]> Git Repo - linux.git/blob - fs/ext3/inode.c
dt: Linux DT usage model documentation
[linux.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card ([email protected])
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      ([email protected]), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller ([email protected]), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      ([email protected])
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/fs.h>
26 #include <linux/time.h>
27 #include <linux/ext3_jbd.h>
28 #include <linux/jbd.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/fiemap.h>
39 #include <linux/namei.h>
40 #include <trace/events/ext3.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
46
47 /*
48  * Test whether an inode is a fast symlink.
49  */
50 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 {
52         int ea_blocks = EXT3_I(inode)->i_file_acl ?
53                 (inode->i_sb->s_blocksize >> 9) : 0;
54
55         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
56 }
57
58 /*
59  * The ext3 forget function must perform a revoke if we are freeing data
60  * which has been journaled.  Metadata (eg. indirect blocks) must be
61  * revoked in all cases.
62  *
63  * "bh" may be NULL: a metadata block may have been freed from memory
64  * but there may still be a record of it in the journal, and that record
65  * still needs to be revoked.
66  */
67 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
68                         struct buffer_head *bh, ext3_fsblk_t blocknr)
69 {
70         int err;
71
72         might_sleep();
73
74         trace_ext3_forget(inode, is_metadata, blocknr);
75         BUFFER_TRACE(bh, "enter");
76
77         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
78                   "data mode %lx\n",
79                   bh, is_metadata, inode->i_mode,
80                   test_opt(inode->i_sb, DATA_FLAGS));
81
82         /* Never use the revoke function if we are doing full data
83          * journaling: there is no need to, and a V1 superblock won't
84          * support it.  Otherwise, only skip the revoke on un-journaled
85          * data blocks. */
86
87         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
88             (!is_metadata && !ext3_should_journal_data(inode))) {
89                 if (bh) {
90                         BUFFER_TRACE(bh, "call journal_forget");
91                         return ext3_journal_forget(handle, bh);
92                 }
93                 return 0;
94         }
95
96         /*
97          * data!=journal && (is_metadata || should_journal_data(inode))
98          */
99         BUFFER_TRACE(bh, "call ext3_journal_revoke");
100         err = ext3_journal_revoke(handle, blocknr, bh);
101         if (err)
102                 ext3_abort(inode->i_sb, __func__,
103                            "error %d when attempting revoke", err);
104         BUFFER_TRACE(bh, "exit");
105         return err;
106 }
107
108 /*
109  * Work out how many blocks we need to proceed with the next chunk of a
110  * truncate transaction.
111  */
112 static unsigned long blocks_for_truncate(struct inode *inode)
113 {
114         unsigned long needed;
115
116         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
117
118         /* Give ourselves just enough room to cope with inodes in which
119          * i_blocks is corrupt: we've seen disk corruptions in the past
120          * which resulted in random data in an inode which looked enough
121          * like a regular file for ext3 to try to delete it.  Things
122          * will go a bit crazy if that happens, but at least we should
123          * try not to panic the whole kernel. */
124         if (needed < 2)
125                 needed = 2;
126
127         /* But we need to bound the transaction so we don't overflow the
128          * journal. */
129         if (needed > EXT3_MAX_TRANS_DATA)
130                 needed = EXT3_MAX_TRANS_DATA;
131
132         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
133 }
134
135 /*
136  * Truncate transactions can be complex and absolutely huge.  So we need to
137  * be able to restart the transaction at a conventient checkpoint to make
138  * sure we don't overflow the journal.
139  *
140  * start_transaction gets us a new handle for a truncate transaction,
141  * and extend_transaction tries to extend the existing one a bit.  If
142  * extend fails, we need to propagate the failure up and restart the
143  * transaction in the top-level truncate loop. --sct
144  */
145 static handle_t *start_transaction(struct inode *inode)
146 {
147         handle_t *result;
148
149         result = ext3_journal_start(inode, blocks_for_truncate(inode));
150         if (!IS_ERR(result))
151                 return result;
152
153         ext3_std_error(inode->i_sb, PTR_ERR(result));
154         return result;
155 }
156
157 /*
158  * Try to extend this transaction for the purposes of truncation.
159  *
160  * Returns 0 if we managed to create more room.  If we can't create more
161  * room, and the transaction must be restarted we return 1.
162  */
163 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164 {
165         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166                 return 0;
167         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168                 return 0;
169         return 1;
170 }
171
172 /*
173  * Restart the transaction associated with *handle.  This does a commit,
174  * so before we call here everything must be consistently dirtied against
175  * this transaction.
176  */
177 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
178 {
179         int ret;
180
181         jbd_debug(2, "restarting handle %p\n", handle);
182         /*
183          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
184          * At this moment, get_block can be called only for blocks inside
185          * i_size since page cache has been already dropped and writes are
186          * blocked by i_mutex. So we can safely drop the truncate_mutex.
187          */
188         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
189         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
190         mutex_lock(&EXT3_I(inode)->truncate_mutex);
191         return ret;
192 }
193
194 /*
195  * Called at inode eviction from icache
196  */
197 void ext3_evict_inode (struct inode *inode)
198 {
199         struct ext3_inode_info *ei = EXT3_I(inode);
200         struct ext3_block_alloc_info *rsv;
201         handle_t *handle;
202         int want_delete = 0;
203
204         trace_ext3_evict_inode(inode);
205         if (!inode->i_nlink && !is_bad_inode(inode)) {
206                 dquot_initialize(inode);
207                 want_delete = 1;
208         }
209
210         /*
211          * When journalling data dirty buffers are tracked only in the journal.
212          * So although mm thinks everything is clean and ready for reaping the
213          * inode might still have some pages to write in the running
214          * transaction or waiting to be checkpointed. Thus calling
215          * journal_invalidatepage() (via truncate_inode_pages()) to discard
216          * these buffers can cause data loss. Also even if we did not discard
217          * these buffers, we would have no way to find them after the inode
218          * is reaped and thus user could see stale data if he tries to read
219          * them before the transaction is checkpointed. So be careful and
220          * force everything to disk here... We use ei->i_datasync_tid to
221          * store the newest transaction containing inode's data.
222          *
223          * Note that directories do not have this problem because they don't
224          * use page cache.
225          *
226          * The s_journal check handles the case when ext3_get_journal() fails
227          * and puts the journal inode.
228          */
229         if (inode->i_nlink && ext3_should_journal_data(inode) &&
230             EXT3_SB(inode->i_sb)->s_journal &&
231             (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
232                 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
233                 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
234
235                 log_start_commit(journal, commit_tid);
236                 log_wait_commit(journal, commit_tid);
237                 filemap_write_and_wait(&inode->i_data);
238         }
239         truncate_inode_pages(&inode->i_data, 0);
240
241         ext3_discard_reservation(inode);
242         rsv = ei->i_block_alloc_info;
243         ei->i_block_alloc_info = NULL;
244         if (unlikely(rsv))
245                 kfree(rsv);
246
247         if (!want_delete)
248                 goto no_delete;
249
250         handle = start_transaction(inode);
251         if (IS_ERR(handle)) {
252                 /*
253                  * If we're going to skip the normal cleanup, we still need to
254                  * make sure that the in-core orphan linked list is properly
255                  * cleaned up.
256                  */
257                 ext3_orphan_del(NULL, inode);
258                 goto no_delete;
259         }
260
261         if (IS_SYNC(inode))
262                 handle->h_sync = 1;
263         inode->i_size = 0;
264         if (inode->i_blocks)
265                 ext3_truncate(inode);
266         /*
267          * Kill off the orphan record created when the inode lost the last
268          * link.  Note that ext3_orphan_del() has to be able to cope with the
269          * deletion of a non-existent orphan - ext3_truncate() could
270          * have removed the record.
271          */
272         ext3_orphan_del(handle, inode);
273         ei->i_dtime = get_seconds();
274
275         /*
276          * One subtle ordering requirement: if anything has gone wrong
277          * (transaction abort, IO errors, whatever), then we can still
278          * do these next steps (the fs will already have been marked as
279          * having errors), but we can't free the inode if the mark_dirty
280          * fails.
281          */
282         if (ext3_mark_inode_dirty(handle, inode)) {
283                 /* If that failed, just dquot_drop() and be done with that */
284                 dquot_drop(inode);
285                 end_writeback(inode);
286         } else {
287                 ext3_xattr_delete_inode(handle, inode);
288                 dquot_free_inode(inode);
289                 dquot_drop(inode);
290                 end_writeback(inode);
291                 ext3_free_inode(handle, inode);
292         }
293         ext3_journal_stop(handle);
294         return;
295 no_delete:
296         end_writeback(inode);
297         dquot_drop(inode);
298 }
299
300 typedef struct {
301         __le32  *p;
302         __le32  key;
303         struct buffer_head *bh;
304 } Indirect;
305
306 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
307 {
308         p->key = *(p->p = v);
309         p->bh = bh;
310 }
311
312 static int verify_chain(Indirect *from, Indirect *to)
313 {
314         while (from <= to && from->key == *from->p)
315                 from++;
316         return (from > to);
317 }
318
319 /**
320  *      ext3_block_to_path - parse the block number into array of offsets
321  *      @inode: inode in question (we are only interested in its superblock)
322  *      @i_block: block number to be parsed
323  *      @offsets: array to store the offsets in
324  *      @boundary: set this non-zero if the referred-to block is likely to be
325  *             followed (on disk) by an indirect block.
326  *
327  *      To store the locations of file's data ext3 uses a data structure common
328  *      for UNIX filesystems - tree of pointers anchored in the inode, with
329  *      data blocks at leaves and indirect blocks in intermediate nodes.
330  *      This function translates the block number into path in that tree -
331  *      return value is the path length and @offsets[n] is the offset of
332  *      pointer to (n+1)th node in the nth one. If @block is out of range
333  *      (negative or too large) warning is printed and zero returned.
334  *
335  *      Note: function doesn't find node addresses, so no IO is needed. All
336  *      we need to know is the capacity of indirect blocks (taken from the
337  *      inode->i_sb).
338  */
339
340 /*
341  * Portability note: the last comparison (check that we fit into triple
342  * indirect block) is spelled differently, because otherwise on an
343  * architecture with 32-bit longs and 8Kb pages we might get into trouble
344  * if our filesystem had 8Kb blocks. We might use long long, but that would
345  * kill us on x86. Oh, well, at least the sign propagation does not matter -
346  * i_block would have to be negative in the very beginning, so we would not
347  * get there at all.
348  */
349
350 static int ext3_block_to_path(struct inode *inode,
351                         long i_block, int offsets[4], int *boundary)
352 {
353         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
354         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
355         const long direct_blocks = EXT3_NDIR_BLOCKS,
356                 indirect_blocks = ptrs,
357                 double_blocks = (1 << (ptrs_bits * 2));
358         int n = 0;
359         int final = 0;
360
361         if (i_block < 0) {
362                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
363         } else if (i_block < direct_blocks) {
364                 offsets[n++] = i_block;
365                 final = direct_blocks;
366         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
367                 offsets[n++] = EXT3_IND_BLOCK;
368                 offsets[n++] = i_block;
369                 final = ptrs;
370         } else if ((i_block -= indirect_blocks) < double_blocks) {
371                 offsets[n++] = EXT3_DIND_BLOCK;
372                 offsets[n++] = i_block >> ptrs_bits;
373                 offsets[n++] = i_block & (ptrs - 1);
374                 final = ptrs;
375         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
376                 offsets[n++] = EXT3_TIND_BLOCK;
377                 offsets[n++] = i_block >> (ptrs_bits * 2);
378                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
379                 offsets[n++] = i_block & (ptrs - 1);
380                 final = ptrs;
381         } else {
382                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
383         }
384         if (boundary)
385                 *boundary = final - 1 - (i_block & (ptrs - 1));
386         return n;
387 }
388
389 /**
390  *      ext3_get_branch - read the chain of indirect blocks leading to data
391  *      @inode: inode in question
392  *      @depth: depth of the chain (1 - direct pointer, etc.)
393  *      @offsets: offsets of pointers in inode/indirect blocks
394  *      @chain: place to store the result
395  *      @err: here we store the error value
396  *
397  *      Function fills the array of triples <key, p, bh> and returns %NULL
398  *      if everything went OK or the pointer to the last filled triple
399  *      (incomplete one) otherwise. Upon the return chain[i].key contains
400  *      the number of (i+1)-th block in the chain (as it is stored in memory,
401  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
402  *      number (it points into struct inode for i==0 and into the bh->b_data
403  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
404  *      block for i>0 and NULL for i==0. In other words, it holds the block
405  *      numbers of the chain, addresses they were taken from (and where we can
406  *      verify that chain did not change) and buffer_heads hosting these
407  *      numbers.
408  *
409  *      Function stops when it stumbles upon zero pointer (absent block)
410  *              (pointer to last triple returned, *@err == 0)
411  *      or when it gets an IO error reading an indirect block
412  *              (ditto, *@err == -EIO)
413  *      or when it notices that chain had been changed while it was reading
414  *              (ditto, *@err == -EAGAIN)
415  *      or when it reads all @depth-1 indirect blocks successfully and finds
416  *      the whole chain, all way to the data (returns %NULL, *err == 0).
417  */
418 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
419                                  Indirect chain[4], int *err)
420 {
421         struct super_block *sb = inode->i_sb;
422         Indirect *p = chain;
423         struct buffer_head *bh;
424
425         *err = 0;
426         /* i_data is not going away, no lock needed */
427         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
428         if (!p->key)
429                 goto no_block;
430         while (--depth) {
431                 bh = sb_bread(sb, le32_to_cpu(p->key));
432                 if (!bh)
433                         goto failure;
434                 /* Reader: pointers */
435                 if (!verify_chain(chain, p))
436                         goto changed;
437                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
438                 /* Reader: end */
439                 if (!p->key)
440                         goto no_block;
441         }
442         return NULL;
443
444 changed:
445         brelse(bh);
446         *err = -EAGAIN;
447         goto no_block;
448 failure:
449         *err = -EIO;
450 no_block:
451         return p;
452 }
453
454 /**
455  *      ext3_find_near - find a place for allocation with sufficient locality
456  *      @inode: owner
457  *      @ind: descriptor of indirect block.
458  *
459  *      This function returns the preferred place for block allocation.
460  *      It is used when heuristic for sequential allocation fails.
461  *      Rules are:
462  *        + if there is a block to the left of our position - allocate near it.
463  *        + if pointer will live in indirect block - allocate near that block.
464  *        + if pointer will live in inode - allocate in the same
465  *          cylinder group.
466  *
467  * In the latter case we colour the starting block by the callers PID to
468  * prevent it from clashing with concurrent allocations for a different inode
469  * in the same block group.   The PID is used here so that functionally related
470  * files will be close-by on-disk.
471  *
472  *      Caller must make sure that @ind is valid and will stay that way.
473  */
474 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
475 {
476         struct ext3_inode_info *ei = EXT3_I(inode);
477         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
478         __le32 *p;
479         ext3_fsblk_t bg_start;
480         ext3_grpblk_t colour;
481
482         /* Try to find previous block */
483         for (p = ind->p - 1; p >= start; p--) {
484                 if (*p)
485                         return le32_to_cpu(*p);
486         }
487
488         /* No such thing, so let's try location of indirect block */
489         if (ind->bh)
490                 return ind->bh->b_blocknr;
491
492         /*
493          * It is going to be referred to from the inode itself? OK, just put it
494          * into the same cylinder group then.
495          */
496         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
497         colour = (current->pid % 16) *
498                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
499         return bg_start + colour;
500 }
501
502 /**
503  *      ext3_find_goal - find a preferred place for allocation.
504  *      @inode: owner
505  *      @block:  block we want
506  *      @partial: pointer to the last triple within a chain
507  *
508  *      Normally this function find the preferred place for block allocation,
509  *      returns it.
510  */
511
512 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
513                                    Indirect *partial)
514 {
515         struct ext3_block_alloc_info *block_i;
516
517         block_i =  EXT3_I(inode)->i_block_alloc_info;
518
519         /*
520          * try the heuristic for sequential allocation,
521          * failing that at least try to get decent locality.
522          */
523         if (block_i && (block == block_i->last_alloc_logical_block + 1)
524                 && (block_i->last_alloc_physical_block != 0)) {
525                 return block_i->last_alloc_physical_block + 1;
526         }
527
528         return ext3_find_near(inode, partial);
529 }
530
531 /**
532  *      ext3_blks_to_allocate - Look up the block map and count the number
533  *      of direct blocks need to be allocated for the given branch.
534  *
535  *      @branch: chain of indirect blocks
536  *      @k: number of blocks need for indirect blocks
537  *      @blks: number of data blocks to be mapped.
538  *      @blocks_to_boundary:  the offset in the indirect block
539  *
540  *      return the total number of blocks to be allocate, including the
541  *      direct and indirect blocks.
542  */
543 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
544                 int blocks_to_boundary)
545 {
546         unsigned long count = 0;
547
548         /*
549          * Simple case, [t,d]Indirect block(s) has not allocated yet
550          * then it's clear blocks on that path have not allocated
551          */
552         if (k > 0) {
553                 /* right now we don't handle cross boundary allocation */
554                 if (blks < blocks_to_boundary + 1)
555                         count += blks;
556                 else
557                         count += blocks_to_boundary + 1;
558                 return count;
559         }
560
561         count++;
562         while (count < blks && count <= blocks_to_boundary &&
563                 le32_to_cpu(*(branch[0].p + count)) == 0) {
564                 count++;
565         }
566         return count;
567 }
568
569 /**
570  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
571  *      @handle: handle for this transaction
572  *      @inode: owner
573  *      @goal: preferred place for allocation
574  *      @indirect_blks: the number of blocks need to allocate for indirect
575  *                      blocks
576  *      @blks:  number of blocks need to allocated for direct blocks
577  *      @new_blocks: on return it will store the new block numbers for
578  *      the indirect blocks(if needed) and the first direct block,
579  *      @err: here we store the error value
580  *
581  *      return the number of direct blocks allocated
582  */
583 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
584                         ext3_fsblk_t goal, int indirect_blks, int blks,
585                         ext3_fsblk_t new_blocks[4], int *err)
586 {
587         int target, i;
588         unsigned long count = 0;
589         int index = 0;
590         ext3_fsblk_t current_block = 0;
591         int ret = 0;
592
593         /*
594          * Here we try to allocate the requested multiple blocks at once,
595          * on a best-effort basis.
596          * To build a branch, we should allocate blocks for
597          * the indirect blocks(if not allocated yet), and at least
598          * the first direct block of this branch.  That's the
599          * minimum number of blocks need to allocate(required)
600          */
601         target = blks + indirect_blks;
602
603         while (1) {
604                 count = target;
605                 /* allocating blocks for indirect blocks and direct blocks */
606                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
607                 if (*err)
608                         goto failed_out;
609
610                 target -= count;
611                 /* allocate blocks for indirect blocks */
612                 while (index < indirect_blks && count) {
613                         new_blocks[index++] = current_block++;
614                         count--;
615                 }
616
617                 if (count > 0)
618                         break;
619         }
620
621         /* save the new block number for the first direct block */
622         new_blocks[index] = current_block;
623
624         /* total number of blocks allocated for direct blocks */
625         ret = count;
626         *err = 0;
627         return ret;
628 failed_out:
629         for (i = 0; i <index; i++)
630                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
631         return ret;
632 }
633
634 /**
635  *      ext3_alloc_branch - allocate and set up a chain of blocks.
636  *      @handle: handle for this transaction
637  *      @inode: owner
638  *      @indirect_blks: number of allocated indirect blocks
639  *      @blks: number of allocated direct blocks
640  *      @goal: preferred place for allocation
641  *      @offsets: offsets (in the blocks) to store the pointers to next.
642  *      @branch: place to store the chain in.
643  *
644  *      This function allocates blocks, zeroes out all but the last one,
645  *      links them into chain and (if we are synchronous) writes them to disk.
646  *      In other words, it prepares a branch that can be spliced onto the
647  *      inode. It stores the information about that chain in the branch[], in
648  *      the same format as ext3_get_branch() would do. We are calling it after
649  *      we had read the existing part of chain and partial points to the last
650  *      triple of that (one with zero ->key). Upon the exit we have the same
651  *      picture as after the successful ext3_get_block(), except that in one
652  *      place chain is disconnected - *branch->p is still zero (we did not
653  *      set the last link), but branch->key contains the number that should
654  *      be placed into *branch->p to fill that gap.
655  *
656  *      If allocation fails we free all blocks we've allocated (and forget
657  *      their buffer_heads) and return the error value the from failed
658  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *      as described above and return 0.
660  */
661 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
662                         int indirect_blks, int *blks, ext3_fsblk_t goal,
663                         int *offsets, Indirect *branch)
664 {
665         int blocksize = inode->i_sb->s_blocksize;
666         int i, n = 0;
667         int err = 0;
668         struct buffer_head *bh;
669         int num;
670         ext3_fsblk_t new_blocks[4];
671         ext3_fsblk_t current_block;
672
673         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
674                                 *blks, new_blocks, &err);
675         if (err)
676                 return err;
677
678         branch[0].key = cpu_to_le32(new_blocks[0]);
679         /*
680          * metadata blocks and data blocks are allocated.
681          */
682         for (n = 1; n <= indirect_blks;  n++) {
683                 /*
684                  * Get buffer_head for parent block, zero it out
685                  * and set the pointer to new one, then send
686                  * parent to disk.
687                  */
688                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
689                 branch[n].bh = bh;
690                 lock_buffer(bh);
691                 BUFFER_TRACE(bh, "call get_create_access");
692                 err = ext3_journal_get_create_access(handle, bh);
693                 if (err) {
694                         unlock_buffer(bh);
695                         brelse(bh);
696                         goto failed;
697                 }
698
699                 memset(bh->b_data, 0, blocksize);
700                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
701                 branch[n].key = cpu_to_le32(new_blocks[n]);
702                 *branch[n].p = branch[n].key;
703                 if ( n == indirect_blks) {
704                         current_block = new_blocks[n];
705                         /*
706                          * End of chain, update the last new metablock of
707                          * the chain to point to the new allocated
708                          * data blocks numbers
709                          */
710                         for (i=1; i < num; i++)
711                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
712                 }
713                 BUFFER_TRACE(bh, "marking uptodate");
714                 set_buffer_uptodate(bh);
715                 unlock_buffer(bh);
716
717                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
718                 err = ext3_journal_dirty_metadata(handle, bh);
719                 if (err)
720                         goto failed;
721         }
722         *blks = num;
723         return err;
724 failed:
725         /* Allocation failed, free what we already allocated */
726         for (i = 1; i <= n ; i++) {
727                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
728                 ext3_journal_forget(handle, branch[i].bh);
729         }
730         for (i = 0; i <indirect_blks; i++)
731                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
732
733         ext3_free_blocks(handle, inode, new_blocks[i], num);
734
735         return err;
736 }
737
738 /**
739  * ext3_splice_branch - splice the allocated branch onto inode.
740  * @handle: handle for this transaction
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @where: location of missing link
744  * @num:   number of indirect blocks we are adding
745  * @blks:  number of direct blocks we are adding
746  *
747  * This function fills the missing link and does all housekeeping needed in
748  * inode (->i_blocks, etc.). In case of success we end up with the full
749  * chain to new block and return 0.
750  */
751 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
752                         long block, Indirect *where, int num, int blks)
753 {
754         int i;
755         int err = 0;
756         struct ext3_block_alloc_info *block_i;
757         ext3_fsblk_t current_block;
758         struct ext3_inode_info *ei = EXT3_I(inode);
759         struct timespec now;
760
761         block_i = ei->i_block_alloc_info;
762         /*
763          * If we're splicing into a [td]indirect block (as opposed to the
764          * inode) then we need to get write access to the [td]indirect block
765          * before the splice.
766          */
767         if (where->bh) {
768                 BUFFER_TRACE(where->bh, "get_write_access");
769                 err = ext3_journal_get_write_access(handle, where->bh);
770                 if (err)
771                         goto err_out;
772         }
773         /* That's it */
774
775         *where->p = where->key;
776
777         /*
778          * Update the host buffer_head or inode to point to more just allocated
779          * direct blocks blocks
780          */
781         if (num == 0 && blks > 1) {
782                 current_block = le32_to_cpu(where->key) + 1;
783                 for (i = 1; i < blks; i++)
784                         *(where->p + i ) = cpu_to_le32(current_block++);
785         }
786
787         /*
788          * update the most recently allocated logical & physical block
789          * in i_block_alloc_info, to assist find the proper goal block for next
790          * allocation
791          */
792         if (block_i) {
793                 block_i->last_alloc_logical_block = block + blks - 1;
794                 block_i->last_alloc_physical_block =
795                                 le32_to_cpu(where[num].key) + blks - 1;
796         }
797
798         /* We are done with atomic stuff, now do the rest of housekeeping */
799         now = CURRENT_TIME_SEC;
800         if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
801                 inode->i_ctime = now;
802                 ext3_mark_inode_dirty(handle, inode);
803         }
804         /* ext3_mark_inode_dirty already updated i_sync_tid */
805         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
806
807         /* had we spliced it onto indirect block? */
808         if (where->bh) {
809                 /*
810                  * If we spliced it onto an indirect block, we haven't
811                  * altered the inode.  Note however that if it is being spliced
812                  * onto an indirect block at the very end of the file (the
813                  * file is growing) then we *will* alter the inode to reflect
814                  * the new i_size.  But that is not done here - it is done in
815                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
816                  */
817                 jbd_debug(5, "splicing indirect only\n");
818                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
819                 err = ext3_journal_dirty_metadata(handle, where->bh);
820                 if (err)
821                         goto err_out;
822         } else {
823                 /*
824                  * OK, we spliced it into the inode itself on a direct block.
825                  * Inode was dirtied above.
826                  */
827                 jbd_debug(5, "splicing direct\n");
828         }
829         return err;
830
831 err_out:
832         for (i = 1; i <= num; i++) {
833                 BUFFER_TRACE(where[i].bh, "call journal_forget");
834                 ext3_journal_forget(handle, where[i].bh);
835                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
836         }
837         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
838
839         return err;
840 }
841
842 /*
843  * Allocation strategy is simple: if we have to allocate something, we will
844  * have to go the whole way to leaf. So let's do it before attaching anything
845  * to tree, set linkage between the newborn blocks, write them if sync is
846  * required, recheck the path, free and repeat if check fails, otherwise
847  * set the last missing link (that will protect us from any truncate-generated
848  * removals - all blocks on the path are immune now) and possibly force the
849  * write on the parent block.
850  * That has a nice additional property: no special recovery from the failed
851  * allocations is needed - we simply release blocks and do not touch anything
852  * reachable from inode.
853  *
854  * `handle' can be NULL if create == 0.
855  *
856  * The BKL may not be held on entry here.  Be sure to take it early.
857  * return > 0, # of blocks mapped or allocated.
858  * return = 0, if plain lookup failed.
859  * return < 0, error case.
860  */
861 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
862                 sector_t iblock, unsigned long maxblocks,
863                 struct buffer_head *bh_result,
864                 int create)
865 {
866         int err = -EIO;
867         int offsets[4];
868         Indirect chain[4];
869         Indirect *partial;
870         ext3_fsblk_t goal;
871         int indirect_blks;
872         int blocks_to_boundary = 0;
873         int depth;
874         struct ext3_inode_info *ei = EXT3_I(inode);
875         int count = 0;
876         ext3_fsblk_t first_block = 0;
877
878
879         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
880         J_ASSERT(handle != NULL || create == 0);
881         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
882
883         if (depth == 0)
884                 goto out;
885
886         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
887
888         /* Simplest case - block found, no allocation needed */
889         if (!partial) {
890                 first_block = le32_to_cpu(chain[depth - 1].key);
891                 clear_buffer_new(bh_result);
892                 count++;
893                 /*map more blocks*/
894                 while (count < maxblocks && count <= blocks_to_boundary) {
895                         ext3_fsblk_t blk;
896
897                         if (!verify_chain(chain, chain + depth - 1)) {
898                                 /*
899                                  * Indirect block might be removed by
900                                  * truncate while we were reading it.
901                                  * Handling of that case: forget what we've
902                                  * got now. Flag the err as EAGAIN, so it
903                                  * will reread.
904                                  */
905                                 err = -EAGAIN;
906                                 count = 0;
907                                 break;
908                         }
909                         blk = le32_to_cpu(*(chain[depth-1].p + count));
910
911                         if (blk == first_block + count)
912                                 count++;
913                         else
914                                 break;
915                 }
916                 if (err != -EAGAIN)
917                         goto got_it;
918         }
919
920         /* Next simple case - plain lookup or failed read of indirect block */
921         if (!create || err == -EIO)
922                 goto cleanup;
923
924         /*
925          * Block out ext3_truncate while we alter the tree
926          */
927         mutex_lock(&ei->truncate_mutex);
928
929         /*
930          * If the indirect block is missing while we are reading
931          * the chain(ext3_get_branch() returns -EAGAIN err), or
932          * if the chain has been changed after we grab the semaphore,
933          * (either because another process truncated this branch, or
934          * another get_block allocated this branch) re-grab the chain to see if
935          * the request block has been allocated or not.
936          *
937          * Since we already block the truncate/other get_block
938          * at this point, we will have the current copy of the chain when we
939          * splice the branch into the tree.
940          */
941         if (err == -EAGAIN || !verify_chain(chain, partial)) {
942                 while (partial > chain) {
943                         brelse(partial->bh);
944                         partial--;
945                 }
946                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
947                 if (!partial) {
948                         count++;
949                         mutex_unlock(&ei->truncate_mutex);
950                         if (err)
951                                 goto cleanup;
952                         clear_buffer_new(bh_result);
953                         goto got_it;
954                 }
955         }
956
957         /*
958          * Okay, we need to do block allocation.  Lazily initialize the block
959          * allocation info here if necessary
960         */
961         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
962                 ext3_init_block_alloc_info(inode);
963
964         goal = ext3_find_goal(inode, iblock, partial);
965
966         /* the number of blocks need to allocate for [d,t]indirect blocks */
967         indirect_blks = (chain + depth) - partial - 1;
968
969         /*
970          * Next look up the indirect map to count the totoal number of
971          * direct blocks to allocate for this branch.
972          */
973         count = ext3_blks_to_allocate(partial, indirect_blks,
974                                         maxblocks, blocks_to_boundary);
975         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
976                                 offsets + (partial - chain), partial);
977
978         /*
979          * The ext3_splice_branch call will free and forget any buffers
980          * on the new chain if there is a failure, but that risks using
981          * up transaction credits, especially for bitmaps where the
982          * credits cannot be returned.  Can we handle this somehow?  We
983          * may need to return -EAGAIN upwards in the worst case.  --sct
984          */
985         if (!err)
986                 err = ext3_splice_branch(handle, inode, iblock,
987                                         partial, indirect_blks, count);
988         mutex_unlock(&ei->truncate_mutex);
989         if (err)
990                 goto cleanup;
991
992         set_buffer_new(bh_result);
993 got_it:
994         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
995         if (count > blocks_to_boundary)
996                 set_buffer_boundary(bh_result);
997         err = count;
998         /* Clean up and exit */
999         partial = chain + depth - 1;    /* the whole chain */
1000 cleanup:
1001         while (partial > chain) {
1002                 BUFFER_TRACE(partial->bh, "call brelse");
1003                 brelse(partial->bh);
1004                 partial--;
1005         }
1006         BUFFER_TRACE(bh_result, "returned");
1007 out:
1008         trace_ext3_get_blocks_exit(inode, iblock,
1009                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
1010                                    count, err);
1011         return err;
1012 }
1013
1014 /* Maximum number of blocks we map for direct IO at once. */
1015 #define DIO_MAX_BLOCKS 4096
1016 /*
1017  * Number of credits we need for writing DIO_MAX_BLOCKS:
1018  * We need sb + group descriptor + bitmap + inode -> 4
1019  * For B blocks with A block pointers per block we need:
1020  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1021  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1022  */
1023 #define DIO_CREDITS 25
1024
1025 static int ext3_get_block(struct inode *inode, sector_t iblock,
1026                         struct buffer_head *bh_result, int create)
1027 {
1028         handle_t *handle = ext3_journal_current_handle();
1029         int ret = 0, started = 0;
1030         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1031
1032         if (create && !handle) {        /* Direct IO write... */
1033                 if (max_blocks > DIO_MAX_BLOCKS)
1034                         max_blocks = DIO_MAX_BLOCKS;
1035                 handle = ext3_journal_start(inode, DIO_CREDITS +
1036                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1037                 if (IS_ERR(handle)) {
1038                         ret = PTR_ERR(handle);
1039                         goto out;
1040                 }
1041                 started = 1;
1042         }
1043
1044         ret = ext3_get_blocks_handle(handle, inode, iblock,
1045                                         max_blocks, bh_result, create);
1046         if (ret > 0) {
1047                 bh_result->b_size = (ret << inode->i_blkbits);
1048                 ret = 0;
1049         }
1050         if (started)
1051                 ext3_journal_stop(handle);
1052 out:
1053         return ret;
1054 }
1055
1056 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1057                 u64 start, u64 len)
1058 {
1059         return generic_block_fiemap(inode, fieinfo, start, len,
1060                                     ext3_get_block);
1061 }
1062
1063 /*
1064  * `handle' can be NULL if create is zero
1065  */
1066 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1067                                 long block, int create, int *errp)
1068 {
1069         struct buffer_head dummy;
1070         int fatal = 0, err;
1071
1072         J_ASSERT(handle != NULL || create == 0);
1073
1074         dummy.b_state = 0;
1075         dummy.b_blocknr = -1000;
1076         buffer_trace_init(&dummy.b_history);
1077         err = ext3_get_blocks_handle(handle, inode, block, 1,
1078                                         &dummy, create);
1079         /*
1080          * ext3_get_blocks_handle() returns number of blocks
1081          * mapped. 0 in case of a HOLE.
1082          */
1083         if (err > 0) {
1084                 if (err > 1)
1085                         WARN_ON(1);
1086                 err = 0;
1087         }
1088         *errp = err;
1089         if (!err && buffer_mapped(&dummy)) {
1090                 struct buffer_head *bh;
1091                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1092                 if (!bh) {
1093                         *errp = -EIO;
1094                         goto err;
1095                 }
1096                 if (buffer_new(&dummy)) {
1097                         J_ASSERT(create != 0);
1098                         J_ASSERT(handle != NULL);
1099
1100                         /*
1101                          * Now that we do not always journal data, we should
1102                          * keep in mind whether this should always journal the
1103                          * new buffer as metadata.  For now, regular file
1104                          * writes use ext3_get_block instead, so it's not a
1105                          * problem.
1106                          */
1107                         lock_buffer(bh);
1108                         BUFFER_TRACE(bh, "call get_create_access");
1109                         fatal = ext3_journal_get_create_access(handle, bh);
1110                         if (!fatal && !buffer_uptodate(bh)) {
1111                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1112                                 set_buffer_uptodate(bh);
1113                         }
1114                         unlock_buffer(bh);
1115                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1116                         err = ext3_journal_dirty_metadata(handle, bh);
1117                         if (!fatal)
1118                                 fatal = err;
1119                 } else {
1120                         BUFFER_TRACE(bh, "not a new buffer");
1121                 }
1122                 if (fatal) {
1123                         *errp = fatal;
1124                         brelse(bh);
1125                         bh = NULL;
1126                 }
1127                 return bh;
1128         }
1129 err:
1130         return NULL;
1131 }
1132
1133 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1134                                int block, int create, int *err)
1135 {
1136         struct buffer_head * bh;
1137
1138         bh = ext3_getblk(handle, inode, block, create, err);
1139         if (!bh)
1140                 return bh;
1141         if (bh_uptodate_or_lock(bh))
1142                 return bh;
1143         get_bh(bh);
1144         bh->b_end_io = end_buffer_read_sync;
1145         submit_bh(READ | REQ_META | REQ_PRIO, bh);
1146         wait_on_buffer(bh);
1147         if (buffer_uptodate(bh))
1148                 return bh;
1149         put_bh(bh);
1150         *err = -EIO;
1151         return NULL;
1152 }
1153
1154 static int walk_page_buffers(   handle_t *handle,
1155                                 struct buffer_head *head,
1156                                 unsigned from,
1157                                 unsigned to,
1158                                 int *partial,
1159                                 int (*fn)(      handle_t *handle,
1160                                                 struct buffer_head *bh))
1161 {
1162         struct buffer_head *bh;
1163         unsigned block_start, block_end;
1164         unsigned blocksize = head->b_size;
1165         int err, ret = 0;
1166         struct buffer_head *next;
1167
1168         for (   bh = head, block_start = 0;
1169                 ret == 0 && (bh != head || !block_start);
1170                 block_start = block_end, bh = next)
1171         {
1172                 next = bh->b_this_page;
1173                 block_end = block_start + blocksize;
1174                 if (block_end <= from || block_start >= to) {
1175                         if (partial && !buffer_uptodate(bh))
1176                                 *partial = 1;
1177                         continue;
1178                 }
1179                 err = (*fn)(handle, bh);
1180                 if (!ret)
1181                         ret = err;
1182         }
1183         return ret;
1184 }
1185
1186 /*
1187  * To preserve ordering, it is essential that the hole instantiation and
1188  * the data write be encapsulated in a single transaction.  We cannot
1189  * close off a transaction and start a new one between the ext3_get_block()
1190  * and the commit_write().  So doing the journal_start at the start of
1191  * prepare_write() is the right place.
1192  *
1193  * Also, this function can nest inside ext3_writepage() ->
1194  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1195  * has generated enough buffer credits to do the whole page.  So we won't
1196  * block on the journal in that case, which is good, because the caller may
1197  * be PF_MEMALLOC.
1198  *
1199  * By accident, ext3 can be reentered when a transaction is open via
1200  * quota file writes.  If we were to commit the transaction while thus
1201  * reentered, there can be a deadlock - we would be holding a quota
1202  * lock, and the commit would never complete if another thread had a
1203  * transaction open and was blocking on the quota lock - a ranking
1204  * violation.
1205  *
1206  * So what we do is to rely on the fact that journal_stop/journal_start
1207  * will _not_ run commit under these circumstances because handle->h_ref
1208  * is elevated.  We'll still have enough credits for the tiny quotafile
1209  * write.
1210  */
1211 static int do_journal_get_write_access(handle_t *handle,
1212                                         struct buffer_head *bh)
1213 {
1214         int dirty = buffer_dirty(bh);
1215         int ret;
1216
1217         if (!buffer_mapped(bh) || buffer_freed(bh))
1218                 return 0;
1219         /*
1220          * __block_prepare_write() could have dirtied some buffers. Clean
1221          * the dirty bit as jbd2_journal_get_write_access() could complain
1222          * otherwise about fs integrity issues. Setting of the dirty bit
1223          * by __block_prepare_write() isn't a real problem here as we clear
1224          * the bit before releasing a page lock and thus writeback cannot
1225          * ever write the buffer.
1226          */
1227         if (dirty)
1228                 clear_buffer_dirty(bh);
1229         ret = ext3_journal_get_write_access(handle, bh);
1230         if (!ret && dirty)
1231                 ret = ext3_journal_dirty_metadata(handle, bh);
1232         return ret;
1233 }
1234
1235 /*
1236  * Truncate blocks that were not used by write. We have to truncate the
1237  * pagecache as well so that corresponding buffers get properly unmapped.
1238  */
1239 static void ext3_truncate_failed_write(struct inode *inode)
1240 {
1241         truncate_inode_pages(inode->i_mapping, inode->i_size);
1242         ext3_truncate(inode);
1243 }
1244
1245 /*
1246  * Truncate blocks that were not used by direct IO write. We have to zero out
1247  * the last file block as well because direct IO might have written to it.
1248  */
1249 static void ext3_truncate_failed_direct_write(struct inode *inode)
1250 {
1251         ext3_block_truncate_page(inode, inode->i_size);
1252         ext3_truncate(inode);
1253 }
1254
1255 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1256                                 loff_t pos, unsigned len, unsigned flags,
1257                                 struct page **pagep, void **fsdata)
1258 {
1259         struct inode *inode = mapping->host;
1260         int ret;
1261         handle_t *handle;
1262         int retries = 0;
1263         struct page *page;
1264         pgoff_t index;
1265         unsigned from, to;
1266         /* Reserve one block more for addition to orphan list in case
1267          * we allocate blocks but write fails for some reason */
1268         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1269
1270         trace_ext3_write_begin(inode, pos, len, flags);
1271
1272         index = pos >> PAGE_CACHE_SHIFT;
1273         from = pos & (PAGE_CACHE_SIZE - 1);
1274         to = from + len;
1275
1276 retry:
1277         page = grab_cache_page_write_begin(mapping, index, flags);
1278         if (!page)
1279                 return -ENOMEM;
1280         *pagep = page;
1281
1282         handle = ext3_journal_start(inode, needed_blocks);
1283         if (IS_ERR(handle)) {
1284                 unlock_page(page);
1285                 page_cache_release(page);
1286                 ret = PTR_ERR(handle);
1287                 goto out;
1288         }
1289         ret = __block_write_begin(page, pos, len, ext3_get_block);
1290         if (ret)
1291                 goto write_begin_failed;
1292
1293         if (ext3_should_journal_data(inode)) {
1294                 ret = walk_page_buffers(handle, page_buffers(page),
1295                                 from, to, NULL, do_journal_get_write_access);
1296         }
1297 write_begin_failed:
1298         if (ret) {
1299                 /*
1300                  * block_write_begin may have instantiated a few blocks
1301                  * outside i_size.  Trim these off again. Don't need
1302                  * i_size_read because we hold i_mutex.
1303                  *
1304                  * Add inode to orphan list in case we crash before truncate
1305                  * finishes. Do this only if ext3_can_truncate() agrees so
1306                  * that orphan processing code is happy.
1307                  */
1308                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1309                         ext3_orphan_add(handle, inode);
1310                 ext3_journal_stop(handle);
1311                 unlock_page(page);
1312                 page_cache_release(page);
1313                 if (pos + len > inode->i_size)
1314                         ext3_truncate_failed_write(inode);
1315         }
1316         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1317                 goto retry;
1318 out:
1319         return ret;
1320 }
1321
1322
1323 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1324 {
1325         int err = journal_dirty_data(handle, bh);
1326         if (err)
1327                 ext3_journal_abort_handle(__func__, __func__,
1328                                                 bh, handle, err);
1329         return err;
1330 }
1331
1332 /* For ordered writepage and write_end functions */
1333 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1334 {
1335         /*
1336          * Write could have mapped the buffer but it didn't copy the data in
1337          * yet. So avoid filing such buffer into a transaction.
1338          */
1339         if (buffer_mapped(bh) && buffer_uptodate(bh))
1340                 return ext3_journal_dirty_data(handle, bh);
1341         return 0;
1342 }
1343
1344 /* For write_end() in data=journal mode */
1345 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1346 {
1347         if (!buffer_mapped(bh) || buffer_freed(bh))
1348                 return 0;
1349         set_buffer_uptodate(bh);
1350         return ext3_journal_dirty_metadata(handle, bh);
1351 }
1352
1353 /*
1354  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1355  * for the whole page but later we failed to copy the data in. Update inode
1356  * size according to what we managed to copy. The rest is going to be
1357  * truncated in write_end function.
1358  */
1359 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1360 {
1361         /* What matters to us is i_disksize. We don't write i_size anywhere */
1362         if (pos + copied > inode->i_size)
1363                 i_size_write(inode, pos + copied);
1364         if (pos + copied > EXT3_I(inode)->i_disksize) {
1365                 EXT3_I(inode)->i_disksize = pos + copied;
1366                 mark_inode_dirty(inode);
1367         }
1368 }
1369
1370 /*
1371  * We need to pick up the new inode size which generic_commit_write gave us
1372  * `file' can be NULL - eg, when called from page_symlink().
1373  *
1374  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1375  * buffers are managed internally.
1376  */
1377 static int ext3_ordered_write_end(struct file *file,
1378                                 struct address_space *mapping,
1379                                 loff_t pos, unsigned len, unsigned copied,
1380                                 struct page *page, void *fsdata)
1381 {
1382         handle_t *handle = ext3_journal_current_handle();
1383         struct inode *inode = file->f_mapping->host;
1384         unsigned from, to;
1385         int ret = 0, ret2;
1386
1387         trace_ext3_ordered_write_end(inode, pos, len, copied);
1388         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1389
1390         from = pos & (PAGE_CACHE_SIZE - 1);
1391         to = from + copied;
1392         ret = walk_page_buffers(handle, page_buffers(page),
1393                 from, to, NULL, journal_dirty_data_fn);
1394
1395         if (ret == 0)
1396                 update_file_sizes(inode, pos, copied);
1397         /*
1398          * There may be allocated blocks outside of i_size because
1399          * we failed to copy some data. Prepare for truncate.
1400          */
1401         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1402                 ext3_orphan_add(handle, inode);
1403         ret2 = ext3_journal_stop(handle);
1404         if (!ret)
1405                 ret = ret2;
1406         unlock_page(page);
1407         page_cache_release(page);
1408
1409         if (pos + len > inode->i_size)
1410                 ext3_truncate_failed_write(inode);
1411         return ret ? ret : copied;
1412 }
1413
1414 static int ext3_writeback_write_end(struct file *file,
1415                                 struct address_space *mapping,
1416                                 loff_t pos, unsigned len, unsigned copied,
1417                                 struct page *page, void *fsdata)
1418 {
1419         handle_t *handle = ext3_journal_current_handle();
1420         struct inode *inode = file->f_mapping->host;
1421         int ret;
1422
1423         trace_ext3_writeback_write_end(inode, pos, len, copied);
1424         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1425         update_file_sizes(inode, pos, copied);
1426         /*
1427          * There may be allocated blocks outside of i_size because
1428          * we failed to copy some data. Prepare for truncate.
1429          */
1430         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1431                 ext3_orphan_add(handle, inode);
1432         ret = ext3_journal_stop(handle);
1433         unlock_page(page);
1434         page_cache_release(page);
1435
1436         if (pos + len > inode->i_size)
1437                 ext3_truncate_failed_write(inode);
1438         return ret ? ret : copied;
1439 }
1440
1441 static int ext3_journalled_write_end(struct file *file,
1442                                 struct address_space *mapping,
1443                                 loff_t pos, unsigned len, unsigned copied,
1444                                 struct page *page, void *fsdata)
1445 {
1446         handle_t *handle = ext3_journal_current_handle();
1447         struct inode *inode = mapping->host;
1448         struct ext3_inode_info *ei = EXT3_I(inode);
1449         int ret = 0, ret2;
1450         int partial = 0;
1451         unsigned from, to;
1452
1453         trace_ext3_journalled_write_end(inode, pos, len, copied);
1454         from = pos & (PAGE_CACHE_SIZE - 1);
1455         to = from + len;
1456
1457         if (copied < len) {
1458                 if (!PageUptodate(page))
1459                         copied = 0;
1460                 page_zero_new_buffers(page, from + copied, to);
1461                 to = from + copied;
1462         }
1463
1464         ret = walk_page_buffers(handle, page_buffers(page), from,
1465                                 to, &partial, write_end_fn);
1466         if (!partial)
1467                 SetPageUptodate(page);
1468
1469         if (pos + copied > inode->i_size)
1470                 i_size_write(inode, pos + copied);
1471         /*
1472          * There may be allocated blocks outside of i_size because
1473          * we failed to copy some data. Prepare for truncate.
1474          */
1475         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1476                 ext3_orphan_add(handle, inode);
1477         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1478         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1479         if (inode->i_size > ei->i_disksize) {
1480                 ei->i_disksize = inode->i_size;
1481                 ret2 = ext3_mark_inode_dirty(handle, inode);
1482                 if (!ret)
1483                         ret = ret2;
1484         }
1485
1486         ret2 = ext3_journal_stop(handle);
1487         if (!ret)
1488                 ret = ret2;
1489         unlock_page(page);
1490         page_cache_release(page);
1491
1492         if (pos + len > inode->i_size)
1493                 ext3_truncate_failed_write(inode);
1494         return ret ? ret : copied;
1495 }
1496
1497 /*
1498  * bmap() is special.  It gets used by applications such as lilo and by
1499  * the swapper to find the on-disk block of a specific piece of data.
1500  *
1501  * Naturally, this is dangerous if the block concerned is still in the
1502  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1503  * filesystem and enables swap, then they may get a nasty shock when the
1504  * data getting swapped to that swapfile suddenly gets overwritten by
1505  * the original zero's written out previously to the journal and
1506  * awaiting writeback in the kernel's buffer cache.
1507  *
1508  * So, if we see any bmap calls here on a modified, data-journaled file,
1509  * take extra steps to flush any blocks which might be in the cache.
1510  */
1511 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1512 {
1513         struct inode *inode = mapping->host;
1514         journal_t *journal;
1515         int err;
1516
1517         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1518                 /*
1519                  * This is a REALLY heavyweight approach, but the use of
1520                  * bmap on dirty files is expected to be extremely rare:
1521                  * only if we run lilo or swapon on a freshly made file
1522                  * do we expect this to happen.
1523                  *
1524                  * (bmap requires CAP_SYS_RAWIO so this does not
1525                  * represent an unprivileged user DOS attack --- we'd be
1526                  * in trouble if mortal users could trigger this path at
1527                  * will.)
1528                  *
1529                  * NB. EXT3_STATE_JDATA is not set on files other than
1530                  * regular files.  If somebody wants to bmap a directory
1531                  * or symlink and gets confused because the buffer
1532                  * hasn't yet been flushed to disk, they deserve
1533                  * everything they get.
1534                  */
1535
1536                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1537                 journal = EXT3_JOURNAL(inode);
1538                 journal_lock_updates(journal);
1539                 err = journal_flush(journal);
1540                 journal_unlock_updates(journal);
1541
1542                 if (err)
1543                         return 0;
1544         }
1545
1546         return generic_block_bmap(mapping,block,ext3_get_block);
1547 }
1548
1549 static int bget_one(handle_t *handle, struct buffer_head *bh)
1550 {
1551         get_bh(bh);
1552         return 0;
1553 }
1554
1555 static int bput_one(handle_t *handle, struct buffer_head *bh)
1556 {
1557         put_bh(bh);
1558         return 0;
1559 }
1560
1561 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1562 {
1563         return !buffer_mapped(bh);
1564 }
1565
1566 /*
1567  * Note that we always start a transaction even if we're not journalling
1568  * data.  This is to preserve ordering: any hole instantiation within
1569  * __block_write_full_page -> ext3_get_block() should be journalled
1570  * along with the data so we don't crash and then get metadata which
1571  * refers to old data.
1572  *
1573  * In all journalling modes block_write_full_page() will start the I/O.
1574  *
1575  * Problem:
1576  *
1577  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1578  *              ext3_writepage()
1579  *
1580  * Similar for:
1581  *
1582  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1583  *
1584  * Same applies to ext3_get_block().  We will deadlock on various things like
1585  * lock_journal and i_truncate_mutex.
1586  *
1587  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1588  * allocations fail.
1589  *
1590  * 16May01: If we're reentered then journal_current_handle() will be
1591  *          non-zero. We simply *return*.
1592  *
1593  * 1 July 2001: @@@ FIXME:
1594  *   In journalled data mode, a data buffer may be metadata against the
1595  *   current transaction.  But the same file is part of a shared mapping
1596  *   and someone does a writepage() on it.
1597  *
1598  *   We will move the buffer onto the async_data list, but *after* it has
1599  *   been dirtied. So there's a small window where we have dirty data on
1600  *   BJ_Metadata.
1601  *
1602  *   Note that this only applies to the last partial page in the file.  The
1603  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1604  *   broken code anyway: it's wrong for msync()).
1605  *
1606  *   It's a rare case: affects the final partial page, for journalled data
1607  *   where the file is subject to bith write() and writepage() in the same
1608  *   transction.  To fix it we'll need a custom block_write_full_page().
1609  *   We'll probably need that anyway for journalling writepage() output.
1610  *
1611  * We don't honour synchronous mounts for writepage().  That would be
1612  * disastrous.  Any write() or metadata operation will sync the fs for
1613  * us.
1614  *
1615  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1616  * we don't need to open a transaction here.
1617  */
1618 static int ext3_ordered_writepage(struct page *page,
1619                                 struct writeback_control *wbc)
1620 {
1621         struct inode *inode = page->mapping->host;
1622         struct buffer_head *page_bufs;
1623         handle_t *handle = NULL;
1624         int ret = 0;
1625         int err;
1626
1627         J_ASSERT(PageLocked(page));
1628         /*
1629          * We don't want to warn for emergency remount. The condition is
1630          * ordered to avoid dereferencing inode->i_sb in non-error case to
1631          * avoid slow-downs.
1632          */
1633         WARN_ON_ONCE(IS_RDONLY(inode) &&
1634                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1635
1636         /*
1637          * We give up here if we're reentered, because it might be for a
1638          * different filesystem.
1639          */
1640         if (ext3_journal_current_handle())
1641                 goto out_fail;
1642
1643         trace_ext3_ordered_writepage(page);
1644         if (!page_has_buffers(page)) {
1645                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1646                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1647                 page_bufs = page_buffers(page);
1648         } else {
1649                 page_bufs = page_buffers(page);
1650                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1651                                        NULL, buffer_unmapped)) {
1652                         /* Provide NULL get_block() to catch bugs if buffers
1653                          * weren't really mapped */
1654                         return block_write_full_page(page, NULL, wbc);
1655                 }
1656         }
1657         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1658
1659         if (IS_ERR(handle)) {
1660                 ret = PTR_ERR(handle);
1661                 goto out_fail;
1662         }
1663
1664         walk_page_buffers(handle, page_bufs, 0,
1665                         PAGE_CACHE_SIZE, NULL, bget_one);
1666
1667         ret = block_write_full_page(page, ext3_get_block, wbc);
1668
1669         /*
1670          * The page can become unlocked at any point now, and
1671          * truncate can then come in and change things.  So we
1672          * can't touch *page from now on.  But *page_bufs is
1673          * safe due to elevated refcount.
1674          */
1675
1676         /*
1677          * And attach them to the current transaction.  But only if
1678          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1679          * and generally junk.
1680          */
1681         if (ret == 0) {
1682                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1683                                         NULL, journal_dirty_data_fn);
1684                 if (!ret)
1685                         ret = err;
1686         }
1687         walk_page_buffers(handle, page_bufs, 0,
1688                         PAGE_CACHE_SIZE, NULL, bput_one);
1689         err = ext3_journal_stop(handle);
1690         if (!ret)
1691                 ret = err;
1692         return ret;
1693
1694 out_fail:
1695         redirty_page_for_writepage(wbc, page);
1696         unlock_page(page);
1697         return ret;
1698 }
1699
1700 static int ext3_writeback_writepage(struct page *page,
1701                                 struct writeback_control *wbc)
1702 {
1703         struct inode *inode = page->mapping->host;
1704         handle_t *handle = NULL;
1705         int ret = 0;
1706         int err;
1707
1708         J_ASSERT(PageLocked(page));
1709         /*
1710          * We don't want to warn for emergency remount. The condition is
1711          * ordered to avoid dereferencing inode->i_sb in non-error case to
1712          * avoid slow-downs.
1713          */
1714         WARN_ON_ONCE(IS_RDONLY(inode) &&
1715                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1716
1717         if (ext3_journal_current_handle())
1718                 goto out_fail;
1719
1720         trace_ext3_writeback_writepage(page);
1721         if (page_has_buffers(page)) {
1722                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1723                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1724                         /* Provide NULL get_block() to catch bugs if buffers
1725                          * weren't really mapped */
1726                         return block_write_full_page(page, NULL, wbc);
1727                 }
1728         }
1729
1730         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1731         if (IS_ERR(handle)) {
1732                 ret = PTR_ERR(handle);
1733                 goto out_fail;
1734         }
1735
1736         ret = block_write_full_page(page, ext3_get_block, wbc);
1737
1738         err = ext3_journal_stop(handle);
1739         if (!ret)
1740                 ret = err;
1741         return ret;
1742
1743 out_fail:
1744         redirty_page_for_writepage(wbc, page);
1745         unlock_page(page);
1746         return ret;
1747 }
1748
1749 static int ext3_journalled_writepage(struct page *page,
1750                                 struct writeback_control *wbc)
1751 {
1752         struct inode *inode = page->mapping->host;
1753         handle_t *handle = NULL;
1754         int ret = 0;
1755         int err;
1756
1757         J_ASSERT(PageLocked(page));
1758         /*
1759          * We don't want to warn for emergency remount. The condition is
1760          * ordered to avoid dereferencing inode->i_sb in non-error case to
1761          * avoid slow-downs.
1762          */
1763         WARN_ON_ONCE(IS_RDONLY(inode) &&
1764                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1765
1766         if (ext3_journal_current_handle())
1767                 goto no_write;
1768
1769         trace_ext3_journalled_writepage(page);
1770         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1771         if (IS_ERR(handle)) {
1772                 ret = PTR_ERR(handle);
1773                 goto no_write;
1774         }
1775
1776         if (!page_has_buffers(page) || PageChecked(page)) {
1777                 /*
1778                  * It's mmapped pagecache.  Add buffers and journal it.  There
1779                  * doesn't seem much point in redirtying the page here.
1780                  */
1781                 ClearPageChecked(page);
1782                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1783                                           ext3_get_block);
1784                 if (ret != 0) {
1785                         ext3_journal_stop(handle);
1786                         goto out_unlock;
1787                 }
1788                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1789                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1790
1791                 err = walk_page_buffers(handle, page_buffers(page), 0,
1792                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1793                 if (ret == 0)
1794                         ret = err;
1795                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1796                 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1797                            handle->h_transaction->t_tid);
1798                 unlock_page(page);
1799         } else {
1800                 /*
1801                  * It may be a page full of checkpoint-mode buffers.  We don't
1802                  * really know unless we go poke around in the buffer_heads.
1803                  * But block_write_full_page will do the right thing.
1804                  */
1805                 ret = block_write_full_page(page, ext3_get_block, wbc);
1806         }
1807         err = ext3_journal_stop(handle);
1808         if (!ret)
1809                 ret = err;
1810 out:
1811         return ret;
1812
1813 no_write:
1814         redirty_page_for_writepage(wbc, page);
1815 out_unlock:
1816         unlock_page(page);
1817         goto out;
1818 }
1819
1820 static int ext3_readpage(struct file *file, struct page *page)
1821 {
1822         trace_ext3_readpage(page);
1823         return mpage_readpage(page, ext3_get_block);
1824 }
1825
1826 static int
1827 ext3_readpages(struct file *file, struct address_space *mapping,
1828                 struct list_head *pages, unsigned nr_pages)
1829 {
1830         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1831 }
1832
1833 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1834 {
1835         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1836
1837         trace_ext3_invalidatepage(page, offset);
1838
1839         /*
1840          * If it's a full truncate we just forget about the pending dirtying
1841          */
1842         if (offset == 0)
1843                 ClearPageChecked(page);
1844
1845         journal_invalidatepage(journal, page, offset);
1846 }
1847
1848 static int ext3_releasepage(struct page *page, gfp_t wait)
1849 {
1850         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1851
1852         trace_ext3_releasepage(page);
1853         WARN_ON(PageChecked(page));
1854         if (!page_has_buffers(page))
1855                 return 0;
1856         return journal_try_to_free_buffers(journal, page, wait);
1857 }
1858
1859 /*
1860  * If the O_DIRECT write will extend the file then add this inode to the
1861  * orphan list.  So recovery will truncate it back to the original size
1862  * if the machine crashes during the write.
1863  *
1864  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1865  * crashes then stale disk data _may_ be exposed inside the file. But current
1866  * VFS code falls back into buffered path in that case so we are safe.
1867  */
1868 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1869                         const struct iovec *iov, loff_t offset,
1870                         unsigned long nr_segs)
1871 {
1872         struct file *file = iocb->ki_filp;
1873         struct inode *inode = file->f_mapping->host;
1874         struct ext3_inode_info *ei = EXT3_I(inode);
1875         handle_t *handle;
1876         ssize_t ret;
1877         int orphan = 0;
1878         size_t count = iov_length(iov, nr_segs);
1879         int retries = 0;
1880
1881         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1882
1883         if (rw == WRITE) {
1884                 loff_t final_size = offset + count;
1885
1886                 if (final_size > inode->i_size) {
1887                         /* Credits for sb + inode write */
1888                         handle = ext3_journal_start(inode, 2);
1889                         if (IS_ERR(handle)) {
1890                                 ret = PTR_ERR(handle);
1891                                 goto out;
1892                         }
1893                         ret = ext3_orphan_add(handle, inode);
1894                         if (ret) {
1895                                 ext3_journal_stop(handle);
1896                                 goto out;
1897                         }
1898                         orphan = 1;
1899                         ei->i_disksize = inode->i_size;
1900                         ext3_journal_stop(handle);
1901                 }
1902         }
1903
1904 retry:
1905         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1906                                  ext3_get_block);
1907         /*
1908          * In case of error extending write may have instantiated a few
1909          * blocks outside i_size. Trim these off again.
1910          */
1911         if (unlikely((rw & WRITE) && ret < 0)) {
1912                 loff_t isize = i_size_read(inode);
1913                 loff_t end = offset + iov_length(iov, nr_segs);
1914
1915                 if (end > isize)
1916                         ext3_truncate_failed_direct_write(inode);
1917         }
1918         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1919                 goto retry;
1920
1921         if (orphan) {
1922                 int err;
1923
1924                 /* Credits for sb + inode write */
1925                 handle = ext3_journal_start(inode, 2);
1926                 if (IS_ERR(handle)) {
1927                         /* This is really bad luck. We've written the data
1928                          * but cannot extend i_size. Truncate allocated blocks
1929                          * and pretend the write failed... */
1930                         ext3_truncate_failed_direct_write(inode);
1931                         ret = PTR_ERR(handle);
1932                         goto out;
1933                 }
1934                 if (inode->i_nlink)
1935                         ext3_orphan_del(handle, inode);
1936                 if (ret > 0) {
1937                         loff_t end = offset + ret;
1938                         if (end > inode->i_size) {
1939                                 ei->i_disksize = end;
1940                                 i_size_write(inode, end);
1941                                 /*
1942                                  * We're going to return a positive `ret'
1943                                  * here due to non-zero-length I/O, so there's
1944                                  * no way of reporting error returns from
1945                                  * ext3_mark_inode_dirty() to userspace.  So
1946                                  * ignore it.
1947                                  */
1948                                 ext3_mark_inode_dirty(handle, inode);
1949                         }
1950                 }
1951                 err = ext3_journal_stop(handle);
1952                 if (ret == 0)
1953                         ret = err;
1954         }
1955 out:
1956         trace_ext3_direct_IO_exit(inode, offset,
1957                                 iov_length(iov, nr_segs), rw, ret);
1958         return ret;
1959 }
1960
1961 /*
1962  * Pages can be marked dirty completely asynchronously from ext3's journalling
1963  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1964  * much here because ->set_page_dirty is called under VFS locks.  The page is
1965  * not necessarily locked.
1966  *
1967  * We cannot just dirty the page and leave attached buffers clean, because the
1968  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1969  * or jbddirty because all the journalling code will explode.
1970  *
1971  * So what we do is to mark the page "pending dirty" and next time writepage
1972  * is called, propagate that into the buffers appropriately.
1973  */
1974 static int ext3_journalled_set_page_dirty(struct page *page)
1975 {
1976         SetPageChecked(page);
1977         return __set_page_dirty_nobuffers(page);
1978 }
1979
1980 static const struct address_space_operations ext3_ordered_aops = {
1981         .readpage               = ext3_readpage,
1982         .readpages              = ext3_readpages,
1983         .writepage              = ext3_ordered_writepage,
1984         .write_begin            = ext3_write_begin,
1985         .write_end              = ext3_ordered_write_end,
1986         .bmap                   = ext3_bmap,
1987         .invalidatepage         = ext3_invalidatepage,
1988         .releasepage            = ext3_releasepage,
1989         .direct_IO              = ext3_direct_IO,
1990         .migratepage            = buffer_migrate_page,
1991         .is_partially_uptodate  = block_is_partially_uptodate,
1992         .error_remove_page      = generic_error_remove_page,
1993 };
1994
1995 static const struct address_space_operations ext3_writeback_aops = {
1996         .readpage               = ext3_readpage,
1997         .readpages              = ext3_readpages,
1998         .writepage              = ext3_writeback_writepage,
1999         .write_begin            = ext3_write_begin,
2000         .write_end              = ext3_writeback_write_end,
2001         .bmap                   = ext3_bmap,
2002         .invalidatepage         = ext3_invalidatepage,
2003         .releasepage            = ext3_releasepage,
2004         .direct_IO              = ext3_direct_IO,
2005         .migratepage            = buffer_migrate_page,
2006         .is_partially_uptodate  = block_is_partially_uptodate,
2007         .error_remove_page      = generic_error_remove_page,
2008 };
2009
2010 static const struct address_space_operations ext3_journalled_aops = {
2011         .readpage               = ext3_readpage,
2012         .readpages              = ext3_readpages,
2013         .writepage              = ext3_journalled_writepage,
2014         .write_begin            = ext3_write_begin,
2015         .write_end              = ext3_journalled_write_end,
2016         .set_page_dirty         = ext3_journalled_set_page_dirty,
2017         .bmap                   = ext3_bmap,
2018         .invalidatepage         = ext3_invalidatepage,
2019         .releasepage            = ext3_releasepage,
2020         .is_partially_uptodate  = block_is_partially_uptodate,
2021         .error_remove_page      = generic_error_remove_page,
2022 };
2023
2024 void ext3_set_aops(struct inode *inode)
2025 {
2026         if (ext3_should_order_data(inode))
2027                 inode->i_mapping->a_ops = &ext3_ordered_aops;
2028         else if (ext3_should_writeback_data(inode))
2029                 inode->i_mapping->a_ops = &ext3_writeback_aops;
2030         else
2031                 inode->i_mapping->a_ops = &ext3_journalled_aops;
2032 }
2033
2034 /*
2035  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2036  * up to the end of the block which corresponds to `from'.
2037  * This required during truncate. We need to physically zero the tail end
2038  * of that block so it doesn't yield old data if the file is later grown.
2039  */
2040 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2041 {
2042         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2043         unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2044         unsigned blocksize, iblock, length, pos;
2045         struct page *page;
2046         handle_t *handle = NULL;
2047         struct buffer_head *bh;
2048         int err = 0;
2049
2050         /* Truncated on block boundary - nothing to do */
2051         blocksize = inode->i_sb->s_blocksize;
2052         if ((from & (blocksize - 1)) == 0)
2053                 return 0;
2054
2055         page = grab_cache_page(inode->i_mapping, index);
2056         if (!page)
2057                 return -ENOMEM;
2058         length = blocksize - (offset & (blocksize - 1));
2059         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2060
2061         if (!page_has_buffers(page))
2062                 create_empty_buffers(page, blocksize, 0);
2063
2064         /* Find the buffer that contains "offset" */
2065         bh = page_buffers(page);
2066         pos = blocksize;
2067         while (offset >= pos) {
2068                 bh = bh->b_this_page;
2069                 iblock++;
2070                 pos += blocksize;
2071         }
2072
2073         err = 0;
2074         if (buffer_freed(bh)) {
2075                 BUFFER_TRACE(bh, "freed: skip");
2076                 goto unlock;
2077         }
2078
2079         if (!buffer_mapped(bh)) {
2080                 BUFFER_TRACE(bh, "unmapped");
2081                 ext3_get_block(inode, iblock, bh, 0);
2082                 /* unmapped? It's a hole - nothing to do */
2083                 if (!buffer_mapped(bh)) {
2084                         BUFFER_TRACE(bh, "still unmapped");
2085                         goto unlock;
2086                 }
2087         }
2088
2089         /* Ok, it's mapped. Make sure it's up-to-date */
2090         if (PageUptodate(page))
2091                 set_buffer_uptodate(bh);
2092
2093         if (!bh_uptodate_or_lock(bh)) {
2094                 err = bh_submit_read(bh);
2095                 /* Uhhuh. Read error. Complain and punt. */
2096                 if (err)
2097                         goto unlock;
2098         }
2099
2100         /* data=writeback mode doesn't need transaction to zero-out data */
2101         if (!ext3_should_writeback_data(inode)) {
2102                 /* We journal at most one block */
2103                 handle = ext3_journal_start(inode, 1);
2104                 if (IS_ERR(handle)) {
2105                         clear_highpage(page);
2106                         flush_dcache_page(page);
2107                         err = PTR_ERR(handle);
2108                         goto unlock;
2109                 }
2110         }
2111
2112         if (ext3_should_journal_data(inode)) {
2113                 BUFFER_TRACE(bh, "get write access");
2114                 err = ext3_journal_get_write_access(handle, bh);
2115                 if (err)
2116                         goto stop;
2117         }
2118
2119         zero_user(page, offset, length);
2120         BUFFER_TRACE(bh, "zeroed end of block");
2121
2122         err = 0;
2123         if (ext3_should_journal_data(inode)) {
2124                 err = ext3_journal_dirty_metadata(handle, bh);
2125         } else {
2126                 if (ext3_should_order_data(inode))
2127                         err = ext3_journal_dirty_data(handle, bh);
2128                 mark_buffer_dirty(bh);
2129         }
2130 stop:
2131         if (handle)
2132                 ext3_journal_stop(handle);
2133
2134 unlock:
2135         unlock_page(page);
2136         page_cache_release(page);
2137         return err;
2138 }
2139
2140 /*
2141  * Probably it should be a library function... search for first non-zero word
2142  * or memcmp with zero_page, whatever is better for particular architecture.
2143  * Linus?
2144  */
2145 static inline int all_zeroes(__le32 *p, __le32 *q)
2146 {
2147         while (p < q)
2148                 if (*p++)
2149                         return 0;
2150         return 1;
2151 }
2152
2153 /**
2154  *      ext3_find_shared - find the indirect blocks for partial truncation.
2155  *      @inode:   inode in question
2156  *      @depth:   depth of the affected branch
2157  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2158  *      @chain:   place to store the pointers to partial indirect blocks
2159  *      @top:     place to the (detached) top of branch
2160  *
2161  *      This is a helper function used by ext3_truncate().
2162  *
2163  *      When we do truncate() we may have to clean the ends of several
2164  *      indirect blocks but leave the blocks themselves alive. Block is
2165  *      partially truncated if some data below the new i_size is referred
2166  *      from it (and it is on the path to the first completely truncated
2167  *      data block, indeed).  We have to free the top of that path along
2168  *      with everything to the right of the path. Since no allocation
2169  *      past the truncation point is possible until ext3_truncate()
2170  *      finishes, we may safely do the latter, but top of branch may
2171  *      require special attention - pageout below the truncation point
2172  *      might try to populate it.
2173  *
2174  *      We atomically detach the top of branch from the tree, store the
2175  *      block number of its root in *@top, pointers to buffer_heads of
2176  *      partially truncated blocks - in @chain[].bh and pointers to
2177  *      their last elements that should not be removed - in
2178  *      @chain[].p. Return value is the pointer to last filled element
2179  *      of @chain.
2180  *
2181  *      The work left to caller to do the actual freeing of subtrees:
2182  *              a) free the subtree starting from *@top
2183  *              b) free the subtrees whose roots are stored in
2184  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2185  *              c) free the subtrees growing from the inode past the @chain[0].
2186  *                      (no partially truncated stuff there).  */
2187
2188 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2189                         int offsets[4], Indirect chain[4], __le32 *top)
2190 {
2191         Indirect *partial, *p;
2192         int k, err;
2193
2194         *top = 0;
2195         /* Make k index the deepest non-null offset + 1 */
2196         for (k = depth; k > 1 && !offsets[k-1]; k--)
2197                 ;
2198         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2199         /* Writer: pointers */
2200         if (!partial)
2201                 partial = chain + k-1;
2202         /*
2203          * If the branch acquired continuation since we've looked at it -
2204          * fine, it should all survive and (new) top doesn't belong to us.
2205          */
2206         if (!partial->key && *partial->p)
2207                 /* Writer: end */
2208                 goto no_top;
2209         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2210                 ;
2211         /*
2212          * OK, we've found the last block that must survive. The rest of our
2213          * branch should be detached before unlocking. However, if that rest
2214          * of branch is all ours and does not grow immediately from the inode
2215          * it's easier to cheat and just decrement partial->p.
2216          */
2217         if (p == chain + k - 1 && p > chain) {
2218                 p->p--;
2219         } else {
2220                 *top = *p->p;
2221                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2222 #if 0
2223                 *p->p = 0;
2224 #endif
2225         }
2226         /* Writer: end */
2227
2228         while(partial > p) {
2229                 brelse(partial->bh);
2230                 partial--;
2231         }
2232 no_top:
2233         return partial;
2234 }
2235
2236 /*
2237  * Zero a number of block pointers in either an inode or an indirect block.
2238  * If we restart the transaction we must again get write access to the
2239  * indirect block for further modification.
2240  *
2241  * We release `count' blocks on disk, but (last - first) may be greater
2242  * than `count' because there can be holes in there.
2243  */
2244 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2245                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2246                 unsigned long count, __le32 *first, __le32 *last)
2247 {
2248         __le32 *p;
2249         if (try_to_extend_transaction(handle, inode)) {
2250                 if (bh) {
2251                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2252                         if (ext3_journal_dirty_metadata(handle, bh))
2253                                 return;
2254                 }
2255                 ext3_mark_inode_dirty(handle, inode);
2256                 truncate_restart_transaction(handle, inode);
2257                 if (bh) {
2258                         BUFFER_TRACE(bh, "retaking write access");
2259                         if (ext3_journal_get_write_access(handle, bh))
2260                                 return;
2261                 }
2262         }
2263
2264         /*
2265          * Any buffers which are on the journal will be in memory. We find
2266          * them on the hash table so journal_revoke() will run journal_forget()
2267          * on them.  We've already detached each block from the file, so
2268          * bforget() in journal_forget() should be safe.
2269          *
2270          * AKPM: turn on bforget in journal_forget()!!!
2271          */
2272         for (p = first; p < last; p++) {
2273                 u32 nr = le32_to_cpu(*p);
2274                 if (nr) {
2275                         struct buffer_head *bh;
2276
2277                         *p = 0;
2278                         bh = sb_find_get_block(inode->i_sb, nr);
2279                         ext3_forget(handle, 0, inode, bh, nr);
2280                 }
2281         }
2282
2283         ext3_free_blocks(handle, inode, block_to_free, count);
2284 }
2285
2286 /**
2287  * ext3_free_data - free a list of data blocks
2288  * @handle:     handle for this transaction
2289  * @inode:      inode we are dealing with
2290  * @this_bh:    indirect buffer_head which contains *@first and *@last
2291  * @first:      array of block numbers
2292  * @last:       points immediately past the end of array
2293  *
2294  * We are freeing all blocks referred from that array (numbers are stored as
2295  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2296  *
2297  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2298  * blocks are contiguous then releasing them at one time will only affect one
2299  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2300  * actually use a lot of journal space.
2301  *
2302  * @this_bh will be %NULL if @first and @last point into the inode's direct
2303  * block pointers.
2304  */
2305 static void ext3_free_data(handle_t *handle, struct inode *inode,
2306                            struct buffer_head *this_bh,
2307                            __le32 *first, __le32 *last)
2308 {
2309         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2310         unsigned long count = 0;            /* Number of blocks in the run */
2311         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2312                                                corresponding to
2313                                                block_to_free */
2314         ext3_fsblk_t nr;                    /* Current block # */
2315         __le32 *p;                          /* Pointer into inode/ind
2316                                                for current block */
2317         int err;
2318
2319         if (this_bh) {                          /* For indirect block */
2320                 BUFFER_TRACE(this_bh, "get_write_access");
2321                 err = ext3_journal_get_write_access(handle, this_bh);
2322                 /* Important: if we can't update the indirect pointers
2323                  * to the blocks, we can't free them. */
2324                 if (err)
2325                         return;
2326         }
2327
2328         for (p = first; p < last; p++) {
2329                 nr = le32_to_cpu(*p);
2330                 if (nr) {
2331                         /* accumulate blocks to free if they're contiguous */
2332                         if (count == 0) {
2333                                 block_to_free = nr;
2334                                 block_to_free_p = p;
2335                                 count = 1;
2336                         } else if (nr == block_to_free + count) {
2337                                 count++;
2338                         } else {
2339                                 ext3_clear_blocks(handle, inode, this_bh,
2340                                                   block_to_free,
2341                                                   count, block_to_free_p, p);
2342                                 block_to_free = nr;
2343                                 block_to_free_p = p;
2344                                 count = 1;
2345                         }
2346                 }
2347         }
2348
2349         if (count > 0)
2350                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2351                                   count, block_to_free_p, p);
2352
2353         if (this_bh) {
2354                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2355
2356                 /*
2357                  * The buffer head should have an attached journal head at this
2358                  * point. However, if the data is corrupted and an indirect
2359                  * block pointed to itself, it would have been detached when
2360                  * the block was cleared. Check for this instead of OOPSing.
2361                  */
2362                 if (bh2jh(this_bh))
2363                         ext3_journal_dirty_metadata(handle, this_bh);
2364                 else
2365                         ext3_error(inode->i_sb, "ext3_free_data",
2366                                    "circular indirect block detected, "
2367                                    "inode=%lu, block=%llu",
2368                                    inode->i_ino,
2369                                    (unsigned long long)this_bh->b_blocknr);
2370         }
2371 }
2372
2373 /**
2374  *      ext3_free_branches - free an array of branches
2375  *      @handle: JBD handle for this transaction
2376  *      @inode: inode we are dealing with
2377  *      @parent_bh: the buffer_head which contains *@first and *@last
2378  *      @first: array of block numbers
2379  *      @last:  pointer immediately past the end of array
2380  *      @depth: depth of the branches to free
2381  *
2382  *      We are freeing all blocks referred from these branches (numbers are
2383  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2384  *      appropriately.
2385  */
2386 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2387                                struct buffer_head *parent_bh,
2388                                __le32 *first, __le32 *last, int depth)
2389 {
2390         ext3_fsblk_t nr;
2391         __le32 *p;
2392
2393         if (is_handle_aborted(handle))
2394                 return;
2395
2396         if (depth--) {
2397                 struct buffer_head *bh;
2398                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2399                 p = last;
2400                 while (--p >= first) {
2401                         nr = le32_to_cpu(*p);
2402                         if (!nr)
2403                                 continue;               /* A hole */
2404
2405                         /* Go read the buffer for the next level down */
2406                         bh = sb_bread(inode->i_sb, nr);
2407
2408                         /*
2409                          * A read failure? Report error and clear slot
2410                          * (should be rare).
2411                          */
2412                         if (!bh) {
2413                                 ext3_error(inode->i_sb, "ext3_free_branches",
2414                                            "Read failure, inode=%lu, block="E3FSBLK,
2415                                            inode->i_ino, nr);
2416                                 continue;
2417                         }
2418
2419                         /* This zaps the entire block.  Bottom up. */
2420                         BUFFER_TRACE(bh, "free child branches");
2421                         ext3_free_branches(handle, inode, bh,
2422                                            (__le32*)bh->b_data,
2423                                            (__le32*)bh->b_data + addr_per_block,
2424                                            depth);
2425
2426                         /*
2427                          * Everything below this this pointer has been
2428                          * released.  Now let this top-of-subtree go.
2429                          *
2430                          * We want the freeing of this indirect block to be
2431                          * atomic in the journal with the updating of the
2432                          * bitmap block which owns it.  So make some room in
2433                          * the journal.
2434                          *
2435                          * We zero the parent pointer *after* freeing its
2436                          * pointee in the bitmaps, so if extend_transaction()
2437                          * for some reason fails to put the bitmap changes and
2438                          * the release into the same transaction, recovery
2439                          * will merely complain about releasing a free block,
2440                          * rather than leaking blocks.
2441                          */
2442                         if (is_handle_aborted(handle))
2443                                 return;
2444                         if (try_to_extend_transaction(handle, inode)) {
2445                                 ext3_mark_inode_dirty(handle, inode);
2446                                 truncate_restart_transaction(handle, inode);
2447                         }
2448
2449                         /*
2450                          * We've probably journalled the indirect block several
2451                          * times during the truncate.  But it's no longer
2452                          * needed and we now drop it from the transaction via
2453                          * journal_revoke().
2454                          *
2455                          * That's easy if it's exclusively part of this
2456                          * transaction.  But if it's part of the committing
2457                          * transaction then journal_forget() will simply
2458                          * brelse() it.  That means that if the underlying
2459                          * block is reallocated in ext3_get_block(),
2460                          * unmap_underlying_metadata() will find this block
2461                          * and will try to get rid of it.  damn, damn. Thus
2462                          * we don't allow a block to be reallocated until
2463                          * a transaction freeing it has fully committed.
2464                          *
2465                          * We also have to make sure journal replay after a
2466                          * crash does not overwrite non-journaled data blocks
2467                          * with old metadata when the block got reallocated for
2468                          * data.  Thus we have to store a revoke record for a
2469                          * block in the same transaction in which we free the
2470                          * block.
2471                          */
2472                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2473
2474                         ext3_free_blocks(handle, inode, nr, 1);
2475
2476                         if (parent_bh) {
2477                                 /*
2478                                  * The block which we have just freed is
2479                                  * pointed to by an indirect block: journal it
2480                                  */
2481                                 BUFFER_TRACE(parent_bh, "get_write_access");
2482                                 if (!ext3_journal_get_write_access(handle,
2483                                                                    parent_bh)){
2484                                         *p = 0;
2485                                         BUFFER_TRACE(parent_bh,
2486                                         "call ext3_journal_dirty_metadata");
2487                                         ext3_journal_dirty_metadata(handle,
2488                                                                     parent_bh);
2489                                 }
2490                         }
2491                 }
2492         } else {
2493                 /* We have reached the bottom of the tree. */
2494                 BUFFER_TRACE(parent_bh, "free data blocks");
2495                 ext3_free_data(handle, inode, parent_bh, first, last);
2496         }
2497 }
2498
2499 int ext3_can_truncate(struct inode *inode)
2500 {
2501         if (S_ISREG(inode->i_mode))
2502                 return 1;
2503         if (S_ISDIR(inode->i_mode))
2504                 return 1;
2505         if (S_ISLNK(inode->i_mode))
2506                 return !ext3_inode_is_fast_symlink(inode);
2507         return 0;
2508 }
2509
2510 /*
2511  * ext3_truncate()
2512  *
2513  * We block out ext3_get_block() block instantiations across the entire
2514  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2515  * simultaneously on behalf of the same inode.
2516  *
2517  * As we work through the truncate and commit bits of it to the journal there
2518  * is one core, guiding principle: the file's tree must always be consistent on
2519  * disk.  We must be able to restart the truncate after a crash.
2520  *
2521  * The file's tree may be transiently inconsistent in memory (although it
2522  * probably isn't), but whenever we close off and commit a journal transaction,
2523  * the contents of (the filesystem + the journal) must be consistent and
2524  * restartable.  It's pretty simple, really: bottom up, right to left (although
2525  * left-to-right works OK too).
2526  *
2527  * Note that at recovery time, journal replay occurs *before* the restart of
2528  * truncate against the orphan inode list.
2529  *
2530  * The committed inode has the new, desired i_size (which is the same as
2531  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2532  * that this inode's truncate did not complete and it will again call
2533  * ext3_truncate() to have another go.  So there will be instantiated blocks
2534  * to the right of the truncation point in a crashed ext3 filesystem.  But
2535  * that's fine - as long as they are linked from the inode, the post-crash
2536  * ext3_truncate() run will find them and release them.
2537  */
2538 void ext3_truncate(struct inode *inode)
2539 {
2540         handle_t *handle;
2541         struct ext3_inode_info *ei = EXT3_I(inode);
2542         __le32 *i_data = ei->i_data;
2543         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2544         int offsets[4];
2545         Indirect chain[4];
2546         Indirect *partial;
2547         __le32 nr = 0;
2548         int n;
2549         long last_block;
2550         unsigned blocksize = inode->i_sb->s_blocksize;
2551
2552         trace_ext3_truncate_enter(inode);
2553
2554         if (!ext3_can_truncate(inode))
2555                 goto out_notrans;
2556
2557         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2558                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2559
2560         handle = start_transaction(inode);
2561         if (IS_ERR(handle))
2562                 goto out_notrans;
2563
2564         last_block = (inode->i_size + blocksize-1)
2565                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2566         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2567         if (n == 0)
2568                 goto out_stop;  /* error */
2569
2570         /*
2571          * OK.  This truncate is going to happen.  We add the inode to the
2572          * orphan list, so that if this truncate spans multiple transactions,
2573          * and we crash, we will resume the truncate when the filesystem
2574          * recovers.  It also marks the inode dirty, to catch the new size.
2575          *
2576          * Implication: the file must always be in a sane, consistent
2577          * truncatable state while each transaction commits.
2578          */
2579         if (ext3_orphan_add(handle, inode))
2580                 goto out_stop;
2581
2582         /*
2583          * The orphan list entry will now protect us from any crash which
2584          * occurs before the truncate completes, so it is now safe to propagate
2585          * the new, shorter inode size (held for now in i_size) into the
2586          * on-disk inode. We do this via i_disksize, which is the value which
2587          * ext3 *really* writes onto the disk inode.
2588          */
2589         ei->i_disksize = inode->i_size;
2590
2591         /*
2592          * From here we block out all ext3_get_block() callers who want to
2593          * modify the block allocation tree.
2594          */
2595         mutex_lock(&ei->truncate_mutex);
2596
2597         if (n == 1) {           /* direct blocks */
2598                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2599                                i_data + EXT3_NDIR_BLOCKS);
2600                 goto do_indirects;
2601         }
2602
2603         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2604         /* Kill the top of shared branch (not detached) */
2605         if (nr) {
2606                 if (partial == chain) {
2607                         /* Shared branch grows from the inode */
2608                         ext3_free_branches(handle, inode, NULL,
2609                                            &nr, &nr+1, (chain+n-1) - partial);
2610                         *partial->p = 0;
2611                         /*
2612                          * We mark the inode dirty prior to restart,
2613                          * and prior to stop.  No need for it here.
2614                          */
2615                 } else {
2616                         /* Shared branch grows from an indirect block */
2617                         ext3_free_branches(handle, inode, partial->bh,
2618                                         partial->p,
2619                                         partial->p+1, (chain+n-1) - partial);
2620                 }
2621         }
2622         /* Clear the ends of indirect blocks on the shared branch */
2623         while (partial > chain) {
2624                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2625                                    (__le32*)partial->bh->b_data+addr_per_block,
2626                                    (chain+n-1) - partial);
2627                 BUFFER_TRACE(partial->bh, "call brelse");
2628                 brelse (partial->bh);
2629                 partial--;
2630         }
2631 do_indirects:
2632         /* Kill the remaining (whole) subtrees */
2633         switch (offsets[0]) {
2634         default:
2635                 nr = i_data[EXT3_IND_BLOCK];
2636                 if (nr) {
2637                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2638                         i_data[EXT3_IND_BLOCK] = 0;
2639                 }
2640         case EXT3_IND_BLOCK:
2641                 nr = i_data[EXT3_DIND_BLOCK];
2642                 if (nr) {
2643                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2644                         i_data[EXT3_DIND_BLOCK] = 0;
2645                 }
2646         case EXT3_DIND_BLOCK:
2647                 nr = i_data[EXT3_TIND_BLOCK];
2648                 if (nr) {
2649                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2650                         i_data[EXT3_TIND_BLOCK] = 0;
2651                 }
2652         case EXT3_TIND_BLOCK:
2653                 ;
2654         }
2655
2656         ext3_discard_reservation(inode);
2657
2658         mutex_unlock(&ei->truncate_mutex);
2659         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2660         ext3_mark_inode_dirty(handle, inode);
2661
2662         /*
2663          * In a multi-transaction truncate, we only make the final transaction
2664          * synchronous
2665          */
2666         if (IS_SYNC(inode))
2667                 handle->h_sync = 1;
2668 out_stop:
2669         /*
2670          * If this was a simple ftruncate(), and the file will remain alive
2671          * then we need to clear up the orphan record which we created above.
2672          * However, if this was a real unlink then we were called by
2673          * ext3_evict_inode(), and we allow that function to clean up the
2674          * orphan info for us.
2675          */
2676         if (inode->i_nlink)
2677                 ext3_orphan_del(handle, inode);
2678
2679         ext3_journal_stop(handle);
2680         trace_ext3_truncate_exit(inode);
2681         return;
2682 out_notrans:
2683         /*
2684          * Delete the inode from orphan list so that it doesn't stay there
2685          * forever and trigger assertion on umount.
2686          */
2687         if (inode->i_nlink)
2688                 ext3_orphan_del(NULL, inode);
2689         trace_ext3_truncate_exit(inode);
2690 }
2691
2692 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2693                 unsigned long ino, struct ext3_iloc *iloc)
2694 {
2695         unsigned long block_group;
2696         unsigned long offset;
2697         ext3_fsblk_t block;
2698         struct ext3_group_desc *gdp;
2699
2700         if (!ext3_valid_inum(sb, ino)) {
2701                 /*
2702                  * This error is already checked for in namei.c unless we are
2703                  * looking at an NFS filehandle, in which case no error
2704                  * report is needed
2705                  */
2706                 return 0;
2707         }
2708
2709         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2710         gdp = ext3_get_group_desc(sb, block_group, NULL);
2711         if (!gdp)
2712                 return 0;
2713         /*
2714          * Figure out the offset within the block group inode table
2715          */
2716         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2717                 EXT3_INODE_SIZE(sb);
2718         block = le32_to_cpu(gdp->bg_inode_table) +
2719                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2720
2721         iloc->block_group = block_group;
2722         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2723         return block;
2724 }
2725
2726 /*
2727  * ext3_get_inode_loc returns with an extra refcount against the inode's
2728  * underlying buffer_head on success. If 'in_mem' is true, we have all
2729  * data in memory that is needed to recreate the on-disk version of this
2730  * inode.
2731  */
2732 static int __ext3_get_inode_loc(struct inode *inode,
2733                                 struct ext3_iloc *iloc, int in_mem)
2734 {
2735         ext3_fsblk_t block;
2736         struct buffer_head *bh;
2737
2738         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2739         if (!block)
2740                 return -EIO;
2741
2742         bh = sb_getblk(inode->i_sb, block);
2743         if (!bh) {
2744                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2745                                 "unable to read inode block - "
2746                                 "inode=%lu, block="E3FSBLK,
2747                                  inode->i_ino, block);
2748                 return -EIO;
2749         }
2750         if (!buffer_uptodate(bh)) {
2751                 lock_buffer(bh);
2752
2753                 /*
2754                  * If the buffer has the write error flag, we have failed
2755                  * to write out another inode in the same block.  In this
2756                  * case, we don't have to read the block because we may
2757                  * read the old inode data successfully.
2758                  */
2759                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2760                         set_buffer_uptodate(bh);
2761
2762                 if (buffer_uptodate(bh)) {
2763                         /* someone brought it uptodate while we waited */
2764                         unlock_buffer(bh);
2765                         goto has_buffer;
2766                 }
2767
2768                 /*
2769                  * If we have all information of the inode in memory and this
2770                  * is the only valid inode in the block, we need not read the
2771                  * block.
2772                  */
2773                 if (in_mem) {
2774                         struct buffer_head *bitmap_bh;
2775                         struct ext3_group_desc *desc;
2776                         int inodes_per_buffer;
2777                         int inode_offset, i;
2778                         int block_group;
2779                         int start;
2780
2781                         block_group = (inode->i_ino - 1) /
2782                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2783                         inodes_per_buffer = bh->b_size /
2784                                 EXT3_INODE_SIZE(inode->i_sb);
2785                         inode_offset = ((inode->i_ino - 1) %
2786                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2787                         start = inode_offset & ~(inodes_per_buffer - 1);
2788
2789                         /* Is the inode bitmap in cache? */
2790                         desc = ext3_get_group_desc(inode->i_sb,
2791                                                 block_group, NULL);
2792                         if (!desc)
2793                                 goto make_io;
2794
2795                         bitmap_bh = sb_getblk(inode->i_sb,
2796                                         le32_to_cpu(desc->bg_inode_bitmap));
2797                         if (!bitmap_bh)
2798                                 goto make_io;
2799
2800                         /*
2801                          * If the inode bitmap isn't in cache then the
2802                          * optimisation may end up performing two reads instead
2803                          * of one, so skip it.
2804                          */
2805                         if (!buffer_uptodate(bitmap_bh)) {
2806                                 brelse(bitmap_bh);
2807                                 goto make_io;
2808                         }
2809                         for (i = start; i < start + inodes_per_buffer; i++) {
2810                                 if (i == inode_offset)
2811                                         continue;
2812                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2813                                         break;
2814                         }
2815                         brelse(bitmap_bh);
2816                         if (i == start + inodes_per_buffer) {
2817                                 /* all other inodes are free, so skip I/O */
2818                                 memset(bh->b_data, 0, bh->b_size);
2819                                 set_buffer_uptodate(bh);
2820                                 unlock_buffer(bh);
2821                                 goto has_buffer;
2822                         }
2823                 }
2824
2825 make_io:
2826                 /*
2827                  * There are other valid inodes in the buffer, this inode
2828                  * has in-inode xattrs, or we don't have this inode in memory.
2829                  * Read the block from disk.
2830                  */
2831                 trace_ext3_load_inode(inode);
2832                 get_bh(bh);
2833                 bh->b_end_io = end_buffer_read_sync;
2834                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2835                 wait_on_buffer(bh);
2836                 if (!buffer_uptodate(bh)) {
2837                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2838                                         "unable to read inode block - "
2839                                         "inode=%lu, block="E3FSBLK,
2840                                         inode->i_ino, block);
2841                         brelse(bh);
2842                         return -EIO;
2843                 }
2844         }
2845 has_buffer:
2846         iloc->bh = bh;
2847         return 0;
2848 }
2849
2850 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2851 {
2852         /* We have all inode data except xattrs in memory here. */
2853         return __ext3_get_inode_loc(inode, iloc,
2854                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2855 }
2856
2857 void ext3_set_inode_flags(struct inode *inode)
2858 {
2859         unsigned int flags = EXT3_I(inode)->i_flags;
2860
2861         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2862         if (flags & EXT3_SYNC_FL)
2863                 inode->i_flags |= S_SYNC;
2864         if (flags & EXT3_APPEND_FL)
2865                 inode->i_flags |= S_APPEND;
2866         if (flags & EXT3_IMMUTABLE_FL)
2867                 inode->i_flags |= S_IMMUTABLE;
2868         if (flags & EXT3_NOATIME_FL)
2869                 inode->i_flags |= S_NOATIME;
2870         if (flags & EXT3_DIRSYNC_FL)
2871                 inode->i_flags |= S_DIRSYNC;
2872 }
2873
2874 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2875 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2876 {
2877         unsigned int flags = ei->vfs_inode.i_flags;
2878
2879         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2880                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2881         if (flags & S_SYNC)
2882                 ei->i_flags |= EXT3_SYNC_FL;
2883         if (flags & S_APPEND)
2884                 ei->i_flags |= EXT3_APPEND_FL;
2885         if (flags & S_IMMUTABLE)
2886                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2887         if (flags & S_NOATIME)
2888                 ei->i_flags |= EXT3_NOATIME_FL;
2889         if (flags & S_DIRSYNC)
2890                 ei->i_flags |= EXT3_DIRSYNC_FL;
2891 }
2892
2893 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2894 {
2895         struct ext3_iloc iloc;
2896         struct ext3_inode *raw_inode;
2897         struct ext3_inode_info *ei;
2898         struct buffer_head *bh;
2899         struct inode *inode;
2900         journal_t *journal = EXT3_SB(sb)->s_journal;
2901         transaction_t *transaction;
2902         long ret;
2903         int block;
2904
2905         inode = iget_locked(sb, ino);
2906         if (!inode)
2907                 return ERR_PTR(-ENOMEM);
2908         if (!(inode->i_state & I_NEW))
2909                 return inode;
2910
2911         ei = EXT3_I(inode);
2912         ei->i_block_alloc_info = NULL;
2913
2914         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2915         if (ret < 0)
2916                 goto bad_inode;
2917         bh = iloc.bh;
2918         raw_inode = ext3_raw_inode(&iloc);
2919         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2920         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2921         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2922         if(!(test_opt (inode->i_sb, NO_UID32))) {
2923                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2924                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2925         }
2926         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2927         inode->i_size = le32_to_cpu(raw_inode->i_size);
2928         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2929         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2930         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2931         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2932
2933         ei->i_state_flags = 0;
2934         ei->i_dir_start_lookup = 0;
2935         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2936         /* We now have enough fields to check if the inode was active or not.
2937          * This is needed because nfsd might try to access dead inodes
2938          * the test is that same one that e2fsck uses
2939          * NeilBrown 1999oct15
2940          */
2941         if (inode->i_nlink == 0) {
2942                 if (inode->i_mode == 0 ||
2943                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2944                         /* this inode is deleted */
2945                         brelse (bh);
2946                         ret = -ESTALE;
2947                         goto bad_inode;
2948                 }
2949                 /* The only unlinked inodes we let through here have
2950                  * valid i_mode and are being read by the orphan
2951                  * recovery code: that's fine, we're about to complete
2952                  * the process of deleting those. */
2953         }
2954         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2955         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2956 #ifdef EXT3_FRAGMENTS
2957         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2958         ei->i_frag_no = raw_inode->i_frag;
2959         ei->i_frag_size = raw_inode->i_fsize;
2960 #endif
2961         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2962         if (!S_ISREG(inode->i_mode)) {
2963                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2964         } else {
2965                 inode->i_size |=
2966                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2967         }
2968         ei->i_disksize = inode->i_size;
2969         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2970         ei->i_block_group = iloc.block_group;
2971         /*
2972          * NOTE! The in-memory inode i_data array is in little-endian order
2973          * even on big-endian machines: we do NOT byteswap the block numbers!
2974          */
2975         for (block = 0; block < EXT3_N_BLOCKS; block++)
2976                 ei->i_data[block] = raw_inode->i_block[block];
2977         INIT_LIST_HEAD(&ei->i_orphan);
2978
2979         /*
2980          * Set transaction id's of transactions that have to be committed
2981          * to finish f[data]sync. We set them to currently running transaction
2982          * as we cannot be sure that the inode or some of its metadata isn't
2983          * part of the transaction - the inode could have been reclaimed and
2984          * now it is reread from disk.
2985          */
2986         if (journal) {
2987                 tid_t tid;
2988
2989                 spin_lock(&journal->j_state_lock);
2990                 if (journal->j_running_transaction)
2991                         transaction = journal->j_running_transaction;
2992                 else
2993                         transaction = journal->j_committing_transaction;
2994                 if (transaction)
2995                         tid = transaction->t_tid;
2996                 else
2997                         tid = journal->j_commit_sequence;
2998                 spin_unlock(&journal->j_state_lock);
2999                 atomic_set(&ei->i_sync_tid, tid);
3000                 atomic_set(&ei->i_datasync_tid, tid);
3001         }
3002
3003         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3004             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3005                 /*
3006                  * When mke2fs creates big inodes it does not zero out
3007                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3008                  * so ignore those first few inodes.
3009                  */
3010                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3011                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3012                     EXT3_INODE_SIZE(inode->i_sb)) {
3013                         brelse (bh);
3014                         ret = -EIO;
3015                         goto bad_inode;
3016                 }
3017                 if (ei->i_extra_isize == 0) {
3018                         /* The extra space is currently unused. Use it. */
3019                         ei->i_extra_isize = sizeof(struct ext3_inode) -
3020                                             EXT3_GOOD_OLD_INODE_SIZE;
3021                 } else {
3022                         __le32 *magic = (void *)raw_inode +
3023                                         EXT3_GOOD_OLD_INODE_SIZE +
3024                                         ei->i_extra_isize;
3025                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3026                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3027                 }
3028         } else
3029                 ei->i_extra_isize = 0;
3030
3031         if (S_ISREG(inode->i_mode)) {
3032                 inode->i_op = &ext3_file_inode_operations;
3033                 inode->i_fop = &ext3_file_operations;
3034                 ext3_set_aops(inode);
3035         } else if (S_ISDIR(inode->i_mode)) {
3036                 inode->i_op = &ext3_dir_inode_operations;
3037                 inode->i_fop = &ext3_dir_operations;
3038         } else if (S_ISLNK(inode->i_mode)) {
3039                 if (ext3_inode_is_fast_symlink(inode)) {
3040                         inode->i_op = &ext3_fast_symlink_inode_operations;
3041                         nd_terminate_link(ei->i_data, inode->i_size,
3042                                 sizeof(ei->i_data) - 1);
3043                 } else {
3044                         inode->i_op = &ext3_symlink_inode_operations;
3045                         ext3_set_aops(inode);
3046                 }
3047         } else {
3048                 inode->i_op = &ext3_special_inode_operations;
3049                 if (raw_inode->i_block[0])
3050                         init_special_inode(inode, inode->i_mode,
3051                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3052                 else
3053                         init_special_inode(inode, inode->i_mode,
3054                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3055         }
3056         brelse (iloc.bh);
3057         ext3_set_inode_flags(inode);
3058         unlock_new_inode(inode);
3059         return inode;
3060
3061 bad_inode:
3062         iget_failed(inode);
3063         return ERR_PTR(ret);
3064 }
3065
3066 /*
3067  * Post the struct inode info into an on-disk inode location in the
3068  * buffer-cache.  This gobbles the caller's reference to the
3069  * buffer_head in the inode location struct.
3070  *
3071  * The caller must have write access to iloc->bh.
3072  */
3073 static int ext3_do_update_inode(handle_t *handle,
3074                                 struct inode *inode,
3075                                 struct ext3_iloc *iloc)
3076 {
3077         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3078         struct ext3_inode_info *ei = EXT3_I(inode);
3079         struct buffer_head *bh = iloc->bh;
3080         int err = 0, rc, block;
3081
3082 again:
3083         /* we can't allow multiple procs in here at once, its a bit racey */
3084         lock_buffer(bh);
3085
3086         /* For fields not not tracking in the in-memory inode,
3087          * initialise them to zero for new inodes. */
3088         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3089                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3090
3091         ext3_get_inode_flags(ei);
3092         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3093         if(!(test_opt(inode->i_sb, NO_UID32))) {
3094                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3095                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3096 /*
3097  * Fix up interoperability with old kernels. Otherwise, old inodes get
3098  * re-used with the upper 16 bits of the uid/gid intact
3099  */
3100                 if(!ei->i_dtime) {
3101                         raw_inode->i_uid_high =
3102                                 cpu_to_le16(high_16_bits(inode->i_uid));
3103                         raw_inode->i_gid_high =
3104                                 cpu_to_le16(high_16_bits(inode->i_gid));
3105                 } else {
3106                         raw_inode->i_uid_high = 0;
3107                         raw_inode->i_gid_high = 0;
3108                 }
3109         } else {
3110                 raw_inode->i_uid_low =
3111                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3112                 raw_inode->i_gid_low =
3113                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3114                 raw_inode->i_uid_high = 0;
3115                 raw_inode->i_gid_high = 0;
3116         }
3117         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3118         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3119         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3120         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3121         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3122         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3123         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3124         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3125 #ifdef EXT3_FRAGMENTS
3126         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3127         raw_inode->i_frag = ei->i_frag_no;
3128         raw_inode->i_fsize = ei->i_frag_size;
3129 #endif
3130         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3131         if (!S_ISREG(inode->i_mode)) {
3132                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3133         } else {
3134                 raw_inode->i_size_high =
3135                         cpu_to_le32(ei->i_disksize >> 32);
3136                 if (ei->i_disksize > 0x7fffffffULL) {
3137                         struct super_block *sb = inode->i_sb;
3138                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3139                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3140                             EXT3_SB(sb)->s_es->s_rev_level ==
3141                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3142                                /* If this is the first large file
3143                                 * created, add a flag to the superblock.
3144                                 */
3145                                 unlock_buffer(bh);
3146                                 err = ext3_journal_get_write_access(handle,
3147                                                 EXT3_SB(sb)->s_sbh);
3148                                 if (err)
3149                                         goto out_brelse;
3150
3151                                 ext3_update_dynamic_rev(sb);
3152                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3153                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3154                                 handle->h_sync = 1;
3155                                 err = ext3_journal_dirty_metadata(handle,
3156                                                 EXT3_SB(sb)->s_sbh);
3157                                 /* get our lock and start over */
3158                                 goto again;
3159                         }
3160                 }
3161         }
3162         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3163         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3164                 if (old_valid_dev(inode->i_rdev)) {
3165                         raw_inode->i_block[0] =
3166                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3167                         raw_inode->i_block[1] = 0;
3168                 } else {
3169                         raw_inode->i_block[0] = 0;
3170                         raw_inode->i_block[1] =
3171                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3172                         raw_inode->i_block[2] = 0;
3173                 }
3174         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3175                 raw_inode->i_block[block] = ei->i_data[block];
3176
3177         if (ei->i_extra_isize)
3178                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3179
3180         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3181         unlock_buffer(bh);
3182         rc = ext3_journal_dirty_metadata(handle, bh);
3183         if (!err)
3184                 err = rc;
3185         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3186
3187         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3188 out_brelse:
3189         brelse (bh);
3190         ext3_std_error(inode->i_sb, err);
3191         return err;
3192 }
3193
3194 /*
3195  * ext3_write_inode()
3196  *
3197  * We are called from a few places:
3198  *
3199  * - Within generic_file_write() for O_SYNC files.
3200  *   Here, there will be no transaction running. We wait for any running
3201  *   trasnaction to commit.
3202  *
3203  * - Within sys_sync(), kupdate and such.
3204  *   We wait on commit, if tol to.
3205  *
3206  * - Within prune_icache() (PF_MEMALLOC == true)
3207  *   Here we simply return.  We can't afford to block kswapd on the
3208  *   journal commit.
3209  *
3210  * In all cases it is actually safe for us to return without doing anything,
3211  * because the inode has been copied into a raw inode buffer in
3212  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3213  * knfsd.
3214  *
3215  * Note that we are absolutely dependent upon all inode dirtiers doing the
3216  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3217  * which we are interested.
3218  *
3219  * It would be a bug for them to not do this.  The code:
3220  *
3221  *      mark_inode_dirty(inode)
3222  *      stuff();
3223  *      inode->i_size = expr;
3224  *
3225  * is in error because a kswapd-driven write_inode() could occur while
3226  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3227  * will no longer be on the superblock's dirty inode list.
3228  */
3229 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3230 {
3231         if (current->flags & PF_MEMALLOC)
3232                 return 0;
3233
3234         if (ext3_journal_current_handle()) {
3235                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3236                 dump_stack();
3237                 return -EIO;
3238         }
3239
3240         if (wbc->sync_mode != WB_SYNC_ALL)
3241                 return 0;
3242
3243         return ext3_force_commit(inode->i_sb);
3244 }
3245
3246 /*
3247  * ext3_setattr()
3248  *
3249  * Called from notify_change.
3250  *
3251  * We want to trap VFS attempts to truncate the file as soon as
3252  * possible.  In particular, we want to make sure that when the VFS
3253  * shrinks i_size, we put the inode on the orphan list and modify
3254  * i_disksize immediately, so that during the subsequent flushing of
3255  * dirty pages and freeing of disk blocks, we can guarantee that any
3256  * commit will leave the blocks being flushed in an unused state on
3257  * disk.  (On recovery, the inode will get truncated and the blocks will
3258  * be freed, so we have a strong guarantee that no future commit will
3259  * leave these blocks visible to the user.)
3260  *
3261  * Called with inode->sem down.
3262  */
3263 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3264 {
3265         struct inode *inode = dentry->d_inode;
3266         int error, rc = 0;
3267         const unsigned int ia_valid = attr->ia_valid;
3268
3269         error = inode_change_ok(inode, attr);
3270         if (error)
3271                 return error;
3272
3273         if (is_quota_modification(inode, attr))
3274                 dquot_initialize(inode);
3275         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3276                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3277                 handle_t *handle;
3278
3279                 /* (user+group)*(old+new) structure, inode write (sb,
3280                  * inode block, ? - but truncate inode update has it) */
3281                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3282                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3283                 if (IS_ERR(handle)) {
3284                         error = PTR_ERR(handle);
3285                         goto err_out;
3286                 }
3287                 error = dquot_transfer(inode, attr);
3288                 if (error) {
3289                         ext3_journal_stop(handle);
3290                         return error;
3291                 }
3292                 /* Update corresponding info in inode so that everything is in
3293                  * one transaction */
3294                 if (attr->ia_valid & ATTR_UID)
3295                         inode->i_uid = attr->ia_uid;
3296                 if (attr->ia_valid & ATTR_GID)
3297                         inode->i_gid = attr->ia_gid;
3298                 error = ext3_mark_inode_dirty(handle, inode);
3299                 ext3_journal_stop(handle);
3300         }
3301
3302         if (attr->ia_valid & ATTR_SIZE)
3303                 inode_dio_wait(inode);
3304
3305         if (S_ISREG(inode->i_mode) &&
3306             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3307                 handle_t *handle;
3308
3309                 handle = ext3_journal_start(inode, 3);
3310                 if (IS_ERR(handle)) {
3311                         error = PTR_ERR(handle);
3312                         goto err_out;
3313                 }
3314
3315                 error = ext3_orphan_add(handle, inode);
3316                 if (error) {
3317                         ext3_journal_stop(handle);
3318                         goto err_out;
3319                 }
3320                 EXT3_I(inode)->i_disksize = attr->ia_size;
3321                 error = ext3_mark_inode_dirty(handle, inode);
3322                 ext3_journal_stop(handle);
3323                 if (error) {
3324                         /* Some hard fs error must have happened. Bail out. */
3325                         ext3_orphan_del(NULL, inode);
3326                         goto err_out;
3327                 }
3328                 rc = ext3_block_truncate_page(inode, attr->ia_size);
3329                 if (rc) {
3330                         /* Cleanup orphan list and exit */
3331                         handle = ext3_journal_start(inode, 3);
3332                         if (IS_ERR(handle)) {
3333                                 ext3_orphan_del(NULL, inode);
3334                                 goto err_out;
3335                         }
3336                         ext3_orphan_del(handle, inode);
3337                         ext3_journal_stop(handle);
3338                         goto err_out;
3339                 }
3340         }
3341
3342         if ((attr->ia_valid & ATTR_SIZE) &&
3343             attr->ia_size != i_size_read(inode)) {
3344                 truncate_setsize(inode, attr->ia_size);
3345                 ext3_truncate(inode);
3346         }
3347
3348         setattr_copy(inode, attr);
3349         mark_inode_dirty(inode);
3350
3351         if (ia_valid & ATTR_MODE)
3352                 rc = ext3_acl_chmod(inode);
3353
3354 err_out:
3355         ext3_std_error(inode->i_sb, error);
3356         if (!error)
3357                 error = rc;
3358         return error;
3359 }
3360
3361
3362 /*
3363  * How many blocks doth make a writepage()?
3364  *
3365  * With N blocks per page, it may be:
3366  * N data blocks
3367  * 2 indirect block
3368  * 2 dindirect
3369  * 1 tindirect
3370  * N+5 bitmap blocks (from the above)
3371  * N+5 group descriptor summary blocks
3372  * 1 inode block
3373  * 1 superblock.
3374  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3375  *
3376  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3377  *
3378  * With ordered or writeback data it's the same, less the N data blocks.
3379  *
3380  * If the inode's direct blocks can hold an integral number of pages then a
3381  * page cannot straddle two indirect blocks, and we can only touch one indirect
3382  * and dindirect block, and the "5" above becomes "3".
3383  *
3384  * This still overestimates under most circumstances.  If we were to pass the
3385  * start and end offsets in here as well we could do block_to_path() on each
3386  * block and work out the exact number of indirects which are touched.  Pah.
3387  */
3388
3389 static int ext3_writepage_trans_blocks(struct inode *inode)
3390 {
3391         int bpp = ext3_journal_blocks_per_page(inode);
3392         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3393         int ret;
3394
3395         if (ext3_should_journal_data(inode))
3396                 ret = 3 * (bpp + indirects) + 2;
3397         else
3398                 ret = 2 * (bpp + indirects) + indirects + 2;
3399
3400 #ifdef CONFIG_QUOTA
3401         /* We know that structure was already allocated during dquot_initialize so
3402          * we will be updating only the data blocks + inodes */
3403         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3404 #endif
3405
3406         return ret;
3407 }
3408
3409 /*
3410  * The caller must have previously called ext3_reserve_inode_write().
3411  * Give this, we know that the caller already has write access to iloc->bh.
3412  */
3413 int ext3_mark_iloc_dirty(handle_t *handle,
3414                 struct inode *inode, struct ext3_iloc *iloc)
3415 {
3416         int err = 0;
3417
3418         /* the do_update_inode consumes one bh->b_count */
3419         get_bh(iloc->bh);
3420
3421         /* ext3_do_update_inode() does journal_dirty_metadata */
3422         err = ext3_do_update_inode(handle, inode, iloc);
3423         put_bh(iloc->bh);
3424         return err;
3425 }
3426
3427 /*
3428  * On success, We end up with an outstanding reference count against
3429  * iloc->bh.  This _must_ be cleaned up later.
3430  */
3431
3432 int
3433 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3434                          struct ext3_iloc *iloc)
3435 {
3436         int err = 0;
3437         if (handle) {
3438                 err = ext3_get_inode_loc(inode, iloc);
3439                 if (!err) {
3440                         BUFFER_TRACE(iloc->bh, "get_write_access");
3441                         err = ext3_journal_get_write_access(handle, iloc->bh);
3442                         if (err) {
3443                                 brelse(iloc->bh);
3444                                 iloc->bh = NULL;
3445                         }
3446                 }
3447         }
3448         ext3_std_error(inode->i_sb, err);
3449         return err;
3450 }
3451
3452 /*
3453  * What we do here is to mark the in-core inode as clean with respect to inode
3454  * dirtiness (it may still be data-dirty).
3455  * This means that the in-core inode may be reaped by prune_icache
3456  * without having to perform any I/O.  This is a very good thing,
3457  * because *any* task may call prune_icache - even ones which
3458  * have a transaction open against a different journal.
3459  *
3460  * Is this cheating?  Not really.  Sure, we haven't written the
3461  * inode out, but prune_icache isn't a user-visible syncing function.
3462  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3463  * we start and wait on commits.
3464  *
3465  * Is this efficient/effective?  Well, we're being nice to the system
3466  * by cleaning up our inodes proactively so they can be reaped
3467  * without I/O.  But we are potentially leaving up to five seconds'
3468  * worth of inodes floating about which prune_icache wants us to
3469  * write out.  One way to fix that would be to get prune_icache()
3470  * to do a write_super() to free up some memory.  It has the desired
3471  * effect.
3472  */
3473 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3474 {
3475         struct ext3_iloc iloc;
3476         int err;
3477
3478         might_sleep();
3479         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3480         err = ext3_reserve_inode_write(handle, inode, &iloc);
3481         if (!err)
3482                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3483         return err;
3484 }
3485
3486 /*
3487  * ext3_dirty_inode() is called from __mark_inode_dirty()
3488  *
3489  * We're really interested in the case where a file is being extended.
3490  * i_size has been changed by generic_commit_write() and we thus need
3491  * to include the updated inode in the current transaction.
3492  *
3493  * Also, dquot_alloc_space() will always dirty the inode when blocks
3494  * are allocated to the file.
3495  *
3496  * If the inode is marked synchronous, we don't honour that here - doing
3497  * so would cause a commit on atime updates, which we don't bother doing.
3498  * We handle synchronous inodes at the highest possible level.
3499  */
3500 void ext3_dirty_inode(struct inode *inode, int flags)
3501 {
3502         handle_t *current_handle = ext3_journal_current_handle();
3503         handle_t *handle;
3504
3505         handle = ext3_journal_start(inode, 2);
3506         if (IS_ERR(handle))
3507                 goto out;
3508         if (current_handle &&
3509                 current_handle->h_transaction != handle->h_transaction) {
3510                 /* This task has a transaction open against a different fs */
3511                 printk(KERN_EMERG "%s: transactions do not match!\n",
3512                        __func__);
3513         } else {
3514                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3515                                 current_handle);
3516                 ext3_mark_inode_dirty(handle, inode);
3517         }
3518         ext3_journal_stop(handle);
3519 out:
3520         return;
3521 }
3522
3523 #if 0
3524 /*
3525  * Bind an inode's backing buffer_head into this transaction, to prevent
3526  * it from being flushed to disk early.  Unlike
3527  * ext3_reserve_inode_write, this leaves behind no bh reference and
3528  * returns no iloc structure, so the caller needs to repeat the iloc
3529  * lookup to mark the inode dirty later.
3530  */
3531 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3532 {
3533         struct ext3_iloc iloc;
3534
3535         int err = 0;
3536         if (handle) {
3537                 err = ext3_get_inode_loc(inode, &iloc);
3538                 if (!err) {
3539                         BUFFER_TRACE(iloc.bh, "get_write_access");
3540                         err = journal_get_write_access(handle, iloc.bh);
3541                         if (!err)
3542                                 err = ext3_journal_dirty_metadata(handle,
3543                                                                   iloc.bh);
3544                         brelse(iloc.bh);
3545                 }
3546         }
3547         ext3_std_error(inode->i_sb, err);
3548         return err;
3549 }
3550 #endif
3551
3552 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3553 {
3554         journal_t *journal;
3555         handle_t *handle;
3556         int err;
3557
3558         /*
3559          * We have to be very careful here: changing a data block's
3560          * journaling status dynamically is dangerous.  If we write a
3561          * data block to the journal, change the status and then delete
3562          * that block, we risk forgetting to revoke the old log record
3563          * from the journal and so a subsequent replay can corrupt data.
3564          * So, first we make sure that the journal is empty and that
3565          * nobody is changing anything.
3566          */
3567
3568         journal = EXT3_JOURNAL(inode);
3569         if (is_journal_aborted(journal))
3570                 return -EROFS;
3571
3572         journal_lock_updates(journal);
3573         journal_flush(journal);
3574
3575         /*
3576          * OK, there are no updates running now, and all cached data is
3577          * synced to disk.  We are now in a completely consistent state
3578          * which doesn't have anything in the journal, and we know that
3579          * no filesystem updates are running, so it is safe to modify
3580          * the inode's in-core data-journaling state flag now.
3581          */
3582
3583         if (val)
3584                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3585         else
3586                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3587         ext3_set_aops(inode);
3588
3589         journal_unlock_updates(journal);
3590
3591         /* Finally we can mark the inode as dirty. */
3592
3593         handle = ext3_journal_start(inode, 1);
3594         if (IS_ERR(handle))
3595                 return PTR_ERR(handle);
3596
3597         err = ext3_mark_inode_dirty(handle, inode);
3598         handle->h_sync = 1;
3599         ext3_journal_stop(handle);
3600         ext3_std_error(inode->i_sb, err);
3601
3602         return err;
3603 }
This page took 0.279375 seconds and 4 git commands to generate.