]> Git Repo - linux.git/blob - drivers/scsi/libsas/sas_expander.c
Merge tag 'microblaze-v5.0-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[linux.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <[email protected]>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(struct timer_list *t)
45 {
46         struct sas_task_slow *slow = from_timer(slow, t, timer);
47         struct sas_task *task = slow->task;
48         unsigned long flags;
49
50         spin_lock_irqsave(&task->task_state_lock, flags);
51         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
52                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53                 complete(&task->slow_task->completion);
54         }
55         spin_unlock_irqrestore(&task->task_state_lock, flags);
56 }
57
58 static void smp_task_done(struct sas_task *task)
59 {
60         del_timer(&task->slow_task->timer);
61         complete(&task->slow_task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task_sg(struct domain_device *dev,
68                 struct scatterlist *req, struct scatterlist *resp)
69 {
70         int res, retry;
71         struct sas_task *task = NULL;
72         struct sas_internal *i =
73                 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75         mutex_lock(&dev->ex_dev.cmd_mutex);
76         for (retry = 0; retry < 3; retry++) {
77                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78                         res = -ECOMM;
79                         break;
80                 }
81
82                 task = sas_alloc_slow_task(GFP_KERNEL);
83                 if (!task) {
84                         res = -ENOMEM;
85                         break;
86                 }
87                 task->dev = dev;
88                 task->task_proto = dev->tproto;
89                 task->smp_task.smp_req = *req;
90                 task->smp_task.smp_resp = *resp;
91
92                 task->task_done = smp_task_done;
93
94                 task->slow_task->timer.function = smp_task_timedout;
95                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96                 add_timer(&task->slow_task->timer);
97
98                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
99
100                 if (res) {
101                         del_timer(&task->slow_task->timer);
102                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
103                         break;
104                 }
105
106                 wait_for_completion(&task->slow_task->completion);
107                 res = -ECOMM;
108                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109                         SAS_DPRINTK("smp task timed out or aborted\n");
110                         i->dft->lldd_abort_task(task);
111                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112                                 SAS_DPRINTK("SMP task aborted and not done\n");
113                                 break;
114                         }
115                 }
116                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
117                     task->task_status.stat == SAM_STAT_GOOD) {
118                         res = 0;
119                         break;
120                 }
121                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
122                     task->task_status.stat == SAS_DATA_UNDERRUN) {
123                         /* no error, but return the number of bytes of
124                          * underrun */
125                         res = task->task_status.residual;
126                         break;
127                 }
128                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
129                     task->task_status.stat == SAS_DATA_OVERRUN) {
130                         res = -EMSGSIZE;
131                         break;
132                 }
133                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
135                         break;
136                 else {
137                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138                                     "status 0x%x\n", __func__,
139                                     SAS_ADDR(dev->sas_addr),
140                                     task->task_status.resp,
141                                     task->task_status.stat);
142                         sas_free_task(task);
143                         task = NULL;
144                 }
145         }
146         mutex_unlock(&dev->ex_dev.cmd_mutex);
147
148         BUG_ON(retry == 3 && task != NULL);
149         sas_free_task(task);
150         return res;
151 }
152
153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154                             void *resp, int resp_size)
155 {
156         struct scatterlist req_sg;
157         struct scatterlist resp_sg;
158
159         sg_init_one(&req_sg, req, req_size);
160         sg_init_one(&resp_sg, resp, resp_size);
161         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
162 }
163
164 /* ---------- Allocations ---------- */
165
166 static inline void *alloc_smp_req(int size)
167 {
168         u8 *p = kzalloc(size, GFP_KERNEL);
169         if (p)
170                 p[0] = SMP_REQUEST;
171         return p;
172 }
173
174 static inline void *alloc_smp_resp(int size)
175 {
176         return kzalloc(size, GFP_KERNEL);
177 }
178
179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
180 {
181         switch (phy->routing_attr) {
182         case TABLE_ROUTING:
183                 if (dev->ex_dev.t2t_supp)
184                         return 'U';
185                 else
186                         return 'T';
187         case DIRECT_ROUTING:
188                 return 'D';
189         case SUBTRACTIVE_ROUTING:
190                 return 'S';
191         default:
192                 return '?';
193         }
194 }
195
196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
197 {
198         /* This is detecting a failure to transmit initial dev to host
199          * FIS as described in section J.5 of sas-2 r16
200          */
201         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203                 return SAS_SATA_PENDING;
204         else
205                 return dr->attached_dev_type;
206 }
207
208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
209 {
210         enum sas_device_type dev_type;
211         enum sas_linkrate linkrate;
212         u8 sas_addr[SAS_ADDR_SIZE];
213         struct smp_resp *resp = rsp;
214         struct discover_resp *dr = &resp->disc;
215         struct sas_ha_struct *ha = dev->port->ha;
216         struct expander_device *ex = &dev->ex_dev;
217         struct ex_phy *phy = &ex->ex_phy[phy_id];
218         struct sas_rphy *rphy = dev->rphy;
219         bool new_phy = !phy->phy;
220         char *type;
221
222         if (new_phy) {
223                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224                         return;
225                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
226
227                 /* FIXME: error_handling */
228                 BUG_ON(!phy->phy);
229         }
230
231         switch (resp->result) {
232         case SMP_RESP_PHY_VACANT:
233                 phy->phy_state = PHY_VACANT;
234                 break;
235         default:
236                 phy->phy_state = PHY_NOT_PRESENT;
237                 break;
238         case SMP_RESP_FUNC_ACC:
239                 phy->phy_state = PHY_EMPTY; /* do not know yet */
240                 break;
241         }
242
243         /* check if anything important changed to squelch debug */
244         dev_type = phy->attached_dev_type;
245         linkrate  = phy->linkrate;
246         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
247
248         /* Handle vacant phy - rest of dr data is not valid so skip it */
249         if (phy->phy_state == PHY_VACANT) {
250                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251                 phy->attached_dev_type = SAS_PHY_UNUSED;
252                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253                         phy->phy_id = phy_id;
254                         goto skip;
255                 } else
256                         goto out;
257         }
258
259         phy->attached_dev_type = to_dev_type(dr);
260         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261                 goto out;
262         phy->phy_id = phy_id;
263         phy->linkrate = dr->linkrate;
264         phy->attached_sata_host = dr->attached_sata_host;
265         phy->attached_sata_dev  = dr->attached_sata_dev;
266         phy->attached_sata_ps   = dr->attached_sata_ps;
267         phy->attached_iproto = dr->iproto << 1;
268         phy->attached_tproto = dr->tproto << 1;
269         /* help some expanders that fail to zero sas_address in the 'no
270          * device' case
271          */
272         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275         else
276                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277         phy->attached_phy_id = dr->attached_phy_id;
278         phy->phy_change_count = dr->change_count;
279         phy->routing_attr = dr->routing_attr;
280         phy->virtual = dr->virtual;
281         phy->last_da_index = -1;
282
283         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284         phy->phy->identify.device_type = dr->attached_dev_type;
285         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286         phy->phy->identify.target_port_protocols = phy->attached_tproto;
287         if (!phy->attached_tproto && dr->attached_sata_dev)
288                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289         phy->phy->identify.phy_identifier = phy_id;
290         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292         phy->phy->minimum_linkrate = dr->pmin_linkrate;
293         phy->phy->maximum_linkrate = dr->pmax_linkrate;
294         phy->phy->negotiated_linkrate = phy->linkrate;
295         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
296
297  skip:
298         if (new_phy)
299                 if (sas_phy_add(phy->phy)) {
300                         sas_phy_free(phy->phy);
301                         return;
302                 }
303
304  out:
305         switch (phy->attached_dev_type) {
306         case SAS_SATA_PENDING:
307                 type = "stp pending";
308                 break;
309         case SAS_PHY_UNUSED:
310                 type = "no device";
311                 break;
312         case SAS_END_DEVICE:
313                 if (phy->attached_iproto) {
314                         if (phy->attached_tproto)
315                                 type = "host+target";
316                         else
317                                 type = "host";
318                 } else {
319                         if (dr->attached_sata_dev)
320                                 type = "stp";
321                         else
322                                 type = "ssp";
323                 }
324                 break;
325         case SAS_EDGE_EXPANDER_DEVICE:
326         case SAS_FANOUT_EXPANDER_DEVICE:
327                 type = "smp";
328                 break;
329         default:
330                 type = "unknown";
331         }
332
333         /* this routine is polled by libata error recovery so filter
334          * unimportant messages
335          */
336         if (new_phy || phy->attached_dev_type != dev_type ||
337             phy->linkrate != linkrate ||
338             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339                 /* pass */;
340         else
341                 return;
342
343         /* if the attached device type changed and ata_eh is active,
344          * make sure we run revalidation when eh completes (see:
345          * sas_enable_revalidation)
346          */
347         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349
350         SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351                     test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352                     SAS_ADDR(dev->sas_addr), phy->phy_id,
353                     sas_route_char(dev, phy), phy->linkrate,
354                     SAS_ADDR(phy->attached_sas_addr), type);
355 }
356
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361         struct domain_device *dev;
362         struct sas_rphy *rphy;
363
364         if (!ex_phy->port)
365                 return NULL;
366
367         rphy = ex_phy->port->rphy;
368         if (!rphy)
369                 return NULL;
370
371         dev = sas_find_dev_by_rphy(rphy);
372
373         if (dev && dev_is_sata(dev))
374                 return dev;
375
376         return NULL;
377 }
378
379 #define DISCOVER_REQ_SIZE  16
380 #define DISCOVER_RESP_SIZE 56
381
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383                                       u8 *disc_resp, int single)
384 {
385         struct discover_resp *dr;
386         int res;
387
388         disc_req[9] = single;
389
390         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391                                disc_resp, DISCOVER_RESP_SIZE);
392         if (res)
393                 return res;
394         dr = &((struct smp_resp *)disc_resp)->disc;
395         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396                 sas_printk("Found loopback topology, just ignore it!\n");
397                 return 0;
398         }
399         sas_set_ex_phy(dev, single, disc_resp);
400         return 0;
401 }
402
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405         struct expander_device *ex = &dev->ex_dev;
406         int  res = 0;
407         u8   *disc_req;
408         u8   *disc_resp;
409
410         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411         if (!disc_req)
412                 return -ENOMEM;
413
414         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415         if (!disc_resp) {
416                 kfree(disc_req);
417                 return -ENOMEM;
418         }
419
420         disc_req[1] = SMP_DISCOVER;
421
422         if (0 <= single && single < ex->num_phys) {
423                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424         } else {
425                 int i;
426
427                 for (i = 0; i < ex->num_phys; i++) {
428                         res = sas_ex_phy_discover_helper(dev, disc_req,
429                                                          disc_resp, i);
430                         if (res)
431                                 goto out_err;
432                 }
433         }
434 out_err:
435         kfree(disc_resp);
436         kfree(disc_req);
437         return res;
438 }
439
440 static int sas_expander_discover(struct domain_device *dev)
441 {
442         struct expander_device *ex = &dev->ex_dev;
443         int res = -ENOMEM;
444
445         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
446         if (!ex->ex_phy)
447                 return -ENOMEM;
448
449         res = sas_ex_phy_discover(dev, -1);
450         if (res)
451                 goto out_err;
452
453         return 0;
454  out_err:
455         kfree(ex->ex_phy);
456         ex->ex_phy = NULL;
457         return res;
458 }
459
460 #define MAX_EXPANDER_PHYS 128
461
462 static void ex_assign_report_general(struct domain_device *dev,
463                                             struct smp_resp *resp)
464 {
465         struct report_general_resp *rg = &resp->rg;
466
467         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470         dev->ex_dev.t2t_supp = rg->t2t_supp;
471         dev->ex_dev.conf_route_table = rg->conf_route_table;
472         dev->ex_dev.configuring = rg->configuring;
473         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475
476 #define RG_REQ_SIZE   8
477 #define RG_RESP_SIZE 32
478
479 static int sas_ex_general(struct domain_device *dev)
480 {
481         u8 *rg_req;
482         struct smp_resp *rg_resp;
483         int res;
484         int i;
485
486         rg_req = alloc_smp_req(RG_REQ_SIZE);
487         if (!rg_req)
488                 return -ENOMEM;
489
490         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491         if (!rg_resp) {
492                 kfree(rg_req);
493                 return -ENOMEM;
494         }
495
496         rg_req[1] = SMP_REPORT_GENERAL;
497
498         for (i = 0; i < 5; i++) {
499                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500                                        RG_RESP_SIZE);
501
502                 if (res) {
503                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504                                     SAS_ADDR(dev->sas_addr), res);
505                         goto out;
506                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
509                         res = rg_resp->result;
510                         goto out;
511                 }
512
513                 ex_assign_report_general(dev, rg_resp);
514
515                 if (dev->ex_dev.configuring) {
516                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517                                     SAS_ADDR(dev->sas_addr));
518                         schedule_timeout_interruptible(5*HZ);
519                 } else
520                         break;
521         }
522 out:
523         kfree(rg_req);
524         kfree(rg_resp);
525         return res;
526 }
527
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529                                         *_mi_resp)
530 {
531         u8 *mi_resp = _mi_resp;
532         struct sas_rphy *rphy = dev->rphy;
533         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534
535         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537         memcpy(edev->product_rev, mi_resp + 36,
538                SAS_EXPANDER_PRODUCT_REV_LEN);
539
540         if (mi_resp[8] & 1) {
541                 memcpy(edev->component_vendor_id, mi_resp + 40,
542                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544                 edev->component_revision_id = mi_resp[50];
545         }
546 }
547
548 #define MI_REQ_SIZE   8
549 #define MI_RESP_SIZE 64
550
551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553         u8 *mi_req;
554         u8 *mi_resp;
555         int res;
556
557         mi_req = alloc_smp_req(MI_REQ_SIZE);
558         if (!mi_req)
559                 return -ENOMEM;
560
561         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562         if (!mi_resp) {
563                 kfree(mi_req);
564                 return -ENOMEM;
565         }
566
567         mi_req[1] = SMP_REPORT_MANUF_INFO;
568
569         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570         if (res) {
571                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572                             SAS_ADDR(dev->sas_addr), res);
573                 goto out;
574         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
577                 goto out;
578         }
579
580         ex_assign_manuf_info(dev, mi_resp);
581 out:
582         kfree(mi_req);
583         kfree(mi_resp);
584         return res;
585 }
586
587 #define PC_REQ_SIZE  44
588 #define PC_RESP_SIZE 8
589
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591                         enum phy_func phy_func,
592                         struct sas_phy_linkrates *rates)
593 {
594         u8 *pc_req;
595         u8 *pc_resp;
596         int res;
597
598         pc_req = alloc_smp_req(PC_REQ_SIZE);
599         if (!pc_req)
600                 return -ENOMEM;
601
602         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603         if (!pc_resp) {
604                 kfree(pc_req);
605                 return -ENOMEM;
606         }
607
608         pc_req[1] = SMP_PHY_CONTROL;
609         pc_req[9] = phy_id;
610         pc_req[10]= phy_func;
611         if (rates) {
612                 pc_req[32] = rates->minimum_linkrate << 4;
613                 pc_req[33] = rates->maximum_linkrate << 4;
614         }
615
616         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617
618         kfree(pc_resp);
619         kfree(pc_req);
620         return res;
621 }
622
623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
624 {
625         struct expander_device *ex = &dev->ex_dev;
626         struct ex_phy *phy = &ex->ex_phy[phy_id];
627
628         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
629         phy->linkrate = SAS_PHY_DISABLED;
630 }
631
632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
633 {
634         struct expander_device *ex = &dev->ex_dev;
635         int i;
636
637         for (i = 0; i < ex->num_phys; i++) {
638                 struct ex_phy *phy = &ex->ex_phy[i];
639
640                 if (phy->phy_state == PHY_VACANT ||
641                     phy->phy_state == PHY_NOT_PRESENT)
642                         continue;
643
644                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
645                         sas_ex_disable_phy(dev, i);
646         }
647 }
648
649 static int sas_dev_present_in_domain(struct asd_sas_port *port,
650                                             u8 *sas_addr)
651 {
652         struct domain_device *dev;
653
654         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
655                 return 1;
656         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
657                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
658                         return 1;
659         }
660         return 0;
661 }
662
663 #define RPEL_REQ_SIZE   16
664 #define RPEL_RESP_SIZE  32
665 int sas_smp_get_phy_events(struct sas_phy *phy)
666 {
667         int res;
668         u8 *req;
669         u8 *resp;
670         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
671         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
672
673         req = alloc_smp_req(RPEL_REQ_SIZE);
674         if (!req)
675                 return -ENOMEM;
676
677         resp = alloc_smp_resp(RPEL_RESP_SIZE);
678         if (!resp) {
679                 kfree(req);
680                 return -ENOMEM;
681         }
682
683         req[1] = SMP_REPORT_PHY_ERR_LOG;
684         req[9] = phy->number;
685
686         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
687                                     resp, RPEL_RESP_SIZE);
688
689         if (res)
690                 goto out;
691
692         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
693         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
694         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
695         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
696
697  out:
698         kfree(req);
699         kfree(resp);
700         return res;
701
702 }
703
704 #ifdef CONFIG_SCSI_SAS_ATA
705
706 #define RPS_REQ_SIZE  16
707 #define RPS_RESP_SIZE 60
708
709 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
710                             struct smp_resp *rps_resp)
711 {
712         int res;
713         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
714         u8 *resp = (u8 *)rps_resp;
715
716         if (!rps_req)
717                 return -ENOMEM;
718
719         rps_req[1] = SMP_REPORT_PHY_SATA;
720         rps_req[9] = phy_id;
721
722         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
723                                     rps_resp, RPS_RESP_SIZE);
724
725         /* 0x34 is the FIS type for the D2H fis.  There's a potential
726          * standards cockup here.  sas-2 explicitly specifies the FIS
727          * should be encoded so that FIS type is in resp[24].
728          * However, some expanders endian reverse this.  Undo the
729          * reversal here */
730         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
731                 int i;
732
733                 for (i = 0; i < 5; i++) {
734                         int j = 24 + (i*4);
735                         u8 a, b;
736                         a = resp[j + 0];
737                         b = resp[j + 1];
738                         resp[j + 0] = resp[j + 3];
739                         resp[j + 1] = resp[j + 2];
740                         resp[j + 2] = b;
741                         resp[j + 3] = a;
742                 }
743         }
744
745         kfree(rps_req);
746         return res;
747 }
748 #endif
749
750 static void sas_ex_get_linkrate(struct domain_device *parent,
751                                        struct domain_device *child,
752                                        struct ex_phy *parent_phy)
753 {
754         struct expander_device *parent_ex = &parent->ex_dev;
755         struct sas_port *port;
756         int i;
757
758         child->pathways = 0;
759
760         port = parent_phy->port;
761
762         for (i = 0; i < parent_ex->num_phys; i++) {
763                 struct ex_phy *phy = &parent_ex->ex_phy[i];
764
765                 if (phy->phy_state == PHY_VACANT ||
766                     phy->phy_state == PHY_NOT_PRESENT)
767                         continue;
768
769                 if (SAS_ADDR(phy->attached_sas_addr) ==
770                     SAS_ADDR(child->sas_addr)) {
771
772                         child->min_linkrate = min(parent->min_linkrate,
773                                                   phy->linkrate);
774                         child->max_linkrate = max(parent->max_linkrate,
775                                                   phy->linkrate);
776                         child->pathways++;
777                         sas_port_add_phy(port, phy->phy);
778                 }
779         }
780         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
781         child->pathways = min(child->pathways, parent->pathways);
782 }
783
784 static struct domain_device *sas_ex_discover_end_dev(
785         struct domain_device *parent, int phy_id)
786 {
787         struct expander_device *parent_ex = &parent->ex_dev;
788         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
789         struct domain_device *child = NULL;
790         struct sas_rphy *rphy;
791         int res;
792
793         if (phy->attached_sata_host || phy->attached_sata_ps)
794                 return NULL;
795
796         child = sas_alloc_device();
797         if (!child)
798                 return NULL;
799
800         kref_get(&parent->kref);
801         child->parent = parent;
802         child->port   = parent->port;
803         child->iproto = phy->attached_iproto;
804         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
805         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
806         if (!phy->port) {
807                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
808                 if (unlikely(!phy->port))
809                         goto out_err;
810                 if (unlikely(sas_port_add(phy->port) != 0)) {
811                         sas_port_free(phy->port);
812                         goto out_err;
813                 }
814         }
815         sas_ex_get_linkrate(parent, child, phy);
816         sas_device_set_phy(child, phy->port);
817
818 #ifdef CONFIG_SCSI_SAS_ATA
819         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
820                 res = sas_get_ata_info(child, phy);
821                 if (res)
822                         goto out_free;
823
824                 sas_init_dev(child);
825                 res = sas_ata_init(child);
826                 if (res)
827                         goto out_free;
828                 rphy = sas_end_device_alloc(phy->port);
829                 if (!rphy)
830                         goto out_free;
831
832                 child->rphy = rphy;
833                 get_device(&rphy->dev);
834
835                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
836
837                 res = sas_discover_sata(child);
838                 if (res) {
839                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
840                                     "%016llx:0x%x returned 0x%x\n",
841                                     SAS_ADDR(child->sas_addr),
842                                     SAS_ADDR(parent->sas_addr), phy_id, res);
843                         goto out_list_del;
844                 }
845         } else
846 #endif
847           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
848                 child->dev_type = SAS_END_DEVICE;
849                 rphy = sas_end_device_alloc(phy->port);
850                 /* FIXME: error handling */
851                 if (unlikely(!rphy))
852                         goto out_free;
853                 child->tproto = phy->attached_tproto;
854                 sas_init_dev(child);
855
856                 child->rphy = rphy;
857                 get_device(&rphy->dev);
858                 sas_fill_in_rphy(child, rphy);
859
860                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
861
862                 res = sas_discover_end_dev(child);
863                 if (res) {
864                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
865                                     "at %016llx:0x%x returned 0x%x\n",
866                                     SAS_ADDR(child->sas_addr),
867                                     SAS_ADDR(parent->sas_addr), phy_id, res);
868                         goto out_list_del;
869                 }
870         } else {
871                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
872                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
873                             phy_id);
874                 goto out_free;
875         }
876
877         list_add_tail(&child->siblings, &parent_ex->children);
878         return child;
879
880  out_list_del:
881         sas_rphy_free(child->rphy);
882         list_del(&child->disco_list_node);
883         spin_lock_irq(&parent->port->dev_list_lock);
884         list_del(&child->dev_list_node);
885         spin_unlock_irq(&parent->port->dev_list_lock);
886  out_free:
887         sas_port_delete(phy->port);
888  out_err:
889         phy->port = NULL;
890         sas_put_device(child);
891         return NULL;
892 }
893
894 /* See if this phy is part of a wide port */
895 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
896 {
897         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
898         int i;
899
900         for (i = 0; i < parent->ex_dev.num_phys; i++) {
901                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
902
903                 if (ephy == phy)
904                         continue;
905
906                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
907                             SAS_ADDR_SIZE) && ephy->port) {
908                         sas_port_add_phy(ephy->port, phy->phy);
909                         phy->port = ephy->port;
910                         phy->phy_state = PHY_DEVICE_DISCOVERED;
911                         return true;
912                 }
913         }
914
915         return false;
916 }
917
918 static struct domain_device *sas_ex_discover_expander(
919         struct domain_device *parent, int phy_id)
920 {
921         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
922         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
923         struct domain_device *child = NULL;
924         struct sas_rphy *rphy;
925         struct sas_expander_device *edev;
926         struct asd_sas_port *port;
927         int res;
928
929         if (phy->routing_attr == DIRECT_ROUTING) {
930                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
931                             "allowed\n",
932                             SAS_ADDR(parent->sas_addr), phy_id,
933                             SAS_ADDR(phy->attached_sas_addr),
934                             phy->attached_phy_id);
935                 return NULL;
936         }
937         child = sas_alloc_device();
938         if (!child)
939                 return NULL;
940
941         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
942         /* FIXME: better error handling */
943         BUG_ON(sas_port_add(phy->port) != 0);
944
945
946         switch (phy->attached_dev_type) {
947         case SAS_EDGE_EXPANDER_DEVICE:
948                 rphy = sas_expander_alloc(phy->port,
949                                           SAS_EDGE_EXPANDER_DEVICE);
950                 break;
951         case SAS_FANOUT_EXPANDER_DEVICE:
952                 rphy = sas_expander_alloc(phy->port,
953                                           SAS_FANOUT_EXPANDER_DEVICE);
954                 break;
955         default:
956                 rphy = NULL;    /* shut gcc up */
957                 BUG();
958         }
959         port = parent->port;
960         child->rphy = rphy;
961         get_device(&rphy->dev);
962         edev = rphy_to_expander_device(rphy);
963         child->dev_type = phy->attached_dev_type;
964         kref_get(&parent->kref);
965         child->parent = parent;
966         child->port = port;
967         child->iproto = phy->attached_iproto;
968         child->tproto = phy->attached_tproto;
969         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
970         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
971         sas_ex_get_linkrate(parent, child, phy);
972         edev->level = parent_ex->level + 1;
973         parent->port->disc.max_level = max(parent->port->disc.max_level,
974                                            edev->level);
975         sas_init_dev(child);
976         sas_fill_in_rphy(child, rphy);
977         sas_rphy_add(rphy);
978
979         spin_lock_irq(&parent->port->dev_list_lock);
980         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
981         spin_unlock_irq(&parent->port->dev_list_lock);
982
983         res = sas_discover_expander(child);
984         if (res) {
985                 sas_rphy_delete(rphy);
986                 spin_lock_irq(&parent->port->dev_list_lock);
987                 list_del(&child->dev_list_node);
988                 spin_unlock_irq(&parent->port->dev_list_lock);
989                 sas_put_device(child);
990                 return NULL;
991         }
992         list_add_tail(&child->siblings, &parent->ex_dev.children);
993         return child;
994 }
995
996 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
997 {
998         struct expander_device *ex = &dev->ex_dev;
999         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1000         struct domain_device *child = NULL;
1001         int res = 0;
1002
1003         /* Phy state */
1004         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1005                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1006                         res = sas_ex_phy_discover(dev, phy_id);
1007                 if (res)
1008                         return res;
1009         }
1010
1011         /* Parent and domain coherency */
1012         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1013                              SAS_ADDR(dev->port->sas_addr))) {
1014                 sas_add_parent_port(dev, phy_id);
1015                 return 0;
1016         }
1017         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1018                             SAS_ADDR(dev->parent->sas_addr))) {
1019                 sas_add_parent_port(dev, phy_id);
1020                 if (ex_phy->routing_attr == TABLE_ROUTING)
1021                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1022                 return 0;
1023         }
1024
1025         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1026                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1027
1028         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1029                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1030                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1031                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1032                 }
1033                 return 0;
1034         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1035                 return 0;
1036
1037         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1038             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1039             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1040             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1041                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1042                             "phy 0x%x\n", ex_phy->attached_dev_type,
1043                             SAS_ADDR(dev->sas_addr),
1044                             phy_id);
1045                 return 0;
1046         }
1047
1048         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1049         if (res) {
1050                 SAS_DPRINTK("configure routing for dev %016llx "
1051                             "reported 0x%x. Forgotten\n",
1052                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1053                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1054                 return res;
1055         }
1056
1057         if (sas_ex_join_wide_port(dev, phy_id)) {
1058                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1059                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1060                 return res;
1061         }
1062
1063         switch (ex_phy->attached_dev_type) {
1064         case SAS_END_DEVICE:
1065         case SAS_SATA_PENDING:
1066                 child = sas_ex_discover_end_dev(dev, phy_id);
1067                 break;
1068         case SAS_FANOUT_EXPANDER_DEVICE:
1069                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1070                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1071                                     "attached to ex %016llx phy 0x%x\n",
1072                                     SAS_ADDR(ex_phy->attached_sas_addr),
1073                                     ex_phy->attached_phy_id,
1074                                     SAS_ADDR(dev->sas_addr),
1075                                     phy_id);
1076                         sas_ex_disable_phy(dev, phy_id);
1077                         break;
1078                 } else
1079                         memcpy(dev->port->disc.fanout_sas_addr,
1080                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1081                 /* fallthrough */
1082         case SAS_EDGE_EXPANDER_DEVICE:
1083                 child = sas_ex_discover_expander(dev, phy_id);
1084                 break;
1085         default:
1086                 break;
1087         }
1088
1089         if (child) {
1090                 int i;
1091
1092                 for (i = 0; i < ex->num_phys; i++) {
1093                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1094                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1095                                 continue;
1096                         /*
1097                          * Due to races, the phy might not get added to the
1098                          * wide port, so we add the phy to the wide port here.
1099                          */
1100                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1101                             SAS_ADDR(child->sas_addr)) {
1102                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1103                                 if (sas_ex_join_wide_port(dev, i))
1104                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1105                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1106
1107                         }
1108                 }
1109         }
1110
1111         return res;
1112 }
1113
1114 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1115 {
1116         struct expander_device *ex = &dev->ex_dev;
1117         int i;
1118
1119         for (i = 0; i < ex->num_phys; i++) {
1120                 struct ex_phy *phy = &ex->ex_phy[i];
1121
1122                 if (phy->phy_state == PHY_VACANT ||
1123                     phy->phy_state == PHY_NOT_PRESENT)
1124                         continue;
1125
1126                 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1127                      phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1128                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1129
1130                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1131
1132                         return 1;
1133                 }
1134         }
1135         return 0;
1136 }
1137
1138 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1139 {
1140         struct expander_device *ex = &dev->ex_dev;
1141         struct domain_device *child;
1142         u8 sub_addr[8] = {0, };
1143
1144         list_for_each_entry(child, &ex->children, siblings) {
1145                 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1146                     child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1147                         continue;
1148                 if (sub_addr[0] == 0) {
1149                         sas_find_sub_addr(child, sub_addr);
1150                         continue;
1151                 } else {
1152                         u8 s2[8];
1153
1154                         if (sas_find_sub_addr(child, s2) &&
1155                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1156
1157                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1158                                             "diverges from subtractive "
1159                                             "boundary %016llx\n",
1160                                             SAS_ADDR(dev->sas_addr),
1161                                             SAS_ADDR(child->sas_addr),
1162                                             SAS_ADDR(s2),
1163                                             SAS_ADDR(sub_addr));
1164
1165                                 sas_ex_disable_port(child, s2);
1166                         }
1167                 }
1168         }
1169         return 0;
1170 }
1171 /**
1172  * sas_ex_discover_devices - discover devices attached to this expander
1173  * @dev: pointer to the expander domain device
1174  * @single: if you want to do a single phy, else set to -1;
1175  *
1176  * Configure this expander for use with its devices and register the
1177  * devices of this expander.
1178  */
1179 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1180 {
1181         struct expander_device *ex = &dev->ex_dev;
1182         int i = 0, end = ex->num_phys;
1183         int res = 0;
1184
1185         if (0 <= single && single < end) {
1186                 i = single;
1187                 end = i+1;
1188         }
1189
1190         for ( ; i < end; i++) {
1191                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1192
1193                 if (ex_phy->phy_state == PHY_VACANT ||
1194                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1195                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1196                         continue;
1197
1198                 switch (ex_phy->linkrate) {
1199                 case SAS_PHY_DISABLED:
1200                 case SAS_PHY_RESET_PROBLEM:
1201                 case SAS_SATA_PORT_SELECTOR:
1202                         continue;
1203                 default:
1204                         res = sas_ex_discover_dev(dev, i);
1205                         if (res)
1206                                 break;
1207                         continue;
1208                 }
1209         }
1210
1211         if (!res)
1212                 sas_check_level_subtractive_boundary(dev);
1213
1214         return res;
1215 }
1216
1217 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1218 {
1219         struct expander_device *ex = &dev->ex_dev;
1220         int i;
1221         u8  *sub_sas_addr = NULL;
1222
1223         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1224                 return 0;
1225
1226         for (i = 0; i < ex->num_phys; i++) {
1227                 struct ex_phy *phy = &ex->ex_phy[i];
1228
1229                 if (phy->phy_state == PHY_VACANT ||
1230                     phy->phy_state == PHY_NOT_PRESENT)
1231                         continue;
1232
1233                 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1234                      phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1235                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236
1237                         if (!sub_sas_addr)
1238                                 sub_sas_addr = &phy->attached_sas_addr[0];
1239                         else if (SAS_ADDR(sub_sas_addr) !=
1240                                  SAS_ADDR(phy->attached_sas_addr)) {
1241
1242                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1243                                             "diverges(%016llx) on subtractive "
1244                                             "boundary(%016llx). Disabled\n",
1245                                             SAS_ADDR(dev->sas_addr), i,
1246                                             SAS_ADDR(phy->attached_sas_addr),
1247                                             SAS_ADDR(sub_sas_addr));
1248                                 sas_ex_disable_phy(dev, i);
1249                         }
1250                 }
1251         }
1252         return 0;
1253 }
1254
1255 static void sas_print_parent_topology_bug(struct domain_device *child,
1256                                                  struct ex_phy *parent_phy,
1257                                                  struct ex_phy *child_phy)
1258 {
1259         static const char *ex_type[] = {
1260                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1261                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1262         };
1263         struct domain_device *parent = child->parent;
1264
1265         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1266                    "phy 0x%x has %c:%c routing link!\n",
1267
1268                    ex_type[parent->dev_type],
1269                    SAS_ADDR(parent->sas_addr),
1270                    parent_phy->phy_id,
1271
1272                    ex_type[child->dev_type],
1273                    SAS_ADDR(child->sas_addr),
1274                    child_phy->phy_id,
1275
1276                    sas_route_char(parent, parent_phy),
1277                    sas_route_char(child, child_phy));
1278 }
1279
1280 static int sas_check_eeds(struct domain_device *child,
1281                                  struct ex_phy *parent_phy,
1282                                  struct ex_phy *child_phy)
1283 {
1284         int res = 0;
1285         struct domain_device *parent = child->parent;
1286
1287         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1288                 res = -ENODEV;
1289                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1290                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1291                             SAS_ADDR(parent->sas_addr),
1292                             parent_phy->phy_id,
1293                             SAS_ADDR(child->sas_addr),
1294                             child_phy->phy_id,
1295                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1296         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1297                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1298                        SAS_ADDR_SIZE);
1299                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1300                        SAS_ADDR_SIZE);
1301         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1302                     SAS_ADDR(parent->sas_addr)) ||
1303                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1304                     SAS_ADDR(child->sas_addr)))
1305                    &&
1306                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1307                      SAS_ADDR(parent->sas_addr)) ||
1308                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1309                      SAS_ADDR(child->sas_addr))))
1310                 ;
1311         else {
1312                 res = -ENODEV;
1313                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1314                             "phy 0x%x link forms a third EEDS!\n",
1315                             SAS_ADDR(parent->sas_addr),
1316                             parent_phy->phy_id,
1317                             SAS_ADDR(child->sas_addr),
1318                             child_phy->phy_id);
1319         }
1320
1321         return res;
1322 }
1323
1324 /* Here we spill over 80 columns.  It is intentional.
1325  */
1326 static int sas_check_parent_topology(struct domain_device *child)
1327 {
1328         struct expander_device *child_ex = &child->ex_dev;
1329         struct expander_device *parent_ex;
1330         int i;
1331         int res = 0;
1332
1333         if (!child->parent)
1334                 return 0;
1335
1336         if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1337             child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1338                 return 0;
1339
1340         parent_ex = &child->parent->ex_dev;
1341
1342         for (i = 0; i < parent_ex->num_phys; i++) {
1343                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1344                 struct ex_phy *child_phy;
1345
1346                 if (parent_phy->phy_state == PHY_VACANT ||
1347                     parent_phy->phy_state == PHY_NOT_PRESENT)
1348                         continue;
1349
1350                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1351                         continue;
1352
1353                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1354
1355                 switch (child->parent->dev_type) {
1356                 case SAS_EDGE_EXPANDER_DEVICE:
1357                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1358                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1359                                     child_phy->routing_attr != TABLE_ROUTING) {
1360                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361                                         res = -ENODEV;
1362                                 }
1363                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1364                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365                                         res = sas_check_eeds(child, parent_phy, child_phy);
1366                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1367                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1368                                         res = -ENODEV;
1369                                 }
1370                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1371                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1372                                     (child_phy->routing_attr == TABLE_ROUTING &&
1373                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1374                                         /* All good */;
1375                                 } else {
1376                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1377                                         res = -ENODEV;
1378                                 }
1379                         }
1380                         break;
1381                 case SAS_FANOUT_EXPANDER_DEVICE:
1382                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1383                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1384                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1385                                 res = -ENODEV;
1386                         }
1387                         break;
1388                 default:
1389                         break;
1390                 }
1391         }
1392
1393         return res;
1394 }
1395
1396 #define RRI_REQ_SIZE  16
1397 #define RRI_RESP_SIZE 44
1398
1399 static int sas_configure_present(struct domain_device *dev, int phy_id,
1400                                  u8 *sas_addr, int *index, int *present)
1401 {
1402         int i, res = 0;
1403         struct expander_device *ex = &dev->ex_dev;
1404         struct ex_phy *phy = &ex->ex_phy[phy_id];
1405         u8 *rri_req;
1406         u8 *rri_resp;
1407
1408         *present = 0;
1409         *index = 0;
1410
1411         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1412         if (!rri_req)
1413                 return -ENOMEM;
1414
1415         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1416         if (!rri_resp) {
1417                 kfree(rri_req);
1418                 return -ENOMEM;
1419         }
1420
1421         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1422         rri_req[9] = phy_id;
1423
1424         for (i = 0; i < ex->max_route_indexes ; i++) {
1425                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1426                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1427                                        RRI_RESP_SIZE);
1428                 if (res)
1429                         goto out;
1430                 res = rri_resp[2];
1431                 if (res == SMP_RESP_NO_INDEX) {
1432                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1433                                     "phy 0x%x index 0x%x\n",
1434                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1435                         goto out;
1436                 } else if (res != SMP_RESP_FUNC_ACC) {
1437                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1438                                     "result 0x%x\n", __func__,
1439                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1440                         goto out;
1441                 }
1442                 if (SAS_ADDR(sas_addr) != 0) {
1443                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1444                                 *index = i;
1445                                 if ((rri_resp[12] & 0x80) == 0x80)
1446                                         *present = 0;
1447                                 else
1448                                         *present = 1;
1449                                 goto out;
1450                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1451                                 *index = i;
1452                                 *present = 0;
1453                                 goto out;
1454                         }
1455                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1456                            phy->last_da_index < i) {
1457                         phy->last_da_index = i;
1458                         *index = i;
1459                         *present = 0;
1460                         goto out;
1461                 }
1462         }
1463         res = -1;
1464 out:
1465         kfree(rri_req);
1466         kfree(rri_resp);
1467         return res;
1468 }
1469
1470 #define CRI_REQ_SIZE  44
1471 #define CRI_RESP_SIZE  8
1472
1473 static int sas_configure_set(struct domain_device *dev, int phy_id,
1474                              u8 *sas_addr, int index, int include)
1475 {
1476         int res;
1477         u8 *cri_req;
1478         u8 *cri_resp;
1479
1480         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1481         if (!cri_req)
1482                 return -ENOMEM;
1483
1484         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1485         if (!cri_resp) {
1486                 kfree(cri_req);
1487                 return -ENOMEM;
1488         }
1489
1490         cri_req[1] = SMP_CONF_ROUTE_INFO;
1491         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1492         cri_req[9] = phy_id;
1493         if (SAS_ADDR(sas_addr) == 0 || !include)
1494                 cri_req[12] |= 0x80;
1495         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1496
1497         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1498                                CRI_RESP_SIZE);
1499         if (res)
1500                 goto out;
1501         res = cri_resp[2];
1502         if (res == SMP_RESP_NO_INDEX) {
1503                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1504                             "index 0x%x\n",
1505                             SAS_ADDR(dev->sas_addr), phy_id, index);
1506         }
1507 out:
1508         kfree(cri_req);
1509         kfree(cri_resp);
1510         return res;
1511 }
1512
1513 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1514                                     u8 *sas_addr, int include)
1515 {
1516         int index;
1517         int present;
1518         int res;
1519
1520         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1521         if (res)
1522                 return res;
1523         if (include ^ present)
1524                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1525
1526         return res;
1527 }
1528
1529 /**
1530  * sas_configure_parent - configure routing table of parent
1531  * @parent: parent expander
1532  * @child: child expander
1533  * @sas_addr: SAS port identifier of device directly attached to child
1534  * @include: whether or not to include @child in the expander routing table
1535  */
1536 static int sas_configure_parent(struct domain_device *parent,
1537                                 struct domain_device *child,
1538                                 u8 *sas_addr, int include)
1539 {
1540         struct expander_device *ex_parent = &parent->ex_dev;
1541         int res = 0;
1542         int i;
1543
1544         if (parent->parent) {
1545                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1546                                            include);
1547                 if (res)
1548                         return res;
1549         }
1550
1551         if (ex_parent->conf_route_table == 0) {
1552                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1553                             SAS_ADDR(parent->sas_addr));
1554                 return 0;
1555         }
1556
1557         for (i = 0; i < ex_parent->num_phys; i++) {
1558                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1559
1560                 if ((phy->routing_attr == TABLE_ROUTING) &&
1561                     (SAS_ADDR(phy->attached_sas_addr) ==
1562                      SAS_ADDR(child->sas_addr))) {
1563                         res = sas_configure_phy(parent, i, sas_addr, include);
1564                         if (res)
1565                                 return res;
1566                 }
1567         }
1568
1569         return res;
1570 }
1571
1572 /**
1573  * sas_configure_routing - configure routing
1574  * @dev: expander device
1575  * @sas_addr: port identifier of device directly attached to the expander device
1576  */
1577 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1578 {
1579         if (dev->parent)
1580                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1581         return 0;
1582 }
1583
1584 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1585 {
1586         if (dev->parent)
1587                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1588         return 0;
1589 }
1590
1591 /**
1592  * sas_discover_expander - expander discovery
1593  * @dev: pointer to expander domain device
1594  *
1595  * See comment in sas_discover_sata().
1596  */
1597 static int sas_discover_expander(struct domain_device *dev)
1598 {
1599         int res;
1600
1601         res = sas_notify_lldd_dev_found(dev);
1602         if (res)
1603                 return res;
1604
1605         res = sas_ex_general(dev);
1606         if (res)
1607                 goto out_err;
1608         res = sas_ex_manuf_info(dev);
1609         if (res)
1610                 goto out_err;
1611
1612         res = sas_expander_discover(dev);
1613         if (res) {
1614                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1615                             SAS_ADDR(dev->sas_addr), res);
1616                 goto out_err;
1617         }
1618
1619         sas_check_ex_subtractive_boundary(dev);
1620         res = sas_check_parent_topology(dev);
1621         if (res)
1622                 goto out_err;
1623         return 0;
1624 out_err:
1625         sas_notify_lldd_dev_gone(dev);
1626         return res;
1627 }
1628
1629 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1630 {
1631         int res = 0;
1632         struct domain_device *dev;
1633
1634         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1635                 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1636                     dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1637                         struct sas_expander_device *ex =
1638                                 rphy_to_expander_device(dev->rphy);
1639
1640                         if (level == ex->level)
1641                                 res = sas_ex_discover_devices(dev, -1);
1642                         else if (level > 0)
1643                                 res = sas_ex_discover_devices(port->port_dev, -1);
1644
1645                 }
1646         }
1647
1648         return res;
1649 }
1650
1651 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1652 {
1653         int res;
1654         int level;
1655
1656         do {
1657                 level = port->disc.max_level;
1658                 res = sas_ex_level_discovery(port, level);
1659                 mb();
1660         } while (level < port->disc.max_level);
1661
1662         return res;
1663 }
1664
1665 int sas_discover_root_expander(struct domain_device *dev)
1666 {
1667         int res;
1668         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1669
1670         res = sas_rphy_add(dev->rphy);
1671         if (res)
1672                 goto out_err;
1673
1674         ex->level = dev->port->disc.max_level; /* 0 */
1675         res = sas_discover_expander(dev);
1676         if (res)
1677                 goto out_err2;
1678
1679         sas_ex_bfs_disc(dev->port);
1680
1681         return res;
1682
1683 out_err2:
1684         sas_rphy_remove(dev->rphy);
1685 out_err:
1686         return res;
1687 }
1688
1689 /* ---------- Domain revalidation ---------- */
1690
1691 static int sas_get_phy_discover(struct domain_device *dev,
1692                                 int phy_id, struct smp_resp *disc_resp)
1693 {
1694         int res;
1695         u8 *disc_req;
1696
1697         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1698         if (!disc_req)
1699                 return -ENOMEM;
1700
1701         disc_req[1] = SMP_DISCOVER;
1702         disc_req[9] = phy_id;
1703
1704         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1705                                disc_resp, DISCOVER_RESP_SIZE);
1706         if (res)
1707                 goto out;
1708         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1709                 res = disc_resp->result;
1710                 goto out;
1711         }
1712 out:
1713         kfree(disc_req);
1714         return res;
1715 }
1716
1717 static int sas_get_phy_change_count(struct domain_device *dev,
1718                                     int phy_id, int *pcc)
1719 {
1720         int res;
1721         struct smp_resp *disc_resp;
1722
1723         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1724         if (!disc_resp)
1725                 return -ENOMEM;
1726
1727         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1728         if (!res)
1729                 *pcc = disc_resp->disc.change_count;
1730
1731         kfree(disc_resp);
1732         return res;
1733 }
1734
1735 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1736                                     u8 *sas_addr, enum sas_device_type *type)
1737 {
1738         int res;
1739         struct smp_resp *disc_resp;
1740         struct discover_resp *dr;
1741
1742         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1743         if (!disc_resp)
1744                 return -ENOMEM;
1745         dr = &disc_resp->disc;
1746
1747         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1748         if (res == 0) {
1749                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1750                 *type = to_dev_type(dr);
1751                 if (*type == 0)
1752                         memset(sas_addr, 0, 8);
1753         }
1754         kfree(disc_resp);
1755         return res;
1756 }
1757
1758 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1759                               int from_phy, bool update)
1760 {
1761         struct expander_device *ex = &dev->ex_dev;
1762         int res = 0;
1763         int i;
1764
1765         for (i = from_phy; i < ex->num_phys; i++) {
1766                 int phy_change_count = 0;
1767
1768                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1769                 switch (res) {
1770                 case SMP_RESP_PHY_VACANT:
1771                 case SMP_RESP_NO_PHY:
1772                         continue;
1773                 case SMP_RESP_FUNC_ACC:
1774                         break;
1775                 default:
1776                         return res;
1777                 }
1778
1779                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1780                         if (update)
1781                                 ex->ex_phy[i].phy_change_count =
1782                                         phy_change_count;
1783                         *phy_id = i;
1784                         return 0;
1785                 }
1786         }
1787         return 0;
1788 }
1789
1790 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1791 {
1792         int res;
1793         u8  *rg_req;
1794         struct smp_resp  *rg_resp;
1795
1796         rg_req = alloc_smp_req(RG_REQ_SIZE);
1797         if (!rg_req)
1798                 return -ENOMEM;
1799
1800         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1801         if (!rg_resp) {
1802                 kfree(rg_req);
1803                 return -ENOMEM;
1804         }
1805
1806         rg_req[1] = SMP_REPORT_GENERAL;
1807
1808         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1809                                RG_RESP_SIZE);
1810         if (res)
1811                 goto out;
1812         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1813                 res = rg_resp->result;
1814                 goto out;
1815         }
1816
1817         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1818 out:
1819         kfree(rg_resp);
1820         kfree(rg_req);
1821         return res;
1822 }
1823 /**
1824  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1825  * @dev:domain device to be detect.
1826  * @src_dev: the device which originated BROADCAST(CHANGE).
1827  *
1828  * Add self-configuration expander support. Suppose two expander cascading,
1829  * when the first level expander is self-configuring, hotplug the disks in
1830  * second level expander, BROADCAST(CHANGE) will not only be originated
1831  * in the second level expander, but also be originated in the first level
1832  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1833  * expander changed count in two level expanders will all increment at least
1834  * once, but the phy which chang count has changed is the source device which
1835  * we concerned.
1836  */
1837
1838 static int sas_find_bcast_dev(struct domain_device *dev,
1839                               struct domain_device **src_dev)
1840 {
1841         struct expander_device *ex = &dev->ex_dev;
1842         int ex_change_count = -1;
1843         int phy_id = -1;
1844         int res;
1845         struct domain_device *ch;
1846
1847         res = sas_get_ex_change_count(dev, &ex_change_count);
1848         if (res)
1849                 goto out;
1850         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1851                 /* Just detect if this expander phys phy change count changed,
1852                 * in order to determine if this expander originate BROADCAST,
1853                 * and do not update phy change count field in our structure.
1854                 */
1855                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1856                 if (phy_id != -1) {
1857                         *src_dev = dev;
1858                         ex->ex_change_count = ex_change_count;
1859                         SAS_DPRINTK("Expander phy change count has changed\n");
1860                         return res;
1861                 } else
1862                         SAS_DPRINTK("Expander phys DID NOT change\n");
1863         }
1864         list_for_each_entry(ch, &ex->children, siblings) {
1865                 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1866                         res = sas_find_bcast_dev(ch, src_dev);
1867                         if (*src_dev)
1868                                 return res;
1869                 }
1870         }
1871 out:
1872         return res;
1873 }
1874
1875 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1876 {
1877         struct expander_device *ex = &dev->ex_dev;
1878         struct domain_device *child, *n;
1879
1880         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1881                 set_bit(SAS_DEV_GONE, &child->state);
1882                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1883                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1884                         sas_unregister_ex_tree(port, child);
1885                 else
1886                         sas_unregister_dev(port, child);
1887         }
1888         sas_unregister_dev(port, dev);
1889 }
1890
1891 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1892                                          int phy_id, bool last)
1893 {
1894         struct expander_device *ex_dev = &parent->ex_dev;
1895         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1896         struct domain_device *child, *n, *found = NULL;
1897         if (last) {
1898                 list_for_each_entry_safe(child, n,
1899                         &ex_dev->children, siblings) {
1900                         if (SAS_ADDR(child->sas_addr) ==
1901                             SAS_ADDR(phy->attached_sas_addr)) {
1902                                 set_bit(SAS_DEV_GONE, &child->state);
1903                                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1904                                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1905                                         sas_unregister_ex_tree(parent->port, child);
1906                                 else
1907                                         sas_unregister_dev(parent->port, child);
1908                                 found = child;
1909                                 break;
1910                         }
1911                 }
1912                 sas_disable_routing(parent, phy->attached_sas_addr);
1913         }
1914         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1915         if (phy->port) {
1916                 sas_port_delete_phy(phy->port, phy->phy);
1917                 sas_device_set_phy(found, phy->port);
1918                 if (phy->port->num_phys == 0)
1919                         list_add_tail(&phy->port->del_list,
1920                                 &parent->port->sas_port_del_list);
1921                 phy->port = NULL;
1922         }
1923 }
1924
1925 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1926                                           const int level)
1927 {
1928         struct expander_device *ex_root = &root->ex_dev;
1929         struct domain_device *child;
1930         int res = 0;
1931
1932         list_for_each_entry(child, &ex_root->children, siblings) {
1933                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1934                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1935                         struct sas_expander_device *ex =
1936                                 rphy_to_expander_device(child->rphy);
1937
1938                         if (level > ex->level)
1939                                 res = sas_discover_bfs_by_root_level(child,
1940                                                                      level);
1941                         else if (level == ex->level)
1942                                 res = sas_ex_discover_devices(child, -1);
1943                 }
1944         }
1945         return res;
1946 }
1947
1948 static int sas_discover_bfs_by_root(struct domain_device *dev)
1949 {
1950         int res;
1951         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1952         int level = ex->level+1;
1953
1954         res = sas_ex_discover_devices(dev, -1);
1955         if (res)
1956                 goto out;
1957         do {
1958                 res = sas_discover_bfs_by_root_level(dev, level);
1959                 mb();
1960                 level += 1;
1961         } while (level <= dev->port->disc.max_level);
1962 out:
1963         return res;
1964 }
1965
1966 static int sas_discover_new(struct domain_device *dev, int phy_id)
1967 {
1968         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1969         struct domain_device *child;
1970         int res;
1971
1972         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1973                     SAS_ADDR(dev->sas_addr), phy_id);
1974         res = sas_ex_phy_discover(dev, phy_id);
1975         if (res)
1976                 return res;
1977
1978         if (sas_ex_join_wide_port(dev, phy_id))
1979                 return 0;
1980
1981         res = sas_ex_discover_devices(dev, phy_id);
1982         if (res)
1983                 return res;
1984         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1985                 if (SAS_ADDR(child->sas_addr) ==
1986                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1987                         if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1988                             child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1989                                 res = sas_discover_bfs_by_root(child);
1990                         break;
1991                 }
1992         }
1993         return res;
1994 }
1995
1996 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1997 {
1998         if (old == new)
1999                 return true;
2000
2001         /* treat device directed resets as flutter, if we went
2002          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2003          */
2004         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2005             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2006                 return true;
2007
2008         return false;
2009 }
2010
2011 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2012 {
2013         struct expander_device *ex = &dev->ex_dev;
2014         struct ex_phy *phy = &ex->ex_phy[phy_id];
2015         enum sas_device_type type = SAS_PHY_UNUSED;
2016         u8 sas_addr[8];
2017         int res;
2018
2019         memset(sas_addr, 0, 8);
2020         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2021         switch (res) {
2022         case SMP_RESP_NO_PHY:
2023                 phy->phy_state = PHY_NOT_PRESENT;
2024                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2025                 return res;
2026         case SMP_RESP_PHY_VACANT:
2027                 phy->phy_state = PHY_VACANT;
2028                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2029                 return res;
2030         case SMP_RESP_FUNC_ACC:
2031                 break;
2032         case -ECOMM:
2033                 break;
2034         default:
2035                 return res;
2036         }
2037
2038         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2039                 phy->phy_state = PHY_EMPTY;
2040                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2041                 return res;
2042         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2043                    dev_type_flutter(type, phy->attached_dev_type)) {
2044                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2045                 char *action = "";
2046
2047                 sas_ex_phy_discover(dev, phy_id);
2048
2049                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2050                         action = ", needs recovery";
2051                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2052                             SAS_ADDR(dev->sas_addr), phy_id, action);
2053                 return res;
2054         }
2055
2056         /* we always have to delete the old device when we went here */
2057         SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2058                     SAS_ADDR(dev->sas_addr), phy_id,
2059                     SAS_ADDR(phy->attached_sas_addr));
2060         sas_unregister_devs_sas_addr(dev, phy_id, last);
2061
2062         return sas_discover_new(dev, phy_id);
2063 }
2064
2065 /**
2066  * sas_rediscover - revalidate the domain.
2067  * @dev:domain device to be detect.
2068  * @phy_id: the phy id will be detected.
2069  *
2070  * NOTE: this process _must_ quit (return) as soon as any connection
2071  * errors are encountered.  Connection recovery is done elsewhere.
2072  * Discover process only interrogates devices in order to discover the
2073  * domain.For plugging out, we un-register the device only when it is
2074  * the last phy in the port, for other phys in this port, we just delete it
2075  * from the port.For inserting, we do discovery when it is the
2076  * first phy,for other phys in this port, we add it to the port to
2077  * forming the wide-port.
2078  */
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2080 {
2081         struct expander_device *ex = &dev->ex_dev;
2082         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2083         int res = 0;
2084         int i;
2085         bool last = true;       /* is this the last phy of the port */
2086
2087         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2088                     SAS_ADDR(dev->sas_addr), phy_id);
2089
2090         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091                 for (i = 0; i < ex->num_phys; i++) {
2092                         struct ex_phy *phy = &ex->ex_phy[i];
2093
2094                         if (i == phy_id)
2095                                 continue;
2096                         if (SAS_ADDR(phy->attached_sas_addr) ==
2097                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2098                                 SAS_DPRINTK("phy%d part of wide port with "
2099                                             "phy%d\n", phy_id, i);
2100                                 last = false;
2101                                 break;
2102                         }
2103                 }
2104                 res = sas_rediscover_dev(dev, phy_id, last);
2105         } else
2106                 res = sas_discover_new(dev, phy_id);
2107         return res;
2108 }
2109
2110 /**
2111  * sas_ex_revalidate_domain - revalidate the domain
2112  * @port_dev: port domain device.
2113  *
2114  * NOTE: this process _must_ quit (return) as soon as any connection
2115  * errors are encountered.  Connection recovery is done elsewhere.
2116  * Discover process only interrogates devices in order to discover the
2117  * domain.
2118  */
2119 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2120 {
2121         int res;
2122         struct domain_device *dev = NULL;
2123
2124         res = sas_find_bcast_dev(port_dev, &dev);
2125         if (res == 0 && dev) {
2126                 struct expander_device *ex = &dev->ex_dev;
2127                 int i = 0, phy_id;
2128
2129                 do {
2130                         phy_id = -1;
2131                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2132                         if (phy_id == -1)
2133                                 break;
2134                         res = sas_rediscover(dev, phy_id);
2135                         i = phy_id + 1;
2136                 } while (i < ex->num_phys);
2137         }
2138         return res;
2139 }
2140
2141 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2142                 struct sas_rphy *rphy)
2143 {
2144         struct domain_device *dev;
2145         unsigned int rcvlen = 0;
2146         int ret = -EINVAL;
2147
2148         /* no rphy means no smp target support (ie aic94xx host) */
2149         if (!rphy)
2150                 return sas_smp_host_handler(job, shost);
2151
2152         switch (rphy->identify.device_type) {
2153         case SAS_EDGE_EXPANDER_DEVICE:
2154         case SAS_FANOUT_EXPANDER_DEVICE:
2155                 break;
2156         default:
2157                 printk("%s: can we send a smp request to a device?\n",
2158                        __func__);
2159                 goto out;
2160         }
2161
2162         dev = sas_find_dev_by_rphy(rphy);
2163         if (!dev) {
2164                 printk("%s: fail to find a domain_device?\n", __func__);
2165                 goto out;
2166         }
2167
2168         /* do we need to support multiple segments? */
2169         if (job->request_payload.sg_cnt > 1 ||
2170             job->reply_payload.sg_cnt > 1) {
2171                 printk("%s: multiple segments req %u, rsp %u\n",
2172                        __func__, job->request_payload.payload_len,
2173                        job->reply_payload.payload_len);
2174                 goto out;
2175         }
2176
2177         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2178                         job->reply_payload.sg_list);
2179         if (ret >= 0) {
2180                 /* bsg_job_done() requires the length received  */
2181                 rcvlen = job->reply_payload.payload_len - ret;
2182                 ret = 0;
2183         }
2184
2185 out:
2186         bsg_job_done(job, ret, rcvlen);
2187 }
This page took 0.185242 seconds and 4 git commands to generate.