2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
44 #define LEGACY_REQUEST_SIZE 200
46 static unsigned int __intel_ring_space(unsigned int head,
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
72 unsigned int num_store_dw;
77 if (mode & EMIT_INVALIDATE)
79 if (mode & EMIT_FLUSH)
82 cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
87 while (num_store_dw--) {
88 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
89 *cs++ = i915_scratch_offset(rq->i915);
92 *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
94 intel_ring_advance(rq, cs);
100 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
108 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
109 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
110 * also flushed at 2d versus 3d pipeline switches.
114 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
115 * MI_READ_FLUSH is set, and is always flushed on 965.
117 * I915_GEM_DOMAIN_COMMAND may not exist?
119 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
120 * invalidated when MI_EXE_FLUSH is set.
122 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
123 * invalidated with every MI_FLUSH.
127 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
128 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
129 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
130 * are flushed at any MI_FLUSH.
134 if (mode & EMIT_INVALIDATE) {
136 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
137 cmd |= MI_INVALIDATE_ISP;
141 if (mode & EMIT_INVALIDATE)
144 cs = intel_ring_begin(rq, i);
151 * A random delay to let the CS invalidate take effect? Without this
152 * delay, the GPU relocation path fails as the CS does not see
153 * the updated contents. Just as important, if we apply the flushes
154 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
155 * write and before the invalidate on the next batch), the relocations
156 * still fail. This implies that is a delay following invalidation
157 * that is required to reset the caches as opposed to a delay to
158 * ensure the memory is written.
160 if (mode & EMIT_INVALIDATE) {
161 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
162 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
166 for (i = 0; i < 12; i++)
169 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
170 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
177 intel_ring_advance(rq, cs);
183 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
184 * implementing two workarounds on gen6. From section 1.4.7.1
185 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
187 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
188 * produced by non-pipelined state commands), software needs to first
189 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
192 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
193 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
195 * And the workaround for these two requires this workaround first:
197 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
198 * BEFORE the pipe-control with a post-sync op and no write-cache
201 * And this last workaround is tricky because of the requirements on
202 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
205 * "1 of the following must also be set:
206 * - Render Target Cache Flush Enable ([12] of DW1)
207 * - Depth Cache Flush Enable ([0] of DW1)
208 * - Stall at Pixel Scoreboard ([1] of DW1)
209 * - Depth Stall ([13] of DW1)
210 * - Post-Sync Operation ([13] of DW1)
211 * - Notify Enable ([8] of DW1)"
213 * The cache flushes require the workaround flush that triggered this
214 * one, so we can't use it. Depth stall would trigger the same.
215 * Post-sync nonzero is what triggered this second workaround, so we
216 * can't use that one either. Notify enable is IRQs, which aren't
217 * really our business. That leaves only stall at scoreboard.
220 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
222 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
225 cs = intel_ring_begin(rq, 6);
229 *cs++ = GFX_OP_PIPE_CONTROL(5);
230 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
231 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
232 *cs++ = 0; /* low dword */
233 *cs++ = 0; /* high dword */
235 intel_ring_advance(rq, cs);
237 cs = intel_ring_begin(rq, 6);
241 *cs++ = GFX_OP_PIPE_CONTROL(5);
242 *cs++ = PIPE_CONTROL_QW_WRITE;
243 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
247 intel_ring_advance(rq, cs);
253 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
255 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
259 /* Force SNB workarounds for PIPE_CONTROL flushes */
260 ret = intel_emit_post_sync_nonzero_flush(rq);
264 /* Just flush everything. Experiments have shown that reducing the
265 * number of bits based on the write domains has little performance
268 if (mode & EMIT_FLUSH) {
269 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
270 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 * Ensure that any following seqno writes only happen
273 * when the render cache is indeed flushed.
275 flags |= PIPE_CONTROL_CS_STALL;
277 if (mode & EMIT_INVALIDATE) {
278 flags |= PIPE_CONTROL_TLB_INVALIDATE;
279 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 * TLB invalidate requires a post-sync write.
287 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
290 cs = intel_ring_begin(rq, 4);
294 *cs++ = GFX_OP_PIPE_CONTROL(4);
296 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
298 intel_ring_advance(rq, cs);
304 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
308 cs = intel_ring_begin(rq, 4);
312 *cs++ = GFX_OP_PIPE_CONTROL(4);
313 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
316 intel_ring_advance(rq, cs);
322 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
324 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
328 * Ensure that any following seqno writes only happen when the render
329 * cache is indeed flushed.
331 * Workaround: 4th PIPE_CONTROL command (except the ones with only
332 * read-cache invalidate bits set) must have the CS_STALL bit set. We
333 * don't try to be clever and just set it unconditionally.
335 flags |= PIPE_CONTROL_CS_STALL;
337 /* Just flush everything. Experiments have shown that reducing the
338 * number of bits based on the write domains has little performance
341 if (mode & EMIT_FLUSH) {
342 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
343 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
345 flags |= PIPE_CONTROL_FLUSH_ENABLE;
347 if (mode & EMIT_INVALIDATE) {
348 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
356 * TLB invalidate requires a post-sync write.
358 flags |= PIPE_CONTROL_QW_WRITE;
359 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
361 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
363 /* Workaround: we must issue a pipe_control with CS-stall bit
364 * set before a pipe_control command that has the state cache
365 * invalidate bit set. */
366 gen7_render_ring_cs_stall_wa(rq);
369 cs = intel_ring_begin(rq, 4);
373 *cs++ = GFX_OP_PIPE_CONTROL(4);
375 *cs++ = scratch_addr;
377 intel_ring_advance(rq, cs);
382 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
384 struct drm_i915_private *dev_priv = engine->i915;
385 struct page *page = virt_to_page(engine->status_page.page_addr);
386 phys_addr_t phys = PFN_PHYS(page_to_pfn(page));
389 addr = lower_32_bits(phys);
390 if (INTEL_GEN(dev_priv) >= 4)
391 addr |= (phys >> 28) & 0xf0;
393 I915_WRITE(HWS_PGA, addr);
396 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
398 struct drm_i915_private *dev_priv = engine->i915;
401 /* The ring status page addresses are no longer next to the rest of
402 * the ring registers as of gen7.
404 if (IS_GEN7(dev_priv)) {
405 switch (engine->id) {
407 * No more rings exist on Gen7. Default case is only to shut up
408 * gcc switch check warning.
411 GEM_BUG_ON(engine->id);
413 mmio = RENDER_HWS_PGA_GEN7;
416 mmio = BLT_HWS_PGA_GEN7;
419 mmio = BSD_HWS_PGA_GEN7;
422 mmio = VEBOX_HWS_PGA_GEN7;
425 } else if (IS_GEN6(dev_priv)) {
426 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
428 mmio = RING_HWS_PGA(engine->mmio_base);
431 if (INTEL_GEN(dev_priv) >= 6) {
435 * Keep the render interrupt unmasked as this papers over
436 * lost interrupts following a reset.
438 if (engine->id == RCS)
441 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
444 I915_WRITE(mmio, engine->status_page.ggtt_offset);
447 /* Flush the TLB for this page */
448 if (IS_GEN(dev_priv, 6, 7)) {
449 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
451 /* ring should be idle before issuing a sync flush*/
452 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
455 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
457 if (intel_wait_for_register(dev_priv,
458 reg, INSTPM_SYNC_FLUSH, 0,
460 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
465 static bool stop_ring(struct intel_engine_cs *engine)
467 struct drm_i915_private *dev_priv = engine->i915;
469 if (INTEL_GEN(dev_priv) > 2) {
470 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
471 if (intel_wait_for_register(dev_priv,
472 RING_MI_MODE(engine->mmio_base),
476 DRM_ERROR("%s : timed out trying to stop ring\n",
478 /* Sometimes we observe that the idle flag is not
479 * set even though the ring is empty. So double
480 * check before giving up.
482 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
487 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
489 I915_WRITE_HEAD(engine, 0);
490 I915_WRITE_TAIL(engine, 0);
492 /* The ring must be empty before it is disabled */
493 I915_WRITE_CTL(engine, 0);
495 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
498 static int init_ring_common(struct intel_engine_cs *engine)
500 struct drm_i915_private *dev_priv = engine->i915;
501 struct intel_ring *ring = engine->buffer;
504 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
506 if (!stop_ring(engine)) {
507 /* G45 ring initialization often fails to reset head to zero */
508 DRM_DEBUG_DRIVER("%s head not reset to zero "
509 "ctl %08x head %08x tail %08x start %08x\n",
511 I915_READ_CTL(engine),
512 I915_READ_HEAD(engine),
513 I915_READ_TAIL(engine),
514 I915_READ_START(engine));
516 if (!stop_ring(engine)) {
517 DRM_ERROR("failed to set %s head to zero "
518 "ctl %08x head %08x tail %08x start %08x\n",
520 I915_READ_CTL(engine),
521 I915_READ_HEAD(engine),
522 I915_READ_TAIL(engine),
523 I915_READ_START(engine));
529 if (HWS_NEEDS_PHYSICAL(dev_priv))
530 ring_setup_phys_status_page(engine);
532 intel_ring_setup_status_page(engine);
534 intel_engine_reset_breadcrumbs(engine);
536 if (HAS_LEGACY_SEMAPHORES(engine->i915)) {
537 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
538 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
539 if (HAS_VEBOX(dev_priv))
540 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
543 /* Enforce ordering by reading HEAD register back */
544 I915_READ_HEAD(engine);
546 /* Initialize the ring. This must happen _after_ we've cleared the ring
547 * registers with the above sequence (the readback of the HEAD registers
548 * also enforces ordering), otherwise the hw might lose the new ring
549 * register values. */
550 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
552 /* WaClearRingBufHeadRegAtInit:ctg,elk */
553 if (I915_READ_HEAD(engine))
554 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
555 engine->name, I915_READ_HEAD(engine));
557 /* Check that the ring offsets point within the ring! */
558 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
559 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
560 intel_ring_update_space(ring);
562 /* First wake the ring up to an empty/idle ring */
563 I915_WRITE_HEAD(engine, ring->head);
564 I915_WRITE_TAIL(engine, ring->head);
565 (void)I915_READ_TAIL(engine);
567 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
569 /* If the head is still not zero, the ring is dead */
570 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
571 RING_VALID, RING_VALID,
573 DRM_ERROR("%s initialization failed "
574 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
576 I915_READ_CTL(engine),
577 I915_READ_CTL(engine) & RING_VALID,
578 I915_READ_HEAD(engine), ring->head,
579 I915_READ_TAIL(engine), ring->tail,
580 I915_READ_START(engine),
581 i915_ggtt_offset(ring->vma));
586 if (INTEL_GEN(dev_priv) > 2)
587 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
589 /* Now awake, let it get started */
590 if (ring->tail != ring->head) {
591 I915_WRITE_TAIL(engine, ring->tail);
592 (void)I915_READ_TAIL(engine);
595 /* Papering over lost _interrupts_ immediately following the restart */
596 intel_engine_wakeup(engine);
598 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
603 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
605 intel_engine_stop_cs(engine);
607 if (engine->irq_seqno_barrier)
608 engine->irq_seqno_barrier(engine);
610 return i915_gem_find_active_request(engine);
613 static void skip_request(struct i915_request *rq)
615 void *vaddr = rq->ring->vaddr;
619 if (rq->postfix < head) {
620 memset32(vaddr + head, MI_NOOP,
621 (rq->ring->size - head) / sizeof(u32));
624 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
627 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
629 GEM_TRACE("%s request global=%d, current=%d\n",
630 engine->name, rq ? rq->global_seqno : 0,
631 intel_engine_get_seqno(engine));
634 * Try to restore the logical GPU state to match the continuation
635 * of the request queue. If we skip the context/PD restore, then
636 * the next request may try to execute assuming that its context
637 * is valid and loaded on the GPU and so may try to access invalid
638 * memory, prompting repeated GPU hangs.
640 * If the request was guilty, we still restore the logical state
641 * in case the next request requires it (e.g. the aliasing ppgtt),
642 * but skip over the hung batch.
644 * If the request was innocent, we try to replay the request with
645 * the restored context.
648 /* If the rq hung, jump to its breadcrumb and skip the batch */
649 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
650 if (rq->fence.error == -EIO)
655 static void reset_finish(struct intel_engine_cs *engine)
659 static int intel_rcs_ctx_init(struct i915_request *rq)
663 ret = intel_engine_emit_ctx_wa(rq);
667 ret = i915_gem_render_state_emit(rq);
674 static int init_render_ring(struct intel_engine_cs *engine)
676 struct drm_i915_private *dev_priv = engine->i915;
677 int ret = init_ring_common(engine);
681 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
682 if (IS_GEN(dev_priv, 4, 6))
683 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
685 /* We need to disable the AsyncFlip performance optimisations in order
686 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
687 * programmed to '1' on all products.
689 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
691 if (IS_GEN(dev_priv, 6, 7))
692 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
694 /* Required for the hardware to program scanline values for waiting */
695 /* WaEnableFlushTlbInvalidationMode:snb */
696 if (IS_GEN6(dev_priv))
698 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
700 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
701 if (IS_GEN7(dev_priv))
702 I915_WRITE(GFX_MODE_GEN7,
703 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
704 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
706 if (IS_GEN6(dev_priv)) {
707 /* From the Sandybridge PRM, volume 1 part 3, page 24:
708 * "If this bit is set, STCunit will have LRA as replacement
709 * policy. [...] This bit must be reset. LRA replacement
710 * policy is not supported."
712 I915_WRITE(CACHE_MODE_0,
713 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
716 if (IS_GEN(dev_priv, 6, 7))
717 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
719 if (INTEL_GEN(dev_priv) >= 6)
720 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
725 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
727 struct drm_i915_private *dev_priv = rq->i915;
728 struct intel_engine_cs *engine;
729 enum intel_engine_id id;
732 for_each_engine(engine, dev_priv, id) {
735 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
738 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
739 if (i915_mmio_reg_valid(mbox_reg)) {
740 *cs++ = MI_LOAD_REGISTER_IMM(1);
741 *cs++ = i915_mmio_reg_offset(mbox_reg);
742 *cs++ = rq->global_seqno;
752 static void cancel_requests(struct intel_engine_cs *engine)
754 struct i915_request *request;
757 spin_lock_irqsave(&engine->timeline.lock, flags);
759 /* Mark all submitted requests as skipped. */
760 list_for_each_entry(request, &engine->timeline.requests, link) {
761 GEM_BUG_ON(!request->global_seqno);
763 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
764 &request->fence.flags))
767 dma_fence_set_error(&request->fence, -EIO);
770 intel_write_status_page(engine,
772 intel_engine_last_submit(engine));
774 /* Remaining _unready_ requests will be nop'ed when submitted */
776 spin_unlock_irqrestore(&engine->timeline.lock, flags);
779 static void i9xx_submit_request(struct i915_request *request)
781 struct drm_i915_private *dev_priv = request->i915;
783 i915_request_submit(request);
785 I915_WRITE_TAIL(request->engine,
786 intel_ring_set_tail(request->ring, request->tail));
789 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
791 *cs++ = MI_STORE_DWORD_INDEX;
792 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
793 *cs++ = rq->global_seqno;
794 *cs++ = MI_USER_INTERRUPT;
796 rq->tail = intel_ring_offset(rq, cs);
797 assert_ring_tail_valid(rq->ring, rq->tail);
800 static const int i9xx_emit_breadcrumb_sz = 4;
802 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
804 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
808 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
810 u32 dw1 = MI_SEMAPHORE_MBOX |
811 MI_SEMAPHORE_COMPARE |
812 MI_SEMAPHORE_REGISTER;
813 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
816 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
818 cs = intel_ring_begin(rq, 4);
822 *cs++ = dw1 | wait_mbox;
823 /* Throughout all of the GEM code, seqno passed implies our current
824 * seqno is >= the last seqno executed. However for hardware the
825 * comparison is strictly greater than.
827 *cs++ = signal->global_seqno - 1;
830 intel_ring_advance(rq, cs);
836 gen5_seqno_barrier(struct intel_engine_cs *engine)
838 /* MI_STORE are internally buffered by the GPU and not flushed
839 * either by MI_FLUSH or SyncFlush or any other combination of
842 * "Only the submission of the store operation is guaranteed.
843 * The write result will be complete (coherent) some time later
844 * (this is practically a finite period but there is no guaranteed
847 * Empirically, we observe that we need a delay of at least 75us to
848 * be sure that the seqno write is visible by the CPU.
850 usleep_range(125, 250);
854 gen6_seqno_barrier(struct intel_engine_cs *engine)
856 struct drm_i915_private *dev_priv = engine->i915;
858 /* Workaround to force correct ordering between irq and seqno writes on
859 * ivb (and maybe also on snb) by reading from a CS register (like
860 * ACTHD) before reading the status page.
862 * Note that this effectively stalls the read by the time it takes to
863 * do a memory transaction, which more or less ensures that the write
864 * from the GPU has sufficient time to invalidate the CPU cacheline.
865 * Alternatively we could delay the interrupt from the CS ring to give
866 * the write time to land, but that would incur a delay after every
867 * batch i.e. much more frequent than a delay when waiting for the
868 * interrupt (with the same net latency).
870 * Also note that to prevent whole machine hangs on gen7, we have to
871 * take the spinlock to guard against concurrent cacheline access.
873 spin_lock_irq(&dev_priv->uncore.lock);
874 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
875 spin_unlock_irq(&dev_priv->uncore.lock);
879 gen5_irq_enable(struct intel_engine_cs *engine)
881 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
885 gen5_irq_disable(struct intel_engine_cs *engine)
887 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
891 i9xx_irq_enable(struct intel_engine_cs *engine)
893 struct drm_i915_private *dev_priv = engine->i915;
895 dev_priv->irq_mask &= ~engine->irq_enable_mask;
896 I915_WRITE(IMR, dev_priv->irq_mask);
897 POSTING_READ_FW(RING_IMR(engine->mmio_base));
901 i9xx_irq_disable(struct intel_engine_cs *engine)
903 struct drm_i915_private *dev_priv = engine->i915;
905 dev_priv->irq_mask |= engine->irq_enable_mask;
906 I915_WRITE(IMR, dev_priv->irq_mask);
910 i8xx_irq_enable(struct intel_engine_cs *engine)
912 struct drm_i915_private *dev_priv = engine->i915;
914 dev_priv->irq_mask &= ~engine->irq_enable_mask;
915 I915_WRITE16(IMR, dev_priv->irq_mask);
916 POSTING_READ16(RING_IMR(engine->mmio_base));
920 i8xx_irq_disable(struct intel_engine_cs *engine)
922 struct drm_i915_private *dev_priv = engine->i915;
924 dev_priv->irq_mask |= engine->irq_enable_mask;
925 I915_WRITE16(IMR, dev_priv->irq_mask);
929 bsd_ring_flush(struct i915_request *rq, u32 mode)
933 cs = intel_ring_begin(rq, 2);
939 intel_ring_advance(rq, cs);
944 gen6_irq_enable(struct intel_engine_cs *engine)
946 struct drm_i915_private *dev_priv = engine->i915;
948 I915_WRITE_IMR(engine,
949 ~(engine->irq_enable_mask |
950 engine->irq_keep_mask));
951 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
955 gen6_irq_disable(struct intel_engine_cs *engine)
957 struct drm_i915_private *dev_priv = engine->i915;
959 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
960 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
964 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
966 struct drm_i915_private *dev_priv = engine->i915;
968 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
969 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
973 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
975 struct drm_i915_private *dev_priv = engine->i915;
977 I915_WRITE_IMR(engine, ~0);
978 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
982 i965_emit_bb_start(struct i915_request *rq,
983 u64 offset, u32 length,
984 unsigned int dispatch_flags)
988 cs = intel_ring_begin(rq, 2);
992 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
993 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
995 intel_ring_advance(rq, cs);
1000 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1001 #define I830_BATCH_LIMIT SZ_256K
1002 #define I830_TLB_ENTRIES (2)
1003 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1005 i830_emit_bb_start(struct i915_request *rq,
1006 u64 offset, u32 len,
1007 unsigned int dispatch_flags)
1009 u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
1011 GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1013 cs = intel_ring_begin(rq, 6);
1017 /* Evict the invalid PTE TLBs */
1018 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1019 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1020 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1024 intel_ring_advance(rq, cs);
1026 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1027 if (len > I830_BATCH_LIMIT)
1030 cs = intel_ring_begin(rq, 6 + 2);
1034 /* Blit the batch (which has now all relocs applied) to the
1035 * stable batch scratch bo area (so that the CS never
1036 * stumbles over its tlb invalidation bug) ...
1038 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1039 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1040 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1047 intel_ring_advance(rq, cs);
1049 /* ... and execute it. */
1053 cs = intel_ring_begin(rq, 2);
1057 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1058 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1059 MI_BATCH_NON_SECURE);
1060 intel_ring_advance(rq, cs);
1066 i915_emit_bb_start(struct i915_request *rq,
1067 u64 offset, u32 len,
1068 unsigned int dispatch_flags)
1072 cs = intel_ring_begin(rq, 2);
1076 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1077 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1078 MI_BATCH_NON_SECURE);
1079 intel_ring_advance(rq, cs);
1084 int intel_ring_pin(struct intel_ring *ring)
1086 struct i915_vma *vma = ring->vma;
1087 enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1092 GEM_BUG_ON(ring->vaddr);
1096 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1097 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1099 if (vma->obj->stolen)
1100 flags |= PIN_MAPPABLE;
1104 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1105 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1106 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1108 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1113 ret = i915_vma_pin(vma, 0, 0, flags);
1117 if (i915_vma_is_map_and_fenceable(vma))
1118 addr = (void __force *)i915_vma_pin_iomap(vma);
1120 addr = i915_gem_object_pin_map(vma->obj, map);
1124 vma->obj->pin_global++;
1130 i915_vma_unpin(vma);
1131 return PTR_ERR(addr);
1134 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1136 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1141 intel_ring_update_space(ring);
1144 void intel_ring_unpin(struct intel_ring *ring)
1146 GEM_BUG_ON(!ring->vma);
1147 GEM_BUG_ON(!ring->vaddr);
1149 /* Discard any unused bytes beyond that submitted to hw. */
1150 intel_ring_reset(ring, ring->tail);
1152 if (i915_vma_is_map_and_fenceable(ring->vma))
1153 i915_vma_unpin_iomap(ring->vma);
1155 i915_gem_object_unpin_map(ring->vma->obj);
1158 ring->vma->obj->pin_global--;
1159 i915_vma_unpin(ring->vma);
1162 static struct i915_vma *
1163 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1165 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1166 struct drm_i915_gem_object *obj;
1167 struct i915_vma *vma;
1169 obj = i915_gem_object_create_stolen(dev_priv, size);
1171 obj = i915_gem_object_create_internal(dev_priv, size);
1173 return ERR_CAST(obj);
1176 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1177 * if supported by the platform's GGTT.
1179 if (vm->has_read_only)
1180 i915_gem_object_set_readonly(obj);
1182 vma = i915_vma_instance(obj, vm, NULL);
1189 i915_gem_object_put(obj);
1194 intel_engine_create_ring(struct intel_engine_cs *engine,
1195 struct i915_timeline *timeline,
1198 struct intel_ring *ring;
1199 struct i915_vma *vma;
1201 GEM_BUG_ON(!is_power_of_2(size));
1202 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1203 GEM_BUG_ON(timeline == &engine->timeline);
1204 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1206 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1208 return ERR_PTR(-ENOMEM);
1210 INIT_LIST_HEAD(&ring->request_list);
1211 ring->timeline = i915_timeline_get(timeline);
1214 /* Workaround an erratum on the i830 which causes a hang if
1215 * the TAIL pointer points to within the last 2 cachelines
1218 ring->effective_size = size;
1219 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1220 ring->effective_size -= 2 * CACHELINE_BYTES;
1222 intel_ring_update_space(ring);
1224 vma = intel_ring_create_vma(engine->i915, size);
1227 return ERR_CAST(vma);
1235 intel_ring_free(struct intel_ring *ring)
1237 struct drm_i915_gem_object *obj = ring->vma->obj;
1239 i915_vma_close(ring->vma);
1240 __i915_gem_object_release_unless_active(obj);
1242 i915_timeline_put(ring->timeline);
1246 static void intel_ring_context_destroy(struct intel_context *ce)
1248 GEM_BUG_ON(ce->pin_count);
1253 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1254 i915_gem_object_put(ce->state->obj);
1257 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1259 struct i915_hw_ppgtt *ppgtt;
1262 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1264 err = gen6_ppgtt_pin(ppgtt);
1269 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1271 struct i915_hw_ppgtt *ppgtt;
1273 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1275 gen6_ppgtt_unpin(ppgtt);
1278 static int __context_pin(struct intel_context *ce)
1280 struct i915_vma *vma;
1288 * Clear this page out of any CPU caches for coherent swap-in/out.
1289 * We only want to do this on the first bind so that we do not stall
1290 * on an active context (which by nature is already on the GPU).
1292 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1293 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1298 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1303 * And mark is as a globally pinned object to let the shrinker know
1304 * it cannot reclaim the object until we release it.
1306 vma->obj->pin_global++;
1311 static void __context_unpin(struct intel_context *ce)
1313 struct i915_vma *vma;
1319 vma->obj->pin_global--;
1320 i915_vma_unpin(vma);
1323 static void intel_ring_context_unpin(struct intel_context *ce)
1325 __context_unpin_ppgtt(ce->gem_context);
1326 __context_unpin(ce);
1328 i915_gem_context_put(ce->gem_context);
1331 static struct i915_vma *
1332 alloc_context_vma(struct intel_engine_cs *engine)
1334 struct drm_i915_private *i915 = engine->i915;
1335 struct drm_i915_gem_object *obj;
1336 struct i915_vma *vma;
1339 obj = i915_gem_object_create(i915, engine->context_size);
1341 return ERR_CAST(obj);
1343 if (engine->default_state) {
1344 void *defaults, *vaddr;
1346 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1347 if (IS_ERR(vaddr)) {
1348 err = PTR_ERR(vaddr);
1352 defaults = i915_gem_object_pin_map(engine->default_state,
1354 if (IS_ERR(defaults)) {
1355 err = PTR_ERR(defaults);
1359 memcpy(vaddr, defaults, engine->context_size);
1361 i915_gem_object_unpin_map(engine->default_state);
1362 i915_gem_object_unpin_map(obj);
1366 * Try to make the context utilize L3 as well as LLC.
1368 * On VLV we don't have L3 controls in the PTEs so we
1369 * shouldn't touch the cache level, especially as that
1370 * would make the object snooped which might have a
1371 * negative performance impact.
1373 * Snooping is required on non-llc platforms in execlist
1374 * mode, but since all GGTT accesses use PAT entry 0 we
1375 * get snooping anyway regardless of cache_level.
1377 * This is only applicable for Ivy Bridge devices since
1378 * later platforms don't have L3 control bits in the PTE.
1380 if (IS_IVYBRIDGE(i915)) {
1381 /* Ignore any error, regard it as a simple optimisation */
1382 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1385 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1394 i915_gem_object_unpin_map(obj);
1396 i915_gem_object_put(obj);
1397 return ERR_PTR(err);
1400 static struct intel_context *
1401 __ring_context_pin(struct intel_engine_cs *engine,
1402 struct i915_gem_context *ctx,
1403 struct intel_context *ce)
1407 if (!ce->state && engine->context_size) {
1408 struct i915_vma *vma;
1410 vma = alloc_context_vma(engine);
1419 err = __context_pin(ce);
1423 err = __context_pin_ppgtt(ce->gem_context);
1427 i915_gem_context_get(ctx);
1429 /* One ringbuffer to rule them all */
1430 GEM_BUG_ON(!engine->buffer);
1431 ce->ring = engine->buffer;
1436 __context_unpin(ce);
1439 return ERR_PTR(err);
1442 static const struct intel_context_ops ring_context_ops = {
1443 .unpin = intel_ring_context_unpin,
1444 .destroy = intel_ring_context_destroy,
1447 static struct intel_context *
1448 intel_ring_context_pin(struct intel_engine_cs *engine,
1449 struct i915_gem_context *ctx)
1451 struct intel_context *ce = to_intel_context(ctx, engine);
1453 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1455 if (likely(ce->pin_count++))
1457 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1459 ce->ops = &ring_context_ops;
1461 return __ring_context_pin(engine, ctx, ce);
1464 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1466 struct i915_timeline *timeline;
1467 struct intel_ring *ring;
1470 intel_engine_setup_common(engine);
1472 timeline = i915_timeline_create(engine->i915, engine->name);
1473 if (IS_ERR(timeline)) {
1474 err = PTR_ERR(timeline);
1478 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1479 i915_timeline_put(timeline);
1481 err = PTR_ERR(ring);
1485 err = intel_ring_pin(ring);
1489 GEM_BUG_ON(engine->buffer);
1490 engine->buffer = ring;
1492 err = intel_engine_init_common(engine);
1499 intel_ring_unpin(ring);
1501 intel_ring_free(ring);
1503 intel_engine_cleanup_common(engine);
1507 void intel_engine_cleanup(struct intel_engine_cs *engine)
1509 struct drm_i915_private *dev_priv = engine->i915;
1511 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1512 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1514 intel_ring_unpin(engine->buffer);
1515 intel_ring_free(engine->buffer);
1517 if (engine->cleanup)
1518 engine->cleanup(engine);
1520 intel_engine_cleanup_common(engine);
1522 dev_priv->engine[engine->id] = NULL;
1526 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1528 struct intel_engine_cs *engine;
1529 enum intel_engine_id id;
1531 /* Restart from the beginning of the rings for convenience */
1532 for_each_engine(engine, dev_priv, id)
1533 intel_ring_reset(engine->buffer, 0);
1536 static int load_pd_dir(struct i915_request *rq,
1537 const struct i915_hw_ppgtt *ppgtt)
1539 const struct intel_engine_cs * const engine = rq->engine;
1542 cs = intel_ring_begin(rq, 6);
1546 *cs++ = MI_LOAD_REGISTER_IMM(1);
1547 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1548 *cs++ = PP_DIR_DCLV_2G;
1550 *cs++ = MI_LOAD_REGISTER_IMM(1);
1551 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1552 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1554 intel_ring_advance(rq, cs);
1559 static int flush_pd_dir(struct i915_request *rq)
1561 const struct intel_engine_cs * const engine = rq->engine;
1564 cs = intel_ring_begin(rq, 4);
1568 /* Stall until the page table load is complete */
1569 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1570 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1571 *cs++ = i915_scratch_offset(rq->i915);
1574 intel_ring_advance(rq, cs);
1578 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1580 struct drm_i915_private *i915 = rq->i915;
1581 struct intel_engine_cs *engine = rq->engine;
1582 enum intel_engine_id id;
1583 const int num_rings =
1584 /* Use an extended w/a on gen7 if signalling from other rings */
1585 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1586 INTEL_INFO(i915)->num_rings - 1 :
1588 bool force_restore = false;
1592 flags |= MI_MM_SPACE_GTT;
1593 if (IS_HASWELL(i915))
1594 /* These flags are for resource streamer on HSW+ */
1595 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1597 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1601 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1602 if (flags & MI_FORCE_RESTORE) {
1603 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1604 flags &= ~MI_FORCE_RESTORE;
1605 force_restore = true;
1609 cs = intel_ring_begin(rq, len);
1613 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1614 if (IS_GEN7(i915)) {
1615 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1617 struct intel_engine_cs *signaller;
1619 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1620 for_each_engine(signaller, i915, id) {
1621 if (signaller == engine)
1624 *cs++ = i915_mmio_reg_offset(
1625 RING_PSMI_CTL(signaller->mmio_base));
1626 *cs++ = _MASKED_BIT_ENABLE(
1627 GEN6_PSMI_SLEEP_MSG_DISABLE);
1632 if (force_restore) {
1634 * The HW doesn't handle being told to restore the current
1635 * context very well. Quite often it likes goes to go off and
1636 * sulk, especially when it is meant to be reloading PP_DIR.
1637 * A very simple fix to force the reload is to simply switch
1638 * away from the current context and back again.
1640 * Note that the kernel_context will contain random state
1641 * following the INHIBIT_RESTORE. We accept this since we
1642 * never use the kernel_context state; it is merely a
1643 * placeholder we use to flush other contexts.
1645 *cs++ = MI_SET_CONTEXT;
1646 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1653 *cs++ = MI_SET_CONTEXT;
1654 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1656 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1657 * WaMiSetContext_Hang:snb,ivb,vlv
1661 if (IS_GEN7(i915)) {
1663 struct intel_engine_cs *signaller;
1664 i915_reg_t last_reg = {}; /* keep gcc quiet */
1666 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1667 for_each_engine(signaller, i915, id) {
1668 if (signaller == engine)
1671 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1672 *cs++ = i915_mmio_reg_offset(last_reg);
1673 *cs++ = _MASKED_BIT_DISABLE(
1674 GEN6_PSMI_SLEEP_MSG_DISABLE);
1677 /* Insert a delay before the next switch! */
1678 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1679 *cs++ = i915_mmio_reg_offset(last_reg);
1680 *cs++ = i915_scratch_offset(rq->i915);
1683 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1686 intel_ring_advance(rq, cs);
1691 static int remap_l3(struct i915_request *rq, int slice)
1693 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1699 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1704 * Note: We do not worry about the concurrent register cacheline hang
1705 * here because no other code should access these registers other than
1706 * at initialization time.
1708 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1709 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1710 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1711 *cs++ = remap_info[i];
1714 intel_ring_advance(rq, cs);
1719 static int switch_context(struct i915_request *rq)
1721 struct intel_engine_cs *engine = rq->engine;
1722 struct i915_gem_context *ctx = rq->gem_context;
1723 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1724 unsigned int unwind_mm = 0;
1728 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1729 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1735 * Baytail takes a little more convincing that it really needs
1736 * to reload the PD between contexts. It is not just a little
1737 * longer, as adding more stalls after the load_pd_dir (i.e.
1738 * adding a long loop around flush_pd_dir) is not as effective
1739 * as reloading the PD umpteen times. 32 is derived from
1740 * experimentation (gem_exec_parallel/fds) and has no good
1744 if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
1748 ret = load_pd_dir(rq, ppgtt);
1753 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1754 unwind_mm = intel_engine_flag(engine);
1755 ppgtt->pd_dirty_rings &= ~unwind_mm;
1756 hw_flags = MI_FORCE_RESTORE;
1760 if (rq->hw_context->state) {
1761 GEM_BUG_ON(engine->id != RCS);
1764 * The kernel context(s) is treated as pure scratch and is not
1765 * expected to retain any state (as we sacrifice it during
1766 * suspend and on resume it may be corrupted). This is ok,
1767 * as nothing actually executes using the kernel context; it
1768 * is purely used for flushing user contexts.
1770 if (i915_gem_context_is_kernel(ctx))
1771 hw_flags = MI_RESTORE_INHIBIT;
1773 ret = mi_set_context(rq, hw_flags);
1779 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1783 ret = flush_pd_dir(rq);
1788 * Not only do we need a full barrier (post-sync write) after
1789 * invalidating the TLBs, but we need to wait a little bit
1790 * longer. Whether this is merely delaying us, or the
1791 * subsequent flush is a key part of serialising with the
1792 * post-sync op, this extra pass appears vital before a
1795 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1799 ret = engine->emit_flush(rq, EMIT_FLUSH);
1804 if (ctx->remap_slice) {
1805 for (i = 0; i < MAX_L3_SLICES; i++) {
1806 if (!(ctx->remap_slice & BIT(i)))
1809 ret = remap_l3(rq, i);
1814 ctx->remap_slice = 0;
1821 ppgtt->pd_dirty_rings |= unwind_mm;
1826 static int ring_request_alloc(struct i915_request *request)
1830 GEM_BUG_ON(!request->hw_context->pin_count);
1832 /* Flush enough space to reduce the likelihood of waiting after
1833 * we start building the request - in which case we will just
1834 * have to repeat work.
1836 request->reserved_space += LEGACY_REQUEST_SIZE;
1838 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1842 ret = switch_context(request);
1846 request->reserved_space -= LEGACY_REQUEST_SIZE;
1850 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1852 struct i915_request *target;
1855 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1857 if (intel_ring_update_space(ring) >= bytes)
1860 GEM_BUG_ON(list_empty(&ring->request_list));
1861 list_for_each_entry(target, &ring->request_list, ring_link) {
1862 /* Would completion of this request free enough space? */
1863 if (bytes <= __intel_ring_space(target->postfix,
1864 ring->emit, ring->size))
1868 if (WARN_ON(&target->ring_link == &ring->request_list))
1871 timeout = i915_request_wait(target,
1872 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1873 MAX_SCHEDULE_TIMEOUT);
1877 i915_request_retire_upto(target);
1879 intel_ring_update_space(ring);
1880 GEM_BUG_ON(ring->space < bytes);
1884 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1886 GEM_BUG_ON(bytes > ring->effective_size);
1887 if (unlikely(bytes > ring->effective_size - ring->emit))
1888 bytes += ring->size - ring->emit;
1890 if (unlikely(bytes > ring->space)) {
1891 int ret = wait_for_space(ring, bytes);
1896 GEM_BUG_ON(ring->space < bytes);
1900 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1902 struct intel_ring *ring = rq->ring;
1903 const unsigned int remain_usable = ring->effective_size - ring->emit;
1904 const unsigned int bytes = num_dwords * sizeof(u32);
1905 unsigned int need_wrap = 0;
1906 unsigned int total_bytes;
1909 /* Packets must be qword aligned. */
1910 GEM_BUG_ON(num_dwords & 1);
1912 total_bytes = bytes + rq->reserved_space;
1913 GEM_BUG_ON(total_bytes > ring->effective_size);
1915 if (unlikely(total_bytes > remain_usable)) {
1916 const int remain_actual = ring->size - ring->emit;
1918 if (bytes > remain_usable) {
1920 * Not enough space for the basic request. So need to
1921 * flush out the remainder and then wait for
1924 total_bytes += remain_actual;
1925 need_wrap = remain_actual | 1;
1928 * The base request will fit but the reserved space
1929 * falls off the end. So we don't need an immediate
1930 * wrap and only need to effectively wait for the
1931 * reserved size from the start of ringbuffer.
1933 total_bytes = rq->reserved_space + remain_actual;
1937 if (unlikely(total_bytes > ring->space)) {
1941 * Space is reserved in the ringbuffer for finalising the
1942 * request, as that cannot be allowed to fail. During request
1943 * finalisation, reserved_space is set to 0 to stop the
1944 * overallocation and the assumption is that then we never need
1945 * to wait (which has the risk of failing with EINTR).
1947 * See also i915_request_alloc() and i915_request_add().
1949 GEM_BUG_ON(!rq->reserved_space);
1951 ret = wait_for_space(ring, total_bytes);
1953 return ERR_PTR(ret);
1956 if (unlikely(need_wrap)) {
1958 GEM_BUG_ON(need_wrap > ring->space);
1959 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1960 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1962 /* Fill the tail with MI_NOOP */
1963 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1964 ring->space -= need_wrap;
1968 GEM_BUG_ON(ring->emit > ring->size - bytes);
1969 GEM_BUG_ON(ring->space < bytes);
1970 cs = ring->vaddr + ring->emit;
1971 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1972 ring->emit += bytes;
1973 ring->space -= bytes;
1978 /* Align the ring tail to a cacheline boundary */
1979 int intel_ring_cacheline_align(struct i915_request *rq)
1984 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1985 if (num_dwords == 0)
1988 num_dwords = CACHELINE_DWORDS - num_dwords;
1989 GEM_BUG_ON(num_dwords & 1);
1991 cs = intel_ring_begin(rq, num_dwords);
1995 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1996 intel_ring_advance(rq, cs);
1998 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2002 static void gen6_bsd_submit_request(struct i915_request *request)
2004 struct drm_i915_private *dev_priv = request->i915;
2006 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2008 /* Every tail move must follow the sequence below */
2010 /* Disable notification that the ring is IDLE. The GT
2011 * will then assume that it is busy and bring it out of rc6.
2013 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2014 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2016 /* Clear the context id. Here be magic! */
2017 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2019 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2020 if (__intel_wait_for_register_fw(dev_priv,
2021 GEN6_BSD_SLEEP_PSMI_CONTROL,
2022 GEN6_BSD_SLEEP_INDICATOR,
2025 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2027 /* Now that the ring is fully powered up, update the tail */
2028 i9xx_submit_request(request);
2030 /* Let the ring send IDLE messages to the GT again,
2031 * and so let it sleep to conserve power when idle.
2033 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2034 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2036 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2039 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2043 cs = intel_ring_begin(rq, 4);
2050 * We always require a command barrier so that subsequent
2051 * commands, such as breadcrumb interrupts, are strictly ordered
2052 * wrt the contents of the write cache being flushed to memory
2053 * (and thus being coherent from the CPU).
2055 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2058 * Bspec vol 1c.3 - blitter engine command streamer:
2059 * "If ENABLED, all TLBs will be invalidated once the flush
2060 * operation is complete. This bit is only valid when the
2061 * Post-Sync Operation field is a value of 1h or 3h."
2066 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2070 intel_ring_advance(rq, cs);
2075 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2077 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2080 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2082 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2086 hsw_emit_bb_start(struct i915_request *rq,
2087 u64 offset, u32 len,
2088 unsigned int dispatch_flags)
2092 cs = intel_ring_begin(rq, 2);
2096 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2097 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2098 /* bit0-7 is the length on GEN6+ */
2100 intel_ring_advance(rq, cs);
2106 gen6_emit_bb_start(struct i915_request *rq,
2107 u64 offset, u32 len,
2108 unsigned int dispatch_flags)
2112 cs = intel_ring_begin(rq, 2);
2116 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2117 0 : MI_BATCH_NON_SECURE_I965);
2118 /* bit0-7 is the length on GEN6+ */
2120 intel_ring_advance(rq, cs);
2125 /* Blitter support (SandyBridge+) */
2127 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2129 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2132 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2133 struct intel_engine_cs *engine)
2137 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2140 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2141 engine->semaphore.sync_to = gen6_ring_sync_to;
2142 engine->semaphore.signal = gen6_signal;
2145 * The current semaphore is only applied on pre-gen8
2146 * platform. And there is no VCS2 ring on the pre-gen8
2147 * platform. So the semaphore between RCS and VCS2 is
2148 * initialized as INVALID.
2150 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2151 static const struct {
2153 i915_reg_t mbox_reg;
2154 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2156 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2157 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2158 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2161 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2162 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2163 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2166 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2167 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2168 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2171 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2172 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2173 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2177 i915_reg_t mbox_reg;
2179 if (i == engine->hw_id) {
2180 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2181 mbox_reg = GEN6_NOSYNC;
2183 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2184 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2187 engine->semaphore.mbox.wait[i] = wait_mbox;
2188 engine->semaphore.mbox.signal[i] = mbox_reg;
2192 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2193 struct intel_engine_cs *engine)
2195 if (INTEL_GEN(dev_priv) >= 6) {
2196 engine->irq_enable = gen6_irq_enable;
2197 engine->irq_disable = gen6_irq_disable;
2198 engine->irq_seqno_barrier = gen6_seqno_barrier;
2199 } else if (INTEL_GEN(dev_priv) >= 5) {
2200 engine->irq_enable = gen5_irq_enable;
2201 engine->irq_disable = gen5_irq_disable;
2202 engine->irq_seqno_barrier = gen5_seqno_barrier;
2203 } else if (INTEL_GEN(dev_priv) >= 3) {
2204 engine->irq_enable = i9xx_irq_enable;
2205 engine->irq_disable = i9xx_irq_disable;
2207 engine->irq_enable = i8xx_irq_enable;
2208 engine->irq_disable = i8xx_irq_disable;
2212 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2214 engine->submit_request = i9xx_submit_request;
2215 engine->cancel_requests = cancel_requests;
2217 engine->park = NULL;
2218 engine->unpark = NULL;
2221 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2223 i9xx_set_default_submission(engine);
2224 engine->submit_request = gen6_bsd_submit_request;
2227 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2228 struct intel_engine_cs *engine)
2230 /* gen8+ are only supported with execlists */
2231 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2233 intel_ring_init_irq(dev_priv, engine);
2234 intel_ring_init_semaphores(dev_priv, engine);
2236 engine->init_hw = init_ring_common;
2237 engine->reset.prepare = reset_prepare;
2238 engine->reset.reset = reset_ring;
2239 engine->reset.finish = reset_finish;
2241 engine->context_pin = intel_ring_context_pin;
2242 engine->request_alloc = ring_request_alloc;
2244 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2245 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2246 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2249 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2251 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2252 engine->emit_breadcrumb_sz += num_rings * 3;
2254 engine->emit_breadcrumb_sz++;
2257 engine->set_default_submission = i9xx_set_default_submission;
2259 if (INTEL_GEN(dev_priv) >= 6)
2260 engine->emit_bb_start = gen6_emit_bb_start;
2261 else if (INTEL_GEN(dev_priv) >= 4)
2262 engine->emit_bb_start = i965_emit_bb_start;
2263 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2264 engine->emit_bb_start = i830_emit_bb_start;
2266 engine->emit_bb_start = i915_emit_bb_start;
2269 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2271 struct drm_i915_private *dev_priv = engine->i915;
2274 intel_ring_default_vfuncs(dev_priv, engine);
2276 if (HAS_L3_DPF(dev_priv))
2277 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2279 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2281 if (INTEL_GEN(dev_priv) >= 6) {
2282 engine->init_context = intel_rcs_ctx_init;
2283 engine->emit_flush = gen7_render_ring_flush;
2284 if (IS_GEN6(dev_priv))
2285 engine->emit_flush = gen6_render_ring_flush;
2286 } else if (IS_GEN5(dev_priv)) {
2287 engine->emit_flush = gen4_render_ring_flush;
2289 if (INTEL_GEN(dev_priv) < 4)
2290 engine->emit_flush = gen2_render_ring_flush;
2292 engine->emit_flush = gen4_render_ring_flush;
2293 engine->irq_enable_mask = I915_USER_INTERRUPT;
2296 if (IS_HASWELL(dev_priv))
2297 engine->emit_bb_start = hsw_emit_bb_start;
2299 engine->init_hw = init_render_ring;
2301 ret = intel_init_ring_buffer(engine);
2308 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2310 struct drm_i915_private *dev_priv = engine->i915;
2312 intel_ring_default_vfuncs(dev_priv, engine);
2314 if (INTEL_GEN(dev_priv) >= 6) {
2315 /* gen6 bsd needs a special wa for tail updates */
2316 if (IS_GEN6(dev_priv))
2317 engine->set_default_submission = gen6_bsd_set_default_submission;
2318 engine->emit_flush = gen6_bsd_ring_flush;
2319 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2321 engine->emit_flush = bsd_ring_flush;
2322 if (IS_GEN5(dev_priv))
2323 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2325 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2328 return intel_init_ring_buffer(engine);
2331 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2333 struct drm_i915_private *dev_priv = engine->i915;
2335 intel_ring_default_vfuncs(dev_priv, engine);
2337 engine->emit_flush = gen6_ring_flush;
2338 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2340 return intel_init_ring_buffer(engine);
2343 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2345 struct drm_i915_private *dev_priv = engine->i915;
2347 intel_ring_default_vfuncs(dev_priv, engine);
2349 engine->emit_flush = gen6_ring_flush;
2350 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2351 engine->irq_enable = hsw_vebox_irq_enable;
2352 engine->irq_disable = hsw_vebox_irq_disable;
2354 return intel_init_ring_buffer(engine);