2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
7 * 2005 (c) MontaVista Software, Inc.
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
47 #include <asm/uaccess.h>
51 /*************************************************/
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
67 static void fs_set_multicast_list(struct net_device *dev)
69 struct fs_enet_private *fep = netdev_priv(dev);
71 (*fep->ops->set_multicast_list)(dev);
74 static void skb_align(struct sk_buff *skb, int align)
76 int off = ((unsigned long)skb->data) & (align - 1);
79 skb_reserve(skb, align - off);
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 struct net_device *dev = fep->ndev;
87 const struct fs_platform_info *fpi = fep->fpi;
89 struct sk_buff *skb, *skbn, *skbt;
98 * First, grab all of the stats for the incoming packet.
99 * These get messed up if we get called due to a busy condition.
103 /* clear RX status bits for napi*/
104 (*fep->ops->napi_clear_rx_event)(dev);
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107 curidx = bdp - fep->rx_bd_base;
110 * Since we have allocated space to hold a complete frame,
111 * the last indicator should be set.
113 if ((sc & BD_ENET_RX_LAST) == 0)
114 dev_warn(fep->dev, "rcv is not +last\n");
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121 fep->stats.rx_errors++;
122 /* Frame too long or too short. */
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124 fep->stats.rx_length_errors++;
125 /* Frame alignment */
126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127 fep->stats.rx_frame_errors++;
129 if (sc & BD_ENET_RX_CR)
130 fep->stats.rx_crc_errors++;
132 if (sc & BD_ENET_RX_OV)
133 fep->stats.rx_crc_errors++;
135 skb = fep->rx_skbuff[curidx];
137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
144 skb = fep->rx_skbuff[curidx];
146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
151 * Process the incoming frame.
153 fep->stats.rx_packets++;
154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155 fep->stats.rx_bytes += pkt_len + 4;
157 if (pkt_len <= fpi->rx_copybreak) {
158 /* +2 to make IP header L1 cache aligned */
159 skbn = netdev_alloc_skb(dev, pkt_len + 2);
161 skb_reserve(skbn, 2); /* align IP header */
162 skb_copy_from_linear_data(skb,
163 skbn->data, pkt_len);
170 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
173 skb_align(skbn, ENET_RX_ALIGN);
177 skb_put(skb, pkt_len); /* Make room */
178 skb->protocol = eth_type_trans(skb, dev);
180 netif_receive_skb(skb);
182 fep->stats.rx_dropped++;
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
195 * Update BD pointer to next entry.
197 if ((sc & BD_ENET_RX_WRAP) == 0)
200 bdp = fep->rx_bd_base;
202 (*fep->ops->rx_bd_done)(dev);
204 if (received >= budget)
210 if (received < budget) {
213 (*fep->ops->napi_enable_rx)(dev);
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
221 struct fs_enet_private *fep = netdev_priv(dev);
222 const struct fs_platform_info *fpi = fep->fpi;
224 struct sk_buff *skb, *skbn, *skbt;
229 * First, grab all of the stats for the incoming packet.
230 * These get messed up if we get called due to a busy condition.
234 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
236 curidx = bdp - fep->rx_bd_base;
239 * Since we have allocated space to hold a complete frame,
240 * the last indicator should be set.
242 if ((sc & BD_ENET_RX_LAST) == 0)
243 dev_warn(fep->dev, "rcv is not +last\n");
248 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
249 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
250 fep->stats.rx_errors++;
251 /* Frame too long or too short. */
252 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
253 fep->stats.rx_length_errors++;
254 /* Frame alignment */
255 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
256 fep->stats.rx_frame_errors++;
258 if (sc & BD_ENET_RX_CR)
259 fep->stats.rx_crc_errors++;
261 if (sc & BD_ENET_RX_OV)
262 fep->stats.rx_crc_errors++;
264 skb = fep->rx_skbuff[curidx];
266 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
274 skb = fep->rx_skbuff[curidx];
276 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
277 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
281 * Process the incoming frame.
283 fep->stats.rx_packets++;
284 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
285 fep->stats.rx_bytes += pkt_len + 4;
287 if (pkt_len <= fpi->rx_copybreak) {
288 /* +2 to make IP header L1 cache aligned */
289 skbn = netdev_alloc_skb(dev, pkt_len + 2);
291 skb_reserve(skbn, 2); /* align IP header */
292 skb_copy_from_linear_data(skb,
293 skbn->data, pkt_len);
300 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
303 skb_align(skbn, ENET_RX_ALIGN);
307 skb_put(skb, pkt_len); /* Make room */
308 skb->protocol = eth_type_trans(skb, dev);
312 fep->stats.rx_dropped++;
317 fep->rx_skbuff[curidx] = skbn;
318 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
319 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
322 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
325 * Update BD pointer to next entry.
327 if ((sc & BD_ENET_RX_WRAP) == 0)
330 bdp = fep->rx_bd_base;
332 (*fep->ops->rx_bd_done)(dev);
340 static void fs_enet_tx(struct net_device *dev)
342 struct fs_enet_private *fep = netdev_priv(dev);
345 int dirtyidx, do_wake, do_restart;
348 spin_lock(&fep->tx_lock);
351 do_wake = do_restart = 0;
352 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
353 dirtyidx = bdp - fep->tx_bd_base;
355 if (fep->tx_free == fep->tx_ring)
358 skb = fep->tx_skbuff[dirtyidx];
363 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
364 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
366 if (sc & BD_ENET_TX_HB) /* No heartbeat */
367 fep->stats.tx_heartbeat_errors++;
368 if (sc & BD_ENET_TX_LC) /* Late collision */
369 fep->stats.tx_window_errors++;
370 if (sc & BD_ENET_TX_RL) /* Retrans limit */
371 fep->stats.tx_aborted_errors++;
372 if (sc & BD_ENET_TX_UN) /* Underrun */
373 fep->stats.tx_fifo_errors++;
374 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
375 fep->stats.tx_carrier_errors++;
377 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
378 fep->stats.tx_errors++;
382 fep->stats.tx_packets++;
384 if (sc & BD_ENET_TX_READY) {
386 "HEY! Enet xmit interrupt and TX_READY.\n");
390 * Deferred means some collisions occurred during transmit,
391 * but we eventually sent the packet OK.
393 if (sc & BD_ENET_TX_DEF)
394 fep->stats.collisions++;
397 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
398 skb->len, DMA_TO_DEVICE);
401 * Free the sk buffer associated with this last transmit.
403 dev_kfree_skb_irq(skb);
404 fep->tx_skbuff[dirtyidx] = NULL;
407 * Update pointer to next buffer descriptor to be transmitted.
409 if ((sc & BD_ENET_TX_WRAP) == 0)
412 bdp = fep->tx_bd_base;
415 * Since we have freed up a buffer, the ring is no longer
425 (*fep->ops->tx_restart)(dev);
427 spin_unlock(&fep->tx_lock);
430 netif_wake_queue(dev);
434 * The interrupt handler.
435 * This is called from the MPC core interrupt.
438 fs_enet_interrupt(int irq, void *dev_id)
440 struct net_device *dev = dev_id;
441 struct fs_enet_private *fep;
442 const struct fs_platform_info *fpi;
448 fep = netdev_priv(dev);
452 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
455 int_clr_events = int_events;
457 int_clr_events &= ~fep->ev_napi_rx;
459 (*fep->ops->clear_int_events)(dev, int_clr_events);
461 if (int_events & fep->ev_err)
462 (*fep->ops->ev_error)(dev, int_events);
464 if (int_events & fep->ev_rx) {
466 fs_enet_rx_non_napi(dev);
468 napi_ok = napi_schedule_prep(&fep->napi);
470 (*fep->ops->napi_disable_rx)(dev);
471 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
473 /* NOTE: it is possible for FCCs in NAPI mode */
474 /* to submit a spurious interrupt while in poll */
476 __napi_schedule(&fep->napi);
480 if (int_events & fep->ev_tx)
485 return IRQ_RETVAL(handled);
488 void fs_init_bds(struct net_device *dev)
490 struct fs_enet_private *fep = netdev_priv(dev);
497 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
498 fep->tx_free = fep->tx_ring;
499 fep->cur_rx = fep->rx_bd_base;
502 * Initialize the receive buffer descriptors.
504 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
505 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
509 skb_align(skb, ENET_RX_ALIGN);
510 fep->rx_skbuff[i] = skb;
512 dma_map_single(fep->dev, skb->data,
513 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
515 CBDW_DATLEN(bdp, 0); /* zero */
516 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
517 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
520 * if we failed, fillup remainder
522 for (; i < fep->rx_ring; i++, bdp++) {
523 fep->rx_skbuff[i] = NULL;
524 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
528 * ...and the same for transmit.
530 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
531 fep->tx_skbuff[i] = NULL;
532 CBDW_BUFADDR(bdp, 0);
534 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
538 void fs_cleanup_bds(struct net_device *dev)
540 struct fs_enet_private *fep = netdev_priv(dev);
546 * Reset SKB transmit buffers.
548 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
549 if ((skb = fep->tx_skbuff[i]) == NULL)
553 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
554 skb->len, DMA_TO_DEVICE);
556 fep->tx_skbuff[i] = NULL;
561 * Reset SKB receive buffers
563 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
564 if ((skb = fep->rx_skbuff[i]) == NULL)
568 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
569 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
572 fep->rx_skbuff[i] = NULL;
578 /**********************************************************************************/
580 #ifdef CONFIG_FS_ENET_MPC5121_FEC
582 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
584 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
587 struct sk_buff *new_skb;
590 new_skb = netdev_alloc_skb(dev, skb->len + 4);
594 /* Make sure new skb is properly aligned */
595 skb_align(new_skb, 4);
597 /* Copy data to new skb ... */
598 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
599 skb_put(new_skb, skb->len);
601 /* ... and free an old one */
602 dev_kfree_skb_any(skb);
608 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
610 struct fs_enet_private *fep = netdev_priv(dev);
616 #ifdef CONFIG_FS_ENET_MPC5121_FEC
617 if (((unsigned long)skb->data) & 0x3) {
618 skb = tx_skb_align_workaround(dev, skb);
621 * We have lost packet due to memory allocation error
622 * in tx_skb_align_workaround(). Hopefully original
623 * skb is still valid, so try transmit it later.
625 return NETDEV_TX_BUSY;
629 spin_lock_irqsave(&fep->tx_lock, flags);
632 * Fill in a Tx ring entry
636 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
637 netif_stop_queue(dev);
638 spin_unlock_irqrestore(&fep->tx_lock, flags);
641 * Ooops. All transmit buffers are full. Bail out.
642 * This should not happen, since the tx queue should be stopped.
644 dev_warn(fep->dev, "tx queue full!.\n");
645 return NETDEV_TX_BUSY;
648 curidx = bdp - fep->tx_bd_base;
650 * Clear all of the status flags.
652 CBDC_SC(bdp, BD_ENET_TX_STATS);
657 fep->tx_skbuff[curidx] = skb;
659 fep->stats.tx_bytes += skb->len;
662 * Push the data cache so the CPM does not get stale memory data.
664 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
665 skb->data, skb->len, DMA_TO_DEVICE));
666 CBDW_DATLEN(bdp, skb->len);
669 * If this was the last BD in the ring, start at the beginning again.
671 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
674 fep->cur_tx = fep->tx_bd_base;
677 netif_stop_queue(dev);
679 /* Trigger transmission start */
680 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
681 BD_ENET_TX_LAST | BD_ENET_TX_TC;
683 /* note that while FEC does not have this bit
684 * it marks it as available for software use
685 * yay for hw reuse :) */
687 sc |= BD_ENET_TX_PAD;
690 skb_tx_timestamp(skb);
692 (*fep->ops->tx_kickstart)(dev);
694 spin_unlock_irqrestore(&fep->tx_lock, flags);
699 static void fs_timeout(struct net_device *dev)
701 struct fs_enet_private *fep = netdev_priv(dev);
705 fep->stats.tx_errors++;
707 spin_lock_irqsave(&fep->lock, flags);
709 if (dev->flags & IFF_UP) {
710 phy_stop(fep->phydev);
711 (*fep->ops->stop)(dev);
712 (*fep->ops->restart)(dev);
713 phy_start(fep->phydev);
716 phy_start(fep->phydev);
717 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
718 spin_unlock_irqrestore(&fep->lock, flags);
721 netif_wake_queue(dev);
724 /*-----------------------------------------------------------------------------
725 * generic link-change handler - should be sufficient for most cases
726 *-----------------------------------------------------------------------------*/
727 static void generic_adjust_link(struct net_device *dev)
729 struct fs_enet_private *fep = netdev_priv(dev);
730 struct phy_device *phydev = fep->phydev;
734 /* adjust to duplex mode */
735 if (phydev->duplex != fep->oldduplex) {
737 fep->oldduplex = phydev->duplex;
740 if (phydev->speed != fep->oldspeed) {
742 fep->oldspeed = phydev->speed;
751 fep->ops->restart(dev);
752 } else if (fep->oldlink) {
759 if (new_state && netif_msg_link(fep))
760 phy_print_status(phydev);
764 static void fs_adjust_link(struct net_device *dev)
766 struct fs_enet_private *fep = netdev_priv(dev);
769 spin_lock_irqsave(&fep->lock, flags);
771 if(fep->ops->adjust_link)
772 fep->ops->adjust_link(dev);
774 generic_adjust_link(dev);
776 spin_unlock_irqrestore(&fep->lock, flags);
779 static int fs_init_phy(struct net_device *dev)
781 struct fs_enet_private *fep = netdev_priv(dev);
782 struct phy_device *phydev;
783 phy_interface_t iface;
789 iface = fep->fpi->use_rmii ?
790 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
792 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
795 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
799 dev_err(&dev->dev, "Could not attach to PHY\n");
803 fep->phydev = phydev;
808 static int fs_enet_open(struct net_device *dev)
810 struct fs_enet_private *fep = netdev_priv(dev);
814 /* to initialize the fep->cur_rx,... */
815 /* not doing this, will cause a crash in fs_enet_rx_napi */
816 fs_init_bds(fep->ndev);
818 if (fep->fpi->use_napi)
819 napi_enable(&fep->napi);
821 /* Install our interrupt handler. */
822 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
825 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
826 if (fep->fpi->use_napi)
827 napi_disable(&fep->napi);
831 err = fs_init_phy(dev);
833 free_irq(fep->interrupt, dev);
834 if (fep->fpi->use_napi)
835 napi_disable(&fep->napi);
838 phy_start(fep->phydev);
840 netif_start_queue(dev);
845 static int fs_enet_close(struct net_device *dev)
847 struct fs_enet_private *fep = netdev_priv(dev);
850 netif_stop_queue(dev);
851 netif_carrier_off(dev);
852 if (fep->fpi->use_napi)
853 napi_disable(&fep->napi);
854 phy_stop(fep->phydev);
856 spin_lock_irqsave(&fep->lock, flags);
857 spin_lock(&fep->tx_lock);
858 (*fep->ops->stop)(dev);
859 spin_unlock(&fep->tx_lock);
860 spin_unlock_irqrestore(&fep->lock, flags);
862 /* release any irqs */
863 phy_disconnect(fep->phydev);
865 free_irq(fep->interrupt, dev);
870 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
872 struct fs_enet_private *fep = netdev_priv(dev);
876 /*************************************************************************/
878 static void fs_get_drvinfo(struct net_device *dev,
879 struct ethtool_drvinfo *info)
881 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
882 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
885 static int fs_get_regs_len(struct net_device *dev)
887 struct fs_enet_private *fep = netdev_priv(dev);
889 return (*fep->ops->get_regs_len)(dev);
892 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
895 struct fs_enet_private *fep = netdev_priv(dev);
901 spin_lock_irqsave(&fep->lock, flags);
902 r = (*fep->ops->get_regs)(dev, p, &len);
903 spin_unlock_irqrestore(&fep->lock, flags);
909 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
911 struct fs_enet_private *fep = netdev_priv(dev);
916 return phy_ethtool_gset(fep->phydev, cmd);
919 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
921 struct fs_enet_private *fep = netdev_priv(dev);
926 return phy_ethtool_sset(fep->phydev, cmd);
929 static int fs_nway_reset(struct net_device *dev)
934 static u32 fs_get_msglevel(struct net_device *dev)
936 struct fs_enet_private *fep = netdev_priv(dev);
937 return fep->msg_enable;
940 static void fs_set_msglevel(struct net_device *dev, u32 value)
942 struct fs_enet_private *fep = netdev_priv(dev);
943 fep->msg_enable = value;
946 static const struct ethtool_ops fs_ethtool_ops = {
947 .get_drvinfo = fs_get_drvinfo,
948 .get_regs_len = fs_get_regs_len,
949 .get_settings = fs_get_settings,
950 .set_settings = fs_set_settings,
951 .nway_reset = fs_nway_reset,
952 .get_link = ethtool_op_get_link,
953 .get_msglevel = fs_get_msglevel,
954 .set_msglevel = fs_set_msglevel,
955 .get_regs = fs_get_regs,
956 .get_ts_info = ethtool_op_get_ts_info,
959 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
961 struct fs_enet_private *fep = netdev_priv(dev);
963 if (!netif_running(dev))
966 return phy_mii_ioctl(fep->phydev, rq, cmd);
969 extern int fs_mii_connect(struct net_device *dev);
970 extern void fs_mii_disconnect(struct net_device *dev);
972 /**************************************************************************************/
974 #ifdef CONFIG_FS_ENET_HAS_FEC
975 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
977 #define IS_FEC(match) 0
980 static const struct net_device_ops fs_enet_netdev_ops = {
981 .ndo_open = fs_enet_open,
982 .ndo_stop = fs_enet_close,
983 .ndo_get_stats = fs_enet_get_stats,
984 .ndo_start_xmit = fs_enet_start_xmit,
985 .ndo_tx_timeout = fs_timeout,
986 .ndo_set_rx_mode = fs_set_multicast_list,
987 .ndo_do_ioctl = fs_ioctl,
988 .ndo_validate_addr = eth_validate_addr,
989 .ndo_set_mac_address = eth_mac_addr,
990 .ndo_change_mtu = eth_change_mtu,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992 .ndo_poll_controller = fs_enet_netpoll,
996 static struct of_device_id fs_enet_match[];
997 static int fs_enet_probe(struct platform_device *ofdev)
999 const struct of_device_id *match;
1000 struct net_device *ndev;
1001 struct fs_enet_private *fep;
1002 struct fs_platform_info *fpi;
1007 const char *phy_connection_type;
1008 int privsize, len, ret = -ENODEV;
1010 match = of_match_device(fs_enet_match, &ofdev->dev);
1014 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1018 if (!IS_FEC(match)) {
1019 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1020 if (!data || len != 4)
1023 fpi->cp_command = *data;
1028 fpi->rx_copybreak = 240;
1030 fpi->napi_weight = 17;
1031 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1032 if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link",
1036 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
1037 phy_connection_type = of_get_property(ofdev->dev.of_node,
1038 "phy-connection-type", NULL);
1039 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
1043 /* make clock lookup non-fatal (the driver is shared among platforms),
1044 * but require enable to succeed when a clock was specified/found,
1045 * keep a reference to the clock upon successful acquisition
1047 clk = devm_clk_get(&ofdev->dev, "per");
1049 err = clk_prepare_enable(clk);
1057 privsize = sizeof(*fep) +
1058 sizeof(struct sk_buff **) *
1059 (fpi->rx_ring + fpi->tx_ring);
1061 ndev = alloc_etherdev(privsize);
1067 SET_NETDEV_DEV(ndev, &ofdev->dev);
1068 platform_set_drvdata(ofdev, ndev);
1070 fep = netdev_priv(ndev);
1071 fep->dev = &ofdev->dev;
1074 fep->ops = match->data;
1076 ret = fep->ops->setup_data(ndev);
1080 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1081 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1083 spin_lock_init(&fep->lock);
1084 spin_lock_init(&fep->tx_lock);
1086 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1088 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1090 ret = fep->ops->allocate_bd(ndev);
1092 goto out_cleanup_data;
1094 fep->rx_bd_base = fep->ring_base;
1095 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1097 fep->tx_ring = fpi->tx_ring;
1098 fep->rx_ring = fpi->rx_ring;
1100 ndev->netdev_ops = &fs_enet_netdev_ops;
1101 ndev->watchdog_timeo = 2 * HZ;
1103 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1106 ndev->ethtool_ops = &fs_ethtool_ops;
1108 init_timer(&fep->phy_timer_list);
1110 netif_carrier_off(ndev);
1112 ret = register_netdev(ndev);
1116 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1121 fep->ops->free_bd(ndev);
1123 fep->ops->cleanup_data(ndev);
1127 of_node_put(fpi->phy_node);
1129 clk_disable_unprepare(fpi->clk_per);
1135 static int fs_enet_remove(struct platform_device *ofdev)
1137 struct net_device *ndev = platform_get_drvdata(ofdev);
1138 struct fs_enet_private *fep = netdev_priv(ndev);
1140 unregister_netdev(ndev);
1142 fep->ops->free_bd(ndev);
1143 fep->ops->cleanup_data(ndev);
1144 dev_set_drvdata(fep->dev, NULL);
1145 of_node_put(fep->fpi->phy_node);
1146 if (fep->fpi->clk_per)
1147 clk_disable_unprepare(fep->fpi->clk_per);
1152 static struct of_device_id fs_enet_match[] = {
1153 #ifdef CONFIG_FS_ENET_HAS_SCC
1155 .compatible = "fsl,cpm1-scc-enet",
1156 .data = (void *)&fs_scc_ops,
1159 .compatible = "fsl,cpm2-scc-enet",
1160 .data = (void *)&fs_scc_ops,
1163 #ifdef CONFIG_FS_ENET_HAS_FCC
1165 .compatible = "fsl,cpm2-fcc-enet",
1166 .data = (void *)&fs_fcc_ops,
1169 #ifdef CONFIG_FS_ENET_HAS_FEC
1170 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1172 .compatible = "fsl,mpc5121-fec",
1173 .data = (void *)&fs_fec_ops,
1176 .compatible = "fsl,mpc5125-fec",
1177 .data = (void *)&fs_fec_ops,
1181 .compatible = "fsl,pq1-fec-enet",
1182 .data = (void *)&fs_fec_ops,
1188 MODULE_DEVICE_TABLE(of, fs_enet_match);
1190 static struct platform_driver fs_enet_driver = {
1192 .owner = THIS_MODULE,
1194 .of_match_table = fs_enet_match,
1196 .probe = fs_enet_probe,
1197 .remove = fs_enet_remove,
1200 #ifdef CONFIG_NET_POLL_CONTROLLER
1201 static void fs_enet_netpoll(struct net_device *dev)
1203 disable_irq(dev->irq);
1204 fs_enet_interrupt(dev->irq, dev);
1205 enable_irq(dev->irq);
1209 module_platform_driver(fs_enet_driver);