2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4 * Copyright (C) 2003-2007 Micronas
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 only, as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <asm/div64.h>
33 #include "dvb_frontend.h"
35 #include "drxd_firm.h"
37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
42 #define DRX_I2C_RMW 0x10
43 #define DRX_I2C_BROADCAST 0x20
44 #define DRX_I2C_CLEARCRC 0x80
45 #define DRX_I2C_SINGLE_MASTER 0xC0
46 #define DRX_I2C_MODEFLAGS 0xC0
47 #define DRX_I2C_FLAGS 0xF0
49 #define DEFAULT_LOCK_TIMEOUT 1100
51 #define DRX_CHANNEL_AUTO 0
52 #define DRX_CHANNEL_HIGH 1
53 #define DRX_CHANNEL_LOW 2
55 #define DRX_LOCK_MPEG 1
56 #define DRX_LOCK_FEC 2
57 #define DRX_LOCK_DEMOD 4
59 /****************************************************************************/
68 DRXD_UNINITIALIZED = 0,
81 OM_DVBT_Diversity_Front,
86 enum AGC_CTRL_MODE ctrlMode;
87 u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
88 u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */
89 u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
90 u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
91 u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */
113 IFFILTER_DISCRETE = 1
117 struct dvb_frontend frontend;
118 struct dvb_frontend_ops ops;
119 struct dtv_frontend_properties props;
121 const struct firmware *fw;
124 struct i2c_adapter *i2c;
126 struct drxd_config config;
133 u16 hi_cfg_timing_div;
134 u16 hi_cfg_bridge_delay;
135 u16 hi_cfg_wakeup_key;
138 u16 intermediate_freq;
141 enum CSCDState cscd_state;
142 enum CDrxdState drxd_state;
145 s16 osc_clock_deviation;
146 u16 expected_sys_clock_freq;
153 struct SCfgAgc if_agc_cfg;
154 struct SCfgAgc rf_agc_cfg;
156 struct SNoiseCal noise_cal;
159 u32 org_fe_fs_add_incr;
160 u16 current_fe_if_incr;
163 u16 m_FeAgRegAgAgcSio;
165 u16 m_EcOcRegOcModeLop;
166 u16 m_EcOcRegSncSncLvl;
167 u8 *m_InitAtomicRead;
179 u8 *m_InitDiversityFront;
180 u8 *m_InitDiversityEnd;
181 u8 *m_DisableDiversity;
182 u8 *m_StartDiversityFront;
183 u8 *m_StartDiversityEnd;
185 u8 *m_DiversityDelay8MHZ;
186 u8 *m_DiversityDelay6MHZ;
189 u32 microcode_length;
196 enum app_env app_env_default;
197 enum app_env app_env_diversity;
201 /****************************************************************************/
202 /* I2C **********************************************************************/
203 /****************************************************************************/
205 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
207 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
209 if (i2c_transfer(adap, &msg, 1) != 1)
214 static int i2c_read(struct i2c_adapter *adap,
215 u8 adr, u8 *msg, int len, u8 *answ, int alen)
217 struct i2c_msg msgs[2] = {
219 .addr = adr, .flags = 0,
220 .buf = msg, .len = len
222 .addr = adr, .flags = I2C_M_RD,
223 .buf = answ, .len = alen
226 if (i2c_transfer(adap, msgs, 2) != 2)
231 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
235 tmp64 = (u64)a * (u64)b;
241 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
243 u8 adr = state->config.demod_address;
244 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
245 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
248 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
251 *data = mm2[0] | (mm2[1] << 8);
252 return mm2[0] | (mm2[1] << 8);
255 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
257 u8 adr = state->config.demod_address;
258 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
259 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
263 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
267 mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
271 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
273 u8 adr = state->config.demod_address;
274 u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
275 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
276 data & 0xff, (data >> 8) & 0xff
279 if (i2c_write(state->i2c, adr, mm, 6) < 0)
284 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
286 u8 adr = state->config.demod_address;
287 u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
288 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
289 data & 0xff, (data >> 8) & 0xff,
290 (data >> 16) & 0xff, (data >> 24) & 0xff
293 if (i2c_write(state->i2c, adr, mm, 8) < 0)
298 static int write_chunk(struct drxd_state *state,
299 u32 reg, u8 *data, u32 len, u8 flags)
301 u8 adr = state->config.demod_address;
302 u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
303 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
307 for (i = 0; i < len; i++)
309 if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
310 printk(KERN_ERR "error in write_chunk\n");
316 static int WriteBlock(struct drxd_state *state,
317 u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
319 while (BlockSize > 0) {
320 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
322 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
325 Address += (Chunk >> 1);
331 static int WriteTable(struct drxd_state *state, u8 * pTable)
340 u32 Address = pTable[0] | (pTable[1] << 8) |
341 (pTable[2] << 16) | (pTable[3] << 24);
343 if (Address == 0xFFFFFFFF)
345 pTable += sizeof(u32);
347 Length = pTable[0] | (pTable[1] << 8);
348 pTable += sizeof(u16);
351 status = WriteBlock(state, Address, Length * 2, pTable, 0);
352 pTable += (Length * 2);
357 /****************************************************************************/
358 /****************************************************************************/
359 /****************************************************************************/
361 static int ResetCEFR(struct drxd_state *state)
363 return WriteTable(state, state->m_ResetCEFR);
366 static int InitCP(struct drxd_state *state)
368 return WriteTable(state, state->m_InitCP);
371 static int InitCE(struct drxd_state *state)
374 enum app_env AppEnv = state->app_env_default;
377 status = WriteTable(state, state->m_InitCE);
381 if (state->operation_mode == OM_DVBT_Diversity_Front ||
382 state->operation_mode == OM_DVBT_Diversity_End) {
383 AppEnv = state->app_env_diversity;
385 if (AppEnv == APPENV_STATIC) {
386 status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
389 } else if (AppEnv == APPENV_PORTABLE) {
390 status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
393 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
394 status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
397 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
398 status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
404 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
411 static int StopOC(struct drxd_state *state)
415 u16 ocModeLop = state->m_EcOcRegOcModeLop;
420 /* Store output configuration */
421 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
424 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
425 state->m_EcOcRegSncSncLvl = ocSyncLvl;
426 /* m_EcOcRegOcModeLop = ocModeLop; */
428 /* Flush FIFO (byte-boundary) at fixed rate */
429 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
432 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
435 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
438 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
441 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
442 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
443 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
446 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
451 /* Output pins to '0' */
452 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
456 /* Force the OC out of sync */
457 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
458 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
461 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
462 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
463 ocModeLop |= 0x2; /* Magically-out-of-sync */
464 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
467 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
470 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
478 static int StartOC(struct drxd_state *state)
484 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
488 /* Restore output configuration */
489 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
492 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
496 /* Output pins active again */
497 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
502 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
509 static int InitEQ(struct drxd_state *state)
511 return WriteTable(state, state->m_InitEQ);
514 static int InitEC(struct drxd_state *state)
516 return WriteTable(state, state->m_InitEC);
519 static int InitSC(struct drxd_state *state)
521 return WriteTable(state, state->m_InitSC);
524 static int InitAtomicRead(struct drxd_state *state)
526 return WriteTable(state, state->m_InitAtomicRead);
529 static int CorrectSysClockDeviation(struct drxd_state *state);
531 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
534 const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
535 SC_RA_RAM_LOCK_FEC__M |
536 SC_RA_RAM_LOCK_DEMOD__M);
537 const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
538 SC_RA_RAM_LOCK_DEMOD__M);
539 const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
545 status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
547 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
551 if (state->drxd_state != DRXD_STARTED)
554 if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
555 *pLockStatus |= DRX_LOCK_MPEG;
556 CorrectSysClockDeviation(state);
559 if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
560 *pLockStatus |= DRX_LOCK_FEC;
562 if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
563 *pLockStatus |= DRX_LOCK_DEMOD;
567 /****************************************************************************/
569 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
573 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
576 if (cfg->ctrlMode == AGC_CTRL_USER) {
578 u16 FeAgRegPm1AgcWri;
579 u16 FeAgRegAgModeLop;
581 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
584 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
585 FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
586 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
590 FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
591 FE_AG_REG_PM1_AGC_WRI__M);
592 status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
596 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
597 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
598 ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
599 ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
600 ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
604 u16 FeAgRegAgModeLop;
605 u16 FeAgRegEgcSetLvl;
610 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
613 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
615 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
616 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
620 /* == Settle level == */
622 FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
623 FE_AG_REG_EGC_SET_LVL__M);
624 status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
630 slope = (u16) ((cfg->maxOutputLevel -
631 cfg->minOutputLevel) / 2);
632 offset = (u16) ((cfg->maxOutputLevel +
633 cfg->minOutputLevel) / 2 - 511);
635 status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
638 status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
644 const u16 maxRur = 8;
645 const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
646 const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
653 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
655 u16 fineSpeed = (u16) (cfg->speed -
659 u16 invRurCount = (u16) (cfg->speed /
662 if (invRurCount > maxRur) {
664 fineSpeed += fineSteps;
666 rurCount = maxRur - invRurCount;
671 (2^(fineSpeed/fineSteps))
672 => range[default...2*default>
674 (2^(fineSpeed/fineSteps))
678 fastIncrDecLUT[fineSpeed /
682 slowIncrDecLUT[fineSpeed /
686 status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
689 status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
692 status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
695 status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
698 status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
706 /* No OFF mode for IF control */
712 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
716 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
719 if (cfg->ctrlMode == AGC_CTRL_USER) {
722 u16 level = (cfg->outputLevel);
724 if (level == DRXD_FE_CTRL_MAX)
727 status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
733 /* Powerdown PD2, WRI source */
734 state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
735 state->m_FeAgRegAgPwd |=
736 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
737 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
741 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
744 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
745 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
746 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
747 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
748 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
752 /* enable AGC2 pin */
754 u16 FeAgRegAgAgcSio = 0;
755 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
759 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
761 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
762 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
768 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
773 /* Automatic control */
774 /* Powerup PD2, AGC2 as output, TGC source */
775 (state->m_FeAgRegAgPwd) &=
776 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
777 (state->m_FeAgRegAgPwd) |=
778 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
779 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
783 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
786 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
787 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
788 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
789 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
790 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
794 level = (((cfg->settleLevel) >> 4) &
795 FE_AG_REG_TGC_SET_LVL__M);
796 status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
800 /* Min/max: don't care */
804 /* enable AGC2 pin */
806 u16 FeAgRegAgAgcSio = 0;
807 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
811 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
813 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
814 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
824 /* No RF AGC control */
825 /* Powerdown PD2, AGC2 as output, WRI source */
826 (state->m_FeAgRegAgPwd) &=
827 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
828 (state->m_FeAgRegAgPwd) |=
829 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
830 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
834 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
837 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
838 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
839 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
840 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
841 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
845 /* set FeAgRegAgAgcSio AGC2 (RF) as input */
847 u16 FeAgRegAgAgcSio = 0;
848 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
852 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
854 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
855 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
864 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
869 if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
871 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
872 Value &= FE_AG_REG_GC1_AGC_DAT__M;
884 u32 R1 = state->if_agc_cfg.R1;
885 u32 R2 = state->if_agc_cfg.R2;
886 u32 R3 = state->if_agc_cfg.R3;
888 u32 Vmax, Rpar, Vmin, Vout;
890 if (R2 == 0 && (R1 == 0 || R3 == 0))
893 Vmax = (3300 * R2) / (R1 + R2);
894 Rpar = (R2 * R3) / (R3 + R2);
895 Vmin = (3300 * Rpar) / (R1 + Rpar);
896 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
904 static int load_firmware(struct drxd_state *state, const char *fw_name)
906 const struct firmware *fw;
908 if (request_firmware(&fw, fw_name, state->dev) < 0) {
909 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
913 state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
914 if (state->microcode == NULL) {
915 release_firmware(fw);
916 printk(KERN_ERR "drxd: firmware load failure: no memory\n");
920 state->microcode_length = fw->size;
921 release_firmware(fw);
925 static int DownloadMicrocode(struct drxd_state *state,
926 const u8 *pMCImage, u32 Length)
935 pSrc = (u8 *) pMCImage;
936 /* We're not using Flags */
937 /* Flags = (pSrc[0] << 8) | pSrc[1]; */
939 offset += sizeof(u16);
940 nBlocks = (pSrc[0] << 8) | pSrc[1];
942 offset += sizeof(u16);
944 for (i = 0; i < nBlocks; i++) {
945 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
946 (pSrc[2] << 8) | pSrc[3];
948 offset += sizeof(u32);
950 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
952 offset += sizeof(u16);
954 /* We're not using Flags */
955 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
957 offset += sizeof(u16);
959 /* We're not using BlockCRC */
960 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
962 offset += sizeof(u16);
964 status = WriteBlock(state, Address, BlockSize,
965 pSrc, DRX_I2C_CLEARCRC);
975 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
981 status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
987 if (nrRetries > DRXD_MAX_RETRIES) {
991 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
992 } while (waitCmd != 0);
995 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
999 static int HI_CfgCommand(struct drxd_state *state)
1003 mutex_lock(&state->mutex);
1004 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1005 Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1006 Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1007 Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1008 Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1010 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1012 if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1013 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1014 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1015 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1017 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1018 mutex_unlock(&state->mutex);
1022 static int InitHI(struct drxd_state *state)
1024 state->hi_cfg_wakeup_key = (state->chip_adr);
1025 /* port/bridge/power down ctrl */
1026 state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1027 return HI_CfgCommand(state);
1030 static int HI_ResetCommand(struct drxd_state *state)
1034 mutex_lock(&state->mutex);
1035 status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1036 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1038 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1039 mutex_unlock(&state->mutex);
1044 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1046 state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1048 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1050 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1052 return HI_CfgCommand(state);
1055 #define HI_TR_WRITE 0x9
1056 #define HI_TR_READ 0xA
1057 #define HI_TR_READ_WRITE 0xB
1058 #define HI_TR_BROADCAST 0x4
1061 static int AtomicReadBlock(struct drxd_state *state,
1062 u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1067 /* Parameter check */
1068 if ((!pData) || ((DataSize & 1) != 0))
1071 mutex_lock(&state->mutex);
1074 /* Instruct HI to read n bytes */
1075 /* TODO use proper names forthese egisters */
1076 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1079 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1082 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1085 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1088 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1092 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1099 for (i = 0; i < (DataSize / 2); i += 1) {
1102 status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1106 pData[2 * i] = (u8) (word & 0xFF);
1107 pData[(2 * i) + 1] = (u8) (word >> 8);
1110 mutex_unlock(&state->mutex);
1114 static int AtomicReadReg32(struct drxd_state *state,
1115 u32 Addr, u32 *pData, u8 Flags)
1117 u8 buf[sizeof(u32)];
1122 status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1123 *pData = (((u32) buf[0]) << 0) +
1124 (((u32) buf[1]) << 8) +
1125 (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1130 static int StopAllProcessors(struct drxd_state *state)
1132 return Write16(state, HI_COMM_EXEC__A,
1133 SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1136 static int EnableAndResetMB(struct drxd_state *state)
1138 if (state->type_A) {
1139 /* disable? monitor bus observe @ EC_OC */
1140 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1143 /* do inverse broadcast, followed by explicit write to HI */
1144 Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1145 Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1149 static int InitCC(struct drxd_state *state)
1151 if (state->osc_clock_freq == 0 ||
1152 state->osc_clock_freq > 20000 ||
1153 (state->osc_clock_freq % 4000) != 0) {
1154 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1158 Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1159 Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1160 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1161 Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1162 Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1163 Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1168 static int ResetECOD(struct drxd_state *state)
1173 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1175 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1178 status = WriteTable(state, state->m_ResetECRAM);
1180 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1184 /* Configure PGA switch */
1186 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1195 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1198 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1199 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1200 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1205 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1208 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1209 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1210 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1214 /* enable fine and coarse gain, enable AAF,
1216 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1220 /* PGA off, bypass */
1223 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1226 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1227 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1228 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1233 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1236 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1237 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1238 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1242 /* disable fine and coarse gain, enable AAF,
1244 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1252 static int InitFE(struct drxd_state *state)
1257 status = WriteTable(state, state->m_InitFE_1);
1261 if (state->type_A) {
1262 status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1263 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1267 status = SetCfgPga(state, 0);
1270 Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1271 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1277 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1280 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1284 status = WriteTable(state, state->m_InitFE_2);
1293 static int InitFT(struct drxd_state *state)
1296 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1299 return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1302 static int SC_WaitForReady(struct drxd_state *state)
1307 for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1308 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1309 if (status == 0 || curCmd == 0)
1315 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1320 Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1321 SC_WaitForReady(state);
1323 Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1325 if (errCode == 0xFFFF) {
1326 printk(KERN_ERR "Command Error\n");
1333 static int SC_ProcStartCommand(struct drxd_state *state,
1334 u16 subCmd, u16 param0, u16 param1)
1339 mutex_lock(&state->mutex);
1341 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1346 SC_WaitForReady(state);
1347 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1348 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1349 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1351 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1353 mutex_unlock(&state->mutex);
1357 static int SC_SetPrefParamCommand(struct drxd_state *state,
1358 u16 subCmd, u16 param0, u16 param1)
1362 mutex_lock(&state->mutex);
1364 status = SC_WaitForReady(state);
1367 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1370 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1373 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1377 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1381 mutex_unlock(&state->mutex);
1386 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1390 mutex_lock(&state->mutex);
1392 status = SC_WaitForReady(state);
1395 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1398 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1402 mutex_unlock(&state->mutex);
1407 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1412 u16 EcOcRegIprInvMpg = 0;
1413 u16 EcOcRegOcModeLop = 0;
1414 u16 EcOcRegOcModeHip = 0;
1415 u16 EcOcRegOcMpgSio = 0;
1417 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1419 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1420 if (bEnableOutput) {
1422 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1424 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1426 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1428 EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1431 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1433 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1435 /* Don't Insert RS Byte */
1436 if (state->insert_rs_byte) {
1438 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1440 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1442 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1445 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1447 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1449 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1452 /* Mode = Parallel */
1453 if (state->enable_parallel)
1455 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1458 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1461 /* EcOcRegIprInvMpg |= 0x00FF; */
1462 EcOcRegIprInvMpg &= (~(0x00FF));
1464 /* Invert Error ( we don't use the pin ) */
1465 /* EcOcRegIprInvMpg |= 0x0100; */
1466 EcOcRegIprInvMpg &= (~(0x0100));
1468 /* Invert Start ( we don't use the pin ) */
1469 /* EcOcRegIprInvMpg |= 0x0200; */
1470 EcOcRegIprInvMpg &= (~(0x0200));
1472 /* Invert Valid ( we don't use the pin ) */
1473 /* EcOcRegIprInvMpg |= 0x0400; */
1474 EcOcRegIprInvMpg &= (~(0x0400));
1477 /* EcOcRegIprInvMpg |= 0x0800; */
1478 EcOcRegIprInvMpg &= (~(0x0800));
1480 /* EcOcRegOcModeLop =0x05; */
1481 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1484 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1487 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1490 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1497 static int SetDeviceTypeId(struct drxd_state *state)
1503 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1506 /* TODO: why twice? */
1507 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1510 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1514 state->diversity = 0;
1515 if (deviceId == 0) { /* on A2 only 3975 available */
1517 printk(KERN_INFO "DRX3975D-A2\n");
1520 printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1523 state->diversity = 1;
1529 state->diversity = 1;
1543 /* Init Table selection */
1544 state->m_InitAtomicRead = DRXD_InitAtomicRead;
1545 state->m_InitSC = DRXD_InitSC;
1546 state->m_ResetECRAM = DRXD_ResetECRAM;
1547 if (state->type_A) {
1548 state->m_ResetCEFR = DRXD_ResetCEFR;
1549 state->m_InitFE_1 = DRXD_InitFEA2_1;
1550 state->m_InitFE_2 = DRXD_InitFEA2_2;
1551 state->m_InitCP = DRXD_InitCPA2;
1552 state->m_InitCE = DRXD_InitCEA2;
1553 state->m_InitEQ = DRXD_InitEQA2;
1554 state->m_InitEC = DRXD_InitECA2;
1555 if (load_firmware(state, DRX_FW_FILENAME_A2))
1558 state->m_ResetCEFR = NULL;
1559 state->m_InitFE_1 = DRXD_InitFEB1_1;
1560 state->m_InitFE_2 = DRXD_InitFEB1_2;
1561 state->m_InitCP = DRXD_InitCPB1;
1562 state->m_InitCE = DRXD_InitCEB1;
1563 state->m_InitEQ = DRXD_InitEQB1;
1564 state->m_InitEC = DRXD_InitECB1;
1565 if (load_firmware(state, DRX_FW_FILENAME_B1))
1568 if (state->diversity) {
1569 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1570 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1571 state->m_DisableDiversity = DRXD_DisableDiversity;
1572 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1573 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1574 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1575 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1577 state->m_InitDiversityFront = NULL;
1578 state->m_InitDiversityEnd = NULL;
1579 state->m_DisableDiversity = NULL;
1580 state->m_StartDiversityFront = NULL;
1581 state->m_StartDiversityEnd = NULL;
1582 state->m_DiversityDelay8MHZ = NULL;
1583 state->m_DiversityDelay6MHZ = NULL;
1589 static int CorrectSysClockDeviation(struct drxd_state *state)
1595 u32 sysClockInHz = 0;
1596 u32 sysClockFreq = 0; /* in kHz */
1597 s16 oscClockDeviation;
1601 /* Retrieve bandwidth and incr, sanity check */
1603 /* These accesses should be AtomicReadReg32, but that
1604 causes trouble (at least for diversity */
1605 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1608 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1612 if (state->type_A) {
1613 if ((nomincr - incr < -500) || (nomincr - incr > 500))
1616 if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1620 switch (state->props.bandwidth_hz) {
1622 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1625 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1628 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1635 /* Compute new sysclock value
1636 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1638 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1639 sysClockFreq = (u32) (sysClockInHz / 1000);
1641 if ((sysClockInHz % 1000) > 500)
1644 /* Compute clock deviation in ppm */
1645 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1647 (state->expected_sys_clock_freq)) *
1650 (state->expected_sys_clock_freq));
1652 Diff = oscClockDeviation - state->osc_clock_deviation;
1653 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1654 if (Diff >= -200 && Diff <= 200) {
1655 state->sys_clock_freq = (u16) sysClockFreq;
1656 if (oscClockDeviation != state->osc_clock_deviation) {
1657 if (state->config.osc_deviation) {
1658 state->config.osc_deviation(state->priv,
1661 state->osc_clock_deviation =
1665 /* switch OFF SRMM scan in SC */
1666 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1669 /* overrule FE_IF internal value for
1670 proper re-locking */
1671 status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1674 state->cscd_state = CSCD_SAVED;
1681 static int DRX_Stop(struct drxd_state *state)
1685 if (state->drxd_state != DRXD_STARTED)
1689 if (state->cscd_state != CSCD_SAVED) {
1691 status = DRX_GetLockStatus(state, &lock);
1696 status = StopOC(state);
1700 state->drxd_state = DRXD_STOPPED;
1702 status = ConfigureMPEGOutput(state, 0);
1706 if (state->type_A) {
1707 /* Stop relevant processors off the device */
1708 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1712 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1715 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1719 /* Stop all processors except HI & CC & FE */
1720 status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1723 status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726 status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729 status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1732 status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1735 status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1738 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1747 #if 0 /* Currently unused */
1748 static int SetOperationMode(struct drxd_state *state, int oMode)
1753 if (state->drxd_state != DRXD_STOPPED) {
1758 if (oMode == state->operation_mode) {
1763 if (oMode != OM_Default && !state->diversity) {
1769 case OM_DVBT_Diversity_Front:
1770 status = WriteTable(state, state->m_InitDiversityFront);
1772 case OM_DVBT_Diversity_End:
1773 status = WriteTable(state, state->m_InitDiversityEnd);
1776 /* We need to check how to
1777 get DRXD out of diversity */
1779 status = WriteTable(state, state->m_DisableDiversity);
1785 state->operation_mode = oMode;
1790 static int StartDiversity(struct drxd_state *state)
1796 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1797 status = WriteTable(state, state->m_StartDiversityFront);
1800 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1801 status = WriteTable(state, state->m_StartDiversityEnd);
1804 if (state->props.bandwidth_hz == 8000000) {
1805 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1809 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1814 status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1817 rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1818 rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1819 /* combining enabled */
1820 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1821 B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1822 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1823 status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1831 static int SetFrequencyShift(struct drxd_state *state,
1832 u32 offsetFreq, int channelMirrored)
1834 int negativeShift = (state->tuner_mirrors == channelMirrored);
1836 /* Handle all mirroring
1838 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1839 * feFsRegAddInc to 28 bits below
1840 * (if the result before masking is more than 28 bits, this means
1841 * that the ADC is mirroring.
1842 * The masking is in fact the aliasing of the ADC)
1846 /* Compute register value, unsigned computation */
1847 state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1849 1 << 28, state->sys_clock_freq);
1850 /* Remove integer part */
1851 state->fe_fs_add_incr &= 0x0FFFFFFFL;
1853 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1855 /* Save the frequency shift without tunerOffset compensation
1856 for CtrlGetChannel. */
1857 state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1858 1 << 28, state->sys_clock_freq);
1859 /* Remove integer part */
1860 state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1862 state->org_fe_fs_add_incr = ((1L << 28) -
1863 state->org_fe_fs_add_incr);
1865 return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1866 state->fe_fs_add_incr, 0);
1869 static int SetCfgNoiseCalibration(struct drxd_state *state,
1870 struct SNoiseCal *noiseCal)
1876 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1879 if (noiseCal->cpOpt) {
1880 beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1882 beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883 status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1887 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1891 if (!state->type_A) {
1892 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1895 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1904 static int DRX_Start(struct drxd_state *state, s32 off)
1906 struct dtv_frontend_properties *p = &state->props;
1909 u16 transmissionParams = 0;
1910 u16 operationMode = 0;
1911 u16 qpskTdTpsPwr = 0;
1912 u16 qam16TdTpsPwr = 0;
1913 u16 qam64TdTpsPwr = 0;
1916 int mirrorFreqSpect;
1918 u16 qpskSnCeGain = 0;
1919 u16 qam16SnCeGain = 0;
1920 u16 qam64SnCeGain = 0;
1921 u16 qpskIsGainMan = 0;
1922 u16 qam16IsGainMan = 0;
1923 u16 qam64IsGainMan = 0;
1924 u16 qpskIsGainExp = 0;
1925 u16 qam16IsGainExp = 0;
1926 u16 qam64IsGainExp = 0;
1927 u16 bandwidthParam = 0;
1930 off = (off - 500) / 1000;
1932 off = (off + 500) / 1000;
1935 if (state->drxd_state != DRXD_STOPPED)
1937 status = ResetECOD(state);
1940 if (state->type_A) {
1941 status = InitSC(state);
1945 status = InitFT(state);
1948 status = InitCP(state);
1951 status = InitCE(state);
1954 status = InitEQ(state);
1957 status = InitSC(state);
1962 /* Restore current IF & RF AGC settings */
1964 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1967 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1971 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1973 switch (p->transmission_mode) {
1974 default: /* Not set, detect it automatically */
1975 operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1976 /* fall through , try first guess DRX_FFTMODE_8K */
1977 case TRANSMISSION_MODE_8K:
1978 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1979 if (state->type_A) {
1980 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1988 case TRANSMISSION_MODE_2K:
1989 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1990 if (state->type_A) {
1991 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
2001 switch (p->guard_interval) {
2002 case GUARD_INTERVAL_1_4:
2003 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2005 case GUARD_INTERVAL_1_8:
2006 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2008 case GUARD_INTERVAL_1_16:
2009 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2011 case GUARD_INTERVAL_1_32:
2012 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2014 default: /* Not set, detect it automatically */
2015 operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2016 /* try first guess 1/4 */
2017 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2021 switch (p->hierarchy) {
2023 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2024 if (state->type_A) {
2025 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2028 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2032 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2033 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2034 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2037 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2039 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2041 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2044 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2046 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2048 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2053 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2054 if (state->type_A) {
2055 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2058 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2062 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2063 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2064 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2067 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2069 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2071 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2074 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2076 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2078 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2082 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2083 if (state->type_A) {
2084 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2087 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2091 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2092 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2093 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2096 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2098 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2100 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2103 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2105 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2107 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2110 case HIERARCHY_AUTO:
2112 /* Not set, detect it automatically, start with none */
2113 operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2114 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2115 if (state->type_A) {
2116 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2119 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2123 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2124 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2125 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2128 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2130 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2132 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2135 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2137 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2139 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2147 switch (p->modulation) {
2149 operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2150 /* fall through , try first guess
2151 DRX_CONSTELLATION_QAM64 */
2153 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2154 if (state->type_A) {
2155 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2158 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2161 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2164 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2167 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2171 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2174 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2177 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2180 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2186 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2187 if (state->type_A) {
2188 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2191 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2194 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2197 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2200 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2204 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2207 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2210 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2213 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2220 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2221 if (state->type_A) {
2222 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2225 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2228 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2231 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2234 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2238 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2241 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2244 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2247 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2258 switch (DRX_CHANNEL_HIGH) {
2260 case DRX_CHANNEL_AUTO:
2261 case DRX_CHANNEL_LOW:
2262 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2263 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2267 case DRX_CHANNEL_HIGH:
2268 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2269 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2276 switch (p->code_rate_HP) {
2278 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2279 if (state->type_A) {
2280 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2286 operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2288 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2289 if (state->type_A) {
2290 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2296 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2297 if (state->type_A) {
2298 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2304 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2305 if (state->type_A) {
2306 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2312 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2313 if (state->type_A) {
2314 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2324 /* First determine real bandwidth (Hz) */
2325 /* Also set delay for impulse noise cruncher (only A2) */
2326 /* Also set parameters for EC_OC fix, note
2327 EC_OC_REG_TMD_HIL_MAR is changed
2328 by SC for fix for some 8K,1/8 guard but is restored by
2331 switch (p->bandwidth_hz) {
2333 p->bandwidth_hz = 8000000;
2336 /* (64/7)*(8/8)*1000000 */
2337 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2340 status = Write16(state,
2341 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2344 /* (64/7)*(7/8)*1000000 */
2345 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2346 bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */
2347 status = Write16(state,
2348 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2351 /* (64/7)*(6/8)*1000000 */
2352 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2353 bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */
2354 status = Write16(state,
2355 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2363 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2369 status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2373 /* enable SLAVE mode in 2k 1/32 to
2374 prevent timing change glitches */
2375 if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2376 (p->guard_interval == GUARD_INTERVAL_1_32)) {
2378 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2381 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2383 status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2388 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2392 if (state->cscd_state == CSCD_INIT) {
2393 /* switch on SRMM scan in SC */
2394 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2397 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2398 state->cscd_state = CSCD_SET;
2401 /* Now compute FE_IF_REG_INCR */
2402 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2403 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2404 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2405 (1ULL << 21), bandwidth) - (1 << 23);
2406 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2409 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2412 /* Bandwidth setting done */
2414 /* Mirror & frequency offset */
2415 SetFrequencyShift(state, off, mirrorFreqSpect);
2417 /* Start SC, write channel settings to SC */
2419 /* Enable SC after setting all other parameters */
2420 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2423 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2427 /* Write SC parameter registers, operation mode */
2429 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2430 SC_RA_RAM_OP_AUTO_GUARD__M |
2431 SC_RA_RAM_OP_AUTO_CONST__M |
2432 SC_RA_RAM_OP_AUTO_HIER__M |
2433 SC_RA_RAM_OP_AUTO_RATE__M);
2435 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2439 /* Start correct processes to get in lock */
2440 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2444 status = StartOC(state);
2448 if (state->operation_mode != OM_Default) {
2449 status = StartDiversity(state);
2454 state->drxd_state = DRXD_STARTED;
2460 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2462 u32 ulRfAgcOutputLevel = 0xffffffff;
2463 u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */
2464 u32 ulRfAgcMinLevel = 0; /* Currently unused */
2465 u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2466 u32 ulRfAgcSpeed = 0; /* Currently unused */
2467 u32 ulRfAgcMode = 0; /*2; Off */
2468 u32 ulRfAgcR1 = 820;
2469 u32 ulRfAgcR2 = 2200;
2470 u32 ulRfAgcR3 = 150;
2471 u32 ulIfAgcMode = 0; /* Auto */
2472 u32 ulIfAgcOutputLevel = 0xffffffff;
2473 u32 ulIfAgcSettleLevel = 0xffffffff;
2474 u32 ulIfAgcMinLevel = 0xffffffff;
2475 u32 ulIfAgcMaxLevel = 0xffffffff;
2476 u32 ulIfAgcSpeed = 0xffffffff;
2477 u32 ulIfAgcR1 = 820;
2478 u32 ulIfAgcR2 = 2200;
2479 u32 ulIfAgcR3 = 150;
2480 u32 ulClock = state->config.clock;
2481 u32 ulSerialMode = 0;
2482 u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */
2483 u32 ulHiI2cDelay = HI_I2C_DELAY;
2484 u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2485 u32 ulHiI2cPatch = 0;
2486 u32 ulEnvironment = APPENV_PORTABLE;
2487 u32 ulEnvironmentDiversity = APPENV_MOBILE;
2488 u32 ulIFFilter = IFFILTER_SAW;
2490 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2491 state->if_agc_cfg.outputLevel = 0;
2492 state->if_agc_cfg.settleLevel = 140;
2493 state->if_agc_cfg.minOutputLevel = 0;
2494 state->if_agc_cfg.maxOutputLevel = 1023;
2495 state->if_agc_cfg.speed = 904;
2497 if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2498 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2499 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2502 if (ulIfAgcMode == 0 &&
2503 ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2504 ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2505 ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2506 ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2507 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2508 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2509 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2510 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2511 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2514 state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2515 state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2516 state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2518 state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2519 state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2520 state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2522 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2523 /* rest of the RFAgcCfg structure currently unused */
2524 if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2525 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2526 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2529 if (ulRfAgcMode == 0 &&
2530 ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2531 ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2532 ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2533 ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2534 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2535 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2536 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2537 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2538 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2541 if (ulRfAgcMode == 2)
2542 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2544 if (ulEnvironment <= 2)
2545 state->app_env_default = (enum app_env)
2547 if (ulEnvironmentDiversity <= 2)
2548 state->app_env_diversity = (enum app_env)
2549 (ulEnvironmentDiversity);
2551 if (ulIFFilter == IFFILTER_DISCRETE) {
2552 /* discrete filter */
2553 state->noise_cal.cpOpt = 0;
2554 state->noise_cal.cpNexpOfs = 40;
2555 state->noise_cal.tdCal2k = -40;
2556 state->noise_cal.tdCal8k = -24;
2559 state->noise_cal.cpOpt = 1;
2560 state->noise_cal.cpNexpOfs = 0;
2561 state->noise_cal.tdCal2k = -21;
2562 state->noise_cal.tdCal8k = -24;
2564 state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2566 state->chip_adr = (state->config.demod_address << 1) | 1;
2567 switch (ulHiI2cPatch) {
2569 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2572 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2575 state->m_HiI2cPatch = NULL;
2578 /* modify tuner and clock attributes */
2579 state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2580 /* expected system clock frequency in kHz */
2581 state->expected_sys_clock_freq = 48000;
2582 /* real system clock frequency in kHz */
2583 state->sys_clock_freq = 48000;
2584 state->osc_clock_freq = (u16) ulClock;
2585 state->osc_clock_deviation = 0;
2586 state->cscd_state = CSCD_INIT;
2587 state->drxd_state = DRXD_UNINITIALIZED;
2591 state->tuner_mirrors = 0;
2593 /* modify MPEG output attributes */
2594 state->insert_rs_byte = state->config.insert_rs_byte;
2595 state->enable_parallel = (ulSerialMode != 1);
2597 /* Timing div, 250ns/Psys */
2598 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2600 state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2601 ulHiI2cDelay) / 1000;
2602 /* Bridge delay, uses oscilator clock */
2603 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2604 state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2605 ulHiI2cBridgeDelay) / 1000;
2607 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2608 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2609 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2613 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2618 if (state->init_done)
2621 CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2624 state->operation_mode = OM_Default;
2626 status = SetDeviceTypeId(state);
2630 /* Apply I2c address patch to B1 */
2631 if (!state->type_A && state->m_HiI2cPatch != NULL)
2632 status = WriteTable(state, state->m_HiI2cPatch);
2636 if (state->type_A) {
2637 /* HI firmware patch for UIO readout,
2638 avoid clearing of result register */
2639 status = Write16(state, 0x43012D, 0x047f, 0);
2644 status = HI_ResetCommand(state);
2648 status = StopAllProcessors(state);
2651 status = InitCC(state);
2655 state->osc_clock_deviation = 0;
2657 if (state->config.osc_deviation)
2658 state->osc_clock_deviation =
2659 state->config.osc_deviation(state->priv, 0, 0);
2661 /* Handle clock deviation */
2663 s32 devA = (s32) (state->osc_clock_deviation) *
2664 (s32) (state->expected_sys_clock_freq);
2665 /* deviation in kHz */
2666 s32 deviation = (devA / (1000000L));
2667 /* rounding, signed */
2672 if ((devB * (devA % 1000000L) > 1000000L)) {
2674 deviation += (devB / 2);
2677 state->sys_clock_freq =
2678 (u16) ((state->expected_sys_clock_freq) +
2681 status = InitHI(state);
2684 status = InitAtomicRead(state);
2688 status = EnableAndResetMB(state);
2691 if (state->type_A) {
2692 status = ResetCEFR(state);
2697 status = DownloadMicrocode(state, fw, fw_size);
2701 status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2707 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2708 SetCfgPga(state, 0); /* PGA = 0 dB */
2710 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2713 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2715 status = InitFE(state);
2718 status = InitFT(state);
2721 status = InitCP(state);
2724 status = InitCE(state);
2727 status = InitEQ(state);
2730 status = InitEC(state);
2733 status = InitSC(state);
2737 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2740 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2744 state->cscd_state = CSCD_INIT;
2745 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2748 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2752 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2753 (VERSION_MAJOR % 10)) << 24;
2754 driverVersion += (((VERSION_MINOR / 10) << 4) +
2755 (VERSION_MINOR % 10)) << 16;
2756 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2757 ((VERSION_PATCH / 100) << 8) +
2758 ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2760 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2764 status = StopOC(state);
2768 state->drxd_state = DRXD_STOPPED;
2769 state->init_done = 1;
2775 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2777 DRX_GetLockStatus(state, pLockStatus);
2779 /*if (*pLockStatus&DRX_LOCK_MPEG) */
2780 if (*pLockStatus & DRX_LOCK_FEC) {
2781 ConfigureMPEGOutput(state, 1);
2782 /* Get status again, in case we have MPEG lock now */
2783 /*DRX_GetLockStatus(state, pLockStatus); */
2789 /****************************************************************************/
2790 /****************************************************************************/
2791 /****************************************************************************/
2793 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2795 struct drxd_state *state = fe->demodulator_priv;
2799 res = ReadIFAgc(state, &value);
2803 *strength = 0xffff - (value << 4);
2807 static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
2809 struct drxd_state *state = fe->demodulator_priv;
2812 DRXD_status(state, &lock);
2814 /* No MPEG lock in V255 firmware, bug ? */
2816 if (lock & DRX_LOCK_MPEG)
2817 *status |= FE_HAS_LOCK;
2819 if (lock & DRX_LOCK_FEC)
2820 *status |= FE_HAS_LOCK;
2822 if (lock & DRX_LOCK_FEC)
2823 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2824 if (lock & DRX_LOCK_DEMOD)
2825 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2830 static int drxd_init(struct dvb_frontend *fe)
2832 struct drxd_state *state = fe->demodulator_priv;
2835 /* if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2836 return DRXD_init(state, NULL, 0);
2838 err = DRXD_init(state, state->fw->data, state->fw->size);
2839 release_firmware(state->fw);
2843 int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2845 struct drxd_state *state = fe->demodulator_priv;
2847 if (state->config.disable_i2c_gate_ctrl == 1)
2850 return DRX_ConfigureI2CBridge(state, onoff);
2852 EXPORT_SYMBOL(drxd_config_i2c);
2854 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2855 struct dvb_frontend_tune_settings *sets)
2857 sets->min_delay_ms = 10000;
2858 sets->max_drift = 0;
2859 sets->step_size = 0;
2863 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2869 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2875 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2881 static int drxd_sleep(struct dvb_frontend *fe)
2883 struct drxd_state *state = fe->demodulator_priv;
2885 ConfigureMPEGOutput(state, 0);
2889 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2891 return drxd_config_i2c(fe, enable);
2894 static int drxd_set_frontend(struct dvb_frontend *fe)
2896 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2897 struct drxd_state *state = fe->demodulator_priv;
2903 if (fe->ops.tuner_ops.set_params) {
2904 fe->ops.tuner_ops.set_params(fe);
2905 if (fe->ops.i2c_gate_ctrl)
2906 fe->ops.i2c_gate_ctrl(fe, 0);
2911 return DRX_Start(state, off);
2914 static void drxd_release(struct dvb_frontend *fe)
2916 struct drxd_state *state = fe->demodulator_priv;
2921 static struct dvb_frontend_ops drxd_ops = {
2922 .delsys = { SYS_DVBT},
2924 .name = "Micronas DRXD DVB-T",
2925 .frequency_min = 47125000,
2926 .frequency_max = 855250000,
2927 .frequency_stepsize = 166667,
2928 .frequency_tolerance = 0,
2929 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2930 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2932 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2934 FE_CAN_TRANSMISSION_MODE_AUTO |
2935 FE_CAN_GUARD_INTERVAL_AUTO |
2936 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2938 .release = drxd_release,
2940 .sleep = drxd_sleep,
2941 .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2943 .set_frontend = drxd_set_frontend,
2944 .get_tune_settings = drxd_get_tune_settings,
2946 .read_status = drxd_read_status,
2947 .read_ber = drxd_read_ber,
2948 .read_signal_strength = drxd_read_signal_strength,
2949 .read_snr = drxd_read_snr,
2950 .read_ucblocks = drxd_read_ucblocks,
2953 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2954 void *priv, struct i2c_adapter *i2c,
2957 struct drxd_state *state = NULL;
2959 state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2962 memset(state, 0, sizeof(*state));
2964 state->ops = drxd_ops;
2966 state->config = *config;
2970 mutex_init(&state->mutex);
2972 if (Read16(state, 0, NULL, 0) < 0)
2975 state->frontend.ops = drxd_ops;
2976 state->frontend.demodulator_priv = state;
2977 ConfigureMPEGOutput(state, 0);
2978 /* add few initialization to allow gate control */
2979 CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2982 return &state->frontend;
2985 printk(KERN_ERR "drxd: not found\n");
2989 EXPORT_SYMBOL(drxd_attach);
2991 MODULE_DESCRIPTION("DRXD driver");
2992 MODULE_AUTHOR("Micronas");
2993 MODULE_LICENSE("GPL");