2 * HID support for Linux
4 * Copyright (c) 1999 Andreas Gal
7 * Copyright (c) 2006-2012 Jiri Kosina
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
45 #define DRIVER_DESC "HID core driver"
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
57 * Register a new report for a device.
60 struct hid_report *hid_register_report(struct hid_device *device,
61 unsigned int type, unsigned int id,
62 unsigned int application)
64 struct hid_report_enum *report_enum = device->report_enum + type;
65 struct hid_report *report;
67 if (id >= HID_MAX_IDS)
69 if (report_enum->report_id_hash[id])
70 return report_enum->report_id_hash[id];
72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
77 report_enum->numbered = 1;
82 report->device = device;
83 report->application = application;
84 report_enum->report_id_hash[id] = report;
86 list_add_tail(&report->list, &report_enum->report_list);
90 EXPORT_SYMBOL_GPL(hid_register_report);
93 * Register a new field for this report.
96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
98 struct hid_field *field;
100 if (report->maxfield == HID_MAX_FIELDS) {
101 hid_err(report->device, "too many fields in report\n");
105 field = kzalloc((sizeof(struct hid_field) +
106 usages * sizeof(struct hid_usage) +
107 values * sizeof(unsigned)), GFP_KERNEL);
111 field->index = report->maxfield++;
112 report->field[field->index] = field;
113 field->usage = (struct hid_usage *)(field + 1);
114 field->value = (s32 *)(field->usage + usages);
115 field->report = report;
121 * Open a collection. The type/usage is pushed on the stack.
124 static int open_collection(struct hid_parser *parser, unsigned type)
126 struct hid_collection *collection;
129 usage = parser->local.usage[0];
131 if (parser->collection_stack_ptr == parser->collection_stack_size) {
132 unsigned int *collection_stack;
133 unsigned int new_size = parser->collection_stack_size +
134 HID_COLLECTION_STACK_SIZE;
136 collection_stack = krealloc(parser->collection_stack,
137 new_size * sizeof(unsigned int),
139 if (!collection_stack)
142 parser->collection_stack = collection_stack;
143 parser->collection_stack_size = new_size;
146 if (parser->device->maxcollection == parser->device->collection_size) {
147 collection = kmalloc(
148 array3_size(sizeof(struct hid_collection),
149 parser->device->collection_size,
152 if (collection == NULL) {
153 hid_err(parser->device, "failed to reallocate collection array\n");
156 memcpy(collection, parser->device->collection,
157 sizeof(struct hid_collection) *
158 parser->device->collection_size);
159 memset(collection + parser->device->collection_size, 0,
160 sizeof(struct hid_collection) *
161 parser->device->collection_size);
162 kfree(parser->device->collection);
163 parser->device->collection = collection;
164 parser->device->collection_size *= 2;
167 parser->collection_stack[parser->collection_stack_ptr++] =
168 parser->device->maxcollection;
170 collection = parser->device->collection +
171 parser->device->maxcollection++;
172 collection->type = type;
173 collection->usage = usage;
174 collection->level = parser->collection_stack_ptr - 1;
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
183 * Close a collection.
186 static int close_collection(struct hid_parser *parser)
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
192 parser->collection_stack_ptr--;
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
203 struct hid_collection *collection = parser->device->collection;
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
211 return 0; /* we know nothing about this usage type */
215 * Add a usage to the temporary parser table.
218 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
220 if (parser->local.usage_index >= HID_MAX_USAGES) {
221 hid_err(parser->device, "usage index exceeded\n");
224 parser->local.usage[parser->local.usage_index] = usage;
225 parser->local.collection_index[parser->local.usage_index] =
226 parser->collection_stack_ptr ?
227 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
228 parser->local.usage_index++;
233 * Register a new field for this report.
236 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
238 struct hid_report *report;
239 struct hid_field *field;
243 unsigned int application;
245 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
247 report = hid_register_report(parser->device, report_type,
248 parser->global.report_id, application);
250 hid_err(parser->device, "hid_register_report failed\n");
254 /* Handle both signed and unsigned cases properly */
255 if ((parser->global.logical_minimum < 0 &&
256 parser->global.logical_maximum <
257 parser->global.logical_minimum) ||
258 (parser->global.logical_minimum >= 0 &&
259 (__u32)parser->global.logical_maximum <
260 (__u32)parser->global.logical_minimum)) {
261 dbg_hid("logical range invalid 0x%x 0x%x\n",
262 parser->global.logical_minimum,
263 parser->global.logical_maximum);
267 offset = report->size;
268 report->size += parser->global.report_size * parser->global.report_count;
270 if (!parser->local.usage_index) /* Ignore padding fields */
273 usages = max_t(unsigned, parser->local.usage_index,
274 parser->global.report_count);
276 field = hid_register_field(report, usages, parser->global.report_count);
280 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
281 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
282 field->application = application;
284 for (i = 0; i < usages; i++) {
286 /* Duplicate the last usage we parsed if we have excess values */
287 if (i >= parser->local.usage_index)
288 j = parser->local.usage_index - 1;
289 field->usage[i].hid = parser->local.usage[j];
290 field->usage[i].collection_index =
291 parser->local.collection_index[j];
292 field->usage[i].usage_index = i;
295 field->maxusage = usages;
296 field->flags = flags;
297 field->report_offset = offset;
298 field->report_type = report_type;
299 field->report_size = parser->global.report_size;
300 field->report_count = parser->global.report_count;
301 field->logical_minimum = parser->global.logical_minimum;
302 field->logical_maximum = parser->global.logical_maximum;
303 field->physical_minimum = parser->global.physical_minimum;
304 field->physical_maximum = parser->global.physical_maximum;
305 field->unit_exponent = parser->global.unit_exponent;
306 field->unit = parser->global.unit;
312 * Read data value from item.
315 static u32 item_udata(struct hid_item *item)
317 switch (item->size) {
318 case 1: return item->data.u8;
319 case 2: return item->data.u16;
320 case 4: return item->data.u32;
325 static s32 item_sdata(struct hid_item *item)
327 switch (item->size) {
328 case 1: return item->data.s8;
329 case 2: return item->data.s16;
330 case 4: return item->data.s32;
336 * Process a global item.
339 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
343 case HID_GLOBAL_ITEM_TAG_PUSH:
345 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
346 hid_err(parser->device, "global environment stack overflow\n");
350 memcpy(parser->global_stack + parser->global_stack_ptr++,
351 &parser->global, sizeof(struct hid_global));
354 case HID_GLOBAL_ITEM_TAG_POP:
356 if (!parser->global_stack_ptr) {
357 hid_err(parser->device, "global environment stack underflow\n");
361 memcpy(&parser->global, parser->global_stack +
362 --parser->global_stack_ptr, sizeof(struct hid_global));
365 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
366 parser->global.usage_page = item_udata(item);
369 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
370 parser->global.logical_minimum = item_sdata(item);
373 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
374 if (parser->global.logical_minimum < 0)
375 parser->global.logical_maximum = item_sdata(item);
377 parser->global.logical_maximum = item_udata(item);
380 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
381 parser->global.physical_minimum = item_sdata(item);
384 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
385 if (parser->global.physical_minimum < 0)
386 parser->global.physical_maximum = item_sdata(item);
388 parser->global.physical_maximum = item_udata(item);
391 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
392 /* Many devices provide unit exponent as a two's complement
393 * nibble due to the common misunderstanding of HID
394 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
395 * both this and the standard encoding. */
396 raw_value = item_sdata(item);
397 if (!(raw_value & 0xfffffff0))
398 parser->global.unit_exponent = hid_snto32(raw_value, 4);
400 parser->global.unit_exponent = raw_value;
403 case HID_GLOBAL_ITEM_TAG_UNIT:
404 parser->global.unit = item_udata(item);
407 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
408 parser->global.report_size = item_udata(item);
409 if (parser->global.report_size > 256) {
410 hid_err(parser->device, "invalid report_size %d\n",
411 parser->global.report_size);
416 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
417 parser->global.report_count = item_udata(item);
418 if (parser->global.report_count > HID_MAX_USAGES) {
419 hid_err(parser->device, "invalid report_count %d\n",
420 parser->global.report_count);
425 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
426 parser->global.report_id = item_udata(item);
427 if (parser->global.report_id == 0 ||
428 parser->global.report_id >= HID_MAX_IDS) {
429 hid_err(parser->device, "report_id %u is invalid\n",
430 parser->global.report_id);
436 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
442 * Process a local item.
445 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
451 data = item_udata(item);
454 case HID_LOCAL_ITEM_TAG_DELIMITER:
458 * We treat items before the first delimiter
459 * as global to all usage sets (branch 0).
460 * In the moment we process only these global
461 * items and the first delimiter set.
463 if (parser->local.delimiter_depth != 0) {
464 hid_err(parser->device, "nested delimiters\n");
467 parser->local.delimiter_depth++;
468 parser->local.delimiter_branch++;
470 if (parser->local.delimiter_depth < 1) {
471 hid_err(parser->device, "bogus close delimiter\n");
474 parser->local.delimiter_depth--;
478 case HID_LOCAL_ITEM_TAG_USAGE:
480 if (parser->local.delimiter_branch > 1) {
481 dbg_hid("alternative usage ignored\n");
486 data = (parser->global.usage_page << 16) + data;
488 return hid_add_usage(parser, data);
490 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
492 if (parser->local.delimiter_branch > 1) {
493 dbg_hid("alternative usage ignored\n");
498 data = (parser->global.usage_page << 16) + data;
500 parser->local.usage_minimum = data;
503 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
505 if (parser->local.delimiter_branch > 1) {
506 dbg_hid("alternative usage ignored\n");
511 data = (parser->global.usage_page << 16) + data;
513 count = data - parser->local.usage_minimum;
514 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
516 * We do not warn if the name is not set, we are
517 * actually pre-scanning the device.
519 if (dev_name(&parser->device->dev))
520 hid_warn(parser->device,
521 "ignoring exceeding usage max\n");
522 data = HID_MAX_USAGES - parser->local.usage_index +
523 parser->local.usage_minimum - 1;
525 hid_err(parser->device,
526 "no more usage index available\n");
531 for (n = parser->local.usage_minimum; n <= data; n++)
532 if (hid_add_usage(parser, n)) {
533 dbg_hid("hid_add_usage failed\n");
540 dbg_hid("unknown local item tag 0x%x\n", item->tag);
547 * Process a main item.
550 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
555 data = item_udata(item);
558 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
559 ret = open_collection(parser, data & 0xff);
561 case HID_MAIN_ITEM_TAG_END_COLLECTION:
562 ret = close_collection(parser);
564 case HID_MAIN_ITEM_TAG_INPUT:
565 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
567 case HID_MAIN_ITEM_TAG_OUTPUT:
568 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
570 case HID_MAIN_ITEM_TAG_FEATURE:
571 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
574 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
578 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
584 * Process a reserved item.
587 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
589 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
594 * Free a report and all registered fields. The field->usage and
595 * field->value table's are allocated behind the field, so we need
596 * only to free(field) itself.
599 static void hid_free_report(struct hid_report *report)
603 for (n = 0; n < report->maxfield; n++)
604 kfree(report->field[n]);
609 * Close report. This function returns the device
610 * state to the point prior to hid_open_report().
612 static void hid_close_report(struct hid_device *device)
616 for (i = 0; i < HID_REPORT_TYPES; i++) {
617 struct hid_report_enum *report_enum = device->report_enum + i;
619 for (j = 0; j < HID_MAX_IDS; j++) {
620 struct hid_report *report = report_enum->report_id_hash[j];
622 hid_free_report(report);
624 memset(report_enum, 0, sizeof(*report_enum));
625 INIT_LIST_HEAD(&report_enum->report_list);
628 kfree(device->rdesc);
629 device->rdesc = NULL;
632 kfree(device->collection);
633 device->collection = NULL;
634 device->collection_size = 0;
635 device->maxcollection = 0;
636 device->maxapplication = 0;
638 device->status &= ~HID_STAT_PARSED;
642 * Free a device structure, all reports, and all fields.
645 static void hid_device_release(struct device *dev)
647 struct hid_device *hid = to_hid_device(dev);
649 hid_close_report(hid);
650 kfree(hid->dev_rdesc);
655 * Fetch a report description item from the data stream. We support long
656 * items, though they are not used yet.
659 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
663 if ((end - start) <= 0)
668 item->type = (b >> 2) & 3;
669 item->tag = (b >> 4) & 15;
671 if (item->tag == HID_ITEM_TAG_LONG) {
673 item->format = HID_ITEM_FORMAT_LONG;
675 if ((end - start) < 2)
678 item->size = *start++;
679 item->tag = *start++;
681 if ((end - start) < item->size)
684 item->data.longdata = start;
689 item->format = HID_ITEM_FORMAT_SHORT;
692 switch (item->size) {
697 if ((end - start) < 1)
699 item->data.u8 = *start++;
703 if ((end - start) < 2)
705 item->data.u16 = get_unaligned_le16(start);
706 start = (__u8 *)((__le16 *)start + 1);
711 if ((end - start) < 4)
713 item->data.u32 = get_unaligned_le32(start);
714 start = (__u8 *)((__le32 *)start + 1);
721 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
723 struct hid_device *hid = parser->device;
725 if (usage == HID_DG_CONTACTID)
726 hid->group = HID_GROUP_MULTITOUCH;
729 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
731 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
732 parser->global.report_size == 8)
733 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
736 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
738 struct hid_device *hid = parser->device;
741 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
742 type == HID_COLLECTION_PHYSICAL)
743 hid->group = HID_GROUP_SENSOR_HUB;
745 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
746 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
747 hid->group == HID_GROUP_MULTITOUCH)
748 hid->group = HID_GROUP_GENERIC;
750 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
751 for (i = 0; i < parser->local.usage_index; i++)
752 if (parser->local.usage[i] == HID_GD_POINTER)
753 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
755 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
756 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
759 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
764 data = item_udata(item);
767 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
768 hid_scan_collection(parser, data & 0xff);
770 case HID_MAIN_ITEM_TAG_END_COLLECTION:
772 case HID_MAIN_ITEM_TAG_INPUT:
773 /* ignore constant inputs, they will be ignored by hid-input */
774 if (data & HID_MAIN_ITEM_CONSTANT)
776 for (i = 0; i < parser->local.usage_index; i++)
777 hid_scan_input_usage(parser, parser->local.usage[i]);
779 case HID_MAIN_ITEM_TAG_OUTPUT:
781 case HID_MAIN_ITEM_TAG_FEATURE:
782 for (i = 0; i < parser->local.usage_index; i++)
783 hid_scan_feature_usage(parser, parser->local.usage[i]);
787 /* Reset the local parser environment */
788 memset(&parser->local, 0, sizeof(parser->local));
794 * Scan a report descriptor before the device is added to the bus.
795 * Sets device groups and other properties that determine what driver
798 static int hid_scan_report(struct hid_device *hid)
800 struct hid_parser *parser;
801 struct hid_item item;
802 __u8 *start = hid->dev_rdesc;
803 __u8 *end = start + hid->dev_rsize;
804 static int (*dispatch_type[])(struct hid_parser *parser,
805 struct hid_item *item) = {
812 parser = vzalloc(sizeof(struct hid_parser));
816 parser->device = hid;
817 hid->group = HID_GROUP_GENERIC;
820 * The parsing is simpler than the one in hid_open_report() as we should
821 * be robust against hid errors. Those errors will be raised by
822 * hid_open_report() anyway.
824 while ((start = fetch_item(start, end, &item)) != NULL)
825 dispatch_type[item.type](parser, &item);
828 * Handle special flags set during scanning.
830 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
831 (hid->group == HID_GROUP_MULTITOUCH))
832 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
835 * Vendor specific handlings
837 switch (hid->vendor) {
838 case USB_VENDOR_ID_WACOM:
839 hid->group = HID_GROUP_WACOM;
841 case USB_VENDOR_ID_SYNAPTICS:
842 if (hid->group == HID_GROUP_GENERIC)
843 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
844 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
846 * hid-rmi should take care of them,
849 hid->group = HID_GROUP_RMI;
853 kfree(parser->collection_stack);
859 * hid_parse_report - parse device report
861 * @device: hid device
862 * @start: report start
865 * Allocate the device report as read by the bus driver. This function should
866 * only be called from parse() in ll drivers.
868 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
870 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
873 hid->dev_rsize = size;
876 EXPORT_SYMBOL_GPL(hid_parse_report);
878 static const char * const hid_report_names[] = {
881 "HID_FEATURE_REPORT",
884 * hid_validate_values - validate existing device report's value indexes
886 * @device: hid device
887 * @type: which report type to examine
888 * @id: which report ID to examine (0 for first)
889 * @field_index: which report field to examine
890 * @report_counts: expected number of values
892 * Validate the number of values in a given field of a given report, after
895 struct hid_report *hid_validate_values(struct hid_device *hid,
896 unsigned int type, unsigned int id,
897 unsigned int field_index,
898 unsigned int report_counts)
900 struct hid_report *report;
902 if (type > HID_FEATURE_REPORT) {
903 hid_err(hid, "invalid HID report type %u\n", type);
907 if (id >= HID_MAX_IDS) {
908 hid_err(hid, "invalid HID report id %u\n", id);
913 * Explicitly not using hid_get_report() here since it depends on
914 * ->numbered being checked, which may not always be the case when
915 * drivers go to access report values.
919 * Validating on id 0 means we should examine the first
920 * report in the list.
923 hid->report_enum[type].report_list.next,
924 struct hid_report, list);
926 report = hid->report_enum[type].report_id_hash[id];
929 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
932 if (report->maxfield <= field_index) {
933 hid_err(hid, "not enough fields in %s %u\n",
934 hid_report_names[type], id);
937 if (report->field[field_index]->report_count < report_counts) {
938 hid_err(hid, "not enough values in %s %u field %u\n",
939 hid_report_names[type], id, field_index);
944 EXPORT_SYMBOL_GPL(hid_validate_values);
947 * hid_open_report - open a driver-specific device report
949 * @device: hid device
951 * Parse a report description into a hid_device structure. Reports are
952 * enumerated, fields are attached to these reports.
953 * 0 returned on success, otherwise nonzero error value.
955 * This function (or the equivalent hid_parse() macro) should only be
956 * called from probe() in drivers, before starting the device.
958 int hid_open_report(struct hid_device *device)
960 struct hid_parser *parser;
961 struct hid_item item;
967 static int (*dispatch_type[])(struct hid_parser *parser,
968 struct hid_item *item) = {
975 if (WARN_ON(device->status & HID_STAT_PARSED))
978 start = device->dev_rdesc;
981 size = device->dev_rsize;
983 buf = kmemdup(start, size, GFP_KERNEL);
987 if (device->driver->report_fixup)
988 start = device->driver->report_fixup(device, buf, &size);
992 start = kmemdup(start, size, GFP_KERNEL);
997 device->rdesc = start;
998 device->rsize = size;
1000 parser = vzalloc(sizeof(struct hid_parser));
1006 parser->device = device;
1010 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1011 sizeof(struct hid_collection), GFP_KERNEL);
1012 if (!device->collection) {
1016 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1019 while ((start = fetch_item(start, end, &item)) != NULL) {
1021 if (item.format != HID_ITEM_FORMAT_SHORT) {
1022 hid_err(device, "unexpected long global item\n");
1026 if (dispatch_type[item.type](parser, &item)) {
1027 hid_err(device, "item %u %u %u %u parsing failed\n",
1028 item.format, (unsigned)item.size,
1029 (unsigned)item.type, (unsigned)item.tag);
1034 if (parser->collection_stack_ptr) {
1035 hid_err(device, "unbalanced collection at end of report description\n");
1038 if (parser->local.delimiter_depth) {
1039 hid_err(device, "unbalanced delimiter at end of report description\n");
1042 kfree(parser->collection_stack);
1044 device->status |= HID_STAT_PARSED;
1049 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1051 kfree(parser->collection_stack);
1054 hid_close_report(device);
1057 EXPORT_SYMBOL_GPL(hid_open_report);
1060 * Convert a signed n-bit integer to signed 32-bit integer. Common
1061 * cases are done through the compiler, the screwed things has to be
1065 static s32 snto32(__u32 value, unsigned n)
1068 case 8: return ((__s8)value);
1069 case 16: return ((__s16)value);
1070 case 32: return ((__s32)value);
1072 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1075 s32 hid_snto32(__u32 value, unsigned n)
1077 return snto32(value, n);
1079 EXPORT_SYMBOL_GPL(hid_snto32);
1082 * Convert a signed 32-bit integer to a signed n-bit integer.
1085 static u32 s32ton(__s32 value, unsigned n)
1087 s32 a = value >> (n - 1);
1089 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1090 return value & ((1 << n) - 1);
1094 * Extract/implement a data field from/to a little endian report (bit array).
1096 * Code sort-of follows HID spec:
1097 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1099 * While the USB HID spec allows unlimited length bit fields in "report
1100 * descriptors", most devices never use more than 16 bits.
1101 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1102 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1105 static u32 __extract(u8 *report, unsigned offset, int n)
1107 unsigned int idx = offset / 8;
1108 unsigned int bit_nr = 0;
1109 unsigned int bit_shift = offset % 8;
1110 int bits_to_copy = 8 - bit_shift;
1112 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1115 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1117 bit_nr += bits_to_copy;
1123 return value & mask;
1126 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1127 unsigned offset, unsigned n)
1130 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1135 return __extract(report, offset, n);
1137 EXPORT_SYMBOL_GPL(hid_field_extract);
1140 * "implement" : set bits in a little endian bit stream.
1141 * Same concepts as "extract" (see comments above).
1142 * The data mangled in the bit stream remains in little endian
1143 * order the whole time. It make more sense to talk about
1144 * endianness of register values by considering a register
1145 * a "cached" copy of the little endian bit stream.
1148 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1150 unsigned int idx = offset / 8;
1151 unsigned int bit_shift = offset % 8;
1152 int bits_to_set = 8 - bit_shift;
1154 while (n - bits_to_set >= 0) {
1155 report[idx] &= ~(0xff << bit_shift);
1156 report[idx] |= value << bit_shift;
1157 value >>= bits_to_set;
1166 u8 bit_mask = ((1U << n) - 1);
1167 report[idx] &= ~(bit_mask << bit_shift);
1168 report[idx] |= value << bit_shift;
1172 static void implement(const struct hid_device *hid, u8 *report,
1173 unsigned offset, unsigned n, u32 value)
1175 if (unlikely(n > 32)) {
1176 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1177 __func__, n, current->comm);
1179 } else if (n < 32) {
1180 u32 m = (1U << n) - 1;
1182 if (unlikely(value > m)) {
1184 "%s() called with too large value %d (n: %d)! (%s)\n",
1185 __func__, value, n, current->comm);
1191 __implement(report, offset, n, value);
1195 * Search an array for a value.
1198 static int search(__s32 *array, __s32 value, unsigned n)
1201 if (*array++ == value)
1208 * hid_match_report - check if driver's raw_event should be called
1211 * @report_type: type to match against
1213 * compare hid->driver->report_table->report_type to report->type
1215 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1217 const struct hid_report_id *id = hid->driver->report_table;
1219 if (!id) /* NULL means all */
1222 for (; id->report_type != HID_TERMINATOR; id++)
1223 if (id->report_type == HID_ANY_ID ||
1224 id->report_type == report->type)
1230 * hid_match_usage - check if driver's event should be called
1233 * @usage: usage to match against
1235 * compare hid->driver->usage_table->usage_{type,code} to
1236 * usage->usage_{type,code}
1238 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1240 const struct hid_usage_id *id = hid->driver->usage_table;
1242 if (!id) /* NULL means all */
1245 for (; id->usage_type != HID_ANY_ID - 1; id++)
1246 if ((id->usage_hid == HID_ANY_ID ||
1247 id->usage_hid == usage->hid) &&
1248 (id->usage_type == HID_ANY_ID ||
1249 id->usage_type == usage->type) &&
1250 (id->usage_code == HID_ANY_ID ||
1251 id->usage_code == usage->code))
1256 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1257 struct hid_usage *usage, __s32 value, int interrupt)
1259 struct hid_driver *hdrv = hid->driver;
1262 if (!list_empty(&hid->debug_list))
1263 hid_dump_input(hid, usage, value);
1265 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1266 ret = hdrv->event(hid, field, usage, value);
1269 hid_err(hid, "%s's event failed with %d\n",
1275 if (hid->claimed & HID_CLAIMED_INPUT)
1276 hidinput_hid_event(hid, field, usage, value);
1277 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1278 hid->hiddev_hid_event(hid, field, usage, value);
1282 * Analyse a received field, and fetch the data from it. The field
1283 * content is stored for next report processing (we do differential
1284 * reporting to the layer).
1287 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1288 __u8 *data, int interrupt)
1291 unsigned count = field->report_count;
1292 unsigned offset = field->report_offset;
1293 unsigned size = field->report_size;
1294 __s32 min = field->logical_minimum;
1295 __s32 max = field->logical_maximum;
1298 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1302 for (n = 0; n < count; n++) {
1304 value[n] = min < 0 ?
1305 snto32(hid_field_extract(hid, data, offset + n * size,
1307 hid_field_extract(hid, data, offset + n * size, size);
1309 /* Ignore report if ErrorRollOver */
1310 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1311 value[n] >= min && value[n] <= max &&
1312 value[n] - min < field->maxusage &&
1313 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1317 for (n = 0; n < count; n++) {
1319 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1320 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1324 if (field->value[n] >= min && field->value[n] <= max
1325 && field->value[n] - min < field->maxusage
1326 && field->usage[field->value[n] - min].hid
1327 && search(value, field->value[n], count))
1328 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1330 if (value[n] >= min && value[n] <= max
1331 && value[n] - min < field->maxusage
1332 && field->usage[value[n] - min].hid
1333 && search(field->value, value[n], count))
1334 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1337 memcpy(field->value, value, count * sizeof(__s32));
1343 * Output the field into the report.
1346 static void hid_output_field(const struct hid_device *hid,
1347 struct hid_field *field, __u8 *data)
1349 unsigned count = field->report_count;
1350 unsigned offset = field->report_offset;
1351 unsigned size = field->report_size;
1354 for (n = 0; n < count; n++) {
1355 if (field->logical_minimum < 0) /* signed values */
1356 implement(hid, data, offset + n * size, size,
1357 s32ton(field->value[n], size));
1358 else /* unsigned values */
1359 implement(hid, data, offset + n * size, size,
1365 * Create a report. 'data' has to be allocated using
1366 * hid_alloc_report_buf() so that it has proper size.
1369 void hid_output_report(struct hid_report *report, __u8 *data)
1374 *data++ = report->id;
1376 memset(data, 0, ((report->size - 1) >> 3) + 1);
1377 for (n = 0; n < report->maxfield; n++)
1378 hid_output_field(report->device, report->field[n], data);
1380 EXPORT_SYMBOL_GPL(hid_output_report);
1383 * Allocator for buffer that is going to be passed to hid_output_report()
1385 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1388 * 7 extra bytes are necessary to achieve proper functionality
1389 * of implement() working on 8 byte chunks
1392 u32 len = hid_report_len(report) + 7;
1394 return kmalloc(len, flags);
1396 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1399 * Set a field value. The report this field belongs to has to be
1400 * created and transferred to the device, to set this value in the
1404 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1411 size = field->report_size;
1413 hid_dump_input(field->report->device, field->usage + offset, value);
1415 if (offset >= field->report_count) {
1416 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1417 offset, field->report_count);
1420 if (field->logical_minimum < 0) {
1421 if (value != snto32(s32ton(value, size), size)) {
1422 hid_err(field->report->device, "value %d is out of range\n", value);
1426 field->value[offset] = value;
1429 EXPORT_SYMBOL_GPL(hid_set_field);
1431 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1434 struct hid_report *report;
1435 unsigned int n = 0; /* Normally report number is 0 */
1437 /* Device uses numbered reports, data[0] is report number */
1438 if (report_enum->numbered)
1441 report = report_enum->report_id_hash[n];
1443 dbg_hid("undefined report_id %u received\n", n);
1449 * Implement a generic .request() callback, using .raw_request()
1450 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1452 void __hid_request(struct hid_device *hid, struct hid_report *report,
1459 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1463 len = hid_report_len(report);
1465 if (reqtype == HID_REQ_SET_REPORT)
1466 hid_output_report(report, buf);
1468 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1469 report->type, reqtype);
1471 dbg_hid("unable to complete request: %d\n", ret);
1475 if (reqtype == HID_REQ_GET_REPORT)
1476 hid_input_report(hid, report->type, buf, ret, 0);
1481 EXPORT_SYMBOL_GPL(__hid_request);
1483 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1486 struct hid_report_enum *report_enum = hid->report_enum + type;
1487 struct hid_report *report;
1488 struct hid_driver *hdrv;
1490 u32 rsize, csize = size;
1494 report = hid_get_report(report_enum, data);
1498 if (report_enum->numbered) {
1503 rsize = ((report->size - 1) >> 3) + 1;
1505 if (rsize > HID_MAX_BUFFER_SIZE)
1506 rsize = HID_MAX_BUFFER_SIZE;
1508 if (csize < rsize) {
1509 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1511 memset(cdata + csize, 0, rsize - csize);
1514 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1515 hid->hiddev_report_event(hid, report);
1516 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1517 ret = hidraw_report_event(hid, data, size);
1522 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1523 for (a = 0; a < report->maxfield; a++)
1524 hid_input_field(hid, report->field[a], cdata, interrupt);
1526 if (hdrv && hdrv->report)
1527 hdrv->report(hid, report);
1530 if (hid->claimed & HID_CLAIMED_INPUT)
1531 hidinput_report_event(hid, report);
1535 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1538 * hid_input_report - report data from lower layer (usb, bt...)
1541 * @type: HID report type (HID_*_REPORT)
1542 * @data: report contents
1543 * @size: size of data parameter
1544 * @interrupt: distinguish between interrupt and control transfers
1546 * This is data entry for lower layers.
1548 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1550 struct hid_report_enum *report_enum;
1551 struct hid_driver *hdrv;
1552 struct hid_report *report;
1558 if (down_trylock(&hid->driver_input_lock))
1565 report_enum = hid->report_enum + type;
1569 dbg_hid("empty report\n");
1574 /* Avoid unnecessary overhead if debugfs is disabled */
1575 if (!list_empty(&hid->debug_list))
1576 hid_dump_report(hid, type, data, size);
1578 report = hid_get_report(report_enum, data);
1585 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1586 ret = hdrv->raw_event(hid, report, data, size);
1591 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1594 up(&hid->driver_input_lock);
1597 EXPORT_SYMBOL_GPL(hid_input_report);
1599 bool hid_match_one_id(const struct hid_device *hdev,
1600 const struct hid_device_id *id)
1602 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1603 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1604 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1605 (id->product == HID_ANY_ID || id->product == hdev->product);
1608 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1609 const struct hid_device_id *id)
1611 for (; id->bus; id++)
1612 if (hid_match_one_id(hdev, id))
1618 static const struct hid_device_id hid_hiddev_list[] = {
1619 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1620 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1624 static bool hid_hiddev(struct hid_device *hdev)
1626 return !!hid_match_id(hdev, hid_hiddev_list);
1631 read_report_descriptor(struct file *filp, struct kobject *kobj,
1632 struct bin_attribute *attr,
1633 char *buf, loff_t off, size_t count)
1635 struct device *dev = kobj_to_dev(kobj);
1636 struct hid_device *hdev = to_hid_device(dev);
1638 if (off >= hdev->rsize)
1641 if (off + count > hdev->rsize)
1642 count = hdev->rsize - off;
1644 memcpy(buf, hdev->rdesc + off, count);
1650 show_country(struct device *dev, struct device_attribute *attr,
1653 struct hid_device *hdev = to_hid_device(dev);
1655 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1658 static struct bin_attribute dev_bin_attr_report_desc = {
1659 .attr = { .name = "report_descriptor", .mode = 0444 },
1660 .read = read_report_descriptor,
1661 .size = HID_MAX_DESCRIPTOR_SIZE,
1664 static const struct device_attribute dev_attr_country = {
1665 .attr = { .name = "country", .mode = 0444 },
1666 .show = show_country,
1669 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1671 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1672 "Joystick", "Gamepad", "Keyboard", "Keypad",
1673 "Multi-Axis Controller"
1675 const char *type, *bus;
1681 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1682 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1683 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1684 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1685 if (hdev->bus != BUS_USB)
1686 connect_mask &= ~HID_CONNECT_HIDDEV;
1687 if (hid_hiddev(hdev))
1688 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1690 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1691 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1692 hdev->claimed |= HID_CLAIMED_INPUT;
1694 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1695 !hdev->hiddev_connect(hdev,
1696 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1697 hdev->claimed |= HID_CLAIMED_HIDDEV;
1698 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1699 hdev->claimed |= HID_CLAIMED_HIDRAW;
1701 if (connect_mask & HID_CONNECT_DRIVER)
1702 hdev->claimed |= HID_CLAIMED_DRIVER;
1704 /* Drivers with the ->raw_event callback set are not required to connect
1705 * to any other listener. */
1706 if (!hdev->claimed && !hdev->driver->raw_event) {
1707 hid_err(hdev, "device has no listeners, quitting\n");
1711 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1712 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1713 hdev->ff_init(hdev);
1716 if (hdev->claimed & HID_CLAIMED_INPUT)
1717 len += sprintf(buf + len, "input");
1718 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1719 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1720 ((struct hiddev *)hdev->hiddev)->minor);
1721 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1722 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1723 ((struct hidraw *)hdev->hidraw)->minor);
1726 for (i = 0; i < hdev->maxcollection; i++) {
1727 struct hid_collection *col = &hdev->collection[i];
1728 if (col->type == HID_COLLECTION_APPLICATION &&
1729 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1730 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1731 type = types[col->usage & 0xffff];
1736 switch (hdev->bus) {
1750 ret = device_create_file(&hdev->dev, &dev_attr_country);
1753 "can't create sysfs country code attribute err: %d\n", ret);
1755 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1756 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1757 type, hdev->name, hdev->phys);
1761 EXPORT_SYMBOL_GPL(hid_connect);
1763 void hid_disconnect(struct hid_device *hdev)
1765 device_remove_file(&hdev->dev, &dev_attr_country);
1766 if (hdev->claimed & HID_CLAIMED_INPUT)
1767 hidinput_disconnect(hdev);
1768 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1769 hdev->hiddev_disconnect(hdev);
1770 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1771 hidraw_disconnect(hdev);
1774 EXPORT_SYMBOL_GPL(hid_disconnect);
1777 * hid_hw_start - start underlying HW
1779 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1781 * Call this in probe function *after* hid_parse. This will setup HW
1782 * buffers and start the device (if not defeirred to device open).
1783 * hid_hw_stop must be called if this was successful.
1785 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1789 error = hdev->ll_driver->start(hdev);
1794 error = hid_connect(hdev, connect_mask);
1796 hdev->ll_driver->stop(hdev);
1803 EXPORT_SYMBOL_GPL(hid_hw_start);
1806 * hid_hw_stop - stop underlying HW
1809 * This is usually called from remove function or from probe when something
1810 * failed and hid_hw_start was called already.
1812 void hid_hw_stop(struct hid_device *hdev)
1814 hid_disconnect(hdev);
1815 hdev->ll_driver->stop(hdev);
1817 EXPORT_SYMBOL_GPL(hid_hw_stop);
1820 * hid_hw_open - signal underlying HW to start delivering events
1823 * Tell underlying HW to start delivering events from the device.
1824 * This function should be called sometime after successful call
1825 * to hid_hw_start().
1827 int hid_hw_open(struct hid_device *hdev)
1831 ret = mutex_lock_killable(&hdev->ll_open_lock);
1835 if (!hdev->ll_open_count++) {
1836 ret = hdev->ll_driver->open(hdev);
1838 hdev->ll_open_count--;
1841 mutex_unlock(&hdev->ll_open_lock);
1844 EXPORT_SYMBOL_GPL(hid_hw_open);
1847 * hid_hw_close - signal underlaying HW to stop delivering events
1851 * This function indicates that we are not interested in the events
1852 * from this device anymore. Delivery of events may or may not stop,
1853 * depending on the number of users still outstanding.
1855 void hid_hw_close(struct hid_device *hdev)
1857 mutex_lock(&hdev->ll_open_lock);
1858 if (!--hdev->ll_open_count)
1859 hdev->ll_driver->close(hdev);
1860 mutex_unlock(&hdev->ll_open_lock);
1862 EXPORT_SYMBOL_GPL(hid_hw_close);
1865 struct list_head list;
1866 struct hid_device_id id;
1870 * store_new_id - add a new HID device ID to this driver and re-probe devices
1871 * @driver: target device driver
1872 * @buf: buffer for scanning device ID data
1873 * @count: input size
1875 * Adds a new dynamic hid device ID to this driver,
1876 * and causes the driver to probe for all devices again.
1878 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1881 struct hid_driver *hdrv = to_hid_driver(drv);
1882 struct hid_dynid *dynid;
1883 __u32 bus, vendor, product;
1884 unsigned long driver_data = 0;
1887 ret = sscanf(buf, "%x %x %x %lx",
1888 &bus, &vendor, &product, &driver_data);
1892 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1896 dynid->id.bus = bus;
1897 dynid->id.group = HID_GROUP_ANY;
1898 dynid->id.vendor = vendor;
1899 dynid->id.product = product;
1900 dynid->id.driver_data = driver_data;
1902 spin_lock(&hdrv->dyn_lock);
1903 list_add_tail(&dynid->list, &hdrv->dyn_list);
1904 spin_unlock(&hdrv->dyn_lock);
1906 ret = driver_attach(&hdrv->driver);
1908 return ret ? : count;
1910 static DRIVER_ATTR_WO(new_id);
1912 static struct attribute *hid_drv_attrs[] = {
1913 &driver_attr_new_id.attr,
1916 ATTRIBUTE_GROUPS(hid_drv);
1918 static void hid_free_dynids(struct hid_driver *hdrv)
1920 struct hid_dynid *dynid, *n;
1922 spin_lock(&hdrv->dyn_lock);
1923 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1924 list_del(&dynid->list);
1927 spin_unlock(&hdrv->dyn_lock);
1930 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1931 struct hid_driver *hdrv)
1933 struct hid_dynid *dynid;
1935 spin_lock(&hdrv->dyn_lock);
1936 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1937 if (hid_match_one_id(hdev, &dynid->id)) {
1938 spin_unlock(&hdrv->dyn_lock);
1942 spin_unlock(&hdrv->dyn_lock);
1944 return hid_match_id(hdev, hdrv->id_table);
1946 EXPORT_SYMBOL_GPL(hid_match_device);
1948 static int hid_bus_match(struct device *dev, struct device_driver *drv)
1950 struct hid_driver *hdrv = to_hid_driver(drv);
1951 struct hid_device *hdev = to_hid_device(dev);
1953 return hid_match_device(hdev, hdrv) != NULL;
1957 * hid_compare_device_paths - check if both devices share the same path
1958 * @hdev_a: hid device
1959 * @hdev_b: hid device
1960 * @separator: char to use as separator
1962 * Check if two devices share the same path up to the last occurrence of
1963 * the separator char. Both paths must exist (i.e., zero-length paths
1966 bool hid_compare_device_paths(struct hid_device *hdev_a,
1967 struct hid_device *hdev_b, char separator)
1969 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
1970 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
1972 if (n1 != n2 || n1 <= 0 || n2 <= 0)
1975 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
1977 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
1979 static int hid_device_probe(struct device *dev)
1981 struct hid_driver *hdrv = to_hid_driver(dev->driver);
1982 struct hid_device *hdev = to_hid_device(dev);
1983 const struct hid_device_id *id;
1986 if (down_interruptible(&hdev->driver_input_lock)) {
1990 hdev->io_started = false;
1992 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
1994 if (!hdev->driver) {
1995 id = hid_match_device(hdev, hdrv);
2002 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2008 * hid-generic implements .match(), so if
2009 * hid_ignore_special_drivers is set, we can safely
2012 if (hid_ignore_special_drivers) {
2018 /* reset the quirks that has been previously set */
2019 hdev->quirks = hid_lookup_quirk(hdev);
2020 hdev->driver = hdrv;
2022 ret = hdrv->probe(hdev, id);
2023 } else { /* default probe */
2024 ret = hid_open_report(hdev);
2026 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2029 hid_close_report(hdev);
2030 hdev->driver = NULL;
2034 if (!hdev->io_started)
2035 up(&hdev->driver_input_lock);
2040 static int hid_device_remove(struct device *dev)
2042 struct hid_device *hdev = to_hid_device(dev);
2043 struct hid_driver *hdrv;
2046 if (down_interruptible(&hdev->driver_input_lock)) {
2050 hdev->io_started = false;
2052 hdrv = hdev->driver;
2056 else /* default remove */
2058 hid_close_report(hdev);
2059 hdev->driver = NULL;
2062 if (!hdev->io_started)
2063 up(&hdev->driver_input_lock);
2068 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2071 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2073 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2074 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2076 static DEVICE_ATTR_RO(modalias);
2078 static struct attribute *hid_dev_attrs[] = {
2079 &dev_attr_modalias.attr,
2082 static struct bin_attribute *hid_dev_bin_attrs[] = {
2083 &dev_bin_attr_report_desc,
2086 static const struct attribute_group hid_dev_group = {
2087 .attrs = hid_dev_attrs,
2088 .bin_attrs = hid_dev_bin_attrs,
2090 __ATTRIBUTE_GROUPS(hid_dev);
2092 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2094 struct hid_device *hdev = to_hid_device(dev);
2096 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2097 hdev->bus, hdev->vendor, hdev->product))
2100 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2103 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2106 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2109 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2110 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2116 struct bus_type hid_bus_type = {
2118 .dev_groups = hid_dev_groups,
2119 .drv_groups = hid_drv_groups,
2120 .match = hid_bus_match,
2121 .probe = hid_device_probe,
2122 .remove = hid_device_remove,
2123 .uevent = hid_uevent,
2125 EXPORT_SYMBOL(hid_bus_type);
2127 int hid_add_device(struct hid_device *hdev)
2129 static atomic_t id = ATOMIC_INIT(0);
2132 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2135 hdev->quirks = hid_lookup_quirk(hdev);
2137 /* we need to kill them here, otherwise they will stay allocated to
2138 * wait for coming driver */
2139 if (hid_ignore(hdev))
2143 * Check for the mandatory transport channel.
2145 if (!hdev->ll_driver->raw_request) {
2146 hid_err(hdev, "transport driver missing .raw_request()\n");
2151 * Read the device report descriptor once and use as template
2152 * for the driver-specific modifications.
2154 ret = hdev->ll_driver->parse(hdev);
2157 if (!hdev->dev_rdesc)
2161 * Scan generic devices for group information
2163 if (hid_ignore_special_drivers) {
2164 hdev->group = HID_GROUP_GENERIC;
2165 } else if (!hdev->group &&
2166 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2167 ret = hid_scan_report(hdev);
2169 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2172 /* XXX hack, any other cleaner solution after the driver core
2173 * is converted to allow more than 20 bytes as the device name? */
2174 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2175 hdev->vendor, hdev->product, atomic_inc_return(&id));
2177 hid_debug_register(hdev, dev_name(&hdev->dev));
2178 ret = device_add(&hdev->dev);
2180 hdev->status |= HID_STAT_ADDED;
2182 hid_debug_unregister(hdev);
2186 EXPORT_SYMBOL_GPL(hid_add_device);
2189 * hid_allocate_device - allocate new hid device descriptor
2191 * Allocate and initialize hid device, so that hid_destroy_device might be
2194 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2197 struct hid_device *hid_allocate_device(void)
2199 struct hid_device *hdev;
2202 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2204 return ERR_PTR(ret);
2206 device_initialize(&hdev->dev);
2207 hdev->dev.release = hid_device_release;
2208 hdev->dev.bus = &hid_bus_type;
2209 device_enable_async_suspend(&hdev->dev);
2211 hid_close_report(hdev);
2213 init_waitqueue_head(&hdev->debug_wait);
2214 INIT_LIST_HEAD(&hdev->debug_list);
2215 spin_lock_init(&hdev->debug_list_lock);
2216 sema_init(&hdev->driver_input_lock, 1);
2217 mutex_init(&hdev->ll_open_lock);
2221 EXPORT_SYMBOL_GPL(hid_allocate_device);
2223 static void hid_remove_device(struct hid_device *hdev)
2225 if (hdev->status & HID_STAT_ADDED) {
2226 device_del(&hdev->dev);
2227 hid_debug_unregister(hdev);
2228 hdev->status &= ~HID_STAT_ADDED;
2230 kfree(hdev->dev_rdesc);
2231 hdev->dev_rdesc = NULL;
2232 hdev->dev_rsize = 0;
2236 * hid_destroy_device - free previously allocated device
2240 * If you allocate hid_device through hid_allocate_device, you should ever
2241 * free by this function.
2243 void hid_destroy_device(struct hid_device *hdev)
2245 hid_remove_device(hdev);
2246 put_device(&hdev->dev);
2248 EXPORT_SYMBOL_GPL(hid_destroy_device);
2251 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2253 struct hid_driver *hdrv = data;
2254 struct hid_device *hdev = to_hid_device(dev);
2256 if (hdev->driver == hdrv &&
2257 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2258 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2259 return device_reprobe(dev);
2264 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2266 struct hid_driver *hdrv = to_hid_driver(drv);
2269 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2270 __hid_bus_reprobe_drivers);
2276 static int __bus_removed_driver(struct device_driver *drv, void *data)
2278 return bus_rescan_devices(&hid_bus_type);
2281 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2282 const char *mod_name)
2286 hdrv->driver.name = hdrv->name;
2287 hdrv->driver.bus = &hid_bus_type;
2288 hdrv->driver.owner = owner;
2289 hdrv->driver.mod_name = mod_name;
2291 INIT_LIST_HEAD(&hdrv->dyn_list);
2292 spin_lock_init(&hdrv->dyn_lock);
2294 ret = driver_register(&hdrv->driver);
2297 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2298 __hid_bus_driver_added);
2302 EXPORT_SYMBOL_GPL(__hid_register_driver);
2304 void hid_unregister_driver(struct hid_driver *hdrv)
2306 driver_unregister(&hdrv->driver);
2307 hid_free_dynids(hdrv);
2309 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2311 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2313 int hid_check_keys_pressed(struct hid_device *hid)
2315 struct hid_input *hidinput;
2318 if (!(hid->claimed & HID_CLAIMED_INPUT))
2321 list_for_each_entry(hidinput, &hid->inputs, list) {
2322 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2323 if (hidinput->input->key[i])
2330 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2332 static int __init hid_init(void)
2337 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2338 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2340 ret = bus_register(&hid_bus_type);
2342 pr_err("can't register hid bus\n");
2346 ret = hidraw_init();
2354 bus_unregister(&hid_bus_type);
2359 static void __exit hid_exit(void)
2363 bus_unregister(&hid_bus_type);
2364 hid_quirks_exit(HID_BUS_ANY);
2367 module_init(hid_init);
2368 module_exit(hid_exit);
2370 MODULE_AUTHOR("Andreas Gal");
2371 MODULE_AUTHOR("Vojtech Pavlik");
2372 MODULE_AUTHOR("Jiri Kosina");
2373 MODULE_LICENSE("GPL");