]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
drm/i915: Refactor confusing __intel_gt_reset()
[linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE      (2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54         u8 class;
55         u8 instance;
56         /* mmio bases table *must* be sorted in reverse graphics_ver order */
57         struct engine_mmio_base {
58                 u32 graphics_ver : 8;
59                 u32 base : 24;
60         } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64         [RCS0] = {
65                 .class = RENDER_CLASS,
66                 .instance = 0,
67                 .mmio_bases = {
68                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
69                 },
70         },
71         [BCS0] = {
72                 .class = COPY_ENGINE_CLASS,
73                 .instance = 0,
74                 .mmio_bases = {
75                         { .graphics_ver = 6, .base = BLT_RING_BASE }
76                 },
77         },
78         [BCS1] = {
79                 .class = COPY_ENGINE_CLASS,
80                 .instance = 1,
81                 .mmio_bases = {
82                         { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83                 },
84         },
85         [BCS2] = {
86                 .class = COPY_ENGINE_CLASS,
87                 .instance = 2,
88                 .mmio_bases = {
89                         { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90                 },
91         },
92         [BCS3] = {
93                 .class = COPY_ENGINE_CLASS,
94                 .instance = 3,
95                 .mmio_bases = {
96                         { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97                 },
98         },
99         [BCS4] = {
100                 .class = COPY_ENGINE_CLASS,
101                 .instance = 4,
102                 .mmio_bases = {
103                         { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104                 },
105         },
106         [BCS5] = {
107                 .class = COPY_ENGINE_CLASS,
108                 .instance = 5,
109                 .mmio_bases = {
110                         { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111                 },
112         },
113         [BCS6] = {
114                 .class = COPY_ENGINE_CLASS,
115                 .instance = 6,
116                 .mmio_bases = {
117                         { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118                 },
119         },
120         [BCS7] = {
121                 .class = COPY_ENGINE_CLASS,
122                 .instance = 7,
123                 .mmio_bases = {
124                         { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125                 },
126         },
127         [BCS8] = {
128                 .class = COPY_ENGINE_CLASS,
129                 .instance = 8,
130                 .mmio_bases = {
131                         { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132                 },
133         },
134         [VCS0] = {
135                 .class = VIDEO_DECODE_CLASS,
136                 .instance = 0,
137                 .mmio_bases = {
138                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140                         { .graphics_ver = 4, .base = BSD_RING_BASE }
141                 },
142         },
143         [VCS1] = {
144                 .class = VIDEO_DECODE_CLASS,
145                 .instance = 1,
146                 .mmio_bases = {
147                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149                 },
150         },
151         [VCS2] = {
152                 .class = VIDEO_DECODE_CLASS,
153                 .instance = 2,
154                 .mmio_bases = {
155                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156                 },
157         },
158         [VCS3] = {
159                 .class = VIDEO_DECODE_CLASS,
160                 .instance = 3,
161                 .mmio_bases = {
162                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163                 },
164         },
165         [VCS4] = {
166                 .class = VIDEO_DECODE_CLASS,
167                 .instance = 4,
168                 .mmio_bases = {
169                         { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170                 },
171         },
172         [VCS5] = {
173                 .class = VIDEO_DECODE_CLASS,
174                 .instance = 5,
175                 .mmio_bases = {
176                         { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177                 },
178         },
179         [VCS6] = {
180                 .class = VIDEO_DECODE_CLASS,
181                 .instance = 6,
182                 .mmio_bases = {
183                         { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184                 },
185         },
186         [VCS7] = {
187                 .class = VIDEO_DECODE_CLASS,
188                 .instance = 7,
189                 .mmio_bases = {
190                         { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191                 },
192         },
193         [VECS0] = {
194                 .class = VIDEO_ENHANCEMENT_CLASS,
195                 .instance = 0,
196                 .mmio_bases = {
197                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199                 },
200         },
201         [VECS1] = {
202                 .class = VIDEO_ENHANCEMENT_CLASS,
203                 .instance = 1,
204                 .mmio_bases = {
205                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206                 },
207         },
208         [VECS2] = {
209                 .class = VIDEO_ENHANCEMENT_CLASS,
210                 .instance = 2,
211                 .mmio_bases = {
212                         { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213                 },
214         },
215         [VECS3] = {
216                 .class = VIDEO_ENHANCEMENT_CLASS,
217                 .instance = 3,
218                 .mmio_bases = {
219                         { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220                 },
221         },
222         [CCS0] = {
223                 .class = COMPUTE_CLASS,
224                 .instance = 0,
225                 .mmio_bases = {
226                         { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227                 }
228         },
229         [CCS1] = {
230                 .class = COMPUTE_CLASS,
231                 .instance = 1,
232                 .mmio_bases = {
233                         { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234                 }
235         },
236         [CCS2] = {
237                 .class = COMPUTE_CLASS,
238                 .instance = 2,
239                 .mmio_bases = {
240                         { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241                 }
242         },
243         [CCS3] = {
244                 .class = COMPUTE_CLASS,
245                 .instance = 3,
246                 .mmio_bases = {
247                         { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248                 }
249         },
250         [GSC0] = {
251                 .class = OTHER_CLASS,
252                 .instance = OTHER_GSC_INSTANCE,
253                 .mmio_bases = {
254                         { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255                 }
256         },
257 };
258
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275         struct intel_uncore *uncore = gt->uncore;
276         u32 cxt_size;
277
278         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280         switch (class) {
281         case COMPUTE_CLASS:
282                 fallthrough;
283         case RENDER_CLASS:
284                 switch (GRAPHICS_VER(gt->i915)) {
285                 default:
286                         MISSING_CASE(GRAPHICS_VER(gt->i915));
287                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288                 case 12:
289                 case 11:
290                         return GEN11_LR_CONTEXT_RENDER_SIZE;
291                 case 9:
292                         return GEN9_LR_CONTEXT_RENDER_SIZE;
293                 case 8:
294                         return GEN8_LR_CONTEXT_RENDER_SIZE;
295                 case 7:
296                         if (IS_HASWELL(gt->i915))
297                                 return HSW_CXT_TOTAL_SIZE;
298
299                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301                                         PAGE_SIZE);
302                 case 6:
303                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305                                         PAGE_SIZE);
306                 case 5:
307                 case 4:
308                         /*
309                          * There is a discrepancy here between the size reported
310                          * by the register and the size of the context layout
311                          * in the docs. Both are described as authorative!
312                          *
313                          * The discrepancy is on the order of a few cachelines,
314                          * but the total is under one page (4k), which is our
315                          * minimum allocation anyway so it should all come
316                          * out in the wash.
317                          */
318                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319                         gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320                                GRAPHICS_VER(gt->i915), cxt_size * 64,
321                                cxt_size - 1);
322                         return round_up(cxt_size * 64, PAGE_SIZE);
323                 case 3:
324                 case 2:
325                 /* For the special day when i810 gets merged. */
326                 case 1:
327                         return 0;
328                 }
329                 break;
330         default:
331                 MISSING_CASE(class);
332                 fallthrough;
333         case VIDEO_DECODE_CLASS:
334         case VIDEO_ENHANCEMENT_CLASS:
335         case COPY_ENGINE_CLASS:
336         case OTHER_CLASS:
337                 if (GRAPHICS_VER(gt->i915) < 8)
338                         return 0;
339                 return GEN8_LR_CONTEXT_OTHER_SIZE;
340         }
341 }
342
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344                               const struct engine_mmio_base *bases)
345 {
346         int i;
347
348         for (i = 0; i < MAX_MMIO_BASES; i++)
349                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350                         break;
351
352         GEM_BUG_ON(i == MAX_MMIO_BASES);
353         GEM_BUG_ON(!bases[i].base);
354
355         return bases[i].base;
356 }
357
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360         /*
361          * Before we know what the uABI name for this engine will be,
362          * we still would like to keep track of this engine in the debug logs.
363          * We throw in a ' here as a reminder that this isn't its final name.
364          */
365         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366                              intel_engine_class_repr(engine->class),
367                              engine->instance) >= sizeof(engine->name));
368 }
369
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372         /*
373          * Though they added more rings on g4x/ilk, they did not add
374          * per-engine HWSTAM until gen6.
375          */
376         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377                 return;
378
379         if (GRAPHICS_VER(engine->i915) >= 3)
380                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
381         else
382                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387         /* Mask off all writes into the unknown HWSP */
388         intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393         GEM_DEBUG_WARN_ON(iir);
394 }
395
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398         u32 reset_domain;
399
400         if (ver >= 11) {
401                 static const u32 engine_reset_domains[] = {
402                         [RCS0]  = GEN11_GRDOM_RENDER,
403                         [BCS0]  = GEN11_GRDOM_BLT,
404                         [BCS1]  = XEHPC_GRDOM_BLT1,
405                         [BCS2]  = XEHPC_GRDOM_BLT2,
406                         [BCS3]  = XEHPC_GRDOM_BLT3,
407                         [BCS4]  = XEHPC_GRDOM_BLT4,
408                         [BCS5]  = XEHPC_GRDOM_BLT5,
409                         [BCS6]  = XEHPC_GRDOM_BLT6,
410                         [BCS7]  = XEHPC_GRDOM_BLT7,
411                         [BCS8]  = XEHPC_GRDOM_BLT8,
412                         [VCS0]  = GEN11_GRDOM_MEDIA,
413                         [VCS1]  = GEN11_GRDOM_MEDIA2,
414                         [VCS2]  = GEN11_GRDOM_MEDIA3,
415                         [VCS3]  = GEN11_GRDOM_MEDIA4,
416                         [VCS4]  = GEN11_GRDOM_MEDIA5,
417                         [VCS5]  = GEN11_GRDOM_MEDIA6,
418                         [VCS6]  = GEN11_GRDOM_MEDIA7,
419                         [VCS7]  = GEN11_GRDOM_MEDIA8,
420                         [VECS0] = GEN11_GRDOM_VECS,
421                         [VECS1] = GEN11_GRDOM_VECS2,
422                         [VECS2] = GEN11_GRDOM_VECS3,
423                         [VECS3] = GEN11_GRDOM_VECS4,
424                         [CCS0]  = GEN11_GRDOM_RENDER,
425                         [CCS1]  = GEN11_GRDOM_RENDER,
426                         [CCS2]  = GEN11_GRDOM_RENDER,
427                         [CCS3]  = GEN11_GRDOM_RENDER,
428                         [GSC0]  = GEN12_GRDOM_GSC,
429                 };
430                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431                            !engine_reset_domains[id]);
432                 reset_domain = engine_reset_domains[id];
433         } else {
434                 static const u32 engine_reset_domains[] = {
435                         [RCS0]  = GEN6_GRDOM_RENDER,
436                         [BCS0]  = GEN6_GRDOM_BLT,
437                         [VCS0]  = GEN6_GRDOM_MEDIA,
438                         [VCS1]  = GEN8_GRDOM_MEDIA2,
439                         [VECS0] = GEN6_GRDOM_VECS,
440                 };
441                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442                            !engine_reset_domains[id]);
443                 reset_domain = engine_reset_domains[id];
444         }
445
446         return reset_domain;
447 }
448
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450                               u8 logical_instance)
451 {
452         const struct engine_info *info = &intel_engines[id];
453         struct drm_i915_private *i915 = gt->i915;
454         struct intel_engine_cs *engine;
455         u8 guc_class;
456
457         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459         BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460         BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461
462         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463                 return -EINVAL;
464
465         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466                 return -EINVAL;
467
468         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469                 return -EINVAL;
470
471         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472                 return -EINVAL;
473
474         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475         if (!engine)
476                 return -ENOMEM;
477
478         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479
480         INIT_LIST_HEAD(&engine->pinned_contexts_list);
481         engine->id = id;
482         engine->legacy_idx = INVALID_ENGINE;
483         engine->mask = BIT(id);
484         engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485                                                 id);
486         engine->i915 = i915;
487         engine->gt = gt;
488         engine->uncore = gt->uncore;
489         guc_class = engine_class_to_guc_class(info->class);
490         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492
493         engine->irq_handler = nop_irq_handler;
494
495         engine->class = info->class;
496         engine->instance = info->instance;
497         engine->logical_mask = BIT(logical_instance);
498         __sprint_engine_name(engine);
499
500         if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501              __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502              engine->class == RENDER_CLASS)
503                 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504
505         /* features common between engines sharing EUs */
506         if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507                 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508                 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509         }
510
511         engine->props.heartbeat_interval_ms =
512                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513         engine->props.max_busywait_duration_ns =
514                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515         engine->props.preempt_timeout_ms =
516                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517         engine->props.stop_timeout_ms =
518                 CONFIG_DRM_I915_STOP_TIMEOUT;
519         engine->props.timeslice_duration_ms =
520                 CONFIG_DRM_I915_TIMESLICE_DURATION;
521
522         /*
523          * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524          * some compute workloads run quite long threads. That means they get
525          * reset due to not pre-empting in a timely manner. So, bump the
526          * pre-emption timeout value to be much higher for compute engines.
527          */
528         if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529                 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530
531         /* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533         do { \
534                 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535                 if (clamp != engine->props.field) { \
536                         drm_notice(&engine->i915->drm, \
537                                    "Warning, clamping %s to %lld to prevent overflow\n", \
538                                    #field, clamp); \
539                         engine->props.field = clamp; \
540                 } \
541         } while (0)
542
543         CLAMP_PROP(heartbeat_interval_ms);
544         CLAMP_PROP(max_busywait_duration_ns);
545         CLAMP_PROP(preempt_timeout_ms);
546         CLAMP_PROP(stop_timeout_ms);
547         CLAMP_PROP(timeslice_duration_ms);
548
549 #undef CLAMP_PROP
550
551         engine->defaults = engine->props; /* never to change again */
552
553         engine->context_size = intel_engine_context_size(gt, engine->class);
554         if (WARN_ON(engine->context_size > BIT(20)))
555                 engine->context_size = 0;
556         if (engine->context_size)
557                 DRIVER_CAPS(i915)->has_logical_contexts = true;
558
559         ewma__engine_latency_init(&engine->latency);
560
561         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562
563         /* Scrub mmio state on takeover */
564         intel_engine_sanitize_mmio(engine);
565
566         gt->engine_class[info->class][info->instance] = engine;
567         gt->engine[id] = engine;
568
569         return 0;
570 }
571
572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573 {
574         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
575
576         return value;
577 }
578
579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580 {
581         value = min(value, jiffies_to_nsecs(2));
582
583         return value;
584 }
585
586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
587 {
588         /*
589          * NB: The GuC API only supports 32bit values. However, the limit is further
590          * reduced due to internal calculations which would otherwise overflow.
591          */
592         if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
593                 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594
595         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
596
597         return value;
598 }
599
600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601 {
602         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
603
604         return value;
605 }
606
607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
608 {
609         /*
610          * NB: The GuC API only supports 32bit values. However, the limit is further
611          * reduced due to internal calculations which would otherwise overflow.
612          */
613         if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
614                 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615
616         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
617
618         return value;
619 }
620
621 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622 {
623         struct drm_i915_private *i915 = engine->i915;
624
625         if (engine->class == VIDEO_DECODE_CLASS) {
626                 /*
627                  * HEVC support is present on first engine instance
628                  * before Gen11 and on all instances afterwards.
629                  */
630                 if (GRAPHICS_VER(i915) >= 11 ||
631                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632                         engine->uabi_capabilities |=
633                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
634
635                 /*
636                  * SFC block is present only on even logical engine
637                  * instances.
638                  */
639                 if ((GRAPHICS_VER(i915) >= 11 &&
640                      (engine->gt->info.vdbox_sfc_access &
641                       BIT(engine->instance))) ||
642                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643                         engine->uabi_capabilities |=
644                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646                 if (GRAPHICS_VER(i915) >= 9 &&
647                     engine->gt->info.sfc_mask & BIT(engine->instance))
648                         engine->uabi_capabilities |=
649                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
650         }
651 }
652
653 static void intel_setup_engine_capabilities(struct intel_gt *gt)
654 {
655         struct intel_engine_cs *engine;
656         enum intel_engine_id id;
657
658         for_each_engine(engine, gt, id)
659                 __setup_engine_capabilities(engine);
660 }
661
662 /**
663  * intel_engines_release() - free the resources allocated for Command Streamers
664  * @gt: pointer to struct intel_gt
665  */
666 void intel_engines_release(struct intel_gt *gt)
667 {
668         struct intel_engine_cs *engine;
669         enum intel_engine_id id;
670
671         /*
672          * Before we release the resources held by engine, we must be certain
673          * that the HW is no longer accessing them -- having the GPU scribble
674          * to or read from a page being used for something else causes no end
675          * of fun.
676          *
677          * The GPU should be reset by this point, but assume the worst just
678          * in case we aborted before completely initialising the engines.
679          */
680         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682                 intel_gt_reset_all_engines(gt);
683
684         /* Decouple the backend; but keep the layout for late GPU resets */
685         for_each_engine(engine, gt, id) {
686                 if (!engine->release)
687                         continue;
688
689                 intel_wakeref_wait_for_idle(&engine->wakeref);
690                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691
692                 engine->release(engine);
693                 engine->release = NULL;
694
695                 memset(&engine->reset, 0, sizeof(engine->reset));
696         }
697 }
698
699 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700 {
701         if (!engine->request_pool)
702                 return;
703
704         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
705 }
706
707 void intel_engines_free(struct intel_gt *gt)
708 {
709         struct intel_engine_cs *engine;
710         enum intel_engine_id id;
711
712         /* Free the requests! dma-resv keeps fences around for an eternity */
713         rcu_barrier();
714
715         for_each_engine(engine, gt, id) {
716                 intel_engine_free_request_pool(engine);
717                 kfree(engine);
718                 gt->engine[id] = NULL;
719         }
720 }
721
722 static
723 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724                          unsigned int physical_vdbox,
725                          unsigned int logical_vdbox, u16 vdbox_mask)
726 {
727         struct drm_i915_private *i915 = gt->i915;
728
729         /*
730          * In Gen11, only even numbered logical VDBOXes are hooked
731          * up to an SFC (Scaler & Format Converter) unit.
732          * In Gen12, Even numbered physical instance always are connected
733          * to an SFC. Odd numbered physical instances have SFC only if
734          * previous even instance is fused off.
735          *
736          * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737          * in the fuse register that tells us whether a specific SFC is present.
738          */
739         if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740                 return false;
741         else if (MEDIA_VER(i915) >= 12)
742                 return (physical_vdbox % 2 == 0) ||
743                         !(BIT(physical_vdbox - 1) & vdbox_mask);
744         else if (MEDIA_VER(i915) == 11)
745                 return logical_vdbox % 2 == 0;
746
747         return false;
748 }
749
750 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751 {
752         struct drm_i915_private *i915 = gt->i915;
753         unsigned int logical_vdbox = 0;
754         unsigned int i;
755         u32 media_fuse, fuse1;
756         u16 vdbox_mask;
757         u16 vebox_mask;
758
759         if (MEDIA_VER(gt->i915) < 11)
760                 return;
761
762         /*
763          * On newer platforms the fusing register is called 'enable' and has
764          * enable semantics, while on older platforms it is called 'disable'
765          * and bits have disable semantices.
766          */
767         media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768         if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769                 media_fuse = ~media_fuse;
770
771         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773                       GEN11_GT_VEBOX_DISABLE_SHIFT;
774
775         if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776                 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
777                 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778         } else {
779                 gt->info.sfc_mask = ~0;
780         }
781
782         for (i = 0; i < I915_MAX_VCS; i++) {
783                 if (!HAS_ENGINE(gt, _VCS(i))) {
784                         vdbox_mask &= ~BIT(i);
785                         continue;
786                 }
787
788                 if (!(BIT(i) & vdbox_mask)) {
789                         gt->info.engine_mask &= ~BIT(_VCS(i));
790                         gt_dbg(gt, "vcs%u fused off\n", i);
791                         continue;
792                 }
793
794                 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
795                         gt->info.vdbox_sfc_access |= BIT(i);
796                 logical_vdbox++;
797         }
798         gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800
801         for (i = 0; i < I915_MAX_VECS; i++) {
802                 if (!HAS_ENGINE(gt, _VECS(i))) {
803                         vebox_mask &= ~BIT(i);
804                         continue;
805                 }
806
807                 if (!(BIT(i) & vebox_mask)) {
808                         gt->info.engine_mask &= ~BIT(_VECS(i));
809                         gt_dbg(gt, "vecs%u fused off\n", i);
810                 }
811         }
812         gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
814 }
815
816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817 {
818         struct drm_i915_private *i915 = gt->i915;
819         struct intel_gt_info *info = &gt->info;
820         int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821         unsigned long ccs_mask;
822         unsigned int i;
823
824         if (GRAPHICS_VER(i915) < 11)
825                 return;
826
827         if (hweight32(CCS_MASK(gt)) <= 1)
828                 return;
829
830         ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
831                                                      ss_per_ccs);
832         /*
833          * If all DSS in a quadrant are fused off, the corresponding CCS
834          * engine is not available for use.
835          */
836         for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837                 info->engine_mask &= ~BIT(_CCS(i));
838                 gt_dbg(gt, "ccs%u fused off\n", i);
839         }
840 }
841
842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
843 {
844         struct drm_i915_private *i915 = gt->i915;
845         struct intel_gt_info *info = &gt->info;
846         unsigned long meml3_mask;
847         unsigned long quad;
848
849         if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850               GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
851                 return;
852
853         meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
854         meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
855
856         /*
857          * Link Copy engines may be fused off according to meml3_mask. Each
858          * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
859          */
860         for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861                 unsigned int instance = quad * 2 + 1;
862                 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
863                                                    _BCS(instance));
864
865                 if (mask & info->engine_mask) {
866                         gt_dbg(gt, "bcs%u fused off\n", instance);
867                         gt_dbg(gt, "bcs%u fused off\n", instance + 1);
868
869                         info->engine_mask &= ~mask;
870                 }
871         }
872 }
873
874 /*
875  * Determine which engines are fused off in our particular hardware.
876  * Note that we have a catch-22 situation where we need to be able to access
877  * the blitter forcewake domain to read the engine fuses, but at the same time
878  * we need to know which engines are available on the system to know which
879  * forcewake domains are present. We solve this by intializing the forcewake
880  * domains based on the full engine mask in the platform capabilities before
881  * calling this function and pruning the domains for fused-off engines
882  * afterwards.
883  */
884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
885 {
886         struct intel_gt_info *info = &gt->info;
887
888         GEM_BUG_ON(!info->engine_mask);
889
890         engine_mask_apply_media_fuses(gt);
891         engine_mask_apply_compute_fuses(gt);
892         engine_mask_apply_copy_fuses(gt);
893
894         /*
895          * The only use of the GSC CS is to load and communicate with the GSC
896          * FW, so we have no use for it if we don't have the FW.
897          *
898          * IMPORTANT: in cases where we don't have the GSC FW, we have a
899          * catch-22 situation that breaks media C6 due to 2 requirements:
900          * 1) once turned on, the GSC power well will not go to sleep unless the
901          *    GSC FW is loaded.
902          * 2) to enable idling (which is required for media C6) we need to
903          *    initialize the IDLE_MSG register for the GSC CS and do at least 1
904          *    submission, which will wake up the GSC power well.
905          */
906         if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
907                 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908                 info->engine_mask &= ~BIT(GSC0);
909         }
910
911         /*
912          * Do not create the command streamer for CCS slices beyond the first.
913          * All the workload submitted to the first engine will be shared among
914          * all the slices.
915          *
916          * Once the user will be allowed to customize the CCS mode, then this
917          * check needs to be removed.
918          */
919         if (IS_DG2(gt->i915)) {
920                 u8 first_ccs = __ffs(CCS_MASK(gt));
921
922                 /* Mask off all the CCS engine */
923                 info->engine_mask &= ~GENMASK(CCS3, CCS0);
924                 /* Put back in the first CCS engine */
925                 info->engine_mask |= BIT(_CCS(first_ccs));
926         }
927
928         return info->engine_mask;
929 }
930
931 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
932                                  u8 class, const u8 *map, u8 num_instances)
933 {
934         int i, j;
935         u8 current_logical_id = 0;
936
937         for (j = 0; j < num_instances; ++j) {
938                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
939                         if (!HAS_ENGINE(gt, i) ||
940                             intel_engines[i].class != class)
941                                 continue;
942
943                         if (intel_engines[i].instance == map[j]) {
944                                 logical_ids[intel_engines[i].instance] =
945                                         current_logical_id++;
946                                 break;
947                         }
948                 }
949         }
950 }
951
952 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
953 {
954         /*
955          * Logical to physical mapping is needed for proper support
956          * to split-frame feature.
957          */
958         if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
959                 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
960
961                 populate_logical_ids(gt, logical_ids, class,
962                                      map, ARRAY_SIZE(map));
963         } else {
964                 int i;
965                 u8 map[MAX_ENGINE_INSTANCE + 1];
966
967                 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
968                         map[i] = i;
969                 populate_logical_ids(gt, logical_ids, class,
970                                      map, ARRAY_SIZE(map));
971         }
972 }
973
974 /**
975  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
976  * @gt: pointer to struct intel_gt
977  *
978  * Return: non-zero if the initialization failed.
979  */
980 int intel_engines_init_mmio(struct intel_gt *gt)
981 {
982         struct drm_i915_private *i915 = gt->i915;
983         const unsigned int engine_mask = init_engine_mask(gt);
984         unsigned int mask = 0;
985         unsigned int i, class;
986         u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
987         int err;
988
989         drm_WARN_ON(&i915->drm, engine_mask == 0);
990         drm_WARN_ON(&i915->drm, engine_mask &
991                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
992
993         if (i915_inject_probe_failure(i915))
994                 return -ENODEV;
995
996         for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
997                 setup_logical_ids(gt, logical_ids, class);
998
999                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
1000                         u8 instance = intel_engines[i].instance;
1001
1002                         if (intel_engines[i].class != class ||
1003                             !HAS_ENGINE(gt, i))
1004                                 continue;
1005
1006                         err = intel_engine_setup(gt, i,
1007                                                  logical_ids[instance]);
1008                         if (err)
1009                                 goto cleanup;
1010
1011                         mask |= BIT(i);
1012                 }
1013         }
1014
1015         /*
1016          * Catch failures to update intel_engines table when the new engines
1017          * are added to the driver by a warning and disabling the forgotten
1018          * engines.
1019          */
1020         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1021                 gt->info.engine_mask = mask;
1022
1023         gt->info.num_engines = hweight32(mask);
1024
1025         intel_gt_check_and_clear_faults(gt);
1026
1027         intel_setup_engine_capabilities(gt);
1028
1029         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1030
1031         return 0;
1032
1033 cleanup:
1034         intel_engines_free(gt);
1035         return err;
1036 }
1037
1038 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1039 {
1040         struct intel_engine_execlists * const execlists = &engine->execlists;
1041
1042         execlists->port_mask = 1;
1043         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1044         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1045
1046         memset(execlists->pending, 0, sizeof(execlists->pending));
1047         execlists->active =
1048                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1049 }
1050
1051 static void cleanup_status_page(struct intel_engine_cs *engine)
1052 {
1053         struct i915_vma *vma;
1054
1055         /* Prevent writes into HWSP after returning the page to the system */
1056         intel_engine_set_hwsp_writemask(engine, ~0u);
1057
1058         vma = fetch_and_zero(&engine->status_page.vma);
1059         if (!vma)
1060                 return;
1061
1062         if (!HWS_NEEDS_PHYSICAL(engine->i915))
1063                 i915_vma_unpin(vma);
1064
1065         i915_gem_object_unpin_map(vma->obj);
1066         i915_gem_object_put(vma->obj);
1067 }
1068
1069 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1070                                 struct i915_gem_ww_ctx *ww,
1071                                 struct i915_vma *vma)
1072 {
1073         unsigned int flags;
1074
1075         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1076                 /*
1077                  * On g33, we cannot place HWS above 256MiB, so
1078                  * restrict its pinning to the low mappable arena.
1079                  * Though this restriction is not documented for
1080                  * gen4, gen5, or byt, they also behave similarly
1081                  * and hang if the HWS is placed at the top of the
1082                  * GTT. To generalise, it appears that all !llc
1083                  * platforms have issues with us placing the HWS
1084                  * above the mappable region (even though we never
1085                  * actually map it).
1086                  */
1087                 flags = PIN_MAPPABLE;
1088         else
1089                 flags = PIN_HIGH;
1090
1091         return i915_ggtt_pin(vma, ww, 0, flags);
1092 }
1093
1094 static int init_status_page(struct intel_engine_cs *engine)
1095 {
1096         struct drm_i915_gem_object *obj;
1097         struct i915_gem_ww_ctx ww;
1098         struct i915_vma *vma;
1099         void *vaddr;
1100         int ret;
1101
1102         INIT_LIST_HEAD(&engine->status_page.timelines);
1103
1104         /*
1105          * Though the HWS register does support 36bit addresses, historically
1106          * we have had hangs and corruption reported due to wild writes if
1107          * the HWS is placed above 4G. We only allow objects to be allocated
1108          * in GFP_DMA32 for i965, and no earlier physical address users had
1109          * access to more than 4G.
1110          */
1111         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1112         if (IS_ERR(obj)) {
1113                 gt_err(engine->gt, "Failed to allocate status page\n");
1114                 return PTR_ERR(obj);
1115         }
1116
1117         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1118
1119         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1120         if (IS_ERR(vma)) {
1121                 ret = PTR_ERR(vma);
1122                 goto err_put;
1123         }
1124
1125         i915_gem_ww_ctx_init(&ww, true);
1126 retry:
1127         ret = i915_gem_object_lock(obj, &ww);
1128         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1129                 ret = pin_ggtt_status_page(engine, &ww, vma);
1130         if (ret)
1131                 goto err;
1132
1133         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1134         if (IS_ERR(vaddr)) {
1135                 ret = PTR_ERR(vaddr);
1136                 goto err_unpin;
1137         }
1138
1139         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1140         engine->status_page.vma = vma;
1141
1142 err_unpin:
1143         if (ret)
1144                 i915_vma_unpin(vma);
1145 err:
1146         if (ret == -EDEADLK) {
1147                 ret = i915_gem_ww_ctx_backoff(&ww);
1148                 if (!ret)
1149                         goto retry;
1150         }
1151         i915_gem_ww_ctx_fini(&ww);
1152 err_put:
1153         if (ret)
1154                 i915_gem_object_put(obj);
1155         return ret;
1156 }
1157
1158 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1159 {
1160         static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1161                 [RENDER_CLASS].reg              = GEN8_RTCR,
1162                 [VIDEO_DECODE_CLASS].reg        = GEN8_M1TCR, /* , GEN8_M2TCR */
1163                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN8_VTCR,
1164                 [COPY_ENGINE_CLASS].reg         = GEN8_BTCR,
1165         };
1166         static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1167                 [RENDER_CLASS].reg              = GEN12_GFX_TLB_INV_CR,
1168                 [VIDEO_DECODE_CLASS].reg        = GEN12_VD_TLB_INV_CR,
1169                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN12_VE_TLB_INV_CR,
1170                 [COPY_ENGINE_CLASS].reg         = GEN12_BLT_TLB_INV_CR,
1171                 [COMPUTE_CLASS].reg             = GEN12_COMPCTX_TLB_INV_CR,
1172         };
1173         static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1174                 [RENDER_CLASS].mcr_reg            = XEHP_GFX_TLB_INV_CR,
1175                 [VIDEO_DECODE_CLASS].mcr_reg      = XEHP_VD_TLB_INV_CR,
1176                 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1177                 [COPY_ENGINE_CLASS].mcr_reg       = XEHP_BLT_TLB_INV_CR,
1178                 [COMPUTE_CLASS].mcr_reg           = XEHP_COMPCTX_TLB_INV_CR,
1179         };
1180         static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1181                 [VIDEO_DECODE_CLASS].reg          = GEN12_VD_TLB_INV_CR,
1182                 [VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1183                 [OTHER_CLASS].reg                 = XELPMP_GSC_TLB_INV_CR,
1184         };
1185         struct drm_i915_private *i915 = engine->i915;
1186         const unsigned int instance = engine->instance;
1187         const unsigned int class = engine->class;
1188         const union intel_engine_tlb_inv_reg *regs;
1189         union intel_engine_tlb_inv_reg reg;
1190         unsigned int num = 0;
1191         u32 val;
1192
1193         /*
1194          * New platforms should not be added with catch-all-newer (>=)
1195          * condition so that any later platform added triggers the below warning
1196          * and in turn mandates a human cross-check of whether the invalidation
1197          * flows have compatible semantics.
1198          *
1199          * For instance with the 11.00 -> 12.00 transition three out of five
1200          * respective engine registers were moved to masked type. Then after the
1201          * 12.00 -> 12.50 transition multi cast handling is required too.
1202          */
1203
1204         if (engine->gt->type == GT_MEDIA) {
1205                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1206                         regs = xelpmp_regs;
1207                         num = ARRAY_SIZE(xelpmp_regs);
1208                 }
1209         } else {
1210                 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1211                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1212                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1213                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1214                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1215                         regs = xehp_regs;
1216                         num = ARRAY_SIZE(xehp_regs);
1217                 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1218                            GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1219                         regs = gen12_regs;
1220                         num = ARRAY_SIZE(gen12_regs);
1221                 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1222                         regs = gen8_regs;
1223                         num = ARRAY_SIZE(gen8_regs);
1224                 } else if (GRAPHICS_VER(i915) < 8) {
1225                         return 0;
1226                 }
1227         }
1228
1229         if (gt_WARN_ONCE(engine->gt, !num,
1230                          "Platform does not implement TLB invalidation!"))
1231                 return -ENODEV;
1232
1233         if (gt_WARN_ON_ONCE(engine->gt,
1234                             class >= num ||
1235                             (!regs[class].reg.reg &&
1236                              !regs[class].mcr_reg.reg)))
1237                 return -ERANGE;
1238
1239         reg = regs[class];
1240
1241         if (regs == xelpmp_regs && class == OTHER_CLASS) {
1242                 /*
1243                  * There's only a single GSC instance, but it uses register bit
1244                  * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1245                  */
1246                 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1247                 val = 1;
1248         } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1249                 reg.reg = GEN8_M2TCR;
1250                 val = 0;
1251         } else {
1252                 val = instance;
1253         }
1254
1255         val = BIT(val);
1256
1257         engine->tlb_inv.mcr = regs == xehp_regs;
1258         engine->tlb_inv.reg = reg;
1259         engine->tlb_inv.done = val;
1260
1261         if (GRAPHICS_VER(i915) >= 12 &&
1262             (engine->class == VIDEO_DECODE_CLASS ||
1263              engine->class == VIDEO_ENHANCEMENT_CLASS ||
1264              engine->class == COMPUTE_CLASS ||
1265              engine->class == OTHER_CLASS))
1266                 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1267         else
1268                 engine->tlb_inv.request = val;
1269
1270         return 0;
1271 }
1272
1273 static int engine_setup_common(struct intel_engine_cs *engine)
1274 {
1275         int err;
1276
1277         init_llist_head(&engine->barrier_tasks);
1278
1279         err = intel_engine_init_tlb_invalidation(engine);
1280         if (err)
1281                 return err;
1282
1283         err = init_status_page(engine);
1284         if (err)
1285                 return err;
1286
1287         engine->breadcrumbs = intel_breadcrumbs_create(engine);
1288         if (!engine->breadcrumbs) {
1289                 err = -ENOMEM;
1290                 goto err_status;
1291         }
1292
1293         engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1294         if (!engine->sched_engine) {
1295                 err = -ENOMEM;
1296                 goto err_sched_engine;
1297         }
1298         engine->sched_engine->private_data = engine;
1299
1300         err = intel_engine_init_cmd_parser(engine);
1301         if (err)
1302                 goto err_cmd_parser;
1303
1304         intel_engine_init_execlists(engine);
1305         intel_engine_init__pm(engine);
1306         intel_engine_init_retire(engine);
1307
1308         /* Use the whole device by default */
1309         engine->sseu =
1310                 intel_sseu_from_device_info(&engine->gt->info.sseu);
1311
1312         intel_engine_init_workarounds(engine);
1313         intel_engine_init_whitelist(engine);
1314         intel_engine_init_ctx_wa(engine);
1315
1316         if (GRAPHICS_VER(engine->i915) >= 12)
1317                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1318
1319         return 0;
1320
1321 err_cmd_parser:
1322         i915_sched_engine_put(engine->sched_engine);
1323 err_sched_engine:
1324         intel_breadcrumbs_put(engine->breadcrumbs);
1325 err_status:
1326         cleanup_status_page(engine);
1327         return err;
1328 }
1329
1330 struct measure_breadcrumb {
1331         struct i915_request rq;
1332         struct intel_ring ring;
1333         u32 cs[2048];
1334 };
1335
1336 static int measure_breadcrumb_dw(struct intel_context *ce)
1337 {
1338         struct intel_engine_cs *engine = ce->engine;
1339         struct measure_breadcrumb *frame;
1340         int dw;
1341
1342         GEM_BUG_ON(!engine->gt->scratch);
1343
1344         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1345         if (!frame)
1346                 return -ENOMEM;
1347
1348         frame->rq.i915 = engine->i915;
1349         frame->rq.engine = engine;
1350         frame->rq.context = ce;
1351         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1352         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1353
1354         frame->ring.vaddr = frame->cs;
1355         frame->ring.size = sizeof(frame->cs);
1356         frame->ring.wrap =
1357                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1358         frame->ring.effective_size = frame->ring.size;
1359         intel_ring_update_space(&frame->ring);
1360         frame->rq.ring = &frame->ring;
1361
1362         mutex_lock(&ce->timeline->mutex);
1363         spin_lock_irq(&engine->sched_engine->lock);
1364
1365         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1366
1367         spin_unlock_irq(&engine->sched_engine->lock);
1368         mutex_unlock(&ce->timeline->mutex);
1369
1370         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1371
1372         kfree(frame);
1373         return dw;
1374 }
1375
1376 struct intel_context *
1377 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1378                                    struct i915_address_space *vm,
1379                                    unsigned int ring_size,
1380                                    unsigned int hwsp,
1381                                    struct lock_class_key *key,
1382                                    const char *name)
1383 {
1384         struct intel_context *ce;
1385         int err;
1386
1387         ce = intel_context_create(engine);
1388         if (IS_ERR(ce))
1389                 return ce;
1390
1391         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1392         ce->timeline = page_pack_bits(NULL, hwsp);
1393         ce->ring = NULL;
1394         ce->ring_size = ring_size;
1395
1396         i915_vm_put(ce->vm);
1397         ce->vm = i915_vm_get(vm);
1398
1399         err = intel_context_pin(ce); /* perma-pin so it is always available */
1400         if (err) {
1401                 intel_context_put(ce);
1402                 return ERR_PTR(err);
1403         }
1404
1405         list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1406
1407         /*
1408          * Give our perma-pinned kernel timelines a separate lockdep class,
1409          * so that we can use them from within the normal user timelines
1410          * should we need to inject GPU operations during their request
1411          * construction.
1412          */
1413         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1414
1415         return ce;
1416 }
1417
1418 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1419 {
1420         struct intel_engine_cs *engine = ce->engine;
1421         struct i915_vma *hwsp = engine->status_page.vma;
1422
1423         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1424
1425         mutex_lock(&hwsp->vm->mutex);
1426         list_del(&ce->timeline->engine_link);
1427         mutex_unlock(&hwsp->vm->mutex);
1428
1429         list_del(&ce->pinned_contexts_link);
1430         intel_context_unpin(ce);
1431         intel_context_put(ce);
1432 }
1433
1434 static struct intel_context *
1435 create_ggtt_bind_context(struct intel_engine_cs *engine)
1436 {
1437         static struct lock_class_key kernel;
1438
1439         /*
1440          * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1441          * bind requets at a time so get a bigger ring.
1442          */
1443         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1444                                                   I915_GEM_HWS_GGTT_BIND_ADDR,
1445                                                   &kernel, "ggtt_bind_context");
1446 }
1447
1448 static struct intel_context *
1449 create_kernel_context(struct intel_engine_cs *engine)
1450 {
1451         static struct lock_class_key kernel;
1452
1453         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1454                                                   I915_GEM_HWS_SEQNO_ADDR,
1455                                                   &kernel, "kernel_context");
1456 }
1457
1458 /*
1459  * engine_init_common - initialize engine state which might require hw access
1460  * @engine: Engine to initialize.
1461  *
1462  * Initializes @engine@ structure members shared between legacy and execlists
1463  * submission modes which do require hardware access.
1464  *
1465  * Typcally done at later stages of submission mode specific engine setup.
1466  *
1467  * Returns zero on success or an error code on failure.
1468  */
1469 static int engine_init_common(struct intel_engine_cs *engine)
1470 {
1471         struct intel_context *ce, *bce = NULL;
1472         int ret;
1473
1474         engine->set_default_submission(engine);
1475
1476         /*
1477          * We may need to do things with the shrinker which
1478          * require us to immediately switch back to the default
1479          * context. This can cause a problem as pinning the
1480          * default context also requires GTT space which may not
1481          * be available. To avoid this we always pin the default
1482          * context.
1483          */
1484         ce = create_kernel_context(engine);
1485         if (IS_ERR(ce))
1486                 return PTR_ERR(ce);
1487         /*
1488          * Create a separate pinned context for GGTT update with blitter engine
1489          * if a platform require such service. MI_UPDATE_GTT works on other
1490          * engines as well but BCS should be less busy engine so pick that for
1491          * GGTT updates.
1492          */
1493         if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1494                 bce = create_ggtt_bind_context(engine);
1495                 if (IS_ERR(bce)) {
1496                         ret = PTR_ERR(bce);
1497                         goto err_ce_context;
1498                 }
1499         }
1500
1501         ret = measure_breadcrumb_dw(ce);
1502         if (ret < 0)
1503                 goto err_bce_context;
1504
1505         engine->emit_fini_breadcrumb_dw = ret;
1506         engine->kernel_context = ce;
1507         engine->bind_context = bce;
1508
1509         return 0;
1510
1511 err_bce_context:
1512         if (bce)
1513                 intel_engine_destroy_pinned_context(bce);
1514 err_ce_context:
1515         intel_engine_destroy_pinned_context(ce);
1516         return ret;
1517 }
1518
1519 int intel_engines_init(struct intel_gt *gt)
1520 {
1521         int (*setup)(struct intel_engine_cs *engine);
1522         struct intel_engine_cs *engine;
1523         enum intel_engine_id id;
1524         int err;
1525
1526         if (intel_uc_uses_guc_submission(&gt->uc)) {
1527                 gt->submission_method = INTEL_SUBMISSION_GUC;
1528                 setup = intel_guc_submission_setup;
1529         } else if (HAS_EXECLISTS(gt->i915)) {
1530                 gt->submission_method = INTEL_SUBMISSION_ELSP;
1531                 setup = intel_execlists_submission_setup;
1532         } else {
1533                 gt->submission_method = INTEL_SUBMISSION_RING;
1534                 setup = intel_ring_submission_setup;
1535         }
1536
1537         for_each_engine(engine, gt, id) {
1538                 err = engine_setup_common(engine);
1539                 if (err)
1540                         return err;
1541
1542                 err = setup(engine);
1543                 if (err) {
1544                         intel_engine_cleanup_common(engine);
1545                         return err;
1546                 }
1547
1548                 /* The backend should now be responsible for cleanup */
1549                 GEM_BUG_ON(engine->release == NULL);
1550
1551                 err = engine_init_common(engine);
1552                 if (err)
1553                         return err;
1554
1555                 intel_engine_add_user(engine);
1556         }
1557
1558         return 0;
1559 }
1560
1561 /**
1562  * intel_engine_cleanup_common - cleans up the engine state created by
1563  *                                the common initiailizers.
1564  * @engine: Engine to cleanup.
1565  *
1566  * This cleans up everything created by the common helpers.
1567  */
1568 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1569 {
1570         GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1571
1572         i915_sched_engine_put(engine->sched_engine);
1573         intel_breadcrumbs_put(engine->breadcrumbs);
1574
1575         intel_engine_fini_retire(engine);
1576         intel_engine_cleanup_cmd_parser(engine);
1577
1578         if (engine->default_state)
1579                 fput(engine->default_state);
1580
1581         if (engine->kernel_context)
1582                 intel_engine_destroy_pinned_context(engine->kernel_context);
1583
1584         if (engine->bind_context)
1585                 intel_engine_destroy_pinned_context(engine->bind_context);
1586
1587
1588         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1589         cleanup_status_page(engine);
1590
1591         intel_wa_list_free(&engine->ctx_wa_list);
1592         intel_wa_list_free(&engine->wa_list);
1593         intel_wa_list_free(&engine->whitelist);
1594 }
1595
1596 /**
1597  * intel_engine_resume - re-initializes the HW state of the engine
1598  * @engine: Engine to resume.
1599  *
1600  * Returns zero on success or an error code on failure.
1601  */
1602 int intel_engine_resume(struct intel_engine_cs *engine)
1603 {
1604         intel_engine_apply_workarounds(engine);
1605         intel_engine_apply_whitelist(engine);
1606
1607         return engine->resume(engine);
1608 }
1609
1610 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1611 {
1612         struct drm_i915_private *i915 = engine->i915;
1613
1614         u64 acthd;
1615
1616         if (GRAPHICS_VER(i915) >= 8)
1617                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1618         else if (GRAPHICS_VER(i915) >= 4)
1619                 acthd = ENGINE_READ(engine, RING_ACTHD);
1620         else
1621                 acthd = ENGINE_READ(engine, ACTHD);
1622
1623         return acthd;
1624 }
1625
1626 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1627 {
1628         u64 bbaddr;
1629
1630         if (GRAPHICS_VER(engine->i915) >= 8)
1631                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1632         else
1633                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1634
1635         return bbaddr;
1636 }
1637
1638 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1639 {
1640         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1641                 return 0;
1642
1643         /*
1644          * If we are doing a normal GPU reset, we can take our time and allow
1645          * the engine to quiesce. We've stopped submission to the engine, and
1646          * if we wait long enough an innocent context should complete and
1647          * leave the engine idle. So they should not be caught unaware by
1648          * the forthcoming GPU reset (which usually follows the stop_cs)!
1649          */
1650         return READ_ONCE(engine->props.stop_timeout_ms);
1651 }
1652
1653 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1654                                   int fast_timeout_us,
1655                                   int slow_timeout_ms)
1656 {
1657         struct intel_uncore *uncore = engine->uncore;
1658         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1659         int err;
1660
1661         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1662
1663         /*
1664          * Wa_22011802037: Prior to doing a reset, ensure CS is
1665          * stopped, set ring stop bit and prefetch disable bit to halt CS
1666          */
1667         if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1668                 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1669                                       _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1670
1671         err = __intel_wait_for_register_fw(engine->uncore, mode,
1672                                            MODE_IDLE, MODE_IDLE,
1673                                            fast_timeout_us,
1674                                            slow_timeout_ms,
1675                                            NULL);
1676
1677         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1678         intel_uncore_posting_read_fw(uncore, mode);
1679         return err;
1680 }
1681
1682 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1683 {
1684         int err = 0;
1685
1686         if (GRAPHICS_VER(engine->i915) < 3)
1687                 return -ENODEV;
1688
1689         ENGINE_TRACE(engine, "\n");
1690         /*
1691          * TODO: Find out why occasionally stopping the CS times out. Seen
1692          * especially with gem_eio tests.
1693          *
1694          * Occasionally trying to stop the cs times out, but does not adversely
1695          * affect functionality. The timeout is set as a config parameter that
1696          * defaults to 100ms. In most cases the follow up operation is to wait
1697          * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1698          * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1699          * caused, the caller must check and handle the return from this
1700          * function.
1701          */
1702         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1703                 ENGINE_TRACE(engine,
1704                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1705                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1706                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1707
1708                 /*
1709                  * Sometimes we observe that the idle flag is not
1710                  * set even though the ring is empty. So double
1711                  * check before giving up.
1712                  */
1713                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1714                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1715                         err = -ETIMEDOUT;
1716         }
1717
1718         return err;
1719 }
1720
1721 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1722 {
1723         ENGINE_TRACE(engine, "\n");
1724
1725         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1726 }
1727
1728 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1729 {
1730         static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1731                 [RCS0] = MSG_IDLE_CS,
1732                 [BCS0] = MSG_IDLE_BCS,
1733                 [VCS0] = MSG_IDLE_VCS0,
1734                 [VCS1] = MSG_IDLE_VCS1,
1735                 [VCS2] = MSG_IDLE_VCS2,
1736                 [VCS3] = MSG_IDLE_VCS3,
1737                 [VCS4] = MSG_IDLE_VCS4,
1738                 [VCS5] = MSG_IDLE_VCS5,
1739                 [VCS6] = MSG_IDLE_VCS6,
1740                 [VCS7] = MSG_IDLE_VCS7,
1741                 [VECS0] = MSG_IDLE_VECS0,
1742                 [VECS1] = MSG_IDLE_VECS1,
1743                 [VECS2] = MSG_IDLE_VECS2,
1744                 [VECS3] = MSG_IDLE_VECS3,
1745                 [CCS0] = MSG_IDLE_CS,
1746                 [CCS1] = MSG_IDLE_CS,
1747                 [CCS2] = MSG_IDLE_CS,
1748                 [CCS3] = MSG_IDLE_CS,
1749         };
1750         u32 val;
1751
1752         if (!_reg[engine->id].reg)
1753                 return 0;
1754
1755         val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1756
1757         /* bits[29:25] & bits[13:9] >> shift */
1758         return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1759 }
1760
1761 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1762 {
1763         int ret;
1764
1765         /* Ensure GPM receives fw up/down after CS is stopped */
1766         udelay(1);
1767
1768         /* Wait for forcewake request to complete in GPM */
1769         ret =  __intel_wait_for_register_fw(gt->uncore,
1770                                             GEN9_PWRGT_DOMAIN_STATUS,
1771                                             fw_mask, fw_mask, 5000, 0, NULL);
1772
1773         /* Ensure CS receives fw ack from GPM */
1774         udelay(1);
1775
1776         if (ret)
1777                 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1778 }
1779
1780 /*
1781  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1782  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1783  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1784  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1785  * are concerned only with the gt reset here, we use a logical OR of pending
1786  * forcewakeups from all reset domains and then wait for them to complete by
1787  * querying PWRGT_DOMAIN_STATUS.
1788  */
1789 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1790 {
1791         u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1792
1793         if (fw_pending)
1794                 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1795 }
1796
1797 /* NB: please notice the memset */
1798 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1799                                struct intel_instdone *instdone)
1800 {
1801         struct drm_i915_private *i915 = engine->i915;
1802         struct intel_uncore *uncore = engine->uncore;
1803         u32 mmio_base = engine->mmio_base;
1804         int slice;
1805         int subslice;
1806         int iter;
1807
1808         memset(instdone, 0, sizeof(*instdone));
1809
1810         if (GRAPHICS_VER(i915) >= 8) {
1811                 instdone->instdone =
1812                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1813
1814                 if (engine->id != RCS0)
1815                         return;
1816
1817                 instdone->slice_common =
1818                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1819                 if (GRAPHICS_VER(i915) >= 12) {
1820                         instdone->slice_common_extra[0] =
1821                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1822                         instdone->slice_common_extra[1] =
1823                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1824                 }
1825
1826                 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1827                         instdone->sampler[slice][subslice] =
1828                                 intel_gt_mcr_read(engine->gt,
1829                                                   GEN8_SAMPLER_INSTDONE,
1830                                                   slice, subslice);
1831                         instdone->row[slice][subslice] =
1832                                 intel_gt_mcr_read(engine->gt,
1833                                                   GEN8_ROW_INSTDONE,
1834                                                   slice, subslice);
1835                 }
1836
1837                 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1838                         for_each_ss_steering(iter, engine->gt, slice, subslice)
1839                                 instdone->geom_svg[slice][subslice] =
1840                                         intel_gt_mcr_read(engine->gt,
1841                                                           XEHPG_INSTDONE_GEOM_SVG,
1842                                                           slice, subslice);
1843                 }
1844         } else if (GRAPHICS_VER(i915) >= 7) {
1845                 instdone->instdone =
1846                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1847
1848                 if (engine->id != RCS0)
1849                         return;
1850
1851                 instdone->slice_common =
1852                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1853                 instdone->sampler[0][0] =
1854                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1855                 instdone->row[0][0] =
1856                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1857         } else if (GRAPHICS_VER(i915) >= 4) {
1858                 instdone->instdone =
1859                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1860                 if (engine->id == RCS0)
1861                         /* HACK: Using the wrong struct member */
1862                         instdone->slice_common =
1863                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1864         } else {
1865                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1866         }
1867 }
1868
1869 static bool ring_is_idle(struct intel_engine_cs *engine)
1870 {
1871         bool idle = true;
1872
1873         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1874                 return true;
1875
1876         if (!intel_engine_pm_get_if_awake(engine))
1877                 return true;
1878
1879         /* First check that no commands are left in the ring */
1880         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1881             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1882                 idle = false;
1883
1884         /* No bit for gen2, so assume the CS parser is idle */
1885         if (GRAPHICS_VER(engine->i915) > 2 &&
1886             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1887                 idle = false;
1888
1889         intel_engine_pm_put(engine);
1890
1891         return idle;
1892 }
1893
1894 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1895 {
1896         struct tasklet_struct *t = &engine->sched_engine->tasklet;
1897
1898         if (!t->callback)
1899                 return;
1900
1901         local_bh_disable();
1902         if (tasklet_trylock(t)) {
1903                 /* Must wait for any GPU reset in progress. */
1904                 if (__tasklet_is_enabled(t))
1905                         t->callback(t);
1906                 tasklet_unlock(t);
1907         }
1908         local_bh_enable();
1909
1910         /* Synchronise and wait for the tasklet on another CPU */
1911         if (sync)
1912                 tasklet_unlock_wait(t);
1913 }
1914
1915 /**
1916  * intel_engine_is_idle() - Report if the engine has finished process all work
1917  * @engine: the intel_engine_cs
1918  *
1919  * Return true if there are no requests pending, nothing left to be submitted
1920  * to hardware, and that the engine is idle.
1921  */
1922 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1923 {
1924         /* More white lies, if wedged, hw state is inconsistent */
1925         if (intel_gt_is_wedged(engine->gt))
1926                 return true;
1927
1928         if (!intel_engine_pm_is_awake(engine))
1929                 return true;
1930
1931         /* Waiting to drain ELSP? */
1932         intel_synchronize_hardirq(engine->i915);
1933         intel_engine_flush_submission(engine);
1934
1935         /* ELSP is empty, but there are ready requests? E.g. after reset */
1936         if (!i915_sched_engine_is_empty(engine->sched_engine))
1937                 return false;
1938
1939         /* Ring stopped? */
1940         return ring_is_idle(engine);
1941 }
1942
1943 bool intel_engines_are_idle(struct intel_gt *gt)
1944 {
1945         struct intel_engine_cs *engine;
1946         enum intel_engine_id id;
1947
1948         /*
1949          * If the driver is wedged, HW state may be very inconsistent and
1950          * report that it is still busy, even though we have stopped using it.
1951          */
1952         if (intel_gt_is_wedged(gt))
1953                 return true;
1954
1955         /* Already parked (and passed an idleness test); must still be idle */
1956         if (!READ_ONCE(gt->awake))
1957                 return true;
1958
1959         for_each_engine(engine, gt, id) {
1960                 if (!intel_engine_is_idle(engine))
1961                         return false;
1962         }
1963
1964         return true;
1965 }
1966
1967 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1968 {
1969         if (!engine->irq_enable)
1970                 return false;
1971
1972         /* Caller disables interrupts */
1973         spin_lock(engine->gt->irq_lock);
1974         engine->irq_enable(engine);
1975         spin_unlock(engine->gt->irq_lock);
1976
1977         return true;
1978 }
1979
1980 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1981 {
1982         if (!engine->irq_disable)
1983                 return;
1984
1985         /* Caller disables interrupts */
1986         spin_lock(engine->gt->irq_lock);
1987         engine->irq_disable(engine);
1988         spin_unlock(engine->gt->irq_lock);
1989 }
1990
1991 void intel_engines_reset_default_submission(struct intel_gt *gt)
1992 {
1993         struct intel_engine_cs *engine;
1994         enum intel_engine_id id;
1995
1996         for_each_engine(engine, gt, id) {
1997                 if (engine->sanitize)
1998                         engine->sanitize(engine);
1999
2000                 engine->set_default_submission(engine);
2001         }
2002 }
2003
2004 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
2005 {
2006         switch (GRAPHICS_VER(engine->i915)) {
2007         case 2:
2008                 return false; /* uses physical not virtual addresses */
2009         case 3:
2010                 /* maybe only uses physical not virtual addresses */
2011                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
2012         case 4:
2013                 return !IS_I965G(engine->i915); /* who knows! */
2014         case 6:
2015                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
2016         default:
2017                 return true;
2018         }
2019 }
2020
2021 static struct intel_timeline *get_timeline(struct i915_request *rq)
2022 {
2023         struct intel_timeline *tl;
2024
2025         /*
2026          * Even though we are holding the engine->sched_engine->lock here, there
2027          * is no control over the submission queue per-se and we are
2028          * inspecting the active state at a random point in time, with an
2029          * unknown queue. Play safe and make sure the timeline remains valid.
2030          * (Only being used for pretty printing, one extra kref shouldn't
2031          * cause a camel stampede!)
2032          */
2033         rcu_read_lock();
2034         tl = rcu_dereference(rq->timeline);
2035         if (!kref_get_unless_zero(&tl->kref))
2036                 tl = NULL;
2037         rcu_read_unlock();
2038
2039         return tl;
2040 }
2041
2042 static int print_ring(char *buf, int sz, struct i915_request *rq)
2043 {
2044         int len = 0;
2045
2046         if (!i915_request_signaled(rq)) {
2047                 struct intel_timeline *tl = get_timeline(rq);
2048
2049                 len = scnprintf(buf, sz,
2050                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2051                                 i915_ggtt_offset(rq->ring->vma),
2052                                 tl ? tl->hwsp_offset : 0,
2053                                 hwsp_seqno(rq),
2054                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2055                                                       1000 * 1000));
2056
2057                 if (tl)
2058                         intel_timeline_put(tl);
2059         }
2060
2061         return len;
2062 }
2063
2064 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2065 {
2066         const size_t rowsize = 8 * sizeof(u32);
2067         const void *prev = NULL;
2068         bool skip = false;
2069         size_t pos;
2070
2071         for (pos = 0; pos < len; pos += rowsize) {
2072                 char line[128];
2073
2074                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2075                         if (!skip) {
2076                                 drm_printf(m, "*\n");
2077                                 skip = true;
2078                         }
2079                         continue;
2080                 }
2081
2082                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2083                                                 rowsize, sizeof(u32),
2084                                                 line, sizeof(line),
2085                                                 false) >= sizeof(line));
2086                 drm_printf(m, "[%04zx] %s\n", pos, line);
2087
2088                 prev = buf + pos;
2089                 skip = false;
2090         }
2091 }
2092
2093 static const char *repr_timer(const struct timer_list *t)
2094 {
2095         if (!READ_ONCE(t->expires))
2096                 return "inactive";
2097
2098         if (timer_pending(t))
2099                 return "active";
2100
2101         return "expired";
2102 }
2103
2104 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2105                                          struct drm_printer *m)
2106 {
2107         struct drm_i915_private *i915 = engine->i915;
2108         struct intel_engine_execlists * const execlists = &engine->execlists;
2109         u64 addr;
2110
2111         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2112                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2113         if (HAS_EXECLISTS(i915)) {
2114                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2115                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2116                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2117                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2118         }
2119         drm_printf(m, "\tRING_START: 0x%08x\n",
2120                    ENGINE_READ(engine, RING_START));
2121         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2122                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2123         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2124                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2125         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2126                    ENGINE_READ(engine, RING_CTL),
2127                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2128         if (GRAPHICS_VER(engine->i915) > 2) {
2129                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2130                            ENGINE_READ(engine, RING_MI_MODE),
2131                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2132         }
2133
2134         if (GRAPHICS_VER(i915) >= 6) {
2135                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
2136                            ENGINE_READ(engine, RING_IMR));
2137                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
2138                            ENGINE_READ(engine, RING_ESR));
2139                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
2140                            ENGINE_READ(engine, RING_EMR));
2141                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
2142                            ENGINE_READ(engine, RING_EIR));
2143         }
2144
2145         addr = intel_engine_get_active_head(engine);
2146         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2147                    upper_32_bits(addr), lower_32_bits(addr));
2148         addr = intel_engine_get_last_batch_head(engine);
2149         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2150                    upper_32_bits(addr), lower_32_bits(addr));
2151         if (GRAPHICS_VER(i915) >= 8)
2152                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2153         else if (GRAPHICS_VER(i915) >= 4)
2154                 addr = ENGINE_READ(engine, RING_DMA_FADD);
2155         else
2156                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2157         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2158                    upper_32_bits(addr), lower_32_bits(addr));
2159         if (GRAPHICS_VER(i915) >= 4) {
2160                 drm_printf(m, "\tIPEIR: 0x%08x\n",
2161                            ENGINE_READ(engine, RING_IPEIR));
2162                 drm_printf(m, "\tIPEHR: 0x%08x\n",
2163                            ENGINE_READ(engine, RING_IPEHR));
2164         } else {
2165                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2166                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2167         }
2168
2169         if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2170                 struct i915_request * const *port, *rq;
2171                 const u32 *hws =
2172                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2173                 const u8 num_entries = execlists->csb_size;
2174                 unsigned int idx;
2175                 u8 read, write;
2176
2177                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2178                            str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2179                            str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2180                            repr_timer(&engine->execlists.preempt),
2181                            repr_timer(&engine->execlists.timer));
2182
2183                 read = execlists->csb_head;
2184                 write = READ_ONCE(*execlists->csb_write);
2185
2186                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2187                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2188                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2189                            read, write, num_entries);
2190
2191                 if (read >= num_entries)
2192                         read = 0;
2193                 if (write >= num_entries)
2194                         write = 0;
2195                 if (read > write)
2196                         write += num_entries;
2197                 while (read < write) {
2198                         idx = ++read % num_entries;
2199                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2200                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
2201                 }
2202
2203                 i915_sched_engine_active_lock_bh(engine->sched_engine);
2204                 rcu_read_lock();
2205                 for (port = execlists->active; (rq = *port); port++) {
2206                         char hdr[160];
2207                         int len;
2208
2209                         len = scnprintf(hdr, sizeof(hdr),
2210                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
2211                                         (int)(port - execlists->active),
2212                                         rq->context->lrc.ccid,
2213                                         intel_context_is_closed(rq->context) ? "!" : "",
2214                                         intel_context_is_banned(rq->context) ? "*" : "");
2215                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2216                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2217                         i915_request_show(m, rq, hdr, 0);
2218                 }
2219                 for (port = execlists->pending; (rq = *port); port++) {
2220                         char hdr[160];
2221                         int len;
2222
2223                         len = scnprintf(hdr, sizeof(hdr),
2224                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
2225                                         (int)(port - execlists->pending),
2226                                         rq->context->lrc.ccid,
2227                                         intel_context_is_closed(rq->context) ? "!" : "",
2228                                         intel_context_is_banned(rq->context) ? "*" : "");
2229                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2230                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2231                         i915_request_show(m, rq, hdr, 0);
2232                 }
2233                 rcu_read_unlock();
2234                 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2235         } else if (GRAPHICS_VER(i915) > 6) {
2236                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2237                            ENGINE_READ(engine, RING_PP_DIR_BASE));
2238                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2239                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2240                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2241                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
2242         }
2243 }
2244
2245 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2246 {
2247         struct i915_vma_resource *vma_res = rq->batch_res;
2248         void *ring;
2249         int size;
2250
2251         drm_printf(m,
2252                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2253                    rq->head, rq->postfix, rq->tail,
2254                    vma_res ? upper_32_bits(vma_res->start) : ~0u,
2255                    vma_res ? lower_32_bits(vma_res->start) : ~0u);
2256
2257         size = rq->tail - rq->head;
2258         if (rq->tail < rq->head)
2259                 size += rq->ring->size;
2260
2261         ring = kmalloc(size, GFP_ATOMIC);
2262         if (ring) {
2263                 const void *vaddr = rq->ring->vaddr;
2264                 unsigned int head = rq->head;
2265                 unsigned int len = 0;
2266
2267                 if (rq->tail < head) {
2268                         len = rq->ring->size - head;
2269                         memcpy(ring, vaddr + head, len);
2270                         head = 0;
2271                 }
2272                 memcpy(ring + len, vaddr + head, size - len);
2273
2274                 hexdump(m, ring, size);
2275                 kfree(ring);
2276         }
2277 }
2278
2279 static unsigned long read_ul(void *p, size_t x)
2280 {
2281         return *(unsigned long *)(p + x);
2282 }
2283
2284 static void print_properties(struct intel_engine_cs *engine,
2285                              struct drm_printer *m)
2286 {
2287         static const struct pmap {
2288                 size_t offset;
2289                 const char *name;
2290         } props[] = {
2291 #define P(x) { \
2292         .offset = offsetof(typeof(engine->props), x), \
2293         .name = #x \
2294 }
2295                 P(heartbeat_interval_ms),
2296                 P(max_busywait_duration_ns),
2297                 P(preempt_timeout_ms),
2298                 P(stop_timeout_ms),
2299                 P(timeslice_duration_ms),
2300
2301                 {},
2302 #undef P
2303         };
2304         const struct pmap *p;
2305
2306         drm_printf(m, "\tProperties:\n");
2307         for (p = props; p->name; p++)
2308                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2309                            p->name,
2310                            read_ul(&engine->props, p->offset),
2311                            read_ul(&engine->defaults, p->offset));
2312 }
2313
2314 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2315 {
2316         struct intel_timeline *tl = get_timeline(rq);
2317
2318         i915_request_show(m, rq, msg, 0);
2319
2320         drm_printf(m, "\t\tring->start:  0x%08x\n",
2321                    i915_ggtt_offset(rq->ring->vma));
2322         drm_printf(m, "\t\tring->head:   0x%08x\n",
2323                    rq->ring->head);
2324         drm_printf(m, "\t\tring->tail:   0x%08x\n",
2325                    rq->ring->tail);
2326         drm_printf(m, "\t\tring->emit:   0x%08x\n",
2327                    rq->ring->emit);
2328         drm_printf(m, "\t\tring->space:  0x%08x\n",
2329                    rq->ring->space);
2330
2331         if (tl) {
2332                 drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2333                            tl->hwsp_offset);
2334                 intel_timeline_put(tl);
2335         }
2336
2337         print_request_ring(m, rq);
2338
2339         if (rq->context->lrc_reg_state) {
2340                 drm_printf(m, "Logical Ring Context:\n");
2341                 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2342         }
2343 }
2344
2345 void intel_engine_dump_active_requests(struct list_head *requests,
2346                                        struct i915_request *hung_rq,
2347                                        struct drm_printer *m)
2348 {
2349         struct i915_request *rq;
2350         const char *msg;
2351         enum i915_request_state state;
2352
2353         list_for_each_entry(rq, requests, sched.link) {
2354                 if (rq == hung_rq)
2355                         continue;
2356
2357                 state = i915_test_request_state(rq);
2358                 if (state < I915_REQUEST_QUEUED)
2359                         continue;
2360
2361                 if (state == I915_REQUEST_ACTIVE)
2362                         msg = "\t\tactive on engine";
2363                 else
2364                         msg = "\t\tactive in queue";
2365
2366                 engine_dump_request(rq, m, msg);
2367         }
2368 }
2369
2370 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2371                                         struct drm_printer *m)
2372 {
2373         struct intel_context *hung_ce = NULL;
2374         struct i915_request *hung_rq = NULL;
2375
2376         /*
2377          * No need for an engine->irq_seqno_barrier() before the seqno reads.
2378          * The GPU is still running so requests are still executing and any
2379          * hardware reads will be out of date by the time they are reported.
2380          * But the intention here is just to report an instantaneous snapshot
2381          * so that's fine.
2382          */
2383         intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2384
2385         drm_printf(m, "\tRequests:\n");
2386
2387         if (hung_rq)
2388                 engine_dump_request(hung_rq, m, "\t\thung");
2389         else if (hung_ce)
2390                 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2391
2392         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2393                 intel_guc_dump_active_requests(engine, hung_rq, m);
2394         else
2395                 intel_execlists_dump_active_requests(engine, hung_rq, m);
2396
2397         if (hung_rq)
2398                 i915_request_put(hung_rq);
2399 }
2400
2401 void intel_engine_dump(struct intel_engine_cs *engine,
2402                        struct drm_printer *m,
2403                        const char *header, ...)
2404 {
2405         struct i915_gpu_error * const error = &engine->i915->gpu_error;
2406         struct i915_request *rq;
2407         intel_wakeref_t wakeref;
2408         ktime_t dummy;
2409
2410         if (header) {
2411                 va_list ap;
2412
2413                 va_start(ap, header);
2414                 drm_vprintf(m, header, &ap);
2415                 va_end(ap);
2416         }
2417
2418         if (intel_gt_is_wedged(engine->gt))
2419                 drm_printf(m, "*** WEDGED ***\n");
2420
2421         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2422         drm_printf(m, "\tBarriers?: %s\n",
2423                    str_yes_no(!llist_empty(&engine->barrier_tasks)));
2424         drm_printf(m, "\tLatency: %luus\n",
2425                    ewma__engine_latency_read(&engine->latency));
2426         if (intel_engine_supports_stats(engine))
2427                 drm_printf(m, "\tRuntime: %llums\n",
2428                            ktime_to_ms(intel_engine_get_busy_time(engine,
2429                                                                   &dummy)));
2430         drm_printf(m, "\tForcewake: %x domains, %d active\n",
2431                    engine->fw_domain, READ_ONCE(engine->fw_active));
2432
2433         rcu_read_lock();
2434         rq = READ_ONCE(engine->heartbeat.systole);
2435         if (rq)
2436                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2437                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2438         rcu_read_unlock();
2439         drm_printf(m, "\tReset count: %d (global %d)\n",
2440                    i915_reset_engine_count(error, engine),
2441                    i915_reset_count(error));
2442         print_properties(engine, m);
2443
2444         engine_dump_active_requests(engine, m);
2445
2446         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2447         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2448         if (wakeref) {
2449                 intel_engine_print_registers(engine, m);
2450                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2451         } else {
2452                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2453         }
2454
2455         intel_execlists_show_requests(engine, m, i915_request_show, 8);
2456
2457         drm_printf(m, "HWSP:\n");
2458         hexdump(m, engine->status_page.addr, PAGE_SIZE);
2459
2460         drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2461
2462         intel_engine_print_breadcrumbs(engine, m);
2463 }
2464
2465 /**
2466  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2467  * @engine: engine to report on
2468  * @now: monotonic timestamp of sampling
2469  *
2470  * Returns accumulated time @engine was busy since engine stats were enabled.
2471  */
2472 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2473 {
2474         return engine->busyness(engine, now);
2475 }
2476
2477 struct intel_context *
2478 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2479                             unsigned int count, unsigned long flags)
2480 {
2481         if (count == 0)
2482                 return ERR_PTR(-EINVAL);
2483
2484         if (count == 1 && !(flags & FORCE_VIRTUAL))
2485                 return intel_context_create(siblings[0]);
2486
2487         GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2488         return siblings[0]->cops->create_virtual(siblings, count, flags);
2489 }
2490
2491 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2492 {
2493         struct i915_request *request, *active = NULL;
2494
2495         /*
2496          * This search does not work in GuC submission mode. However, the GuC
2497          * will report the hanging context directly to the driver itself. So
2498          * the driver should never get here when in GuC mode.
2499          */
2500         GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2501
2502         /*
2503          * We are called by the error capture, reset and to dump engine
2504          * state at random points in time. In particular, note that neither is
2505          * crucially ordered with an interrupt. After a hang, the GPU is dead
2506          * and we assume that no more writes can happen (we waited long enough
2507          * for all writes that were in transaction to be flushed) - adding an
2508          * extra delay for a recent interrupt is pointless. Hence, we do
2509          * not need an engine->irq_seqno_barrier() before the seqno reads.
2510          * At all other times, we must assume the GPU is still running, but
2511          * we only care about the snapshot of this moment.
2512          */
2513         lockdep_assert_held(&engine->sched_engine->lock);
2514
2515         rcu_read_lock();
2516         request = execlists_active(&engine->execlists);
2517         if (request) {
2518                 struct intel_timeline *tl = request->context->timeline;
2519
2520                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2521                         if (__i915_request_is_complete(request))
2522                                 break;
2523
2524                         active = request;
2525                 }
2526         }
2527         rcu_read_unlock();
2528         if (active)
2529                 return active;
2530
2531         list_for_each_entry(request, &engine->sched_engine->requests,
2532                             sched.link) {
2533                 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2534                         continue;
2535
2536                 active = request;
2537                 break;
2538         }
2539
2540         return active;
2541 }
2542
2543 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2544                                   struct intel_context **ce, struct i915_request **rq)
2545 {
2546         unsigned long flags;
2547
2548         *ce = intel_engine_get_hung_context(engine);
2549         if (*ce) {
2550                 intel_engine_clear_hung_context(engine);
2551
2552                 *rq = intel_context_get_active_request(*ce);
2553                 return;
2554         }
2555
2556         /*
2557          * Getting here with GuC enabled means it is a forced error capture
2558          * with no actual hang. So, no need to attempt the execlist search.
2559          */
2560         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2561                 return;
2562
2563         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2564         *rq = engine_execlist_find_hung_request(engine);
2565         if (*rq)
2566                 *rq = i915_request_get_rcu(*rq);
2567         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2568 }
2569
2570 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2571 {
2572         /*
2573          * If there are any non-fused-off CCS engines, we need to enable CCS
2574          * support in the RCU_MODE register.  This only needs to be done once,
2575          * so for simplicity we'll take care of this in the RCS engine's
2576          * resume handler; since the RCS and all CCS engines belong to the
2577          * same reset domain and are reset together, this will also take care
2578          * of re-applying the setting after i915-triggered resets.
2579          */
2580         if (!CCS_MASK(engine->gt))
2581                 return;
2582
2583         intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2584                            _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2585 }
2586
2587 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2588 #include "mock_engine.c"
2589 #include "selftest_engine.c"
2590 #include "selftest_engine_cs.c"
2591 #endif
This page took 0.190584 seconds and 4 git commands to generate.