2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock);
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 struct dentry *kvm_debugfs_dir;
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
101 static bool largepages_enabled = true;
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
106 struct page *fault_page;
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
111 if (pfn_valid(pfn)) {
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
131 return PageReserved(tail);
138 * Switches to specified vcpu, until a matching vcpu_put()
140 void vcpu_load(struct kvm_vcpu *vcpu)
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
159 void vcpu_put(struct kvm_vcpu *vcpu)
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
165 mutex_unlock(&vcpu->mutex);
168 static void ack_flush(void *_completed)
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
177 struct kvm_vcpu *vcpu;
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
186 /* Set ->requests bit before we read ->mode */
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
200 free_cpumask_var(cpus);
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 int dirty_count = kvm->tlbs_dirty;
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
214 void kvm_reload_remote_mmus(struct kvm *kvm)
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
224 mutex_init(&vcpu->mutex);
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237 vcpu->run = page_address(page);
239 r = kvm_arch_vcpu_init(vcpu);
245 free_page((unsigned long)vcpu->run);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
262 return container_of(mn, struct kvm, mmu_notifier);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
297 /* we've to flush the tlb before the pages can be freed */
299 kvm_flush_remote_tlbs(kvm);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
341 /* we've to flush the tlb before the pages can be freed */
343 kvm_flush_remote_tlbs(kvm);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
353 spin_lock(&kvm->mmu_lock);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
359 kvm->mmu_notifier_seq++;
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
369 BUG_ON(kvm->mmu_notifier_count < 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, address);
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
386 kvm_flush_remote_tlbs(kvm);
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443 static struct kvm *kvm_create_vm(void)
446 struct kvm *kvm = kvm_arch_alloc_vm();
449 return ERR_PTR(-ENOMEM);
451 r = kvm_arch_init_vm(kvm);
453 goto out_err_nodisable;
455 r = hardware_enable_all();
457 goto out_err_nodisable;
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
465 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
468 if (init_srcu_struct(&kvm->srcu))
470 for (i = 0; i < KVM_NR_BUSES; i++) {
471 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
477 spin_lock_init(&kvm->mmu_lock);
478 kvm->mm = current->mm;
479 atomic_inc(&kvm->mm->mm_count);
480 kvm_eventfd_init(kvm);
481 mutex_init(&kvm->lock);
482 mutex_init(&kvm->irq_lock);
483 mutex_init(&kvm->slots_lock);
484 atomic_set(&kvm->users_count, 1);
486 r = kvm_init_mmu_notifier(kvm);
490 raw_spin_lock(&kvm_lock);
491 list_add(&kvm->vm_list, &vm_list);
492 raw_spin_unlock(&kvm_lock);
497 cleanup_srcu_struct(&kvm->srcu);
499 hardware_disable_all();
501 for (i = 0; i < KVM_NR_BUSES; i++)
502 kfree(kvm->buses[i]);
503 kfree(kvm->memslots);
504 kvm_arch_free_vm(kvm);
508 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
510 if (!memslot->dirty_bitmap)
513 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
514 vfree(memslot->dirty_bitmap_head);
516 kfree(memslot->dirty_bitmap_head);
518 memslot->dirty_bitmap = NULL;
519 memslot->dirty_bitmap_head = NULL;
523 * Free any memory in @free but not in @dont.
525 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
526 struct kvm_memory_slot *dont)
530 if (!dont || free->rmap != dont->rmap)
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
537 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
538 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
539 vfree(free->lpage_info[i]);
540 free->lpage_info[i] = NULL;
548 void kvm_free_physmem(struct kvm *kvm)
551 struct kvm_memslots *slots = kvm->memslots;
553 for (i = 0; i < slots->nmemslots; ++i)
554 kvm_free_physmem_slot(&slots->memslots[i], NULL);
556 kfree(kvm->memslots);
559 static void kvm_destroy_vm(struct kvm *kvm)
562 struct mm_struct *mm = kvm->mm;
564 kvm_arch_sync_events(kvm);
565 raw_spin_lock(&kvm_lock);
566 list_del(&kvm->vm_list);
567 raw_spin_unlock(&kvm_lock);
568 kvm_free_irq_routing(kvm);
569 for (i = 0; i < KVM_NR_BUSES; i++)
570 kvm_io_bus_destroy(kvm->buses[i]);
571 kvm_coalesced_mmio_free(kvm);
572 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
575 kvm_arch_flush_shadow(kvm);
577 kvm_arch_destroy_vm(kvm);
578 kvm_free_physmem(kvm);
579 cleanup_srcu_struct(&kvm->srcu);
580 kvm_arch_free_vm(kvm);
581 hardware_disable_all();
585 void kvm_get_kvm(struct kvm *kvm)
587 atomic_inc(&kvm->users_count);
589 EXPORT_SYMBOL_GPL(kvm_get_kvm);
591 void kvm_put_kvm(struct kvm *kvm)
593 if (atomic_dec_and_test(&kvm->users_count))
596 EXPORT_SYMBOL_GPL(kvm_put_kvm);
599 static int kvm_vm_release(struct inode *inode, struct file *filp)
601 struct kvm *kvm = filp->private_data;
603 kvm_irqfd_release(kvm);
611 * Allocation size is twice as large as the actual dirty bitmap size.
612 * This makes it possible to do double buffering: see x86's
613 * kvm_vm_ioctl_get_dirty_log().
615 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
617 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
619 if (dirty_bytes > PAGE_SIZE)
620 memslot->dirty_bitmap = vzalloc(dirty_bytes);
622 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
624 if (!memslot->dirty_bitmap)
627 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
630 #endif /* !CONFIG_S390 */
633 * Allocate some memory and give it an address in the guest physical address
636 * Discontiguous memory is allowed, mostly for framebuffers.
638 * Must be called holding mmap_sem for write.
640 int __kvm_set_memory_region(struct kvm *kvm,
641 struct kvm_userspace_memory_region *mem,
646 unsigned long npages;
648 struct kvm_memory_slot *memslot;
649 struct kvm_memory_slot old, new;
650 struct kvm_memslots *slots, *old_memslots;
653 /* General sanity checks */
654 if (mem->memory_size & (PAGE_SIZE - 1))
656 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
658 /* We can read the guest memory with __xxx_user() later on. */
660 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
661 !access_ok(VERIFY_WRITE,
662 (void __user *)(unsigned long)mem->userspace_addr,
665 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
667 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
670 memslot = &kvm->memslots->memslots[mem->slot];
671 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
672 npages = mem->memory_size >> PAGE_SHIFT;
675 if (npages > KVM_MEM_MAX_NR_PAGES)
679 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
681 new = old = *memslot;
684 new.base_gfn = base_gfn;
686 new.flags = mem->flags;
688 /* Disallow changing a memory slot's size. */
690 if (npages && old.npages && npages != old.npages)
693 /* Check for overlaps */
695 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
696 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
698 if (s == memslot || !s->npages)
700 if (!((base_gfn + npages <= s->base_gfn) ||
701 (base_gfn >= s->base_gfn + s->npages)))
705 /* Free page dirty bitmap if unneeded */
706 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
707 new.dirty_bitmap = NULL;
711 /* Allocate if a slot is being created */
713 if (npages && !new.rmap) {
714 new.rmap = vzalloc(npages * sizeof(*new.rmap));
719 new.user_alloc = user_alloc;
720 new.userspace_addr = mem->userspace_addr;
725 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
731 /* Avoid unused variable warning if no large pages */
734 if (new.lpage_info[i])
737 lpages = 1 + ((base_gfn + npages - 1)
738 >> KVM_HPAGE_GFN_SHIFT(level));
739 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
741 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
743 if (!new.lpage_info[i])
746 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
747 new.lpage_info[i][0].write_count = 1;
748 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
749 new.lpage_info[i][lpages - 1].write_count = 1;
750 ugfn = new.userspace_addr >> PAGE_SHIFT;
752 * If the gfn and userspace address are not aligned wrt each
753 * other, or if explicitly asked to, disable large page
754 * support for this slot
756 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
758 for (j = 0; j < lpages; ++j)
759 new.lpage_info[i][j].write_count = 1;
764 /* Allocate page dirty bitmap if needed */
765 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
766 if (kvm_create_dirty_bitmap(&new) < 0)
768 /* destroy any largepage mappings for dirty tracking */
770 #else /* not defined CONFIG_S390 */
771 new.user_alloc = user_alloc;
773 new.userspace_addr = mem->userspace_addr;
774 #endif /* not defined CONFIG_S390 */
778 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
781 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
782 if (mem->slot >= slots->nmemslots)
783 slots->nmemslots = mem->slot + 1;
785 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
787 old_memslots = kvm->memslots;
788 rcu_assign_pointer(kvm->memslots, slots);
789 synchronize_srcu_expedited(&kvm->srcu);
790 /* From this point no new shadow pages pointing to a deleted
791 * memslot will be created.
793 * validation of sp->gfn happens in:
794 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
795 * - kvm_is_visible_gfn (mmu_check_roots)
797 kvm_arch_flush_shadow(kvm);
801 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
805 /* map the pages in iommu page table */
807 r = kvm_iommu_map_pages(kvm, &new);
813 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
816 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
817 if (mem->slot >= slots->nmemslots)
818 slots->nmemslots = mem->slot + 1;
821 /* actual memory is freed via old in kvm_free_physmem_slot below */
824 new.dirty_bitmap = NULL;
825 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
826 new.lpage_info[i] = NULL;
829 slots->memslots[mem->slot] = new;
830 old_memslots = kvm->memslots;
831 rcu_assign_pointer(kvm->memslots, slots);
832 synchronize_srcu_expedited(&kvm->srcu);
834 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
837 * If the new memory slot is created, we need to clear all
840 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
841 kvm_arch_flush_shadow(kvm);
843 kvm_free_physmem_slot(&old, &new);
849 kvm_free_physmem_slot(&new, &old);
854 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
856 int kvm_set_memory_region(struct kvm *kvm,
857 struct kvm_userspace_memory_region *mem,
862 mutex_lock(&kvm->slots_lock);
863 r = __kvm_set_memory_region(kvm, mem, user_alloc);
864 mutex_unlock(&kvm->slots_lock);
867 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
869 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
871 kvm_userspace_memory_region *mem,
874 if (mem->slot >= KVM_MEMORY_SLOTS)
876 return kvm_set_memory_region(kvm, mem, user_alloc);
879 int kvm_get_dirty_log(struct kvm *kvm,
880 struct kvm_dirty_log *log, int *is_dirty)
882 struct kvm_memory_slot *memslot;
885 unsigned long any = 0;
888 if (log->slot >= KVM_MEMORY_SLOTS)
891 memslot = &kvm->memslots->memslots[log->slot];
893 if (!memslot->dirty_bitmap)
896 n = kvm_dirty_bitmap_bytes(memslot);
898 for (i = 0; !any && i < n/sizeof(long); ++i)
899 any = memslot->dirty_bitmap[i];
902 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
913 void kvm_disable_largepages(void)
915 largepages_enabled = false;
917 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
919 int is_error_page(struct page *page)
921 return page == bad_page || page == hwpoison_page || page == fault_page;
923 EXPORT_SYMBOL_GPL(is_error_page);
925 int is_error_pfn(pfn_t pfn)
927 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
929 EXPORT_SYMBOL_GPL(is_error_pfn);
931 int is_hwpoison_pfn(pfn_t pfn)
933 return pfn == hwpoison_pfn;
935 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
937 int is_fault_pfn(pfn_t pfn)
939 return pfn == fault_pfn;
941 EXPORT_SYMBOL_GPL(is_fault_pfn);
943 int is_noslot_pfn(pfn_t pfn)
945 return pfn == bad_pfn;
947 EXPORT_SYMBOL_GPL(is_noslot_pfn);
949 int is_invalid_pfn(pfn_t pfn)
951 return pfn == hwpoison_pfn || pfn == fault_pfn;
953 EXPORT_SYMBOL_GPL(is_invalid_pfn);
955 static inline unsigned long bad_hva(void)
960 int kvm_is_error_hva(unsigned long addr)
962 return addr == bad_hva();
964 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
966 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
971 for (i = 0; i < slots->nmemslots; ++i) {
972 struct kvm_memory_slot *memslot = &slots->memslots[i];
974 if (gfn >= memslot->base_gfn
975 && gfn < memslot->base_gfn + memslot->npages)
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
983 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
990 struct kvm_memslots *slots = kvm_memslots(kvm);
992 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
993 struct kvm_memory_slot *memslot = &slots->memslots[i];
995 if (memslot->flags & KVM_MEMSLOT_INVALID)
998 if (gfn >= memslot->base_gfn
999 && gfn < memslot->base_gfn + memslot->npages)
1004 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1006 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1008 struct vm_area_struct *vma;
1009 unsigned long addr, size;
1013 addr = gfn_to_hva(kvm, gfn);
1014 if (kvm_is_error_hva(addr))
1017 down_read(¤t->mm->mmap_sem);
1018 vma = find_vma(current->mm, addr);
1022 size = vma_kernel_pagesize(vma);
1025 up_read(¤t->mm->mmap_sem);
1030 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1033 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1037 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1039 return gfn_to_hva_memslot(slot, gfn);
1042 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1044 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1046 EXPORT_SYMBOL_GPL(gfn_to_hva);
1048 static pfn_t get_fault_pfn(void)
1050 get_page(fault_page);
1054 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1055 unsigned long start, int write, struct page **page)
1057 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1060 flags |= FOLL_WRITE;
1062 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1065 static inline int check_user_page_hwpoison(unsigned long addr)
1067 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1069 rc = __get_user_pages(current, current->mm, addr, 1,
1070 flags, NULL, NULL, NULL);
1071 return rc == -EHWPOISON;
1074 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1075 bool *async, bool write_fault, bool *writable)
1077 struct page *page[1];
1081 /* we can do it either atomically or asynchronously, not both */
1082 BUG_ON(atomic && async);
1084 BUG_ON(!write_fault && !writable);
1089 if (atomic || async)
1090 npages = __get_user_pages_fast(addr, 1, 1, page);
1092 if (unlikely(npages != 1) && !atomic) {
1096 *writable = write_fault;
1099 down_read(¤t->mm->mmap_sem);
1100 npages = get_user_page_nowait(current, current->mm,
1101 addr, write_fault, page);
1102 up_read(¤t->mm->mmap_sem);
1104 npages = get_user_pages_fast(addr, 1, write_fault,
1107 /* map read fault as writable if possible */
1108 if (unlikely(!write_fault) && npages == 1) {
1109 struct page *wpage[1];
1111 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1121 if (unlikely(npages != 1)) {
1122 struct vm_area_struct *vma;
1125 return get_fault_pfn();
1127 down_read(¤t->mm->mmap_sem);
1128 if (npages == -EHWPOISON ||
1129 (!async && check_user_page_hwpoison(addr))) {
1130 up_read(¤t->mm->mmap_sem);
1131 get_page(hwpoison_page);
1132 return page_to_pfn(hwpoison_page);
1135 vma = find_vma_intersection(current->mm, addr, addr+1);
1138 pfn = get_fault_pfn();
1139 else if ((vma->vm_flags & VM_PFNMAP)) {
1140 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1142 BUG_ON(!kvm_is_mmio_pfn(pfn));
1144 if (async && (vma->vm_flags & VM_WRITE))
1146 pfn = get_fault_pfn();
1148 up_read(¤t->mm->mmap_sem);
1150 pfn = page_to_pfn(page[0]);
1155 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1157 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1159 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1161 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1162 bool write_fault, bool *writable)
1169 addr = gfn_to_hva(kvm, gfn);
1170 if (kvm_is_error_hva(addr)) {
1172 return page_to_pfn(bad_page);
1175 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1178 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1180 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1182 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1184 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1185 bool write_fault, bool *writable)
1187 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1189 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1191 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1193 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1195 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1197 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1200 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1202 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1204 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1205 struct kvm_memory_slot *slot, gfn_t gfn)
1207 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1208 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1211 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1217 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1218 if (kvm_is_error_hva(addr))
1221 if (entry < nr_pages)
1224 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1226 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1228 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1232 pfn = gfn_to_pfn(kvm, gfn);
1233 if (!kvm_is_mmio_pfn(pfn))
1234 return pfn_to_page(pfn);
1236 WARN_ON(kvm_is_mmio_pfn(pfn));
1242 EXPORT_SYMBOL_GPL(gfn_to_page);
1244 void kvm_release_page_clean(struct page *page)
1246 kvm_release_pfn_clean(page_to_pfn(page));
1248 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1250 void kvm_release_pfn_clean(pfn_t pfn)
1252 if (!kvm_is_mmio_pfn(pfn))
1253 put_page(pfn_to_page(pfn));
1255 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1257 void kvm_release_page_dirty(struct page *page)
1259 kvm_release_pfn_dirty(page_to_pfn(page));
1261 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1263 void kvm_release_pfn_dirty(pfn_t pfn)
1265 kvm_set_pfn_dirty(pfn);
1266 kvm_release_pfn_clean(pfn);
1268 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1270 void kvm_set_page_dirty(struct page *page)
1272 kvm_set_pfn_dirty(page_to_pfn(page));
1274 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1276 void kvm_set_pfn_dirty(pfn_t pfn)
1278 if (!kvm_is_mmio_pfn(pfn)) {
1279 struct page *page = pfn_to_page(pfn);
1280 if (!PageReserved(page))
1284 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1286 void kvm_set_pfn_accessed(pfn_t pfn)
1288 if (!kvm_is_mmio_pfn(pfn))
1289 mark_page_accessed(pfn_to_page(pfn));
1291 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1293 void kvm_get_pfn(pfn_t pfn)
1295 if (!kvm_is_mmio_pfn(pfn))
1296 get_page(pfn_to_page(pfn));
1298 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1300 static int next_segment(unsigned long len, int offset)
1302 if (len > PAGE_SIZE - offset)
1303 return PAGE_SIZE - offset;
1308 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1314 addr = gfn_to_hva(kvm, gfn);
1315 if (kvm_is_error_hva(addr))
1317 r = __copy_from_user(data, (void __user *)addr + offset, len);
1322 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1324 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1326 gfn_t gfn = gpa >> PAGE_SHIFT;
1328 int offset = offset_in_page(gpa);
1331 while ((seg = next_segment(len, offset)) != 0) {
1332 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1342 EXPORT_SYMBOL_GPL(kvm_read_guest);
1344 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1349 gfn_t gfn = gpa >> PAGE_SHIFT;
1350 int offset = offset_in_page(gpa);
1352 addr = gfn_to_hva(kvm, gfn);
1353 if (kvm_is_error_hva(addr))
1355 pagefault_disable();
1356 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1362 EXPORT_SYMBOL(kvm_read_guest_atomic);
1364 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1365 int offset, int len)
1370 addr = gfn_to_hva(kvm, gfn);
1371 if (kvm_is_error_hva(addr))
1373 r = __copy_to_user((void __user *)addr + offset, data, len);
1376 mark_page_dirty(kvm, gfn);
1379 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1381 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1384 gfn_t gfn = gpa >> PAGE_SHIFT;
1386 int offset = offset_in_page(gpa);
1389 while ((seg = next_segment(len, offset)) != 0) {
1390 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1401 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1404 struct kvm_memslots *slots = kvm_memslots(kvm);
1405 int offset = offset_in_page(gpa);
1406 gfn_t gfn = gpa >> PAGE_SHIFT;
1409 ghc->generation = slots->generation;
1410 ghc->memslot = __gfn_to_memslot(slots, gfn);
1411 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1412 if (!kvm_is_error_hva(ghc->hva))
1419 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1421 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1422 void *data, unsigned long len)
1424 struct kvm_memslots *slots = kvm_memslots(kvm);
1427 if (slots->generation != ghc->generation)
1428 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1430 if (kvm_is_error_hva(ghc->hva))
1433 r = __copy_to_user((void __user *)ghc->hva, data, len);
1436 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1440 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1442 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1443 void *data, unsigned long len)
1445 struct kvm_memslots *slots = kvm_memslots(kvm);
1448 if (slots->generation != ghc->generation)
1449 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1451 if (kvm_is_error_hva(ghc->hva))
1454 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1460 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1462 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1464 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1467 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1469 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1471 gfn_t gfn = gpa >> PAGE_SHIFT;
1473 int offset = offset_in_page(gpa);
1476 while ((seg = next_segment(len, offset)) != 0) {
1477 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1486 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1488 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1491 if (memslot && memslot->dirty_bitmap) {
1492 unsigned long rel_gfn = gfn - memslot->base_gfn;
1494 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1498 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1500 struct kvm_memory_slot *memslot;
1502 memslot = gfn_to_memslot(kvm, gfn);
1503 mark_page_dirty_in_slot(kvm, memslot, gfn);
1507 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1509 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1514 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1516 if (kvm_arch_vcpu_runnable(vcpu)) {
1517 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1520 if (kvm_cpu_has_pending_timer(vcpu))
1522 if (signal_pending(current))
1528 finish_wait(&vcpu->wq, &wait);
1531 void kvm_resched(struct kvm_vcpu *vcpu)
1533 if (!need_resched())
1537 EXPORT_SYMBOL_GPL(kvm_resched);
1539 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1541 struct kvm *kvm = me->kvm;
1542 struct kvm_vcpu *vcpu;
1543 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1549 * We boost the priority of a VCPU that is runnable but not
1550 * currently running, because it got preempted by something
1551 * else and called schedule in __vcpu_run. Hopefully that
1552 * VCPU is holding the lock that we need and will release it.
1553 * We approximate round-robin by starting at the last boosted VCPU.
1555 for (pass = 0; pass < 2 && !yielded; pass++) {
1556 kvm_for_each_vcpu(i, vcpu, kvm) {
1557 struct task_struct *task = NULL;
1559 if (!pass && i < last_boosted_vcpu) {
1560 i = last_boosted_vcpu;
1562 } else if (pass && i > last_boosted_vcpu)
1566 if (waitqueue_active(&vcpu->wq))
1569 pid = rcu_dereference(vcpu->pid);
1571 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1575 if (task->flags & PF_VCPU) {
1576 put_task_struct(task);
1579 if (yield_to(task, 1)) {
1580 put_task_struct(task);
1581 kvm->last_boosted_vcpu = i;
1585 put_task_struct(task);
1589 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1591 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1593 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1596 if (vmf->pgoff == 0)
1597 page = virt_to_page(vcpu->run);
1599 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1600 page = virt_to_page(vcpu->arch.pio_data);
1602 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1603 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1604 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1607 return VM_FAULT_SIGBUS;
1613 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1614 .fault = kvm_vcpu_fault,
1617 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1619 vma->vm_ops = &kvm_vcpu_vm_ops;
1623 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1625 struct kvm_vcpu *vcpu = filp->private_data;
1627 kvm_put_kvm(vcpu->kvm);
1631 static struct file_operations kvm_vcpu_fops = {
1632 .release = kvm_vcpu_release,
1633 .unlocked_ioctl = kvm_vcpu_ioctl,
1634 #ifdef CONFIG_COMPAT
1635 .compat_ioctl = kvm_vcpu_compat_ioctl,
1637 .mmap = kvm_vcpu_mmap,
1638 .llseek = noop_llseek,
1642 * Allocates an inode for the vcpu.
1644 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1646 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1650 * Creates some virtual cpus. Good luck creating more than one.
1652 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1655 struct kvm_vcpu *vcpu, *v;
1657 vcpu = kvm_arch_vcpu_create(kvm, id);
1659 return PTR_ERR(vcpu);
1661 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1663 r = kvm_arch_vcpu_setup(vcpu);
1667 mutex_lock(&kvm->lock);
1668 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1670 goto unlock_vcpu_destroy;
1673 kvm_for_each_vcpu(r, v, kvm)
1674 if (v->vcpu_id == id) {
1676 goto unlock_vcpu_destroy;
1679 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1681 /* Now it's all set up, let userspace reach it */
1683 r = create_vcpu_fd(vcpu);
1686 goto unlock_vcpu_destroy;
1689 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1691 atomic_inc(&kvm->online_vcpus);
1693 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1694 if (kvm->bsp_vcpu_id == id)
1695 kvm->bsp_vcpu = vcpu;
1697 mutex_unlock(&kvm->lock);
1700 unlock_vcpu_destroy:
1701 mutex_unlock(&kvm->lock);
1703 kvm_arch_vcpu_destroy(vcpu);
1707 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1710 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1711 vcpu->sigset_active = 1;
1712 vcpu->sigset = *sigset;
1714 vcpu->sigset_active = 0;
1718 static long kvm_vcpu_ioctl(struct file *filp,
1719 unsigned int ioctl, unsigned long arg)
1721 struct kvm_vcpu *vcpu = filp->private_data;
1722 void __user *argp = (void __user *)arg;
1724 struct kvm_fpu *fpu = NULL;
1725 struct kvm_sregs *kvm_sregs = NULL;
1727 if (vcpu->kvm->mm != current->mm)
1730 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1732 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1733 * so vcpu_load() would break it.
1735 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1736 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1746 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1747 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1749 case KVM_GET_REGS: {
1750 struct kvm_regs *kvm_regs;
1753 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1756 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1760 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1767 case KVM_SET_REGS: {
1768 struct kvm_regs *kvm_regs;
1771 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1775 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1777 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1785 case KVM_GET_SREGS: {
1786 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1790 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1794 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1799 case KVM_SET_SREGS: {
1800 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1805 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1807 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1813 case KVM_GET_MP_STATE: {
1814 struct kvm_mp_state mp_state;
1816 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1820 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1825 case KVM_SET_MP_STATE: {
1826 struct kvm_mp_state mp_state;
1829 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1831 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1837 case KVM_TRANSLATE: {
1838 struct kvm_translation tr;
1841 if (copy_from_user(&tr, argp, sizeof tr))
1843 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1847 if (copy_to_user(argp, &tr, sizeof tr))
1852 case KVM_SET_GUEST_DEBUG: {
1853 struct kvm_guest_debug dbg;
1856 if (copy_from_user(&dbg, argp, sizeof dbg))
1858 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1864 case KVM_SET_SIGNAL_MASK: {
1865 struct kvm_signal_mask __user *sigmask_arg = argp;
1866 struct kvm_signal_mask kvm_sigmask;
1867 sigset_t sigset, *p;
1872 if (copy_from_user(&kvm_sigmask, argp,
1873 sizeof kvm_sigmask))
1876 if (kvm_sigmask.len != sizeof sigset)
1879 if (copy_from_user(&sigset, sigmask_arg->sigset,
1884 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1888 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1892 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1896 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1902 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1907 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1909 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1916 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1925 #ifdef CONFIG_COMPAT
1926 static long kvm_vcpu_compat_ioctl(struct file *filp,
1927 unsigned int ioctl, unsigned long arg)
1929 struct kvm_vcpu *vcpu = filp->private_data;
1930 void __user *argp = compat_ptr(arg);
1933 if (vcpu->kvm->mm != current->mm)
1937 case KVM_SET_SIGNAL_MASK: {
1938 struct kvm_signal_mask __user *sigmask_arg = argp;
1939 struct kvm_signal_mask kvm_sigmask;
1940 compat_sigset_t csigset;
1945 if (copy_from_user(&kvm_sigmask, argp,
1946 sizeof kvm_sigmask))
1949 if (kvm_sigmask.len != sizeof csigset)
1952 if (copy_from_user(&csigset, sigmask_arg->sigset,
1956 sigset_from_compat(&sigset, &csigset);
1957 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1961 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1969 static long kvm_vm_ioctl(struct file *filp,
1970 unsigned int ioctl, unsigned long arg)
1972 struct kvm *kvm = filp->private_data;
1973 void __user *argp = (void __user *)arg;
1976 if (kvm->mm != current->mm)
1979 case KVM_CREATE_VCPU:
1980 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1984 case KVM_SET_USER_MEMORY_REGION: {
1985 struct kvm_userspace_memory_region kvm_userspace_mem;
1988 if (copy_from_user(&kvm_userspace_mem, argp,
1989 sizeof kvm_userspace_mem))
1992 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1997 case KVM_GET_DIRTY_LOG: {
1998 struct kvm_dirty_log log;
2001 if (copy_from_user(&log, argp, sizeof log))
2003 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2008 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2009 case KVM_REGISTER_COALESCED_MMIO: {
2010 struct kvm_coalesced_mmio_zone zone;
2012 if (copy_from_user(&zone, argp, sizeof zone))
2014 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2020 case KVM_UNREGISTER_COALESCED_MMIO: {
2021 struct kvm_coalesced_mmio_zone zone;
2023 if (copy_from_user(&zone, argp, sizeof zone))
2025 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2033 struct kvm_irqfd data;
2036 if (copy_from_user(&data, argp, sizeof data))
2038 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2041 case KVM_IOEVENTFD: {
2042 struct kvm_ioeventfd data;
2045 if (copy_from_user(&data, argp, sizeof data))
2047 r = kvm_ioeventfd(kvm, &data);
2050 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2051 case KVM_SET_BOOT_CPU_ID:
2053 mutex_lock(&kvm->lock);
2054 if (atomic_read(&kvm->online_vcpus) != 0)
2057 kvm->bsp_vcpu_id = arg;
2058 mutex_unlock(&kvm->lock);
2062 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2064 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2070 #ifdef CONFIG_COMPAT
2071 struct compat_kvm_dirty_log {
2075 compat_uptr_t dirty_bitmap; /* one bit per page */
2080 static long kvm_vm_compat_ioctl(struct file *filp,
2081 unsigned int ioctl, unsigned long arg)
2083 struct kvm *kvm = filp->private_data;
2086 if (kvm->mm != current->mm)
2089 case KVM_GET_DIRTY_LOG: {
2090 struct compat_kvm_dirty_log compat_log;
2091 struct kvm_dirty_log log;
2094 if (copy_from_user(&compat_log, (void __user *)arg,
2095 sizeof(compat_log)))
2097 log.slot = compat_log.slot;
2098 log.padding1 = compat_log.padding1;
2099 log.padding2 = compat_log.padding2;
2100 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2102 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2108 r = kvm_vm_ioctl(filp, ioctl, arg);
2116 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2118 struct page *page[1];
2121 gfn_t gfn = vmf->pgoff;
2122 struct kvm *kvm = vma->vm_file->private_data;
2124 addr = gfn_to_hva(kvm, gfn);
2125 if (kvm_is_error_hva(addr))
2126 return VM_FAULT_SIGBUS;
2128 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2130 if (unlikely(npages != 1))
2131 return VM_FAULT_SIGBUS;
2133 vmf->page = page[0];
2137 static const struct vm_operations_struct kvm_vm_vm_ops = {
2138 .fault = kvm_vm_fault,
2141 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2143 vma->vm_ops = &kvm_vm_vm_ops;
2147 static struct file_operations kvm_vm_fops = {
2148 .release = kvm_vm_release,
2149 .unlocked_ioctl = kvm_vm_ioctl,
2150 #ifdef CONFIG_COMPAT
2151 .compat_ioctl = kvm_vm_compat_ioctl,
2153 .mmap = kvm_vm_mmap,
2154 .llseek = noop_llseek,
2157 static int kvm_dev_ioctl_create_vm(void)
2162 kvm = kvm_create_vm();
2164 return PTR_ERR(kvm);
2165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2166 r = kvm_coalesced_mmio_init(kvm);
2172 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2179 static long kvm_dev_ioctl_check_extension_generic(long arg)
2182 case KVM_CAP_USER_MEMORY:
2183 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2184 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2185 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2186 case KVM_CAP_SET_BOOT_CPU_ID:
2188 case KVM_CAP_INTERNAL_ERROR_DATA:
2190 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2191 case KVM_CAP_IRQ_ROUTING:
2192 return KVM_MAX_IRQ_ROUTES;
2197 return kvm_dev_ioctl_check_extension(arg);
2200 static long kvm_dev_ioctl(struct file *filp,
2201 unsigned int ioctl, unsigned long arg)
2206 case KVM_GET_API_VERSION:
2210 r = KVM_API_VERSION;
2216 r = kvm_dev_ioctl_create_vm();
2218 case KVM_CHECK_EXTENSION:
2219 r = kvm_dev_ioctl_check_extension_generic(arg);
2221 case KVM_GET_VCPU_MMAP_SIZE:
2225 r = PAGE_SIZE; /* struct kvm_run */
2227 r += PAGE_SIZE; /* pio data page */
2229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2230 r += PAGE_SIZE; /* coalesced mmio ring page */
2233 case KVM_TRACE_ENABLE:
2234 case KVM_TRACE_PAUSE:
2235 case KVM_TRACE_DISABLE:
2239 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2245 static struct file_operations kvm_chardev_ops = {
2246 .unlocked_ioctl = kvm_dev_ioctl,
2247 .compat_ioctl = kvm_dev_ioctl,
2248 .llseek = noop_llseek,
2251 static struct miscdevice kvm_dev = {
2257 static void hardware_enable_nolock(void *junk)
2259 int cpu = raw_smp_processor_id();
2262 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2265 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2267 r = kvm_arch_hardware_enable(NULL);
2270 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2271 atomic_inc(&hardware_enable_failed);
2272 printk(KERN_INFO "kvm: enabling virtualization on "
2273 "CPU%d failed\n", cpu);
2277 static void hardware_enable(void *junk)
2279 raw_spin_lock(&kvm_lock);
2280 hardware_enable_nolock(junk);
2281 raw_spin_unlock(&kvm_lock);
2284 static void hardware_disable_nolock(void *junk)
2286 int cpu = raw_smp_processor_id();
2288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2291 kvm_arch_hardware_disable(NULL);
2294 static void hardware_disable(void *junk)
2296 raw_spin_lock(&kvm_lock);
2297 hardware_disable_nolock(junk);
2298 raw_spin_unlock(&kvm_lock);
2301 static void hardware_disable_all_nolock(void)
2303 BUG_ON(!kvm_usage_count);
2306 if (!kvm_usage_count)
2307 on_each_cpu(hardware_disable_nolock, NULL, 1);
2310 static void hardware_disable_all(void)
2312 raw_spin_lock(&kvm_lock);
2313 hardware_disable_all_nolock();
2314 raw_spin_unlock(&kvm_lock);
2317 static int hardware_enable_all(void)
2321 raw_spin_lock(&kvm_lock);
2324 if (kvm_usage_count == 1) {
2325 atomic_set(&hardware_enable_failed, 0);
2326 on_each_cpu(hardware_enable_nolock, NULL, 1);
2328 if (atomic_read(&hardware_enable_failed)) {
2329 hardware_disable_all_nolock();
2334 raw_spin_unlock(&kvm_lock);
2339 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2344 if (!kvm_usage_count)
2347 val &= ~CPU_TASKS_FROZEN;
2350 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2352 hardware_disable(NULL);
2355 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2357 hardware_enable(NULL);
2364 asmlinkage void kvm_spurious_fault(void)
2366 /* Fault while not rebooting. We want the trace. */
2369 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2371 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2375 * Some (well, at least mine) BIOSes hang on reboot if
2378 * And Intel TXT required VMX off for all cpu when system shutdown.
2380 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2381 kvm_rebooting = true;
2382 on_each_cpu(hardware_disable_nolock, NULL, 1);
2386 static struct notifier_block kvm_reboot_notifier = {
2387 .notifier_call = kvm_reboot,
2391 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2395 for (i = 0; i < bus->dev_count; i++) {
2396 struct kvm_io_device *pos = bus->range[i].dev;
2398 kvm_iodevice_destructor(pos);
2403 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2405 const struct kvm_io_range *r1 = p1;
2406 const struct kvm_io_range *r2 = p2;
2408 if (r1->addr < r2->addr)
2410 if (r1->addr + r1->len > r2->addr + r2->len)
2415 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2416 gpa_t addr, int len)
2418 if (bus->dev_count == NR_IOBUS_DEVS)
2421 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2427 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2428 kvm_io_bus_sort_cmp, NULL);
2433 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2434 gpa_t addr, int len)
2436 struct kvm_io_range *range, key;
2439 key = (struct kvm_io_range) {
2444 range = bsearch(&key, bus->range, bus->dev_count,
2445 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2449 off = range - bus->range;
2451 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2457 /* kvm_io_bus_write - called under kvm->slots_lock */
2458 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2459 int len, const void *val)
2462 struct kvm_io_bus *bus;
2463 struct kvm_io_range range;
2465 range = (struct kvm_io_range) {
2470 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2471 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2475 while (idx < bus->dev_count &&
2476 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2477 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2485 /* kvm_io_bus_read - called under kvm->slots_lock */
2486 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2490 struct kvm_io_bus *bus;
2491 struct kvm_io_range range;
2493 range = (struct kvm_io_range) {
2498 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2499 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2503 while (idx < bus->dev_count &&
2504 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2505 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2513 /* Caller must hold slots_lock. */
2514 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2515 int len, struct kvm_io_device *dev)
2517 struct kvm_io_bus *new_bus, *bus;
2519 bus = kvm->buses[bus_idx];
2520 if (bus->dev_count > NR_IOBUS_DEVS-1)
2523 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2526 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2527 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2528 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2529 synchronize_srcu_expedited(&kvm->srcu);
2535 /* Caller must hold slots_lock. */
2536 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2537 struct kvm_io_device *dev)
2540 struct kvm_io_bus *new_bus, *bus;
2542 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2546 bus = kvm->buses[bus_idx];
2547 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2550 for (i = 0; i < new_bus->dev_count; i++)
2551 if (new_bus->range[i].dev == dev) {
2553 new_bus->dev_count--;
2554 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2555 sort(new_bus->range, new_bus->dev_count,
2556 sizeof(struct kvm_io_range),
2557 kvm_io_bus_sort_cmp, NULL);
2566 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2567 synchronize_srcu_expedited(&kvm->srcu);
2572 static struct notifier_block kvm_cpu_notifier = {
2573 .notifier_call = kvm_cpu_hotplug,
2576 static int vm_stat_get(void *_offset, u64 *val)
2578 unsigned offset = (long)_offset;
2582 raw_spin_lock(&kvm_lock);
2583 list_for_each_entry(kvm, &vm_list, vm_list)
2584 *val += *(u32 *)((void *)kvm + offset);
2585 raw_spin_unlock(&kvm_lock);
2589 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2591 static int vcpu_stat_get(void *_offset, u64 *val)
2593 unsigned offset = (long)_offset;
2595 struct kvm_vcpu *vcpu;
2599 raw_spin_lock(&kvm_lock);
2600 list_for_each_entry(kvm, &vm_list, vm_list)
2601 kvm_for_each_vcpu(i, vcpu, kvm)
2602 *val += *(u32 *)((void *)vcpu + offset);
2604 raw_spin_unlock(&kvm_lock);
2608 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2610 static const struct file_operations *stat_fops[] = {
2611 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2612 [KVM_STAT_VM] = &vm_stat_fops,
2615 static void kvm_init_debug(void)
2617 struct kvm_stats_debugfs_item *p;
2619 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2620 for (p = debugfs_entries; p->name; ++p)
2621 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2622 (void *)(long)p->offset,
2623 stat_fops[p->kind]);
2626 static void kvm_exit_debug(void)
2628 struct kvm_stats_debugfs_item *p;
2630 for (p = debugfs_entries; p->name; ++p)
2631 debugfs_remove(p->dentry);
2632 debugfs_remove(kvm_debugfs_dir);
2635 static int kvm_suspend(void)
2637 if (kvm_usage_count)
2638 hardware_disable_nolock(NULL);
2642 static void kvm_resume(void)
2644 if (kvm_usage_count) {
2645 WARN_ON(raw_spin_is_locked(&kvm_lock));
2646 hardware_enable_nolock(NULL);
2650 static struct syscore_ops kvm_syscore_ops = {
2651 .suspend = kvm_suspend,
2652 .resume = kvm_resume,
2655 struct page *bad_page;
2659 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2661 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2664 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2666 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2668 kvm_arch_vcpu_load(vcpu, cpu);
2671 static void kvm_sched_out(struct preempt_notifier *pn,
2672 struct task_struct *next)
2674 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2676 kvm_arch_vcpu_put(vcpu);
2679 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2680 struct module *module)
2685 r = kvm_arch_init(opaque);
2689 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2691 if (bad_page == NULL) {
2696 bad_pfn = page_to_pfn(bad_page);
2698 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2700 if (hwpoison_page == NULL) {
2705 hwpoison_pfn = page_to_pfn(hwpoison_page);
2707 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2709 if (fault_page == NULL) {
2714 fault_pfn = page_to_pfn(fault_page);
2716 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2721 r = kvm_arch_hardware_setup();
2725 for_each_online_cpu(cpu) {
2726 smp_call_function_single(cpu,
2727 kvm_arch_check_processor_compat,
2733 r = register_cpu_notifier(&kvm_cpu_notifier);
2736 register_reboot_notifier(&kvm_reboot_notifier);
2738 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2740 vcpu_align = __alignof__(struct kvm_vcpu);
2741 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2743 if (!kvm_vcpu_cache) {
2748 r = kvm_async_pf_init();
2752 kvm_chardev_ops.owner = module;
2753 kvm_vm_fops.owner = module;
2754 kvm_vcpu_fops.owner = module;
2756 r = misc_register(&kvm_dev);
2758 printk(KERN_ERR "kvm: misc device register failed\n");
2762 register_syscore_ops(&kvm_syscore_ops);
2764 kvm_preempt_ops.sched_in = kvm_sched_in;
2765 kvm_preempt_ops.sched_out = kvm_sched_out;
2772 kvm_async_pf_deinit();
2774 kmem_cache_destroy(kvm_vcpu_cache);
2776 unregister_reboot_notifier(&kvm_reboot_notifier);
2777 unregister_cpu_notifier(&kvm_cpu_notifier);
2780 kvm_arch_hardware_unsetup();
2782 free_cpumask_var(cpus_hardware_enabled);
2785 __free_page(fault_page);
2787 __free_page(hwpoison_page);
2788 __free_page(bad_page);
2794 EXPORT_SYMBOL_GPL(kvm_init);
2799 misc_deregister(&kvm_dev);
2800 kmem_cache_destroy(kvm_vcpu_cache);
2801 kvm_async_pf_deinit();
2802 unregister_syscore_ops(&kvm_syscore_ops);
2803 unregister_reboot_notifier(&kvm_reboot_notifier);
2804 unregister_cpu_notifier(&kvm_cpu_notifier);
2805 on_each_cpu(hardware_disable_nolock, NULL, 1);
2806 kvm_arch_hardware_unsetup();
2808 free_cpumask_var(cpus_hardware_enabled);
2809 __free_page(hwpoison_page);
2810 __free_page(bad_page);
2812 EXPORT_SYMBOL_GPL(kvm_exit);