2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
27 #include <linux/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
89 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
147 unsigned int wait_count = 30;
149 if (!ql_sem_trylock(qdev, sem_mask))
152 } while (--wait_count);
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
170 int count = UDELAY_COUNT;
173 temp = ql_read32(qdev, reg);
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
181 } else if (temp & bit)
183 udelay(UDELAY_DELAY);
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
196 int count = UDELAY_COUNT;
200 temp = ql_read32(qdev, CFG);
205 udelay(UDELAY_DELAY);
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
238 status = ql_wait_cfg(qdev, bit);
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
253 * Wait for the bit to clear after signaling hw.
255 status = ql_wait_cfg(qdev, bit);
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
340 case MAC_ADDR_TYPE_MULTI_MAC:
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
372 case MAC_ADDR_TYPE_CAM_MAC:
375 u32 upper = (addr[0] << 8) | addr[1];
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
409 cam_output = (CAM_OUT_ROUTE_NIC |
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
419 case MAC_ADDR_TYPE_VLAN:
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
435 enable_bit); /* enable/disable */
438 case MAC_ADDR_TYPE_MULTI_FLTR:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
455 char zero_mac_addr[ETH_ALEN];
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
463 memset(zero_mac_addr, 0, ETH_ALEN);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
480 void ql_link_on(struct ql_adapter *qdev)
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
487 void ql_link_off(struct ql_adapter *qdev)
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
510 *value = ql_read32(qdev, RT_DATA);
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
523 int status = -EINVAL; /* Return error if no mask match. */
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
592 case 0: /* Clear the E-bit on an entry. */
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
644 ql_write32(qdev, INTR_EN,
646 var = ql_read32(qdev, STS);
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
654 var = ql_read32(qdev, STS);
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
663 struct intr_context *ctx;
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
676 var = ql_read32(qdev, STS);
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
703 __le16 *flash = (__le16 *)&qdev->flash;
705 status = strncmp((char *)&qdev->flash, str, 4);
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
749 __le32 *p = (__le32 *)&qdev->flash;
753 /* Get flash offset for function and adjust
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
783 /* Extract either manufacturer or BOFM modified
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
801 memcpy(qdev->ndev->dev_addr,
803 qdev->ndev->addr_len);
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
814 __le32 *p = (__le32 *)&qdev->flash;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
818 /* Second function's parameters follow the first
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
899 *data = ql_read32(qdev, XGMAC_DATA);
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
919 *data = (u64) lo | ((u64) hi << 32);
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
929 * Get MPI firmware version for driver banner
932 status = ql_mb_about_fw(qdev);
935 status = ql_mb_get_fw_state(qdev);
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1008 /* Turn on jumbo. */
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1051 /* If it's the last chunk of our master page then
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1093 if (!rx_ring->pg_chunk.page) {
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
1110 rx_ring->pg_chunk.page = NULL;
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1124 /* Adjust the master page chunk for next
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
1143 struct bq_desc *lbq_desc;
1147 while (rx_ring->lbq_free_cnt > 32) {
1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1152 lbq_desc = &rx_ring->lbq[clean_idx];
1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 rx_ring->lbq_clean_idx = clean_idx;
1155 netif_err(qdev, ifup, qdev->ndev,
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
1166 *lbq_desc->addr = cpu_to_le64(map);
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
1172 if (clean_idx == rx_ring->lbq_len)
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
1180 rx_ring->lbq_free_cnt -= 16;
1183 if (start_idx != clean_idx) {
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
1197 struct bq_desc *sbq_desc;
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1207 if (sbq_desc->p.skb == NULL) {
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1210 "sbq: getting new skb for index %d.\n",
1213 netdev_alloc_skb(qdev->ndev,
1215 if (sbq_desc->p.skb == NULL) {
1216 rx_ring->sbq_clean_idx = clean_idx;
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
1234 rx_ring->sbq_buf_size);
1235 *sbq_desc->addr = cpu_to_le64(map);
1239 if (clean_idx == rx_ring->sbq_len)
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
1246 rx_ring->sbq_free_cnt -= 16;
1249 if (start_idx != clean_idx) {
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1265 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1286 "unmapping OAL area.\n");
1288 pci_unmap_single(qdev->pdev,
1289 dma_unmap_addr(&tx_ring_desc->map[i],
1291 dma_unmap_len(&tx_ring_desc->map[i],
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
1297 pci_unmap_page(qdev->pdev,
1298 dma_unmap_addr(&tx_ring_desc->map[i],
1300 dma_unmap_len(&tx_ring_desc->map[i],
1301 maplen), PCI_DMA_TODEVICE);
1307 /* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1310 static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1314 int len = skb_headlen(skb);
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
1325 * Map the skb buffer first.
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
1334 return NETDEV_TX_BUSY;
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1384 tbd->addr = cpu_to_le64(map);
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1404 err = dma_mapping_error(&qdev->pdev->dev, map);
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 skb_frag_size(frag));
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
1440 struct nic_stats *stats = &qdev->nic_stats;
1442 stats->rx_err_count++;
1443 rx_ring->rx_errors++;
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 struct napi_struct *napi = &rx_ring->napi;
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1508 napi->dev = qdev->ndev;
1510 skb = napi_get_frags(napi);
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1518 prefetch(lbq_desc->p.pg_chunk.va);
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
1533 if (vlan_id != 0xffff)
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 napi_gro_frags(napi);
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
1550 size_t hlen = ETH_HLEN;
1552 skb = netdev_alloc_skb(ndev, length);
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1559 addr = lbq_desc->p.pg_chunk.va;
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1574 if (skb->len > ndev->mtu + hlen) {
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
1577 rx_ring->rx_dropped++;
1580 memcpy(skb_put(skb, hlen), addr, hlen);
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 lbq_desc->p.pg_chunk.offset + hlen,
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
1594 skb_checksum_none_assert(skb);
1596 if ((ndev->features & NETIF_F_RXCSUM) &&
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
1607 (struct iphdr *)((u8 *)addr + hlen);
1608 if (!(iph->frag_off &
1609 htons(IP_MF|IP_OFFSET))) {
1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1613 "UDP checksum done!\n");
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
1619 if (vlan_id != 0xffff)
1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1624 netif_receive_skb(skb);
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
1647 rx_ring->rx_dropped++;
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651 memcpy(skb_put(new_skb, length), skb->data, length);
1654 /* Frame error, so drop the packet. */
1655 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657 dev_kfree_skb_any(skb);
1661 /* loopback self test for ethtool */
1662 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663 ql_check_lb_frame(qdev, skb);
1664 dev_kfree_skb_any(skb);
1668 /* The max framesize filter on this chip is set higher than
1669 * MTU since FCoE uses 2k frames.
1671 if (skb->len > ndev->mtu + ETH_HLEN) {
1672 dev_kfree_skb_any(skb);
1673 rx_ring->rx_dropped++;
1677 prefetch(skb->data);
1678 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1679 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1681 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1688 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "Promiscuous Packet.\n");
1692 rx_ring->rx_packets++;
1693 rx_ring->rx_bytes += skb->len;
1694 skb->protocol = eth_type_trans(skb, ndev);
1695 skb_checksum_none_assert(skb);
1697 /* If rx checksum is on, and there are no
1698 * csum or frame errors.
1700 if ((ndev->features & NETIF_F_RXCSUM) &&
1701 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1703 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1704 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705 "TCP checksum done!\n");
1706 skb->ip_summed = CHECKSUM_UNNECESSARY;
1707 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709 /* Unfragmented ipv4 UDP frame. */
1710 struct iphdr *iph = (struct iphdr *) skb->data;
1711 if (!(iph->frag_off &
1712 htons(IP_MF|IP_OFFSET))) {
1713 skb->ip_summed = CHECKSUM_UNNECESSARY;
1714 netif_printk(qdev, rx_status, KERN_DEBUG,
1716 "UDP checksum done!\n");
1721 skb_record_rx_queue(skb, rx_ring->cq_id);
1722 if (vlan_id != 0xffff)
1723 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1724 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725 napi_gro_receive(&rx_ring->napi, skb);
1727 netif_receive_skb(skb);
1730 static void ql_realign_skb(struct sk_buff *skb, int len)
1732 void *temp_addr = skb->data;
1734 /* Undo the skb_reserve(skb,32) we did before
1735 * giving to hardware, and realign data on
1736 * a 2-byte boundary.
1738 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb_copy_to_linear_data(skb, temp_addr,
1745 * This function builds an skb for the given inbound
1746 * completion. It will be rewritten for readability in the near
1747 * future, but for not it works well.
1749 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750 struct rx_ring *rx_ring,
1751 struct ib_mac_iocb_rsp *ib_mac_rsp)
1753 struct bq_desc *lbq_desc;
1754 struct bq_desc *sbq_desc;
1755 struct sk_buff *skb = NULL;
1756 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1757 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758 size_t hlen = ETH_HLEN;
1761 * Handle the header buffer if present.
1763 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Header of %d bytes in small buffer.\n", hdr_len);
1768 * Headers fit nicely into a small buffer.
1770 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771 pci_unmap_single(qdev->pdev,
1772 dma_unmap_addr(sbq_desc, mapaddr),
1773 dma_unmap_len(sbq_desc, maplen),
1774 PCI_DMA_FROMDEVICE);
1775 skb = sbq_desc->p.skb;
1776 ql_realign_skb(skb, hdr_len);
1777 skb_put(skb, hdr_len);
1778 sbq_desc->p.skb = NULL;
1782 * Handle the data buffer(s).
1784 if (unlikely(!length)) { /* Is there data too? */
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "No Data buffer in this packet.\n");
1790 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Headers in small, data of %d bytes in small, combine them.\n",
1796 * Data is less than small buffer size so it's
1797 * stuffed in a small buffer.
1798 * For this case we append the data
1799 * from the "data" small buffer to the "header" small
1802 sbq_desc = ql_get_curr_sbuf(rx_ring);
1803 pci_dma_sync_single_for_cpu(qdev->pdev,
1805 (sbq_desc, mapaddr),
1808 PCI_DMA_FROMDEVICE);
1809 memcpy(skb_put(skb, length),
1810 sbq_desc->p.skb->data, length);
1811 pci_dma_sync_single_for_device(qdev->pdev,
1818 PCI_DMA_FROMDEVICE);
1820 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821 "%d bytes in a single small buffer.\n",
1823 sbq_desc = ql_get_curr_sbuf(rx_ring);
1824 skb = sbq_desc->p.skb;
1825 ql_realign_skb(skb, length);
1826 skb_put(skb, length);
1827 pci_unmap_single(qdev->pdev,
1828 dma_unmap_addr(sbq_desc,
1830 dma_unmap_len(sbq_desc,
1832 PCI_DMA_FROMDEVICE);
1833 sbq_desc->p.skb = NULL;
1835 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1837 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838 "Header in small, %d bytes in large. Chain large to small!\n",
1841 * The data is in a single large buffer. We
1842 * chain it to the header buffer's skb and let
1845 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1846 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847 "Chaining page at offset = %d, for %d bytes to skb.\n",
1848 lbq_desc->p.pg_chunk.offset, length);
1849 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1853 skb->data_len += length;
1854 skb->truesize += length;
1857 * The headers and data are in a single large buffer. We
1858 * copy it to a new skb and let it go. This can happen with
1859 * jumbo mtu on a non-TCP/UDP frame.
1861 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1862 skb = netdev_alloc_skb(qdev->ndev, length);
1864 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865 "No skb available, drop the packet.\n");
1868 pci_unmap_page(qdev->pdev,
1869 dma_unmap_addr(lbq_desc,
1871 dma_unmap_len(lbq_desc, maplen),
1872 PCI_DMA_FROMDEVICE);
1873 skb_reserve(skb, NET_IP_ALIGN);
1874 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1877 skb_fill_page_desc(skb, 0,
1878 lbq_desc->p.pg_chunk.page,
1879 lbq_desc->p.pg_chunk.offset,
1882 skb->data_len += length;
1883 skb->truesize += length;
1885 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886 lbq_desc->p.pg_chunk.va,
1888 __pskb_pull_tail(skb, hlen);
1892 * The data is in a chain of large buffers
1893 * pointed to by a small buffer. We loop
1894 * thru and chain them to the our small header
1896 * frags: There are 18 max frags and our small
1897 * buffer will hold 32 of them. The thing is,
1898 * we'll use 3 max for our 9000 byte jumbo
1899 * frames. If the MTU goes up we could
1900 * eventually be in trouble.
1903 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904 pci_unmap_single(qdev->pdev,
1905 dma_unmap_addr(sbq_desc, mapaddr),
1906 dma_unmap_len(sbq_desc, maplen),
1907 PCI_DMA_FROMDEVICE);
1908 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1910 * This is an non TCP/UDP IP frame, so
1911 * the headers aren't split into a small
1912 * buffer. We have to use the small buffer
1913 * that contains our sg list as our skb to
1914 * send upstairs. Copy the sg list here to
1915 * a local buffer and use it to find the
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "%d bytes of headers & data in chain of large.\n",
1921 skb = sbq_desc->p.skb;
1922 sbq_desc->p.skb = NULL;
1923 skb_reserve(skb, NET_IP_ALIGN);
1925 while (length > 0) {
1926 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927 size = (length < rx_ring->lbq_buf_size) ? length :
1928 rx_ring->lbq_buf_size;
1930 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931 "Adding page %d to skb for %d bytes.\n",
1933 skb_fill_page_desc(skb, i,
1934 lbq_desc->p.pg_chunk.page,
1935 lbq_desc->p.pg_chunk.offset,
1938 skb->data_len += size;
1939 skb->truesize += size;
1943 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1945 __pskb_pull_tail(skb, hlen);
1950 /* Process an inbound completion from an rx ring. */
1951 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1952 struct rx_ring *rx_ring,
1953 struct ib_mac_iocb_rsp *ib_mac_rsp,
1956 struct net_device *ndev = qdev->ndev;
1957 struct sk_buff *skb = NULL;
1959 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1961 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962 if (unlikely(!skb)) {
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "No skb available, drop packet.\n");
1965 rx_ring->rx_dropped++;
1969 /* Frame error, so drop the packet. */
1970 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972 dev_kfree_skb_any(skb);
1976 /* The max framesize filter on this chip is set higher than
1977 * MTU since FCoE uses 2k frames.
1979 if (skb->len > ndev->mtu + ETH_HLEN) {
1980 dev_kfree_skb_any(skb);
1981 rx_ring->rx_dropped++;
1985 /* loopback self test for ethtool */
1986 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987 ql_check_lb_frame(qdev, skb);
1988 dev_kfree_skb_any(skb);
1992 prefetch(skb->data);
1993 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2001 rx_ring->rx_multicast++;
2003 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2004 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005 "Promiscuous Packet.\n");
2008 skb->protocol = eth_type_trans(skb, ndev);
2009 skb_checksum_none_assert(skb);
2011 /* If rx checksum is on, and there are no
2012 * csum or frame errors.
2014 if ((ndev->features & NETIF_F_RXCSUM) &&
2015 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2017 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023 /* Unfragmented ipv4 UDP frame. */
2024 struct iphdr *iph = (struct iphdr *) skb->data;
2025 if (!(iph->frag_off &
2026 htons(IP_MF|IP_OFFSET))) {
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029 "TCP checksum done!\n");
2034 rx_ring->rx_packets++;
2035 rx_ring->rx_bytes += skb->len;
2036 skb_record_rx_queue(skb, rx_ring->cq_id);
2037 if (vlan_id != 0xffff)
2038 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2039 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040 napi_gro_receive(&rx_ring->napi, skb);
2042 netif_receive_skb(skb);
2045 /* Process an inbound completion from an rx ring. */
2046 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2053 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2056 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2058 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059 /* The data and headers are split into
2062 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2064 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065 /* The data fit in a single small buffer.
2066 * Allocate a new skb, copy the data and
2067 * return the buffer to the free pool.
2069 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2071 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074 /* TCP packet in a page chunk that's been checksummed.
2075 * Tack it on to our GRO skb and let it go.
2077 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2079 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080 /* Non-TCP packet in a page chunk. Allocate an
2081 * skb, tack it on frags, and send it up.
2083 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2086 /* Non-TCP/UDP large frames that span multiple buffers
2087 * can be processed corrrectly by the split frame logic.
2089 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2093 return (unsigned long)length;
2096 /* Process an outbound completion from an rx ring. */
2097 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098 struct ob_mac_iocb_rsp *mac_rsp)
2100 struct tx_ring *tx_ring;
2101 struct tx_ring_desc *tx_ring_desc;
2103 QL_DUMP_OB_MAC_RSP(mac_rsp);
2104 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2107 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108 tx_ring->tx_packets++;
2109 dev_kfree_skb(tx_ring_desc->skb);
2110 tx_ring_desc->skb = NULL;
2112 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2115 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2117 netif_warn(qdev, tx_done, qdev->ndev,
2118 "Total descriptor length did not match transfer length.\n");
2120 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2121 netif_warn(qdev, tx_done, qdev->ndev,
2122 "Frame too short to be valid, not sent.\n");
2124 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2125 netif_warn(qdev, tx_done, qdev->ndev,
2126 "Frame too long, but sent anyway.\n");
2128 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2129 netif_warn(qdev, tx_done, qdev->ndev,
2130 "PCI backplane error. Frame not sent.\n");
2133 atomic_inc(&tx_ring->tx_count);
2136 /* Fire up a handler to reset the MPI processor. */
2137 void ql_queue_fw_error(struct ql_adapter *qdev)
2140 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2143 void ql_queue_asic_error(struct ql_adapter *qdev)
2146 ql_disable_interrupts(qdev);
2147 /* Clear adapter up bit to signal the recovery
2148 * process that it shouldn't kill the reset worker
2151 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2152 /* Set asic recovery bit to indicate reset process that we are
2153 * in fatal error recovery process rather than normal close
2155 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2156 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2159 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160 struct ib_ae_iocb_rsp *ib_ae_rsp)
2162 switch (ib_ae_rsp->event) {
2163 case MGMT_ERR_EVENT:
2164 netif_err(qdev, rx_err, qdev->ndev,
2165 "Management Processor Fatal Error.\n");
2166 ql_queue_fw_error(qdev);
2169 case CAM_LOOKUP_ERR_EVENT:
2170 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2172 ql_queue_asic_error(qdev);
2175 case SOFT_ECC_ERROR_EVENT:
2176 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2177 ql_queue_asic_error(qdev);
2180 case PCI_ERR_ANON_BUF_RD:
2181 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182 "anonymous buffers from rx_ring %d.\n",
2184 ql_queue_asic_error(qdev);
2188 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2190 ql_queue_asic_error(qdev);
2195 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2197 struct ql_adapter *qdev = rx_ring->qdev;
2198 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2199 struct ob_mac_iocb_rsp *net_rsp = NULL;
2202 struct tx_ring *tx_ring;
2203 /* While there are entries in the completion queue. */
2204 while (prod != rx_ring->cnsmr_idx) {
2206 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2210 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2212 switch (net_rsp->opcode) {
2214 case OPCODE_OB_MAC_TSO_IOCB:
2215 case OPCODE_OB_MAC_IOCB:
2216 ql_process_mac_tx_intr(qdev, net_rsp);
2219 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2224 ql_update_cq(rx_ring);
2225 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2229 ql_write_cq_idx(rx_ring);
2230 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2231 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2232 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2234 * The queue got stopped because the tx_ring was full.
2235 * Wake it up, because it's now at least 25% empty.
2237 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2243 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2245 struct ql_adapter *qdev = rx_ring->qdev;
2246 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247 struct ql_net_rsp_iocb *net_rsp;
2250 /* While there are entries in the completion queue. */
2251 while (prod != rx_ring->cnsmr_idx) {
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2257 net_rsp = rx_ring->curr_entry;
2259 switch (net_rsp->opcode) {
2260 case OPCODE_IB_MAC_IOCB:
2261 ql_process_mac_rx_intr(qdev, rx_ring,
2262 (struct ib_mac_iocb_rsp *)
2266 case OPCODE_IB_AE_IOCB:
2267 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2271 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2277 ql_update_cq(rx_ring);
2278 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2279 if (count == budget)
2282 ql_update_buffer_queues(qdev, rx_ring);
2283 ql_write_cq_idx(rx_ring);
2287 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2289 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290 struct ql_adapter *qdev = rx_ring->qdev;
2291 struct rx_ring *trx_ring;
2292 int i, work_done = 0;
2293 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2295 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2298 /* Service the TX rings first. They start
2299 * right after the RSS rings. */
2300 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301 trx_ring = &qdev->rx_ring[i];
2302 /* If this TX completion ring belongs to this vector and
2303 * it's not empty then service it.
2305 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307 trx_ring->cnsmr_idx)) {
2308 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309 "%s: Servicing TX completion ring %d.\n",
2310 __func__, trx_ring->cq_id);
2311 ql_clean_outbound_rx_ring(trx_ring);
2316 * Now service the RSS ring if it's active.
2318 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319 rx_ring->cnsmr_idx) {
2320 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321 "%s: Servicing RX completion ring %d.\n",
2322 __func__, rx_ring->cq_id);
2323 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2326 if (work_done < budget) {
2327 napi_complete(napi);
2328 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2333 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2335 struct ql_adapter *qdev = netdev_priv(ndev);
2337 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2338 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2339 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2341 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2346 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347 * based on the features to enable/disable hardware vlan accel
2349 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350 netdev_features_t features)
2352 struct ql_adapter *qdev = netdev_priv(ndev);
2355 status = ql_adapter_down(qdev);
2357 netif_err(qdev, link, qdev->ndev,
2358 "Failed to bring down the adapter\n");
2362 /* update the features with resent change */
2363 ndev->features = features;
2365 status = ql_adapter_up(qdev);
2367 netif_err(qdev, link, qdev->ndev,
2368 "Failed to bring up the adapter\n");
2374 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375 netdev_features_t features)
2379 /* Update the behavior of vlan accel in the adapter */
2380 err = qlge_update_hw_vlan_features(ndev, features);
2387 static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
2390 netdev_features_t changed = ndev->features ^ features;
2392 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2393 qlge_vlan_mode(ndev, features);
2398 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2400 u32 enable_bit = MAC_ADDR_E;
2403 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404 MAC_ADDR_TYPE_VLAN, vid);
2406 netif_err(qdev, ifup, qdev->ndev,
2407 "Failed to init vlan address.\n");
2411 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2413 struct ql_adapter *qdev = netdev_priv(ndev);
2417 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2421 err = __qlge_vlan_rx_add_vid(qdev, vid);
2422 set_bit(vid, qdev->active_vlans);
2424 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2429 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2434 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435 MAC_ADDR_TYPE_VLAN, vid);
2437 netif_err(qdev, ifup, qdev->ndev,
2438 "Failed to clear vlan address.\n");
2442 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2444 struct ql_adapter *qdev = netdev_priv(ndev);
2448 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2452 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2453 clear_bit(vid, qdev->active_vlans);
2455 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2460 static void qlge_restore_vlan(struct ql_adapter *qdev)
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2469 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470 __qlge_vlan_rx_add_vid(qdev, vid);
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2475 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2478 struct rx_ring *rx_ring = dev_id;
2479 napi_schedule(&rx_ring->napi);
2483 /* This handles a fatal error, MPI activity, and the default
2484 * rx_ring in an MSI-X multiple vector environment.
2485 * In MSI/Legacy environment it also process the rest of
2488 static irqreturn_t qlge_isr(int irq, void *dev_id)
2490 struct rx_ring *rx_ring = dev_id;
2491 struct ql_adapter *qdev = rx_ring->qdev;
2492 struct intr_context *intr_context = &qdev->intr_context[0];
2496 spin_lock(&qdev->hw_lock);
2497 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2498 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499 "Shared Interrupt, Not ours!\n");
2500 spin_unlock(&qdev->hw_lock);
2503 spin_unlock(&qdev->hw_lock);
2505 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2508 * Check for fatal error.
2511 ql_queue_asic_error(qdev);
2512 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2513 var = ql_read32(qdev, ERR_STS);
2514 netdev_err(qdev->ndev, "Resetting chip. "
2515 "Error Status Register = 0x%x\n", var);
2520 * Check MPI processor activity.
2522 if ((var & STS_PI) &&
2523 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2525 * We've got an async event or mailbox completion.
2526 * Handle it and clear the source of the interrupt.
2528 netif_err(qdev, intr, qdev->ndev,
2529 "Got MPI processor interrupt.\n");
2530 ql_disable_completion_interrupt(qdev, intr_context->intr);
2531 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532 queue_delayed_work_on(smp_processor_id(),
2533 qdev->workqueue, &qdev->mpi_work, 0);
2538 * Get the bit-mask that shows the active queues for this
2539 * pass. Compare it to the queues that this irq services
2540 * and call napi if there's a match.
2542 var = ql_read32(qdev, ISR1);
2543 if (var & intr_context->irq_mask) {
2544 netif_info(qdev, intr, qdev->ndev,
2545 "Waking handler for rx_ring[0].\n");
2546 ql_disable_completion_interrupt(qdev, intr_context->intr);
2547 napi_schedule(&rx_ring->napi);
2550 ql_enable_completion_interrupt(qdev, intr_context->intr);
2551 return work_done ? IRQ_HANDLED : IRQ_NONE;
2554 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2557 if (skb_is_gso(skb)) {
2560 err = skb_cow_head(skb, 0);
2564 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2565 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2566 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2567 mac_iocb_ptr->total_hdrs_len =
2568 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2569 mac_iocb_ptr->net_trans_offset =
2570 cpu_to_le16(skb_network_offset(skb) |
2571 skb_transport_offset(skb)
2572 << OB_MAC_TRANSPORT_HDR_SHIFT);
2573 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2574 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2575 if (likely(skb->protocol == htons(ETH_P_IP))) {
2576 struct iphdr *iph = ip_hdr(skb);
2578 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2579 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2583 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2584 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2585 tcp_hdr(skb)->check =
2586 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2587 &ipv6_hdr(skb)->daddr,
2595 static void ql_hw_csum_setup(struct sk_buff *skb,
2596 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2599 struct iphdr *iph = ip_hdr(skb);
2601 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2602 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2603 mac_iocb_ptr->net_trans_offset =
2604 cpu_to_le16(skb_network_offset(skb) |
2605 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2607 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2608 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2609 if (likely(iph->protocol == IPPROTO_TCP)) {
2610 check = &(tcp_hdr(skb)->check);
2611 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2612 mac_iocb_ptr->total_hdrs_len =
2613 cpu_to_le16(skb_transport_offset(skb) +
2614 (tcp_hdr(skb)->doff << 2));
2616 check = &(udp_hdr(skb)->check);
2617 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2618 mac_iocb_ptr->total_hdrs_len =
2619 cpu_to_le16(skb_transport_offset(skb) +
2620 sizeof(struct udphdr));
2622 *check = ~csum_tcpudp_magic(iph->saddr,
2623 iph->daddr, len, iph->protocol, 0);
2626 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2628 struct tx_ring_desc *tx_ring_desc;
2629 struct ob_mac_iocb_req *mac_iocb_ptr;
2630 struct ql_adapter *qdev = netdev_priv(ndev);
2632 struct tx_ring *tx_ring;
2633 u32 tx_ring_idx = (u32) skb->queue_mapping;
2635 tx_ring = &qdev->tx_ring[tx_ring_idx];
2637 if (skb_padto(skb, ETH_ZLEN))
2638 return NETDEV_TX_OK;
2640 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2641 netif_info(qdev, tx_queued, qdev->ndev,
2642 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2643 __func__, tx_ring_idx);
2644 netif_stop_subqueue(ndev, tx_ring->wq_id);
2645 tx_ring->tx_errors++;
2646 return NETDEV_TX_BUSY;
2648 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2649 mac_iocb_ptr = tx_ring_desc->queue_entry;
2650 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2652 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2653 mac_iocb_ptr->tid = tx_ring_desc->index;
2654 /* We use the upper 32-bits to store the tx queue for this IO.
2655 * When we get the completion we can use it to establish the context.
2657 mac_iocb_ptr->txq_idx = tx_ring_idx;
2658 tx_ring_desc->skb = skb;
2660 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2662 if (vlan_tx_tag_present(skb)) {
2663 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2664 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2665 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2666 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2668 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2670 dev_kfree_skb_any(skb);
2671 return NETDEV_TX_OK;
2672 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2673 ql_hw_csum_setup(skb,
2674 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2676 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2678 netif_err(qdev, tx_queued, qdev->ndev,
2679 "Could not map the segments.\n");
2680 tx_ring->tx_errors++;
2681 return NETDEV_TX_BUSY;
2683 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2684 tx_ring->prod_idx++;
2685 if (tx_ring->prod_idx == tx_ring->wq_len)
2686 tx_ring->prod_idx = 0;
2689 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2690 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2691 "tx queued, slot %d, len %d\n",
2692 tx_ring->prod_idx, skb->len);
2694 atomic_dec(&tx_ring->tx_count);
2696 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2697 netif_stop_subqueue(ndev, tx_ring->wq_id);
2698 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2700 * The queue got stopped because the tx_ring was full.
2701 * Wake it up, because it's now at least 25% empty.
2703 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2705 return NETDEV_TX_OK;
2709 static void ql_free_shadow_space(struct ql_adapter *qdev)
2711 if (qdev->rx_ring_shadow_reg_area) {
2712 pci_free_consistent(qdev->pdev,
2714 qdev->rx_ring_shadow_reg_area,
2715 qdev->rx_ring_shadow_reg_dma);
2716 qdev->rx_ring_shadow_reg_area = NULL;
2718 if (qdev->tx_ring_shadow_reg_area) {
2719 pci_free_consistent(qdev->pdev,
2721 qdev->tx_ring_shadow_reg_area,
2722 qdev->tx_ring_shadow_reg_dma);
2723 qdev->tx_ring_shadow_reg_area = NULL;
2727 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2729 qdev->rx_ring_shadow_reg_area =
2730 pci_alloc_consistent(qdev->pdev,
2731 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2732 if (qdev->rx_ring_shadow_reg_area == NULL) {
2733 netif_err(qdev, ifup, qdev->ndev,
2734 "Allocation of RX shadow space failed.\n");
2737 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2738 qdev->tx_ring_shadow_reg_area =
2739 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2740 &qdev->tx_ring_shadow_reg_dma);
2741 if (qdev->tx_ring_shadow_reg_area == NULL) {
2742 netif_err(qdev, ifup, qdev->ndev,
2743 "Allocation of TX shadow space failed.\n");
2744 goto err_wqp_sh_area;
2746 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2750 pci_free_consistent(qdev->pdev,
2752 qdev->rx_ring_shadow_reg_area,
2753 qdev->rx_ring_shadow_reg_dma);
2757 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2759 struct tx_ring_desc *tx_ring_desc;
2761 struct ob_mac_iocb_req *mac_iocb_ptr;
2763 mac_iocb_ptr = tx_ring->wq_base;
2764 tx_ring_desc = tx_ring->q;
2765 for (i = 0; i < tx_ring->wq_len; i++) {
2766 tx_ring_desc->index = i;
2767 tx_ring_desc->skb = NULL;
2768 tx_ring_desc->queue_entry = mac_iocb_ptr;
2772 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2775 static void ql_free_tx_resources(struct ql_adapter *qdev,
2776 struct tx_ring *tx_ring)
2778 if (tx_ring->wq_base) {
2779 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2780 tx_ring->wq_base, tx_ring->wq_base_dma);
2781 tx_ring->wq_base = NULL;
2787 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2788 struct tx_ring *tx_ring)
2791 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2792 &tx_ring->wq_base_dma);
2794 if ((tx_ring->wq_base == NULL) ||
2795 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2799 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2800 if (tx_ring->q == NULL)
2805 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2806 tx_ring->wq_base, tx_ring->wq_base_dma);
2807 tx_ring->wq_base = NULL;
2809 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2813 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2815 struct bq_desc *lbq_desc;
2817 uint32_t curr_idx, clean_idx;
2819 curr_idx = rx_ring->lbq_curr_idx;
2820 clean_idx = rx_ring->lbq_clean_idx;
2821 while (curr_idx != clean_idx) {
2822 lbq_desc = &rx_ring->lbq[curr_idx];
2824 if (lbq_desc->p.pg_chunk.last_flag) {
2825 pci_unmap_page(qdev->pdev,
2826 lbq_desc->p.pg_chunk.map,
2827 ql_lbq_block_size(qdev),
2828 PCI_DMA_FROMDEVICE);
2829 lbq_desc->p.pg_chunk.last_flag = 0;
2832 put_page(lbq_desc->p.pg_chunk.page);
2833 lbq_desc->p.pg_chunk.page = NULL;
2835 if (++curr_idx == rx_ring->lbq_len)
2839 if (rx_ring->pg_chunk.page) {
2840 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2841 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2842 put_page(rx_ring->pg_chunk.page);
2843 rx_ring->pg_chunk.page = NULL;
2847 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2850 struct bq_desc *sbq_desc;
2852 for (i = 0; i < rx_ring->sbq_len; i++) {
2853 sbq_desc = &rx_ring->sbq[i];
2854 if (sbq_desc == NULL) {
2855 netif_err(qdev, ifup, qdev->ndev,
2856 "sbq_desc %d is NULL.\n", i);
2859 if (sbq_desc->p.skb) {
2860 pci_unmap_single(qdev->pdev,
2861 dma_unmap_addr(sbq_desc, mapaddr),
2862 dma_unmap_len(sbq_desc, maplen),
2863 PCI_DMA_FROMDEVICE);
2864 dev_kfree_skb(sbq_desc->p.skb);
2865 sbq_desc->p.skb = NULL;
2870 /* Free all large and small rx buffers associated
2871 * with the completion queues for this device.
2873 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2876 struct rx_ring *rx_ring;
2878 for (i = 0; i < qdev->rx_ring_count; i++) {
2879 rx_ring = &qdev->rx_ring[i];
2881 ql_free_lbq_buffers(qdev, rx_ring);
2883 ql_free_sbq_buffers(qdev, rx_ring);
2887 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2889 struct rx_ring *rx_ring;
2892 for (i = 0; i < qdev->rx_ring_count; i++) {
2893 rx_ring = &qdev->rx_ring[i];
2894 if (rx_ring->type != TX_Q)
2895 ql_update_buffer_queues(qdev, rx_ring);
2899 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2900 struct rx_ring *rx_ring)
2903 struct bq_desc *lbq_desc;
2904 __le64 *bq = rx_ring->lbq_base;
2906 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2907 for (i = 0; i < rx_ring->lbq_len; i++) {
2908 lbq_desc = &rx_ring->lbq[i];
2909 memset(lbq_desc, 0, sizeof(*lbq_desc));
2910 lbq_desc->index = i;
2911 lbq_desc->addr = bq;
2916 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2917 struct rx_ring *rx_ring)
2920 struct bq_desc *sbq_desc;
2921 __le64 *bq = rx_ring->sbq_base;
2923 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2924 for (i = 0; i < rx_ring->sbq_len; i++) {
2925 sbq_desc = &rx_ring->sbq[i];
2926 memset(sbq_desc, 0, sizeof(*sbq_desc));
2927 sbq_desc->index = i;
2928 sbq_desc->addr = bq;
2933 static void ql_free_rx_resources(struct ql_adapter *qdev,
2934 struct rx_ring *rx_ring)
2936 /* Free the small buffer queue. */
2937 if (rx_ring->sbq_base) {
2938 pci_free_consistent(qdev->pdev,
2940 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2941 rx_ring->sbq_base = NULL;
2944 /* Free the small buffer queue control blocks. */
2945 kfree(rx_ring->sbq);
2946 rx_ring->sbq = NULL;
2948 /* Free the large buffer queue. */
2949 if (rx_ring->lbq_base) {
2950 pci_free_consistent(qdev->pdev,
2952 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2953 rx_ring->lbq_base = NULL;
2956 /* Free the large buffer queue control blocks. */
2957 kfree(rx_ring->lbq);
2958 rx_ring->lbq = NULL;
2960 /* Free the rx queue. */
2961 if (rx_ring->cq_base) {
2962 pci_free_consistent(qdev->pdev,
2964 rx_ring->cq_base, rx_ring->cq_base_dma);
2965 rx_ring->cq_base = NULL;
2969 /* Allocate queues and buffers for this completions queue based
2970 * on the values in the parameter structure. */
2971 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2972 struct rx_ring *rx_ring)
2976 * Allocate the completion queue for this rx_ring.
2979 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2980 &rx_ring->cq_base_dma);
2982 if (rx_ring->cq_base == NULL) {
2983 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2987 if (rx_ring->sbq_len) {
2989 * Allocate small buffer queue.
2992 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2993 &rx_ring->sbq_base_dma);
2995 if (rx_ring->sbq_base == NULL) {
2996 netif_err(qdev, ifup, qdev->ndev,
2997 "Small buffer queue allocation failed.\n");
3002 * Allocate small buffer queue control blocks.
3004 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3005 sizeof(struct bq_desc),
3007 if (rx_ring->sbq == NULL)
3010 ql_init_sbq_ring(qdev, rx_ring);
3013 if (rx_ring->lbq_len) {
3015 * Allocate large buffer queue.
3018 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3019 &rx_ring->lbq_base_dma);
3021 if (rx_ring->lbq_base == NULL) {
3022 netif_err(qdev, ifup, qdev->ndev,
3023 "Large buffer queue allocation failed.\n");
3027 * Allocate large buffer queue control blocks.
3029 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3030 sizeof(struct bq_desc),
3032 if (rx_ring->lbq == NULL)
3035 ql_init_lbq_ring(qdev, rx_ring);
3041 ql_free_rx_resources(qdev, rx_ring);
3045 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3047 struct tx_ring *tx_ring;
3048 struct tx_ring_desc *tx_ring_desc;
3052 * Loop through all queues and free
3055 for (j = 0; j < qdev->tx_ring_count; j++) {
3056 tx_ring = &qdev->tx_ring[j];
3057 for (i = 0; i < tx_ring->wq_len; i++) {
3058 tx_ring_desc = &tx_ring->q[i];
3059 if (tx_ring_desc && tx_ring_desc->skb) {
3060 netif_err(qdev, ifdown, qdev->ndev,
3061 "Freeing lost SKB %p, from queue %d, index %d.\n",
3062 tx_ring_desc->skb, j,
3063 tx_ring_desc->index);
3064 ql_unmap_send(qdev, tx_ring_desc,
3065 tx_ring_desc->map_cnt);
3066 dev_kfree_skb(tx_ring_desc->skb);
3067 tx_ring_desc->skb = NULL;
3073 static void ql_free_mem_resources(struct ql_adapter *qdev)
3077 for (i = 0; i < qdev->tx_ring_count; i++)
3078 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3079 for (i = 0; i < qdev->rx_ring_count; i++)
3080 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3081 ql_free_shadow_space(qdev);
3084 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3088 /* Allocate space for our shadow registers and such. */
3089 if (ql_alloc_shadow_space(qdev))
3092 for (i = 0; i < qdev->rx_ring_count; i++) {
3093 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3094 netif_err(qdev, ifup, qdev->ndev,
3095 "RX resource allocation failed.\n");
3099 /* Allocate tx queue resources */
3100 for (i = 0; i < qdev->tx_ring_count; i++) {
3101 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3102 netif_err(qdev, ifup, qdev->ndev,
3103 "TX resource allocation failed.\n");
3110 ql_free_mem_resources(qdev);
3114 /* Set up the rx ring control block and pass it to the chip.
3115 * The control block is defined as
3116 * "Completion Queue Initialization Control Block", or cqicb.
3118 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3120 struct cqicb *cqicb = &rx_ring->cqicb;
3121 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3122 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3123 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3124 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3125 void __iomem *doorbell_area =
3126 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3130 __le64 *base_indirect_ptr;
3133 /* Set up the shadow registers for this ring. */
3134 rx_ring->prod_idx_sh_reg = shadow_reg;
3135 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3136 *rx_ring->prod_idx_sh_reg = 0;
3137 shadow_reg += sizeof(u64);
3138 shadow_reg_dma += sizeof(u64);
3139 rx_ring->lbq_base_indirect = shadow_reg;
3140 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3141 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3142 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3143 rx_ring->sbq_base_indirect = shadow_reg;
3144 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3146 /* PCI doorbell mem area + 0x00 for consumer index register */
3147 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3148 rx_ring->cnsmr_idx = 0;
3149 rx_ring->curr_entry = rx_ring->cq_base;
3151 /* PCI doorbell mem area + 0x04 for valid register */
3152 rx_ring->valid_db_reg = doorbell_area + 0x04;
3154 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3155 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3157 /* PCI doorbell mem area + 0x1c */
3158 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3160 memset((void *)cqicb, 0, sizeof(struct cqicb));
3161 cqicb->msix_vect = rx_ring->irq;
3163 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3164 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3166 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3168 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3171 * Set up the control block load flags.
3173 cqicb->flags = FLAGS_LC | /* Load queue base address */
3174 FLAGS_LV | /* Load MSI-X vector */
3175 FLAGS_LI; /* Load irq delay values */
3176 if (rx_ring->lbq_len) {
3177 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3178 tmp = (u64)rx_ring->lbq_base_dma;
3179 base_indirect_ptr = rx_ring->lbq_base_indirect;
3182 *base_indirect_ptr = cpu_to_le64(tmp);
3183 tmp += DB_PAGE_SIZE;
3184 base_indirect_ptr++;
3186 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3188 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3189 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3190 (u16) rx_ring->lbq_buf_size;
3191 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3192 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3193 (u16) rx_ring->lbq_len;
3194 cqicb->lbq_len = cpu_to_le16(bq_len);
3195 rx_ring->lbq_prod_idx = 0;
3196 rx_ring->lbq_curr_idx = 0;
3197 rx_ring->lbq_clean_idx = 0;
3198 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3200 if (rx_ring->sbq_len) {
3201 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3202 tmp = (u64)rx_ring->sbq_base_dma;
3203 base_indirect_ptr = rx_ring->sbq_base_indirect;
3206 *base_indirect_ptr = cpu_to_le64(tmp);
3207 tmp += DB_PAGE_SIZE;
3208 base_indirect_ptr++;
3210 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3212 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3213 cqicb->sbq_buf_size =
3214 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3215 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3216 (u16) rx_ring->sbq_len;
3217 cqicb->sbq_len = cpu_to_le16(bq_len);
3218 rx_ring->sbq_prod_idx = 0;
3219 rx_ring->sbq_curr_idx = 0;
3220 rx_ring->sbq_clean_idx = 0;
3221 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3223 switch (rx_ring->type) {
3225 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3226 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3229 /* Inbound completion handling rx_rings run in
3230 * separate NAPI contexts.
3232 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3234 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3235 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3238 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3239 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3241 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3242 CFG_LCQ, rx_ring->cq_id);
3244 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3250 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3252 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3253 void __iomem *doorbell_area =
3254 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3255 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3256 (tx_ring->wq_id * sizeof(u64));
3257 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3258 (tx_ring->wq_id * sizeof(u64));
3262 * Assign doorbell registers for this tx_ring.
3264 /* TX PCI doorbell mem area for tx producer index */
3265 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3266 tx_ring->prod_idx = 0;
3267 /* TX PCI doorbell mem area + 0x04 */
3268 tx_ring->valid_db_reg = doorbell_area + 0x04;
3271 * Assign shadow registers for this tx_ring.
3273 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3274 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3276 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3277 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3278 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3279 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3281 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3283 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3285 ql_init_tx_ring(qdev, tx_ring);
3287 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3288 (u16) tx_ring->wq_id);
3290 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3296 static void ql_disable_msix(struct ql_adapter *qdev)
3298 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3299 pci_disable_msix(qdev->pdev);
3300 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3301 kfree(qdev->msi_x_entry);
3302 qdev->msi_x_entry = NULL;
3303 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3304 pci_disable_msi(qdev->pdev);
3305 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3309 /* We start by trying to get the number of vectors
3310 * stored in qdev->intr_count. If we don't get that
3311 * many then we reduce the count and try again.
3313 static void ql_enable_msix(struct ql_adapter *qdev)
3317 /* Get the MSIX vectors. */
3318 if (qlge_irq_type == MSIX_IRQ) {
3319 /* Try to alloc space for the msix struct,
3320 * if it fails then go to MSI/legacy.
3322 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3323 sizeof(struct msix_entry),
3325 if (!qdev->msi_x_entry) {
3326 qlge_irq_type = MSI_IRQ;
3330 for (i = 0; i < qdev->intr_count; i++)
3331 qdev->msi_x_entry[i].entry = i;
3333 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3334 1, qdev->intr_count);
3336 kfree(qdev->msi_x_entry);
3337 qdev->msi_x_entry = NULL;
3338 netif_warn(qdev, ifup, qdev->ndev,
3339 "MSI-X Enable failed, trying MSI.\n");
3340 qlge_irq_type = MSI_IRQ;
3342 qdev->intr_count = err;
3343 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3344 netif_info(qdev, ifup, qdev->ndev,
3345 "MSI-X Enabled, got %d vectors.\n",
3351 qdev->intr_count = 1;
3352 if (qlge_irq_type == MSI_IRQ) {
3353 if (!pci_enable_msi(qdev->pdev)) {
3354 set_bit(QL_MSI_ENABLED, &qdev->flags);
3355 netif_info(qdev, ifup, qdev->ndev,
3356 "Running with MSI interrupts.\n");
3360 qlge_irq_type = LEG_IRQ;
3361 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3362 "Running with legacy interrupts.\n");
3365 /* Each vector services 1 RSS ring and and 1 or more
3366 * TX completion rings. This function loops through
3367 * the TX completion rings and assigns the vector that
3368 * will service it. An example would be if there are
3369 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3370 * This would mean that vector 0 would service RSS ring 0
3371 * and TX completion rings 0,1,2 and 3. Vector 1 would
3372 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3374 static void ql_set_tx_vect(struct ql_adapter *qdev)
3377 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3379 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3380 /* Assign irq vectors to TX rx_rings.*/
3381 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3382 i < qdev->rx_ring_count; i++) {
3383 if (j == tx_rings_per_vector) {
3387 qdev->rx_ring[i].irq = vect;
3391 /* For single vector all rings have an irq
3394 for (i = 0; i < qdev->rx_ring_count; i++)
3395 qdev->rx_ring[i].irq = 0;
3399 /* Set the interrupt mask for this vector. Each vector
3400 * will service 1 RSS ring and 1 or more TX completion
3401 * rings. This function sets up a bit mask per vector
3402 * that indicates which rings it services.
3404 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3406 int j, vect = ctx->intr;
3407 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3409 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3410 /* Add the RSS ring serviced by this vector
3413 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3414 /* Add the TX ring(s) serviced by this vector
3416 for (j = 0; j < tx_rings_per_vector; j++) {
3418 (1 << qdev->rx_ring[qdev->rss_ring_count +
3419 (vect * tx_rings_per_vector) + j].cq_id);
3422 /* For single vector we just shift each queue's
3425 for (j = 0; j < qdev->rx_ring_count; j++)
3426 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3431 * Here we build the intr_context structures based on
3432 * our rx_ring count and intr vector count.
3433 * The intr_context structure is used to hook each vector
3434 * to possibly different handlers.
3436 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3439 struct intr_context *intr_context = &qdev->intr_context[0];
3441 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3442 /* Each rx_ring has it's
3443 * own intr_context since we have separate
3444 * vectors for each queue.
3446 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3447 qdev->rx_ring[i].irq = i;
3448 intr_context->intr = i;
3449 intr_context->qdev = qdev;
3450 /* Set up this vector's bit-mask that indicates
3451 * which queues it services.
3453 ql_set_irq_mask(qdev, intr_context);
3455 * We set up each vectors enable/disable/read bits so
3456 * there's no bit/mask calculations in the critical path.
3458 intr_context->intr_en_mask =
3459 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3460 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3462 intr_context->intr_dis_mask =
3463 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3464 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3466 intr_context->intr_read_mask =
3467 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3468 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3471 /* The first vector/queue handles
3472 * broadcast/multicast, fatal errors,
3473 * and firmware events. This in addition
3474 * to normal inbound NAPI processing.
3476 intr_context->handler = qlge_isr;
3477 sprintf(intr_context->name, "%s-rx-%d",
3478 qdev->ndev->name, i);
3481 * Inbound queues handle unicast frames only.
3483 intr_context->handler = qlge_msix_rx_isr;
3484 sprintf(intr_context->name, "%s-rx-%d",
3485 qdev->ndev->name, i);
3490 * All rx_rings use the same intr_context since
3491 * there is only one vector.
3493 intr_context->intr = 0;
3494 intr_context->qdev = qdev;
3496 * We set up each vectors enable/disable/read bits so
3497 * there's no bit/mask calculations in the critical path.
3499 intr_context->intr_en_mask =
3500 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3501 intr_context->intr_dis_mask =
3502 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3503 INTR_EN_TYPE_DISABLE;
3504 intr_context->intr_read_mask =
3505 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3507 * Single interrupt means one handler for all rings.
3509 intr_context->handler = qlge_isr;
3510 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3511 /* Set up this vector's bit-mask that indicates
3512 * which queues it services. In this case there is
3513 * a single vector so it will service all RSS and
3514 * TX completion rings.
3516 ql_set_irq_mask(qdev, intr_context);
3518 /* Tell the TX completion rings which MSIx vector
3519 * they will be using.
3521 ql_set_tx_vect(qdev);
3524 static void ql_free_irq(struct ql_adapter *qdev)
3527 struct intr_context *intr_context = &qdev->intr_context[0];
3529 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3530 if (intr_context->hooked) {
3531 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3532 free_irq(qdev->msi_x_entry[i].vector,
3535 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3539 ql_disable_msix(qdev);
3542 static int ql_request_irq(struct ql_adapter *qdev)
3546 struct pci_dev *pdev = qdev->pdev;
3547 struct intr_context *intr_context = &qdev->intr_context[0];
3549 ql_resolve_queues_to_irqs(qdev);
3551 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3552 atomic_set(&intr_context->irq_cnt, 0);
3553 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3554 status = request_irq(qdev->msi_x_entry[i].vector,
3555 intr_context->handler,
3560 netif_err(qdev, ifup, qdev->ndev,
3561 "Failed request for MSIX interrupt %d.\n",
3566 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3567 "trying msi or legacy interrupts.\n");
3568 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3569 "%s: irq = %d.\n", __func__, pdev->irq);
3570 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3571 "%s: context->name = %s.\n", __func__,
3572 intr_context->name);
3573 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3574 "%s: dev_id = 0x%p.\n", __func__,
3577 request_irq(pdev->irq, qlge_isr,
3578 test_bit(QL_MSI_ENABLED,
3580 flags) ? 0 : IRQF_SHARED,
3581 intr_context->name, &qdev->rx_ring[0]);
3585 netif_err(qdev, ifup, qdev->ndev,
3586 "Hooked intr %d, queue type %s, with name %s.\n",
3588 qdev->rx_ring[0].type == DEFAULT_Q ?
3590 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3591 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3592 intr_context->name);
3594 intr_context->hooked = 1;
3598 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3603 static int ql_start_rss(struct ql_adapter *qdev)
3605 static const u8 init_hash_seed[] = {
3606 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3607 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3608 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3609 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3610 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3612 struct ricb *ricb = &qdev->ricb;
3615 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3617 memset((void *)ricb, 0, sizeof(*ricb));
3619 ricb->base_cq = RSS_L4K;
3621 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3622 ricb->mask = cpu_to_le16((u16)(0x3ff));
3625 * Fill out the Indirection Table.
3627 for (i = 0; i < 1024; i++)
3628 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3630 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3631 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3633 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3635 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3641 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3645 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3648 /* Clear all the entries in the routing table. */
3649 for (i = 0; i < 16; i++) {
3650 status = ql_set_routing_reg(qdev, i, 0, 0);
3652 netif_err(qdev, ifup, qdev->ndev,
3653 "Failed to init routing register for CAM packets.\n");
3657 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3661 /* Initialize the frame-to-queue routing. */
3662 static int ql_route_initialize(struct ql_adapter *qdev)
3666 /* Clear all the entries in the routing table. */
3667 status = ql_clear_routing_entries(qdev);
3671 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3675 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3676 RT_IDX_IP_CSUM_ERR, 1);
3678 netif_err(qdev, ifup, qdev->ndev,
3679 "Failed to init routing register "
3680 "for IP CSUM error packets.\n");
3683 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3684 RT_IDX_TU_CSUM_ERR, 1);
3686 netif_err(qdev, ifup, qdev->ndev,
3687 "Failed to init routing register "
3688 "for TCP/UDP CSUM error packets.\n");
3691 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3693 netif_err(qdev, ifup, qdev->ndev,
3694 "Failed to init routing register for broadcast packets.\n");
3697 /* If we have more than one inbound queue, then turn on RSS in the
3700 if (qdev->rss_ring_count > 1) {
3701 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3702 RT_IDX_RSS_MATCH, 1);
3704 netif_err(qdev, ifup, qdev->ndev,
3705 "Failed to init routing register for MATCH RSS packets.\n");
3710 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3713 netif_err(qdev, ifup, qdev->ndev,
3714 "Failed to init routing register for CAM packets.\n");
3716 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3720 int ql_cam_route_initialize(struct ql_adapter *qdev)
3724 /* If check if the link is up and use to
3725 * determine if we are setting or clearing
3726 * the MAC address in the CAM.
3728 set = ql_read32(qdev, STS);
3729 set &= qdev->port_link_up;
3730 status = ql_set_mac_addr(qdev, set);
3732 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3736 status = ql_route_initialize(qdev);
3738 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3743 static int ql_adapter_initialize(struct ql_adapter *qdev)
3750 * Set up the System register to halt on errors.
3752 value = SYS_EFE | SYS_FAE;
3754 ql_write32(qdev, SYS, mask | value);
3756 /* Set the default queue, and VLAN behavior. */
3757 value = NIC_RCV_CFG_DFQ;
3758 mask = NIC_RCV_CFG_DFQ_MASK;
3759 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3760 value |= NIC_RCV_CFG_RV;
3761 mask |= (NIC_RCV_CFG_RV << 16);
3763 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3765 /* Set the MPI interrupt to enabled. */
3766 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3768 /* Enable the function, set pagesize, enable error checking. */
3769 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3770 FSC_EC | FSC_VM_PAGE_4K;
3771 value |= SPLT_SETTING;
3773 /* Set/clear header splitting. */
3774 mask = FSC_VM_PAGESIZE_MASK |
3775 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3776 ql_write32(qdev, FSC, mask | value);
3778 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3780 /* Set RX packet routing to use port/pci function on which the
3781 * packet arrived on in addition to usual frame routing.
3782 * This is helpful on bonding where both interfaces can have
3783 * the same MAC address.
3785 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3786 /* Reroute all packets to our Interface.
3787 * They may have been routed to MPI firmware
3790 value = ql_read32(qdev, MGMT_RCV_CFG);
3791 value &= ~MGMT_RCV_CFG_RM;
3794 /* Sticky reg needs clearing due to WOL. */
3795 ql_write32(qdev, MGMT_RCV_CFG, mask);
3796 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3798 /* Default WOL is enable on Mezz cards */
3799 if (qdev->pdev->subsystem_device == 0x0068 ||
3800 qdev->pdev->subsystem_device == 0x0180)
3801 qdev->wol = WAKE_MAGIC;
3803 /* Start up the rx queues. */
3804 for (i = 0; i < qdev->rx_ring_count; i++) {
3805 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3807 netif_err(qdev, ifup, qdev->ndev,
3808 "Failed to start rx ring[%d].\n", i);
3813 /* If there is more than one inbound completion queue
3814 * then download a RICB to configure RSS.
3816 if (qdev->rss_ring_count > 1) {
3817 status = ql_start_rss(qdev);
3819 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3824 /* Start up the tx queues. */
3825 for (i = 0; i < qdev->tx_ring_count; i++) {
3826 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3828 netif_err(qdev, ifup, qdev->ndev,
3829 "Failed to start tx ring[%d].\n", i);
3834 /* Initialize the port and set the max framesize. */
3835 status = qdev->nic_ops->port_initialize(qdev);
3837 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3839 /* Set up the MAC address and frame routing filter. */
3840 status = ql_cam_route_initialize(qdev);
3842 netif_err(qdev, ifup, qdev->ndev,
3843 "Failed to init CAM/Routing tables.\n");
3847 /* Start NAPI for the RSS queues. */
3848 for (i = 0; i < qdev->rss_ring_count; i++)
3849 napi_enable(&qdev->rx_ring[i].napi);
3854 /* Issue soft reset to chip. */
3855 static int ql_adapter_reset(struct ql_adapter *qdev)
3859 unsigned long end_jiffies;
3861 /* Clear all the entries in the routing table. */
3862 status = ql_clear_routing_entries(qdev);
3864 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3868 end_jiffies = jiffies +
3869 max((unsigned long)1, usecs_to_jiffies(30));
3871 /* Check if bit is set then skip the mailbox command and
3872 * clear the bit, else we are in normal reset process.
3874 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3875 /* Stop management traffic. */
3876 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3878 /* Wait for the NIC and MGMNT FIFOs to empty. */
3879 ql_wait_fifo_empty(qdev);
3881 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3883 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3886 value = ql_read32(qdev, RST_FO);
3887 if ((value & RST_FO_FR) == 0)
3890 } while (time_before(jiffies, end_jiffies));
3892 if (value & RST_FO_FR) {
3893 netif_err(qdev, ifdown, qdev->ndev,
3894 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3895 status = -ETIMEDOUT;
3898 /* Resume management traffic. */
3899 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3903 static void ql_display_dev_info(struct net_device *ndev)
3905 struct ql_adapter *qdev = netdev_priv(ndev);
3907 netif_info(qdev, probe, qdev->ndev,
3908 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3909 "XG Roll = %d, XG Rev = %d.\n",
3912 qdev->chip_rev_id & 0x0000000f,
3913 qdev->chip_rev_id >> 4 & 0x0000000f,
3914 qdev->chip_rev_id >> 8 & 0x0000000f,
3915 qdev->chip_rev_id >> 12 & 0x0000000f);
3916 netif_info(qdev, probe, qdev->ndev,
3917 "MAC address %pM\n", ndev->dev_addr);
3920 static int ql_wol(struct ql_adapter *qdev)
3923 u32 wol = MB_WOL_DISABLE;
3925 /* The CAM is still intact after a reset, but if we
3926 * are doing WOL, then we may need to program the
3927 * routing regs. We would also need to issue the mailbox
3928 * commands to instruct the MPI what to do per the ethtool
3932 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3933 WAKE_MCAST | WAKE_BCAST)) {
3934 netif_err(qdev, ifdown, qdev->ndev,
3935 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3940 if (qdev->wol & WAKE_MAGIC) {
3941 status = ql_mb_wol_set_magic(qdev, 1);
3943 netif_err(qdev, ifdown, qdev->ndev,
3944 "Failed to set magic packet on %s.\n",
3948 netif_info(qdev, drv, qdev->ndev,
3949 "Enabled magic packet successfully on %s.\n",
3952 wol |= MB_WOL_MAGIC_PKT;
3956 wol |= MB_WOL_MODE_ON;
3957 status = ql_mb_wol_mode(qdev, wol);
3958 netif_err(qdev, drv, qdev->ndev,
3959 "WOL %s (wol code 0x%x) on %s\n",
3960 (status == 0) ? "Successfully set" : "Failed",
3961 wol, qdev->ndev->name);
3967 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3970 /* Don't kill the reset worker thread if we
3971 * are in the process of recovery.
3973 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3974 cancel_delayed_work_sync(&qdev->asic_reset_work);
3975 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3976 cancel_delayed_work_sync(&qdev->mpi_work);
3977 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3978 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3979 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3982 static int ql_adapter_down(struct ql_adapter *qdev)
3988 ql_cancel_all_work_sync(qdev);
3990 for (i = 0; i < qdev->rss_ring_count; i++)
3991 napi_disable(&qdev->rx_ring[i].napi);
3993 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3995 ql_disable_interrupts(qdev);
3997 ql_tx_ring_clean(qdev);
3999 /* Call netif_napi_del() from common point.
4001 for (i = 0; i < qdev->rss_ring_count; i++)
4002 netif_napi_del(&qdev->rx_ring[i].napi);
4004 status = ql_adapter_reset(qdev);
4006 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4008 ql_free_rx_buffers(qdev);
4013 static int ql_adapter_up(struct ql_adapter *qdev)
4017 err = ql_adapter_initialize(qdev);
4019 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4022 set_bit(QL_ADAPTER_UP, &qdev->flags);
4023 ql_alloc_rx_buffers(qdev);
4024 /* If the port is initialized and the
4025 * link is up the turn on the carrier.
4027 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4028 (ql_read32(qdev, STS) & qdev->port_link_up))
4030 /* Restore rx mode. */
4031 clear_bit(QL_ALLMULTI, &qdev->flags);
4032 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4033 qlge_set_multicast_list(qdev->ndev);
4035 /* Restore vlan setting. */
4036 qlge_restore_vlan(qdev);
4038 ql_enable_interrupts(qdev);
4039 ql_enable_all_completion_interrupts(qdev);
4040 netif_tx_start_all_queues(qdev->ndev);
4044 ql_adapter_reset(qdev);
4048 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4050 ql_free_mem_resources(qdev);
4054 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4058 if (ql_alloc_mem_resources(qdev)) {
4059 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4062 status = ql_request_irq(qdev);
4066 static int qlge_close(struct net_device *ndev)
4068 struct ql_adapter *qdev = netdev_priv(ndev);
4070 /* If we hit pci_channel_io_perm_failure
4071 * failure condition, then we already
4072 * brought the adapter down.
4074 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4075 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4076 clear_bit(QL_EEH_FATAL, &qdev->flags);
4081 * Wait for device to recover from a reset.
4082 * (Rarely happens, but possible.)
4084 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4086 ql_adapter_down(qdev);
4087 ql_release_adapter_resources(qdev);
4091 static int ql_configure_rings(struct ql_adapter *qdev)
4094 struct rx_ring *rx_ring;
4095 struct tx_ring *tx_ring;
4096 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4097 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4098 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4100 qdev->lbq_buf_order = get_order(lbq_buf_len);
4102 /* In a perfect world we have one RSS ring for each CPU
4103 * and each has it's own vector. To do that we ask for
4104 * cpu_cnt vectors. ql_enable_msix() will adjust the
4105 * vector count to what we actually get. We then
4106 * allocate an RSS ring for each.
4107 * Essentially, we are doing min(cpu_count, msix_vector_count).
4109 qdev->intr_count = cpu_cnt;
4110 ql_enable_msix(qdev);
4111 /* Adjust the RSS ring count to the actual vector count. */
4112 qdev->rss_ring_count = qdev->intr_count;
4113 qdev->tx_ring_count = cpu_cnt;
4114 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4116 for (i = 0; i < qdev->tx_ring_count; i++) {
4117 tx_ring = &qdev->tx_ring[i];
4118 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4119 tx_ring->qdev = qdev;
4121 tx_ring->wq_len = qdev->tx_ring_size;
4123 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4126 * The completion queue ID for the tx rings start
4127 * immediately after the rss rings.
4129 tx_ring->cq_id = qdev->rss_ring_count + i;
4132 for (i = 0; i < qdev->rx_ring_count; i++) {
4133 rx_ring = &qdev->rx_ring[i];
4134 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4135 rx_ring->qdev = qdev;
4137 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4138 if (i < qdev->rss_ring_count) {
4140 * Inbound (RSS) queues.
4142 rx_ring->cq_len = qdev->rx_ring_size;
4144 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4145 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4147 rx_ring->lbq_len * sizeof(__le64);
4148 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4149 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4151 rx_ring->sbq_len * sizeof(__le64);
4152 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4153 rx_ring->type = RX_Q;
4156 * Outbound queue handles outbound completions only.
4158 /* outbound cq is same size as tx_ring it services. */
4159 rx_ring->cq_len = qdev->tx_ring_size;
4161 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4162 rx_ring->lbq_len = 0;
4163 rx_ring->lbq_size = 0;
4164 rx_ring->lbq_buf_size = 0;
4165 rx_ring->sbq_len = 0;
4166 rx_ring->sbq_size = 0;
4167 rx_ring->sbq_buf_size = 0;
4168 rx_ring->type = TX_Q;
4174 static int qlge_open(struct net_device *ndev)
4177 struct ql_adapter *qdev = netdev_priv(ndev);
4179 err = ql_adapter_reset(qdev);
4183 err = ql_configure_rings(qdev);
4187 err = ql_get_adapter_resources(qdev);
4191 err = ql_adapter_up(qdev);
4198 ql_release_adapter_resources(qdev);
4202 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4204 struct rx_ring *rx_ring;
4208 /* Wait for an outstanding reset to complete. */
4209 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4211 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4212 netif_err(qdev, ifup, qdev->ndev,
4213 "Waiting for adapter UP...\n");
4218 netif_err(qdev, ifup, qdev->ndev,
4219 "Timed out waiting for adapter UP\n");
4224 status = ql_adapter_down(qdev);
4228 /* Get the new rx buffer size. */
4229 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4230 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4231 qdev->lbq_buf_order = get_order(lbq_buf_len);
4233 for (i = 0; i < qdev->rss_ring_count; i++) {
4234 rx_ring = &qdev->rx_ring[i];
4235 /* Set the new size. */
4236 rx_ring->lbq_buf_size = lbq_buf_len;
4239 status = ql_adapter_up(qdev);
4245 netif_alert(qdev, ifup, qdev->ndev,
4246 "Driver up/down cycle failed, closing device.\n");
4247 set_bit(QL_ADAPTER_UP, &qdev->flags);
4248 dev_close(qdev->ndev);
4252 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4254 struct ql_adapter *qdev = netdev_priv(ndev);
4257 if (ndev->mtu == 1500 && new_mtu == 9000) {
4258 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4259 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4260 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4264 queue_delayed_work(qdev->workqueue,
4265 &qdev->mpi_port_cfg_work, 3*HZ);
4267 ndev->mtu = new_mtu;
4269 if (!netif_running(qdev->ndev)) {
4273 status = ql_change_rx_buffers(qdev);
4275 netif_err(qdev, ifup, qdev->ndev,
4276 "Changing MTU failed.\n");
4282 static struct net_device_stats *qlge_get_stats(struct net_device
4285 struct ql_adapter *qdev = netdev_priv(ndev);
4286 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4287 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4288 unsigned long pkts, mcast, dropped, errors, bytes;
4292 pkts = mcast = dropped = errors = bytes = 0;
4293 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4294 pkts += rx_ring->rx_packets;
4295 bytes += rx_ring->rx_bytes;
4296 dropped += rx_ring->rx_dropped;
4297 errors += rx_ring->rx_errors;
4298 mcast += rx_ring->rx_multicast;
4300 ndev->stats.rx_packets = pkts;
4301 ndev->stats.rx_bytes = bytes;
4302 ndev->stats.rx_dropped = dropped;
4303 ndev->stats.rx_errors = errors;
4304 ndev->stats.multicast = mcast;
4307 pkts = errors = bytes = 0;
4308 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4309 pkts += tx_ring->tx_packets;
4310 bytes += tx_ring->tx_bytes;
4311 errors += tx_ring->tx_errors;
4313 ndev->stats.tx_packets = pkts;
4314 ndev->stats.tx_bytes = bytes;
4315 ndev->stats.tx_errors = errors;
4316 return &ndev->stats;
4319 static void qlge_set_multicast_list(struct net_device *ndev)
4321 struct ql_adapter *qdev = netdev_priv(ndev);
4322 struct netdev_hw_addr *ha;
4325 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4329 * Set or clear promiscuous mode if a
4330 * transition is taking place.
4332 if (ndev->flags & IFF_PROMISC) {
4333 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4334 if (ql_set_routing_reg
4335 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4336 netif_err(qdev, hw, qdev->ndev,
4337 "Failed to set promiscuous mode.\n");
4339 set_bit(QL_PROMISCUOUS, &qdev->flags);
4343 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4344 if (ql_set_routing_reg
4345 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4346 netif_err(qdev, hw, qdev->ndev,
4347 "Failed to clear promiscuous mode.\n");
4349 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4355 * Set or clear all multicast mode if a
4356 * transition is taking place.
4358 if ((ndev->flags & IFF_ALLMULTI) ||
4359 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4360 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4361 if (ql_set_routing_reg
4362 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4363 netif_err(qdev, hw, qdev->ndev,
4364 "Failed to set all-multi mode.\n");
4366 set_bit(QL_ALLMULTI, &qdev->flags);
4370 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4371 if (ql_set_routing_reg
4372 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4373 netif_err(qdev, hw, qdev->ndev,
4374 "Failed to clear all-multi mode.\n");
4376 clear_bit(QL_ALLMULTI, &qdev->flags);
4381 if (!netdev_mc_empty(ndev)) {
4382 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4386 netdev_for_each_mc_addr(ha, ndev) {
4387 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4388 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4389 netif_err(qdev, hw, qdev->ndev,
4390 "Failed to loadmulticast address.\n");
4391 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4396 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4397 if (ql_set_routing_reg
4398 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4399 netif_err(qdev, hw, qdev->ndev,
4400 "Failed to set multicast match mode.\n");
4402 set_bit(QL_ALLMULTI, &qdev->flags);
4406 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4409 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4411 struct ql_adapter *qdev = netdev_priv(ndev);
4412 struct sockaddr *addr = p;
4415 if (!is_valid_ether_addr(addr->sa_data))
4416 return -EADDRNOTAVAIL;
4417 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4418 /* Update local copy of current mac address. */
4419 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4421 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4424 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4425 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4427 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4428 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4432 static void qlge_tx_timeout(struct net_device *ndev)
4434 struct ql_adapter *qdev = netdev_priv(ndev);
4435 ql_queue_asic_error(qdev);
4438 static void ql_asic_reset_work(struct work_struct *work)
4440 struct ql_adapter *qdev =
4441 container_of(work, struct ql_adapter, asic_reset_work.work);
4444 status = ql_adapter_down(qdev);
4448 status = ql_adapter_up(qdev);
4452 /* Restore rx mode. */
4453 clear_bit(QL_ALLMULTI, &qdev->flags);
4454 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4455 qlge_set_multicast_list(qdev->ndev);
4460 netif_alert(qdev, ifup, qdev->ndev,
4461 "Driver up/down cycle failed, closing device\n");
4463 set_bit(QL_ADAPTER_UP, &qdev->flags);
4464 dev_close(qdev->ndev);
4468 static const struct nic_operations qla8012_nic_ops = {
4469 .get_flash = ql_get_8012_flash_params,
4470 .port_initialize = ql_8012_port_initialize,
4473 static const struct nic_operations qla8000_nic_ops = {
4474 .get_flash = ql_get_8000_flash_params,
4475 .port_initialize = ql_8000_port_initialize,
4478 /* Find the pcie function number for the other NIC
4479 * on this chip. Since both NIC functions share a
4480 * common firmware we have the lowest enabled function
4481 * do any common work. Examples would be resetting
4482 * after a fatal firmware error, or doing a firmware
4485 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4489 u32 nic_func1, nic_func2;
4491 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4496 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4497 MPI_TEST_NIC_FUNC_MASK);
4498 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4499 MPI_TEST_NIC_FUNC_MASK);
4501 if (qdev->func == nic_func1)
4502 qdev->alt_func = nic_func2;
4503 else if (qdev->func == nic_func2)
4504 qdev->alt_func = nic_func1;
4511 static int ql_get_board_info(struct ql_adapter *qdev)
4515 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4519 status = ql_get_alt_pcie_func(qdev);
4523 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4525 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4526 qdev->port_link_up = STS_PL1;
4527 qdev->port_init = STS_PI1;
4528 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4529 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4531 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4532 qdev->port_link_up = STS_PL0;
4533 qdev->port_init = STS_PI0;
4534 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4535 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4537 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4538 qdev->device_id = qdev->pdev->device;
4539 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4540 qdev->nic_ops = &qla8012_nic_ops;
4541 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4542 qdev->nic_ops = &qla8000_nic_ops;
4546 static void ql_release_all(struct pci_dev *pdev)
4548 struct net_device *ndev = pci_get_drvdata(pdev);
4549 struct ql_adapter *qdev = netdev_priv(ndev);
4551 if (qdev->workqueue) {
4552 destroy_workqueue(qdev->workqueue);
4553 qdev->workqueue = NULL;
4557 iounmap(qdev->reg_base);
4558 if (qdev->doorbell_area)
4559 iounmap(qdev->doorbell_area);
4560 vfree(qdev->mpi_coredump);
4561 pci_release_regions(pdev);
4564 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4567 struct ql_adapter *qdev = netdev_priv(ndev);
4570 memset((void *)qdev, 0, sizeof(*qdev));
4571 err = pci_enable_device(pdev);
4573 dev_err(&pdev->dev, "PCI device enable failed.\n");
4579 pci_set_drvdata(pdev, ndev);
4581 /* Set PCIe read request size */
4582 err = pcie_set_readrq(pdev, 4096);
4584 dev_err(&pdev->dev, "Set readrq failed.\n");
4588 err = pci_request_regions(pdev, DRV_NAME);
4590 dev_err(&pdev->dev, "PCI region request failed.\n");
4594 pci_set_master(pdev);
4595 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4596 set_bit(QL_DMA64, &qdev->flags);
4597 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4599 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4601 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4605 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4609 /* Set PCIe reset type for EEH to fundamental. */
4610 pdev->needs_freset = 1;
4611 pci_save_state(pdev);
4613 ioremap_nocache(pci_resource_start(pdev, 1),
4614 pci_resource_len(pdev, 1));
4615 if (!qdev->reg_base) {
4616 dev_err(&pdev->dev, "Register mapping failed.\n");
4621 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4622 qdev->doorbell_area =
4623 ioremap_nocache(pci_resource_start(pdev, 3),
4624 pci_resource_len(pdev, 3));
4625 if (!qdev->doorbell_area) {
4626 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4631 err = ql_get_board_info(qdev);
4633 dev_err(&pdev->dev, "Register access failed.\n");
4637 qdev->msg_enable = netif_msg_init(debug, default_msg);
4638 spin_lock_init(&qdev->hw_lock);
4639 spin_lock_init(&qdev->stats_lock);
4641 if (qlge_mpi_coredump) {
4642 qdev->mpi_coredump =
4643 vmalloc(sizeof(struct ql_mpi_coredump));
4644 if (qdev->mpi_coredump == NULL) {
4648 if (qlge_force_coredump)
4649 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4651 /* make sure the EEPROM is good */
4652 err = qdev->nic_ops->get_flash(qdev);
4654 dev_err(&pdev->dev, "Invalid FLASH.\n");
4658 /* Keep local copy of current mac address. */
4659 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4661 /* Set up the default ring sizes. */
4662 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4663 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4665 /* Set up the coalescing parameters. */
4666 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4667 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4668 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4669 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4672 * Set up the operating parameters.
4674 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4675 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4676 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4677 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4678 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4679 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4680 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4681 init_completion(&qdev->ide_completion);
4682 mutex_init(&qdev->mpi_mutex);
4685 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4686 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4687 DRV_NAME, DRV_VERSION);
4691 ql_release_all(pdev);
4693 pci_disable_device(pdev);
4697 static const struct net_device_ops qlge_netdev_ops = {
4698 .ndo_open = qlge_open,
4699 .ndo_stop = qlge_close,
4700 .ndo_start_xmit = qlge_send,
4701 .ndo_change_mtu = qlge_change_mtu,
4702 .ndo_get_stats = qlge_get_stats,
4703 .ndo_set_rx_mode = qlge_set_multicast_list,
4704 .ndo_set_mac_address = qlge_set_mac_address,
4705 .ndo_validate_addr = eth_validate_addr,
4706 .ndo_tx_timeout = qlge_tx_timeout,
4707 .ndo_fix_features = qlge_fix_features,
4708 .ndo_set_features = qlge_set_features,
4709 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4710 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4713 static void ql_timer(unsigned long data)
4715 struct ql_adapter *qdev = (struct ql_adapter *)data;
4718 var = ql_read32(qdev, STS);
4719 if (pci_channel_offline(qdev->pdev)) {
4720 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4724 mod_timer(&qdev->timer, jiffies + (5*HZ));
4727 static int qlge_probe(struct pci_dev *pdev,
4728 const struct pci_device_id *pci_entry)
4730 struct net_device *ndev = NULL;
4731 struct ql_adapter *qdev = NULL;
4732 static int cards_found = 0;
4735 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4736 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4740 err = ql_init_device(pdev, ndev, cards_found);
4746 qdev = netdev_priv(ndev);
4747 SET_NETDEV_DEV(ndev, &pdev->dev);
4748 ndev->hw_features = NETIF_F_SG |
4752 NETIF_F_HW_VLAN_CTAG_TX |
4753 NETIF_F_HW_VLAN_CTAG_RX |
4754 NETIF_F_HW_VLAN_CTAG_FILTER |
4756 ndev->features = ndev->hw_features;
4757 ndev->vlan_features = ndev->hw_features;
4758 /* vlan gets same features (except vlan filter) */
4759 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4760 NETIF_F_HW_VLAN_CTAG_TX |
4761 NETIF_F_HW_VLAN_CTAG_RX);
4763 if (test_bit(QL_DMA64, &qdev->flags))
4764 ndev->features |= NETIF_F_HIGHDMA;
4767 * Set up net_device structure.
4769 ndev->tx_queue_len = qdev->tx_ring_size;
4770 ndev->irq = pdev->irq;
4772 ndev->netdev_ops = &qlge_netdev_ops;
4773 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4774 ndev->watchdog_timeo = 10 * HZ;
4776 err = register_netdev(ndev);
4778 dev_err(&pdev->dev, "net device registration failed.\n");
4779 ql_release_all(pdev);
4780 pci_disable_device(pdev);
4784 /* Start up the timer to trigger EEH if
4787 init_timer_deferrable(&qdev->timer);
4788 qdev->timer.data = (unsigned long)qdev;
4789 qdev->timer.function = ql_timer;
4790 qdev->timer.expires = jiffies + (5*HZ);
4791 add_timer(&qdev->timer);
4793 ql_display_dev_info(ndev);
4794 atomic_set(&qdev->lb_count, 0);
4799 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4801 return qlge_send(skb, ndev);
4804 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4806 return ql_clean_inbound_rx_ring(rx_ring, budget);
4809 static void qlge_remove(struct pci_dev *pdev)
4811 struct net_device *ndev = pci_get_drvdata(pdev);
4812 struct ql_adapter *qdev = netdev_priv(ndev);
4813 del_timer_sync(&qdev->timer);
4814 ql_cancel_all_work_sync(qdev);
4815 unregister_netdev(ndev);
4816 ql_release_all(pdev);
4817 pci_disable_device(pdev);
4821 /* Clean up resources without touching hardware. */
4822 static void ql_eeh_close(struct net_device *ndev)
4825 struct ql_adapter *qdev = netdev_priv(ndev);
4827 if (netif_carrier_ok(ndev)) {
4828 netif_carrier_off(ndev);
4829 netif_stop_queue(ndev);
4832 /* Disabling the timer */
4833 del_timer_sync(&qdev->timer);
4834 ql_cancel_all_work_sync(qdev);
4836 for (i = 0; i < qdev->rss_ring_count; i++)
4837 netif_napi_del(&qdev->rx_ring[i].napi);
4839 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4840 ql_tx_ring_clean(qdev);
4841 ql_free_rx_buffers(qdev);
4842 ql_release_adapter_resources(qdev);
4846 * This callback is called by the PCI subsystem whenever
4847 * a PCI bus error is detected.
4849 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4850 enum pci_channel_state state)
4852 struct net_device *ndev = pci_get_drvdata(pdev);
4853 struct ql_adapter *qdev = netdev_priv(ndev);
4856 case pci_channel_io_normal:
4857 return PCI_ERS_RESULT_CAN_RECOVER;
4858 case pci_channel_io_frozen:
4859 netif_device_detach(ndev);
4860 if (netif_running(ndev))
4862 pci_disable_device(pdev);
4863 return PCI_ERS_RESULT_NEED_RESET;
4864 case pci_channel_io_perm_failure:
4866 "%s: pci_channel_io_perm_failure.\n", __func__);
4868 set_bit(QL_EEH_FATAL, &qdev->flags);
4869 return PCI_ERS_RESULT_DISCONNECT;
4872 /* Request a slot reset. */
4873 return PCI_ERS_RESULT_NEED_RESET;
4877 * This callback is called after the PCI buss has been reset.
4878 * Basically, this tries to restart the card from scratch.
4879 * This is a shortened version of the device probe/discovery code,
4880 * it resembles the first-half of the () routine.
4882 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4884 struct net_device *ndev = pci_get_drvdata(pdev);
4885 struct ql_adapter *qdev = netdev_priv(ndev);
4887 pdev->error_state = pci_channel_io_normal;
4889 pci_restore_state(pdev);
4890 if (pci_enable_device(pdev)) {
4891 netif_err(qdev, ifup, qdev->ndev,
4892 "Cannot re-enable PCI device after reset.\n");
4893 return PCI_ERS_RESULT_DISCONNECT;
4895 pci_set_master(pdev);
4897 if (ql_adapter_reset(qdev)) {
4898 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4899 set_bit(QL_EEH_FATAL, &qdev->flags);
4900 return PCI_ERS_RESULT_DISCONNECT;
4903 return PCI_ERS_RESULT_RECOVERED;
4906 static void qlge_io_resume(struct pci_dev *pdev)
4908 struct net_device *ndev = pci_get_drvdata(pdev);
4909 struct ql_adapter *qdev = netdev_priv(ndev);
4912 if (netif_running(ndev)) {
4913 err = qlge_open(ndev);
4915 netif_err(qdev, ifup, qdev->ndev,
4916 "Device initialization failed after reset.\n");
4920 netif_err(qdev, ifup, qdev->ndev,
4921 "Device was not running prior to EEH.\n");
4923 mod_timer(&qdev->timer, jiffies + (5*HZ));
4924 netif_device_attach(ndev);
4927 static const struct pci_error_handlers qlge_err_handler = {
4928 .error_detected = qlge_io_error_detected,
4929 .slot_reset = qlge_io_slot_reset,
4930 .resume = qlge_io_resume,
4933 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4935 struct net_device *ndev = pci_get_drvdata(pdev);
4936 struct ql_adapter *qdev = netdev_priv(ndev);
4939 netif_device_detach(ndev);
4940 del_timer_sync(&qdev->timer);
4942 if (netif_running(ndev)) {
4943 err = ql_adapter_down(qdev);
4949 err = pci_save_state(pdev);
4953 pci_disable_device(pdev);
4955 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4961 static int qlge_resume(struct pci_dev *pdev)
4963 struct net_device *ndev = pci_get_drvdata(pdev);
4964 struct ql_adapter *qdev = netdev_priv(ndev);
4967 pci_set_power_state(pdev, PCI_D0);
4968 pci_restore_state(pdev);
4969 err = pci_enable_device(pdev);
4971 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4974 pci_set_master(pdev);
4976 pci_enable_wake(pdev, PCI_D3hot, 0);
4977 pci_enable_wake(pdev, PCI_D3cold, 0);
4979 if (netif_running(ndev)) {
4980 err = ql_adapter_up(qdev);
4985 mod_timer(&qdev->timer, jiffies + (5*HZ));
4986 netif_device_attach(ndev);
4990 #endif /* CONFIG_PM */
4992 static void qlge_shutdown(struct pci_dev *pdev)
4994 qlge_suspend(pdev, PMSG_SUSPEND);
4997 static struct pci_driver qlge_driver = {
4999 .id_table = qlge_pci_tbl,
5000 .probe = qlge_probe,
5001 .remove = qlge_remove,
5003 .suspend = qlge_suspend,
5004 .resume = qlge_resume,
5006 .shutdown = qlge_shutdown,
5007 .err_handler = &qlge_err_handler
5010 module_pci_driver(qlge_driver);