]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/s3c2410.c
Merge tag 'microblaze-v5.0-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[linux.git] / drivers / mtd / nand / raw / s3c2410.c
1 /*
2  * Copyright © 2004-2008 Simtec Electronics
3  *      http://armlinux.simtec.co.uk/
4  *      Ben Dooks <[email protected]>
5  *
6  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 */
22
23 #define pr_fmt(fmt) "nand-s3c2410: " fmt
24
25 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
26 #define DEBUG
27 #endif
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/io.h>
34 #include <linux/ioport.h>
35 #include <linux/platform_device.h>
36 #include <linux/delay.h>
37 #include <linux/err.h>
38 #include <linux/slab.h>
39 #include <linux/clk.h>
40 #include <linux/cpufreq.h>
41 #include <linux/of.h>
42 #include <linux/of_device.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/rawnand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48
49 #include <linux/platform_data/mtd-nand-s3c2410.h>
50
51 #define S3C2410_NFREG(x) (x)
52
53 #define S3C2410_NFCONF          S3C2410_NFREG(0x00)
54 #define S3C2410_NFCMD           S3C2410_NFREG(0x04)
55 #define S3C2410_NFADDR          S3C2410_NFREG(0x08)
56 #define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
57 #define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
58 #define S3C2410_NFECC           S3C2410_NFREG(0x14)
59 #define S3C2440_NFCONT          S3C2410_NFREG(0x04)
60 #define S3C2440_NFCMD           S3C2410_NFREG(0x08)
61 #define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
62 #define S3C2440_NFDATA          S3C2410_NFREG(0x10)
63 #define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
64 #define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
65 #define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
66 #define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
67 #define S3C2410_NFCONF_EN               (1<<15)
68 #define S3C2410_NFCONF_INITECC          (1<<12)
69 #define S3C2410_NFCONF_nFCE             (1<<11)
70 #define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
71 #define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
72 #define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
73 #define S3C2410_NFSTAT_BUSY             (1<<0)
74 #define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
75 #define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
76 #define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
77 #define S3C2440_NFCONT_INITECC          (1<<4)
78 #define S3C2440_NFCONT_nFCE             (1<<1)
79 #define S3C2440_NFCONT_ENABLE           (1<<0)
80 #define S3C2440_NFSTAT_READY            (1<<0)
81 #define S3C2412_NFCONF_NANDBOOT         (1<<31)
82 #define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
83 #define S3C2412_NFCONT_nFCE0            (1<<1)
84 #define S3C2412_NFSTAT_READY            (1<<0)
85
86 /* new oob placement block for use with hardware ecc generation
87  */
88 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
89                                  struct mtd_oob_region *oobregion)
90 {
91         if (section)
92                 return -ERANGE;
93
94         oobregion->offset = 0;
95         oobregion->length = 3;
96
97         return 0;
98 }
99
100 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
101                                   struct mtd_oob_region *oobregion)
102 {
103         if (section)
104                 return -ERANGE;
105
106         oobregion->offset = 8;
107         oobregion->length = 8;
108
109         return 0;
110 }
111
112 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
113         .ecc = s3c2410_ooblayout_ecc,
114         .free = s3c2410_ooblayout_free,
115 };
116
117 /* controller and mtd information */
118
119 struct s3c2410_nand_info;
120
121 /**
122  * struct s3c2410_nand_mtd - driver MTD structure
123  * @mtd: The MTD instance to pass to the MTD layer.
124  * @chip: The NAND chip information.
125  * @set: The platform information supplied for this set of NAND chips.
126  * @info: Link back to the hardware information.
127 */
128 struct s3c2410_nand_mtd {
129         struct nand_chip                chip;
130         struct s3c2410_nand_set         *set;
131         struct s3c2410_nand_info        *info;
132 };
133
134 enum s3c_cpu_type {
135         TYPE_S3C2410,
136         TYPE_S3C2412,
137         TYPE_S3C2440,
138 };
139
140 enum s3c_nand_clk_state {
141         CLOCK_DISABLE   = 0,
142         CLOCK_ENABLE,
143         CLOCK_SUSPEND,
144 };
145
146 /* overview of the s3c2410 nand state */
147
148 /**
149  * struct s3c2410_nand_info - NAND controller state.
150  * @mtds: An array of MTD instances on this controoler.
151  * @platform: The platform data for this board.
152  * @device: The platform device we bound to.
153  * @clk: The clock resource for this controller.
154  * @regs: The area mapped for the hardware registers.
155  * @sel_reg: Pointer to the register controlling the NAND selection.
156  * @sel_bit: The bit in @sel_reg to select the NAND chip.
157  * @mtd_count: The number of MTDs created from this controller.
158  * @save_sel: The contents of @sel_reg to be saved over suspend.
159  * @clk_rate: The clock rate from @clk.
160  * @clk_state: The current clock state.
161  * @cpu_type: The exact type of this controller.
162  */
163 struct s3c2410_nand_info {
164         /* mtd info */
165         struct nand_controller          controller;
166         struct s3c2410_nand_mtd         *mtds;
167         struct s3c2410_platform_nand    *platform;
168
169         /* device info */
170         struct device                   *device;
171         struct clk                      *clk;
172         void __iomem                    *regs;
173         void __iomem                    *sel_reg;
174         int                             sel_bit;
175         int                             mtd_count;
176         unsigned long                   save_sel;
177         unsigned long                   clk_rate;
178         enum s3c_nand_clk_state         clk_state;
179
180         enum s3c_cpu_type               cpu_type;
181
182 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
183         struct notifier_block   freq_transition;
184 #endif
185 };
186
187 struct s3c24XX_nand_devtype_data {
188         enum s3c_cpu_type type;
189 };
190
191 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
192         .type = TYPE_S3C2410,
193 };
194
195 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
196         .type = TYPE_S3C2412,
197 };
198
199 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
200         .type = TYPE_S3C2440,
201 };
202
203 /* conversion functions */
204
205 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
206 {
207         return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
208                             chip);
209 }
210
211 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
212 {
213         return s3c2410_nand_mtd_toours(mtd)->info;
214 }
215
216 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
217 {
218         return platform_get_drvdata(dev);
219 }
220
221 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
222 {
223         return dev_get_platdata(&dev->dev);
224 }
225
226 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
227 {
228 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
229         return 1;
230 #else
231         return 0;
232 #endif
233 }
234
235 /**
236  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
237  * @info: The controller instance.
238  * @new_state: State to which clock should be set.
239  */
240 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
241                 enum s3c_nand_clk_state new_state)
242 {
243         if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
244                 return;
245
246         if (info->clk_state == CLOCK_ENABLE) {
247                 if (new_state != CLOCK_ENABLE)
248                         clk_disable_unprepare(info->clk);
249         } else {
250                 if (new_state == CLOCK_ENABLE)
251                         clk_prepare_enable(info->clk);
252         }
253
254         info->clk_state = new_state;
255 }
256
257 /* timing calculations */
258
259 #define NS_IN_KHZ 1000000
260
261 /**
262  * s3c_nand_calc_rate - calculate timing data.
263  * @wanted: The cycle time in nanoseconds.
264  * @clk: The clock rate in kHz.
265  * @max: The maximum divider value.
266  *
267  * Calculate the timing value from the given parameters.
268  */
269 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
270 {
271         int result;
272
273         result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
274
275         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
276
277         if (result > max) {
278                 pr_err("%d ns is too big for current clock rate %ld\n",
279                         wanted, clk);
280                 return -1;
281         }
282
283         if (result < 1)
284                 result = 1;
285
286         return result;
287 }
288
289 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
290
291 /* controller setup */
292
293 /**
294  * s3c2410_nand_setrate - setup controller timing information.
295  * @info: The controller instance.
296  *
297  * Given the information supplied by the platform, calculate and set
298  * the necessary timing registers in the hardware to generate the
299  * necessary timing cycles to the hardware.
300  */
301 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
302 {
303         struct s3c2410_platform_nand *plat = info->platform;
304         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
305         int tacls, twrph0, twrph1;
306         unsigned long clkrate = clk_get_rate(info->clk);
307         unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
308         unsigned long flags;
309
310         /* calculate the timing information for the controller */
311
312         info->clk_rate = clkrate;
313         clkrate /= 1000;        /* turn clock into kHz for ease of use */
314
315         if (plat != NULL) {
316                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
317                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
318                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
319         } else {
320                 /* default timings */
321                 tacls = tacls_max;
322                 twrph0 = 8;
323                 twrph1 = 8;
324         }
325
326         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
327                 dev_err(info->device, "cannot get suitable timings\n");
328                 return -EINVAL;
329         }
330
331         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
332                 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
333                                                 twrph1, to_ns(twrph1, clkrate));
334
335         switch (info->cpu_type) {
336         case TYPE_S3C2410:
337                 mask = (S3C2410_NFCONF_TACLS(3) |
338                         S3C2410_NFCONF_TWRPH0(7) |
339                         S3C2410_NFCONF_TWRPH1(7));
340                 set = S3C2410_NFCONF_EN;
341                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
342                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
343                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
344                 break;
345
346         case TYPE_S3C2440:
347         case TYPE_S3C2412:
348                 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
349                         S3C2440_NFCONF_TWRPH0(7) |
350                         S3C2440_NFCONF_TWRPH1(7));
351
352                 set = S3C2440_NFCONF_TACLS(tacls - 1);
353                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
354                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
355                 break;
356
357         default:
358                 BUG();
359         }
360
361         local_irq_save(flags);
362
363         cfg = readl(info->regs + S3C2410_NFCONF);
364         cfg &= ~mask;
365         cfg |= set;
366         writel(cfg, info->regs + S3C2410_NFCONF);
367
368         local_irq_restore(flags);
369
370         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
371
372         return 0;
373 }
374
375 /**
376  * s3c2410_nand_inithw - basic hardware initialisation
377  * @info: The hardware state.
378  *
379  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
380  * to setup the hardware access speeds and set the controller to be enabled.
381 */
382 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
383 {
384         int ret;
385
386         ret = s3c2410_nand_setrate(info);
387         if (ret < 0)
388                 return ret;
389
390         switch (info->cpu_type) {
391         case TYPE_S3C2410:
392         default:
393                 break;
394
395         case TYPE_S3C2440:
396         case TYPE_S3C2412:
397                 /* enable the controller and de-assert nFCE */
398
399                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
400         }
401
402         return 0;
403 }
404
405 /**
406  * s3c2410_nand_select_chip - select the given nand chip
407  * @this: NAND chip object.
408  * @chip: The chip number.
409  *
410  * This is called by the MTD layer to either select a given chip for the
411  * @mtd instance, or to indicate that the access has finished and the
412  * chip can be de-selected.
413  *
414  * The routine ensures that the nFCE line is correctly setup, and any
415  * platform specific selection code is called to route nFCE to the specific
416  * chip.
417  */
418 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
419 {
420         struct s3c2410_nand_info *info;
421         struct s3c2410_nand_mtd *nmtd;
422         unsigned long cur;
423
424         nmtd = nand_get_controller_data(this);
425         info = nmtd->info;
426
427         if (chip != -1)
428                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
429
430         cur = readl(info->sel_reg);
431
432         if (chip == -1) {
433                 cur |= info->sel_bit;
434         } else {
435                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
436                         dev_err(info->device, "invalid chip %d\n", chip);
437                         return;
438                 }
439
440                 if (info->platform != NULL) {
441                         if (info->platform->select_chip != NULL)
442                                 (info->platform->select_chip) (nmtd->set, chip);
443                 }
444
445                 cur &= ~info->sel_bit;
446         }
447
448         writel(cur, info->sel_reg);
449
450         if (chip == -1)
451                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
452 }
453
454 /* s3c2410_nand_hwcontrol
455  *
456  * Issue command and address cycles to the chip
457 */
458
459 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
460                                    unsigned int ctrl)
461 {
462         struct mtd_info *mtd = nand_to_mtd(chip);
463         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
464
465         if (cmd == NAND_CMD_NONE)
466                 return;
467
468         if (ctrl & NAND_CLE)
469                 writeb(cmd, info->regs + S3C2410_NFCMD);
470         else
471                 writeb(cmd, info->regs + S3C2410_NFADDR);
472 }
473
474 /* command and control functions */
475
476 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
477                                    unsigned int ctrl)
478 {
479         struct mtd_info *mtd = nand_to_mtd(chip);
480         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
481
482         if (cmd == NAND_CMD_NONE)
483                 return;
484
485         if (ctrl & NAND_CLE)
486                 writeb(cmd, info->regs + S3C2440_NFCMD);
487         else
488                 writeb(cmd, info->regs + S3C2440_NFADDR);
489 }
490
491 /* s3c2410_nand_devready()
492  *
493  * returns 0 if the nand is busy, 1 if it is ready
494 */
495
496 static int s3c2410_nand_devready(struct nand_chip *chip)
497 {
498         struct mtd_info *mtd = nand_to_mtd(chip);
499         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
500         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
501 }
502
503 static int s3c2440_nand_devready(struct nand_chip *chip)
504 {
505         struct mtd_info *mtd = nand_to_mtd(chip);
506         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
507         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
508 }
509
510 static int s3c2412_nand_devready(struct nand_chip *chip)
511 {
512         struct mtd_info *mtd = nand_to_mtd(chip);
513         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
514         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
515 }
516
517 /* ECC handling functions */
518
519 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
520                                      u_char *read_ecc, u_char *calc_ecc)
521 {
522         struct mtd_info *mtd = nand_to_mtd(chip);
523         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
524         unsigned int diff0, diff1, diff2;
525         unsigned int bit, byte;
526
527         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
528
529         diff0 = read_ecc[0] ^ calc_ecc[0];
530         diff1 = read_ecc[1] ^ calc_ecc[1];
531         diff2 = read_ecc[2] ^ calc_ecc[2];
532
533         pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
534                  __func__, 3, read_ecc, 3, calc_ecc,
535                  diff0, diff1, diff2);
536
537         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
538                 return 0;               /* ECC is ok */
539
540         /* sometimes people do not think about using the ECC, so check
541          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
542          * the error, on the assumption that this is an un-eccd page.
543          */
544         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
545             && info->platform->ignore_unset_ecc)
546                 return 0;
547
548         /* Can we correct this ECC (ie, one row and column change).
549          * Note, this is similar to the 256 error code on smartmedia */
550
551         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
552             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
553             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
554                 /* calculate the bit position of the error */
555
556                 bit  = ((diff2 >> 3) & 1) |
557                        ((diff2 >> 4) & 2) |
558                        ((diff2 >> 5) & 4);
559
560                 /* calculate the byte position of the error */
561
562                 byte = ((diff2 << 7) & 0x100) |
563                        ((diff1 << 0) & 0x80)  |
564                        ((diff1 << 1) & 0x40)  |
565                        ((diff1 << 2) & 0x20)  |
566                        ((diff1 << 3) & 0x10)  |
567                        ((diff0 >> 4) & 0x08)  |
568                        ((diff0 >> 3) & 0x04)  |
569                        ((diff0 >> 2) & 0x02)  |
570                        ((diff0 >> 1) & 0x01);
571
572                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
573                         bit, byte);
574
575                 dat[byte] ^= (1 << bit);
576                 return 1;
577         }
578
579         /* if there is only one bit difference in the ECC, then
580          * one of only a row or column parity has changed, which
581          * means the error is most probably in the ECC itself */
582
583         diff0 |= (diff1 << 8);
584         diff0 |= (diff2 << 16);
585
586         /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
587         if ((diff0 & (diff0 - 1)) == 0)
588                 return 1;
589
590         return -1;
591 }
592
593 /* ECC functions
594  *
595  * These allow the s3c2410 and s3c2440 to use the controller's ECC
596  * generator block to ECC the data as it passes through]
597 */
598
599 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
600 {
601         struct s3c2410_nand_info *info;
602         unsigned long ctrl;
603
604         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
605         ctrl = readl(info->regs + S3C2410_NFCONF);
606         ctrl |= S3C2410_NFCONF_INITECC;
607         writel(ctrl, info->regs + S3C2410_NFCONF);
608 }
609
610 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
611 {
612         struct s3c2410_nand_info *info;
613         unsigned long ctrl;
614
615         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
616         ctrl = readl(info->regs + S3C2440_NFCONT);
617         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
618                info->regs + S3C2440_NFCONT);
619 }
620
621 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
622 {
623         struct s3c2410_nand_info *info;
624         unsigned long ctrl;
625
626         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
627         ctrl = readl(info->regs + S3C2440_NFCONT);
628         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
629 }
630
631 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
632                                       const u_char *dat, u_char *ecc_code)
633 {
634         struct mtd_info *mtd = nand_to_mtd(chip);
635         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
636
637         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
638         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
639         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
640
641         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
642
643         return 0;
644 }
645
646 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
647                                       const u_char *dat, u_char *ecc_code)
648 {
649         struct mtd_info *mtd = nand_to_mtd(chip);
650         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
651         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
652
653         ecc_code[0] = ecc;
654         ecc_code[1] = ecc >> 8;
655         ecc_code[2] = ecc >> 16;
656
657         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
658
659         return 0;
660 }
661
662 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
663                                       const u_char *dat, u_char *ecc_code)
664 {
665         struct mtd_info *mtd = nand_to_mtd(chip);
666         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
667         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
668
669         ecc_code[0] = ecc;
670         ecc_code[1] = ecc >> 8;
671         ecc_code[2] = ecc >> 16;
672
673         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
674
675         return 0;
676 }
677
678 /* over-ride the standard functions for a little more speed. We can
679  * use read/write block to move the data buffers to/from the controller
680 */
681
682 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
683 {
684         readsb(this->legacy.IO_ADDR_R, buf, len);
685 }
686
687 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
688 {
689         struct mtd_info *mtd = nand_to_mtd(this);
690         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
691
692         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
693
694         /* cleanup if we've got less than a word to do */
695         if (len & 3) {
696                 buf += len & ~3;
697
698                 for (; len & 3; len--)
699                         *buf++ = readb(info->regs + S3C2440_NFDATA);
700         }
701 }
702
703 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
704                                    int len)
705 {
706         writesb(this->legacy.IO_ADDR_W, buf, len);
707 }
708
709 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
710                                    int len)
711 {
712         struct mtd_info *mtd = nand_to_mtd(this);
713         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
714
715         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
716
717         /* cleanup any fractional write */
718         if (len & 3) {
719                 buf += len & ~3;
720
721                 for (; len & 3; len--, buf++)
722                         writeb(*buf, info->regs + S3C2440_NFDATA);
723         }
724 }
725
726 /* cpufreq driver support */
727
728 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
729
730 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
731                                           unsigned long val, void *data)
732 {
733         struct s3c2410_nand_info *info;
734         unsigned long newclk;
735
736         info = container_of(nb, struct s3c2410_nand_info, freq_transition);
737         newclk = clk_get_rate(info->clk);
738
739         if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
740             (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
741                 s3c2410_nand_setrate(info);
742         }
743
744         return 0;
745 }
746
747 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
748 {
749         info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
750
751         return cpufreq_register_notifier(&info->freq_transition,
752                                          CPUFREQ_TRANSITION_NOTIFIER);
753 }
754
755 static inline void
756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
757 {
758         cpufreq_unregister_notifier(&info->freq_transition,
759                                     CPUFREQ_TRANSITION_NOTIFIER);
760 }
761
762 #else
763 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
764 {
765         return 0;
766 }
767
768 static inline void
769 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
770 {
771 }
772 #endif
773
774 /* device management functions */
775
776 static int s3c24xx_nand_remove(struct platform_device *pdev)
777 {
778         struct s3c2410_nand_info *info = to_nand_info(pdev);
779
780         if (info == NULL)
781                 return 0;
782
783         s3c2410_nand_cpufreq_deregister(info);
784
785         /* Release all our mtds  and their partitions, then go through
786          * freeing the resources used
787          */
788
789         if (info->mtds != NULL) {
790                 struct s3c2410_nand_mtd *ptr = info->mtds;
791                 int mtdno;
792
793                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
794                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
795                         nand_release(&ptr->chip);
796                 }
797         }
798
799         /* free the common resources */
800
801         if (!IS_ERR(info->clk))
802                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
803
804         return 0;
805 }
806
807 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
808                                       struct s3c2410_nand_mtd *mtd,
809                                       struct s3c2410_nand_set *set)
810 {
811         if (set) {
812                 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
813
814                 mtdinfo->name = set->name;
815
816                 return mtd_device_register(mtdinfo, set->partitions,
817                                            set->nr_partitions);
818         }
819
820         return -ENODEV;
821 }
822
823 static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
824                                         const struct nand_data_interface *conf)
825 {
826         struct mtd_info *mtd = nand_to_mtd(chip);
827         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
828         struct s3c2410_platform_nand *pdata = info->platform;
829         const struct nand_sdr_timings *timings;
830         int tacls;
831
832         timings = nand_get_sdr_timings(conf);
833         if (IS_ERR(timings))
834                 return -ENOTSUPP;
835
836         tacls = timings->tCLS_min - timings->tWP_min;
837         if (tacls < 0)
838                 tacls = 0;
839
840         pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
841         pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
842         pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
843
844         return s3c2410_nand_setrate(info);
845 }
846
847 /**
848  * s3c2410_nand_init_chip - initialise a single instance of an chip
849  * @info: The base NAND controller the chip is on.
850  * @nmtd: The new controller MTD instance to fill in.
851  * @set: The information passed from the board specific platform data.
852  *
853  * Initialise the given @nmtd from the information in @info and @set. This
854  * readies the structure for use with the MTD layer functions by ensuring
855  * all pointers are setup and the necessary control routines selected.
856  */
857 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
858                                    struct s3c2410_nand_mtd *nmtd,
859                                    struct s3c2410_nand_set *set)
860 {
861         struct device_node *np = info->device->of_node;
862         struct nand_chip *chip = &nmtd->chip;
863         void __iomem *regs = info->regs;
864
865         nand_set_flash_node(chip, set->of_node);
866
867         chip->legacy.write_buf    = s3c2410_nand_write_buf;
868         chip->legacy.read_buf     = s3c2410_nand_read_buf;
869         chip->legacy.select_chip  = s3c2410_nand_select_chip;
870         chip->legacy.chip_delay   = 50;
871         nand_set_controller_data(chip, nmtd);
872         chip->options      = set->options;
873         chip->controller   = &info->controller;
874
875         /*
876          * let's keep behavior unchanged for legacy boards booting via pdata and
877          * auto-detect timings only when booting with a device tree.
878          */
879         if (!np)
880                 chip->options |= NAND_KEEP_TIMINGS;
881
882         switch (info->cpu_type) {
883         case TYPE_S3C2410:
884                 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
885                 info->sel_reg   = regs + S3C2410_NFCONF;
886                 info->sel_bit   = S3C2410_NFCONF_nFCE;
887                 chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
888                 chip->legacy.dev_ready = s3c2410_nand_devready;
889                 break;
890
891         case TYPE_S3C2440:
892                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
893                 info->sel_reg   = regs + S3C2440_NFCONT;
894                 info->sel_bit   = S3C2440_NFCONT_nFCE;
895                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
896                 chip->legacy.dev_ready = s3c2440_nand_devready;
897                 chip->legacy.read_buf  = s3c2440_nand_read_buf;
898                 chip->legacy.write_buf  = s3c2440_nand_write_buf;
899                 break;
900
901         case TYPE_S3C2412:
902                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
903                 info->sel_reg   = regs + S3C2440_NFCONT;
904                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
905                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
906                 chip->legacy.dev_ready = s3c2412_nand_devready;
907
908                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
909                         dev_info(info->device, "System booted from NAND\n");
910
911                 break;
912         }
913
914         chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
915
916         nmtd->info         = info;
917         nmtd->set          = set;
918
919         chip->ecc.mode = info->platform->ecc_mode;
920
921         /*
922          * If you use u-boot BBT creation code, specifying this flag will
923          * let the kernel fish out the BBT from the NAND.
924          */
925         if (set->flash_bbt)
926                 chip->bbt_options |= NAND_BBT_USE_FLASH;
927 }
928
929 /**
930  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
931  * @chip: The NAND chip
932  *
933  * This hook is called by the core after the identification of the NAND chip,
934  * once the relevant per-chip information is up to date.. This call ensure that
935  * we update the internal state accordingly.
936  *
937  * The internal state is currently limited to the ECC state information.
938 */
939 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
940 {
941         struct mtd_info *mtd = nand_to_mtd(chip);
942         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
943
944         switch (chip->ecc.mode) {
945
946         case NAND_ECC_NONE:
947                 dev_info(info->device, "ECC disabled\n");
948                 break;
949
950         case NAND_ECC_SOFT:
951                 /*
952                  * This driver expects Hamming based ECC when ecc_mode is set
953                  * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
954                  * avoid adding an extra ecc_algo field to
955                  * s3c2410_platform_nand.
956                  */
957                 chip->ecc.algo = NAND_ECC_HAMMING;
958                 dev_info(info->device, "soft ECC\n");
959                 break;
960
961         case NAND_ECC_HW:
962                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
963                 chip->ecc.correct   = s3c2410_nand_correct_data;
964                 chip->ecc.strength  = 1;
965
966                 switch (info->cpu_type) {
967                 case TYPE_S3C2410:
968                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
969                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
970                         break;
971
972                 case TYPE_S3C2412:
973                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
974                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
975                         break;
976
977                 case TYPE_S3C2440:
978                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
979                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
980                         break;
981                 }
982
983                 dev_dbg(info->device, "chip %p => page shift %d\n",
984                         chip, chip->page_shift);
985
986                 /* change the behaviour depending on whether we are using
987                  * the large or small page nand device */
988                 if (chip->page_shift > 10) {
989                         chip->ecc.size      = 256;
990                         chip->ecc.bytes     = 3;
991                 } else {
992                         chip->ecc.size      = 512;
993                         chip->ecc.bytes     = 3;
994                         mtd_set_ooblayout(nand_to_mtd(chip),
995                                           &s3c2410_ooblayout_ops);
996                 }
997
998                 dev_info(info->device, "hardware ECC\n");
999                 break;
1000
1001         default:
1002                 dev_err(info->device, "invalid ECC mode!\n");
1003                 return -EINVAL;
1004         }
1005
1006         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1007                 chip->options |= NAND_SKIP_BBTSCAN;
1008
1009         return 0;
1010 }
1011
1012 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1013         .attach_chip = s3c2410_nand_attach_chip,
1014         .setup_data_interface = s3c2410_nand_setup_data_interface,
1015 };
1016
1017 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1018         {
1019                 .compatible = "samsung,s3c2410-nand",
1020                 .data = &s3c2410_nand_devtype_data,
1021         }, {
1022                 /* also compatible with s3c6400 */
1023                 .compatible = "samsung,s3c2412-nand",
1024                 .data = &s3c2412_nand_devtype_data,
1025         }, {
1026                 .compatible = "samsung,s3c2440-nand",
1027                 .data = &s3c2440_nand_devtype_data,
1028         },
1029         { /* sentinel */ }
1030 };
1031 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1032
1033 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1034 {
1035         const struct s3c24XX_nand_devtype_data *devtype_data;
1036         struct s3c2410_platform_nand *pdata;
1037         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1038         struct device_node *np = pdev->dev.of_node, *child;
1039         struct s3c2410_nand_set *sets;
1040
1041         devtype_data = of_device_get_match_data(&pdev->dev);
1042         if (!devtype_data)
1043                 return -ENODEV;
1044
1045         info->cpu_type = devtype_data->type;
1046
1047         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1048         if (!pdata)
1049                 return -ENOMEM;
1050
1051         pdev->dev.platform_data = pdata;
1052
1053         pdata->nr_sets = of_get_child_count(np);
1054         if (!pdata->nr_sets)
1055                 return 0;
1056
1057         sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1058                             GFP_KERNEL);
1059         if (!sets)
1060                 return -ENOMEM;
1061
1062         pdata->sets = sets;
1063
1064         for_each_available_child_of_node(np, child) {
1065                 sets->name = (char *)child->name;
1066                 sets->of_node = child;
1067                 sets->nr_chips = 1;
1068
1069                 of_node_get(child);
1070
1071                 sets++;
1072         }
1073
1074         return 0;
1075 }
1076
1077 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1078 {
1079         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1080
1081         info->cpu_type = platform_get_device_id(pdev)->driver_data;
1082
1083         return 0;
1084 }
1085
1086 /* s3c24xx_nand_probe
1087  *
1088  * called by device layer when it finds a device matching
1089  * one our driver can handled. This code checks to see if
1090  * it can allocate all necessary resources then calls the
1091  * nand layer to look for devices
1092 */
1093 static int s3c24xx_nand_probe(struct platform_device *pdev)
1094 {
1095         struct s3c2410_platform_nand *plat;
1096         struct s3c2410_nand_info *info;
1097         struct s3c2410_nand_mtd *nmtd;
1098         struct s3c2410_nand_set *sets;
1099         struct resource *res;
1100         int err = 0;
1101         int size;
1102         int nr_sets;
1103         int setno;
1104
1105         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1106         if (info == NULL) {
1107                 err = -ENOMEM;
1108                 goto exit_error;
1109         }
1110
1111         platform_set_drvdata(pdev, info);
1112
1113         nand_controller_init(&info->controller);
1114         info->controller.ops = &s3c24xx_nand_controller_ops;
1115
1116         /* get the clock source and enable it */
1117
1118         info->clk = devm_clk_get(&pdev->dev, "nand");
1119         if (IS_ERR(info->clk)) {
1120                 dev_err(&pdev->dev, "failed to get clock\n");
1121                 err = -ENOENT;
1122                 goto exit_error;
1123         }
1124
1125         s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1126
1127         if (pdev->dev.of_node)
1128                 err = s3c24xx_nand_probe_dt(pdev);
1129         else
1130                 err = s3c24xx_nand_probe_pdata(pdev);
1131
1132         if (err)
1133                 goto exit_error;
1134
1135         plat = to_nand_plat(pdev);
1136
1137         /* allocate and map the resource */
1138
1139         /* currently we assume we have the one resource */
1140         res = pdev->resource;
1141         size = resource_size(res);
1142
1143         info->device    = &pdev->dev;
1144         info->platform  = plat;
1145
1146         info->regs = devm_ioremap_resource(&pdev->dev, res);
1147         if (IS_ERR(info->regs)) {
1148                 err = PTR_ERR(info->regs);
1149                 goto exit_error;
1150         }
1151
1152         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1153
1154         if (!plat->sets || plat->nr_sets < 1) {
1155                 err = -EINVAL;
1156                 goto exit_error;
1157         }
1158
1159         sets = plat->sets;
1160         nr_sets = plat->nr_sets;
1161
1162         info->mtd_count = nr_sets;
1163
1164         /* allocate our information */
1165
1166         size = nr_sets * sizeof(*info->mtds);
1167         info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1168         if (info->mtds == NULL) {
1169                 err = -ENOMEM;
1170                 goto exit_error;
1171         }
1172
1173         /* initialise all possible chips */
1174
1175         nmtd = info->mtds;
1176
1177         for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1178                 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1179
1180                 pr_debug("initialising set %d (%p, info %p)\n",
1181                          setno, nmtd, info);
1182
1183                 mtd->dev.parent = &pdev->dev;
1184                 s3c2410_nand_init_chip(info, nmtd, sets);
1185
1186                 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1187                 if (err)
1188                         goto exit_error;
1189
1190                 s3c2410_nand_add_partition(info, nmtd, sets);
1191         }
1192
1193         /* initialise the hardware */
1194         err = s3c2410_nand_inithw(info);
1195         if (err != 0)
1196                 goto exit_error;
1197
1198         err = s3c2410_nand_cpufreq_register(info);
1199         if (err < 0) {
1200                 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1201                 goto exit_error;
1202         }
1203
1204         if (allow_clk_suspend(info)) {
1205                 dev_info(&pdev->dev, "clock idle support enabled\n");
1206                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1207         }
1208
1209         return 0;
1210
1211  exit_error:
1212         s3c24xx_nand_remove(pdev);
1213
1214         if (err == 0)
1215                 err = -EINVAL;
1216         return err;
1217 }
1218
1219 /* PM Support */
1220 #ifdef CONFIG_PM
1221
1222 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1223 {
1224         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1225
1226         if (info) {
1227                 info->save_sel = readl(info->sel_reg);
1228
1229                 /* For the moment, we must ensure nFCE is high during
1230                  * the time we are suspended. This really should be
1231                  * handled by suspending the MTDs we are using, but
1232                  * that is currently not the case. */
1233
1234                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1235
1236                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1237         }
1238
1239         return 0;
1240 }
1241
1242 static int s3c24xx_nand_resume(struct platform_device *dev)
1243 {
1244         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1245         unsigned long sel;
1246
1247         if (info) {
1248                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1249                 s3c2410_nand_inithw(info);
1250
1251                 /* Restore the state of the nFCE line. */
1252
1253                 sel = readl(info->sel_reg);
1254                 sel &= ~info->sel_bit;
1255                 sel |= info->save_sel & info->sel_bit;
1256                 writel(sel, info->sel_reg);
1257
1258                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1259         }
1260
1261         return 0;
1262 }
1263
1264 #else
1265 #define s3c24xx_nand_suspend NULL
1266 #define s3c24xx_nand_resume NULL
1267 #endif
1268
1269 /* driver device registration */
1270
1271 static const struct platform_device_id s3c24xx_driver_ids[] = {
1272         {
1273                 .name           = "s3c2410-nand",
1274                 .driver_data    = TYPE_S3C2410,
1275         }, {
1276                 .name           = "s3c2440-nand",
1277                 .driver_data    = TYPE_S3C2440,
1278         }, {
1279                 .name           = "s3c2412-nand",
1280                 .driver_data    = TYPE_S3C2412,
1281         }, {
1282                 .name           = "s3c6400-nand",
1283                 .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1284         },
1285         { }
1286 };
1287
1288 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1289
1290 static struct platform_driver s3c24xx_nand_driver = {
1291         .probe          = s3c24xx_nand_probe,
1292         .remove         = s3c24xx_nand_remove,
1293         .suspend        = s3c24xx_nand_suspend,
1294         .resume         = s3c24xx_nand_resume,
1295         .id_table       = s3c24xx_driver_ids,
1296         .driver         = {
1297                 .name   = "s3c24xx-nand",
1298                 .of_match_table = s3c24xx_nand_dt_ids,
1299         },
1300 };
1301
1302 module_platform_driver(s3c24xx_nand_driver);
1303
1304 MODULE_LICENSE("GPL");
1305 MODULE_AUTHOR("Ben Dooks <[email protected]>");
1306 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
This page took 0.10887 seconds and 4 git commands to generate.