu_fpsimd_context());
381 /* Check if we should restore SVE first */
382 if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
383 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
384 restore_sve_regs = true;
388 /* Restore SME, override SVE register configuration if needed */
389 if (system_supports_sme()) {
390 unsigned long sme_vl = task_get_sme_vl(current);
392 /* Ensure VL is set up for restoring data */
393 if (test_thread_flag(TIF_SME))
394 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
396 write_sysreg_s(current->thread.svcr, SYS_SVCR);
398 if (thread_za_enabled(¤t->thread))
399 za_load_state(current->thread.za_state);
401 if (thread_sm_enabled(¤t->thread)) {
402 restore_sve_regs = true;
403 restore_ffr = system_supports_fa64();
407 if (restore_sve_regs)
408 sve_load_state(sve_pffr(¤t->thread),
409 ¤t->thread.uw.fpsimd_state.fpsr,
412 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
416 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
417 * date with respect to the CPU registers. Note carefully that the
418 * current context is the context last bound to the CPU stored in
419 * last, if KVM is involved this may be the guest VM context rather
420 * than the host thread for the VM pointed to by current. This means
421 * that we must always reference the state storage via last rather
422 * than via current, other than the TIF_ flags which KVM will
423 * carefully maintain for us.
425 static void fpsimd_save(void)
427 struct fpsimd_last_state_struct const *last =
428 this_cpu_ptr(&fpsimd_last_state);
429 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
430 bool save_sve_regs = false;
434 WARN_ON(!system_supports_fpsimd());
435 WARN_ON(!have_cpu_fpsimd_context());
437 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
440 if (test_thread_flag(TIF_SVE)) {
441 save_sve_regs = true;
446 if (system_supports_sme()) {
447 u64 *svcr = last->svcr;
448 *svcr = read_sysreg_s(SYS_SVCR);
450 *svcr = read_sysreg_s(SYS_SVCR);
452 if (*svcr & SVCR_ZA_MASK)
453 za_save_state(last->za_state);
455 /* If we are in streaming mode override regular SVE. */
456 if (*svcr & SVCR_SM_MASK) {
457 save_sve_regs = true;
458 save_ffr = system_supports_fa64();
463 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
464 /* Get the configured VL from RDVL, will account for SM */
465 if (WARN_ON(sve_get_vl() != vl)) {
467 * Can't save the user regs, so current would
468 * re-enter user with corrupt state.
469 * There's no way to recover, so kill it:
471 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
475 sve_save_state((char *)last->sve_state +
477 &last->st->fpsr, save_ffr);
479 fpsimd_save_state(last->st);
484 * All vector length selection from userspace comes through here.
485 * We're on a slow path, so some sanity-checks are included.
486 * If things go wrong there's a bug somewhere, but try to fall back to a
489 static unsigned int find_supported_vector_length(enum vec_type type,
492 struct vl_info *info = &vl_info[type];
494 int max_vl = info->max_vl;
496 if (WARN_ON(!sve_vl_valid(vl)))
499 if (WARN_ON(!sve_vl_valid(max_vl)))
500 max_vl = info->min_vl;
504 if (vl < info->min_vl)
507 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
508 __vq_to_bit(sve_vq_from_vl(vl)));
509 return sve_vl_from_vq(__bit_to_vq(bit));
512 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
514 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
515 void *buffer, size_t *lenp, loff_t *ppos)
517 struct vl_info *info = table->extra1;
518 enum vec_type type = info->type;
520 int vl = get_default_vl(type);
521 struct ctl_table tmp_table = {
523 .maxlen = sizeof(vl),
526 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
530 /* Writing -1 has the special meaning "set to max": */
534 if (!sve_vl_valid(vl))
537 set_default_vl(type, find_supported_vector_length(type, vl));
541 static struct ctl_table sve_default_vl_table[] = {
543 .procname = "sve_default_vector_length",
545 .proc_handler = vec_proc_do_default_vl,
546 .extra1 = &vl_info[ARM64_VEC_SVE],
551 static int __init sve_sysctl_init(void)
553 if (system_supports_sve())
554 if (!register_sysctl("abi", sve_default_vl_table))
560 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
561 static int __init sve_sysctl_init(void) { return 0; }
562 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
564 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
565 static struct ctl_table sme_default_vl_table[] = {
567 .procname = "sme_default_vector_length",
569 .proc_handler = vec_proc_do_default_vl,
570 .extra1 = &vl_info[ARM64_VEC_SME],
575 static int __init sme_sysctl_init(void)
577 if (system_supports_sme())
578 if (!register_sysctl("abi", sme_default_vl_table))
584 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
585 static int __init sme_sysctl_init(void) { return 0; }
586 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
588 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
589 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
591 #ifdef CONFIG_CPU_BIG_ENDIAN
592 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
595 u64 b = swab64(x >> 64);
597 return ((__uint128_t)a << 64) | b;
600 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
606 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
608 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
614 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
615 p = (__uint128_t *)ZREG(sst, vq, i);
616 *p = arm64_cpu_to_le128(fst->vregs[i]);
621 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
622 * task->thread.sve_state.
624 * Task can be a non-runnable task, or current. In the latter case,
625 * the caller must have ownership of the cpu FPSIMD context before calling
627 * task->thread.sve_state must point to at least sve_state_size(task)
628 * bytes of allocated kernel memory.
629 * task->thread.uw.fpsimd_state must be up to date before calling this
632 static void fpsimd_to_sve(struct task_struct *task)
635 void *sst = task->thread.sve_state;
636 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
638 if (!system_supports_sve())
641 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
642 __fpsimd_to_sve(sst, fst, vq);
646 * Transfer the SVE state in task->thread.sve_state to
647 * task->thread.uw.fpsimd_state.
649 * Task can be a non-runnable task, or current. In the latter case,
650 * the caller must have ownership of the cpu FPSIMD context before calling
652 * task->thread.sve_state must point to at least sve_state_size(task)
653 * bytes of allocated kernel memory.
654 * task->thread.sve_state must be up to date before calling this function.
656 static void sve_to_fpsimd(struct task_struct *task)
659 void const *sst = task->thread.sve_state;
660 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
662 __uint128_t const *p;
664 if (!system_supports_sve())
667 vl = thread_get_cur_vl(&task->thread);
668 vq = sve_vq_from_vl(vl);
669 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
670 p = (__uint128_t const *)ZREG(sst, vq, i);
671 fst->vregs[i] = arm64_le128_to_cpu(*p);
675 #ifdef CONFIG_ARM64_SVE
677 * Call __sve_free() directly only if you know task can't be scheduled
680 static void __sve_free(struct task_struct *task)
682 kfree(task->thread.sve_state);
683 task->thread.sve_state = NULL;
686 static void sve_free(struct task_struct *task)
688 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
694 * Return how many bytes of memory are required to store the full SVE
695 * state for task, given task's currently configured vector length.
697 size_t sve_state_size(struct task_struct const *task)
701 if (system_supports_sve())
702 vl = task_get_sve_vl(task);
703 if (system_supports_sme())
704 vl = max(vl, task_get_sme_vl(task));
706 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
710 * Ensure that task->thread.sve_state is allocated and sufficiently large.
712 * This function should be used only in preparation for replacing
713 * task->thread.sve_state with new data. The memory is always zeroed
714 * here to prevent stale data from showing through: this is done in
715 * the interest of testability and predictability: except in the
716 * do_sve_acc() case, there is no ABI requirement to hide stale data
717 * written previously be task.
719 void sve_alloc(struct task_struct *task)
721 if (task->thread.sve_state) {
722 memset(task->thread.sve_state, 0, sve_state_size(task));
726 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
727 task->thread.sve_state =
728 kzalloc(sve_state_size(task), GFP_KERNEL);
733 * Force the FPSIMD state shared with SVE to be updated in the SVE state
734 * even if the SVE state is the current active state.
736 * This should only be called by ptrace. task must be non-runnable.
737 * task->thread.sve_state must point to at least sve_state_size(task)
738 * bytes of allocated kernel memory.
740 void fpsimd_force_sync_to_sve(struct task_struct *task)
746 * Ensure that task->thread.sve_state is up to date with respect to
747 * the user task, irrespective of when SVE is in use or not.
749 * This should only be called by ptrace. task must be non-runnable.
750 * task->thread.sve_state must point to at least sve_state_size(task)
751 * bytes of allocated kernel memory.
753 void fpsimd_sync_to_sve(struct task_struct *task)
755 if (!test_tsk_thread_flag(task, TIF_SVE) &&
756 !thread_sm_enabled(&task->thread))
761 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
762 * the user task, irrespective of whether SVE is in use or not.
764 * This should only be called by ptrace. task must be non-runnable.
765 * task->thread.sve_state must point to at least sve_state_size(task)
766 * bytes of allocated kernel memory.
768 void sve_sync_to_fpsimd(struct task_struct *task)
770 if (test_tsk_thread_flag(task, TIF_SVE) ||
771 thread_sm_enabled(&task->thread))
776 * Ensure that task->thread.sve_state is up to date with respect to
777 * the task->thread.uw.fpsimd_state.
779 * This should only be called by ptrace to merge new FPSIMD register
780 * values into a task for which SVE is currently active.
781 * task must be non-runnable.
782 * task->thread.sve_state must point to at least sve_state_size(task)
783 * bytes of allocated kernel memory.
784 * task->thread.uw.fpsimd_state must already have been initialised with
785 * the new FPSIMD register values to be merged in.
787 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
790 void *sst = task->thread.sve_state;
791 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
793 if (!test_tsk_thread_flag(task, TIF_SVE))
796 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
798 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
799 __fpsimd_to_sve(sst, fst, vq);
802 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
803 unsigned long vl, unsigned long flags)
805 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
806 PR_SVE_SET_VL_ONEXEC))
809 if (!sve_vl_valid(vl))
813 * Clamp to the maximum vector length that VL-agnostic code
814 * can work with. A flag may be assigned in the future to
815 * allow setting of larger vector lengths without confusing
818 if (vl > VL_ARCH_MAX)
821 vl = find_supported_vector_length(type, vl);
823 if (flags & (PR_SVE_VL_INHERIT |
824 PR_SVE_SET_VL_ONEXEC))
825 task_set_vl_onexec(task, type, vl);
827 /* Reset VL to system default on next exec: */
828 task_set_vl_onexec(task, type, 0);
830 /* Only actually set the VL if not deferred: */
831 if (flags & PR_SVE_SET_VL_ONEXEC)
834 if (vl == task_get_vl(task, type))
838 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
839 * write any live register state back to task_struct, and convert to a
840 * regular FPSIMD thread.
842 if (task == current) {
843 get_cpu_fpsimd_context();
848 fpsimd_flush_task_state(task);
849 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
850 thread_sm_enabled(&task->thread))
853 if (system_supports_sme() && type == ARM64_VEC_SME) {
854 task->thread.svcr &= ~(SVCR_SM_MASK |
856 clear_thread_flag(TIF_SME);
860 put_cpu_fpsimd_context();
863 * Force reallocation of task SVE and SME state to the correct
867 if (system_supports_sme() && type == ARM64_VEC_SME)
870 task_set_vl(task, type, vl);
873 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
874 flags & PR_SVE_VL_INHERIT);
880 * Encode the current vector length and flags for return.
881 * This is only required for prctl(): ptrace has separate fields.
882 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
884 * flags are as for vec_set_vector_length().
886 static int vec_prctl_status(enum vec_type type, unsigned long flags)
890 if (flags & PR_SVE_SET_VL_ONEXEC)
891 ret = task_get_vl_onexec(current, type);
893 ret = task_get_vl(current, type);
895 if (test_thread_flag(vec_vl_inherit_flag(type)))
896 ret |= PR_SVE_VL_INHERIT;
902 int sve_set_current_vl(unsigned long arg)
904 unsigned long vl, flags;
907 vl = arg & PR_SVE_VL_LEN_MASK;
910 if (!system_supports_sve() || is_compat_task())
913 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
917 return vec_prctl_status(ARM64_VEC_SVE, flags);
921 int sve_get_current_vl(void)
923 if (!system_supports_sve() || is_compat_task())
926 return vec_prctl_status(ARM64_VEC_SVE, 0);
929 #ifdef CONFIG_ARM64_SME
931 int sme_set_current_vl(unsigned long arg)
933 unsigned long vl, flags;
936 vl = arg & PR_SME_VL_LEN_MASK;
939 if (!system_supports_sme() || is_compat_task())
942 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
946 return vec_prctl_status(ARM64_VEC_SME, flags);
950 int sme_get_current_vl(void)
952 if (!system_supports_sme() || is_compat_task())
955 return vec_prctl_status(ARM64_VEC_SME, 0);
957 #endif /* CONFIG_ARM64_SME */
959 static void vec_probe_vqs(struct vl_info *info,
960 DECLARE_BITMAP(map, SVE_VQ_MAX))
964 bitmap_zero(map, SVE_VQ_MAX);
966 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
967 write_vl(info->type, vq - 1); /* self-syncing */
969 switch (info->type) {
981 /* Minimum VL identified? */
982 if (sve_vq_from_vl(vl) > vq)
985 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
986 set_bit(__vq_to_bit(vq), map);
991 * Initialise the set of known supported VQs for the boot CPU.
992 * This is called during kernel boot, before secondary CPUs are brought up.
994 void __init vec_init_vq_map(enum vec_type type)
996 struct vl_info *info = &vl_info[type];
997 vec_probe_vqs(info, info->vq_map);
998 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1002 * If we haven't committed to the set of supported VQs yet, filter out
1003 * those not supported by the current CPU.
1004 * This function is called during the bring-up of early secondary CPUs only.
1006 void vec_update_vq_map(enum vec_type type)
1008 struct vl_info *info = &vl_info[type];
1009 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1011 vec_probe_vqs(info, tmp_map);
1012 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1013 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1018 * Check whether the current CPU supports all VQs in the committed set.
1019 * This function is called during the bring-up of late secondary CPUs only.
1021 int vec_verify_vq_map(enum vec_type type)
1023 struct vl_info *info = &vl_info[type];
1024 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1027 vec_probe_vqs(info, tmp_map);
1029 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1030 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1031 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1032 info->name, smp_processor_id());
1036 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1040 * For KVM, it is necessary to ensure that this CPU doesn't
1041 * support any vector length that guests may have probed as
1045 /* Recover the set of supported VQs: */
1046 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1047 /* Find VQs supported that are not globally supported: */
1048 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1050 /* Find the lowest such VQ, if any: */
1051 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1052 if (b >= SVE_VQ_MAX)
1053 return 0; /* no mismatches */
1056 * Mismatches above sve_max_virtualisable_vl are fine, since
1057 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1059 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1060 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1061 info->name, smp_processor_id());
1068 static void __init sve_efi_setup(void)
1073 if (!IS_ENABLED(CONFIG_EFI))
1076 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1077 max_vl = max(vl_info[i].max_vl, max_vl);
1080 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1081 * This is evidence of a crippled system and we are returning void,
1082 * so no attempt is made to handle this situation here.
1084 if (!sve_vl_valid(max_vl))
1087 efi_sve_state = __alloc_percpu(
1088 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1095 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1099 * Enable SVE for EL1.
1100 * Intended for use by the cpufeatures code during CPU boot.
1102 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1104 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1109 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1112 * Use only if SVE is present.
1113 * This function clobbers the SVE vector length.
1115 u64 read_zcr_features(void)
1118 unsigned int vq_max;
1121 * Set the maximum possible VL, and write zeroes to all other
1122 * bits to see if they stick.
1124 sve_kernel_enable(NULL);
1125 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1127 zcr = read_sysreg_s(SYS_ZCR_EL1);
1128 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1129 vq_max = sve_vq_from_vl(sve_get_vl());
1130 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1135 void __init sve_setup(void)
1137 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1139 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1142 if (!system_supports_sve())
1146 * The SVE architecture mandates support for 128-bit vectors,
1147 * so sve_vq_map must have at least SVE_VQ_MIN set.
1148 * If something went wrong, at least try to patch it up:
1150 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1151 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1153 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1154 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1157 * Sanity-check that the max VL we determined through CPU features
1158 * corresponds properly to sve_vq_map. If not, do our best:
1160 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1162 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1166 * For the default VL, pick the maximum supported value <= 64.
1167 * VL == 64 is guaranteed not to grow the signal frame.
1169 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1171 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1174 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1175 if (b >= SVE_VQ_MAX)
1176 /* No non-virtualisable VLs found */
1177 info->max_virtualisable_vl = SVE_VQ_MAX;
1178 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1179 /* No virtualisable VLs? This is architecturally forbidden. */
1180 info->max_virtualisable_vl = SVE_VQ_MIN;
1181 else /* b + 1 < SVE_VQ_MAX */
1182 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1184 if (info->max_virtualisable_vl > info->max_vl)
1185 info->max_virtualisable_vl = info->max_vl;
1187 pr_info("%s: maximum available vector length %u bytes per vector\n",
1188 info->name, info->max_vl);
1189 pr_info("%s: default vector length %u bytes per vector\n",
1190 info->name, get_sve_default_vl());
1192 /* KVM decides whether to support mismatched systems. Just warn here: */
1193 if (sve_max_virtualisable_vl() < sve_max_vl())
1194 pr_warn("%s: unvirtualisable vector lengths present\n",
1201 * Called from the put_task_struct() path, which cannot get here
1202 * unless dead_task is really dead and not schedulable.
1204 void fpsimd_release_task(struct task_struct *dead_task)
1206 __sve_free(dead_task);
1207 sme_free(dead_task);
1210 #endif /* CONFIG_ARM64_SVE */
1212 #ifdef CONFIG_ARM64_SME
1215 * Ensure that task->thread.za_state is allocated and sufficiently large.
1217 * This function should be used only in preparation for replacing
1218 * task->thread.za_state with new data. The memory is always zeroed
1219 * here to prevent stale data from showing through: this is done in
1220 * the interest of testability and predictability, the architecture
1221 * guarantees that when ZA is enabled it will be zeroed.
1223 void sme_alloc(struct task_struct *task)
1225 if (task->thread.za_state) {
1226 memset(task->thread.za_state, 0, za_state_size(task));
1230 /* This could potentially be up to 64K. */
1231 task->thread.za_state =
1232 kzalloc(za_state_size(task), GFP_KERNEL);
1235 static void sme_free(struct task_struct *task)
1237 kfree(task->thread.za_state);
1238 task->thread.za_state = NULL;
1241 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1243 /* Set priority for all PEs to architecturally defined minimum */
1244 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1247 /* Allow SME in kernel */
1248 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1251 /* Allow EL0 to access TPIDR2 */
1252 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1257 * This must be called after sme_kernel_enable(), we rely on the
1258 * feature table being sorted to ensure this.
1260 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1262 /* Allow use of FA64 */
1263 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1268 * Read the pseudo-SMCR used by cpufeatures to identify the supported
1271 * Use only if SME is present.
1272 * This function clobbers the SME vector length.
1274 u64 read_smcr_features(void)
1277 unsigned int vq_max;
1279 sme_kernel_enable(NULL);
1283 * Set the maximum possible VL.
1285 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1288 smcr = read_sysreg_s(SYS_SMCR_EL1);
1289 smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1290 vq_max = sve_vq_from_vl(sve_get_vl());
1291 smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1298 void __init sme_setup(void)
1300 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1304 if (!system_supports_sme())
1308 * SME doesn't require any particular vector length be
1309 * supported but it does require at least one. We should have
1310 * disabled the feature entirely while bringing up CPUs but
1311 * let's double check here.
1313 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1315 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1316 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1318 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1319 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1322 * Sanity-check that the max VL we determined through CPU features
1323 * corresponds properly to sme_vq_map. If not, do our best:
1325 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1327 info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1330 WARN_ON(info->min_vl > info->max_vl);
1333 * For the default VL, pick the maximum supported value <= 32
1334 * (256 bits) if there is one since this is guaranteed not to
1335 * grow the signal frame when in streaming mode, otherwise the
1336 * minimum available VL will be used.
1338 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1340 pr_info("SME: minimum available vector length %u bytes per vector\n",
1342 pr_info("SME: maximum available vector length %u bytes per vector\n",
1344 pr_info("SME: default vector length %u bytes per vector\n",
1345 get_sme_default_vl());
1348 #endif /* CONFIG_ARM64_SME */
1350 static void sve_init_regs(void)
1353 * Convert the FPSIMD state to SVE, zeroing all the state that
1354 * is not shared with FPSIMD. If (as is likely) the current
1355 * state is live in the registers then do this there and
1356 * update our metadata for the current task including
1357 * disabling the trap, otherwise update our in-memory copy.
1358 * We are guaranteed to not be in streaming mode, we can only
1359 * take a SVE trap when not in streaming mode and we can't be
1360 * in streaming mode when taking a SME trap.
1362 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1363 unsigned long vq_minus_one =
1364 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1365 sve_set_vq(vq_minus_one);
1366 sve_flush_live(true, vq_minus_one);
1367 fpsimd_bind_task_to_cpu();
1369 fpsimd_to_sve(current);
1374 * Trapped SVE access
1376 * Storage is allocated for the full SVE state, the current FPSIMD
1377 * register contents are migrated across, and the access trap is
1380 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1381 * would have disabled the SVE access trap for userspace during
1382 * ret_to_user, making an SVE access trap impossible in that case.
1384 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1386 /* Even if we chose not to use SVE, the hardware could still trap: */
1387 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1388 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1393 if (!current->thread.sve_state) {
1398 get_cpu_fpsimd_context();
1400 if (test_and_set_thread_flag(TIF_SVE))
1401 WARN_ON(1); /* SVE access shouldn't have trapped */
1404 * Even if the task can have used streaming mode we can only
1405 * generate SVE access traps in normal SVE mode and
1406 * transitioning out of streaming mode may discard any
1407 * streaming mode state. Always clear the high bits to avoid
1408 * any potential errors tracking what is properly initialised.
1412 put_cpu_fpsimd_context();
1416 * Trapped SME access
1418 * Storage is allocated for the full SVE and SME state, the current
1419 * FPSIMD register contents are migrated to SVE if SVE is not already
1420 * active, and the access trap is disabled.
1422 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1423 * would have disabled the SME access trap for userspace during
1424 * ret_to_user, making an SVE access trap impossible in that case.
1426 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1428 /* Even if we chose not to use SME, the hardware could still trap: */
1429 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1430 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1435 * If this not a trap due to SME being disabled then something
1436 * is being used in the wrong mode, report as SIGILL.
1438 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1439 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1445 if (!current->thread.sve_state || !current->thread.za_state) {
1450 get_cpu_fpsimd_context();
1452 /* With TIF_SME userspace shouldn't generate any traps */
1453 if (test_and_set_thread_flag(TIF_SME))
1456 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1457 unsigned long vq_minus_one =
1458 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1459 sme_set_vq(vq_minus_one);
1461 fpsimd_bind_task_to_cpu();
1465 * If SVE was not already active initialise the SVE registers,
1466 * any non-shared state between the streaming and regular SVE
1467 * registers is architecturally guaranteed to be zeroed when
1468 * we enter streaming mode. We do not need to initialize ZA
1469 * since ZA must be disabled at this point and enabling ZA is
1470 * architecturally defined to zero ZA.
1472 if (system_supports_sve() && !test_thread_flag(TIF_SVE))
1475 put_cpu_fpsimd_context();
1479 * Trapped FP/ASIMD access.
1481 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1483 /* TODO: implement lazy context saving/restoring */
1488 * Raise a SIGFPE for the current process.
1490 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1492 unsigned int si_code = FPE_FLTUNK;
1494 if (esr & ESR_ELx_FP_EXC_TFV) {
1495 if (esr & FPEXC_IOF)
1496 si_code = FPE_FLTINV;
1497 else if (esr & FPEXC_DZF)
1498 si_code = FPE_FLTDIV;
1499 else if (esr & FPEXC_OFF)
1500 si_code = FPE_FLTOVF;
1501 else if (esr & FPEXC_UFF)
1502 si_code = FPE_FLTUND;
1503 else if (esr & FPEXC_IXF)
1504 si_code = FPE_FLTRES;
1507 send_sig_fault(SIGFPE, si_code,
1508 (void __user *)instruction_pointer(regs),
1512 void fpsimd_thread_switch(struct task_struct *next)
1514 bool wrong_task, wrong_cpu;
1516 if (!system_supports_fpsimd())
1519 __get_cpu_fpsimd_context();
1521 /* Save unsaved fpsimd state, if any: */
1525 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1526 * state. For kernel threads, FPSIMD registers are never loaded
1527 * and wrong_task and wrong_cpu will always be true.
1529 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1530 &next->thread.uw.fpsimd_state;
1531 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1533 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1534 wrong_task || wrong_cpu);
1536 __put_cpu_fpsimd_context();
1539 static void fpsimd_flush_thread_vl(enum vec_type type)
1541 int vl, supported_vl;
1544 * Reset the task vector length as required. This is where we
1545 * ensure that all user tasks have a valid vector length
1546 * configured: no kernel task can become a user task without
1547 * an exec and hence a call to this function. By the time the
1548 * first call to this function is made, all early hardware
1549 * probing is complete, so __sve_default_vl should be valid.
1550 * If a bug causes this to go wrong, we make some noise and
1551 * try to fudge thread.sve_vl to a safe value here.
1553 vl = task_get_vl_onexec(current, type);
1555 vl = get_default_vl(type);
1557 if (WARN_ON(!sve_vl_valid(vl)))
1558 vl = vl_info[type].min_vl;
1560 supported_vl = find_supported_vector_length(type, vl);
1561 if (WARN_ON(supported_vl != vl))
1564 task_set_vl(current, type, vl);
1567 * If the task is not set to inherit, ensure that the vector
1568 * length will be reset by a subsequent exec:
1570 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1571 task_set_vl_onexec(current, type, 0);
1574 void fpsimd_flush_thread(void)
1576 void *sve_state = NULL;
1577 void *za_state = NULL;
1579 if (!system_supports_fpsimd())
1582 get_cpu_fpsimd_context();
1584 fpsimd_flush_task_state(current);
1585 memset(¤t->thread.uw.fpsimd_state, 0,
1586 sizeof(current->thread.uw.fpsimd_state));
1588 if (system_supports_sve()) {
1589 clear_thread_flag(TIF_SVE);
1591 /* Defer kfree() while in atomic context */
1592 sve_state = current->thread.sve_state;
1593 current->thread.sve_state = NULL;
1595 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1598 if (system_supports_sme()) {
1599 clear_thread_flag(TIF_SME);
1601 /* Defer kfree() while in atomic context */
1602 za_state = current->thread.za_state;
1603 current->thread.za_state = NULL;
1605 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1606 current->thread.svcr = 0;
1609 put_cpu_fpsimd_context();
1615 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1616 * currently held in the registers does in fact belong to 'current'
1618 void fpsimd_preserve_current_state(void)
1620 if (!system_supports_fpsimd())
1623 get_cpu_fpsimd_context();
1625 put_cpu_fpsimd_context();
1629 * Like fpsimd_preserve_current_state(), but ensure that
1630 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1633 void fpsimd_signal_preserve_current_state(void)
1635 fpsimd_preserve_current_state();
1636 if (test_thread_flag(TIF_SVE))
1637 sve_to_fpsimd(current);
1641 * Associate current's FPSIMD context with this cpu
1642 * The caller must have ownership of the cpu FPSIMD context before calling
1645 static void fpsimd_bind_task_to_cpu(void)
1647 struct fpsimd_last_state_struct *last =
1648 this_cpu_ptr(&fpsimd_last_state);
1650 WARN_ON(!system_supports_fpsimd());
1651 last->st = ¤t->thread.uw.fpsimd_state;
1652 last->sve_state = current->thread.sve_state;
1653 last->za_state = current->thread.za_state;
1654 last->sve_vl = task_get_sve_vl(current);
1655 last->sme_vl = task_get_sme_vl(current);
1656 last->svcr = ¤t->thread.svcr;
1657 current->thread.fpsimd_cpu = smp_processor_id();
1660 * Toggle SVE and SME trapping for userspace if needed, these
1661 * are serialsied by ret_to_user().
1663 if (system_supports_sme()) {
1664 if (test_thread_flag(TIF_SME))
1670 if (system_supports_sve()) {
1671 if (test_thread_flag(TIF_SVE))
1678 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1679 unsigned int sve_vl, void *za_state,
1680 unsigned int sme_vl, u64 *svcr)
1682 struct fpsimd_last_state_struct *last =
1683 this_cpu_ptr(&fpsimd_last_state);
1685 WARN_ON(!system_supports_fpsimd());
1686 WARN_ON(!in_softirq() && !irqs_disabled());
1690 last->sve_state = sve_state;
1691 last->za_state = za_state;
1692 last->sve_vl = sve_vl;
1693 last->sme_vl = sme_vl;
1697 * Load the userland FPSIMD state of 'current' from memory, but only if the
1698 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1699 * state of 'current'. This is called when we are preparing to return to
1700 * userspace to ensure that userspace sees a good register state.
1702 void fpsimd_restore_current_state(void)
1705 * For the tasks that were created before we detected the absence of
1706 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1707 * e.g, init. This could be then inherited by the children processes.
1708 * If we later detect that the system doesn't support FP/SIMD,
1709 * we must clear the flag for all the tasks to indicate that the
1710 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1711 * do_notify_resume().
1713 if (!system_supports_fpsimd()) {
1714 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1718 get_cpu_fpsimd_context();
1720 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1722 fpsimd_bind_task_to_cpu();
1725 put_cpu_fpsimd_context();
1729 * Load an updated userland FPSIMD state for 'current' from memory and set the
1730 * flag that indicates that the FPSIMD register contents are the most recent
1731 * FPSIMD state of 'current'. This is used by the signal code to restore the
1732 * register state when returning from a signal handler in FPSIMD only cases,
1733 * any SVE context will be discarded.
1735 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1737 if (WARN_ON(!system_supports_fpsimd()))
1740 get_cpu_fpsimd_context();
1742 current->thread.uw.fpsimd_state = *state;
1743 if (test_thread_flag(TIF_SVE))
1744 fpsimd_to_sve(current);
1747 fpsimd_bind_task_to_cpu();
1749 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1751 put_cpu_fpsimd_context();
1755 * Invalidate live CPU copies of task t's FPSIMD state
1757 * This function may be called with preemption enabled. The barrier()
1758 * ensures that the assignment to fpsimd_cpu is visible to any
1759 * preemption/softirq that could race with set_tsk_thread_flag(), so
1760 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1762 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1765 void fpsimd_flush_task_state(struct task_struct *t)
1767 t->thread.fpsimd_cpu = NR_CPUS;
1769 * If we don't support fpsimd, bail out after we have
1770 * reset the fpsimd_cpu for this task and clear the
1773 if (!system_supports_fpsimd())
1776 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1782 * Invalidate any task's FPSIMD state that is present on this cpu.
1783 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1784 * before calling this function.
1786 static void fpsimd_flush_cpu_state(void)
1788 WARN_ON(!system_supports_fpsimd());
1789 __this_cpu_write(fpsimd_last_state.st, NULL);
1792 * Leaving streaming mode enabled will cause issues for any kernel
1793 * NEON and leaving streaming mode or ZA enabled may increase power
1796 if (system_supports_sme())
1799 set_thread_flag(TIF_FOREIGN_FPSTATE);
1803 * Save the FPSIMD state to memory and invalidate cpu view.
1804 * This function must be called with preemption disabled.
1806 void fpsimd_save_and_flush_cpu_state(void)
1808 if (!system_supports_fpsimd())
1810 WARN_ON(preemptible());
1811 __get_cpu_fpsimd_context();
1813 fpsimd_flush_cpu_state();
1814 __put_cpu_fpsimd_context();
1817 #ifdef CONFIG_KERNEL_MODE_NEON
1820 * Kernel-side NEON support functions
1824 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1827 * Must not be called unless may_use_simd() returns true.
1828 * Task context in the FPSIMD registers is saved back to memory as necessary.
1830 * A matching call to kernel_neon_end() must be made before returning from the
1833 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1836 void kernel_neon_begin(void)
1838 if (WARN_ON(!system_supports_fpsimd()))
1841 BUG_ON(!may_use_simd());
1843 get_cpu_fpsimd_context();
1845 /* Save unsaved fpsimd state, if any: */
1848 /* Invalidate any task state remaining in the fpsimd regs: */
1849 fpsimd_flush_cpu_state();
1851 EXPORT_SYMBOL(kernel_neon_begin);
1854 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1856 * Must be called from a context in which kernel_neon_begin() was previously
1857 * called, with no call to kernel_neon_end() in the meantime.
1859 * The caller must not use the FPSIMD registers after this function is called,
1860 * unless kernel_neon_begin() is called again in the meantime.
1862 void kernel_neon_end(void)
1864 if (!system_supports_fpsimd())
1867 put_cpu_fpsimd_context();
1869 EXPORT_SYMBOL(kernel_neon_end);
1873 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1874 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1875 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1876 static DEFINE_PER_CPU(bool, efi_sm_state);
1879 * EFI runtime services support functions
1881 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1882 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1883 * is always used rather than being an optional accelerator.
1885 * These functions provide the necessary support for ensuring FPSIMD
1886 * save/restore in the contexts from which EFI is used.
1888 * Do not use them for any other purpose -- if tempted to do so, you are
1889 * either doing something wrong or you need to propose some refactoring.
1893 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1895 void __efi_fpsimd_begin(void)
1897 if (!system_supports_fpsimd())
1900 WARN_ON(preemptible());
1902 if (may_use_simd()) {
1903 kernel_neon_begin();
1906 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1909 if (system_supports_sve() && likely(efi_sve_state)) {
1910 char *sve_state = this_cpu_ptr(efi_sve_state);
1914 __this_cpu_write(efi_sve_state_used, true);
1916 if (system_supports_sme()) {
1917 svcr = read_sysreg_s(SYS_SVCR);
1919 if (!system_supports_fa64())
1920 ffr = svcr & SVCR_SM_MASK;
1922 __this_cpu_write(efi_sm_state, ffr);
1925 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1926 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1929 if (system_supports_sme())
1930 sysreg_clear_set_s(SYS_SVCR,
1934 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1937 __this_cpu_write(efi_fpsimd_state_used, true);
1942 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1944 void __efi_fpsimd_end(void)
1946 if (!system_supports_fpsimd())
1949 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1952 if (system_supports_sve() &&
1953 likely(__this_cpu_read(efi_sve_state_used))) {
1954 char const *sve_state = this_cpu_ptr(efi_sve_state);
1958 * Restore streaming mode; EFI calls are
1959 * normal function calls so should not return in
1962 if (system_supports_sme()) {
1963 if (__this_cpu_read(efi_sm_state)) {
1964 sysreg_clear_set_s(SYS_SVCR,
1967 if (!system_supports_fa64())
1972 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
1973 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1976 __this_cpu_write(efi_sve_state_used, false);
1978 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1983 #endif /* CONFIG_EFI */
1985 #endif /* CONFIG_KERNEL_MODE_NEON */
1987 #ifdef CONFIG_CPU_PM
1988 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1989 unsigned long cmd, void *v)
1993 fpsimd_save_and_flush_cpu_state();
1997 case CPU_PM_ENTER_FAILED:
2004 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2005 .notifier_call = fpsimd_cpu_pm_notifier,
2008 static void __init fpsimd_pm_init(void)
2010 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2014 static inline void fpsimd_pm_init(void) { }
2015 #endif /* CONFIG_CPU_PM */
2017 #ifdef CONFIG_HOTPLUG_CPU
2018 static int fpsimd_cpu_dead(unsigned int cpu)
2020 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2024 static inline void fpsimd_hotplug_init(void)
2026 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2027 NULL, fpsimd_cpu_dead);
2031 static inline void fpsimd_hotplug_init(void) { }
2035 * FP/SIMD support code initialisation.
2037 static int __init fpsimd_init(void)
2039 if (cpu_have_named_feature(FP)) {
2041 fpsimd_hotplug_init();
2043 pr_notice("Floating-point is not implemented\n");
2046 if (!cpu_have_named_feature(ASIMD))
2047 pr_notice("Advanced SIMD is not implemented\n");
2050 if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2051 pr_notice("SME is implemented but not SVE\n");
2058 core_initcall(fpsimd_init);