2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
114 #define M_SIGEMT M(SIGEMT)
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
122 #define M(sig) (1UL << ((sig)-1))
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct *t, int sig)
159 void __user * handler;
162 * Tracers always want to know about signals..
164 if (t->ptrace & PT_PTRACED)
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
172 if (sigismember(&t->blocked, sig))
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
190 switch (_NSIG_WORDS) {
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 if (t->signal->group_stop_count > 0 ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 void recalc_sigpending(void)
226 recalc_sigpending_tsk(current);
229 /* Given the mask, find the first available signal that should be serviced. */
232 next_signal(struct sigpending *pending, sigset_t *mask)
234 unsigned long i, *s, *m, x;
237 s = pending->signal.sig;
239 switch (_NSIG_WORDS) {
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
248 case 2: if ((x = s[0] &~ m[0]) != 0)
250 else if ((x = s[1] &~ m[1]) != 0)
257 case 1: if ((x = *s &~ *m) != 0)
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 struct sigqueue *q = NULL;
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
278 INIT_LIST_HEAD(&q->list);
280 q->user = get_uid(t->user);
285 static inline void __sigqueue_free(struct sigqueue *q)
287 if (q->flags & SIGQUEUE_PREALLOC)
289 atomic_dec(&q->user->sigpending);
291 kmem_cache_free(sigqueue_cachep, q);
294 static void flush_sigqueue(struct sigpending *queue)
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
307 * Flush all pending signals for a task.
311 flush_signals(struct task_struct *t)
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
323 * This function expects the tasklist_lock write-locked.
325 void __exit_sighand(struct task_struct *tsk)
327 struct sighand_struct * sighand = tsk->sighand;
329 /* Ok, we're done with the signal handlers */
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
335 void exit_sighand(struct task_struct *tsk)
337 write_lock_irq(&tasklist_lock);
339 write_unlock_irq(&tasklist_lock);
343 * This function expects the tasklist_lock write-locked.
345 void __exit_signal(struct task_struct *tsk)
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
352 if (!atomic_read(&sig->count))
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
365 * If there is any task waiting for the group exit
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
399 * We are cleaning up the signal_struct here.
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
406 void exit_signal(struct task_struct *tsk)
408 atomic_dec(&tsk->signal->live);
410 write_lock_irq(&tasklist_lock);
412 write_unlock_irq(&tasklist_lock);
416 * Flush all handlers for a task.
420 flush_signal_handlers(struct task_struct *t, int force_default)
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
428 sigemptyset(&ka->sa.sa_mask);
434 /* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
443 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
447 spin_lock_irqsave(¤t->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
454 /* Notify the system that blocking has ended. */
457 unblock_all_signals(void)
461 spin_lock_irqsave(¤t->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
465 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
468 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
473 if (unlikely(!sigismember(&list->signal, sig)))
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
494 sigdelset(&list->signal, sig);
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
511 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
519 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
520 if (!sigismember(mask, SIGKILL))
525 sig = next_signal(pending, mask);
527 if (current->notifier) {
528 if (sigismember(current->notifier_mask, sig)) {
529 if (!(current->notifier)(current->notifier_data)) {
530 clear_thread_flag(TIF_SIGPENDING);
536 if (!collect_signal(sig, pending, info))
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
549 * All callers have to hold the siglock.
551 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
553 int signr = __dequeue_signal(&tsk->pending, mask, info);
555 signr = __dequeue_signal(&tsk->signal->shared_pending,
557 if (signr && unlikely(sig_kernel_stop(signr))) {
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
570 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
590 * Tell a process that it has a new active signal..
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
600 void signal_wake_up(struct task_struct *t, int resume)
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
613 mask = TASK_INTERRUPTIBLE;
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
624 * All callers must be holding the siglock.
626 static int rm_from_queue(unsigned long mask, struct sigpending *s)
628 struct sigqueue *q, *n;
630 if (!sigtestsetmask(&s->signal, mask))
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
645 * Bad permissions for sending the signal
647 static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
651 if (!valid_signal(sig))
654 if ((!info || ((unsigned long)info != 1 &&
655 (unsigned long)info != 2 && SI_FROMUSER(info)))
656 && ((sig != SIGCONT) ||
657 (current->signal->session != t->signal->session))
658 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
659 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
660 && !capable(CAP_KILL))
663 error = security_task_kill(t, info, sig);
665 audit_signal_info(sig, t); /* Let audit system see the signal */
670 static void do_notify_parent_cldstop(struct task_struct *tsk,
675 * Handle magic process-wide effects of stop/continue signals.
676 * Unlike the signal actions, these happen immediately at signal-generation
677 * time regardless of blocking, ignoring, or handling. This does the
678 * actual continuing for SIGCONT, but not the actual stopping for stop
679 * signals. The process stop is done as a signal action for SIG_DFL.
681 static void handle_stop_signal(int sig, struct task_struct *p)
683 struct task_struct *t;
685 if (p->signal->flags & SIGNAL_GROUP_EXIT)
687 * The process is in the middle of dying already.
691 if (sig_kernel_stop(sig)) {
693 * This is a stop signal. Remove SIGCONT from all queues.
695 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
698 rm_from_queue(sigmask(SIGCONT), &t->pending);
701 } else if (sig == SIGCONT) {
703 * Remove all stop signals from all queues,
704 * and wake all threads.
706 if (unlikely(p->signal->group_stop_count > 0)) {
708 * There was a group stop in progress. We'll
709 * pretend it finished before we got here. We are
710 * obliged to report it to the parent: if the
711 * SIGSTOP happened "after" this SIGCONT, then it
712 * would have cleared this pending SIGCONT. If it
713 * happened "before" this SIGCONT, then the parent
714 * got the SIGCHLD about the stop finishing before
715 * the continue happened. We do the notification
716 * now, and it's as if the stop had finished and
717 * the SIGCHLD was pending on entry to this kill.
719 p->signal->group_stop_count = 0;
720 p->signal->flags = SIGNAL_STOP_CONTINUED;
721 spin_unlock(&p->sighand->siglock);
722 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
723 spin_lock(&p->sighand->siglock);
725 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
729 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
732 * If there is a handler for SIGCONT, we must make
733 * sure that no thread returns to user mode before
734 * we post the signal, in case it was the only
735 * thread eligible to run the signal handler--then
736 * it must not do anything between resuming and
737 * running the handler. With the TIF_SIGPENDING
738 * flag set, the thread will pause and acquire the
739 * siglock that we hold now and until we've queued
740 * the pending signal.
742 * Wake up the stopped thread _after_ setting
745 state = TASK_STOPPED;
746 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
747 set_tsk_thread_flag(t, TIF_SIGPENDING);
748 state |= TASK_INTERRUPTIBLE;
750 wake_up_state(t, state);
755 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
757 * We were in fact stopped, and are now continued.
758 * Notify the parent with CLD_CONTINUED.
760 p->signal->flags = SIGNAL_STOP_CONTINUED;
761 p->signal->group_exit_code = 0;
762 spin_unlock(&p->sighand->siglock);
763 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
764 spin_lock(&p->sighand->siglock);
767 * We are not stopped, but there could be a stop
768 * signal in the middle of being processed after
769 * being removed from the queue. Clear that too.
771 p->signal->flags = 0;
773 } else if (sig == SIGKILL) {
775 * Make sure that any pending stop signal already dequeued
776 * is undone by the wakeup for SIGKILL.
778 p->signal->flags = 0;
782 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
783 struct sigpending *signals)
785 struct sigqueue * q = NULL;
789 * fast-pathed signals for kernel-internal things like SIGSTOP
792 if ((unsigned long)info == 2)
795 /* Real-time signals must be queued if sent by sigqueue, or
796 some other real-time mechanism. It is implementation
797 defined whether kill() does so. We attempt to do so, on
798 the principle of least surprise, but since kill is not
799 allowed to fail with EAGAIN when low on memory we just
800 make sure at least one signal gets delivered and don't
801 pass on the info struct. */
803 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
804 ((unsigned long) info < 2 ||
805 info->si_code >= 0)));
807 list_add_tail(&q->list, &signals->list);
808 switch ((unsigned long) info) {
810 q->info.si_signo = sig;
811 q->info.si_errno = 0;
812 q->info.si_code = SI_USER;
813 q->info.si_pid = current->pid;
814 q->info.si_uid = current->uid;
817 q->info.si_signo = sig;
818 q->info.si_errno = 0;
819 q->info.si_code = SI_KERNEL;
824 copy_siginfo(&q->info, info);
828 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
829 && info->si_code != SI_USER)
831 * Queue overflow, abort. We may abort if the signal was rt
832 * and sent by user using something other than kill().
835 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
837 * Set up a return to indicate that we dropped
840 ret = info->si_sys_private;
844 sigaddset(&signals->signal, sig);
848 #define LEGACY_QUEUE(sigptr, sig) \
849 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
853 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
857 if (!irqs_disabled())
859 assert_spin_locked(&t->sighand->siglock);
861 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
863 * Set up a return to indicate that we dropped the signal.
865 ret = info->si_sys_private;
867 /* Short-circuit ignored signals. */
868 if (sig_ignored(t, sig))
871 /* Support queueing exactly one non-rt signal, so that we
872 can get more detailed information about the cause of
874 if (LEGACY_QUEUE(&t->pending, sig))
877 ret = send_signal(sig, info, t, &t->pending);
878 if (!ret && !sigismember(&t->blocked, sig))
879 signal_wake_up(t, sig == SIGKILL);
885 * Force a signal that the process can't ignore: if necessary
886 * we unblock the signal and change any SIG_IGN to SIG_DFL.
890 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
892 unsigned long int flags;
895 spin_lock_irqsave(&t->sighand->siglock, flags);
896 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
897 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
898 sigdelset(&t->blocked, sig);
899 recalc_sigpending_tsk(t);
901 ret = specific_send_sig_info(sig, info, t);
902 spin_unlock_irqrestore(&t->sighand->siglock, flags);
908 force_sig_specific(int sig, struct task_struct *t)
910 unsigned long int flags;
912 spin_lock_irqsave(&t->sighand->siglock, flags);
913 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
914 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
915 sigdelset(&t->blocked, sig);
916 recalc_sigpending_tsk(t);
917 specific_send_sig_info(sig, (void *)2, t);
918 spin_unlock_irqrestore(&t->sighand->siglock, flags);
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
929 static inline int wants_signal(int sig, struct task_struct *p)
931 if (sigismember(&p->blocked, sig))
933 if (p->flags & PF_EXITING)
937 if (p->state & (TASK_STOPPED | TASK_TRACED))
939 return task_curr(p) || !signal_pending(p);
943 __group_complete_signal(int sig, struct task_struct *p)
945 struct task_struct *t;
948 * Now find a thread we can wake up to take the signal off the queue.
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
953 if (wants_signal(sig, p))
955 else if (thread_group_empty(p))
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
963 * Otherwise try to find a suitable thread.
965 t = p->signal->curr_target;
967 /* restart balancing at this thread */
968 t = p->signal->curr_target = p;
969 BUG_ON(t->tgid != p->tgid);
971 while (!wants_signal(sig, t)) {
973 if (t == p->signal->curr_target)
975 * No thread needs to be woken.
976 * Any eligible threads will see
977 * the signal in the queue soon.
981 p->signal->curr_target = t;
985 * Found a killable thread. If the signal will be fatal,
986 * then start taking the whole group down immediately.
988 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
989 !sigismember(&t->real_blocked, sig) &&
990 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
992 * This signal will be fatal to the whole group.
994 if (!sig_kernel_coredump(sig)) {
996 * Start a group exit and wake everybody up.
997 * This way we don't have other threads
998 * running and doing things after a slower
999 * thread has the fatal signal pending.
1001 p->signal->flags = SIGNAL_GROUP_EXIT;
1002 p->signal->group_exit_code = sig;
1003 p->signal->group_stop_count = 0;
1006 sigaddset(&t->pending.signal, SIGKILL);
1007 signal_wake_up(t, 1);
1014 * There will be a core dump. We make all threads other
1015 * than the chosen one go into a group stop so that nothing
1016 * happens until it gets scheduled, takes the signal off
1017 * the shared queue, and does the core dump. This is a
1018 * little more complicated than strictly necessary, but it
1019 * keeps the signal state that winds up in the core dump
1020 * unchanged from the death state, e.g. which thread had
1021 * the core-dump signal unblocked.
1023 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1024 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1025 p->signal->group_stop_count = 0;
1026 p->signal->group_exit_task = t;
1029 p->signal->group_stop_count++;
1030 signal_wake_up(t, 0);
1033 wake_up_process(p->signal->group_exit_task);
1038 * The signal is already in the shared-pending queue.
1039 * Tell the chosen thread to wake up and dequeue it.
1041 signal_wake_up(t, sig == SIGKILL);
1046 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1050 assert_spin_locked(&p->sighand->siglock);
1051 handle_stop_signal(sig, p);
1053 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1055 * Set up a return to indicate that we dropped the signal.
1057 ret = info->si_sys_private;
1059 /* Short-circuit ignored signals. */
1060 if (sig_ignored(p, sig))
1063 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1064 /* This is a non-RT signal and we already have one queued. */
1068 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1069 * We always use the shared queue for process-wide signals,
1070 * to avoid several races.
1072 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1076 __group_complete_signal(sig, p);
1081 * Nuke all other threads in the group.
1083 void zap_other_threads(struct task_struct *p)
1085 struct task_struct *t;
1087 p->signal->flags = SIGNAL_GROUP_EXIT;
1088 p->signal->group_stop_count = 0;
1090 if (thread_group_empty(p))
1093 for (t = next_thread(p); t != p; t = next_thread(t)) {
1095 * Don't bother with already dead threads
1101 * We don't want to notify the parent, since we are
1102 * killed as part of a thread group due to another
1103 * thread doing an execve() or similar. So set the
1104 * exit signal to -1 to allow immediate reaping of
1105 * the process. But don't detach the thread group
1108 if (t != p->group_leader)
1109 t->exit_signal = -1;
1111 /* SIGKILL will be handled before any pending SIGSTOP */
1112 sigaddset(&t->pending.signal, SIGKILL);
1113 signal_wake_up(t, 1);
1118 * Must be called with the tasklist_lock held for reading!
1120 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1122 unsigned long flags;
1125 ret = check_kill_permission(sig, info, p);
1126 if (!ret && sig && p->sighand) {
1127 spin_lock_irqsave(&p->sighand->siglock, flags);
1128 ret = __group_send_sig_info(sig, info, p);
1129 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1136 * kill_pg_info() sends a signal to a process group: this is what the tty
1137 * control characters do (^C, ^Z etc)
1140 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1142 struct task_struct *p = NULL;
1143 int retval, success;
1150 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1151 int err = group_send_sig_info(sig, info, p);
1154 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1155 return success ? 0 : retval;
1159 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1163 read_lock(&tasklist_lock);
1164 retval = __kill_pg_info(sig, info, pgrp);
1165 read_unlock(&tasklist_lock);
1171 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1174 struct task_struct *p;
1176 read_lock(&tasklist_lock);
1177 p = find_task_by_pid(pid);
1180 error = group_send_sig_info(sig, info, p);
1181 read_unlock(&tasklist_lock);
1185 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1186 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1187 uid_t uid, uid_t euid)
1190 struct task_struct *p;
1192 if (!valid_signal(sig))
1195 read_lock(&tasklist_lock);
1196 p = find_task_by_pid(pid);
1201 if ((!info || ((unsigned long)info != 1 &&
1202 (unsigned long)info != 2 && SI_FROMUSER(info)))
1203 && (euid != p->suid) && (euid != p->uid)
1204 && (uid != p->suid) && (uid != p->uid)) {
1208 if (sig && p->sighand) {
1209 unsigned long flags;
1210 spin_lock_irqsave(&p->sighand->siglock, flags);
1211 ret = __group_send_sig_info(sig, info, p);
1212 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1215 read_unlock(&tasklist_lock);
1218 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1221 * kill_something_info() interprets pid in interesting ways just like kill(2).
1223 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1224 * is probably wrong. Should make it like BSD or SYSV.
1227 static int kill_something_info(int sig, struct siginfo *info, int pid)
1230 return kill_pg_info(sig, info, process_group(current));
1231 } else if (pid == -1) {
1232 int retval = 0, count = 0;
1233 struct task_struct * p;
1235 read_lock(&tasklist_lock);
1236 for_each_process(p) {
1237 if (p->pid > 1 && p->tgid != current->tgid) {
1238 int err = group_send_sig_info(sig, info, p);
1244 read_unlock(&tasklist_lock);
1245 return count ? retval : -ESRCH;
1246 } else if (pid < 0) {
1247 return kill_pg_info(sig, info, -pid);
1249 return kill_proc_info(sig, info, pid);
1254 * These are for backward compatibility with the rest of the kernel source.
1258 * These two are the most common entry points. They send a signal
1259 * just to the specific thread.
1262 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1265 unsigned long flags;
1268 * Make sure legacy kernel users don't send in bad values
1269 * (normal paths check this in check_kill_permission).
1271 if (!valid_signal(sig))
1275 * We need the tasklist lock even for the specific
1276 * thread case (when we don't need to follow the group
1277 * lists) in order to avoid races with "p->sighand"
1278 * going away or changing from under us.
1280 read_lock(&tasklist_lock);
1281 spin_lock_irqsave(&p->sighand->siglock, flags);
1282 ret = specific_send_sig_info(sig, info, p);
1283 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1284 read_unlock(&tasklist_lock);
1289 send_sig(int sig, struct task_struct *p, int priv)
1291 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1295 * This is the entry point for "process-wide" signals.
1296 * They will go to an appropriate thread in the thread group.
1299 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1302 read_lock(&tasklist_lock);
1303 ret = group_send_sig_info(sig, info, p);
1304 read_unlock(&tasklist_lock);
1309 force_sig(int sig, struct task_struct *p)
1311 force_sig_info(sig, (void*)1L, p);
1315 * When things go south during signal handling, we
1316 * will force a SIGSEGV. And if the signal that caused
1317 * the problem was already a SIGSEGV, we'll want to
1318 * make sure we don't even try to deliver the signal..
1321 force_sigsegv(int sig, struct task_struct *p)
1323 if (sig == SIGSEGV) {
1324 unsigned long flags;
1325 spin_lock_irqsave(&p->sighand->siglock, flags);
1326 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1327 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1329 force_sig(SIGSEGV, p);
1334 kill_pg(pid_t pgrp, int sig, int priv)
1336 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1340 kill_proc(pid_t pid, int sig, int priv)
1342 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1346 * These functions support sending signals using preallocated sigqueue
1347 * structures. This is needed "because realtime applications cannot
1348 * afford to lose notifications of asynchronous events, like timer
1349 * expirations or I/O completions". In the case of Posix Timers
1350 * we allocate the sigqueue structure from the timer_create. If this
1351 * allocation fails we are able to report the failure to the application
1352 * with an EAGAIN error.
1355 struct sigqueue *sigqueue_alloc(void)
1359 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1360 q->flags |= SIGQUEUE_PREALLOC;
1364 void sigqueue_free(struct sigqueue *q)
1366 unsigned long flags;
1367 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1369 * If the signal is still pending remove it from the
1372 if (unlikely(!list_empty(&q->list))) {
1373 spinlock_t *lock = ¤t->sighand->siglock;
1374 read_lock(&tasklist_lock);
1375 spin_lock_irqsave(lock, flags);
1376 if (!list_empty(&q->list))
1377 list_del_init(&q->list);
1378 spin_unlock_irqrestore(lock, flags);
1379 read_unlock(&tasklist_lock);
1381 q->flags &= ~SIGQUEUE_PREALLOC;
1386 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1388 unsigned long flags;
1391 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1392 read_lock(&tasklist_lock);
1394 if (unlikely(p->flags & PF_EXITING)) {
1399 spin_lock_irqsave(&p->sighand->siglock, flags);
1401 if (unlikely(!list_empty(&q->list))) {
1403 * If an SI_TIMER entry is already queue just increment
1404 * the overrun count.
1406 if (q->info.si_code != SI_TIMER)
1408 q->info.si_overrun++;
1411 /* Short-circuit ignored signals. */
1412 if (sig_ignored(p, sig)) {
1417 list_add_tail(&q->list, &p->pending.list);
1418 sigaddset(&p->pending.signal, sig);
1419 if (!sigismember(&p->blocked, sig))
1420 signal_wake_up(p, sig == SIGKILL);
1423 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1425 read_unlock(&tasklist_lock);
1431 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1433 unsigned long flags;
1436 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1437 read_lock(&tasklist_lock);
1438 spin_lock_irqsave(&p->sighand->siglock, flags);
1439 handle_stop_signal(sig, p);
1441 /* Short-circuit ignored signals. */
1442 if (sig_ignored(p, sig)) {
1447 if (unlikely(!list_empty(&q->list))) {
1449 * If an SI_TIMER entry is already queue just increment
1450 * the overrun count. Other uses should not try to
1451 * send the signal multiple times.
1453 if (q->info.si_code != SI_TIMER)
1455 q->info.si_overrun++;
1460 * Put this signal on the shared-pending queue.
1461 * We always use the shared queue for process-wide signals,
1462 * to avoid several races.
1464 list_add_tail(&q->list, &p->signal->shared_pending.list);
1465 sigaddset(&p->signal->shared_pending.signal, sig);
1467 __group_complete_signal(sig, p);
1469 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1470 read_unlock(&tasklist_lock);
1475 * Wake up any threads in the parent blocked in wait* syscalls.
1477 static inline void __wake_up_parent(struct task_struct *p,
1478 struct task_struct *parent)
1480 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1484 * Let a parent know about the death of a child.
1485 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1488 void do_notify_parent(struct task_struct *tsk, int sig)
1490 struct siginfo info;
1491 unsigned long flags;
1492 struct sighand_struct *psig;
1496 /* do_notify_parent_cldstop should have been called instead. */
1497 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1499 BUG_ON(!tsk->ptrace &&
1500 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1502 info.si_signo = sig;
1504 info.si_pid = tsk->pid;
1505 info.si_uid = tsk->uid;
1507 /* FIXME: find out whether or not this is supposed to be c*time. */
1508 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1509 tsk->signal->utime));
1510 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1511 tsk->signal->stime));
1513 info.si_status = tsk->exit_code & 0x7f;
1514 if (tsk->exit_code & 0x80)
1515 info.si_code = CLD_DUMPED;
1516 else if (tsk->exit_code & 0x7f)
1517 info.si_code = CLD_KILLED;
1519 info.si_code = CLD_EXITED;
1520 info.si_status = tsk->exit_code >> 8;
1523 psig = tsk->parent->sighand;
1524 spin_lock_irqsave(&psig->siglock, flags);
1525 if (sig == SIGCHLD &&
1526 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1527 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1529 * We are exiting and our parent doesn't care. POSIX.1
1530 * defines special semantics for setting SIGCHLD to SIG_IGN
1531 * or setting the SA_NOCLDWAIT flag: we should be reaped
1532 * automatically and not left for our parent's wait4 call.
1533 * Rather than having the parent do it as a magic kind of
1534 * signal handler, we just set this to tell do_exit that we
1535 * can be cleaned up without becoming a zombie. Note that
1536 * we still call __wake_up_parent in this case, because a
1537 * blocked sys_wait4 might now return -ECHILD.
1539 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1540 * is implementation-defined: we do (if you don't want
1541 * it, just use SIG_IGN instead).
1543 tsk->exit_signal = -1;
1544 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1547 if (valid_signal(sig) && sig > 0)
1548 __group_send_sig_info(sig, &info, tsk->parent);
1549 __wake_up_parent(tsk, tsk->parent);
1550 spin_unlock_irqrestore(&psig->siglock, flags);
1553 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1555 struct siginfo info;
1556 unsigned long flags;
1557 struct task_struct *parent;
1558 struct sighand_struct *sighand;
1561 parent = tsk->parent;
1563 tsk = tsk->group_leader;
1564 parent = tsk->real_parent;
1567 info.si_signo = SIGCHLD;
1569 info.si_pid = tsk->pid;
1570 info.si_uid = tsk->uid;
1572 /* FIXME: find out whether or not this is supposed to be c*time. */
1573 info.si_utime = cputime_to_jiffies(tsk->utime);
1574 info.si_stime = cputime_to_jiffies(tsk->stime);
1579 info.si_status = SIGCONT;
1582 info.si_status = tsk->signal->group_exit_code & 0x7f;
1585 info.si_status = tsk->exit_code & 0x7f;
1591 sighand = parent->sighand;
1592 spin_lock_irqsave(&sighand->siglock, flags);
1593 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1594 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1595 __group_send_sig_info(SIGCHLD, &info, parent);
1597 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1599 __wake_up_parent(tsk, parent);
1600 spin_unlock_irqrestore(&sighand->siglock, flags);
1604 * This must be called with current->sighand->siglock held.
1606 * This should be the path for all ptrace stops.
1607 * We always set current->last_siginfo while stopped here.
1608 * That makes it a way to test a stopped process for
1609 * being ptrace-stopped vs being job-control-stopped.
1611 * If we actually decide not to stop at all because the tracer is gone,
1612 * we leave nostop_code in current->exit_code.
1614 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1617 * If there is a group stop in progress,
1618 * we must participate in the bookkeeping.
1620 if (current->signal->group_stop_count > 0)
1621 --current->signal->group_stop_count;
1623 current->last_siginfo = info;
1624 current->exit_code = exit_code;
1626 /* Let the debugger run. */
1627 set_current_state(TASK_TRACED);
1628 spin_unlock_irq(¤t->sighand->siglock);
1629 read_lock(&tasklist_lock);
1630 if (likely(current->ptrace & PT_PTRACED) &&
1631 likely(current->parent != current->real_parent ||
1632 !(current->ptrace & PT_ATTACHED)) &&
1633 (likely(current->parent->signal != current->signal) ||
1634 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1635 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1636 read_unlock(&tasklist_lock);
1640 * By the time we got the lock, our tracer went away.
1643 read_unlock(&tasklist_lock);
1644 set_current_state(TASK_RUNNING);
1645 current->exit_code = nostop_code;
1649 * We are back. Now reacquire the siglock before touching
1650 * last_siginfo, so that we are sure to have synchronized with
1651 * any signal-sending on another CPU that wants to examine it.
1653 spin_lock_irq(¤t->sighand->siglock);
1654 current->last_siginfo = NULL;
1657 * Queued signals ignored us while we were stopped for tracing.
1658 * So check for any that we should take before resuming user mode.
1660 recalc_sigpending();
1663 void ptrace_notify(int exit_code)
1667 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1669 memset(&info, 0, sizeof info);
1670 info.si_signo = SIGTRAP;
1671 info.si_code = exit_code;
1672 info.si_pid = current->pid;
1673 info.si_uid = current->uid;
1675 /* Let the debugger run. */
1676 spin_lock_irq(¤t->sighand->siglock);
1677 ptrace_stop(exit_code, 0, &info);
1678 spin_unlock_irq(¤t->sighand->siglock);
1682 finish_stop(int stop_count)
1687 * If there are no other threads in the group, or if there is
1688 * a group stop in progress and we are the last to stop,
1689 * report to the parent. When ptraced, every thread reports itself.
1691 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1693 else if (stop_count == 0)
1698 read_lock(&tasklist_lock);
1699 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1700 read_unlock(&tasklist_lock);
1705 * Now we don't run again until continued.
1707 current->exit_code = 0;
1711 * This performs the stopping for SIGSTOP and other stop signals.
1712 * We have to stop all threads in the thread group.
1713 * Returns nonzero if we've actually stopped and released the siglock.
1714 * Returns zero if we didn't stop and still hold the siglock.
1717 do_signal_stop(int signr)
1719 struct signal_struct *sig = current->signal;
1720 struct sighand_struct *sighand = current->sighand;
1721 int stop_count = -1;
1723 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1726 if (sig->group_stop_count > 0) {
1728 * There is a group stop in progress. We don't need to
1729 * start another one.
1731 signr = sig->group_exit_code;
1732 stop_count = --sig->group_stop_count;
1733 current->exit_code = signr;
1734 set_current_state(TASK_STOPPED);
1735 if (stop_count == 0)
1736 sig->flags = SIGNAL_STOP_STOPPED;
1737 spin_unlock_irq(&sighand->siglock);
1739 else if (thread_group_empty(current)) {
1741 * Lock must be held through transition to stopped state.
1743 current->exit_code = current->signal->group_exit_code = signr;
1744 set_current_state(TASK_STOPPED);
1745 sig->flags = SIGNAL_STOP_STOPPED;
1746 spin_unlock_irq(&sighand->siglock);
1750 * There is no group stop already in progress.
1751 * We must initiate one now, but that requires
1752 * dropping siglock to get both the tasklist lock
1753 * and siglock again in the proper order. Note that
1754 * this allows an intervening SIGCONT to be posted.
1755 * We need to check for that and bail out if necessary.
1757 struct task_struct *t;
1759 spin_unlock_irq(&sighand->siglock);
1761 /* signals can be posted during this window */
1763 read_lock(&tasklist_lock);
1764 spin_lock_irq(&sighand->siglock);
1766 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1768 * Another stop or continue happened while we
1769 * didn't have the lock. We can just swallow this
1770 * signal now. If we raced with a SIGCONT, that
1771 * should have just cleared it now. If we raced
1772 * with another processor delivering a stop signal,
1773 * then the SIGCONT that wakes us up should clear it.
1775 read_unlock(&tasklist_lock);
1779 if (sig->group_stop_count == 0) {
1780 sig->group_exit_code = signr;
1782 for (t = next_thread(current); t != current;
1785 * Setting state to TASK_STOPPED for a group
1786 * stop is always done with the siglock held,
1787 * so this check has no races.
1789 if (!t->exit_state &&
1790 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1792 signal_wake_up(t, 0);
1794 sig->group_stop_count = stop_count;
1797 /* A race with another thread while unlocked. */
1798 signr = sig->group_exit_code;
1799 stop_count = --sig->group_stop_count;
1802 current->exit_code = signr;
1803 set_current_state(TASK_STOPPED);
1804 if (stop_count == 0)
1805 sig->flags = SIGNAL_STOP_STOPPED;
1807 spin_unlock_irq(&sighand->siglock);
1808 read_unlock(&tasklist_lock);
1811 finish_stop(stop_count);
1816 * Do appropriate magic when group_stop_count > 0.
1817 * We return nonzero if we stopped, after releasing the siglock.
1818 * We return zero if we still hold the siglock and should look
1819 * for another signal without checking group_stop_count again.
1821 static inline int handle_group_stop(void)
1825 if (current->signal->group_exit_task == current) {
1827 * Group stop is so we can do a core dump,
1828 * We are the initiating thread, so get on with it.
1830 current->signal->group_exit_task = NULL;
1834 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1836 * Group stop is so another thread can do a core dump,
1837 * or else we are racing against a death signal.
1838 * Just punt the stop so we can get the next signal.
1843 * There is a group stop in progress. We stop
1844 * without any associated signal being in our queue.
1846 stop_count = --current->signal->group_stop_count;
1847 if (stop_count == 0)
1848 current->signal->flags = SIGNAL_STOP_STOPPED;
1849 current->exit_code = current->signal->group_exit_code;
1850 set_current_state(TASK_STOPPED);
1851 spin_unlock_irq(¤t->sighand->siglock);
1852 finish_stop(stop_count);
1856 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1857 struct pt_regs *regs, void *cookie)
1859 sigset_t *mask = ¤t->blocked;
1863 spin_lock_irq(¤t->sighand->siglock);
1865 struct k_sigaction *ka;
1867 if (unlikely(current->signal->group_stop_count > 0) &&
1868 handle_group_stop())
1871 signr = dequeue_signal(current, mask, info);
1874 break; /* will return 0 */
1876 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1877 ptrace_signal_deliver(regs, cookie);
1879 /* Let the debugger run. */
1880 ptrace_stop(signr, signr, info);
1882 /* We're back. Did the debugger cancel the sig or group_exit? */
1883 signr = current->exit_code;
1884 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1887 current->exit_code = 0;
1889 /* Update the siginfo structure if the signal has
1890 changed. If the debugger wanted something
1891 specific in the siginfo structure then it should
1892 have updated *info via PTRACE_SETSIGINFO. */
1893 if (signr != info->si_signo) {
1894 info->si_signo = signr;
1896 info->si_code = SI_USER;
1897 info->si_pid = current->parent->pid;
1898 info->si_uid = current->parent->uid;
1901 /* If the (new) signal is now blocked, requeue it. */
1902 if (sigismember(¤t->blocked, signr)) {
1903 specific_send_sig_info(signr, info, current);
1908 ka = ¤t->sighand->action[signr-1];
1909 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1911 if (ka->sa.sa_handler != SIG_DFL) {
1912 /* Run the handler. */
1915 if (ka->sa.sa_flags & SA_ONESHOT)
1916 ka->sa.sa_handler = SIG_DFL;
1918 break; /* will return non-zero "signr" value */
1922 * Now we are doing the default action for this signal.
1924 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1927 /* Init gets no signals it doesn't want. */
1928 if (current->pid == 1)
1931 if (sig_kernel_stop(signr)) {
1933 * The default action is to stop all threads in
1934 * the thread group. The job control signals
1935 * do nothing in an orphaned pgrp, but SIGSTOP
1936 * always works. Note that siglock needs to be
1937 * dropped during the call to is_orphaned_pgrp()
1938 * because of lock ordering with tasklist_lock.
1939 * This allows an intervening SIGCONT to be posted.
1940 * We need to check for that and bail out if necessary.
1942 if (signr != SIGSTOP) {
1943 spin_unlock_irq(¤t->sighand->siglock);
1945 /* signals can be posted during this window */
1947 if (is_orphaned_pgrp(process_group(current)))
1950 spin_lock_irq(¤t->sighand->siglock);
1953 if (likely(do_signal_stop(signr))) {
1954 /* It released the siglock. */
1959 * We didn't actually stop, due to a race
1960 * with SIGCONT or something like that.
1965 spin_unlock_irq(¤t->sighand->siglock);
1968 * Anything else is fatal, maybe with a core dump.
1970 current->flags |= PF_SIGNALED;
1971 if (sig_kernel_coredump(signr)) {
1973 * If it was able to dump core, this kills all
1974 * other threads in the group and synchronizes with
1975 * their demise. If we lost the race with another
1976 * thread getting here, it set group_exit_code
1977 * first and our do_group_exit call below will use
1978 * that value and ignore the one we pass it.
1980 do_coredump((long)signr, signr, regs);
1984 * Death signals, no core dump.
1986 do_group_exit(signr);
1989 spin_unlock_irq(¤t->sighand->siglock);
1993 EXPORT_SYMBOL(recalc_sigpending);
1994 EXPORT_SYMBOL_GPL(dequeue_signal);
1995 EXPORT_SYMBOL(flush_signals);
1996 EXPORT_SYMBOL(force_sig);
1997 EXPORT_SYMBOL(kill_pg);
1998 EXPORT_SYMBOL(kill_proc);
1999 EXPORT_SYMBOL(ptrace_notify);
2000 EXPORT_SYMBOL(send_sig);
2001 EXPORT_SYMBOL(send_sig_info);
2002 EXPORT_SYMBOL(sigprocmask);
2003 EXPORT_SYMBOL(block_all_signals);
2004 EXPORT_SYMBOL(unblock_all_signals);
2008 * System call entry points.
2011 asmlinkage long sys_restart_syscall(void)
2013 struct restart_block *restart = ¤t_thread_info()->restart_block;
2014 return restart->fn(restart);
2017 long do_no_restart_syscall(struct restart_block *param)
2023 * We don't need to get the kernel lock - this is all local to this
2024 * particular thread.. (and that's good, because this is _heavily_
2025 * used by various programs)
2029 * This is also useful for kernel threads that want to temporarily
2030 * (or permanently) block certain signals.
2032 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2033 * interface happily blocks "unblockable" signals like SIGKILL
2036 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2041 spin_lock_irq(¤t->sighand->siglock);
2042 old_block = current->blocked;
2046 sigorsets(¤t->blocked, ¤t->blocked, set);
2049 signandsets(¤t->blocked, ¤t->blocked, set);
2052 current->blocked = *set;
2057 recalc_sigpending();
2058 spin_unlock_irq(¤t->sighand->siglock);
2060 *oldset = old_block;
2065 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2067 int error = -EINVAL;
2068 sigset_t old_set, new_set;
2070 /* XXX: Don't preclude handling different sized sigset_t's. */
2071 if (sigsetsize != sizeof(sigset_t))
2076 if (copy_from_user(&new_set, set, sizeof(*set)))
2078 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2080 error = sigprocmask(how, &new_set, &old_set);
2086 spin_lock_irq(¤t->sighand->siglock);
2087 old_set = current->blocked;
2088 spin_unlock_irq(¤t->sighand->siglock);
2092 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2100 long do_sigpending(void __user *set, unsigned long sigsetsize)
2102 long error = -EINVAL;
2105 if (sigsetsize > sizeof(sigset_t))
2108 spin_lock_irq(¤t->sighand->siglock);
2109 sigorsets(&pending, ¤t->pending.signal,
2110 ¤t->signal->shared_pending.signal);
2111 spin_unlock_irq(¤t->sighand->siglock);
2113 /* Outside the lock because only this thread touches it. */
2114 sigandsets(&pending, ¤t->blocked, &pending);
2117 if (!copy_to_user(set, &pending, sigsetsize))
2125 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2127 return do_sigpending(set, sigsetsize);
2130 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2132 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2136 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2138 if (from->si_code < 0)
2139 return __copy_to_user(to, from, sizeof(siginfo_t))
2142 * If you change siginfo_t structure, please be sure
2143 * this code is fixed accordingly.
2144 * It should never copy any pad contained in the structure
2145 * to avoid security leaks, but must copy the generic
2146 * 3 ints plus the relevant union member.
2148 err = __put_user(from->si_signo, &to->si_signo);
2149 err |= __put_user(from->si_errno, &to->si_errno);
2150 err |= __put_user((short)from->si_code, &to->si_code);
2151 switch (from->si_code & __SI_MASK) {
2153 err |= __put_user(from->si_pid, &to->si_pid);
2154 err |= __put_user(from->si_uid, &to->si_uid);
2157 err |= __put_user(from->si_tid, &to->si_tid);
2158 err |= __put_user(from->si_overrun, &to->si_overrun);
2159 err |= __put_user(from->si_ptr, &to->si_ptr);
2162 err |= __put_user(from->si_band, &to->si_band);
2163 err |= __put_user(from->si_fd, &to->si_fd);
2166 err |= __put_user(from->si_addr, &to->si_addr);
2167 #ifdef __ARCH_SI_TRAPNO
2168 err |= __put_user(from->si_trapno, &to->si_trapno);
2172 err |= __put_user(from->si_pid, &to->si_pid);
2173 err |= __put_user(from->si_uid, &to->si_uid);
2174 err |= __put_user(from->si_status, &to->si_status);
2175 err |= __put_user(from->si_utime, &to->si_utime);
2176 err |= __put_user(from->si_stime, &to->si_stime);
2178 case __SI_RT: /* This is not generated by the kernel as of now. */
2179 case __SI_MESGQ: /* But this is */
2180 err |= __put_user(from->si_pid, &to->si_pid);
2181 err |= __put_user(from->si_uid, &to->si_uid);
2182 err |= __put_user(from->si_ptr, &to->si_ptr);
2184 default: /* this is just in case for now ... */
2185 err |= __put_user(from->si_pid, &to->si_pid);
2186 err |= __put_user(from->si_uid, &to->si_uid);
2195 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2196 siginfo_t __user *uinfo,
2197 const struct timespec __user *uts,
2206 /* XXX: Don't preclude handling different sized sigset_t's. */
2207 if (sigsetsize != sizeof(sigset_t))
2210 if (copy_from_user(&these, uthese, sizeof(these)))
2214 * Invert the set of allowed signals to get those we
2217 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2221 if (copy_from_user(&ts, uts, sizeof(ts)))
2223 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2228 spin_lock_irq(¤t->sighand->siglock);
2229 sig = dequeue_signal(current, &these, &info);
2231 timeout = MAX_SCHEDULE_TIMEOUT;
2233 timeout = (timespec_to_jiffies(&ts)
2234 + (ts.tv_sec || ts.tv_nsec));
2237 /* None ready -- temporarily unblock those we're
2238 * interested while we are sleeping in so that we'll
2239 * be awakened when they arrive. */
2240 current->real_blocked = current->blocked;
2241 sigandsets(¤t->blocked, ¤t->blocked, &these);
2242 recalc_sigpending();
2243 spin_unlock_irq(¤t->sighand->siglock);
2245 timeout = schedule_timeout_interruptible(timeout);
2248 spin_lock_irq(¤t->sighand->siglock);
2249 sig = dequeue_signal(current, &these, &info);
2250 current->blocked = current->real_blocked;
2251 siginitset(¤t->real_blocked, 0);
2252 recalc_sigpending();
2255 spin_unlock_irq(¤t->sighand->siglock);
2260 if (copy_siginfo_to_user(uinfo, &info))
2273 sys_kill(int pid, int sig)
2275 struct siginfo info;
2277 info.si_signo = sig;
2279 info.si_code = SI_USER;
2280 info.si_pid = current->tgid;
2281 info.si_uid = current->uid;
2283 return kill_something_info(sig, &info, pid);
2286 static int do_tkill(int tgid, int pid, int sig)
2289 struct siginfo info;
2290 struct task_struct *p;
2293 info.si_signo = sig;
2295 info.si_code = SI_TKILL;
2296 info.si_pid = current->tgid;
2297 info.si_uid = current->uid;
2299 read_lock(&tasklist_lock);
2300 p = find_task_by_pid(pid);
2301 if (p && (tgid <= 0 || p->tgid == tgid)) {
2302 error = check_kill_permission(sig, &info, p);
2304 * The null signal is a permissions and process existence
2305 * probe. No signal is actually delivered.
2307 if (!error && sig && p->sighand) {
2308 spin_lock_irq(&p->sighand->siglock);
2309 handle_stop_signal(sig, p);
2310 error = specific_send_sig_info(sig, &info, p);
2311 spin_unlock_irq(&p->sighand->siglock);
2314 read_unlock(&tasklist_lock);
2320 * sys_tgkill - send signal to one specific thread
2321 * @tgid: the thread group ID of the thread
2322 * @pid: the PID of the thread
2323 * @sig: signal to be sent
2325 * This syscall also checks the tgid and returns -ESRCH even if the PID
2326 * exists but it's not belonging to the target process anymore. This
2327 * method solves the problem of threads exiting and PIDs getting reused.
2329 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2331 /* This is only valid for single tasks */
2332 if (pid <= 0 || tgid <= 0)
2335 return do_tkill(tgid, pid, sig);
2339 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2342 sys_tkill(int pid, int sig)
2344 /* This is only valid for single tasks */
2348 return do_tkill(0, pid, sig);
2352 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2356 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2359 /* Not even root can pretend to send signals from the kernel.
2360 Nor can they impersonate a kill(), which adds source info. */
2361 if (info.si_code >= 0)
2363 info.si_signo = sig;
2365 /* POSIX.1b doesn't mention process groups. */
2366 return kill_proc_info(sig, &info, pid);
2370 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2372 struct k_sigaction *k;
2374 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2377 k = ¤t->sighand->action[sig-1];
2379 spin_lock_irq(¤t->sighand->siglock);
2380 if (signal_pending(current)) {
2382 * If there might be a fatal signal pending on multiple
2383 * threads, make sure we take it before changing the action.
2385 spin_unlock_irq(¤t->sighand->siglock);
2386 return -ERESTARTNOINTR;
2395 * "Setting a signal action to SIG_IGN for a signal that is
2396 * pending shall cause the pending signal to be discarded,
2397 * whether or not it is blocked."
2399 * "Setting a signal action to SIG_DFL for a signal that is
2400 * pending and whose default action is to ignore the signal
2401 * (for example, SIGCHLD), shall cause the pending signal to
2402 * be discarded, whether or not it is blocked"
2404 if (act->sa.sa_handler == SIG_IGN ||
2405 (act->sa.sa_handler == SIG_DFL &&
2406 sig_kernel_ignore(sig))) {
2408 * This is a fairly rare case, so we only take the
2409 * tasklist_lock once we're sure we'll need it.
2410 * Now we must do this little unlock and relock
2411 * dance to maintain the lock hierarchy.
2413 struct task_struct *t = current;
2414 spin_unlock_irq(&t->sighand->siglock);
2415 read_lock(&tasklist_lock);
2416 spin_lock_irq(&t->sighand->siglock);
2418 sigdelsetmask(&k->sa.sa_mask,
2419 sigmask(SIGKILL) | sigmask(SIGSTOP));
2420 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2422 rm_from_queue(sigmask(sig), &t->pending);
2423 recalc_sigpending_tsk(t);
2425 } while (t != current);
2426 spin_unlock_irq(¤t->sighand->siglock);
2427 read_unlock(&tasklist_lock);
2432 sigdelsetmask(&k->sa.sa_mask,
2433 sigmask(SIGKILL) | sigmask(SIGSTOP));
2436 spin_unlock_irq(¤t->sighand->siglock);
2441 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2447 oss.ss_sp = (void __user *) current->sas_ss_sp;
2448 oss.ss_size = current->sas_ss_size;
2449 oss.ss_flags = sas_ss_flags(sp);
2458 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2459 || __get_user(ss_sp, &uss->ss_sp)
2460 || __get_user(ss_flags, &uss->ss_flags)
2461 || __get_user(ss_size, &uss->ss_size))
2465 if (on_sig_stack(sp))
2471 * Note - this code used to test ss_flags incorrectly
2472 * old code may have been written using ss_flags==0
2473 * to mean ss_flags==SS_ONSTACK (as this was the only
2474 * way that worked) - this fix preserves that older
2477 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2480 if (ss_flags == SS_DISABLE) {
2485 if (ss_size < MINSIGSTKSZ)
2489 current->sas_ss_sp = (unsigned long) ss_sp;
2490 current->sas_ss_size = ss_size;
2495 if (copy_to_user(uoss, &oss, sizeof(oss)))
2504 #ifdef __ARCH_WANT_SYS_SIGPENDING
2507 sys_sigpending(old_sigset_t __user *set)
2509 return do_sigpending(set, sizeof(*set));
2514 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2515 /* Some platforms have their own version with special arguments others
2516 support only sys_rt_sigprocmask. */
2519 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2522 old_sigset_t old_set, new_set;
2526 if (copy_from_user(&new_set, set, sizeof(*set)))
2528 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2530 spin_lock_irq(¤t->sighand->siglock);
2531 old_set = current->blocked.sig[0];
2539 sigaddsetmask(¤t->blocked, new_set);
2542 sigdelsetmask(¤t->blocked, new_set);
2545 current->blocked.sig[0] = new_set;
2549 recalc_sigpending();
2550 spin_unlock_irq(¤t->sighand->siglock);
2556 old_set = current->blocked.sig[0];
2559 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2566 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2568 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2570 sys_rt_sigaction(int sig,
2571 const struct sigaction __user *act,
2572 struct sigaction __user *oact,
2575 struct k_sigaction new_sa, old_sa;
2578 /* XXX: Don't preclude handling different sized sigset_t's. */
2579 if (sigsetsize != sizeof(sigset_t))
2583 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2587 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2590 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2596 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2598 #ifdef __ARCH_WANT_SYS_SGETMASK
2601 * For backwards compatibility. Functionality superseded by sigprocmask.
2607 return current->blocked.sig[0];
2611 sys_ssetmask(int newmask)
2615 spin_lock_irq(¤t->sighand->siglock);
2616 old = current->blocked.sig[0];
2618 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2620 recalc_sigpending();
2621 spin_unlock_irq(¤t->sighand->siglock);
2625 #endif /* __ARCH_WANT_SGETMASK */
2627 #ifdef __ARCH_WANT_SYS_SIGNAL
2629 * For backwards compatibility. Functionality superseded by sigaction.
2631 asmlinkage unsigned long
2632 sys_signal(int sig, __sighandler_t handler)
2634 struct k_sigaction new_sa, old_sa;
2637 new_sa.sa.sa_handler = handler;
2638 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2640 ret = do_sigaction(sig, &new_sa, &old_sa);
2642 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2644 #endif /* __ARCH_WANT_SYS_SIGNAL */
2646 #ifdef __ARCH_WANT_SYS_PAUSE
2651 current->state = TASK_INTERRUPTIBLE;
2653 return -ERESTARTNOHAND;
2658 void __init signals_init(void)
2661 kmem_cache_create("sigqueue",
2662 sizeof(struct sigqueue),
2663 __alignof__(struct sigqueue),
2664 SLAB_PANIC, NULL, NULL);