]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'microblaze-v5.0-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <[email protected]>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <linux/pm_runtime.h>
30 #include <drm/drm_plane_helper.h>
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include "../../../platform/x86/intel_ips.h"
34 #include <linux/module.h>
35 #include <drm/drm_atomic_helper.h>
36
37 /**
38  * DOC: RC6
39  *
40  * RC6 is a special power stage which allows the GPU to enter an very
41  * low-voltage mode when idle, using down to 0V while at this stage.  This
42  * stage is entered automatically when the GPU is idle when RC6 support is
43  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44  *
45  * There are different RC6 modes available in Intel GPU, which differentiate
46  * among each other with the latency required to enter and leave RC6 and
47  * voltage consumed by the GPU in different states.
48  *
49  * The combination of the following flags define which states GPU is allowed
50  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51  * RC6pp is deepest RC6. Their support by hardware varies according to the
52  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53  * which brings the most power savings; deeper states save more power, but
54  * require higher latency to switch to and wake up.
55  */
56
57 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58 {
59         if (HAS_LLC(dev_priv)) {
60                 /*
61                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
62                  * Display WA #0390: skl,kbl
63                  *
64                  * Must match Sampler, Pixel Back End, and Media. See
65                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
66                  */
67                 I915_WRITE(CHICKEN_PAR1_1,
68                            I915_READ(CHICKEN_PAR1_1) |
69                            SKL_DE_COMPRESSED_HASH_MODE);
70         }
71
72         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73         I915_WRITE(CHICKEN_PAR1_1,
74                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
75
76         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77         I915_WRITE(GEN8_CHICKEN_DCPR_1,
78                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79
80         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
81         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
83                    DISP_FBC_WM_DIS |
84                    DISP_FBC_MEMORY_WAKE);
85
86         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
88                    ILK_DPFC_DISABLE_DUMMY0);
89
90         if (IS_SKYLAKE(dev_priv)) {
91                 /* WaDisableDopClockGating */
92                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
93                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
94         }
95 }
96
97 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98 {
99         gen9_init_clock_gating(dev_priv);
100
101         /* WaDisableSDEUnitClockGating:bxt */
102         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
103                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
104
105         /*
106          * FIXME:
107          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108          */
109         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
111
112         /*
113          * Wa: Backlight PWM may stop in the asserted state, causing backlight
114          * to stay fully on.
115          */
116         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
117                    PWM1_GATING_DIS | PWM2_GATING_DIS);
118 }
119
120 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
121 {
122         gen9_init_clock_gating(dev_priv);
123
124         /*
125          * WaDisablePWMClockGating:glk
126          * Backlight PWM may stop in the asserted state, causing backlight
127          * to stay fully on.
128          */
129         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
130                    PWM1_GATING_DIS | PWM2_GATING_DIS);
131
132         /* WaDDIIOTimeout:glk */
133         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
134                 u32 val = I915_READ(CHICKEN_MISC_2);
135                 val &= ~(GLK_CL0_PWR_DOWN |
136                          GLK_CL1_PWR_DOWN |
137                          GLK_CL2_PWR_DOWN);
138                 I915_WRITE(CHICKEN_MISC_2, val);
139         }
140
141 }
142
143 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 {
145         u32 tmp;
146
147         tmp = I915_READ(CLKCFG);
148
149         switch (tmp & CLKCFG_FSB_MASK) {
150         case CLKCFG_FSB_533:
151                 dev_priv->fsb_freq = 533; /* 133*4 */
152                 break;
153         case CLKCFG_FSB_800:
154                 dev_priv->fsb_freq = 800; /* 200*4 */
155                 break;
156         case CLKCFG_FSB_667:
157                 dev_priv->fsb_freq =  667; /* 167*4 */
158                 break;
159         case CLKCFG_FSB_400:
160                 dev_priv->fsb_freq = 400; /* 100*4 */
161                 break;
162         }
163
164         switch (tmp & CLKCFG_MEM_MASK) {
165         case CLKCFG_MEM_533:
166                 dev_priv->mem_freq = 533;
167                 break;
168         case CLKCFG_MEM_667:
169                 dev_priv->mem_freq = 667;
170                 break;
171         case CLKCFG_MEM_800:
172                 dev_priv->mem_freq = 800;
173                 break;
174         }
175
176         /* detect pineview DDR3 setting */
177         tmp = I915_READ(CSHRDDR3CTL);
178         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
179 }
180
181 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 {
183         u16 ddrpll, csipll;
184
185         ddrpll = I915_READ16(DDRMPLL1);
186         csipll = I915_READ16(CSIPLL0);
187
188         switch (ddrpll & 0xff) {
189         case 0xc:
190                 dev_priv->mem_freq = 800;
191                 break;
192         case 0x10:
193                 dev_priv->mem_freq = 1066;
194                 break;
195         case 0x14:
196                 dev_priv->mem_freq = 1333;
197                 break;
198         case 0x18:
199                 dev_priv->mem_freq = 1600;
200                 break;
201         default:
202                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
203                                  ddrpll & 0xff);
204                 dev_priv->mem_freq = 0;
205                 break;
206         }
207
208         dev_priv->ips.r_t = dev_priv->mem_freq;
209
210         switch (csipll & 0x3ff) {
211         case 0x00c:
212                 dev_priv->fsb_freq = 3200;
213                 break;
214         case 0x00e:
215                 dev_priv->fsb_freq = 3733;
216                 break;
217         case 0x010:
218                 dev_priv->fsb_freq = 4266;
219                 break;
220         case 0x012:
221                 dev_priv->fsb_freq = 4800;
222                 break;
223         case 0x014:
224                 dev_priv->fsb_freq = 5333;
225                 break;
226         case 0x016:
227                 dev_priv->fsb_freq = 5866;
228                 break;
229         case 0x018:
230                 dev_priv->fsb_freq = 6400;
231                 break;
232         default:
233                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
234                                  csipll & 0x3ff);
235                 dev_priv->fsb_freq = 0;
236                 break;
237         }
238
239         if (dev_priv->fsb_freq == 3200) {
240                 dev_priv->ips.c_m = 0;
241         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242                 dev_priv->ips.c_m = 1;
243         } else {
244                 dev_priv->ips.c_m = 2;
245         }
246 }
247
248 static const struct cxsr_latency cxsr_latency_table[] = {
249         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
250         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
251         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
252         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
253         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
254
255         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
256         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
257         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
258         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
259         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
260
261         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
262         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
263         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
264         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
265         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
266
267         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
268         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
269         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
270         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
271         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
272
273         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
274         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
275         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
276         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
277         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
278
279         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
280         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
281         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
282         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
283         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
284 };
285
286 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
287                                                          bool is_ddr3,
288                                                          int fsb,
289                                                          int mem)
290 {
291         const struct cxsr_latency *latency;
292         int i;
293
294         if (fsb == 0 || mem == 0)
295                 return NULL;
296
297         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
298                 latency = &cxsr_latency_table[i];
299                 if (is_desktop == latency->is_desktop &&
300                     is_ddr3 == latency->is_ddr3 &&
301                     fsb == latency->fsb_freq && mem == latency->mem_freq)
302                         return latency;
303         }
304
305         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
306
307         return NULL;
308 }
309
310 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
311 {
312         u32 val;
313
314         mutex_lock(&dev_priv->pcu_lock);
315
316         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
317         if (enable)
318                 val &= ~FORCE_DDR_HIGH_FREQ;
319         else
320                 val |= FORCE_DDR_HIGH_FREQ;
321         val &= ~FORCE_DDR_LOW_FREQ;
322         val |= FORCE_DDR_FREQ_REQ_ACK;
323         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
324
325         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
326                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
327                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
328
329         mutex_unlock(&dev_priv->pcu_lock);
330 }
331
332 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
333 {
334         u32 val;
335
336         mutex_lock(&dev_priv->pcu_lock);
337
338         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
339         if (enable)
340                 val |= DSP_MAXFIFO_PM5_ENABLE;
341         else
342                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
343         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
344
345         mutex_unlock(&dev_priv->pcu_lock);
346 }
347
348 #define FW_WM(value, plane) \
349         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
350
351 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
352 {
353         bool was_enabled;
354         u32 val;
355
356         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359                 POSTING_READ(FW_BLC_SELF_VLV);
360         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363                 POSTING_READ(FW_BLC_SELF);
364         } else if (IS_PINEVIEW(dev_priv)) {
365                 val = I915_READ(DSPFW3);
366                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
367                 if (enable)
368                         val |= PINEVIEW_SELF_REFRESH_EN;
369                 else
370                         val &= ~PINEVIEW_SELF_REFRESH_EN;
371                 I915_WRITE(DSPFW3, val);
372                 POSTING_READ(DSPFW3);
373         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
376                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
377                 I915_WRITE(FW_BLC_SELF, val);
378                 POSTING_READ(FW_BLC_SELF);
379         } else if (IS_I915GM(dev_priv)) {
380                 /*
381                  * FIXME can't find a bit like this for 915G, and
382                  * and yet it does have the related watermark in
383                  * FW_BLC_SELF. What's going on?
384                  */
385                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
387                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
388                 I915_WRITE(INSTPM, val);
389                 POSTING_READ(INSTPM);
390         } else {
391                 return false;
392         }
393
394         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
395
396         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
397                       enableddisabled(enable),
398                       enableddisabled(was_enabled));
399
400         return was_enabled;
401 }
402
403 /**
404  * intel_set_memory_cxsr - Configure CxSR state
405  * @dev_priv: i915 device
406  * @enable: Allow vs. disallow CxSR
407  *
408  * Allow or disallow the system to enter a special CxSR
409  * (C-state self refresh) state. What typically happens in CxSR mode
410  * is that several display FIFOs may get combined into a single larger
411  * FIFO for a particular plane (so called max FIFO mode) to allow the
412  * system to defer memory fetches longer, and the memory will enter
413  * self refresh.
414  *
415  * Note that enabling CxSR does not guarantee that the system enter
416  * this special mode, nor does it guarantee that the system stays
417  * in that mode once entered. So this just allows/disallows the system
418  * to autonomously utilize the CxSR mode. Other factors such as core
419  * C-states will affect when/if the system actually enters/exits the
420  * CxSR mode.
421  *
422  * Note that on VLV/CHV this actually only controls the max FIFO mode,
423  * and the system is free to enter/exit memory self refresh at any time
424  * even when the use of CxSR has been disallowed.
425  *
426  * While the system is actually in the CxSR/max FIFO mode, some plane
427  * control registers will not get latched on vblank. Thus in order to
428  * guarantee the system will respond to changes in the plane registers
429  * we must always disallow CxSR prior to making changes to those registers.
430  * Unfortunately the system will re-evaluate the CxSR conditions at
431  * frame start which happens after vblank start (which is when the plane
432  * registers would get latched), so we can't proceed with the plane update
433  * during the same frame where we disallowed CxSR.
434  *
435  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
436  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
437  * the hardware w.r.t. HPLL SR when writing to plane registers.
438  * Disallowing just CxSR is sufficient.
439  */
440 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
441 {
442         bool ret;
443
444         mutex_lock(&dev_priv->wm.wm_mutex);
445         ret = _intel_set_memory_cxsr(dev_priv, enable);
446         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
447                 dev_priv->wm.vlv.cxsr = enable;
448         else if (IS_G4X(dev_priv))
449                 dev_priv->wm.g4x.cxsr = enable;
450         mutex_unlock(&dev_priv->wm.wm_mutex);
451
452         return ret;
453 }
454
455 /*
456  * Latency for FIFO fetches is dependent on several factors:
457  *   - memory configuration (speed, channels)
458  *   - chipset
459  *   - current MCH state
460  * It can be fairly high in some situations, so here we assume a fairly
461  * pessimal value.  It's a tradeoff between extra memory fetches (if we
462  * set this value too high, the FIFO will fetch frequently to stay full)
463  * and power consumption (set it too low to save power and we might see
464  * FIFO underruns and display "flicker").
465  *
466  * A value of 5us seems to be a good balance; safe for very low end
467  * platforms but not overly aggressive on lower latency configs.
468  */
469 static const int pessimal_latency_ns = 5000;
470
471 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
472         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
473
474 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475 {
476         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479         enum pipe pipe = crtc->pipe;
480         int sprite0_start, sprite1_start;
481
482         switch (pipe) {
483                 uint32_t dsparb, dsparb2, dsparb3;
484         case PIPE_A:
485                 dsparb = I915_READ(DSPARB);
486                 dsparb2 = I915_READ(DSPARB2);
487                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
488                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
489                 break;
490         case PIPE_B:
491                 dsparb = I915_READ(DSPARB);
492                 dsparb2 = I915_READ(DSPARB2);
493                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
494                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
495                 break;
496         case PIPE_C:
497                 dsparb2 = I915_READ(DSPARB2);
498                 dsparb3 = I915_READ(DSPARB3);
499                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
500                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
501                 break;
502         default:
503                 MISSING_CASE(pipe);
504                 return;
505         }
506
507         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
508         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
509         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
510         fifo_state->plane[PLANE_CURSOR] = 63;
511 }
512
513 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
514                               enum i9xx_plane_id i9xx_plane)
515 {
516         uint32_t dsparb = I915_READ(DSPARB);
517         int size;
518
519         size = dsparb & 0x7f;
520         if (i9xx_plane == PLANE_B)
521                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
522
523         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
524                       dsparb, plane_name(i9xx_plane), size);
525
526         return size;
527 }
528
529 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
530                               enum i9xx_plane_id i9xx_plane)
531 {
532         uint32_t dsparb = I915_READ(DSPARB);
533         int size;
534
535         size = dsparb & 0x1ff;
536         if (i9xx_plane == PLANE_B)
537                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
538         size >>= 1; /* Convert to cachelines */
539
540         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
541                       dsparb, plane_name(i9xx_plane), size);
542
543         return size;
544 }
545
546 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
547                               enum i9xx_plane_id i9xx_plane)
548 {
549         uint32_t dsparb = I915_READ(DSPARB);
550         int size;
551
552         size = dsparb & 0x7f;
553         size >>= 2; /* Convert to cachelines */
554
555         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
556                       dsparb, plane_name(i9xx_plane), size);
557
558         return size;
559 }
560
561 /* Pineview has different values for various configs */
562 static const struct intel_watermark_params pineview_display_wm = {
563         .fifo_size = PINEVIEW_DISPLAY_FIFO,
564         .max_wm = PINEVIEW_MAX_WM,
565         .default_wm = PINEVIEW_DFT_WM,
566         .guard_size = PINEVIEW_GUARD_WM,
567         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 };
569 static const struct intel_watermark_params pineview_display_hplloff_wm = {
570         .fifo_size = PINEVIEW_DISPLAY_FIFO,
571         .max_wm = PINEVIEW_MAX_WM,
572         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
573         .guard_size = PINEVIEW_GUARD_WM,
574         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 };
576 static const struct intel_watermark_params pineview_cursor_wm = {
577         .fifo_size = PINEVIEW_CURSOR_FIFO,
578         .max_wm = PINEVIEW_CURSOR_MAX_WM,
579         .default_wm = PINEVIEW_CURSOR_DFT_WM,
580         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
581         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 };
583 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584         .fifo_size = PINEVIEW_CURSOR_FIFO,
585         .max_wm = PINEVIEW_CURSOR_MAX_WM,
586         .default_wm = PINEVIEW_CURSOR_DFT_WM,
587         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
588         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 };
590 static const struct intel_watermark_params i965_cursor_wm_info = {
591         .fifo_size = I965_CURSOR_FIFO,
592         .max_wm = I965_CURSOR_MAX_WM,
593         .default_wm = I965_CURSOR_DFT_WM,
594         .guard_size = 2,
595         .cacheline_size = I915_FIFO_LINE_SIZE,
596 };
597 static const struct intel_watermark_params i945_wm_info = {
598         .fifo_size = I945_FIFO_SIZE,
599         .max_wm = I915_MAX_WM,
600         .default_wm = 1,
601         .guard_size = 2,
602         .cacheline_size = I915_FIFO_LINE_SIZE,
603 };
604 static const struct intel_watermark_params i915_wm_info = {
605         .fifo_size = I915_FIFO_SIZE,
606         .max_wm = I915_MAX_WM,
607         .default_wm = 1,
608         .guard_size = 2,
609         .cacheline_size = I915_FIFO_LINE_SIZE,
610 };
611 static const struct intel_watermark_params i830_a_wm_info = {
612         .fifo_size = I855GM_FIFO_SIZE,
613         .max_wm = I915_MAX_WM,
614         .default_wm = 1,
615         .guard_size = 2,
616         .cacheline_size = I830_FIFO_LINE_SIZE,
617 };
618 static const struct intel_watermark_params i830_bc_wm_info = {
619         .fifo_size = I855GM_FIFO_SIZE,
620         .max_wm = I915_MAX_WM/2,
621         .default_wm = 1,
622         .guard_size = 2,
623         .cacheline_size = I830_FIFO_LINE_SIZE,
624 };
625 static const struct intel_watermark_params i845_wm_info = {
626         .fifo_size = I830_FIFO_SIZE,
627         .max_wm = I915_MAX_WM,
628         .default_wm = 1,
629         .guard_size = 2,
630         .cacheline_size = I830_FIFO_LINE_SIZE,
631 };
632
633 /**
634  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
635  * @pixel_rate: Pipe pixel rate in kHz
636  * @cpp: Plane bytes per pixel
637  * @latency: Memory wakeup latency in 0.1us units
638  *
639  * Compute the watermark using the method 1 or "small buffer"
640  * formula. The caller may additonally add extra cachelines
641  * to account for TLB misses and clock crossings.
642  *
643  * This method is concerned with the short term drain rate
644  * of the FIFO, ie. it does not account for blanking periods
645  * which would effectively reduce the average drain rate across
646  * a longer period. The name "small" refers to the fact the
647  * FIFO is relatively small compared to the amount of data
648  * fetched.
649  *
650  * The FIFO level vs. time graph might look something like:
651  *
652  *   |\   |\
653  *   | \  | \
654  * __---__---__ (- plane active, _ blanking)
655  * -> time
656  *
657  * or perhaps like this:
658  *
659  *   |\|\  |\|\
660  * __----__----__ (- plane active, _ blanking)
661  * -> time
662  *
663  * Returns:
664  * The watermark in bytes
665  */
666 static unsigned int intel_wm_method1(unsigned int pixel_rate,
667                                      unsigned int cpp,
668                                      unsigned int latency)
669 {
670         uint64_t ret;
671
672         ret = (uint64_t) pixel_rate * cpp * latency;
673         ret = DIV_ROUND_UP_ULL(ret, 10000);
674
675         return ret;
676 }
677
678 /**
679  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
680  * @pixel_rate: Pipe pixel rate in kHz
681  * @htotal: Pipe horizontal total
682  * @width: Plane width in pixels
683  * @cpp: Plane bytes per pixel
684  * @latency: Memory wakeup latency in 0.1us units
685  *
686  * Compute the watermark using the method 2 or "large buffer"
687  * formula. The caller may additonally add extra cachelines
688  * to account for TLB misses and clock crossings.
689  *
690  * This method is concerned with the long term drain rate
691  * of the FIFO, ie. it does account for blanking periods
692  * which effectively reduce the average drain rate across
693  * a longer period. The name "large" refers to the fact the
694  * FIFO is relatively large compared to the amount of data
695  * fetched.
696  *
697  * The FIFO level vs. time graph might look something like:
698  *
699  *    |\___       |\___
700  *    |    \___   |    \___
701  *    |        \  |        \
702  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
703  * -> time
704  *
705  * Returns:
706  * The watermark in bytes
707  */
708 static unsigned int intel_wm_method2(unsigned int pixel_rate,
709                                      unsigned int htotal,
710                                      unsigned int width,
711                                      unsigned int cpp,
712                                      unsigned int latency)
713 {
714         unsigned int ret;
715
716         /*
717          * FIXME remove once all users are computing
718          * watermarks in the correct place.
719          */
720         if (WARN_ON_ONCE(htotal == 0))
721                 htotal = 1;
722
723         ret = (latency * pixel_rate) / (htotal * 10000);
724         ret = (ret + 1) * width * cpp;
725
726         return ret;
727 }
728
729 /**
730  * intel_calculate_wm - calculate watermark level
731  * @pixel_rate: pixel clock
732  * @wm: chip FIFO params
733  * @fifo_size: size of the FIFO buffer
734  * @cpp: bytes per pixel
735  * @latency_ns: memory latency for the platform
736  *
737  * Calculate the watermark level (the level at which the display plane will
738  * start fetching from memory again).  Each chip has a different display
739  * FIFO size and allocation, so the caller needs to figure that out and pass
740  * in the correct intel_watermark_params structure.
741  *
742  * As the pixel clock runs, the FIFO will be drained at a rate that depends
743  * on the pixel size.  When it reaches the watermark level, it'll start
744  * fetching FIFO line sized based chunks from memory until the FIFO fills
745  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
746  * will occur, and a display engine hang could result.
747  */
748 static unsigned int intel_calculate_wm(int pixel_rate,
749                                        const struct intel_watermark_params *wm,
750                                        int fifo_size, int cpp,
751                                        unsigned int latency_ns)
752 {
753         int entries, wm_size;
754
755         /*
756          * Note: we need to make sure we don't overflow for various clock &
757          * latency values.
758          * clocks go from a few thousand to several hundred thousand.
759          * latency is usually a few thousand
760          */
761         entries = intel_wm_method1(pixel_rate, cpp,
762                                    latency_ns / 100);
763         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
764                 wm->guard_size;
765         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766
767         wm_size = fifo_size - entries;
768         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769
770         /* Don't promote wm_size to unsigned... */
771         if (wm_size > wm->max_wm)
772                 wm_size = wm->max_wm;
773         if (wm_size <= 0)
774                 wm_size = wm->default_wm;
775
776         /*
777          * Bspec seems to indicate that the value shouldn't be lower than
778          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
779          * Lets go for 8 which is the burst size since certain platforms
780          * already use a hardcoded 8 (which is what the spec says should be
781          * done).
782          */
783         if (wm_size <= 8)
784                 wm_size = 8;
785
786         return wm_size;
787 }
788
789 static bool is_disabling(int old, int new, int threshold)
790 {
791         return old >= threshold && new < threshold;
792 }
793
794 static bool is_enabling(int old, int new, int threshold)
795 {
796         return old < threshold && new >= threshold;
797 }
798
799 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
800 {
801         return dev_priv->wm.max_level + 1;
802 }
803
804 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
805                                    const struct intel_plane_state *plane_state)
806 {
807         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
808
809         /* FIXME check the 'enable' instead */
810         if (!crtc_state->base.active)
811                 return false;
812
813         /*
814          * Treat cursor with fb as always visible since cursor updates
815          * can happen faster than the vrefresh rate, and the current
816          * watermark code doesn't handle that correctly. Cursor updates
817          * which set/clear the fb or change the cursor size are going
818          * to get throttled by intel_legacy_cursor_update() to work
819          * around this problem with the watermark code.
820          */
821         if (plane->id == PLANE_CURSOR)
822                 return plane_state->base.fb != NULL;
823         else
824                 return plane_state->base.visible;
825 }
826
827 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828 {
829         struct intel_crtc *crtc, *enabled = NULL;
830
831         for_each_intel_crtc(&dev_priv->drm, crtc) {
832                 if (intel_crtc_active(crtc)) {
833                         if (enabled)
834                                 return NULL;
835                         enabled = crtc;
836                 }
837         }
838
839         return enabled;
840 }
841
842 static void pineview_update_wm(struct intel_crtc *unused_crtc)
843 {
844         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845         struct intel_crtc *crtc;
846         const struct cxsr_latency *latency;
847         u32 reg;
848         unsigned int wm;
849
850         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
851                                          dev_priv->is_ddr3,
852                                          dev_priv->fsb_freq,
853                                          dev_priv->mem_freq);
854         if (!latency) {
855                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856                 intel_set_memory_cxsr(dev_priv, false);
857                 return;
858         }
859
860         crtc = single_enabled_crtc(dev_priv);
861         if (crtc) {
862                 const struct drm_display_mode *adjusted_mode =
863                         &crtc->config->base.adjusted_mode;
864                 const struct drm_framebuffer *fb =
865                         crtc->base.primary->state->fb;
866                 int cpp = fb->format->cpp[0];
867                 int clock = adjusted_mode->crtc_clock;
868
869                 /* Display SR */
870                 wm = intel_calculate_wm(clock, &pineview_display_wm,
871                                         pineview_display_wm.fifo_size,
872                                         cpp, latency->display_sr);
873                 reg = I915_READ(DSPFW1);
874                 reg &= ~DSPFW_SR_MASK;
875                 reg |= FW_WM(wm, SR);
876                 I915_WRITE(DSPFW1, reg);
877                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
878
879                 /* cursor SR */
880                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
881                                         pineview_display_wm.fifo_size,
882                                         4, latency->cursor_sr);
883                 reg = I915_READ(DSPFW3);
884                 reg &= ~DSPFW_CURSOR_SR_MASK;
885                 reg |= FW_WM(wm, CURSOR_SR);
886                 I915_WRITE(DSPFW3, reg);
887
888                 /* Display HPLL off SR */
889                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
890                                         pineview_display_hplloff_wm.fifo_size,
891                                         cpp, latency->display_hpll_disable);
892                 reg = I915_READ(DSPFW3);
893                 reg &= ~DSPFW_HPLL_SR_MASK;
894                 reg |= FW_WM(wm, HPLL_SR);
895                 I915_WRITE(DSPFW3, reg);
896
897                 /* cursor HPLL off SR */
898                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
899                                         pineview_display_hplloff_wm.fifo_size,
900                                         4, latency->cursor_hpll_disable);
901                 reg = I915_READ(DSPFW3);
902                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
903                 reg |= FW_WM(wm, HPLL_CURSOR);
904                 I915_WRITE(DSPFW3, reg);
905                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
906
907                 intel_set_memory_cxsr(dev_priv, true);
908         } else {
909                 intel_set_memory_cxsr(dev_priv, false);
910         }
911 }
912
913 /*
914  * Documentation says:
915  * "If the line size is small, the TLB fetches can get in the way of the
916  *  data fetches, causing some lag in the pixel data return which is not
917  *  accounted for in the above formulas. The following adjustment only
918  *  needs to be applied if eight whole lines fit in the buffer at once.
919  *  The WM is adjusted upwards by the difference between the FIFO size
920  *  and the size of 8 whole lines. This adjustment is always performed
921  *  in the actual pixel depth regardless of whether FBC is enabled or not."
922  */
923 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 {
925         int tlb_miss = fifo_size * 64 - width * cpp * 8;
926
927         return max(0, tlb_miss);
928 }
929
930 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
931                                 const struct g4x_wm_values *wm)
932 {
933         enum pipe pipe;
934
935         for_each_pipe(dev_priv, pipe)
936                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
937
938         I915_WRITE(DSPFW1,
939                    FW_WM(wm->sr.plane, SR) |
940                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
941                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
942                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
943         I915_WRITE(DSPFW2,
944                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
945                    FW_WM(wm->sr.fbc, FBC_SR) |
946                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
947                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
948                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
949                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
950         I915_WRITE(DSPFW3,
951                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
952                    FW_WM(wm->sr.cursor, CURSOR_SR) |
953                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
954                    FW_WM(wm->hpll.plane, HPLL_SR));
955
956         POSTING_READ(DSPFW1);
957 }
958
959 #define FW_WM_VLV(value, plane) \
960         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
961
962 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963                                 const struct vlv_wm_values *wm)
964 {
965         enum pipe pipe;
966
967         for_each_pipe(dev_priv, pipe) {
968                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
969
970                 I915_WRITE(VLV_DDL(pipe),
971                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
972                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
973                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
974                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
975         }
976
977         /*
978          * Zero the (unused) WM1 watermarks, and also clear all the
979          * high order bits so that there are no out of bounds values
980          * present in the registers during the reprogramming.
981          */
982         I915_WRITE(DSPHOWM, 0);
983         I915_WRITE(DSPHOWM1, 0);
984         I915_WRITE(DSPFW4, 0);
985         I915_WRITE(DSPFW5, 0);
986         I915_WRITE(DSPFW6, 0);
987
988         I915_WRITE(DSPFW1,
989                    FW_WM(wm->sr.plane, SR) |
990                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
991                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
992                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993         I915_WRITE(DSPFW2,
994                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
995                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
996                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997         I915_WRITE(DSPFW3,
998                    FW_WM(wm->sr.cursor, CURSOR_SR));
999
1000         if (IS_CHERRYVIEW(dev_priv)) {
1001                 I915_WRITE(DSPFW7_CHV,
1002                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1003                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004                 I915_WRITE(DSPFW8_CHV,
1005                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1006                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007                 I915_WRITE(DSPFW9_CHV,
1008                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1009                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010                 I915_WRITE(DSPHOWM,
1011                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1012                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1013                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1014                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1015                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1016                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1017                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1018                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1019                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1020                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1021         } else {
1022                 I915_WRITE(DSPFW7,
1023                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1024                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025                 I915_WRITE(DSPHOWM,
1026                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1027                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1028                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1029                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1030                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1031                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1032                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1033         }
1034
1035         POSTING_READ(DSPFW1);
1036 }
1037
1038 #undef FW_WM_VLV
1039
1040 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1041 {
1042         /* all latencies in usec */
1043         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1044         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046
1047         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1048 }
1049
1050 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1051 {
1052         /*
1053          * DSPCNTR[13] supposedly controls whether the
1054          * primary plane can use the FIFO space otherwise
1055          * reserved for the sprite plane. It's not 100% clear
1056          * what the actual FIFO size is, but it looks like we
1057          * can happily set both primary and sprite watermarks
1058          * up to 127 cachelines. So that would seem to mean
1059          * that either DSPCNTR[13] doesn't do anything, or that
1060          * the total FIFO is >= 256 cachelines in size. Either
1061          * way, we don't seem to have to worry about this
1062          * repartitioning as the maximum watermark value the
1063          * register can hold for each plane is lower than the
1064          * minimum FIFO size.
1065          */
1066         switch (plane_id) {
1067         case PLANE_CURSOR:
1068                 return 63;
1069         case PLANE_PRIMARY:
1070                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1071         case PLANE_SPRITE0:
1072                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1073         default:
1074                 MISSING_CASE(plane_id);
1075                 return 0;
1076         }
1077 }
1078
1079 static int g4x_fbc_fifo_size(int level)
1080 {
1081         switch (level) {
1082         case G4X_WM_LEVEL_SR:
1083                 return 7;
1084         case G4X_WM_LEVEL_HPLL:
1085                 return 15;
1086         default:
1087                 MISSING_CASE(level);
1088                 return 0;
1089         }
1090 }
1091
1092 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1093                                const struct intel_plane_state *plane_state,
1094                                int level)
1095 {
1096         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1097         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1098         const struct drm_display_mode *adjusted_mode =
1099                 &crtc_state->base.adjusted_mode;
1100         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1101         unsigned int clock, htotal, cpp, width, wm;
1102
1103         if (latency == 0)
1104                 return USHRT_MAX;
1105
1106         if (!intel_wm_plane_visible(crtc_state, plane_state))
1107                 return 0;
1108
1109         /*
1110          * Not 100% sure which way ELK should go here as the
1111          * spec only says CL/CTG should assume 32bpp and BW
1112          * doesn't need to. But as these things followed the
1113          * mobile vs. desktop lines on gen3 as well, let's
1114          * assume ELK doesn't need this.
1115          *
1116          * The spec also fails to list such a restriction for
1117          * the HPLL watermark, which seems a little strange.
1118          * Let's use 32bpp for the HPLL watermark as well.
1119          */
1120         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1121             level != G4X_WM_LEVEL_NORMAL)
1122                 cpp = 4;
1123         else
1124                 cpp = plane_state->base.fb->format->cpp[0];
1125
1126         clock = adjusted_mode->crtc_clock;
1127         htotal = adjusted_mode->crtc_htotal;
1128
1129         if (plane->id == PLANE_CURSOR)
1130                 width = plane_state->base.crtc_w;
1131         else
1132                 width = drm_rect_width(&plane_state->base.dst);
1133
1134         if (plane->id == PLANE_CURSOR) {
1135                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1136         } else if (plane->id == PLANE_PRIMARY &&
1137                    level == G4X_WM_LEVEL_NORMAL) {
1138                 wm = intel_wm_method1(clock, cpp, latency);
1139         } else {
1140                 unsigned int small, large;
1141
1142                 small = intel_wm_method1(clock, cpp, latency);
1143                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1144
1145                 wm = min(small, large);
1146         }
1147
1148         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1149                               width, cpp);
1150
1151         wm = DIV_ROUND_UP(wm, 64) + 2;
1152
1153         return min_t(unsigned int, wm, USHRT_MAX);
1154 }
1155
1156 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1157                                  int level, enum plane_id plane_id, u16 value)
1158 {
1159         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1160         bool dirty = false;
1161
1162         for (; level < intel_wm_num_levels(dev_priv); level++) {
1163                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1164
1165                 dirty |= raw->plane[plane_id] != value;
1166                 raw->plane[plane_id] = value;
1167         }
1168
1169         return dirty;
1170 }
1171
1172 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1173                                int level, u16 value)
1174 {
1175         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1176         bool dirty = false;
1177
1178         /* NORMAL level doesn't have an FBC watermark */
1179         level = max(level, G4X_WM_LEVEL_SR);
1180
1181         for (; level < intel_wm_num_levels(dev_priv); level++) {
1182                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1183
1184                 dirty |= raw->fbc != value;
1185                 raw->fbc = value;
1186         }
1187
1188         return dirty;
1189 }
1190
1191 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1192                                    const struct intel_plane_state *pstate,
1193                                    uint32_t pri_val);
1194
1195 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1196                                      const struct intel_plane_state *plane_state)
1197 {
1198         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1199         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1200         enum plane_id plane_id = plane->id;
1201         bool dirty = false;
1202         int level;
1203
1204         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1205                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1206                 if (plane_id == PLANE_PRIMARY)
1207                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1208                 goto out;
1209         }
1210
1211         for (level = 0; level < num_levels; level++) {
1212                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1213                 int wm, max_wm;
1214
1215                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1216                 max_wm = g4x_plane_fifo_size(plane_id, level);
1217
1218                 if (wm > max_wm)
1219                         break;
1220
1221                 dirty |= raw->plane[plane_id] != wm;
1222                 raw->plane[plane_id] = wm;
1223
1224                 if (plane_id != PLANE_PRIMARY ||
1225                     level == G4X_WM_LEVEL_NORMAL)
1226                         continue;
1227
1228                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1229                                         raw->plane[plane_id]);
1230                 max_wm = g4x_fbc_fifo_size(level);
1231
1232                 /*
1233                  * FBC wm is not mandatory as we
1234                  * can always just disable its use.
1235                  */
1236                 if (wm > max_wm)
1237                         wm = USHRT_MAX;
1238
1239                 dirty |= raw->fbc != wm;
1240                 raw->fbc = wm;
1241         }
1242
1243         /* mark watermarks as invalid */
1244         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1245
1246         if (plane_id == PLANE_PRIMARY)
1247                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1248
1249  out:
1250         if (dirty) {
1251                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1252                               plane->base.name,
1253                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1254                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1255                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1256
1257                 if (plane_id == PLANE_PRIMARY)
1258                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1259                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1260                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1261         }
1262
1263         return dirty;
1264 }
1265
1266 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1267                                       enum plane_id plane_id, int level)
1268 {
1269         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1270
1271         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1272 }
1273
1274 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1275                                      int level)
1276 {
1277         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1278
1279         if (level > dev_priv->wm.max_level)
1280                 return false;
1281
1282         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1283                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1284                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1285 }
1286
1287 /* mark all levels starting from 'level' as invalid */
1288 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1289                                struct g4x_wm_state *wm_state, int level)
1290 {
1291         if (level <= G4X_WM_LEVEL_NORMAL) {
1292                 enum plane_id plane_id;
1293
1294                 for_each_plane_id_on_crtc(crtc, plane_id)
1295                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1296         }
1297
1298         if (level <= G4X_WM_LEVEL_SR) {
1299                 wm_state->cxsr = false;
1300                 wm_state->sr.cursor = USHRT_MAX;
1301                 wm_state->sr.plane = USHRT_MAX;
1302                 wm_state->sr.fbc = USHRT_MAX;
1303         }
1304
1305         if (level <= G4X_WM_LEVEL_HPLL) {
1306                 wm_state->hpll_en = false;
1307                 wm_state->hpll.cursor = USHRT_MAX;
1308                 wm_state->hpll.plane = USHRT_MAX;
1309                 wm_state->hpll.fbc = USHRT_MAX;
1310         }
1311 }
1312
1313 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1314 {
1315         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1316         struct intel_atomic_state *state =
1317                 to_intel_atomic_state(crtc_state->base.state);
1318         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1319         int num_active_planes = hweight32(crtc_state->active_planes &
1320                                           ~BIT(PLANE_CURSOR));
1321         const struct g4x_pipe_wm *raw;
1322         const struct intel_plane_state *old_plane_state;
1323         const struct intel_plane_state *new_plane_state;
1324         struct intel_plane *plane;
1325         enum plane_id plane_id;
1326         int i, level;
1327         unsigned int dirty = 0;
1328
1329         for_each_oldnew_intel_plane_in_state(state, plane,
1330                                              old_plane_state,
1331                                              new_plane_state, i) {
1332                 if (new_plane_state->base.crtc != &crtc->base &&
1333                     old_plane_state->base.crtc != &crtc->base)
1334                         continue;
1335
1336                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337                         dirty |= BIT(plane->id);
1338         }
1339
1340         if (!dirty)
1341                 return 0;
1342
1343         level = G4X_WM_LEVEL_NORMAL;
1344         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1345                 goto out;
1346
1347         raw = &crtc_state->wm.g4x.raw[level];
1348         for_each_plane_id_on_crtc(crtc, plane_id)
1349                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1350
1351         level = G4X_WM_LEVEL_SR;
1352
1353         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1354                 goto out;
1355
1356         raw = &crtc_state->wm.g4x.raw[level];
1357         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1358         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1359         wm_state->sr.fbc = raw->fbc;
1360
1361         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1362
1363         level = G4X_WM_LEVEL_HPLL;
1364
1365         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1366                 goto out;
1367
1368         raw = &crtc_state->wm.g4x.raw[level];
1369         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1370         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1371         wm_state->hpll.fbc = raw->fbc;
1372
1373         wm_state->hpll_en = wm_state->cxsr;
1374
1375         level++;
1376
1377  out:
1378         if (level == G4X_WM_LEVEL_NORMAL)
1379                 return -EINVAL;
1380
1381         /* invalidate the higher levels */
1382         g4x_invalidate_wms(crtc, wm_state, level);
1383
1384         /*
1385          * Determine if the FBC watermark(s) can be used. IF
1386          * this isn't the case we prefer to disable the FBC
1387          ( watermark(s) rather than disable the SR/HPLL
1388          * level(s) entirely.
1389          */
1390         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1391
1392         if (level >= G4X_WM_LEVEL_SR &&
1393             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1394                 wm_state->fbc_en = false;
1395         else if (level >= G4X_WM_LEVEL_HPLL &&
1396                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1397                 wm_state->fbc_en = false;
1398
1399         return 0;
1400 }
1401
1402 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1403                                        struct intel_crtc *crtc,
1404                                        struct intel_crtc_state *new_crtc_state)
1405 {
1406         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1407         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1408         struct intel_atomic_state *intel_state =
1409                 to_intel_atomic_state(new_crtc_state->base.state);
1410         const struct intel_crtc_state *old_crtc_state =
1411                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1412         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1413         enum plane_id plane_id;
1414
1415         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1416                 *intermediate = *optimal;
1417
1418                 intermediate->cxsr = false;
1419                 intermediate->hpll_en = false;
1420                 goto out;
1421         }
1422
1423         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1424                 !new_crtc_state->disable_cxsr;
1425         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1426                 !new_crtc_state->disable_cxsr;
1427         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1428
1429         for_each_plane_id_on_crtc(crtc, plane_id) {
1430                 intermediate->wm.plane[plane_id] =
1431                         max(optimal->wm.plane[plane_id],
1432                             active->wm.plane[plane_id]);
1433
1434                 WARN_ON(intermediate->wm.plane[plane_id] >
1435                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1436         }
1437
1438         intermediate->sr.plane = max(optimal->sr.plane,
1439                                      active->sr.plane);
1440         intermediate->sr.cursor = max(optimal->sr.cursor,
1441                                       active->sr.cursor);
1442         intermediate->sr.fbc = max(optimal->sr.fbc,
1443                                    active->sr.fbc);
1444
1445         intermediate->hpll.plane = max(optimal->hpll.plane,
1446                                        active->hpll.plane);
1447         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1448                                         active->hpll.cursor);
1449         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1450                                      active->hpll.fbc);
1451
1452         WARN_ON((intermediate->sr.plane >
1453                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1454                  intermediate->sr.cursor >
1455                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1456                 intermediate->cxsr);
1457         WARN_ON((intermediate->sr.plane >
1458                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1459                  intermediate->sr.cursor >
1460                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1461                 intermediate->hpll_en);
1462
1463         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1464                 intermediate->fbc_en && intermediate->cxsr);
1465         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1466                 intermediate->fbc_en && intermediate->hpll_en);
1467
1468 out:
1469         /*
1470          * If our intermediate WM are identical to the final WM, then we can
1471          * omit the post-vblank programming; only update if it's different.
1472          */
1473         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1474                 new_crtc_state->wm.need_postvbl_update = true;
1475
1476         return 0;
1477 }
1478
1479 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1480                          struct g4x_wm_values *wm)
1481 {
1482         struct intel_crtc *crtc;
1483         int num_active_crtcs = 0;
1484
1485         wm->cxsr = true;
1486         wm->hpll_en = true;
1487         wm->fbc_en = true;
1488
1489         for_each_intel_crtc(&dev_priv->drm, crtc) {
1490                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1491
1492                 if (!crtc->active)
1493                         continue;
1494
1495                 if (!wm_state->cxsr)
1496                         wm->cxsr = false;
1497                 if (!wm_state->hpll_en)
1498                         wm->hpll_en = false;
1499                 if (!wm_state->fbc_en)
1500                         wm->fbc_en = false;
1501
1502                 num_active_crtcs++;
1503         }
1504
1505         if (num_active_crtcs != 1) {
1506                 wm->cxsr = false;
1507                 wm->hpll_en = false;
1508                 wm->fbc_en = false;
1509         }
1510
1511         for_each_intel_crtc(&dev_priv->drm, crtc) {
1512                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1513                 enum pipe pipe = crtc->pipe;
1514
1515                 wm->pipe[pipe] = wm_state->wm;
1516                 if (crtc->active && wm->cxsr)
1517                         wm->sr = wm_state->sr;
1518                 if (crtc->active && wm->hpll_en)
1519                         wm->hpll = wm_state->hpll;
1520         }
1521 }
1522
1523 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1524 {
1525         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1526         struct g4x_wm_values new_wm = {};
1527
1528         g4x_merge_wm(dev_priv, &new_wm);
1529
1530         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1531                 return;
1532
1533         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1534                 _intel_set_memory_cxsr(dev_priv, false);
1535
1536         g4x_write_wm_values(dev_priv, &new_wm);
1537
1538         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1539                 _intel_set_memory_cxsr(dev_priv, true);
1540
1541         *old_wm = new_wm;
1542 }
1543
1544 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1545                                    struct intel_crtc_state *crtc_state)
1546 {
1547         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1548         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1549
1550         mutex_lock(&dev_priv->wm.wm_mutex);
1551         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1552         g4x_program_watermarks(dev_priv);
1553         mutex_unlock(&dev_priv->wm.wm_mutex);
1554 }
1555
1556 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1557                                     struct intel_crtc_state *crtc_state)
1558 {
1559         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1561
1562         if (!crtc_state->wm.need_postvbl_update)
1563                 return;
1564
1565         mutex_lock(&dev_priv->wm.wm_mutex);
1566         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1567         g4x_program_watermarks(dev_priv);
1568         mutex_unlock(&dev_priv->wm.wm_mutex);
1569 }
1570
1571 /* latency must be in 0.1us units. */
1572 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1573                                    unsigned int htotal,
1574                                    unsigned int width,
1575                                    unsigned int cpp,
1576                                    unsigned int latency)
1577 {
1578         unsigned int ret;
1579
1580         ret = intel_wm_method2(pixel_rate, htotal,
1581                                width, cpp, latency);
1582         ret = DIV_ROUND_UP(ret, 64);
1583
1584         return ret;
1585 }
1586
1587 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1588 {
1589         /* all latencies in usec */
1590         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1591
1592         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1593
1594         if (IS_CHERRYVIEW(dev_priv)) {
1595                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1596                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1597
1598                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1599         }
1600 }
1601
1602 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1603                                      const struct intel_plane_state *plane_state,
1604                                      int level)
1605 {
1606         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1607         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1608         const struct drm_display_mode *adjusted_mode =
1609                 &crtc_state->base.adjusted_mode;
1610         unsigned int clock, htotal, cpp, width, wm;
1611
1612         if (dev_priv->wm.pri_latency[level] == 0)
1613                 return USHRT_MAX;
1614
1615         if (!intel_wm_plane_visible(crtc_state, plane_state))
1616                 return 0;
1617
1618         cpp = plane_state->base.fb->format->cpp[0];
1619         clock = adjusted_mode->crtc_clock;
1620         htotal = adjusted_mode->crtc_htotal;
1621         width = crtc_state->pipe_src_w;
1622
1623         if (plane->id == PLANE_CURSOR) {
1624                 /*
1625                  * FIXME the formula gives values that are
1626                  * too big for the cursor FIFO, and hence we
1627                  * would never be able to use cursors. For
1628                  * now just hardcode the watermark.
1629                  */
1630                 wm = 63;
1631         } else {
1632                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1633                                     dev_priv->wm.pri_latency[level] * 10);
1634         }
1635
1636         return min_t(unsigned int, wm, USHRT_MAX);
1637 }
1638
1639 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1640 {
1641         return (active_planes & (BIT(PLANE_SPRITE0) |
1642                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1643 }
1644
1645 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1646 {
1647         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1648         const struct g4x_pipe_wm *raw =
1649                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1650         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1651         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1652         int num_active_planes = hweight32(active_planes);
1653         const int fifo_size = 511;
1654         int fifo_extra, fifo_left = fifo_size;
1655         int sprite0_fifo_extra = 0;
1656         unsigned int total_rate;
1657         enum plane_id plane_id;
1658
1659         /*
1660          * When enabling sprite0 after sprite1 has already been enabled
1661          * we tend to get an underrun unless sprite0 already has some
1662          * FIFO space allcoated. Hence we always allocate at least one
1663          * cacheline for sprite0 whenever sprite1 is enabled.
1664          *
1665          * All other plane enable sequences appear immune to this problem.
1666          */
1667         if (vlv_need_sprite0_fifo_workaround(active_planes))
1668                 sprite0_fifo_extra = 1;
1669
1670         total_rate = raw->plane[PLANE_PRIMARY] +
1671                 raw->plane[PLANE_SPRITE0] +
1672                 raw->plane[PLANE_SPRITE1] +
1673                 sprite0_fifo_extra;
1674
1675         if (total_rate > fifo_size)
1676                 return -EINVAL;
1677
1678         if (total_rate == 0)
1679                 total_rate = 1;
1680
1681         for_each_plane_id_on_crtc(crtc, plane_id) {
1682                 unsigned int rate;
1683
1684                 if ((active_planes & BIT(plane_id)) == 0) {
1685                         fifo_state->plane[plane_id] = 0;
1686                         continue;
1687                 }
1688
1689                 rate = raw->plane[plane_id];
1690                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1691                 fifo_left -= fifo_state->plane[plane_id];
1692         }
1693
1694         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1695         fifo_left -= sprite0_fifo_extra;
1696
1697         fifo_state->plane[PLANE_CURSOR] = 63;
1698
1699         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1700
1701         /* spread the remainder evenly */
1702         for_each_plane_id_on_crtc(crtc, plane_id) {
1703                 int plane_extra;
1704
1705                 if (fifo_left == 0)
1706                         break;
1707
1708                 if ((active_planes & BIT(plane_id)) == 0)
1709                         continue;
1710
1711                 plane_extra = min(fifo_extra, fifo_left);
1712                 fifo_state->plane[plane_id] += plane_extra;
1713                 fifo_left -= plane_extra;
1714         }
1715
1716         WARN_ON(active_planes != 0 && fifo_left != 0);
1717
1718         /* give it all to the first plane if none are active */
1719         if (active_planes == 0) {
1720                 WARN_ON(fifo_left != fifo_size);
1721                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1722         }
1723
1724         return 0;
1725 }
1726
1727 /* mark all levels starting from 'level' as invalid */
1728 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1729                                struct vlv_wm_state *wm_state, int level)
1730 {
1731         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1732
1733         for (; level < intel_wm_num_levels(dev_priv); level++) {
1734                 enum plane_id plane_id;
1735
1736                 for_each_plane_id_on_crtc(crtc, plane_id)
1737                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1738
1739                 wm_state->sr[level].cursor = USHRT_MAX;
1740                 wm_state->sr[level].plane = USHRT_MAX;
1741         }
1742 }
1743
1744 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1745 {
1746         if (wm > fifo_size)
1747                 return USHRT_MAX;
1748         else
1749                 return fifo_size - wm;
1750 }
1751
1752 /*
1753  * Starting from 'level' set all higher
1754  * levels to 'value' in the "raw" watermarks.
1755  */
1756 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1757                                  int level, enum plane_id plane_id, u16 value)
1758 {
1759         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1760         int num_levels = intel_wm_num_levels(dev_priv);
1761         bool dirty = false;
1762
1763         for (; level < num_levels; level++) {
1764                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1765
1766                 dirty |= raw->plane[plane_id] != value;
1767                 raw->plane[plane_id] = value;
1768         }
1769
1770         return dirty;
1771 }
1772
1773 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1774                                      const struct intel_plane_state *plane_state)
1775 {
1776         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1777         enum plane_id plane_id = plane->id;
1778         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1779         int level;
1780         bool dirty = false;
1781
1782         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1783                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1784                 goto out;
1785         }
1786
1787         for (level = 0; level < num_levels; level++) {
1788                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1789                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1790                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1791
1792                 if (wm > max_wm)
1793                         break;
1794
1795                 dirty |= raw->plane[plane_id] != wm;
1796                 raw->plane[plane_id] = wm;
1797         }
1798
1799         /* mark all higher levels as invalid */
1800         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1801
1802 out:
1803         if (dirty)
1804                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1805                               plane->base.name,
1806                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1807                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1808                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1809
1810         return dirty;
1811 }
1812
1813 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1814                                       enum plane_id plane_id, int level)
1815 {
1816         const struct g4x_pipe_wm *raw =
1817                 &crtc_state->wm.vlv.raw[level];
1818         const struct vlv_fifo_state *fifo_state =
1819                 &crtc_state->wm.vlv.fifo_state;
1820
1821         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1822 }
1823
1824 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1825 {
1826         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1827                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1828                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1829                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1830 }
1831
1832 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1833 {
1834         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1835         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1836         struct intel_atomic_state *state =
1837                 to_intel_atomic_state(crtc_state->base.state);
1838         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1839         const struct vlv_fifo_state *fifo_state =
1840                 &crtc_state->wm.vlv.fifo_state;
1841         int num_active_planes = hweight32(crtc_state->active_planes &
1842                                           ~BIT(PLANE_CURSOR));
1843         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1844         const struct intel_plane_state *old_plane_state;
1845         const struct intel_plane_state *new_plane_state;
1846         struct intel_plane *plane;
1847         enum plane_id plane_id;
1848         int level, ret, i;
1849         unsigned int dirty = 0;
1850
1851         for_each_oldnew_intel_plane_in_state(state, plane,
1852                                              old_plane_state,
1853                                              new_plane_state, i) {
1854                 if (new_plane_state->base.crtc != &crtc->base &&
1855                     old_plane_state->base.crtc != &crtc->base)
1856                         continue;
1857
1858                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1859                         dirty |= BIT(plane->id);
1860         }
1861
1862         /*
1863          * DSPARB registers may have been reset due to the
1864          * power well being turned off. Make sure we restore
1865          * them to a consistent state even if no primary/sprite
1866          * planes are initially active.
1867          */
1868         if (needs_modeset)
1869                 crtc_state->fifo_changed = true;
1870
1871         if (!dirty)
1872                 return 0;
1873
1874         /* cursor changes don't warrant a FIFO recompute */
1875         if (dirty & ~BIT(PLANE_CURSOR)) {
1876                 const struct intel_crtc_state *old_crtc_state =
1877                         intel_atomic_get_old_crtc_state(state, crtc);
1878                 const struct vlv_fifo_state *old_fifo_state =
1879                         &old_crtc_state->wm.vlv.fifo_state;
1880
1881                 ret = vlv_compute_fifo(crtc_state);
1882                 if (ret)
1883                         return ret;
1884
1885                 if (needs_modeset ||
1886                     memcmp(old_fifo_state, fifo_state,
1887                            sizeof(*fifo_state)) != 0)
1888                         crtc_state->fifo_changed = true;
1889         }
1890
1891         /* initially allow all levels */
1892         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1893         /*
1894          * Note that enabling cxsr with no primary/sprite planes
1895          * enabled can wedge the pipe. Hence we only allow cxsr
1896          * with exactly one enabled primary/sprite plane.
1897          */
1898         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1899
1900         for (level = 0; level < wm_state->num_levels; level++) {
1901                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1902                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1903
1904                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1905                         break;
1906
1907                 for_each_plane_id_on_crtc(crtc, plane_id) {
1908                         wm_state->wm[level].plane[plane_id] =
1909                                 vlv_invert_wm_value(raw->plane[plane_id],
1910                                                     fifo_state->plane[plane_id]);
1911                 }
1912
1913                 wm_state->sr[level].plane =
1914                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1915                                                  raw->plane[PLANE_SPRITE0],
1916                                                  raw->plane[PLANE_SPRITE1]),
1917                                             sr_fifo_size);
1918
1919                 wm_state->sr[level].cursor =
1920                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1921                                             63);
1922         }
1923
1924         if (level == 0)
1925                 return -EINVAL;
1926
1927         /* limit to only levels we can actually handle */
1928         wm_state->num_levels = level;
1929
1930         /* invalidate the higher levels */
1931         vlv_invalidate_wms(crtc, wm_state, level);
1932
1933         return 0;
1934 }
1935
1936 #define VLV_FIFO(plane, value) \
1937         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1938
1939 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1940                                    struct intel_crtc_state *crtc_state)
1941 {
1942         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1943         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1944         const struct vlv_fifo_state *fifo_state =
1945                 &crtc_state->wm.vlv.fifo_state;
1946         int sprite0_start, sprite1_start, fifo_size;
1947
1948         if (!crtc_state->fifo_changed)
1949                 return;
1950
1951         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1952         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1953         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1954
1955         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1956         WARN_ON(fifo_size != 511);
1957
1958         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1959
1960         /*
1961          * uncore.lock serves a double purpose here. It allows us to
1962          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1963          * it protects the DSPARB registers from getting clobbered by
1964          * parallel updates from multiple pipes.
1965          *
1966          * intel_pipe_update_start() has already disabled interrupts
1967          * for us, so a plain spin_lock() is sufficient here.
1968          */
1969         spin_lock(&dev_priv->uncore.lock);
1970
1971         switch (crtc->pipe) {
1972                 uint32_t dsparb, dsparb2, dsparb3;
1973         case PIPE_A:
1974                 dsparb = I915_READ_FW(DSPARB);
1975                 dsparb2 = I915_READ_FW(DSPARB2);
1976
1977                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1978                             VLV_FIFO(SPRITEB, 0xff));
1979                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1980                            VLV_FIFO(SPRITEB, sprite1_start));
1981
1982                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1983                              VLV_FIFO(SPRITEB_HI, 0x1));
1984                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1985                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1986
1987                 I915_WRITE_FW(DSPARB, dsparb);
1988                 I915_WRITE_FW(DSPARB2, dsparb2);
1989                 break;
1990         case PIPE_B:
1991                 dsparb = I915_READ_FW(DSPARB);
1992                 dsparb2 = I915_READ_FW(DSPARB2);
1993
1994                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1995                             VLV_FIFO(SPRITED, 0xff));
1996                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1997                            VLV_FIFO(SPRITED, sprite1_start));
1998
1999                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2000                              VLV_FIFO(SPRITED_HI, 0xff));
2001                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2002                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2003
2004                 I915_WRITE_FW(DSPARB, dsparb);
2005                 I915_WRITE_FW(DSPARB2, dsparb2);
2006                 break;
2007         case PIPE_C:
2008                 dsparb3 = I915_READ_FW(DSPARB3);
2009                 dsparb2 = I915_READ_FW(DSPARB2);
2010
2011                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2012                              VLV_FIFO(SPRITEF, 0xff));
2013                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2014                             VLV_FIFO(SPRITEF, sprite1_start));
2015
2016                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2017                              VLV_FIFO(SPRITEF_HI, 0xff));
2018                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2019                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2020
2021                 I915_WRITE_FW(DSPARB3, dsparb3);
2022                 I915_WRITE_FW(DSPARB2, dsparb2);
2023                 break;
2024         default:
2025                 break;
2026         }
2027
2028         POSTING_READ_FW(DSPARB);
2029
2030         spin_unlock(&dev_priv->uncore.lock);
2031 }
2032
2033 #undef VLV_FIFO
2034
2035 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2036                                        struct intel_crtc *crtc,
2037                                        struct intel_crtc_state *new_crtc_state)
2038 {
2039         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2040         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2041         struct intel_atomic_state *intel_state =
2042                 to_intel_atomic_state(new_crtc_state->base.state);
2043         const struct intel_crtc_state *old_crtc_state =
2044                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2045         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2046         int level;
2047
2048         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2049                 *intermediate = *optimal;
2050
2051                 intermediate->cxsr = false;
2052                 goto out;
2053         }
2054
2055         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2056         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2057                 !new_crtc_state->disable_cxsr;
2058
2059         for (level = 0; level < intermediate->num_levels; level++) {
2060                 enum plane_id plane_id;
2061
2062                 for_each_plane_id_on_crtc(crtc, plane_id) {
2063                         intermediate->wm[level].plane[plane_id] =
2064                                 min(optimal->wm[level].plane[plane_id],
2065                                     active->wm[level].plane[plane_id]);
2066                 }
2067
2068                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2069                                                     active->sr[level].plane);
2070                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2071                                                      active->sr[level].cursor);
2072         }
2073
2074         vlv_invalidate_wms(crtc, intermediate, level);
2075
2076 out:
2077         /*
2078          * If our intermediate WM are identical to the final WM, then we can
2079          * omit the post-vblank programming; only update if it's different.
2080          */
2081         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2082                 new_crtc_state->wm.need_postvbl_update = true;
2083
2084         return 0;
2085 }
2086
2087 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2088                          struct vlv_wm_values *wm)
2089 {
2090         struct intel_crtc *crtc;
2091         int num_active_crtcs = 0;
2092
2093         wm->level = dev_priv->wm.max_level;
2094         wm->cxsr = true;
2095
2096         for_each_intel_crtc(&dev_priv->drm, crtc) {
2097                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2098
2099                 if (!crtc->active)
2100                         continue;
2101
2102                 if (!wm_state->cxsr)
2103                         wm->cxsr = false;
2104
2105                 num_active_crtcs++;
2106                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2107         }
2108
2109         if (num_active_crtcs != 1)
2110                 wm->cxsr = false;
2111
2112         if (num_active_crtcs > 1)
2113                 wm->level = VLV_WM_LEVEL_PM2;
2114
2115         for_each_intel_crtc(&dev_priv->drm, crtc) {
2116                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2117                 enum pipe pipe = crtc->pipe;
2118
2119                 wm->pipe[pipe] = wm_state->wm[wm->level];
2120                 if (crtc->active && wm->cxsr)
2121                         wm->sr = wm_state->sr[wm->level];
2122
2123                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2124                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2125                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2126                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2127         }
2128 }
2129
2130 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2131 {
2132         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2133         struct vlv_wm_values new_wm = {};
2134
2135         vlv_merge_wm(dev_priv, &new_wm);
2136
2137         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2138                 return;
2139
2140         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141                 chv_set_memory_dvfs(dev_priv, false);
2142
2143         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2144                 chv_set_memory_pm5(dev_priv, false);
2145
2146         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2147                 _intel_set_memory_cxsr(dev_priv, false);
2148
2149         vlv_write_wm_values(dev_priv, &new_wm);
2150
2151         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2152                 _intel_set_memory_cxsr(dev_priv, true);
2153
2154         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2155                 chv_set_memory_pm5(dev_priv, true);
2156
2157         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2158                 chv_set_memory_dvfs(dev_priv, true);
2159
2160         *old_wm = new_wm;
2161 }
2162
2163 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2164                                    struct intel_crtc_state *crtc_state)
2165 {
2166         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2167         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2168
2169         mutex_lock(&dev_priv->wm.wm_mutex);
2170         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2171         vlv_program_watermarks(dev_priv);
2172         mutex_unlock(&dev_priv->wm.wm_mutex);
2173 }
2174
2175 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2176                                     struct intel_crtc_state *crtc_state)
2177 {
2178         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2180
2181         if (!crtc_state->wm.need_postvbl_update)
2182                 return;
2183
2184         mutex_lock(&dev_priv->wm.wm_mutex);
2185         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2186         vlv_program_watermarks(dev_priv);
2187         mutex_unlock(&dev_priv->wm.wm_mutex);
2188 }
2189
2190 static void i965_update_wm(struct intel_crtc *unused_crtc)
2191 {
2192         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2193         struct intel_crtc *crtc;
2194         int srwm = 1;
2195         int cursor_sr = 16;
2196         bool cxsr_enabled;
2197
2198         /* Calc sr entries for one plane configs */
2199         crtc = single_enabled_crtc(dev_priv);
2200         if (crtc) {
2201                 /* self-refresh has much higher latency */
2202                 static const int sr_latency_ns = 12000;
2203                 const struct drm_display_mode *adjusted_mode =
2204                         &crtc->config->base.adjusted_mode;
2205                 const struct drm_framebuffer *fb =
2206                         crtc->base.primary->state->fb;
2207                 int clock = adjusted_mode->crtc_clock;
2208                 int htotal = adjusted_mode->crtc_htotal;
2209                 int hdisplay = crtc->config->pipe_src_w;
2210                 int cpp = fb->format->cpp[0];
2211                 int entries;
2212
2213                 entries = intel_wm_method2(clock, htotal,
2214                                            hdisplay, cpp, sr_latency_ns / 100);
2215                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2216                 srwm = I965_FIFO_SIZE - entries;
2217                 if (srwm < 0)
2218                         srwm = 1;
2219                 srwm &= 0x1ff;
2220                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2221                               entries, srwm);
2222
2223                 entries = intel_wm_method2(clock, htotal,
2224                                            crtc->base.cursor->state->crtc_w, 4,
2225                                            sr_latency_ns / 100);
2226                 entries = DIV_ROUND_UP(entries,
2227                                        i965_cursor_wm_info.cacheline_size) +
2228                         i965_cursor_wm_info.guard_size;
2229
2230                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2231                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2232                         cursor_sr = i965_cursor_wm_info.max_wm;
2233
2234                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2235                               "cursor %d\n", srwm, cursor_sr);
2236
2237                 cxsr_enabled = true;
2238         } else {
2239                 cxsr_enabled = false;
2240                 /* Turn off self refresh if both pipes are enabled */
2241                 intel_set_memory_cxsr(dev_priv, false);
2242         }
2243
2244         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2245                       srwm);
2246
2247         /* 965 has limitations... */
2248         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2249                    FW_WM(8, CURSORB) |
2250                    FW_WM(8, PLANEB) |
2251                    FW_WM(8, PLANEA));
2252         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2253                    FW_WM(8, PLANEC_OLD));
2254         /* update cursor SR watermark */
2255         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2256
2257         if (cxsr_enabled)
2258                 intel_set_memory_cxsr(dev_priv, true);
2259 }
2260
2261 #undef FW_WM
2262
2263 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2264 {
2265         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2266         const struct intel_watermark_params *wm_info;
2267         uint32_t fwater_lo;
2268         uint32_t fwater_hi;
2269         int cwm, srwm = 1;
2270         int fifo_size;
2271         int planea_wm, planeb_wm;
2272         struct intel_crtc *crtc, *enabled = NULL;
2273
2274         if (IS_I945GM(dev_priv))
2275                 wm_info = &i945_wm_info;
2276         else if (!IS_GEN2(dev_priv))
2277                 wm_info = &i915_wm_info;
2278         else
2279                 wm_info = &i830_a_wm_info;
2280
2281         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2282         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2283         if (intel_crtc_active(crtc)) {
2284                 const struct drm_display_mode *adjusted_mode =
2285                         &crtc->config->base.adjusted_mode;
2286                 const struct drm_framebuffer *fb =
2287                         crtc->base.primary->state->fb;
2288                 int cpp;
2289
2290                 if (IS_GEN2(dev_priv))
2291                         cpp = 4;
2292                 else
2293                         cpp = fb->format->cpp[0];
2294
2295                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2296                                                wm_info, fifo_size, cpp,
2297                                                pessimal_latency_ns);
2298                 enabled = crtc;
2299         } else {
2300                 planea_wm = fifo_size - wm_info->guard_size;
2301                 if (planea_wm > (long)wm_info->max_wm)
2302                         planea_wm = wm_info->max_wm;
2303         }
2304
2305         if (IS_GEN2(dev_priv))
2306                 wm_info = &i830_bc_wm_info;
2307
2308         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2309         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2310         if (intel_crtc_active(crtc)) {
2311                 const struct drm_display_mode *adjusted_mode =
2312                         &crtc->config->base.adjusted_mode;
2313                 const struct drm_framebuffer *fb =
2314                         crtc->base.primary->state->fb;
2315                 int cpp;
2316
2317                 if (IS_GEN2(dev_priv))
2318                         cpp = 4;
2319                 else
2320                         cpp = fb->format->cpp[0];
2321
2322                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2323                                                wm_info, fifo_size, cpp,
2324                                                pessimal_latency_ns);
2325                 if (enabled == NULL)
2326                         enabled = crtc;
2327                 else
2328                         enabled = NULL;
2329         } else {
2330                 planeb_wm = fifo_size - wm_info->guard_size;
2331                 if (planeb_wm > (long)wm_info->max_wm)
2332                         planeb_wm = wm_info->max_wm;
2333         }
2334
2335         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2336
2337         if (IS_I915GM(dev_priv) && enabled) {
2338                 struct drm_i915_gem_object *obj;
2339
2340                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2341
2342                 /* self-refresh seems busted with untiled */
2343                 if (!i915_gem_object_is_tiled(obj))
2344                         enabled = NULL;
2345         }
2346
2347         /*
2348          * Overlay gets an aggressive default since video jitter is bad.
2349          */
2350         cwm = 2;
2351
2352         /* Play safe and disable self-refresh before adjusting watermarks. */
2353         intel_set_memory_cxsr(dev_priv, false);
2354
2355         /* Calc sr entries for one plane configs */
2356         if (HAS_FW_BLC(dev_priv) && enabled) {
2357                 /* self-refresh has much higher latency */
2358                 static const int sr_latency_ns = 6000;
2359                 const struct drm_display_mode *adjusted_mode =
2360                         &enabled->config->base.adjusted_mode;
2361                 const struct drm_framebuffer *fb =
2362                         enabled->base.primary->state->fb;
2363                 int clock = adjusted_mode->crtc_clock;
2364                 int htotal = adjusted_mode->crtc_htotal;
2365                 int hdisplay = enabled->config->pipe_src_w;
2366                 int cpp;
2367                 int entries;
2368
2369                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2370                         cpp = 4;
2371                 else
2372                         cpp = fb->format->cpp[0];
2373
2374                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2375                                            sr_latency_ns / 100);
2376                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2377                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2378                 srwm = wm_info->fifo_size - entries;
2379                 if (srwm < 0)
2380                         srwm = 1;
2381
2382                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2383                         I915_WRITE(FW_BLC_SELF,
2384                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2385                 else
2386                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2387         }
2388
2389         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2390                       planea_wm, planeb_wm, cwm, srwm);
2391
2392         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2393         fwater_hi = (cwm & 0x1f);
2394
2395         /* Set request length to 8 cachelines per fetch */
2396         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2397         fwater_hi = fwater_hi | (1 << 8);
2398
2399         I915_WRITE(FW_BLC, fwater_lo);
2400         I915_WRITE(FW_BLC2, fwater_hi);
2401
2402         if (enabled)
2403                 intel_set_memory_cxsr(dev_priv, true);
2404 }
2405
2406 static void i845_update_wm(struct intel_crtc *unused_crtc)
2407 {
2408         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2409         struct intel_crtc *crtc;
2410         const struct drm_display_mode *adjusted_mode;
2411         uint32_t fwater_lo;
2412         int planea_wm;
2413
2414         crtc = single_enabled_crtc(dev_priv);
2415         if (crtc == NULL)
2416                 return;
2417
2418         adjusted_mode = &crtc->config->base.adjusted_mode;
2419         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2420                                        &i845_wm_info,
2421                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2422                                        4, pessimal_latency_ns);
2423         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2424         fwater_lo |= (3<<8) | planea_wm;
2425
2426         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2427
2428         I915_WRITE(FW_BLC, fwater_lo);
2429 }
2430
2431 /* latency must be in 0.1us units. */
2432 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2433                                    unsigned int cpp,
2434                                    unsigned int latency)
2435 {
2436         unsigned int ret;
2437
2438         ret = intel_wm_method1(pixel_rate, cpp, latency);
2439         ret = DIV_ROUND_UP(ret, 64) + 2;
2440
2441         return ret;
2442 }
2443
2444 /* latency must be in 0.1us units. */
2445 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2446                                    unsigned int htotal,
2447                                    unsigned int width,
2448                                    unsigned int cpp,
2449                                    unsigned int latency)
2450 {
2451         unsigned int ret;
2452
2453         ret = intel_wm_method2(pixel_rate, htotal,
2454                                width, cpp, latency);
2455         ret = DIV_ROUND_UP(ret, 64) + 2;
2456
2457         return ret;
2458 }
2459
2460 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2461                            uint8_t cpp)
2462 {
2463         /*
2464          * Neither of these should be possible since this function shouldn't be
2465          * called if the CRTC is off or the plane is invisible.  But let's be
2466          * extra paranoid to avoid a potential divide-by-zero if we screw up
2467          * elsewhere in the driver.
2468          */
2469         if (WARN_ON(!cpp))
2470                 return 0;
2471         if (WARN_ON(!horiz_pixels))
2472                 return 0;
2473
2474         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2475 }
2476
2477 struct ilk_wm_maximums {
2478         uint16_t pri;
2479         uint16_t spr;
2480         uint16_t cur;
2481         uint16_t fbc;
2482 };
2483
2484 /*
2485  * For both WM_PIPE and WM_LP.
2486  * mem_value must be in 0.1us units.
2487  */
2488 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2489                                    const struct intel_plane_state *pstate,
2490                                    uint32_t mem_value,
2491                                    bool is_lp)
2492 {
2493         uint32_t method1, method2;
2494         int cpp;
2495
2496         if (mem_value == 0)
2497                 return U32_MAX;
2498
2499         if (!intel_wm_plane_visible(cstate, pstate))
2500                 return 0;
2501
2502         cpp = pstate->base.fb->format->cpp[0];
2503
2504         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2505
2506         if (!is_lp)
2507                 return method1;
2508
2509         method2 = ilk_wm_method2(cstate->pixel_rate,
2510                                  cstate->base.adjusted_mode.crtc_htotal,
2511                                  drm_rect_width(&pstate->base.dst),
2512                                  cpp, mem_value);
2513
2514         return min(method1, method2);
2515 }
2516
2517 /*
2518  * For both WM_PIPE and WM_LP.
2519  * mem_value must be in 0.1us units.
2520  */
2521 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2522                                    const struct intel_plane_state *pstate,
2523                                    uint32_t mem_value)
2524 {
2525         uint32_t method1, method2;
2526         int cpp;
2527
2528         if (mem_value == 0)
2529                 return U32_MAX;
2530
2531         if (!intel_wm_plane_visible(cstate, pstate))
2532                 return 0;
2533
2534         cpp = pstate->base.fb->format->cpp[0];
2535
2536         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2537         method2 = ilk_wm_method2(cstate->pixel_rate,
2538                                  cstate->base.adjusted_mode.crtc_htotal,
2539                                  drm_rect_width(&pstate->base.dst),
2540                                  cpp, mem_value);
2541         return min(method1, method2);
2542 }
2543
2544 /*
2545  * For both WM_PIPE and WM_LP.
2546  * mem_value must be in 0.1us units.
2547  */
2548 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2549                                    const struct intel_plane_state *pstate,
2550                                    uint32_t mem_value)
2551 {
2552         int cpp;
2553
2554         if (mem_value == 0)
2555                 return U32_MAX;
2556
2557         if (!intel_wm_plane_visible(cstate, pstate))
2558                 return 0;
2559
2560         cpp = pstate->base.fb->format->cpp[0];
2561
2562         return ilk_wm_method2(cstate->pixel_rate,
2563                               cstate->base.adjusted_mode.crtc_htotal,
2564                               pstate->base.crtc_w, cpp, mem_value);
2565 }
2566
2567 /* Only for WM_LP. */
2568 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2569                                    const struct intel_plane_state *pstate,
2570                                    uint32_t pri_val)
2571 {
2572         int cpp;
2573
2574         if (!intel_wm_plane_visible(cstate, pstate))
2575                 return 0;
2576
2577         cpp = pstate->base.fb->format->cpp[0];
2578
2579         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2580 }
2581
2582 static unsigned int
2583 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2584 {
2585         if (INTEL_GEN(dev_priv) >= 8)
2586                 return 3072;
2587         else if (INTEL_GEN(dev_priv) >= 7)
2588                 return 768;
2589         else
2590                 return 512;
2591 }
2592
2593 static unsigned int
2594 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2595                      int level, bool is_sprite)
2596 {
2597         if (INTEL_GEN(dev_priv) >= 8)
2598                 /* BDW primary/sprite plane watermarks */
2599                 return level == 0 ? 255 : 2047;
2600         else if (INTEL_GEN(dev_priv) >= 7)
2601                 /* IVB/HSW primary/sprite plane watermarks */
2602                 return level == 0 ? 127 : 1023;
2603         else if (!is_sprite)
2604                 /* ILK/SNB primary plane watermarks */
2605                 return level == 0 ? 127 : 511;
2606         else
2607                 /* ILK/SNB sprite plane watermarks */
2608                 return level == 0 ? 63 : 255;
2609 }
2610
2611 static unsigned int
2612 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2613 {
2614         if (INTEL_GEN(dev_priv) >= 7)
2615                 return level == 0 ? 63 : 255;
2616         else
2617                 return level == 0 ? 31 : 63;
2618 }
2619
2620 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2621 {
2622         if (INTEL_GEN(dev_priv) >= 8)
2623                 return 31;
2624         else
2625                 return 15;
2626 }
2627
2628 /* Calculate the maximum primary/sprite plane watermark */
2629 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2630                                      int level,
2631                                      const struct intel_wm_config *config,
2632                                      enum intel_ddb_partitioning ddb_partitioning,
2633                                      bool is_sprite)
2634 {
2635         struct drm_i915_private *dev_priv = to_i915(dev);
2636         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2637
2638         /* if sprites aren't enabled, sprites get nothing */
2639         if (is_sprite && !config->sprites_enabled)
2640                 return 0;
2641
2642         /* HSW allows LP1+ watermarks even with multiple pipes */
2643         if (level == 0 || config->num_pipes_active > 1) {
2644                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2645
2646                 /*
2647                  * For some reason the non self refresh
2648                  * FIFO size is only half of the self
2649                  * refresh FIFO size on ILK/SNB.
2650                  */
2651                 if (INTEL_GEN(dev_priv) <= 6)
2652                         fifo_size /= 2;
2653         }
2654
2655         if (config->sprites_enabled) {
2656                 /* level 0 is always calculated with 1:1 split */
2657                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2658                         if (is_sprite)
2659                                 fifo_size *= 5;
2660                         fifo_size /= 6;
2661                 } else {
2662                         fifo_size /= 2;
2663                 }
2664         }
2665
2666         /* clamp to max that the registers can hold */
2667         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2668 }
2669
2670 /* Calculate the maximum cursor plane watermark */
2671 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2672                                       int level,
2673                                       const struct intel_wm_config *config)
2674 {
2675         /* HSW LP1+ watermarks w/ multiple pipes */
2676         if (level > 0 && config->num_pipes_active > 1)
2677                 return 64;
2678
2679         /* otherwise just report max that registers can hold */
2680         return ilk_cursor_wm_reg_max(to_i915(dev), level);
2681 }
2682
2683 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2684                                     int level,
2685                                     const struct intel_wm_config *config,
2686                                     enum intel_ddb_partitioning ddb_partitioning,
2687                                     struct ilk_wm_maximums *max)
2688 {
2689         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2690         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2691         max->cur = ilk_cursor_wm_max(dev, level, config);
2692         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2693 }
2694
2695 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2696                                         int level,
2697                                         struct ilk_wm_maximums *max)
2698 {
2699         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2700         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2701         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2702         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2703 }
2704
2705 static bool ilk_validate_wm_level(int level,
2706                                   const struct ilk_wm_maximums *max,
2707                                   struct intel_wm_level *result)
2708 {
2709         bool ret;
2710
2711         /* already determined to be invalid? */
2712         if (!result->enable)
2713                 return false;
2714
2715         result->enable = result->pri_val <= max->pri &&
2716                          result->spr_val <= max->spr &&
2717                          result->cur_val <= max->cur;
2718
2719         ret = result->enable;
2720
2721         /*
2722          * HACK until we can pre-compute everything,
2723          * and thus fail gracefully if LP0 watermarks
2724          * are exceeded...
2725          */
2726         if (level == 0 && !result->enable) {
2727                 if (result->pri_val > max->pri)
2728                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2729                                       level, result->pri_val, max->pri);
2730                 if (result->spr_val > max->spr)
2731                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2732                                       level, result->spr_val, max->spr);
2733                 if (result->cur_val > max->cur)
2734                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2735                                       level, result->cur_val, max->cur);
2736
2737                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2738                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2739                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2740                 result->enable = true;
2741         }
2742
2743         return ret;
2744 }
2745
2746 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2747                                  const struct intel_crtc *intel_crtc,
2748                                  int level,
2749                                  struct intel_crtc_state *cstate,
2750                                  const struct intel_plane_state *pristate,
2751                                  const struct intel_plane_state *sprstate,
2752                                  const struct intel_plane_state *curstate,
2753                                  struct intel_wm_level *result)
2754 {
2755         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2756         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2757         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2758
2759         /* WM1+ latency values stored in 0.5us units */
2760         if (level > 0) {
2761                 pri_latency *= 5;
2762                 spr_latency *= 5;
2763                 cur_latency *= 5;
2764         }
2765
2766         if (pristate) {
2767                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2768                                                      pri_latency, level);
2769                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2770         }
2771
2772         if (sprstate)
2773                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2774
2775         if (curstate)
2776                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2777
2778         result->enable = true;
2779 }
2780
2781 static uint32_t
2782 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2783 {
2784         const struct intel_atomic_state *intel_state =
2785                 to_intel_atomic_state(cstate->base.state);
2786         const struct drm_display_mode *adjusted_mode =
2787                 &cstate->base.adjusted_mode;
2788         u32 linetime, ips_linetime;
2789
2790         if (!cstate->base.active)
2791                 return 0;
2792         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2793                 return 0;
2794         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2795                 return 0;
2796
2797         /* The WM are computed with base on how long it takes to fill a single
2798          * row at the given clock rate, multiplied by 8.
2799          * */
2800         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2801                                      adjusted_mode->crtc_clock);
2802         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2803                                          intel_state->cdclk.logical.cdclk);
2804
2805         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2806                PIPE_WM_LINETIME_TIME(linetime);
2807 }
2808
2809 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2810                                   uint16_t wm[8])
2811 {
2812         if (INTEL_GEN(dev_priv) >= 9) {
2813                 uint32_t val;
2814                 int ret, i;
2815                 int level, max_level = ilk_wm_max_level(dev_priv);
2816
2817                 /* read the first set of memory latencies[0:3] */
2818                 val = 0; /* data0 to be programmed to 0 for first set */
2819                 mutex_lock(&dev_priv->pcu_lock);
2820                 ret = sandybridge_pcode_read(dev_priv,
2821                                              GEN9_PCODE_READ_MEM_LATENCY,
2822                                              &val);
2823                 mutex_unlock(&dev_priv->pcu_lock);
2824
2825                 if (ret) {
2826                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2827                         return;
2828                 }
2829
2830                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2831                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2832                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2833                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2834                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2835                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2836                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2837
2838                 /* read the second set of memory latencies[4:7] */
2839                 val = 1; /* data0 to be programmed to 1 for second set */
2840                 mutex_lock(&dev_priv->pcu_lock);
2841                 ret = sandybridge_pcode_read(dev_priv,
2842                                              GEN9_PCODE_READ_MEM_LATENCY,
2843                                              &val);
2844                 mutex_unlock(&dev_priv->pcu_lock);
2845                 if (ret) {
2846                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2847                         return;
2848                 }
2849
2850                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2851                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2852                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2853                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2854                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2855                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2856                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2857
2858                 /*
2859                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2860                  * need to be disabled. We make sure to sanitize the values out
2861                  * of the punit to satisfy this requirement.
2862                  */
2863                 for (level = 1; level <= max_level; level++) {
2864                         if (wm[level] == 0) {
2865                                 for (i = level + 1; i <= max_level; i++)
2866                                         wm[i] = 0;
2867                                 break;
2868                         }
2869                 }
2870
2871                 /*
2872                  * WaWmMemoryReadLatency:skl+,glk
2873                  *
2874                  * punit doesn't take into account the read latency so we need
2875                  * to add 2us to the various latency levels we retrieve from the
2876                  * punit when level 0 response data us 0us.
2877                  */
2878                 if (wm[0] == 0) {
2879                         wm[0] += 2;
2880                         for (level = 1; level <= max_level; level++) {
2881                                 if (wm[level] == 0)
2882                                         break;
2883                                 wm[level] += 2;
2884                         }
2885                 }
2886
2887                 /*
2888                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2889                  * If we could not get dimm info enable this WA to prevent from
2890                  * any underrun. If not able to get Dimm info assume 16GB dimm
2891                  * to avoid any underrun.
2892                  */
2893                 if (dev_priv->dram_info.is_16gb_dimm)
2894                         wm[0] += 1;
2895
2896         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2897                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2898
2899                 wm[0] = (sskpd >> 56) & 0xFF;
2900                 if (wm[0] == 0)
2901                         wm[0] = sskpd & 0xF;
2902                 wm[1] = (sskpd >> 4) & 0xFF;
2903                 wm[2] = (sskpd >> 12) & 0xFF;
2904                 wm[3] = (sskpd >> 20) & 0x1FF;
2905                 wm[4] = (sskpd >> 32) & 0x1FF;
2906         } else if (INTEL_GEN(dev_priv) >= 6) {
2907                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2908
2909                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2910                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2911                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2912                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2913         } else if (INTEL_GEN(dev_priv) >= 5) {
2914                 uint32_t mltr = I915_READ(MLTR_ILK);
2915
2916                 /* ILK primary LP0 latency is 700 ns */
2917                 wm[0] = 7;
2918                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2919                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2920         } else {
2921                 MISSING_CASE(INTEL_DEVID(dev_priv));
2922         }
2923 }
2924
2925 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2926                                        uint16_t wm[5])
2927 {
2928         /* ILK sprite LP0 latency is 1300 ns */
2929         if (IS_GEN5(dev_priv))
2930                 wm[0] = 13;
2931 }
2932
2933 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2934                                        uint16_t wm[5])
2935 {
2936         /* ILK cursor LP0 latency is 1300 ns */
2937         if (IS_GEN5(dev_priv))
2938                 wm[0] = 13;
2939 }
2940
2941 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2942 {
2943         /* how many WM levels are we expecting */
2944         if (INTEL_GEN(dev_priv) >= 9)
2945                 return 7;
2946         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2947                 return 4;
2948         else if (INTEL_GEN(dev_priv) >= 6)
2949                 return 3;
2950         else
2951                 return 2;
2952 }
2953
2954 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2955                                    const char *name,
2956                                    const uint16_t wm[8])
2957 {
2958         int level, max_level = ilk_wm_max_level(dev_priv);
2959
2960         for (level = 0; level <= max_level; level++) {
2961                 unsigned int latency = wm[level];
2962
2963                 if (latency == 0) {
2964                         DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2965                                       name, level);
2966                         continue;
2967                 }
2968
2969                 /*
2970                  * - latencies are in us on gen9.
2971                  * - before then, WM1+ latency values are in 0.5us units
2972                  */
2973                 if (INTEL_GEN(dev_priv) >= 9)
2974                         latency *= 10;
2975                 else if (level > 0)
2976                         latency *= 5;
2977
2978                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2979                               name, level, wm[level],
2980                               latency / 10, latency % 10);
2981         }
2982 }
2983
2984 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2985                                     uint16_t wm[5], uint16_t min)
2986 {
2987         int level, max_level = ilk_wm_max_level(dev_priv);
2988
2989         if (wm[0] >= min)
2990                 return false;
2991
2992         wm[0] = max(wm[0], min);
2993         for (level = 1; level <= max_level; level++)
2994                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2995
2996         return true;
2997 }
2998
2999 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3000 {
3001         bool changed;
3002
3003         /*
3004          * The BIOS provided WM memory latency values are often
3005          * inadequate for high resolution displays. Adjust them.
3006          */
3007         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3008                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3009                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3010
3011         if (!changed)
3012                 return;
3013
3014         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3015         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3016         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3017         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3018 }
3019
3020 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3021 {
3022         /*
3023          * On some SNB machines (Thinkpad X220 Tablet at least)
3024          * LP3 usage can cause vblank interrupts to be lost.
3025          * The DEIIR bit will go high but it looks like the CPU
3026          * never gets interrupted.
3027          *
3028          * It's not clear whether other interrupt source could
3029          * be affected or if this is somehow limited to vblank
3030          * interrupts only. To play it safe we disable LP3
3031          * watermarks entirely.
3032          */
3033         if (dev_priv->wm.pri_latency[3] == 0 &&
3034             dev_priv->wm.spr_latency[3] == 0 &&
3035             dev_priv->wm.cur_latency[3] == 0)
3036                 return;
3037
3038         dev_priv->wm.pri_latency[3] = 0;
3039         dev_priv->wm.spr_latency[3] = 0;
3040         dev_priv->wm.cur_latency[3] = 0;
3041
3042         DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3043         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3044         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3045         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3046 }
3047
3048 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3049 {
3050         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3051
3052         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3053                sizeof(dev_priv->wm.pri_latency));
3054         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3055                sizeof(dev_priv->wm.pri_latency));
3056
3057         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3058         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3059
3060         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3061         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3062         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3063
3064         if (IS_GEN6(dev_priv)) {
3065                 snb_wm_latency_quirk(dev_priv);
3066                 snb_wm_lp3_irq_quirk(dev_priv);
3067         }
3068 }
3069
3070 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3071 {
3072         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3073         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3074 }
3075
3076 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3077                                  struct intel_pipe_wm *pipe_wm)
3078 {
3079         /* LP0 watermark maximums depend on this pipe alone */
3080         const struct intel_wm_config config = {
3081                 .num_pipes_active = 1,
3082                 .sprites_enabled = pipe_wm->sprites_enabled,
3083                 .sprites_scaled = pipe_wm->sprites_scaled,
3084         };
3085         struct ilk_wm_maximums max;
3086
3087         /* LP0 watermarks always use 1/2 DDB partitioning */
3088         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3089
3090         /* At least LP0 must be valid */
3091         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3092                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3093                 return false;
3094         }
3095
3096         return true;
3097 }
3098
3099 /* Compute new watermarks for the pipe */
3100 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3101 {
3102         struct drm_atomic_state *state = cstate->base.state;
3103         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3104         struct intel_pipe_wm *pipe_wm;
3105         struct drm_device *dev = state->dev;
3106         const struct drm_i915_private *dev_priv = to_i915(dev);
3107         struct drm_plane *plane;
3108         const struct drm_plane_state *plane_state;
3109         const struct intel_plane_state *pristate = NULL;
3110         const struct intel_plane_state *sprstate = NULL;
3111         const struct intel_plane_state *curstate = NULL;
3112         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3113         struct ilk_wm_maximums max;
3114
3115         pipe_wm = &cstate->wm.ilk.optimal;
3116
3117         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3118                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3119
3120                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3121                         pristate = ps;
3122                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3123                         sprstate = ps;
3124                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3125                         curstate = ps;
3126         }
3127
3128         pipe_wm->pipe_enabled = cstate->base.active;
3129         if (sprstate) {
3130                 pipe_wm->sprites_enabled = sprstate->base.visible;
3131                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3132                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3133                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3134         }
3135
3136         usable_level = max_level;
3137
3138         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3139         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3140                 usable_level = 1;
3141
3142         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3143         if (pipe_wm->sprites_scaled)
3144                 usable_level = 0;
3145
3146         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3147         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3148                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3149
3150         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3151                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3152
3153         if (!ilk_validate_pipe_wm(dev, pipe_wm))
3154                 return -EINVAL;
3155
3156         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3157
3158         for (level = 1; level <= usable_level; level++) {
3159                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3160
3161                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3162                                      pristate, sprstate, curstate, wm);
3163
3164                 /*
3165                  * Disable any watermark level that exceeds the
3166                  * register maximums since such watermarks are
3167                  * always invalid.
3168                  */
3169                 if (!ilk_validate_wm_level(level, &max, wm)) {
3170                         memset(wm, 0, sizeof(*wm));
3171                         break;
3172                 }
3173         }
3174
3175         return 0;
3176 }
3177
3178 /*
3179  * Build a set of 'intermediate' watermark values that satisfy both the old
3180  * state and the new state.  These can be programmed to the hardware
3181  * immediately.
3182  */
3183 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3184                                        struct intel_crtc *intel_crtc,
3185                                        struct intel_crtc_state *newstate)
3186 {
3187         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3188         struct intel_atomic_state *intel_state =
3189                 to_intel_atomic_state(newstate->base.state);
3190         const struct intel_crtc_state *oldstate =
3191                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3192         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3193         int level, max_level = ilk_wm_max_level(to_i915(dev));
3194
3195         /*
3196          * Start with the final, target watermarks, then combine with the
3197          * currently active watermarks to get values that are safe both before
3198          * and after the vblank.
3199          */
3200         *a = newstate->wm.ilk.optimal;
3201         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3202             intel_state->skip_intermediate_wm)
3203                 return 0;
3204
3205         a->pipe_enabled |= b->pipe_enabled;
3206         a->sprites_enabled |= b->sprites_enabled;
3207         a->sprites_scaled |= b->sprites_scaled;
3208
3209         for (level = 0; level <= max_level; level++) {
3210                 struct intel_wm_level *a_wm = &a->wm[level];
3211                 const struct intel_wm_level *b_wm = &b->wm[level];
3212
3213                 a_wm->enable &= b_wm->enable;
3214                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3215                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3216                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3217                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3218         }
3219
3220         /*
3221          * We need to make sure that these merged watermark values are
3222          * actually a valid configuration themselves.  If they're not,
3223          * there's no safe way to transition from the old state to
3224          * the new state, so we need to fail the atomic transaction.
3225          */
3226         if (!ilk_validate_pipe_wm(dev, a))
3227                 return -EINVAL;
3228
3229         /*
3230          * If our intermediate WM are identical to the final WM, then we can
3231          * omit the post-vblank programming; only update if it's different.
3232          */
3233         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3234                 newstate->wm.need_postvbl_update = true;
3235
3236         return 0;
3237 }
3238
3239 /*
3240  * Merge the watermarks from all active pipes for a specific level.
3241  */
3242 static void ilk_merge_wm_level(struct drm_device *dev,
3243                                int level,
3244                                struct intel_wm_level *ret_wm)
3245 {
3246         const struct intel_crtc *intel_crtc;
3247
3248         ret_wm->enable = true;
3249
3250         for_each_intel_crtc(dev, intel_crtc) {
3251                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3252                 const struct intel_wm_level *wm = &active->wm[level];
3253
3254                 if (!active->pipe_enabled)
3255                         continue;
3256
3257                 /*
3258                  * The watermark values may have been used in the past,
3259                  * so we must maintain them in the registers for some
3260                  * time even if the level is now disabled.
3261                  */
3262                 if (!wm->enable)
3263                         ret_wm->enable = false;
3264
3265                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3266                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3267                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3268                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3269         }
3270 }
3271
3272 /*
3273  * Merge all low power watermarks for all active pipes.
3274  */
3275 static void ilk_wm_merge(struct drm_device *dev,
3276                          const struct intel_wm_config *config,
3277                          const struct ilk_wm_maximums *max,
3278                          struct intel_pipe_wm *merged)
3279 {
3280         struct drm_i915_private *dev_priv = to_i915(dev);
3281         int level, max_level = ilk_wm_max_level(dev_priv);
3282         int last_enabled_level = max_level;
3283
3284         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3285         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3286             config->num_pipes_active > 1)
3287                 last_enabled_level = 0;
3288
3289         /* ILK: FBC WM must be disabled always */
3290         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3291
3292         /* merge each WM1+ level */
3293         for (level = 1; level <= max_level; level++) {
3294                 struct intel_wm_level *wm = &merged->wm[level];
3295
3296                 ilk_merge_wm_level(dev, level, wm);
3297
3298                 if (level > last_enabled_level)
3299                         wm->enable = false;
3300                 else if (!ilk_validate_wm_level(level, max, wm))
3301                         /* make sure all following levels get disabled */
3302                         last_enabled_level = level - 1;
3303
3304                 /*
3305                  * The spec says it is preferred to disable
3306                  * FBC WMs instead of disabling a WM level.
3307                  */
3308                 if (wm->fbc_val > max->fbc) {
3309                         if (wm->enable)
3310                                 merged->fbc_wm_enabled = false;
3311                         wm->fbc_val = 0;
3312                 }
3313         }
3314
3315         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3316         /*
3317          * FIXME this is racy. FBC might get enabled later.
3318          * What we should check here is whether FBC can be
3319          * enabled sometime later.
3320          */
3321         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3322             intel_fbc_is_active(dev_priv)) {
3323                 for (level = 2; level <= max_level; level++) {
3324                         struct intel_wm_level *wm = &merged->wm[level];
3325
3326                         wm->enable = false;
3327                 }
3328         }
3329 }
3330
3331 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3332 {
3333         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3334         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3335 }
3336
3337 /* The value we need to program into the WM_LPx latency field */
3338 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3339 {
3340         struct drm_i915_private *dev_priv = to_i915(dev);
3341
3342         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3343                 return 2 * level;
3344         else
3345                 return dev_priv->wm.pri_latency[level];
3346 }
3347
3348 static void ilk_compute_wm_results(struct drm_device *dev,
3349                                    const struct intel_pipe_wm *merged,
3350                                    enum intel_ddb_partitioning partitioning,
3351                                    struct ilk_wm_values *results)
3352 {
3353         struct drm_i915_private *dev_priv = to_i915(dev);
3354         struct intel_crtc *intel_crtc;
3355         int level, wm_lp;
3356
3357         results->enable_fbc_wm = merged->fbc_wm_enabled;
3358         results->partitioning = partitioning;
3359
3360         /* LP1+ register values */
3361         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3362                 const struct intel_wm_level *r;
3363
3364                 level = ilk_wm_lp_to_level(wm_lp, merged);
3365
3366                 r = &merged->wm[level];
3367
3368                 /*
3369                  * Maintain the watermark values even if the level is
3370                  * disabled. Doing otherwise could cause underruns.
3371                  */
3372                 results->wm_lp[wm_lp - 1] =
3373                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3374                         (r->pri_val << WM1_LP_SR_SHIFT) |
3375                         r->cur_val;
3376
3377                 if (r->enable)
3378                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3379
3380                 if (INTEL_GEN(dev_priv) >= 8)
3381                         results->wm_lp[wm_lp - 1] |=
3382                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3383                 else
3384                         results->wm_lp[wm_lp - 1] |=
3385                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3386
3387                 /*
3388                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3389                  * level is disabled. Doing otherwise could cause underruns.
3390                  */
3391                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3392                         WARN_ON(wm_lp != 1);
3393                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3394                 } else
3395                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3396         }
3397
3398         /* LP0 register values */
3399         for_each_intel_crtc(dev, intel_crtc) {
3400                 enum pipe pipe = intel_crtc->pipe;
3401                 const struct intel_wm_level *r =
3402                         &intel_crtc->wm.active.ilk.wm[0];
3403
3404                 if (WARN_ON(!r->enable))
3405                         continue;
3406
3407                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3408
3409                 results->wm_pipe[pipe] =
3410                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3411                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3412                         r->cur_val;
3413         }
3414 }
3415
3416 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3417  * case both are at the same level. Prefer r1 in case they're the same. */
3418 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3419                                                   struct intel_pipe_wm *r1,
3420                                                   struct intel_pipe_wm *r2)
3421 {
3422         int level, max_level = ilk_wm_max_level(to_i915(dev));
3423         int level1 = 0, level2 = 0;
3424
3425         for (level = 1; level <= max_level; level++) {
3426                 if (r1->wm[level].enable)
3427                         level1 = level;
3428                 if (r2->wm[level].enable)
3429                         level2 = level;
3430         }
3431
3432         if (level1 == level2) {
3433                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3434                         return r2;
3435                 else
3436                         return r1;
3437         } else if (level1 > level2) {
3438                 return r1;
3439         } else {
3440                 return r2;
3441         }
3442 }
3443
3444 /* dirty bits used to track which watermarks need changes */
3445 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3446 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3447 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3448 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3449 #define WM_DIRTY_FBC (1 << 24)
3450 #define WM_DIRTY_DDB (1 << 25)
3451
3452 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3453                                          const struct ilk_wm_values *old,
3454                                          const struct ilk_wm_values *new)
3455 {
3456         unsigned int dirty = 0;
3457         enum pipe pipe;
3458         int wm_lp;
3459
3460         for_each_pipe(dev_priv, pipe) {
3461                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3462                         dirty |= WM_DIRTY_LINETIME(pipe);
3463                         /* Must disable LP1+ watermarks too */
3464                         dirty |= WM_DIRTY_LP_ALL;
3465                 }
3466
3467                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3468                         dirty |= WM_DIRTY_PIPE(pipe);
3469                         /* Must disable LP1+ watermarks too */
3470                         dirty |= WM_DIRTY_LP_ALL;
3471                 }
3472         }
3473
3474         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3475                 dirty |= WM_DIRTY_FBC;
3476                 /* Must disable LP1+ watermarks too */
3477                 dirty |= WM_DIRTY_LP_ALL;
3478         }
3479
3480         if (old->partitioning != new->partitioning) {
3481                 dirty |= WM_DIRTY_DDB;
3482                 /* Must disable LP1+ watermarks too */
3483                 dirty |= WM_DIRTY_LP_ALL;
3484         }
3485
3486         /* LP1+ watermarks already deemed dirty, no need to continue */
3487         if (dirty & WM_DIRTY_LP_ALL)
3488                 return dirty;
3489
3490         /* Find the lowest numbered LP1+ watermark in need of an update... */
3491         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3492                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3493                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3494                         break;
3495         }
3496
3497         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3498         for (; wm_lp <= 3; wm_lp++)
3499                 dirty |= WM_DIRTY_LP(wm_lp);
3500
3501         return dirty;
3502 }
3503
3504 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3505                                unsigned int dirty)
3506 {
3507         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3508         bool changed = false;
3509
3510         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3511                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3512                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3513                 changed = true;
3514         }
3515         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3516                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3517                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3518                 changed = true;
3519         }
3520         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3521                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3522                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3523                 changed = true;
3524         }
3525
3526         /*
3527          * Don't touch WM1S_LP_EN here.
3528          * Doing so could cause underruns.
3529          */
3530
3531         return changed;
3532 }
3533
3534 /*
3535  * The spec says we shouldn't write when we don't need, because every write
3536  * causes WMs to be re-evaluated, expending some power.
3537  */
3538 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3539                                 struct ilk_wm_values *results)
3540 {
3541         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3542         unsigned int dirty;
3543         uint32_t val;
3544
3545         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3546         if (!dirty)
3547                 return;
3548
3549         _ilk_disable_lp_wm(dev_priv, dirty);
3550
3551         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3552                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3553         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3554                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3555         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3556                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3557
3558         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3559                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3560         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3561                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3562         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3563                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3564
3565         if (dirty & WM_DIRTY_DDB) {
3566                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3567                         val = I915_READ(WM_MISC);
3568                         if (results->partitioning == INTEL_DDB_PART_1_2)
3569                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3570                         else
3571                                 val |= WM_MISC_DATA_PARTITION_5_6;
3572                         I915_WRITE(WM_MISC, val);
3573                 } else {
3574                         val = I915_READ(DISP_ARB_CTL2);
3575                         if (results->partitioning == INTEL_DDB_PART_1_2)
3576                                 val &= ~DISP_DATA_PARTITION_5_6;
3577                         else
3578                                 val |= DISP_DATA_PARTITION_5_6;
3579                         I915_WRITE(DISP_ARB_CTL2, val);
3580                 }
3581         }
3582
3583         if (dirty & WM_DIRTY_FBC) {
3584                 val = I915_READ(DISP_ARB_CTL);
3585                 if (results->enable_fbc_wm)
3586                         val &= ~DISP_FBC_WM_DIS;
3587                 else
3588                         val |= DISP_FBC_WM_DIS;
3589                 I915_WRITE(DISP_ARB_CTL, val);
3590         }
3591
3592         if (dirty & WM_DIRTY_LP(1) &&
3593             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3594                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3595
3596         if (INTEL_GEN(dev_priv) >= 7) {
3597                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3598                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3599                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3600                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3601         }
3602
3603         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3604                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3605         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3606                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3607         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3608                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3609
3610         dev_priv->wm.hw = *results;
3611 }
3612
3613 bool ilk_disable_lp_wm(struct drm_device *dev)
3614 {
3615         struct drm_i915_private *dev_priv = to_i915(dev);
3616
3617         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3618 }
3619
3620 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3621 {
3622         u8 enabled_slices;
3623
3624         /* Slice 1 will always be enabled */
3625         enabled_slices = 1;
3626
3627         /* Gen prior to GEN11 have only one DBuf slice */
3628         if (INTEL_GEN(dev_priv) < 11)
3629                 return enabled_slices;
3630
3631         if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3632                 enabled_slices++;
3633
3634         return enabled_slices;
3635 }
3636
3637 /*
3638  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3639  * so assume we'll always need it in order to avoid underruns.
3640  */
3641 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3642 {
3643         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3644
3645         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3646                 return true;
3647
3648         return false;
3649 }
3650
3651 static bool
3652 intel_has_sagv(struct drm_i915_private *dev_priv)
3653 {
3654         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3655                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3656 }
3657
3658 /*
3659  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3660  * depending on power and performance requirements. The display engine access
3661  * to system memory is blocked during the adjustment time. Because of the
3662  * blocking time, having this enabled can cause full system hangs and/or pipe
3663  * underruns if we don't meet all of the following requirements:
3664  *
3665  *  - <= 1 pipe enabled
3666  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3667  *  - We're not using an interlaced display configuration
3668  */
3669 int
3670 intel_enable_sagv(struct drm_i915_private *dev_priv)
3671 {
3672         int ret;
3673
3674         if (!intel_has_sagv(dev_priv))
3675                 return 0;
3676
3677         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3678                 return 0;
3679
3680         DRM_DEBUG_KMS("Enabling the SAGV\n");
3681         mutex_lock(&dev_priv->pcu_lock);
3682
3683         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3684                                       GEN9_SAGV_ENABLE);
3685
3686         /* We don't need to wait for the SAGV when enabling */
3687         mutex_unlock(&dev_priv->pcu_lock);
3688
3689         /*
3690          * Some skl systems, pre-release machines in particular,
3691          * don't actually have an SAGV.
3692          */
3693         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3694                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3695                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3696                 return 0;
3697         } else if (ret < 0) {
3698                 DRM_ERROR("Failed to enable the SAGV\n");
3699                 return ret;
3700         }
3701
3702         dev_priv->sagv_status = I915_SAGV_ENABLED;
3703         return 0;
3704 }
3705
3706 int
3707 intel_disable_sagv(struct drm_i915_private *dev_priv)
3708 {
3709         int ret;
3710
3711         if (!intel_has_sagv(dev_priv))
3712                 return 0;
3713
3714         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3715                 return 0;
3716
3717         DRM_DEBUG_KMS("Disabling the SAGV\n");
3718         mutex_lock(&dev_priv->pcu_lock);
3719
3720         /* bspec says to keep retrying for at least 1 ms */
3721         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3722                                 GEN9_SAGV_DISABLE,
3723                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3724                                 1);
3725         mutex_unlock(&dev_priv->pcu_lock);
3726
3727         /*
3728          * Some skl systems, pre-release machines in particular,
3729          * don't actually have an SAGV.
3730          */
3731         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3732                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3733                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3734                 return 0;
3735         } else if (ret < 0) {
3736                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3737                 return ret;
3738         }
3739
3740         dev_priv->sagv_status = I915_SAGV_DISABLED;
3741         return 0;
3742 }
3743
3744 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3745 {
3746         struct drm_device *dev = state->dev;
3747         struct drm_i915_private *dev_priv = to_i915(dev);
3748         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3749         struct intel_crtc *crtc;
3750         struct intel_plane *plane;
3751         struct intel_crtc_state *cstate;
3752         enum pipe pipe;
3753         int level, latency;
3754         int sagv_block_time_us;
3755
3756         if (!intel_has_sagv(dev_priv))
3757                 return false;
3758
3759         if (IS_GEN9(dev_priv))
3760                 sagv_block_time_us = 30;
3761         else if (IS_GEN10(dev_priv))
3762                 sagv_block_time_us = 20;
3763         else
3764                 sagv_block_time_us = 10;
3765
3766         /*
3767          * SKL+ workaround: bspec recommends we disable the SAGV when we have
3768          * more then one pipe enabled
3769          *
3770          * If there are no active CRTCs, no additional checks need be performed
3771          */
3772         if (hweight32(intel_state->active_crtcs) == 0)
3773                 return true;
3774         else if (hweight32(intel_state->active_crtcs) > 1)
3775                 return false;
3776
3777         /* Since we're now guaranteed to only have one active CRTC... */
3778         pipe = ffs(intel_state->active_crtcs) - 1;
3779         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3780         cstate = to_intel_crtc_state(crtc->base.state);
3781
3782         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3783                 return false;
3784
3785         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3786                 struct skl_plane_wm *wm =
3787                         &cstate->wm.skl.optimal.planes[plane->id];
3788
3789                 /* Skip this plane if it's not enabled */
3790                 if (!wm->wm[0].plane_en)
3791                         continue;
3792
3793                 /* Find the highest enabled wm level for this plane */
3794                 for (level = ilk_wm_max_level(dev_priv);
3795                      !wm->wm[level].plane_en; --level)
3796                      { }
3797
3798                 latency = dev_priv->wm.skl_latency[level];
3799
3800                 if (skl_needs_memory_bw_wa(intel_state) &&
3801                     plane->base.state->fb->modifier ==
3802                     I915_FORMAT_MOD_X_TILED)
3803                         latency += 15;
3804
3805                 /*
3806                  * If any of the planes on this pipe don't enable wm levels that
3807                  * incur memory latencies higher than sagv_block_time_us we
3808                  * can't enable the SAGV.
3809                  */
3810                 if (latency < sagv_block_time_us)
3811                         return false;
3812         }
3813
3814         return true;
3815 }
3816
3817 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3818                               const struct intel_crtc_state *cstate,
3819                               const u64 total_data_rate,
3820                               const int num_active,
3821                               struct skl_ddb_allocation *ddb)
3822 {
3823         const struct drm_display_mode *adjusted_mode;
3824         u64 total_data_bw;
3825         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3826
3827         WARN_ON(ddb_size == 0);
3828
3829         if (INTEL_GEN(dev_priv) < 11)
3830                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3831
3832         adjusted_mode = &cstate->base.adjusted_mode;
3833         total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3834
3835         /*
3836          * 12GB/s is maximum BW supported by single DBuf slice.
3837          */
3838         if (num_active > 1 || total_data_bw >= GBps(12)) {
3839                 ddb->enabled_slices = 2;
3840         } else {
3841                 ddb->enabled_slices = 1;
3842                 ddb_size /= 2;
3843         }
3844
3845         return ddb_size;
3846 }
3847
3848 static void
3849 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3850                                    const struct intel_crtc_state *cstate,
3851                                    const u64 total_data_rate,
3852                                    struct skl_ddb_allocation *ddb,
3853                                    struct skl_ddb_entry *alloc, /* out */
3854                                    int *num_active /* out */)
3855 {
3856         struct drm_atomic_state *state = cstate->base.state;
3857         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3858         struct drm_crtc *for_crtc = cstate->base.crtc;
3859         const struct drm_crtc_state *crtc_state;
3860         const struct drm_crtc *crtc;
3861         u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3862         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3863         u16 ddb_size;
3864         u32 i;
3865
3866         if (WARN_ON(!state) || !cstate->base.active) {
3867                 alloc->start = 0;
3868                 alloc->end = 0;
3869                 *num_active = hweight32(dev_priv->active_crtcs);
3870                 return;
3871         }
3872
3873         if (intel_state->active_pipe_changes)
3874                 *num_active = hweight32(intel_state->active_crtcs);
3875         else
3876                 *num_active = hweight32(dev_priv->active_crtcs);
3877
3878         ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3879                                       *num_active, ddb);
3880
3881         /*
3882          * If the state doesn't change the active CRTC's or there is no
3883          * modeset request, then there's no need to recalculate;
3884          * the existing pipe allocation limits should remain unchanged.
3885          * Note that we're safe from racing commits since any racing commit
3886          * that changes the active CRTC list or do modeset would need to
3887          * grab _all_ crtc locks, including the one we currently hold.
3888          */
3889         if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3890                 /*
3891                  * alloc may be cleared by clear_intel_crtc_state,
3892                  * copy from old state to be sure
3893                  */
3894                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3895                 return;
3896         }
3897
3898         /*
3899          * Watermark/ddb requirement highly depends upon width of the
3900          * framebuffer, So instead of allocating DDB equally among pipes
3901          * distribute DDB based on resolution/width of the display.
3902          */
3903         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3904                 const struct drm_display_mode *adjusted_mode;
3905                 int hdisplay, vdisplay;
3906                 enum pipe pipe;
3907
3908                 if (!crtc_state->enable)
3909                         continue;
3910
3911                 pipe = to_intel_crtc(crtc)->pipe;
3912                 adjusted_mode = &crtc_state->adjusted_mode;
3913                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3914                 total_width += hdisplay;
3915
3916                 if (pipe < for_pipe)
3917                         width_before_pipe += hdisplay;
3918                 else if (pipe == for_pipe)
3919                         pipe_width = hdisplay;
3920         }
3921
3922         alloc->start = ddb_size * width_before_pipe / total_width;
3923         alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3924 }
3925
3926 static unsigned int skl_cursor_allocation(int num_active)
3927 {
3928         if (num_active == 1)
3929                 return 32;
3930
3931         return 8;
3932 }
3933
3934 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3935                                        struct skl_ddb_entry *entry, u32 reg)
3936 {
3937         u16 mask;
3938
3939         if (INTEL_GEN(dev_priv) >= 11)
3940                 mask = ICL_DDB_ENTRY_MASK;
3941         else
3942                 mask = SKL_DDB_ENTRY_MASK;
3943         entry->start = reg & mask;
3944         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3945
3946         if (entry->end)
3947                 entry->end += 1;
3948 }
3949
3950 static void
3951 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3952                            const enum pipe pipe,
3953                            const enum plane_id plane_id,
3954                            struct skl_ddb_entry *ddb_y,
3955                            struct skl_ddb_entry *ddb_uv)
3956 {
3957         u32 val, val2;
3958         u32 fourcc = 0;
3959
3960         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3961         if (plane_id == PLANE_CURSOR) {
3962                 val = I915_READ(CUR_BUF_CFG(pipe));
3963                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3964                 return;
3965         }
3966
3967         val = I915_READ(PLANE_CTL(pipe, plane_id));
3968
3969         /* No DDB allocated for disabled planes */
3970         if (val & PLANE_CTL_ENABLE)
3971                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
3972                                               val & PLANE_CTL_ORDER_RGBX,
3973                                               val & PLANE_CTL_ALPHA_MASK);
3974
3975         if (INTEL_GEN(dev_priv) >= 11) {
3976                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3977                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3978         } else {
3979                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3980                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3981
3982                 if (fourcc == DRM_FORMAT_NV12)
3983                         swap(val, val2);
3984
3985                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3986                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
3987         }
3988 }
3989
3990 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
3991                                struct skl_ddb_entry *ddb_y,
3992                                struct skl_ddb_entry *ddb_uv)
3993 {
3994         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3995         enum intel_display_power_domain power_domain;
3996         enum pipe pipe = crtc->pipe;
3997         enum plane_id plane_id;
3998
3999         power_domain = POWER_DOMAIN_PIPE(pipe);
4000         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
4001                 return;
4002
4003         for_each_plane_id_on_crtc(crtc, plane_id)
4004                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4005                                            plane_id,
4006                                            &ddb_y[plane_id],
4007                                            &ddb_uv[plane_id]);
4008
4009         intel_display_power_put(dev_priv, power_domain);
4010 }
4011
4012 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4013                           struct skl_ddb_allocation *ddb /* out */)
4014 {
4015         ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4016 }
4017
4018 /*
4019  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4020  * The bspec defines downscale amount as:
4021  *
4022  * """
4023  * Horizontal down scale amount = maximum[1, Horizontal source size /
4024  *                                           Horizontal destination size]
4025  * Vertical down scale amount = maximum[1, Vertical source size /
4026  *                                         Vertical destination size]
4027  * Total down scale amount = Horizontal down scale amount *
4028  *                           Vertical down scale amount
4029  * """
4030  *
4031  * Return value is provided in 16.16 fixed point form to retain fractional part.
4032  * Caller should take care of dividing & rounding off the value.
4033  */
4034 static uint_fixed_16_16_t
4035 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
4036                            const struct intel_plane_state *pstate)
4037 {
4038         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4039         uint32_t src_w, src_h, dst_w, dst_h;
4040         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4041         uint_fixed_16_16_t downscale_h, downscale_w;
4042
4043         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4044                 return u32_to_fixed16(0);
4045
4046         /* n.b., src is 16.16 fixed point, dst is whole integer */
4047         if (plane->id == PLANE_CURSOR) {
4048                 /*
4049                  * Cursors only support 0/180 degree rotation,
4050                  * hence no need to account for rotation here.
4051                  */
4052                 src_w = pstate->base.src_w >> 16;
4053                 src_h = pstate->base.src_h >> 16;
4054                 dst_w = pstate->base.crtc_w;
4055                 dst_h = pstate->base.crtc_h;
4056         } else {
4057                 /*
4058                  * Src coordinates are already rotated by 270 degrees for
4059                  * the 90/270 degree plane rotation cases (to match the
4060                  * GTT mapping), hence no need to account for rotation here.
4061                  */
4062                 src_w = drm_rect_width(&pstate->base.src) >> 16;
4063                 src_h = drm_rect_height(&pstate->base.src) >> 16;
4064                 dst_w = drm_rect_width(&pstate->base.dst);
4065                 dst_h = drm_rect_height(&pstate->base.dst);
4066         }
4067
4068         fp_w_ratio = div_fixed16(src_w, dst_w);
4069         fp_h_ratio = div_fixed16(src_h, dst_h);
4070         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4071         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4072
4073         return mul_fixed16(downscale_w, downscale_h);
4074 }
4075
4076 static uint_fixed_16_16_t
4077 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4078 {
4079         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4080
4081         if (!crtc_state->base.enable)
4082                 return pipe_downscale;
4083
4084         if (crtc_state->pch_pfit.enabled) {
4085                 uint32_t src_w, src_h, dst_w, dst_h;
4086                 uint32_t pfit_size = crtc_state->pch_pfit.size;
4087                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4088                 uint_fixed_16_16_t downscale_h, downscale_w;
4089
4090                 src_w = crtc_state->pipe_src_w;
4091                 src_h = crtc_state->pipe_src_h;
4092                 dst_w = pfit_size >> 16;
4093                 dst_h = pfit_size & 0xffff;
4094
4095                 if (!dst_w || !dst_h)
4096                         return pipe_downscale;
4097
4098                 fp_w_ratio = div_fixed16(src_w, dst_w);
4099                 fp_h_ratio = div_fixed16(src_h, dst_h);
4100                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4101                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4102
4103                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4104         }
4105
4106         return pipe_downscale;
4107 }
4108
4109 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4110                                   struct intel_crtc_state *cstate)
4111 {
4112         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4113         struct drm_crtc_state *crtc_state = &cstate->base;
4114         struct drm_atomic_state *state = crtc_state->state;
4115         struct drm_plane *plane;
4116         const struct drm_plane_state *pstate;
4117         struct intel_plane_state *intel_pstate;
4118         int crtc_clock, dotclk;
4119         uint32_t pipe_max_pixel_rate;
4120         uint_fixed_16_16_t pipe_downscale;
4121         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4122
4123         if (!cstate->base.enable)
4124                 return 0;
4125
4126         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4127                 uint_fixed_16_16_t plane_downscale;
4128                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4129                 int bpp;
4130
4131                 if (!intel_wm_plane_visible(cstate,
4132                                             to_intel_plane_state(pstate)))
4133                         continue;
4134
4135                 if (WARN_ON(!pstate->fb))
4136                         return -EINVAL;
4137
4138                 intel_pstate = to_intel_plane_state(pstate);
4139                 plane_downscale = skl_plane_downscale_amount(cstate,
4140                                                              intel_pstate);
4141                 bpp = pstate->fb->format->cpp[0] * 8;
4142                 if (bpp == 64)
4143                         plane_downscale = mul_fixed16(plane_downscale,
4144                                                       fp_9_div_8);
4145
4146                 max_downscale = max_fixed16(plane_downscale, max_downscale);
4147         }
4148         pipe_downscale = skl_pipe_downscale_amount(cstate);
4149
4150         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4151
4152         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4153         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4154
4155         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4156                 dotclk *= 2;
4157
4158         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4159
4160         if (pipe_max_pixel_rate < crtc_clock) {
4161                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4162                 return -EINVAL;
4163         }
4164
4165         return 0;
4166 }
4167
4168 static u64
4169 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4170                              const struct intel_plane_state *intel_pstate,
4171                              const int plane)
4172 {
4173         struct intel_plane *intel_plane =
4174                 to_intel_plane(intel_pstate->base.plane);
4175         uint32_t data_rate;
4176         uint32_t width = 0, height = 0;
4177         struct drm_framebuffer *fb;
4178         u32 format;
4179         uint_fixed_16_16_t down_scale_amount;
4180         u64 rate;
4181
4182         if (!intel_pstate->base.visible)
4183                 return 0;
4184
4185         fb = intel_pstate->base.fb;
4186         format = fb->format->format;
4187
4188         if (intel_plane->id == PLANE_CURSOR)
4189                 return 0;
4190         if (plane == 1 && format != DRM_FORMAT_NV12)
4191                 return 0;
4192
4193         /*
4194          * Src coordinates are already rotated by 270 degrees for
4195          * the 90/270 degree plane rotation cases (to match the
4196          * GTT mapping), hence no need to account for rotation here.
4197          */
4198         width = drm_rect_width(&intel_pstate->base.src) >> 16;
4199         height = drm_rect_height(&intel_pstate->base.src) >> 16;
4200
4201         /* UV plane does 1/2 pixel sub-sampling */
4202         if (plane == 1 && format == DRM_FORMAT_NV12) {
4203                 width /= 2;
4204                 height /= 2;
4205         }
4206
4207         data_rate = width * height;
4208
4209         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4210
4211         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4212
4213         rate *= fb->format->cpp[plane];
4214         return rate;
4215 }
4216
4217 static u64
4218 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4219                                  u64 *plane_data_rate,
4220                                  u64 *uv_plane_data_rate)
4221 {
4222         struct drm_crtc_state *cstate = &intel_cstate->base;
4223         struct drm_atomic_state *state = cstate->state;
4224         struct drm_plane *plane;
4225         const struct drm_plane_state *pstate;
4226         u64 total_data_rate = 0;
4227
4228         if (WARN_ON(!state))
4229                 return 0;
4230
4231         /* Calculate and cache data rate for each plane */
4232         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4233                 enum plane_id plane_id = to_intel_plane(plane)->id;
4234                 u64 rate;
4235                 const struct intel_plane_state *intel_pstate =
4236                         to_intel_plane_state(pstate);
4237
4238                 /* packed/y */
4239                 rate = skl_plane_relative_data_rate(intel_cstate,
4240                                                     intel_pstate, 0);
4241                 plane_data_rate[plane_id] = rate;
4242                 total_data_rate += rate;
4243
4244                 /* uv-plane */
4245                 rate = skl_plane_relative_data_rate(intel_cstate,
4246                                                     intel_pstate, 1);
4247                 uv_plane_data_rate[plane_id] = rate;
4248                 total_data_rate += rate;
4249         }
4250
4251         return total_data_rate;
4252 }
4253
4254 static u64
4255 icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4256                                  u64 *plane_data_rate)
4257 {
4258         struct drm_crtc_state *cstate = &intel_cstate->base;
4259         struct drm_atomic_state *state = cstate->state;
4260         struct drm_plane *plane;
4261         const struct drm_plane_state *pstate;
4262         u64 total_data_rate = 0;
4263
4264         if (WARN_ON(!state))
4265                 return 0;
4266
4267         /* Calculate and cache data rate for each plane */
4268         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4269                 const struct intel_plane_state *intel_pstate =
4270                         to_intel_plane_state(pstate);
4271                 enum plane_id plane_id = to_intel_plane(plane)->id;
4272                 u64 rate;
4273
4274                 if (!intel_pstate->linked_plane) {
4275                         rate = skl_plane_relative_data_rate(intel_cstate,
4276                                                             intel_pstate, 0);
4277                         plane_data_rate[plane_id] = rate;
4278                         total_data_rate += rate;
4279                 } else {
4280                         enum plane_id y_plane_id;
4281
4282                         /*
4283                          * The slave plane might not iterate in
4284                          * drm_atomic_crtc_state_for_each_plane_state(),
4285                          * and needs the master plane state which may be
4286                          * NULL if we try get_new_plane_state(), so we
4287                          * always calculate from the master.
4288                          */
4289                         if (intel_pstate->slave)
4290                                 continue;
4291
4292                         /* Y plane rate is calculated on the slave */
4293                         rate = skl_plane_relative_data_rate(intel_cstate,
4294                                                             intel_pstate, 0);
4295                         y_plane_id = intel_pstate->linked_plane->id;
4296                         plane_data_rate[y_plane_id] = rate;
4297                         total_data_rate += rate;
4298
4299                         rate = skl_plane_relative_data_rate(intel_cstate,
4300                                                             intel_pstate, 1);
4301                         plane_data_rate[plane_id] = rate;
4302                         total_data_rate += rate;
4303                 }
4304         }
4305
4306         return total_data_rate;
4307 }
4308
4309 static uint16_t
4310 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4311 {
4312         struct drm_framebuffer *fb = pstate->fb;
4313         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4314         uint32_t src_w, src_h;
4315         uint32_t min_scanlines = 8;
4316         uint8_t plane_bpp;
4317
4318         if (WARN_ON(!fb))
4319                 return 0;
4320
4321         /* For packed formats, and uv-plane, return 0 */
4322         if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4323                 return 0;
4324
4325         /* For Non Y-tile return 8-blocks */
4326         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4327             fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4328             fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4329             fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4330                 return 8;
4331
4332         /*
4333          * Src coordinates are already rotated by 270 degrees for
4334          * the 90/270 degree plane rotation cases (to match the
4335          * GTT mapping), hence no need to account for rotation here.
4336          */
4337         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4338         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4339
4340         /* Halve UV plane width and height for NV12 */
4341         if (plane == 1) {
4342                 src_w /= 2;
4343                 src_h /= 2;
4344         }
4345
4346         plane_bpp = fb->format->cpp[plane];
4347
4348         if (drm_rotation_90_or_270(pstate->rotation)) {
4349                 switch (plane_bpp) {
4350                 case 1:
4351                         min_scanlines = 32;
4352                         break;
4353                 case 2:
4354                         min_scanlines = 16;
4355                         break;
4356                 case 4:
4357                         min_scanlines = 8;
4358                         break;
4359                 case 8:
4360                         min_scanlines = 4;
4361                         break;
4362                 default:
4363                         WARN(1, "Unsupported pixel depth %u for rotation",
4364                              plane_bpp);
4365                         min_scanlines = 32;
4366                 }
4367         }
4368
4369         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4370 }
4371
4372 static void
4373 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4374                  uint16_t *minimum, uint16_t *uv_minimum)
4375 {
4376         const struct drm_plane_state *pstate;
4377         struct drm_plane *plane;
4378
4379         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4380                 enum plane_id plane_id = to_intel_plane(plane)->id;
4381                 struct intel_plane_state *plane_state = to_intel_plane_state(pstate);
4382
4383                 if (plane_id == PLANE_CURSOR)
4384                         continue;
4385
4386                 /* slave plane must be invisible and calculated from master */
4387                 if (!pstate->visible || WARN_ON(plane_state->slave))
4388                         continue;
4389
4390                 if (!plane_state->linked_plane) {
4391                         minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4392                         uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4393                 } else {
4394                         enum plane_id y_plane_id =
4395                                 plane_state->linked_plane->id;
4396
4397                         minimum[y_plane_id] = skl_ddb_min_alloc(pstate, 0);
4398                         minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4399                 }
4400         }
4401
4402         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4403 }
4404
4405 static int
4406 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4407                       struct skl_ddb_allocation *ddb /* out */)
4408 {
4409         struct drm_atomic_state *state = cstate->base.state;
4410         struct drm_crtc *crtc = cstate->base.crtc;
4411         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4413         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4414         uint16_t alloc_size, start;
4415         uint16_t minimum[I915_MAX_PLANES] = {};
4416         uint16_t uv_minimum[I915_MAX_PLANES] = {};
4417         u64 total_data_rate;
4418         enum plane_id plane_id;
4419         int num_active;
4420         u64 plane_data_rate[I915_MAX_PLANES] = {};
4421         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4422         uint16_t total_min_blocks = 0;
4423
4424         /* Clear the partitioning for disabled planes. */
4425         memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
4426         memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4427
4428         if (WARN_ON(!state))
4429                 return 0;
4430
4431         if (!cstate->base.active) {
4432                 alloc->start = alloc->end = 0;
4433                 return 0;
4434         }
4435
4436         if (INTEL_GEN(dev_priv) < 11)
4437                 total_data_rate =
4438                         skl_get_total_relative_data_rate(cstate,
4439                                                          plane_data_rate,
4440                                                          uv_plane_data_rate);
4441         else
4442                 total_data_rate =
4443                         icl_get_total_relative_data_rate(cstate,
4444                                                          plane_data_rate);
4445
4446         skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
4447                                            ddb, alloc, &num_active);
4448         alloc_size = skl_ddb_entry_size(alloc);
4449         if (alloc_size == 0)
4450                 return 0;
4451
4452         skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4453
4454         /*
4455          * 1. Allocate the mininum required blocks for each active plane
4456          * and allocate the cursor, it doesn't require extra allocation
4457          * proportional to the data rate.
4458          */
4459
4460         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4461                 total_min_blocks += minimum[plane_id];
4462                 total_min_blocks += uv_minimum[plane_id];
4463         }
4464
4465         if (total_min_blocks > alloc_size) {
4466                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4467                 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4468                                                         alloc_size);
4469                 return -EINVAL;
4470         }
4471
4472         alloc_size -= total_min_blocks;
4473         cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4474         cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4475
4476         /*
4477          * 2. Distribute the remaining space in proportion to the amount of
4478          * data each plane needs to fetch from memory.
4479          *
4480          * FIXME: we may not allocate every single block here.
4481          */
4482         if (total_data_rate == 0)
4483                 return 0;
4484
4485         start = alloc->start;
4486         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4487                 u64 data_rate, uv_data_rate;
4488                 uint16_t plane_blocks, uv_plane_blocks;
4489
4490                 if (plane_id == PLANE_CURSOR)
4491                         continue;
4492
4493                 data_rate = plane_data_rate[plane_id];
4494
4495                 /*
4496                  * allocation for (packed formats) or (uv-plane part of planar format):
4497                  * promote the expression to 64 bits to avoid overflowing, the
4498                  * result is < available as data_rate / total_data_rate < 1
4499                  */
4500                 plane_blocks = minimum[plane_id];
4501                 plane_blocks += div64_u64(alloc_size * data_rate, total_data_rate);
4502
4503                 /* Leave disabled planes at (0,0) */
4504                 if (data_rate) {
4505                         cstate->wm.skl.plane_ddb_y[plane_id].start = start;
4506                         cstate->wm.skl.plane_ddb_y[plane_id].end = start + plane_blocks;
4507                 }
4508
4509                 start += plane_blocks;
4510
4511                 /* Allocate DDB for UV plane for planar format/NV12 */
4512                 uv_data_rate = uv_plane_data_rate[plane_id];
4513
4514                 uv_plane_blocks = uv_minimum[plane_id];
4515                 uv_plane_blocks += div64_u64(alloc_size * uv_data_rate, total_data_rate);
4516
4517                 /* Gen11+ uses a separate plane for UV watermarks */
4518                 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_plane_blocks);
4519
4520                 if (uv_data_rate) {
4521                         cstate->wm.skl.plane_ddb_uv[plane_id].start = start;
4522                         cstate->wm.skl.plane_ddb_uv[plane_id].end =
4523                                 start + uv_plane_blocks;
4524                 }
4525
4526                 start += uv_plane_blocks;
4527         }
4528
4529         return 0;
4530 }
4531
4532 /*
4533  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4534  * for the read latency) and cpp should always be <= 8, so that
4535  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4536  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4537 */
4538 static uint_fixed_16_16_t
4539 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4540                uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4541 {
4542         uint32_t wm_intermediate_val;
4543         uint_fixed_16_16_t ret;
4544
4545         if (latency == 0)
4546                 return FP_16_16_MAX;
4547
4548         wm_intermediate_val = latency * pixel_rate * cpp;
4549         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4550
4551         if (INTEL_GEN(dev_priv) >= 10)
4552                 ret = add_fixed16_u32(ret, 1);
4553
4554         return ret;
4555 }
4556
4557 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4558                         uint32_t pipe_htotal,
4559                         uint32_t latency,
4560                         uint_fixed_16_16_t plane_blocks_per_line)
4561 {
4562         uint32_t wm_intermediate_val;
4563         uint_fixed_16_16_t ret;
4564
4565         if (latency == 0)
4566                 return FP_16_16_MAX;
4567
4568         wm_intermediate_val = latency * pixel_rate;
4569         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4570                                            pipe_htotal * 1000);
4571         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4572         return ret;
4573 }
4574
4575 static uint_fixed_16_16_t
4576 intel_get_linetime_us(const struct intel_crtc_state *cstate)
4577 {
4578         uint32_t pixel_rate;
4579         uint32_t crtc_htotal;
4580         uint_fixed_16_16_t linetime_us;
4581
4582         if (!cstate->base.active)
4583                 return u32_to_fixed16(0);
4584
4585         pixel_rate = cstate->pixel_rate;
4586
4587         if (WARN_ON(pixel_rate == 0))
4588                 return u32_to_fixed16(0);
4589
4590         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4591         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4592
4593         return linetime_us;
4594 }
4595
4596 static uint32_t
4597 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4598                               const struct intel_plane_state *pstate)
4599 {
4600         uint64_t adjusted_pixel_rate;
4601         uint_fixed_16_16_t downscale_amount;
4602
4603         /* Shouldn't reach here on disabled planes... */
4604         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4605                 return 0;
4606
4607         /*
4608          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4609          * with additional adjustments for plane-specific scaling.
4610          */
4611         adjusted_pixel_rate = cstate->pixel_rate;
4612         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4613
4614         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4615                                             downscale_amount);
4616 }
4617
4618 static int
4619 skl_compute_plane_wm_params(const struct intel_crtc_state *cstate,
4620                             const struct intel_plane_state *intel_pstate,
4621                             struct skl_wm_params *wp, int color_plane)
4622 {
4623         struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4624         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4625         const struct drm_plane_state *pstate = &intel_pstate->base;
4626         const struct drm_framebuffer *fb = pstate->fb;
4627         uint32_t interm_pbpl;
4628         struct intel_atomic_state *state =
4629                 to_intel_atomic_state(cstate->base.state);
4630         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4631
4632         /* only NV12 format has two planes */
4633         if (color_plane == 1 && fb->format->format != DRM_FORMAT_NV12) {
4634                 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4635                 return -EINVAL;
4636         }
4637
4638         wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4639                       fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4640                       fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4641                       fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4642         wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4643         wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4644                          fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4645         wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4646
4647         if (plane->id == PLANE_CURSOR) {
4648                 wp->width = intel_pstate->base.crtc_w;
4649         } else {
4650                 /*
4651                  * Src coordinates are already rotated by 270 degrees for
4652                  * the 90/270 degree plane rotation cases (to match the
4653                  * GTT mapping), hence no need to account for rotation here.
4654                  */
4655                 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4656         }
4657
4658         if (color_plane == 1 && wp->is_planar)
4659                 wp->width /= 2;
4660
4661         wp->cpp = fb->format->cpp[color_plane];
4662         wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4663                                                              intel_pstate);
4664
4665         if (INTEL_GEN(dev_priv) >= 11 &&
4666             fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4667                 wp->dbuf_block_size = 256;
4668         else
4669                 wp->dbuf_block_size = 512;
4670
4671         if (drm_rotation_90_or_270(pstate->rotation)) {
4672
4673                 switch (wp->cpp) {
4674                 case 1:
4675                         wp->y_min_scanlines = 16;
4676                         break;
4677                 case 2:
4678                         wp->y_min_scanlines = 8;
4679                         break;
4680                 case 4:
4681                         wp->y_min_scanlines = 4;
4682                         break;
4683                 default:
4684                         MISSING_CASE(wp->cpp);
4685                         return -EINVAL;
4686                 }
4687         } else {
4688                 wp->y_min_scanlines = 4;
4689         }
4690
4691         if (apply_memory_bw_wa)
4692                 wp->y_min_scanlines *= 2;
4693
4694         wp->plane_bytes_per_line = wp->width * wp->cpp;
4695         if (wp->y_tiled) {
4696                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4697                                            wp->y_min_scanlines,
4698                                            wp->dbuf_block_size);
4699
4700                 if (INTEL_GEN(dev_priv) >= 10)
4701                         interm_pbpl++;
4702
4703                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4704                                                         wp->y_min_scanlines);
4705         } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4706                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4707                                            wp->dbuf_block_size);
4708                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4709         } else {
4710                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4711                                            wp->dbuf_block_size) + 1;
4712                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4713         }
4714
4715         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4716                                              wp->plane_blocks_per_line);
4717         wp->linetime_us = fixed16_to_u32_round_up(
4718                                         intel_get_linetime_us(cstate));
4719
4720         return 0;
4721 }
4722
4723 static int skl_compute_plane_wm(const struct intel_crtc_state *cstate,
4724                                 const struct intel_plane_state *intel_pstate,
4725                                 uint16_t ddb_allocation,
4726                                 int level,
4727                                 const struct skl_wm_params *wp,
4728                                 const struct skl_wm_level *result_prev,
4729                                 struct skl_wm_level *result /* out */)
4730 {
4731         struct drm_i915_private *dev_priv =
4732                 to_i915(intel_pstate->base.plane->dev);
4733         const struct drm_plane_state *pstate = &intel_pstate->base;
4734         uint32_t latency = dev_priv->wm.skl_latency[level];
4735         uint_fixed_16_16_t method1, method2;
4736         uint_fixed_16_16_t selected_result;
4737         uint32_t res_blocks, res_lines;
4738         struct intel_atomic_state *state =
4739                 to_intel_atomic_state(cstate->base.state);
4740         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4741         uint32_t min_disp_buf_needed;
4742
4743         if (latency == 0)
4744                 return level == 0 ? -EINVAL : 0;
4745
4746         /* Display WA #1141: kbl,cfl */
4747         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4748             IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4749             dev_priv->ipc_enabled)
4750                 latency += 4;
4751
4752         if (apply_memory_bw_wa && wp->x_tiled)
4753                 latency += 15;
4754
4755         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4756                                  wp->cpp, latency, wp->dbuf_block_size);
4757         method2 = skl_wm_method2(wp->plane_pixel_rate,
4758                                  cstate->base.adjusted_mode.crtc_htotal,
4759                                  latency,
4760                                  wp->plane_blocks_per_line);
4761
4762         if (wp->y_tiled) {
4763                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4764         } else {
4765                 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4766                      wp->dbuf_block_size < 1) &&
4767                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4768                         selected_result = method2;
4769                 } else if (ddb_allocation >=
4770                          fixed16_to_u32_round_up(wp->plane_blocks_per_line)) {
4771                         if (IS_GEN9(dev_priv) &&
4772                             !IS_GEMINILAKE(dev_priv))
4773                                 selected_result = min_fixed16(method1, method2);
4774                         else
4775                                 selected_result = method2;
4776                 } else if (latency >= wp->linetime_us) {
4777                         if (IS_GEN9(dev_priv) &&
4778                             !IS_GEMINILAKE(dev_priv))
4779                                 selected_result = min_fixed16(method1, method2);
4780                         else
4781                                 selected_result = method2;
4782                 } else {
4783                         selected_result = method1;
4784                 }
4785         }
4786
4787         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4788         res_lines = div_round_up_fixed16(selected_result,
4789                                          wp->plane_blocks_per_line);
4790
4791         /* Display WA #1125: skl,bxt,kbl,glk */
4792         if (level == 0 && wp->rc_surface)
4793                 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4794
4795         /* Display WA #1126: skl,bxt,kbl,glk */
4796         if (level >= 1 && level <= 7) {
4797                 if (wp->y_tiled) {
4798                         res_blocks += fixed16_to_u32_round_up(
4799                                                         wp->y_tile_minimum);
4800                         res_lines += wp->y_min_scanlines;
4801                 } else {
4802                         res_blocks++;
4803                 }
4804
4805                 /*
4806                  * Make sure result blocks for higher latency levels are atleast
4807                  * as high as level below the current level.
4808                  * Assumption in DDB algorithm optimization for special cases.
4809                  * Also covers Display WA #1125 for RC.
4810                  */
4811                 if (result_prev->plane_res_b > res_blocks)
4812                         res_blocks = result_prev->plane_res_b;
4813         }
4814
4815         if (INTEL_GEN(dev_priv) >= 11) {
4816                 if (wp->y_tiled) {
4817                         uint32_t extra_lines;
4818                         uint_fixed_16_16_t fp_min_disp_buf_needed;
4819
4820                         if (res_lines % wp->y_min_scanlines == 0)
4821                                 extra_lines = wp->y_min_scanlines;
4822                         else
4823                                 extra_lines = wp->y_min_scanlines * 2 -
4824                                               res_lines % wp->y_min_scanlines;
4825
4826                         fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4827                                                 extra_lines,
4828                                                 wp->plane_blocks_per_line);
4829                         min_disp_buf_needed = fixed16_to_u32_round_up(
4830                                                 fp_min_disp_buf_needed);
4831                 } else {
4832                         min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4833                 }
4834         } else {
4835                 min_disp_buf_needed = res_blocks;
4836         }
4837
4838         if ((level > 0 && res_lines > 31) ||
4839             res_blocks >= ddb_allocation ||
4840             min_disp_buf_needed >= ddb_allocation) {
4841                 /*
4842                  * If there are no valid level 0 watermarks, then we can't
4843                  * support this display configuration.
4844                  */
4845                 if (level) {
4846                         return 0;
4847                 } else {
4848                         struct drm_plane *plane = pstate->plane;
4849
4850                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4851                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4852                                       plane->base.id, plane->name,
4853                                       res_blocks, ddb_allocation, res_lines);
4854                         return -EINVAL;
4855                 }
4856         }
4857
4858         /* The number of lines are ignored for the level 0 watermark. */
4859         result->plane_res_b = res_blocks;
4860         result->plane_res_l = res_lines;
4861         result->plane_en = true;
4862
4863         return 0;
4864 }
4865
4866 static int
4867 skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4868                       const struct intel_plane_state *intel_pstate,
4869                       uint16_t ddb_blocks,
4870                       const struct skl_wm_params *wm_params,
4871                       struct skl_wm_level *levels)
4872 {
4873         struct drm_i915_private *dev_priv =
4874                 to_i915(intel_pstate->base.plane->dev);
4875         int level, max_level = ilk_wm_max_level(dev_priv);
4876         struct skl_wm_level *result_prev = &levels[0];
4877         int ret;
4878
4879         for (level = 0; level <= max_level; level++) {
4880                 struct skl_wm_level *result = &levels[level];
4881
4882                 ret = skl_compute_plane_wm(cstate,
4883                                            intel_pstate,
4884                                            ddb_blocks,
4885                                            level,
4886                                            wm_params,
4887                                            result_prev,
4888                                            result);
4889                 if (ret)
4890                         return ret;
4891
4892                 result_prev = result;
4893         }
4894
4895         return 0;
4896 }
4897
4898 static uint32_t
4899 skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4900 {
4901         struct drm_atomic_state *state = cstate->base.state;
4902         struct drm_i915_private *dev_priv = to_i915(state->dev);
4903         uint_fixed_16_16_t linetime_us;
4904         uint32_t linetime_wm;
4905
4906         linetime_us = intel_get_linetime_us(cstate);
4907
4908         if (is_fixed16_zero(linetime_us))
4909                 return 0;
4910
4911         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4912
4913         /* Display WA #1135: bxt:ALL GLK:ALL */
4914         if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4915             dev_priv->ipc_enabled)
4916                 linetime_wm /= 2;
4917
4918         return linetime_wm;
4919 }
4920
4921 static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4922                                       const struct skl_wm_params *wp,
4923                                       struct skl_plane_wm *wm,
4924                                       uint16_t ddb_allocation)
4925 {
4926         struct drm_device *dev = cstate->base.crtc->dev;
4927         const struct drm_i915_private *dev_priv = to_i915(dev);
4928         uint16_t trans_min, trans_y_tile_min;
4929         const uint16_t trans_amount = 10; /* This is configurable amount */
4930         uint16_t wm0_sel_res_b, trans_offset_b, res_blocks;
4931
4932         /* Transition WM are not recommended by HW team for GEN9 */
4933         if (INTEL_GEN(dev_priv) <= 9)
4934                 return;
4935
4936         /* Transition WM don't make any sense if ipc is disabled */
4937         if (!dev_priv->ipc_enabled)
4938                 return;
4939
4940         trans_min = 14;
4941         if (INTEL_GEN(dev_priv) >= 11)
4942                 trans_min = 4;
4943
4944         trans_offset_b = trans_min + trans_amount;
4945
4946         /*
4947          * The spec asks for Selected Result Blocks for wm0 (the real value),
4948          * not Result Blocks (the integer value). Pay attention to the capital
4949          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4950          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4951          * and since we later will have to get the ceiling of the sum in the
4952          * transition watermarks calculation, we can just pretend Selected
4953          * Result Blocks is Result Blocks minus 1 and it should work for the
4954          * current platforms.
4955          */
4956         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4957
4958         if (wp->y_tiled) {
4959                 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4960                                                         wp->y_tile_minimum);
4961                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4962                                 trans_offset_b;
4963         } else {
4964                 res_blocks = wm0_sel_res_b + trans_offset_b;
4965
4966                 /* WA BUG:1938466 add one block for non y-tile planes */
4967                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4968                         res_blocks += 1;
4969
4970         }
4971
4972         res_blocks += 1;
4973
4974         if (res_blocks < ddb_allocation) {
4975                 wm->trans_wm.plane_res_b = res_blocks;
4976                 wm->trans_wm.plane_en = true;
4977         }
4978 }
4979
4980 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4981                                      const struct intel_plane_state *plane_state,
4982                                      enum plane_id plane_id, int color_plane)
4983 {
4984         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4985         u16 ddb_blocks = skl_ddb_entry_size(&crtc_state->wm.skl.plane_ddb_y[plane_id]);
4986         struct skl_wm_params wm_params;
4987         int ret;
4988
4989         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4990                                           &wm_params, color_plane);
4991         if (ret)
4992                 return ret;
4993
4994         ret = skl_compute_wm_levels(crtc_state, plane_state,
4995                                     ddb_blocks, &wm_params, wm->wm);
4996         if (ret)
4997                 return ret;
4998
4999         skl_compute_transition_wm(crtc_state, &wm_params, wm, ddb_blocks);
5000
5001         return 0;
5002 }
5003
5004 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5005                                  const struct intel_plane_state *plane_state,
5006                                  enum plane_id plane_id)
5007 {
5008         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5009         u16 ddb_blocks = skl_ddb_entry_size(&crtc_state->wm.skl.plane_ddb_uv[plane_id]);
5010         struct skl_wm_params wm_params;
5011         int ret;
5012
5013         wm->is_planar = true;
5014
5015         /* uv plane watermarks must also be validated for NV12/Planar */
5016         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5017                                           &wm_params, 1);
5018         if (ret)
5019                 return ret;
5020
5021         ret = skl_compute_wm_levels(crtc_state, plane_state,
5022                                     ddb_blocks, &wm_params, wm->uv_wm);
5023         if (ret)
5024                 return ret;
5025
5026         return 0;
5027 }
5028
5029 static int skl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
5030                               struct intel_crtc_state *crtc_state,
5031                               const struct intel_plane_state *plane_state)
5032 {
5033         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
5034         const struct drm_framebuffer *fb = plane_state->base.fb;
5035         enum plane_id plane_id = plane->id;
5036         int ret;
5037
5038         if (!intel_wm_plane_visible(crtc_state, plane_state))
5039                 return 0;
5040
5041         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5042                                         plane_id, 0);
5043         if (ret)
5044                 return ret;
5045
5046         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5047                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5048                                             plane_id);
5049                 if (ret)
5050                         return ret;
5051         }
5052
5053         return 0;
5054 }
5055
5056 static int icl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
5057                               struct intel_crtc_state *crtc_state,
5058                               const struct intel_plane_state *plane_state)
5059 {
5060         enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
5061         int ret;
5062
5063         /* Watermarks calculated in master */
5064         if (plane_state->slave)
5065                 return 0;
5066
5067         if (plane_state->linked_plane) {
5068                 const struct drm_framebuffer *fb = plane_state->base.fb;
5069                 enum plane_id y_plane_id = plane_state->linked_plane->id;
5070
5071                 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5072                 WARN_ON(!fb->format->is_yuv ||
5073                         fb->format->num_planes == 1);
5074
5075                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5076                                                 y_plane_id, 0);
5077                 if (ret)
5078                         return ret;
5079
5080                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5081                                                 plane_id, 1);
5082                 if (ret)
5083                         return ret;
5084         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5085                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5086                                                 plane_id, 0);
5087                 if (ret)
5088                         return ret;
5089         }
5090
5091         return 0;
5092 }
5093
5094 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
5095                              struct skl_pipe_wm *pipe_wm)
5096 {
5097         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5098         struct drm_crtc_state *crtc_state = &cstate->base;
5099         struct drm_plane *plane;
5100         const struct drm_plane_state *pstate;
5101         int ret;
5102
5103         /*
5104          * We'll only calculate watermarks for planes that are actually
5105          * enabled, so make sure all other planes are set as disabled.
5106          */
5107         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5108
5109         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
5110                 const struct intel_plane_state *intel_pstate =
5111                                                 to_intel_plane_state(pstate);
5112
5113                 if (INTEL_GEN(dev_priv) >= 11)
5114                         ret = icl_build_plane_wm(pipe_wm,
5115                                                  cstate, intel_pstate);
5116                 else
5117                         ret = skl_build_plane_wm(pipe_wm,
5118                                                  cstate, intel_pstate);
5119                 if (ret)
5120                         return ret;
5121         }
5122
5123         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5124
5125         return 0;
5126 }
5127
5128 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5129                                 i915_reg_t reg,
5130                                 const struct skl_ddb_entry *entry)
5131 {
5132         if (entry->end)
5133                 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5134         else
5135                 I915_WRITE_FW(reg, 0);
5136 }
5137
5138 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5139                                i915_reg_t reg,
5140                                const struct skl_wm_level *level)
5141 {
5142         uint32_t val = 0;
5143
5144         if (level->plane_en) {
5145                 val |= PLANE_WM_EN;
5146                 val |= level->plane_res_b;
5147                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5148         }
5149
5150         I915_WRITE_FW(reg, val);
5151 }
5152
5153 void skl_write_plane_wm(struct intel_plane *plane,
5154                         const struct intel_crtc_state *crtc_state)
5155 {
5156         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5157         int level, max_level = ilk_wm_max_level(dev_priv);
5158         enum plane_id plane_id = plane->id;
5159         enum pipe pipe = plane->pipe;
5160         const struct skl_plane_wm *wm =
5161                 &crtc_state->wm.skl.optimal.planes[plane_id];
5162         const struct skl_ddb_entry *ddb_y =
5163                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5164         const struct skl_ddb_entry *ddb_uv =
5165                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5166
5167         for (level = 0; level <= max_level; level++) {
5168                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5169                                    &wm->wm[level]);
5170         }
5171         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5172                            &wm->trans_wm);
5173
5174         if (INTEL_GEN(dev_priv) >= 11) {
5175                 skl_ddb_entry_write(dev_priv,
5176                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5177                 return;
5178         }
5179
5180         if (wm->is_planar)
5181                 swap(ddb_y, ddb_uv);
5182
5183         skl_ddb_entry_write(dev_priv,
5184                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5185         skl_ddb_entry_write(dev_priv,
5186                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5187 }
5188
5189 void skl_write_cursor_wm(struct intel_plane *plane,
5190                          const struct intel_crtc_state *crtc_state)
5191 {
5192         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5193         int level, max_level = ilk_wm_max_level(dev_priv);
5194         enum plane_id plane_id = plane->id;
5195         enum pipe pipe = plane->pipe;
5196         const struct skl_plane_wm *wm =
5197                 &crtc_state->wm.skl.optimal.planes[plane_id];
5198         const struct skl_ddb_entry *ddb =
5199                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5200
5201         for (level = 0; level <= max_level; level++) {
5202                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5203                                    &wm->wm[level]);
5204         }
5205         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5206
5207         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5208 }
5209
5210 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5211                          const struct skl_wm_level *l2)
5212 {
5213         return l1->plane_en == l2->plane_en &&
5214                 l1->plane_res_l == l2->plane_res_l &&
5215                 l1->plane_res_b == l2->plane_res_b;
5216 }
5217
5218 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5219                                 const struct skl_plane_wm *wm1,
5220                                 const struct skl_plane_wm *wm2)
5221 {
5222         int level, max_level = ilk_wm_max_level(dev_priv);
5223
5224         for (level = 0; level <= max_level; level++) {
5225                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5226                     !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5227                         return false;
5228         }
5229
5230         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5231 }
5232
5233 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5234                                            const struct skl_ddb_entry *b)
5235 {
5236         return a->start < b->end && b->start < a->end;
5237 }
5238
5239 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5240                                  const struct skl_ddb_entry entries[],
5241                                  int num_entries, int ignore_idx)
5242 {
5243         int i;
5244
5245         for (i = 0; i < num_entries; i++) {
5246                 if (i != ignore_idx &&
5247                     skl_ddb_entries_overlap(ddb, &entries[i]))
5248                         return true;
5249         }
5250
5251         return false;
5252 }
5253
5254 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5255                               const struct skl_pipe_wm *old_pipe_wm,
5256                               struct skl_pipe_wm *pipe_wm, /* out */
5257                               bool *changed /* out */)
5258 {
5259         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5260         int ret;
5261
5262         ret = skl_build_pipe_wm(intel_cstate, pipe_wm);
5263         if (ret)
5264                 return ret;
5265
5266         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5267                 *changed = false;
5268         else
5269                 *changed = true;
5270
5271         return 0;
5272 }
5273
5274 static uint32_t
5275 pipes_modified(struct drm_atomic_state *state)
5276 {
5277         struct drm_crtc *crtc;
5278         struct drm_crtc_state *cstate;
5279         uint32_t i, ret = 0;
5280
5281         for_each_new_crtc_in_state(state, crtc, cstate, i)
5282                 ret |= drm_crtc_mask(crtc);
5283
5284         return ret;
5285 }
5286
5287 static int
5288 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5289                             struct intel_crtc_state *new_crtc_state)
5290 {
5291         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5292         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5293         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5294         struct intel_plane *plane;
5295
5296         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5297                 struct intel_plane_state *plane_state;
5298                 enum plane_id plane_id = plane->id;
5299
5300                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5301                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5302                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5303                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5304                         continue;
5305
5306                 plane_state = intel_atomic_get_plane_state(state, plane);
5307                 if (IS_ERR(plane_state))
5308                         return PTR_ERR(plane_state);
5309
5310                 new_crtc_state->update_planes |= BIT(plane_id);
5311         }
5312
5313         return 0;
5314 }
5315
5316 static int
5317 skl_compute_ddb(struct drm_atomic_state *state)
5318 {
5319         const struct drm_i915_private *dev_priv = to_i915(state->dev);
5320         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5321         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5322         struct intel_crtc_state *old_crtc_state;
5323         struct intel_crtc_state *new_crtc_state;
5324         struct intel_crtc *crtc;
5325         int ret, i;
5326
5327         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5328
5329         for_each_oldnew_intel_crtc_in_state(intel_state, crtc, old_crtc_state,
5330                                             new_crtc_state, i) {
5331                 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5332                 if (ret)
5333                         return ret;
5334
5335                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5336                                                   new_crtc_state);
5337                 if (ret)
5338                         return ret;
5339         }
5340
5341         return 0;
5342 }
5343
5344 static void
5345 skl_print_wm_changes(struct intel_atomic_state *state)
5346 {
5347         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5348         const struct intel_crtc_state *old_crtc_state;
5349         const struct intel_crtc_state *new_crtc_state;
5350         struct intel_plane *plane;
5351         struct intel_crtc *crtc;
5352         int i;
5353
5354         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5355                                             new_crtc_state, i) {
5356                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5357                         enum plane_id plane_id = plane->id;
5358                         const struct skl_ddb_entry *old, *new;
5359
5360                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5361                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5362
5363                         if (skl_ddb_entry_equal(old, new))
5364                                 continue;
5365
5366                         DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5367                                       plane->base.base.id, plane->base.name,
5368                                       old->start, old->end,
5369                                       new->start, new->end);
5370                 }
5371         }
5372 }
5373
5374 static int
5375 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5376 {
5377         struct drm_device *dev = state->dev;
5378         const struct drm_i915_private *dev_priv = to_i915(dev);
5379         const struct drm_crtc *crtc;
5380         const struct drm_crtc_state *cstate;
5381         struct intel_crtc *intel_crtc;
5382         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5383         uint32_t realloc_pipes = pipes_modified(state);
5384         int ret, i;
5385
5386         /*
5387          * When we distrust bios wm we always need to recompute to set the
5388          * expected DDB allocations for each CRTC.
5389          */
5390         if (dev_priv->wm.distrust_bios_wm)
5391                 (*changed) = true;
5392
5393         /*
5394          * If this transaction isn't actually touching any CRTC's, don't
5395          * bother with watermark calculation.  Note that if we pass this
5396          * test, we're guaranteed to hold at least one CRTC state mutex,
5397          * which means we can safely use values like dev_priv->active_crtcs
5398          * since any racing commits that want to update them would need to
5399          * hold _all_ CRTC state mutexes.
5400          */
5401         for_each_new_crtc_in_state(state, crtc, cstate, i)
5402                 (*changed) = true;
5403
5404         if (!*changed)
5405                 return 0;
5406
5407         /*
5408          * If this is our first atomic update following hardware readout,
5409          * we can't trust the DDB that the BIOS programmed for us.  Let's
5410          * pretend that all pipes switched active status so that we'll
5411          * ensure a full DDB recompute.
5412          */
5413         if (dev_priv->wm.distrust_bios_wm) {
5414                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5415                                        state->acquire_ctx);
5416                 if (ret)
5417                         return ret;
5418
5419                 intel_state->active_pipe_changes = ~0;
5420
5421                 /*
5422                  * We usually only initialize intel_state->active_crtcs if we
5423                  * we're doing a modeset; make sure this field is always
5424                  * initialized during the sanitization process that happens
5425                  * on the first commit too.
5426                  */
5427                 if (!intel_state->modeset)
5428                         intel_state->active_crtcs = dev_priv->active_crtcs;
5429         }
5430
5431         /*
5432          * If the modeset changes which CRTC's are active, we need to
5433          * recompute the DDB allocation for *all* active pipes, even
5434          * those that weren't otherwise being modified in any way by this
5435          * atomic commit.  Due to the shrinking of the per-pipe allocations
5436          * when new active CRTC's are added, it's possible for a pipe that
5437          * we were already using and aren't changing at all here to suddenly
5438          * become invalid if its DDB needs exceeds its new allocation.
5439          *
5440          * Note that if we wind up doing a full DDB recompute, we can't let
5441          * any other display updates race with this transaction, so we need
5442          * to grab the lock on *all* CRTC's.
5443          */
5444         if (intel_state->active_pipe_changes || intel_state->modeset) {
5445                 realloc_pipes = ~0;
5446                 intel_state->wm_results.dirty_pipes = ~0;
5447         }
5448
5449         /*
5450          * We're not recomputing for the pipes not included in the commit, so
5451          * make sure we start with the current state.
5452          */
5453         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5454                 struct intel_crtc_state *cstate;
5455
5456                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5457                 if (IS_ERR(cstate))
5458                         return PTR_ERR(cstate);
5459         }
5460
5461         return 0;
5462 }
5463
5464 /*
5465  * To make sure the cursor watermark registers are always consistent
5466  * with our computed state the following scenario needs special
5467  * treatment:
5468  *
5469  * 1. enable cursor
5470  * 2. move cursor entirely offscreen
5471  * 3. disable cursor
5472  *
5473  * Step 2. does call .disable_plane() but does not zero the watermarks
5474  * (since we consider an offscreen cursor still active for the purposes
5475  * of watermarks). Step 3. would not normally call .disable_plane()
5476  * because the actual plane visibility isn't changing, and we don't
5477  * deallocate the cursor ddb until the pipe gets disabled. So we must
5478  * force step 3. to call .disable_plane() to update the watermark
5479  * registers properly.
5480  *
5481  * Other planes do not suffer from this issues as their watermarks are
5482  * calculated based on the actual plane visibility. The only time this
5483  * can trigger for the other planes is during the initial readout as the
5484  * default value of the watermarks registers is not zero.
5485  */
5486 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5487                                       struct intel_crtc *crtc)
5488 {
5489         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5490         const struct intel_crtc_state *old_crtc_state =
5491                 intel_atomic_get_old_crtc_state(state, crtc);
5492         struct intel_crtc_state *new_crtc_state =
5493                 intel_atomic_get_new_crtc_state(state, crtc);
5494         struct intel_plane *plane;
5495
5496         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5497                 struct intel_plane_state *plane_state;
5498                 enum plane_id plane_id = plane->id;
5499
5500                 /*
5501                  * Force a full wm update for every plane on modeset.
5502                  * Required because the reset value of the wm registers
5503                  * is non-zero, whereas we want all disabled planes to
5504                  * have zero watermarks. So if we turn off the relevant
5505                  * power well the hardware state will go out of sync
5506                  * with the software state.
5507                  */
5508                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5509                     skl_plane_wm_equals(dev_priv,
5510                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
5511                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5512                         continue;
5513
5514                 plane_state = intel_atomic_get_plane_state(state, plane);
5515                 if (IS_ERR(plane_state))
5516                         return PTR_ERR(plane_state);
5517
5518                 new_crtc_state->update_planes |= BIT(plane_id);
5519         }
5520
5521         return 0;
5522 }
5523
5524 static int
5525 skl_compute_wm(struct drm_atomic_state *state)
5526 {
5527         struct drm_crtc *crtc;
5528         struct drm_crtc_state *cstate;
5529         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5530         struct skl_ddb_values *results = &intel_state->wm_results;
5531         struct skl_pipe_wm *pipe_wm;
5532         bool changed = false;
5533         int ret, i;
5534
5535         /* Clear all dirty flags */
5536         results->dirty_pipes = 0;
5537
5538         ret = skl_ddb_add_affected_pipes(state, &changed);
5539         if (ret || !changed)
5540                 return ret;
5541
5542         ret = skl_compute_ddb(state);
5543         if (ret)
5544                 return ret;
5545
5546         /*
5547          * Calculate WM's for all pipes that are part of this transaction.
5548          * Note that the DDB allocation above may have added more CRTC's that
5549          * weren't otherwise being modified (and set bits in dirty_pipes) if
5550          * pipe allocations had to change.
5551          *
5552          * FIXME:  Now that we're doing this in the atomic check phase, we
5553          * should allow skl_update_pipe_wm() to return failure in cases where
5554          * no suitable watermark values can be found.
5555          */
5556         for_each_new_crtc_in_state(state, crtc, cstate, i) {
5557                 struct intel_crtc_state *intel_cstate =
5558                         to_intel_crtc_state(cstate);
5559                 const struct skl_pipe_wm *old_pipe_wm =
5560                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5561
5562                 pipe_wm = &intel_cstate->wm.skl.optimal;
5563                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, &changed);
5564                 if (ret)
5565                         return ret;
5566
5567                 ret = skl_wm_add_affected_planes(intel_state,
5568                                                  to_intel_crtc(crtc));
5569                 if (ret)
5570                         return ret;
5571
5572                 if (changed)
5573                         results->dirty_pipes |= drm_crtc_mask(crtc);
5574
5575                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5576                         /* This pipe's WM's did not change */
5577                         continue;
5578
5579                 intel_cstate->update_wm_pre = true;
5580         }
5581
5582         skl_print_wm_changes(intel_state);
5583
5584         return 0;
5585 }
5586
5587 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5588                                       struct intel_crtc_state *cstate)
5589 {
5590         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5591         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5592         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5593         enum pipe pipe = crtc->pipe;
5594
5595         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5596                 return;
5597
5598         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5599 }
5600
5601 static void skl_initial_wm(struct intel_atomic_state *state,
5602                            struct intel_crtc_state *cstate)
5603 {
5604         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5605         struct drm_device *dev = intel_crtc->base.dev;
5606         struct drm_i915_private *dev_priv = to_i915(dev);
5607         struct skl_ddb_values *results = &state->wm_results;
5608
5609         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5610                 return;
5611
5612         mutex_lock(&dev_priv->wm.wm_mutex);
5613
5614         if (cstate->base.active_changed)
5615                 skl_atomic_update_crtc_wm(state, cstate);
5616
5617         mutex_unlock(&dev_priv->wm.wm_mutex);
5618 }
5619
5620 static void ilk_compute_wm_config(struct drm_device *dev,
5621                                   struct intel_wm_config *config)
5622 {
5623         struct intel_crtc *crtc;
5624
5625         /* Compute the currently _active_ config */
5626         for_each_intel_crtc(dev, crtc) {
5627                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5628
5629                 if (!wm->pipe_enabled)
5630                         continue;
5631
5632                 config->sprites_enabled |= wm->sprites_enabled;
5633                 config->sprites_scaled |= wm->sprites_scaled;
5634                 config->num_pipes_active++;
5635         }
5636 }
5637
5638 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5639 {
5640         struct drm_device *dev = &dev_priv->drm;
5641         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5642         struct ilk_wm_maximums max;
5643         struct intel_wm_config config = {};
5644         struct ilk_wm_values results = {};
5645         enum intel_ddb_partitioning partitioning;
5646
5647         ilk_compute_wm_config(dev, &config);
5648
5649         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5650         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5651
5652         /* 5/6 split only in single pipe config on IVB+ */
5653         if (INTEL_GEN(dev_priv) >= 7 &&
5654             config.num_pipes_active == 1 && config.sprites_enabled) {
5655                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5656                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5657
5658                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5659         } else {
5660                 best_lp_wm = &lp_wm_1_2;
5661         }
5662
5663         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5664                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5665
5666         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5667
5668         ilk_write_wm_values(dev_priv, &results);
5669 }
5670
5671 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5672                                    struct intel_crtc_state *cstate)
5673 {
5674         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5675         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5676
5677         mutex_lock(&dev_priv->wm.wm_mutex);
5678         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5679         ilk_program_watermarks(dev_priv);
5680         mutex_unlock(&dev_priv->wm.wm_mutex);
5681 }
5682
5683 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5684                                     struct intel_crtc_state *cstate)
5685 {
5686         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5687         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5688
5689         mutex_lock(&dev_priv->wm.wm_mutex);
5690         if (cstate->wm.need_postvbl_update) {
5691                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5692                 ilk_program_watermarks(dev_priv);
5693         }
5694         mutex_unlock(&dev_priv->wm.wm_mutex);
5695 }
5696
5697 static inline void skl_wm_level_from_reg_val(uint32_t val,
5698                                              struct skl_wm_level *level)
5699 {
5700         level->plane_en = val & PLANE_WM_EN;
5701         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5702         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5703                 PLANE_WM_LINES_MASK;
5704 }
5705
5706 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5707                               struct skl_pipe_wm *out)
5708 {
5709         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5711         enum pipe pipe = intel_crtc->pipe;
5712         int level, max_level;
5713         enum plane_id plane_id;
5714         uint32_t val;
5715
5716         max_level = ilk_wm_max_level(dev_priv);
5717
5718         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5719                 struct skl_plane_wm *wm = &out->planes[plane_id];
5720
5721                 for (level = 0; level <= max_level; level++) {
5722                         if (plane_id != PLANE_CURSOR)
5723                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5724                         else
5725                                 val = I915_READ(CUR_WM(pipe, level));
5726
5727                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5728                 }
5729
5730                 if (plane_id != PLANE_CURSOR)
5731                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5732                 else
5733                         val = I915_READ(CUR_WM_TRANS(pipe));
5734
5735                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5736         }
5737
5738         if (!intel_crtc->active)
5739                 return;
5740
5741         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5742 }
5743
5744 void skl_wm_get_hw_state(struct drm_device *dev)
5745 {
5746         struct drm_i915_private *dev_priv = to_i915(dev);
5747         struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5748         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5749         struct drm_crtc *crtc;
5750         struct intel_crtc *intel_crtc;
5751         struct intel_crtc_state *cstate;
5752
5753         skl_ddb_get_hw_state(dev_priv, ddb);
5754         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5755                 intel_crtc = to_intel_crtc(crtc);
5756                 cstate = to_intel_crtc_state(crtc->state);
5757
5758                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5759
5760                 if (intel_crtc->active)
5761                         hw->dirty_pipes |= drm_crtc_mask(crtc);
5762         }
5763
5764         if (dev_priv->active_crtcs) {
5765                 /* Fully recompute DDB on first atomic commit */
5766                 dev_priv->wm.distrust_bios_wm = true;
5767         }
5768 }
5769
5770 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5771 {
5772         struct drm_device *dev = crtc->dev;
5773         struct drm_i915_private *dev_priv = to_i915(dev);
5774         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5776         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5777         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5778         enum pipe pipe = intel_crtc->pipe;
5779         static const i915_reg_t wm0_pipe_reg[] = {
5780                 [PIPE_A] = WM0_PIPEA_ILK,
5781                 [PIPE_B] = WM0_PIPEB_ILK,
5782                 [PIPE_C] = WM0_PIPEC_IVB,
5783         };
5784
5785         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5786         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5787                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5788
5789         memset(active, 0, sizeof(*active));
5790
5791         active->pipe_enabled = intel_crtc->active;
5792
5793         if (active->pipe_enabled) {
5794                 u32 tmp = hw->wm_pipe[pipe];
5795
5796                 /*
5797                  * For active pipes LP0 watermark is marked as
5798                  * enabled, and LP1+ watermaks as disabled since
5799                  * we can't really reverse compute them in case
5800                  * multiple pipes are active.
5801                  */
5802                 active->wm[0].enable = true;
5803                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5804                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5805                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5806                 active->linetime = hw->wm_linetime[pipe];
5807         } else {
5808                 int level, max_level = ilk_wm_max_level(dev_priv);
5809
5810                 /*
5811                  * For inactive pipes, all watermark levels
5812                  * should be marked as enabled but zeroed,
5813                  * which is what we'd compute them to.
5814                  */
5815                 for (level = 0; level <= max_level; level++)
5816                         active->wm[level].enable = true;
5817         }
5818
5819         intel_crtc->wm.active.ilk = *active;
5820 }
5821
5822 #define _FW_WM(value, plane) \
5823         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5824 #define _FW_WM_VLV(value, plane) \
5825         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5826
5827 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5828                                struct g4x_wm_values *wm)
5829 {
5830         uint32_t tmp;
5831
5832         tmp = I915_READ(DSPFW1);
5833         wm->sr.plane = _FW_WM(tmp, SR);
5834         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5835         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5836         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5837
5838         tmp = I915_READ(DSPFW2);
5839         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5840         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5841         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5842         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5843         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5844         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5845
5846         tmp = I915_READ(DSPFW3);
5847         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5848         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5849         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5850         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5851 }
5852
5853 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5854                                struct vlv_wm_values *wm)
5855 {
5856         enum pipe pipe;
5857         uint32_t tmp;
5858
5859         for_each_pipe(dev_priv, pipe) {
5860                 tmp = I915_READ(VLV_DDL(pipe));
5861
5862                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5863                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5864                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5865                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5866                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5867                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5868                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5869                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5870         }
5871
5872         tmp = I915_READ(DSPFW1);
5873         wm->sr.plane = _FW_WM(tmp, SR);
5874         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5875         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5876         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5877
5878         tmp = I915_READ(DSPFW2);
5879         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5880         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5881         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5882
5883         tmp = I915_READ(DSPFW3);
5884         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5885
5886         if (IS_CHERRYVIEW(dev_priv)) {
5887                 tmp = I915_READ(DSPFW7_CHV);
5888                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5889                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5890
5891                 tmp = I915_READ(DSPFW8_CHV);
5892                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5893                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5894
5895                 tmp = I915_READ(DSPFW9_CHV);
5896                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5897                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5898
5899                 tmp = I915_READ(DSPHOWM);
5900                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5901                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5902                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5903                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5904                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5905                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5906                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5907                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5908                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5909                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5910         } else {
5911                 tmp = I915_READ(DSPFW7);
5912                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5913                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5914
5915                 tmp = I915_READ(DSPHOWM);
5916                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5917                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5918                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5919                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5920                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5921                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5922                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5923         }
5924 }
5925
5926 #undef _FW_WM
5927 #undef _FW_WM_VLV
5928
5929 void g4x_wm_get_hw_state(struct drm_device *dev)
5930 {
5931         struct drm_i915_private *dev_priv = to_i915(dev);
5932         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5933         struct intel_crtc *crtc;
5934
5935         g4x_read_wm_values(dev_priv, wm);
5936
5937         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5938
5939         for_each_intel_crtc(dev, crtc) {
5940                 struct intel_crtc_state *crtc_state =
5941                         to_intel_crtc_state(crtc->base.state);
5942                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5943                 struct g4x_pipe_wm *raw;
5944                 enum pipe pipe = crtc->pipe;
5945                 enum plane_id plane_id;
5946                 int level, max_level;
5947
5948                 active->cxsr = wm->cxsr;
5949                 active->hpll_en = wm->hpll_en;
5950                 active->fbc_en = wm->fbc_en;
5951
5952                 active->sr = wm->sr;
5953                 active->hpll = wm->hpll;
5954
5955                 for_each_plane_id_on_crtc(crtc, plane_id) {
5956                         active->wm.plane[plane_id] =
5957                                 wm->pipe[pipe].plane[plane_id];
5958                 }
5959
5960                 if (wm->cxsr && wm->hpll_en)
5961                         max_level = G4X_WM_LEVEL_HPLL;
5962                 else if (wm->cxsr)
5963                         max_level = G4X_WM_LEVEL_SR;
5964                 else
5965                         max_level = G4X_WM_LEVEL_NORMAL;
5966
5967                 level = G4X_WM_LEVEL_NORMAL;
5968                 raw = &crtc_state->wm.g4x.raw[level];
5969                 for_each_plane_id_on_crtc(crtc, plane_id)
5970                         raw->plane[plane_id] = active->wm.plane[plane_id];
5971
5972                 if (++level > max_level)
5973                         goto out;
5974
5975                 raw = &crtc_state->wm.g4x.raw[level];
5976                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5977                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5978                 raw->plane[PLANE_SPRITE0] = 0;
5979                 raw->fbc = active->sr.fbc;
5980
5981                 if (++level > max_level)
5982                         goto out;
5983
5984                 raw = &crtc_state->wm.g4x.raw[level];
5985                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5986                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5987                 raw->plane[PLANE_SPRITE0] = 0;
5988                 raw->fbc = active->hpll.fbc;
5989
5990         out:
5991                 for_each_plane_id_on_crtc(crtc, plane_id)
5992                         g4x_raw_plane_wm_set(crtc_state, level,
5993                                              plane_id, USHRT_MAX);
5994                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5995
5996                 crtc_state->wm.g4x.optimal = *active;
5997                 crtc_state->wm.g4x.intermediate = *active;
5998
5999                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6000                               pipe_name(pipe),
6001                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6002                               wm->pipe[pipe].plane[PLANE_CURSOR],
6003                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
6004         }
6005
6006         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6007                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6008         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6009                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6010         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
6011                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6012 }
6013
6014 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6015 {
6016         struct intel_plane *plane;
6017         struct intel_crtc *crtc;
6018
6019         mutex_lock(&dev_priv->wm.wm_mutex);
6020
6021         for_each_intel_plane(&dev_priv->drm, plane) {
6022                 struct intel_crtc *crtc =
6023                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6024                 struct intel_crtc_state *crtc_state =
6025                         to_intel_crtc_state(crtc->base.state);
6026                 struct intel_plane_state *plane_state =
6027                         to_intel_plane_state(plane->base.state);
6028                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6029                 enum plane_id plane_id = plane->id;
6030                 int level;
6031
6032                 if (plane_state->base.visible)
6033                         continue;
6034
6035                 for (level = 0; level < 3; level++) {
6036                         struct g4x_pipe_wm *raw =
6037                                 &crtc_state->wm.g4x.raw[level];
6038
6039                         raw->plane[plane_id] = 0;
6040                         wm_state->wm.plane[plane_id] = 0;
6041                 }
6042
6043                 if (plane_id == PLANE_PRIMARY) {
6044                         for (level = 0; level < 3; level++) {
6045                                 struct g4x_pipe_wm *raw =
6046                                         &crtc_state->wm.g4x.raw[level];
6047                                 raw->fbc = 0;
6048                         }
6049
6050                         wm_state->sr.fbc = 0;
6051                         wm_state->hpll.fbc = 0;
6052                         wm_state->fbc_en = false;
6053                 }
6054         }
6055
6056         for_each_intel_crtc(&dev_priv->drm, crtc) {
6057                 struct intel_crtc_state *crtc_state =
6058                         to_intel_crtc_state(crtc->base.state);
6059
6060                 crtc_state->wm.g4x.intermediate =
6061                         crtc_state->wm.g4x.optimal;
6062                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6063         }
6064
6065         g4x_program_watermarks(dev_priv);
6066
6067         mutex_unlock(&dev_priv->wm.wm_mutex);
6068 }
6069
6070 void vlv_wm_get_hw_state(struct drm_device *dev)
6071 {
6072         struct drm_i915_private *dev_priv = to_i915(dev);
6073         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6074         struct intel_crtc *crtc;
6075         u32 val;
6076
6077         vlv_read_wm_values(dev_priv, wm);
6078
6079         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6080         wm->level = VLV_WM_LEVEL_PM2;
6081
6082         if (IS_CHERRYVIEW(dev_priv)) {
6083                 mutex_lock(&dev_priv->pcu_lock);
6084
6085                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6086                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6087                         wm->level = VLV_WM_LEVEL_PM5;
6088
6089                 /*
6090                  * If DDR DVFS is disabled in the BIOS, Punit
6091                  * will never ack the request. So if that happens
6092                  * assume we don't have to enable/disable DDR DVFS
6093                  * dynamically. To test that just set the REQ_ACK
6094                  * bit to poke the Punit, but don't change the
6095                  * HIGH/LOW bits so that we don't actually change
6096                  * the current state.
6097                  */
6098                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6099                 val |= FORCE_DDR_FREQ_REQ_ACK;
6100                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6101
6102                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6103                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6104                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6105                                       "assuming DDR DVFS is disabled\n");
6106                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6107                 } else {
6108                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6109                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6110                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6111                 }
6112
6113                 mutex_unlock(&dev_priv->pcu_lock);
6114         }
6115
6116         for_each_intel_crtc(dev, crtc) {
6117                 struct intel_crtc_state *crtc_state =
6118                         to_intel_crtc_state(crtc->base.state);
6119                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6120                 const struct vlv_fifo_state *fifo_state =
6121                         &crtc_state->wm.vlv.fifo_state;
6122                 enum pipe pipe = crtc->pipe;
6123                 enum plane_id plane_id;
6124                 int level;
6125
6126                 vlv_get_fifo_size(crtc_state);
6127
6128                 active->num_levels = wm->level + 1;
6129                 active->cxsr = wm->cxsr;
6130
6131                 for (level = 0; level < active->num_levels; level++) {
6132                         struct g4x_pipe_wm *raw =
6133                                 &crtc_state->wm.vlv.raw[level];
6134
6135                         active->sr[level].plane = wm->sr.plane;
6136                         active->sr[level].cursor = wm->sr.cursor;
6137
6138                         for_each_plane_id_on_crtc(crtc, plane_id) {
6139                                 active->wm[level].plane[plane_id] =
6140                                         wm->pipe[pipe].plane[plane_id];
6141
6142                                 raw->plane[plane_id] =
6143                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6144                                                             fifo_state->plane[plane_id]);
6145                         }
6146                 }
6147
6148                 for_each_plane_id_on_crtc(crtc, plane_id)
6149                         vlv_raw_plane_wm_set(crtc_state, level,
6150                                              plane_id, USHRT_MAX);
6151                 vlv_invalidate_wms(crtc, active, level);
6152
6153                 crtc_state->wm.vlv.optimal = *active;
6154                 crtc_state->wm.vlv.intermediate = *active;
6155
6156                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6157                               pipe_name(pipe),
6158                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6159                               wm->pipe[pipe].plane[PLANE_CURSOR],
6160                               wm->pipe[pipe].plane[PLANE_SPRITE0],
6161                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
6162         }
6163
6164         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6165                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6166 }
6167
6168 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6169 {
6170         struct intel_plane *plane;
6171         struct intel_crtc *crtc;
6172
6173         mutex_lock(&dev_priv->wm.wm_mutex);
6174
6175         for_each_intel_plane(&dev_priv->drm, plane) {
6176                 struct intel_crtc *crtc =
6177                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6178                 struct intel_crtc_state *crtc_state =
6179                         to_intel_crtc_state(crtc->base.state);
6180                 struct intel_plane_state *plane_state =
6181                         to_intel_plane_state(plane->base.state);
6182                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6183                 const struct vlv_fifo_state *fifo_state =
6184                         &crtc_state->wm.vlv.fifo_state;
6185                 enum plane_id plane_id = plane->id;
6186                 int level;
6187
6188                 if (plane_state->base.visible)
6189                         continue;
6190
6191                 for (level = 0; level < wm_state->num_levels; level++) {
6192                         struct g4x_pipe_wm *raw =
6193                                 &crtc_state->wm.vlv.raw[level];
6194
6195                         raw->plane[plane_id] = 0;
6196
6197                         wm_state->wm[level].plane[plane_id] =
6198                                 vlv_invert_wm_value(raw->plane[plane_id],
6199                                                     fifo_state->plane[plane_id]);
6200                 }
6201         }
6202
6203         for_each_intel_crtc(&dev_priv->drm, crtc) {
6204                 struct intel_crtc_state *crtc_state =
6205                         to_intel_crtc_state(crtc->base.state);
6206
6207                 crtc_state->wm.vlv.intermediate =
6208                         crtc_state->wm.vlv.optimal;
6209                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6210         }
6211
6212         vlv_program_watermarks(dev_priv);
6213
6214         mutex_unlock(&dev_priv->wm.wm_mutex);
6215 }
6216
6217 /*
6218  * FIXME should probably kill this and improve
6219  * the real watermark readout/sanitation instead
6220  */
6221 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6222 {
6223         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6224         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6225         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6226
6227         /*
6228          * Don't touch WM1S_LP_EN here.
6229          * Doing so could cause underruns.
6230          */
6231 }
6232
6233 void ilk_wm_get_hw_state(struct drm_device *dev)
6234 {
6235         struct drm_i915_private *dev_priv = to_i915(dev);
6236         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6237         struct drm_crtc *crtc;
6238
6239         ilk_init_lp_watermarks(dev_priv);
6240
6241         for_each_crtc(dev, crtc)
6242                 ilk_pipe_wm_get_hw_state(crtc);
6243
6244         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6245         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6246         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6247
6248         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6249         if (INTEL_GEN(dev_priv) >= 7) {
6250                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6251                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6252         }
6253
6254         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6255                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6256                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6257         else if (IS_IVYBRIDGE(dev_priv))
6258                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6259                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6260
6261         hw->enable_fbc_wm =
6262                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6263 }
6264
6265 /**
6266  * intel_update_watermarks - update FIFO watermark values based on current modes
6267  * @crtc: the #intel_crtc on which to compute the WM
6268  *
6269  * Calculate watermark values for the various WM regs based on current mode
6270  * and plane configuration.
6271  *
6272  * There are several cases to deal with here:
6273  *   - normal (i.e. non-self-refresh)
6274  *   - self-refresh (SR) mode
6275  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6276  *   - lines are small relative to FIFO size (buffer can hold more than 2
6277  *     lines), so need to account for TLB latency
6278  *
6279  *   The normal calculation is:
6280  *     watermark = dotclock * bytes per pixel * latency
6281  *   where latency is platform & configuration dependent (we assume pessimal
6282  *   values here).
6283  *
6284  *   The SR calculation is:
6285  *     watermark = (trunc(latency/line time)+1) * surface width *
6286  *       bytes per pixel
6287  *   where
6288  *     line time = htotal / dotclock
6289  *     surface width = hdisplay for normal plane and 64 for cursor
6290  *   and latency is assumed to be high, as above.
6291  *
6292  * The final value programmed to the register should always be rounded up,
6293  * and include an extra 2 entries to account for clock crossings.
6294  *
6295  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6296  * to set the non-SR watermarks to 8.
6297  */
6298 void intel_update_watermarks(struct intel_crtc *crtc)
6299 {
6300         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6301
6302         if (dev_priv->display.update_wm)
6303                 dev_priv->display.update_wm(crtc);
6304 }
6305
6306 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6307 {
6308         u32 val;
6309
6310         if (!HAS_IPC(dev_priv))
6311                 return;
6312
6313         val = I915_READ(DISP_ARB_CTL2);
6314
6315         if (dev_priv->ipc_enabled)
6316                 val |= DISP_IPC_ENABLE;
6317         else
6318                 val &= ~DISP_IPC_ENABLE;
6319
6320         I915_WRITE(DISP_ARB_CTL2, val);
6321 }
6322
6323 void intel_init_ipc(struct drm_i915_private *dev_priv)
6324 {
6325         if (!HAS_IPC(dev_priv))
6326                 return;
6327
6328         /* Display WA #1141: SKL:all KBL:all CFL */
6329         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6330                 dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
6331         else
6332                 dev_priv->ipc_enabled = true;
6333
6334         intel_enable_ipc(dev_priv);
6335 }
6336
6337 /*
6338  * Lock protecting IPS related data structures
6339  */
6340 DEFINE_SPINLOCK(mchdev_lock);
6341
6342 /* Global for IPS driver to get at the current i915 device. Protected by
6343  * mchdev_lock. */
6344 static struct drm_i915_private *i915_mch_dev;
6345
6346 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6347 {
6348         u16 rgvswctl;
6349
6350         lockdep_assert_held(&mchdev_lock);
6351
6352         rgvswctl = I915_READ16(MEMSWCTL);
6353         if (rgvswctl & MEMCTL_CMD_STS) {
6354                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6355                 return false; /* still busy with another command */
6356         }
6357
6358         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6359                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6360         I915_WRITE16(MEMSWCTL, rgvswctl);
6361         POSTING_READ16(MEMSWCTL);
6362
6363         rgvswctl |= MEMCTL_CMD_STS;
6364         I915_WRITE16(MEMSWCTL, rgvswctl);
6365
6366         return true;
6367 }
6368
6369 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6370 {
6371         u32 rgvmodectl;
6372         u8 fmax, fmin, fstart, vstart;
6373
6374         spin_lock_irq(&mchdev_lock);
6375
6376         rgvmodectl = I915_READ(MEMMODECTL);
6377
6378         /* Enable temp reporting */
6379         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6380         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6381
6382         /* 100ms RC evaluation intervals */
6383         I915_WRITE(RCUPEI, 100000);
6384         I915_WRITE(RCDNEI, 100000);
6385
6386         /* Set max/min thresholds to 90ms and 80ms respectively */
6387         I915_WRITE(RCBMAXAVG, 90000);
6388         I915_WRITE(RCBMINAVG, 80000);
6389
6390         I915_WRITE(MEMIHYST, 1);
6391
6392         /* Set up min, max, and cur for interrupt handling */
6393         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6394         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6395         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6396                 MEMMODE_FSTART_SHIFT;
6397
6398         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6399                 PXVFREQ_PX_SHIFT;
6400
6401         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6402         dev_priv->ips.fstart = fstart;
6403
6404         dev_priv->ips.max_delay = fstart;
6405         dev_priv->ips.min_delay = fmin;
6406         dev_priv->ips.cur_delay = fstart;
6407
6408         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6409                          fmax, fmin, fstart);
6410
6411         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6412
6413         /*
6414          * Interrupts will be enabled in ironlake_irq_postinstall
6415          */
6416
6417         I915_WRITE(VIDSTART, vstart);
6418         POSTING_READ(VIDSTART);
6419
6420         rgvmodectl |= MEMMODE_SWMODE_EN;
6421         I915_WRITE(MEMMODECTL, rgvmodectl);
6422
6423         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6424                 DRM_ERROR("stuck trying to change perf mode\n");
6425         mdelay(1);
6426
6427         ironlake_set_drps(dev_priv, fstart);
6428
6429         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6430                 I915_READ(DDREC) + I915_READ(CSIEC);
6431         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6432         dev_priv->ips.last_count2 = I915_READ(GFXEC);
6433         dev_priv->ips.last_time2 = ktime_get_raw_ns();
6434
6435         spin_unlock_irq(&mchdev_lock);
6436 }
6437
6438 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6439 {
6440         u16 rgvswctl;
6441
6442         spin_lock_irq(&mchdev_lock);
6443
6444         rgvswctl = I915_READ16(MEMSWCTL);
6445
6446         /* Ack interrupts, disable EFC interrupt */
6447         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6448         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6449         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6450         I915_WRITE(DEIIR, DE_PCU_EVENT);
6451         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6452
6453         /* Go back to the starting frequency */
6454         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6455         mdelay(1);
6456         rgvswctl |= MEMCTL_CMD_STS;
6457         I915_WRITE(MEMSWCTL, rgvswctl);
6458         mdelay(1);
6459
6460         spin_unlock_irq(&mchdev_lock);
6461 }
6462
6463 /* There's a funny hw issue where the hw returns all 0 when reading from
6464  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6465  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6466  * all limits and the gpu stuck at whatever frequency it is at atm).
6467  */
6468 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6469 {
6470         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6471         u32 limits;
6472
6473         /* Only set the down limit when we've reached the lowest level to avoid
6474          * getting more interrupts, otherwise leave this clear. This prevents a
6475          * race in the hw when coming out of rc6: There's a tiny window where
6476          * the hw runs at the minimal clock before selecting the desired
6477          * frequency, if the down threshold expires in that window we will not
6478          * receive a down interrupt. */
6479         if (INTEL_GEN(dev_priv) >= 9) {
6480                 limits = (rps->max_freq_softlimit) << 23;
6481                 if (val <= rps->min_freq_softlimit)
6482                         limits |= (rps->min_freq_softlimit) << 14;
6483         } else {
6484                 limits = rps->max_freq_softlimit << 24;
6485                 if (val <= rps->min_freq_softlimit)
6486                         limits |= rps->min_freq_softlimit << 16;
6487         }
6488
6489         return limits;
6490 }
6491
6492 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6493 {
6494         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6495         u32 threshold_up = 0, threshold_down = 0; /* in % */
6496         u32 ei_up = 0, ei_down = 0;
6497
6498         lockdep_assert_held(&rps->power.mutex);
6499
6500         if (new_power == rps->power.mode)
6501                 return;
6502
6503         /* Note the units here are not exactly 1us, but 1280ns. */
6504         switch (new_power) {
6505         case LOW_POWER:
6506                 /* Upclock if more than 95% busy over 16ms */
6507                 ei_up = 16000;
6508                 threshold_up = 95;
6509
6510                 /* Downclock if less than 85% busy over 32ms */
6511                 ei_down = 32000;
6512                 threshold_down = 85;
6513                 break;
6514
6515         case BETWEEN:
6516                 /* Upclock if more than 90% busy over 13ms */
6517                 ei_up = 13000;
6518                 threshold_up = 90;
6519
6520                 /* Downclock if less than 75% busy over 32ms */
6521                 ei_down = 32000;
6522                 threshold_down = 75;
6523                 break;
6524
6525         case HIGH_POWER:
6526                 /* Upclock if more than 85% busy over 10ms */
6527                 ei_up = 10000;
6528                 threshold_up = 85;
6529
6530                 /* Downclock if less than 60% busy over 32ms */
6531                 ei_down = 32000;
6532                 threshold_down = 60;
6533                 break;
6534         }
6535
6536         /* When byt can survive without system hang with dynamic
6537          * sw freq adjustments, this restriction can be lifted.
6538          */
6539         if (IS_VALLEYVIEW(dev_priv))
6540                 goto skip_hw_write;
6541
6542         I915_WRITE(GEN6_RP_UP_EI,
6543                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6544         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6545                    GT_INTERVAL_FROM_US(dev_priv,
6546                                        ei_up * threshold_up / 100));
6547
6548         I915_WRITE(GEN6_RP_DOWN_EI,
6549                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6550         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6551                    GT_INTERVAL_FROM_US(dev_priv,
6552                                        ei_down * threshold_down / 100));
6553
6554         I915_WRITE(GEN6_RP_CONTROL,
6555                    GEN6_RP_MEDIA_TURBO |
6556                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6557                    GEN6_RP_MEDIA_IS_GFX |
6558                    GEN6_RP_ENABLE |
6559                    GEN6_RP_UP_BUSY_AVG |
6560                    GEN6_RP_DOWN_IDLE_AVG);
6561
6562 skip_hw_write:
6563         rps->power.mode = new_power;
6564         rps->power.up_threshold = threshold_up;
6565         rps->power.down_threshold = threshold_down;
6566 }
6567
6568 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6569 {
6570         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6571         int new_power;
6572
6573         new_power = rps->power.mode;
6574         switch (rps->power.mode) {
6575         case LOW_POWER:
6576                 if (val > rps->efficient_freq + 1 &&
6577                     val > rps->cur_freq)
6578                         new_power = BETWEEN;
6579                 break;
6580
6581         case BETWEEN:
6582                 if (val <= rps->efficient_freq &&
6583                     val < rps->cur_freq)
6584                         new_power = LOW_POWER;
6585                 else if (val >= rps->rp0_freq &&
6586                          val > rps->cur_freq)
6587                         new_power = HIGH_POWER;
6588                 break;
6589
6590         case HIGH_POWER:
6591                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6592                     val < rps->cur_freq)
6593                         new_power = BETWEEN;
6594                 break;
6595         }
6596         /* Max/min bins are special */
6597         if (val <= rps->min_freq_softlimit)
6598                 new_power = LOW_POWER;
6599         if (val >= rps->max_freq_softlimit)
6600                 new_power = HIGH_POWER;
6601
6602         mutex_lock(&rps->power.mutex);
6603         if (rps->power.interactive)
6604                 new_power = HIGH_POWER;
6605         rps_set_power(dev_priv, new_power);
6606         mutex_unlock(&rps->power.mutex);
6607 }
6608
6609 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6610 {
6611         struct intel_rps *rps = &i915->gt_pm.rps;
6612
6613         if (INTEL_GEN(i915) < 6)
6614                 return;
6615
6616         mutex_lock(&rps->power.mutex);
6617         if (interactive) {
6618                 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6619                         rps_set_power(i915, HIGH_POWER);
6620         } else {
6621                 GEM_BUG_ON(!rps->power.interactive);
6622                 rps->power.interactive--;
6623         }
6624         mutex_unlock(&rps->power.mutex);
6625 }
6626
6627 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6628 {
6629         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6630         u32 mask = 0;
6631
6632         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6633         if (val > rps->min_freq_softlimit)
6634                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6635         if (val < rps->max_freq_softlimit)
6636                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6637
6638         mask &= dev_priv->pm_rps_events;
6639
6640         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6641 }
6642
6643 /* gen6_set_rps is called to update the frequency request, but should also be
6644  * called when the range (min_delay and max_delay) is modified so that we can
6645  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6646 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6647 {
6648         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6649
6650         /* min/max delay may still have been modified so be sure to
6651          * write the limits value.
6652          */
6653         if (val != rps->cur_freq) {
6654                 gen6_set_rps_thresholds(dev_priv, val);
6655
6656                 if (INTEL_GEN(dev_priv) >= 9)
6657                         I915_WRITE(GEN6_RPNSWREQ,
6658                                    GEN9_FREQUENCY(val));
6659                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6660                         I915_WRITE(GEN6_RPNSWREQ,
6661                                    HSW_FREQUENCY(val));
6662                 else
6663                         I915_WRITE(GEN6_RPNSWREQ,
6664                                    GEN6_FREQUENCY(val) |
6665                                    GEN6_OFFSET(0) |
6666                                    GEN6_AGGRESSIVE_TURBO);
6667         }
6668
6669         /* Make sure we continue to get interrupts
6670          * until we hit the minimum or maximum frequencies.
6671          */
6672         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6673         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6674
6675         rps->cur_freq = val;
6676         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6677
6678         return 0;
6679 }
6680
6681 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6682 {
6683         int err;
6684
6685         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6686                       "Odd GPU freq value\n"))
6687                 val &= ~1;
6688
6689         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6690
6691         if (val != dev_priv->gt_pm.rps.cur_freq) {
6692                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6693                 if (err)
6694                         return err;
6695
6696                 gen6_set_rps_thresholds(dev_priv, val);
6697         }
6698
6699         dev_priv->gt_pm.rps.cur_freq = val;
6700         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6701
6702         return 0;
6703 }
6704
6705 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6706  *
6707  * * If Gfx is Idle, then
6708  * 1. Forcewake Media well.
6709  * 2. Request idle freq.
6710  * 3. Release Forcewake of Media well.
6711 */
6712 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6713 {
6714         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6715         u32 val = rps->idle_freq;
6716         int err;
6717
6718         if (rps->cur_freq <= val)
6719                 return;
6720
6721         /* The punit delays the write of the frequency and voltage until it
6722          * determines the GPU is awake. During normal usage we don't want to
6723          * waste power changing the frequency if the GPU is sleeping (rc6).
6724          * However, the GPU and driver is now idle and we do not want to delay
6725          * switching to minimum voltage (reducing power whilst idle) as we do
6726          * not expect to be woken in the near future and so must flush the
6727          * change by waking the device.
6728          *
6729          * We choose to take the media powerwell (either would do to trick the
6730          * punit into committing the voltage change) as that takes a lot less
6731          * power than the render powerwell.
6732          */
6733         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6734         err = valleyview_set_rps(dev_priv, val);
6735         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6736
6737         if (err)
6738                 DRM_ERROR("Failed to set RPS for idle\n");
6739 }
6740
6741 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6742 {
6743         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6744
6745         mutex_lock(&dev_priv->pcu_lock);
6746         if (rps->enabled) {
6747                 u8 freq;
6748
6749                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6750                         gen6_rps_reset_ei(dev_priv);
6751                 I915_WRITE(GEN6_PMINTRMSK,
6752                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6753
6754                 gen6_enable_rps_interrupts(dev_priv);
6755
6756                 /* Use the user's desired frequency as a guide, but for better
6757                  * performance, jump directly to RPe as our starting frequency.
6758                  */
6759                 freq = max(rps->cur_freq,
6760                            rps->efficient_freq);
6761
6762                 if (intel_set_rps(dev_priv,
6763                                   clamp(freq,
6764                                         rps->min_freq_softlimit,
6765                                         rps->max_freq_softlimit)))
6766                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6767         }
6768         mutex_unlock(&dev_priv->pcu_lock);
6769 }
6770
6771 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6772 {
6773         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6774
6775         /* Flush our bottom-half so that it does not race with us
6776          * setting the idle frequency and so that it is bounded by
6777          * our rpm wakeref. And then disable the interrupts to stop any
6778          * futher RPS reclocking whilst we are asleep.
6779          */
6780         gen6_disable_rps_interrupts(dev_priv);
6781
6782         mutex_lock(&dev_priv->pcu_lock);
6783         if (rps->enabled) {
6784                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6785                         vlv_set_rps_idle(dev_priv);
6786                 else
6787                         gen6_set_rps(dev_priv, rps->idle_freq);
6788                 rps->last_adj = 0;
6789                 I915_WRITE(GEN6_PMINTRMSK,
6790                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6791         }
6792         mutex_unlock(&dev_priv->pcu_lock);
6793 }
6794
6795 void gen6_rps_boost(struct i915_request *rq,
6796                     struct intel_rps_client *rps_client)
6797 {
6798         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6799         unsigned long flags;
6800         bool boost;
6801
6802         /* This is intentionally racy! We peek at the state here, then
6803          * validate inside the RPS worker.
6804          */
6805         if (!rps->enabled)
6806                 return;
6807
6808         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6809                 return;
6810
6811         /* Serializes with i915_request_retire() */
6812         boost = false;
6813         spin_lock_irqsave(&rq->lock, flags);
6814         if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6815                 boost = !atomic_fetch_inc(&rps->num_waiters);
6816                 rq->waitboost = true;
6817         }
6818         spin_unlock_irqrestore(&rq->lock, flags);
6819         if (!boost)
6820                 return;
6821
6822         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6823                 schedule_work(&rps->work);
6824
6825         atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6826 }
6827
6828 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6829 {
6830         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6831         int err;
6832
6833         lockdep_assert_held(&dev_priv->pcu_lock);
6834         GEM_BUG_ON(val > rps->max_freq);
6835         GEM_BUG_ON(val < rps->min_freq);
6836
6837         if (!rps->enabled) {
6838                 rps->cur_freq = val;
6839                 return 0;
6840         }
6841
6842         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6843                 err = valleyview_set_rps(dev_priv, val);
6844         else
6845                 err = gen6_set_rps(dev_priv, val);
6846
6847         return err;
6848 }
6849
6850 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6851 {
6852         I915_WRITE(GEN6_RC_CONTROL, 0);
6853         I915_WRITE(GEN9_PG_ENABLE, 0);
6854 }
6855
6856 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6857 {
6858         I915_WRITE(GEN6_RP_CONTROL, 0);
6859 }
6860
6861 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6862 {
6863         I915_WRITE(GEN6_RC_CONTROL, 0);
6864 }
6865
6866 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6867 {
6868         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6869         I915_WRITE(GEN6_RP_CONTROL, 0);
6870 }
6871
6872 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6873 {
6874         I915_WRITE(GEN6_RC_CONTROL, 0);
6875 }
6876
6877 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6878 {
6879         I915_WRITE(GEN6_RP_CONTROL, 0);
6880 }
6881
6882 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6883 {
6884         /* We're doing forcewake before Disabling RC6,
6885          * This what the BIOS expects when going into suspend */
6886         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6887
6888         I915_WRITE(GEN6_RC_CONTROL, 0);
6889
6890         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6891 }
6892
6893 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6894 {
6895         I915_WRITE(GEN6_RP_CONTROL, 0);
6896 }
6897
6898 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6899 {
6900         bool enable_rc6 = true;
6901         unsigned long rc6_ctx_base;
6902         u32 rc_ctl;
6903         int rc_sw_target;
6904
6905         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6906         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6907                        RC_SW_TARGET_STATE_SHIFT;
6908         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6909                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6910                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6911                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6912                          rc_sw_target);
6913
6914         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6915                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6916                 enable_rc6 = false;
6917         }
6918
6919         /*
6920          * The exact context size is not known for BXT, so assume a page size
6921          * for this check.
6922          */
6923         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6924         if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6925               (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6926                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6927                 enable_rc6 = false;
6928         }
6929
6930         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6931               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6932               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6933               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6934                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6935                 enable_rc6 = false;
6936         }
6937
6938         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6939             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6940             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6941                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6942                 enable_rc6 = false;
6943         }
6944
6945         if (!I915_READ(GEN6_GFXPAUSE)) {
6946                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6947                 enable_rc6 = false;
6948         }
6949
6950         if (!I915_READ(GEN8_MISC_CTRL0)) {
6951                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6952                 enable_rc6 = false;
6953         }
6954
6955         return enable_rc6;
6956 }
6957
6958 static bool sanitize_rc6(struct drm_i915_private *i915)
6959 {
6960         struct intel_device_info *info = mkwrite_device_info(i915);
6961
6962         /* Powersaving is controlled by the host when inside a VM */
6963         if (intel_vgpu_active(i915))
6964                 info->has_rc6 = 0;
6965
6966         if (info->has_rc6 &&
6967             IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6968                 DRM_INFO("RC6 disabled by BIOS\n");
6969                 info->has_rc6 = 0;
6970         }
6971
6972         /*
6973          * We assume that we do not have any deep rc6 levels if we don't have
6974          * have the previous rc6 level supported, i.e. we use HAS_RC6()
6975          * as the initial coarse check for rc6 in general, moving on to
6976          * progressively finer/deeper levels.
6977          */
6978         if (!info->has_rc6 && info->has_rc6p)
6979                 info->has_rc6p = 0;
6980
6981         return info->has_rc6;
6982 }
6983
6984 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6985 {
6986         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6987
6988         /* All of these values are in units of 50MHz */
6989
6990         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6991         if (IS_GEN9_LP(dev_priv)) {
6992                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6993                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6994                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6995                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
6996         } else {
6997                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6998                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
6999                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7000                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
7001         }
7002         /* hw_max = RP0 until we check for overclocking */
7003         rps->max_freq = rps->rp0_freq;
7004
7005         rps->efficient_freq = rps->rp1_freq;
7006         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7007             IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7008                 u32 ddcc_status = 0;
7009
7010                 if (sandybridge_pcode_read(dev_priv,
7011                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7012                                            &ddcc_status) == 0)
7013                         rps->efficient_freq =
7014                                 clamp_t(u8,
7015                                         ((ddcc_status >> 8) & 0xff),
7016                                         rps->min_freq,
7017                                         rps->max_freq);
7018         }
7019
7020         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7021                 /* Store the frequency values in 16.66 MHZ units, which is
7022                  * the natural hardware unit for SKL
7023                  */
7024                 rps->rp0_freq *= GEN9_FREQ_SCALER;
7025                 rps->rp1_freq *= GEN9_FREQ_SCALER;
7026                 rps->min_freq *= GEN9_FREQ_SCALER;
7027                 rps->max_freq *= GEN9_FREQ_SCALER;
7028                 rps->efficient_freq *= GEN9_FREQ_SCALER;
7029         }
7030 }
7031
7032 static void reset_rps(struct drm_i915_private *dev_priv,
7033                       int (*set)(struct drm_i915_private *, u8))
7034 {
7035         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7036         u8 freq = rps->cur_freq;
7037
7038         /* force a reset */
7039         rps->power.mode = -1;
7040         rps->cur_freq = -1;
7041
7042         if (set(dev_priv, freq))
7043                 DRM_ERROR("Failed to reset RPS to initial values\n");
7044 }
7045
7046 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
7047 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
7048 {
7049         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7050
7051         /* Program defaults and thresholds for RPS */
7052         if (IS_GEN9(dev_priv))
7053                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7054                         GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7055
7056         /* 1 second timeout*/
7057         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
7058                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
7059
7060         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
7061
7062         /* Leaning on the below call to gen6_set_rps to program/setup the
7063          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
7064          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7065         reset_rps(dev_priv, gen6_set_rps);
7066
7067         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7068 }
7069
7070 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
7071 {
7072         struct intel_engine_cs *engine;
7073         enum intel_engine_id id;
7074         u32 rc6_mode;
7075
7076         /* 1a: Software RC state - RC0 */
7077         I915_WRITE(GEN6_RC_STATE, 0);
7078
7079         /* 1b: Get forcewake during program sequence. Although the driver
7080          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7081         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7082
7083         /* 2a: Disable RC states. */
7084         I915_WRITE(GEN6_RC_CONTROL, 0);
7085
7086         /* 2b: Program RC6 thresholds.*/
7087         if (INTEL_GEN(dev_priv) >= 10) {
7088                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7089                 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7090         } else if (IS_SKYLAKE(dev_priv)) {
7091                 /*
7092                  * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
7093                  * when CPG is enabled
7094                  */
7095                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
7096         } else {
7097                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
7098         }
7099
7100         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7101         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7102         for_each_engine(engine, dev_priv, id)
7103                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7104
7105         if (HAS_GUC(dev_priv))
7106                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7107
7108         I915_WRITE(GEN6_RC_SLEEP, 0);
7109
7110         /*
7111          * 2c: Program Coarse Power Gating Policies.
7112          *
7113          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7114          * use instead is a more conservative estimate for the maximum time
7115          * it takes us to service a CS interrupt and submit a new ELSP - that
7116          * is the time which the GPU is idle waiting for the CPU to select the
7117          * next request to execute. If the idle hysteresis is less than that
7118          * interrupt service latency, the hardware will automatically gate
7119          * the power well and we will then incur the wake up cost on top of
7120          * the service latency. A similar guide from intel_pstate is that we
7121          * do not want the enable hysteresis to less than the wakeup latency.
7122          *
7123          * igt/gem_exec_nop/sequential provides a rough estimate for the
7124          * service latency, and puts it around 10us for Broadwell (and other
7125          * big core) and around 40us for Broxton (and other low power cores).
7126          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7127          * However, the wakeup latency on Broxton is closer to 100us. To be
7128          * conservative, we have to factor in a context switch on top (due
7129          * to ksoftirqd).
7130          */
7131         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7132         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7133
7134         /* 3a: Enable RC6 */
7135         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7136
7137         /* WaRsUseTimeoutMode:cnl (pre-prod) */
7138         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7139                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7140         else
7141                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7142
7143         I915_WRITE(GEN6_RC_CONTROL,
7144                    GEN6_RC_CTL_HW_ENABLE |
7145                    GEN6_RC_CTL_RC6_ENABLE |
7146                    rc6_mode);
7147
7148         /*
7149          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7150          * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7151          */
7152         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7153                 I915_WRITE(GEN9_PG_ENABLE, 0);
7154         else
7155                 I915_WRITE(GEN9_PG_ENABLE,
7156                            GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7157
7158         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7159 }
7160
7161 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7162 {
7163         struct intel_engine_cs *engine;
7164         enum intel_engine_id id;
7165
7166         /* 1a: Software RC state - RC0 */
7167         I915_WRITE(GEN6_RC_STATE, 0);
7168
7169         /* 1b: Get forcewake during program sequence. Although the driver
7170          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7171         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7172
7173         /* 2a: Disable RC states. */
7174         I915_WRITE(GEN6_RC_CONTROL, 0);
7175
7176         /* 2b: Program RC6 thresholds.*/
7177         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7178         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7179         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7180         for_each_engine(engine, dev_priv, id)
7181                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7182         I915_WRITE(GEN6_RC_SLEEP, 0);
7183         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7184
7185         /* 3: Enable RC6 */
7186
7187         I915_WRITE(GEN6_RC_CONTROL,
7188                    GEN6_RC_CTL_HW_ENABLE |
7189                    GEN7_RC_CTL_TO_MODE |
7190                    GEN6_RC_CTL_RC6_ENABLE);
7191
7192         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7193 }
7194
7195 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7196 {
7197         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7198
7199         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7200
7201         /* 1 Program defaults and thresholds for RPS*/
7202         I915_WRITE(GEN6_RPNSWREQ,
7203                    HSW_FREQUENCY(rps->rp1_freq));
7204         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7205                    HSW_FREQUENCY(rps->rp1_freq));
7206         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7207         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7208
7209         /* Docs recommend 900MHz, and 300 MHz respectively */
7210         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7211                    rps->max_freq_softlimit << 24 |
7212                    rps->min_freq_softlimit << 16);
7213
7214         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7215         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7216         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7217         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7218
7219         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7220
7221         /* 2: Enable RPS */
7222         I915_WRITE(GEN6_RP_CONTROL,
7223                    GEN6_RP_MEDIA_TURBO |
7224                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7225                    GEN6_RP_MEDIA_IS_GFX |
7226                    GEN6_RP_ENABLE |
7227                    GEN6_RP_UP_BUSY_AVG |
7228                    GEN6_RP_DOWN_IDLE_AVG);
7229
7230         reset_rps(dev_priv, gen6_set_rps);
7231
7232         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7233 }
7234
7235 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7236 {
7237         struct intel_engine_cs *engine;
7238         enum intel_engine_id id;
7239         u32 rc6vids, rc6_mask;
7240         u32 gtfifodbg;
7241         int ret;
7242
7243         I915_WRITE(GEN6_RC_STATE, 0);
7244
7245         /* Clear the DBG now so we don't confuse earlier errors */
7246         gtfifodbg = I915_READ(GTFIFODBG);
7247         if (gtfifodbg) {
7248                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7249                 I915_WRITE(GTFIFODBG, gtfifodbg);
7250         }
7251
7252         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7253
7254         /* disable the counters and set deterministic thresholds */
7255         I915_WRITE(GEN6_RC_CONTROL, 0);
7256
7257         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7258         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7259         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7260         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7261         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7262
7263         for_each_engine(engine, dev_priv, id)
7264                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7265
7266         I915_WRITE(GEN6_RC_SLEEP, 0);
7267         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7268         if (IS_IVYBRIDGE(dev_priv))
7269                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7270         else
7271                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7272         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7273         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7274
7275         /* We don't use those on Haswell */
7276         rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7277         if (HAS_RC6p(dev_priv))
7278                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7279         if (HAS_RC6pp(dev_priv))
7280                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7281         I915_WRITE(GEN6_RC_CONTROL,
7282                    rc6_mask |
7283                    GEN6_RC_CTL_EI_MODE(1) |
7284                    GEN6_RC_CTL_HW_ENABLE);
7285
7286         rc6vids = 0;
7287         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7288         if (IS_GEN6(dev_priv) && ret) {
7289                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7290         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7291                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7292                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7293                 rc6vids &= 0xffff00;
7294                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7295                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7296                 if (ret)
7297                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7298         }
7299
7300         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7301 }
7302
7303 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7304 {
7305         /* Here begins a magic sequence of register writes to enable
7306          * auto-downclocking.
7307          *
7308          * Perhaps there might be some value in exposing these to
7309          * userspace...
7310          */
7311         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7312
7313         /* Power down if completely idle for over 50ms */
7314         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7315         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7316
7317         reset_rps(dev_priv, gen6_set_rps);
7318
7319         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7320 }
7321
7322 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7323 {
7324         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7325         const int min_freq = 15;
7326         const int scaling_factor = 180;
7327         unsigned int gpu_freq;
7328         unsigned int max_ia_freq, min_ring_freq;
7329         unsigned int max_gpu_freq, min_gpu_freq;
7330         struct cpufreq_policy *policy;
7331
7332         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7333
7334         if (rps->max_freq <= rps->min_freq)
7335                 return;
7336
7337         policy = cpufreq_cpu_get(0);
7338         if (policy) {
7339                 max_ia_freq = policy->cpuinfo.max_freq;
7340                 cpufreq_cpu_put(policy);
7341         } else {
7342                 /*
7343                  * Default to measured freq if none found, PCU will ensure we
7344                  * don't go over
7345                  */
7346                 max_ia_freq = tsc_khz;
7347         }
7348
7349         /* Convert from kHz to MHz */
7350         max_ia_freq /= 1000;
7351
7352         min_ring_freq = I915_READ(DCLK) & 0xf;
7353         /* convert DDR frequency from units of 266.6MHz to bandwidth */
7354         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7355
7356         min_gpu_freq = rps->min_freq;
7357         max_gpu_freq = rps->max_freq;
7358         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7359                 /* Convert GT frequency to 50 HZ units */
7360                 min_gpu_freq /= GEN9_FREQ_SCALER;
7361                 max_gpu_freq /= GEN9_FREQ_SCALER;
7362         }
7363
7364         /*
7365          * For each potential GPU frequency, load a ring frequency we'd like
7366          * to use for memory access.  We do this by specifying the IA frequency
7367          * the PCU should use as a reference to determine the ring frequency.
7368          */
7369         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7370                 const int diff = max_gpu_freq - gpu_freq;
7371                 unsigned int ia_freq = 0, ring_freq = 0;
7372
7373                 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7374                         /*
7375                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
7376                          * No floor required for ring frequency on SKL.
7377                          */
7378                         ring_freq = gpu_freq;
7379                 } else if (INTEL_GEN(dev_priv) >= 8) {
7380                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
7381                         ring_freq = max(min_ring_freq, gpu_freq);
7382                 } else if (IS_HASWELL(dev_priv)) {
7383                         ring_freq = mult_frac(gpu_freq, 5, 4);
7384                         ring_freq = max(min_ring_freq, ring_freq);
7385                         /* leave ia_freq as the default, chosen by cpufreq */
7386                 } else {
7387                         /* On older processors, there is no separate ring
7388                          * clock domain, so in order to boost the bandwidth
7389                          * of the ring, we need to upclock the CPU (ia_freq).
7390                          *
7391                          * For GPU frequencies less than 750MHz,
7392                          * just use the lowest ring freq.
7393                          */
7394                         if (gpu_freq < min_freq)
7395                                 ia_freq = 800;
7396                         else
7397                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7398                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7399                 }
7400
7401                 sandybridge_pcode_write(dev_priv,
7402                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7403                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7404                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7405                                         gpu_freq);
7406         }
7407 }
7408
7409 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7410 {
7411         u32 val, rp0;
7412
7413         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7414
7415         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7416         case 8:
7417                 /* (2 * 4) config */
7418                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7419                 break;
7420         case 12:
7421                 /* (2 * 6) config */
7422                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7423                 break;
7424         case 16:
7425                 /* (2 * 8) config */
7426         default:
7427                 /* Setting (2 * 8) Min RP0 for any other combination */
7428                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7429                 break;
7430         }
7431
7432         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7433
7434         return rp0;
7435 }
7436
7437 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7438 {
7439         u32 val, rpe;
7440
7441         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7442         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7443
7444         return rpe;
7445 }
7446
7447 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7448 {
7449         u32 val, rp1;
7450
7451         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7452         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7453
7454         return rp1;
7455 }
7456
7457 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7458 {
7459         u32 val, rpn;
7460
7461         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7462         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7463                        FB_GFX_FREQ_FUSE_MASK);
7464
7465         return rpn;
7466 }
7467
7468 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7469 {
7470         u32 val, rp1;
7471
7472         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7473
7474         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7475
7476         return rp1;
7477 }
7478
7479 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7480 {
7481         u32 val, rp0;
7482
7483         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7484
7485         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7486         /* Clamp to max */
7487         rp0 = min_t(u32, rp0, 0xea);
7488
7489         return rp0;
7490 }
7491
7492 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7493 {
7494         u32 val, rpe;
7495
7496         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7497         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7498         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7499         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7500
7501         return rpe;
7502 }
7503
7504 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7505 {
7506         u32 val;
7507
7508         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7509         /*
7510          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7511          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7512          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7513          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7514          * to make sure it matches what Punit accepts.
7515          */
7516         return max_t(u32, val, 0xc0);
7517 }
7518
7519 /* Check that the pctx buffer wasn't move under us. */
7520 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7521 {
7522         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7523
7524         WARN_ON(pctx_addr != dev_priv->dsm.start +
7525                              dev_priv->vlv_pctx->stolen->start);
7526 }
7527
7528
7529 /* Check that the pcbr address is not empty. */
7530 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7531 {
7532         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7533
7534         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7535 }
7536
7537 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7538 {
7539         resource_size_t pctx_paddr, paddr;
7540         resource_size_t pctx_size = 32*1024;
7541         u32 pcbr;
7542
7543         pcbr = I915_READ(VLV_PCBR);
7544         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7545                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7546                 paddr = dev_priv->dsm.end + 1 - pctx_size;
7547                 GEM_BUG_ON(paddr > U32_MAX);
7548
7549                 pctx_paddr = (paddr & (~4095));
7550                 I915_WRITE(VLV_PCBR, pctx_paddr);
7551         }
7552
7553         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7554 }
7555
7556 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7557 {
7558         struct drm_i915_gem_object *pctx;
7559         resource_size_t pctx_paddr;
7560         resource_size_t pctx_size = 24*1024;
7561         u32 pcbr;
7562
7563         pcbr = I915_READ(VLV_PCBR);
7564         if (pcbr) {
7565                 /* BIOS set it up already, grab the pre-alloc'd space */
7566                 resource_size_t pcbr_offset;
7567
7568                 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7569                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7570                                                                       pcbr_offset,
7571                                                                       I915_GTT_OFFSET_NONE,
7572                                                                       pctx_size);
7573                 goto out;
7574         }
7575
7576         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7577
7578         /*
7579          * From the Gunit register HAS:
7580          * The Gfx driver is expected to program this register and ensure
7581          * proper allocation within Gfx stolen memory.  For example, this
7582          * register should be programmed such than the PCBR range does not
7583          * overlap with other ranges, such as the frame buffer, protected
7584          * memory, or any other relevant ranges.
7585          */
7586         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7587         if (!pctx) {
7588                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7589                 goto out;
7590         }
7591
7592         GEM_BUG_ON(range_overflows_t(u64,
7593                                      dev_priv->dsm.start,
7594                                      pctx->stolen->start,
7595                                      U32_MAX));
7596         pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7597         I915_WRITE(VLV_PCBR, pctx_paddr);
7598
7599 out:
7600         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7601         dev_priv->vlv_pctx = pctx;
7602 }
7603
7604 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7605 {
7606         struct drm_i915_gem_object *pctx;
7607
7608         pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7609         if (pctx)
7610                 i915_gem_object_put(pctx);
7611 }
7612
7613 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7614 {
7615         dev_priv->gt_pm.rps.gpll_ref_freq =
7616                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7617                                   CCK_GPLL_CLOCK_CONTROL,
7618                                   dev_priv->czclk_freq);
7619
7620         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7621                          dev_priv->gt_pm.rps.gpll_ref_freq);
7622 }
7623
7624 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7625 {
7626         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7627         u32 val;
7628
7629         valleyview_setup_pctx(dev_priv);
7630
7631         vlv_init_gpll_ref_freq(dev_priv);
7632
7633         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7634         switch ((val >> 6) & 3) {
7635         case 0:
7636         case 1:
7637                 dev_priv->mem_freq = 800;
7638                 break;
7639         case 2:
7640                 dev_priv->mem_freq = 1066;
7641                 break;
7642         case 3:
7643                 dev_priv->mem_freq = 1333;
7644                 break;
7645         }
7646         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7647
7648         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7649         rps->rp0_freq = rps->max_freq;
7650         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7651                          intel_gpu_freq(dev_priv, rps->max_freq),
7652                          rps->max_freq);
7653
7654         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7655         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7656                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7657                          rps->efficient_freq);
7658
7659         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7660         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7661                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7662                          rps->rp1_freq);
7663
7664         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7665         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7666                          intel_gpu_freq(dev_priv, rps->min_freq),
7667                          rps->min_freq);
7668 }
7669
7670 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7671 {
7672         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7673         u32 val;
7674
7675         cherryview_setup_pctx(dev_priv);
7676
7677         vlv_init_gpll_ref_freq(dev_priv);
7678
7679         mutex_lock(&dev_priv->sb_lock);
7680         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7681         mutex_unlock(&dev_priv->sb_lock);
7682
7683         switch ((val >> 2) & 0x7) {
7684         case 3:
7685                 dev_priv->mem_freq = 2000;
7686                 break;
7687         default:
7688                 dev_priv->mem_freq = 1600;
7689                 break;
7690         }
7691         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7692
7693         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7694         rps->rp0_freq = rps->max_freq;
7695         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7696                          intel_gpu_freq(dev_priv, rps->max_freq),
7697                          rps->max_freq);
7698
7699         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7700         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7701                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7702                          rps->efficient_freq);
7703
7704         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7705         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7706                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7707                          rps->rp1_freq);
7708
7709         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7710         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7711                          intel_gpu_freq(dev_priv, rps->min_freq),
7712                          rps->min_freq);
7713
7714         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7715                    rps->min_freq) & 1,
7716                   "Odd GPU freq values\n");
7717 }
7718
7719 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7720 {
7721         valleyview_cleanup_pctx(dev_priv);
7722 }
7723
7724 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7725 {
7726         struct intel_engine_cs *engine;
7727         enum intel_engine_id id;
7728         u32 gtfifodbg, rc6_mode, pcbr;
7729
7730         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7731                                              GT_FIFO_FREE_ENTRIES_CHV);
7732         if (gtfifodbg) {
7733                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7734                                  gtfifodbg);
7735                 I915_WRITE(GTFIFODBG, gtfifodbg);
7736         }
7737
7738         cherryview_check_pctx(dev_priv);
7739
7740         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7741          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7742         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7743
7744         /*  Disable RC states. */
7745         I915_WRITE(GEN6_RC_CONTROL, 0);
7746
7747         /* 2a: Program RC6 thresholds.*/
7748         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7749         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7750         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7751
7752         for_each_engine(engine, dev_priv, id)
7753                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7754         I915_WRITE(GEN6_RC_SLEEP, 0);
7755
7756         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7757         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7758
7759         /* Allows RC6 residency counter to work */
7760         I915_WRITE(VLV_COUNTER_CONTROL,
7761                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7762                                       VLV_MEDIA_RC6_COUNT_EN |
7763                                       VLV_RENDER_RC6_COUNT_EN));
7764
7765         /* For now we assume BIOS is allocating and populating the PCBR  */
7766         pcbr = I915_READ(VLV_PCBR);
7767
7768         /* 3: Enable RC6 */
7769         rc6_mode = 0;
7770         if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7771                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7772         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7773
7774         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7775 }
7776
7777 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7778 {
7779         u32 val;
7780
7781         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7782
7783         /* 1: Program defaults and thresholds for RPS*/
7784         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7785         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7786         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7787         I915_WRITE(GEN6_RP_UP_EI, 66000);
7788         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7789
7790         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7791
7792         /* 2: Enable RPS */
7793         I915_WRITE(GEN6_RP_CONTROL,
7794                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7795                    GEN6_RP_MEDIA_IS_GFX |
7796                    GEN6_RP_ENABLE |
7797                    GEN6_RP_UP_BUSY_AVG |
7798                    GEN6_RP_DOWN_IDLE_AVG);
7799
7800         /* Setting Fixed Bias */
7801         val = VLV_OVERRIDE_EN |
7802                   VLV_SOC_TDP_EN |
7803                   CHV_BIAS_CPU_50_SOC_50;
7804         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7805
7806         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7807
7808         /* RPS code assumes GPLL is used */
7809         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7810
7811         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7812         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7813
7814         reset_rps(dev_priv, valleyview_set_rps);
7815
7816         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7817 }
7818
7819 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7820 {
7821         struct intel_engine_cs *engine;
7822         enum intel_engine_id id;
7823         u32 gtfifodbg;
7824
7825         valleyview_check_pctx(dev_priv);
7826
7827         gtfifodbg = I915_READ(GTFIFODBG);
7828         if (gtfifodbg) {
7829                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7830                                  gtfifodbg);
7831                 I915_WRITE(GTFIFODBG, gtfifodbg);
7832         }
7833
7834         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7835
7836         /*  Disable RC states. */
7837         I915_WRITE(GEN6_RC_CONTROL, 0);
7838
7839         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7840         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7841         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7842
7843         for_each_engine(engine, dev_priv, id)
7844                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7845
7846         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7847
7848         /* Allows RC6 residency counter to work */
7849         I915_WRITE(VLV_COUNTER_CONTROL,
7850                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7851                                       VLV_MEDIA_RC0_COUNT_EN |
7852                                       VLV_RENDER_RC0_COUNT_EN |
7853                                       VLV_MEDIA_RC6_COUNT_EN |
7854                                       VLV_RENDER_RC6_COUNT_EN));
7855
7856         I915_WRITE(GEN6_RC_CONTROL,
7857                    GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7858
7859         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7860 }
7861
7862 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7863 {
7864         u32 val;
7865
7866         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7867
7868         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7869         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7870         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7871         I915_WRITE(GEN6_RP_UP_EI, 66000);
7872         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7873
7874         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7875
7876         I915_WRITE(GEN6_RP_CONTROL,
7877                    GEN6_RP_MEDIA_TURBO |
7878                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7879                    GEN6_RP_MEDIA_IS_GFX |
7880                    GEN6_RP_ENABLE |
7881                    GEN6_RP_UP_BUSY_AVG |
7882                    GEN6_RP_DOWN_IDLE_CONT);
7883
7884         /* Setting Fixed Bias */
7885         val = VLV_OVERRIDE_EN |
7886                   VLV_SOC_TDP_EN |
7887                   VLV_BIAS_CPU_125_SOC_875;
7888         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7889
7890         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7891
7892         /* RPS code assumes GPLL is used */
7893         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7894
7895         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7896         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7897
7898         reset_rps(dev_priv, valleyview_set_rps);
7899
7900         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7901 }
7902
7903 static unsigned long intel_pxfreq(u32 vidfreq)
7904 {
7905         unsigned long freq;
7906         int div = (vidfreq & 0x3f0000) >> 16;
7907         int post = (vidfreq & 0x3000) >> 12;
7908         int pre = (vidfreq & 0x7);
7909
7910         if (!pre)
7911                 return 0;
7912
7913         freq = ((div * 133333) / ((1<<post) * pre));
7914
7915         return freq;
7916 }
7917
7918 static const struct cparams {
7919         u16 i;
7920         u16 t;
7921         u16 m;
7922         u16 c;
7923 } cparams[] = {
7924         { 1, 1333, 301, 28664 },
7925         { 1, 1066, 294, 24460 },
7926         { 1, 800, 294, 25192 },
7927         { 0, 1333, 276, 27605 },
7928         { 0, 1066, 276, 27605 },
7929         { 0, 800, 231, 23784 },
7930 };
7931
7932 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7933 {
7934         u64 total_count, diff, ret;
7935         u32 count1, count2, count3, m = 0, c = 0;
7936         unsigned long now = jiffies_to_msecs(jiffies), diff1;
7937         int i;
7938
7939         lockdep_assert_held(&mchdev_lock);
7940
7941         diff1 = now - dev_priv->ips.last_time1;
7942
7943         /* Prevent division-by-zero if we are asking too fast.
7944          * Also, we don't get interesting results if we are polling
7945          * faster than once in 10ms, so just return the saved value
7946          * in such cases.
7947          */
7948         if (diff1 <= 10)
7949                 return dev_priv->ips.chipset_power;
7950
7951         count1 = I915_READ(DMIEC);
7952         count2 = I915_READ(DDREC);
7953         count3 = I915_READ(CSIEC);
7954
7955         total_count = count1 + count2 + count3;
7956
7957         /* FIXME: handle per-counter overflow */
7958         if (total_count < dev_priv->ips.last_count1) {
7959                 diff = ~0UL - dev_priv->ips.last_count1;
7960                 diff += total_count;
7961         } else {
7962                 diff = total_count - dev_priv->ips.last_count1;
7963         }
7964
7965         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7966                 if (cparams[i].i == dev_priv->ips.c_m &&
7967                     cparams[i].t == dev_priv->ips.r_t) {
7968                         m = cparams[i].m;
7969                         c = cparams[i].c;
7970                         break;
7971                 }
7972         }
7973
7974         diff = div_u64(diff, diff1);
7975         ret = ((m * diff) + c);
7976         ret = div_u64(ret, 10);
7977
7978         dev_priv->ips.last_count1 = total_count;
7979         dev_priv->ips.last_time1 = now;
7980
7981         dev_priv->ips.chipset_power = ret;
7982
7983         return ret;
7984 }
7985
7986 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7987 {
7988         unsigned long val;
7989
7990         if (!IS_GEN5(dev_priv))
7991                 return 0;
7992
7993         spin_lock_irq(&mchdev_lock);
7994
7995         val = __i915_chipset_val(dev_priv);
7996
7997         spin_unlock_irq(&mchdev_lock);
7998
7999         return val;
8000 }
8001
8002 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
8003 {
8004         unsigned long m, x, b;
8005         u32 tsfs;
8006
8007         tsfs = I915_READ(TSFS);
8008
8009         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
8010         x = I915_READ8(TR1);
8011
8012         b = tsfs & TSFS_INTR_MASK;
8013
8014         return ((m * x) / 127) - b;
8015 }
8016
8017 static int _pxvid_to_vd(u8 pxvid)
8018 {
8019         if (pxvid == 0)
8020                 return 0;
8021
8022         if (pxvid >= 8 && pxvid < 31)
8023                 pxvid = 31;
8024
8025         return (pxvid + 2) * 125;
8026 }
8027
8028 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8029 {
8030         const int vd = _pxvid_to_vd(pxvid);
8031         const int vm = vd - 1125;
8032
8033         if (INTEL_INFO(dev_priv)->is_mobile)
8034                 return vm > 0 ? vm : 0;
8035
8036         return vd;
8037 }
8038
8039 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8040 {
8041         u64 now, diff, diffms;
8042         u32 count;
8043
8044         lockdep_assert_held(&mchdev_lock);
8045
8046         now = ktime_get_raw_ns();
8047         diffms = now - dev_priv->ips.last_time2;
8048         do_div(diffms, NSEC_PER_MSEC);
8049
8050         /* Don't divide by 0 */
8051         if (!diffms)
8052                 return;
8053
8054         count = I915_READ(GFXEC);
8055
8056         if (count < dev_priv->ips.last_count2) {
8057                 diff = ~0UL - dev_priv->ips.last_count2;
8058                 diff += count;
8059         } else {
8060                 diff = count - dev_priv->ips.last_count2;
8061         }
8062
8063         dev_priv->ips.last_count2 = count;
8064         dev_priv->ips.last_time2 = now;
8065
8066         /* More magic constants... */
8067         diff = diff * 1181;
8068         diff = div_u64(diff, diffms * 10);
8069         dev_priv->ips.gfx_power = diff;
8070 }
8071
8072 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
8073 {
8074         if (!IS_GEN5(dev_priv))
8075                 return;
8076
8077         spin_lock_irq(&mchdev_lock);
8078
8079         __i915_update_gfx_val(dev_priv);
8080
8081         spin_unlock_irq(&mchdev_lock);
8082 }
8083
8084 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8085 {
8086         unsigned long t, corr, state1, corr2, state2;
8087         u32 pxvid, ext_v;
8088
8089         lockdep_assert_held(&mchdev_lock);
8090
8091         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8092         pxvid = (pxvid >> 24) & 0x7f;
8093         ext_v = pvid_to_extvid(dev_priv, pxvid);
8094
8095         state1 = ext_v;
8096
8097         t = i915_mch_val(dev_priv);
8098
8099         /* Revel in the empirically derived constants */
8100
8101         /* Correction factor in 1/100000 units */
8102         if (t > 80)
8103                 corr = ((t * 2349) + 135940);
8104         else if (t >= 50)
8105                 corr = ((t * 964) + 29317);
8106         else /* < 50 */
8107                 corr = ((t * 301) + 1004);
8108
8109         corr = corr * ((150142 * state1) / 10000 - 78642);
8110         corr /= 100000;
8111         corr2 = (corr * dev_priv->ips.corr);
8112
8113         state2 = (corr2 * state1) / 10000;
8114         state2 /= 100; /* convert to mW */
8115
8116         __i915_update_gfx_val(dev_priv);
8117
8118         return dev_priv->ips.gfx_power + state2;
8119 }
8120
8121 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8122 {
8123         unsigned long val;
8124
8125         if (!IS_GEN5(dev_priv))
8126                 return 0;
8127
8128         spin_lock_irq(&mchdev_lock);
8129
8130         val = __i915_gfx_val(dev_priv);
8131
8132         spin_unlock_irq(&mchdev_lock);
8133
8134         return val;
8135 }
8136
8137 /**
8138  * i915_read_mch_val - return value for IPS use
8139  *
8140  * Calculate and return a value for the IPS driver to use when deciding whether
8141  * we have thermal and power headroom to increase CPU or GPU power budget.
8142  */
8143 unsigned long i915_read_mch_val(void)
8144 {
8145         struct drm_i915_private *dev_priv;
8146         unsigned long chipset_val, graphics_val, ret = 0;
8147
8148         spin_lock_irq(&mchdev_lock);
8149         if (!i915_mch_dev)
8150                 goto out_unlock;
8151         dev_priv = i915_mch_dev;
8152
8153         chipset_val = __i915_chipset_val(dev_priv);
8154         graphics_val = __i915_gfx_val(dev_priv);
8155
8156         ret = chipset_val + graphics_val;
8157
8158 out_unlock:
8159         spin_unlock_irq(&mchdev_lock);
8160
8161         return ret;
8162 }
8163 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8164
8165 /**
8166  * i915_gpu_raise - raise GPU frequency limit
8167  *
8168  * Raise the limit; IPS indicates we have thermal headroom.
8169  */
8170 bool i915_gpu_raise(void)
8171 {
8172         struct drm_i915_private *dev_priv;
8173         bool ret = true;
8174
8175         spin_lock_irq(&mchdev_lock);
8176         if (!i915_mch_dev) {
8177                 ret = false;
8178                 goto out_unlock;
8179         }
8180         dev_priv = i915_mch_dev;
8181
8182         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
8183                 dev_priv->ips.max_delay--;
8184
8185 out_unlock:
8186         spin_unlock_irq(&mchdev_lock);
8187
8188         return ret;
8189 }
8190 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8191
8192 /**
8193  * i915_gpu_lower - lower GPU frequency limit
8194  *
8195  * IPS indicates we're close to a thermal limit, so throttle back the GPU
8196  * frequency maximum.
8197  */
8198 bool i915_gpu_lower(void)
8199 {
8200         struct drm_i915_private *dev_priv;
8201         bool ret = true;
8202
8203         spin_lock_irq(&mchdev_lock);
8204         if (!i915_mch_dev) {
8205                 ret = false;
8206                 goto out_unlock;
8207         }
8208         dev_priv = i915_mch_dev;
8209
8210         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
8211                 dev_priv->ips.max_delay++;
8212
8213 out_unlock:
8214         spin_unlock_irq(&mchdev_lock);
8215
8216         return ret;
8217 }
8218 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8219
8220 /**
8221  * i915_gpu_busy - indicate GPU business to IPS
8222  *
8223  * Tell the IPS driver whether or not the GPU is busy.
8224  */
8225 bool i915_gpu_busy(void)
8226 {
8227         bool ret = false;
8228
8229         spin_lock_irq(&mchdev_lock);
8230         if (i915_mch_dev)
8231                 ret = i915_mch_dev->gt.awake;
8232         spin_unlock_irq(&mchdev_lock);
8233
8234         return ret;
8235 }
8236 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8237
8238 /**
8239  * i915_gpu_turbo_disable - disable graphics turbo
8240  *
8241  * Disable graphics turbo by resetting the max frequency and setting the
8242  * current frequency to the default.
8243  */
8244 bool i915_gpu_turbo_disable(void)
8245 {
8246         struct drm_i915_private *dev_priv;
8247         bool ret = true;
8248
8249         spin_lock_irq(&mchdev_lock);
8250         if (!i915_mch_dev) {
8251                 ret = false;
8252                 goto out_unlock;
8253         }
8254         dev_priv = i915_mch_dev;
8255
8256         dev_priv->ips.max_delay = dev_priv->ips.fstart;
8257
8258         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8259                 ret = false;
8260
8261 out_unlock:
8262         spin_unlock_irq(&mchdev_lock);
8263
8264         return ret;
8265 }
8266 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8267
8268 /**
8269  * Tells the intel_ips driver that the i915 driver is now loaded, if
8270  * IPS got loaded first.
8271  *
8272  * This awkward dance is so that neither module has to depend on the
8273  * other in order for IPS to do the appropriate communication of
8274  * GPU turbo limits to i915.
8275  */
8276 static void
8277 ips_ping_for_i915_load(void)
8278 {
8279         void (*link)(void);
8280
8281         link = symbol_get(ips_link_to_i915_driver);
8282         if (link) {
8283                 link();
8284                 symbol_put(ips_link_to_i915_driver);
8285         }
8286 }
8287
8288 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8289 {
8290         /* We only register the i915 ips part with intel-ips once everything is
8291          * set up, to avoid intel-ips sneaking in and reading bogus values. */
8292         spin_lock_irq(&mchdev_lock);
8293         i915_mch_dev = dev_priv;
8294         spin_unlock_irq(&mchdev_lock);
8295
8296         ips_ping_for_i915_load();
8297 }
8298
8299 void intel_gpu_ips_teardown(void)
8300 {
8301         spin_lock_irq(&mchdev_lock);
8302         i915_mch_dev = NULL;
8303         spin_unlock_irq(&mchdev_lock);
8304 }
8305
8306 static void intel_init_emon(struct drm_i915_private *dev_priv)
8307 {
8308         u32 lcfuse;
8309         u8 pxw[16];
8310         int i;
8311
8312         /* Disable to program */
8313         I915_WRITE(ECR, 0);
8314         POSTING_READ(ECR);
8315
8316         /* Program energy weights for various events */
8317         I915_WRITE(SDEW, 0x15040d00);
8318         I915_WRITE(CSIEW0, 0x007f0000);
8319         I915_WRITE(CSIEW1, 0x1e220004);
8320         I915_WRITE(CSIEW2, 0x04000004);
8321
8322         for (i = 0; i < 5; i++)
8323                 I915_WRITE(PEW(i), 0);
8324         for (i = 0; i < 3; i++)
8325                 I915_WRITE(DEW(i), 0);
8326
8327         /* Program P-state weights to account for frequency power adjustment */
8328         for (i = 0; i < 16; i++) {
8329                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8330                 unsigned long freq = intel_pxfreq(pxvidfreq);
8331                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8332                         PXVFREQ_PX_SHIFT;
8333                 unsigned long val;
8334
8335                 val = vid * vid;
8336                 val *= (freq / 1000);
8337                 val *= 255;
8338                 val /= (127*127*900);
8339                 if (val > 0xff)
8340                         DRM_ERROR("bad pxval: %ld\n", val);
8341                 pxw[i] = val;
8342         }
8343         /* Render standby states get 0 weight */
8344         pxw[14] = 0;
8345         pxw[15] = 0;
8346
8347         for (i = 0; i < 4; i++) {
8348                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8349                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8350                 I915_WRITE(PXW(i), val);
8351         }
8352
8353         /* Adjust magic regs to magic values (more experimental results) */
8354         I915_WRITE(OGW0, 0);
8355         I915_WRITE(OGW1, 0);
8356         I915_WRITE(EG0, 0x00007f00);
8357         I915_WRITE(EG1, 0x0000000e);
8358         I915_WRITE(EG2, 0x000e0000);
8359         I915_WRITE(EG3, 0x68000300);
8360         I915_WRITE(EG4, 0x42000000);
8361         I915_WRITE(EG5, 0x00140031);
8362         I915_WRITE(EG6, 0);
8363         I915_WRITE(EG7, 0);
8364
8365         for (i = 0; i < 8; i++)
8366                 I915_WRITE(PXWL(i), 0);
8367
8368         /* Enable PMON + select events */
8369         I915_WRITE(ECR, 0x80000019);
8370
8371         lcfuse = I915_READ(LCFUSE02);
8372
8373         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8374 }
8375
8376 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8377 {
8378         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8379
8380         /*
8381          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8382          * requirement.
8383          */
8384         if (!sanitize_rc6(dev_priv)) {
8385                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8386                 pm_runtime_get(&dev_priv->drm.pdev->dev);
8387         }
8388
8389         mutex_lock(&dev_priv->pcu_lock);
8390
8391         /* Initialize RPS limits (for userspace) */
8392         if (IS_CHERRYVIEW(dev_priv))
8393                 cherryview_init_gt_powersave(dev_priv);
8394         else if (IS_VALLEYVIEW(dev_priv))
8395                 valleyview_init_gt_powersave(dev_priv);
8396         else if (INTEL_GEN(dev_priv) >= 6)
8397                 gen6_init_rps_frequencies(dev_priv);
8398
8399         /* Derive initial user preferences/limits from the hardware limits */
8400         rps->idle_freq = rps->min_freq;
8401         rps->cur_freq = rps->idle_freq;
8402
8403         rps->max_freq_softlimit = rps->max_freq;
8404         rps->min_freq_softlimit = rps->min_freq;
8405
8406         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8407                 rps->min_freq_softlimit =
8408                         max_t(int,
8409                               rps->efficient_freq,
8410                               intel_freq_opcode(dev_priv, 450));
8411
8412         /* After setting max-softlimit, find the overclock max freq */
8413         if (IS_GEN6(dev_priv) ||
8414             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8415                 u32 params = 0;
8416
8417                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8418                 if (params & BIT(31)) { /* OC supported */
8419                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8420                                          (rps->max_freq & 0xff) * 50,
8421                                          (params & 0xff) * 50);
8422                         rps->max_freq = params & 0xff;
8423                 }
8424         }
8425
8426         /* Finally allow us to boost to max by default */
8427         rps->boost_freq = rps->max_freq;
8428
8429         mutex_unlock(&dev_priv->pcu_lock);
8430 }
8431
8432 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8433 {
8434         if (IS_VALLEYVIEW(dev_priv))
8435                 valleyview_cleanup_gt_powersave(dev_priv);
8436
8437         if (!HAS_RC6(dev_priv))
8438                 pm_runtime_put(&dev_priv->drm.pdev->dev);
8439 }
8440
8441 /**
8442  * intel_suspend_gt_powersave - suspend PM work and helper threads
8443  * @dev_priv: i915 device
8444  *
8445  * We don't want to disable RC6 or other features here, we just want
8446  * to make sure any work we've queued has finished and won't bother
8447  * us while we're suspended.
8448  */
8449 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8450 {
8451         if (INTEL_GEN(dev_priv) < 6)
8452                 return;
8453
8454         /* gen6_rps_idle() will be called later to disable interrupts */
8455 }
8456
8457 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8458 {
8459         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8460         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8461         intel_disable_gt_powersave(dev_priv);
8462
8463         if (INTEL_GEN(dev_priv) >= 11)
8464                 gen11_reset_rps_interrupts(dev_priv);
8465         else if (INTEL_GEN(dev_priv) >= 6)
8466                 gen6_reset_rps_interrupts(dev_priv);
8467 }
8468
8469 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8470 {
8471         lockdep_assert_held(&i915->pcu_lock);
8472
8473         if (!i915->gt_pm.llc_pstate.enabled)
8474                 return;
8475
8476         /* Currently there is no HW configuration to be done to disable. */
8477
8478         i915->gt_pm.llc_pstate.enabled = false;
8479 }
8480
8481 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8482 {
8483         lockdep_assert_held(&dev_priv->pcu_lock);
8484
8485         if (!dev_priv->gt_pm.rc6.enabled)
8486                 return;
8487
8488         if (INTEL_GEN(dev_priv) >= 9)
8489                 gen9_disable_rc6(dev_priv);
8490         else if (IS_CHERRYVIEW(dev_priv))
8491                 cherryview_disable_rc6(dev_priv);
8492         else if (IS_VALLEYVIEW(dev_priv))
8493                 valleyview_disable_rc6(dev_priv);
8494         else if (INTEL_GEN(dev_priv) >= 6)
8495                 gen6_disable_rc6(dev_priv);
8496
8497         dev_priv->gt_pm.rc6.enabled = false;
8498 }
8499
8500 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8501 {
8502         lockdep_assert_held(&dev_priv->pcu_lock);
8503
8504         if (!dev_priv->gt_pm.rps.enabled)
8505                 return;
8506
8507         if (INTEL_GEN(dev_priv) >= 9)
8508                 gen9_disable_rps(dev_priv);
8509         else if (IS_CHERRYVIEW(dev_priv))
8510                 cherryview_disable_rps(dev_priv);
8511         else if (IS_VALLEYVIEW(dev_priv))
8512                 valleyview_disable_rps(dev_priv);
8513         else if (INTEL_GEN(dev_priv) >= 6)
8514                 gen6_disable_rps(dev_priv);
8515         else if (IS_IRONLAKE_M(dev_priv))
8516                 ironlake_disable_drps(dev_priv);
8517
8518         dev_priv->gt_pm.rps.enabled = false;
8519 }
8520
8521 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8522 {
8523         mutex_lock(&dev_priv->pcu_lock);
8524
8525         intel_disable_rc6(dev_priv);
8526         intel_disable_rps(dev_priv);
8527         if (HAS_LLC(dev_priv))
8528                 intel_disable_llc_pstate(dev_priv);
8529
8530         mutex_unlock(&dev_priv->pcu_lock);
8531 }
8532
8533 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8534 {
8535         lockdep_assert_held(&i915->pcu_lock);
8536
8537         if (i915->gt_pm.llc_pstate.enabled)
8538                 return;
8539
8540         gen6_update_ring_freq(i915);
8541
8542         i915->gt_pm.llc_pstate.enabled = true;
8543 }
8544
8545 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8546 {
8547         lockdep_assert_held(&dev_priv->pcu_lock);
8548
8549         if (dev_priv->gt_pm.rc6.enabled)
8550                 return;
8551
8552         if (IS_CHERRYVIEW(dev_priv))
8553                 cherryview_enable_rc6(dev_priv);
8554         else if (IS_VALLEYVIEW(dev_priv))
8555                 valleyview_enable_rc6(dev_priv);
8556         else if (INTEL_GEN(dev_priv) >= 9)
8557                 gen9_enable_rc6(dev_priv);
8558         else if (IS_BROADWELL(dev_priv))
8559                 gen8_enable_rc6(dev_priv);
8560         else if (INTEL_GEN(dev_priv) >= 6)
8561                 gen6_enable_rc6(dev_priv);
8562
8563         dev_priv->gt_pm.rc6.enabled = true;
8564 }
8565
8566 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8567 {
8568         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8569
8570         lockdep_assert_held(&dev_priv->pcu_lock);
8571
8572         if (rps->enabled)
8573                 return;
8574
8575         if (IS_CHERRYVIEW(dev_priv)) {
8576                 cherryview_enable_rps(dev_priv);
8577         } else if (IS_VALLEYVIEW(dev_priv)) {
8578                 valleyview_enable_rps(dev_priv);
8579         } else if (INTEL_GEN(dev_priv) >= 9) {
8580                 gen9_enable_rps(dev_priv);
8581         } else if (IS_BROADWELL(dev_priv)) {
8582                 gen8_enable_rps(dev_priv);
8583         } else if (INTEL_GEN(dev_priv) >= 6) {
8584                 gen6_enable_rps(dev_priv);
8585         } else if (IS_IRONLAKE_M(dev_priv)) {
8586                 ironlake_enable_drps(dev_priv);
8587                 intel_init_emon(dev_priv);
8588         }
8589
8590         WARN_ON(rps->max_freq < rps->min_freq);
8591         WARN_ON(rps->idle_freq > rps->max_freq);
8592
8593         WARN_ON(rps->efficient_freq < rps->min_freq);
8594         WARN_ON(rps->efficient_freq > rps->max_freq);
8595
8596         rps->enabled = true;
8597 }
8598
8599 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8600 {
8601         /* Powersaving is controlled by the host when inside a VM */
8602         if (intel_vgpu_active(dev_priv))
8603                 return;
8604
8605         mutex_lock(&dev_priv->pcu_lock);
8606
8607         if (HAS_RC6(dev_priv))
8608                 intel_enable_rc6(dev_priv);
8609         intel_enable_rps(dev_priv);
8610         if (HAS_LLC(dev_priv))
8611                 intel_enable_llc_pstate(dev_priv);
8612
8613         mutex_unlock(&dev_priv->pcu_lock);
8614 }
8615
8616 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8617 {
8618         /*
8619          * On Ibex Peak and Cougar Point, we need to disable clock
8620          * gating for the panel power sequencer or it will fail to
8621          * start up when no ports are active.
8622          */
8623         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8624 }
8625
8626 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8627 {
8628         enum pipe pipe;
8629
8630         for_each_pipe(dev_priv, pipe) {
8631                 I915_WRITE(DSPCNTR(pipe),
8632                            I915_READ(DSPCNTR(pipe)) |
8633                            DISPPLANE_TRICKLE_FEED_DISABLE);
8634
8635                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8636                 POSTING_READ(DSPSURF(pipe));
8637         }
8638 }
8639
8640 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8641 {
8642         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8643
8644         /*
8645          * Required for FBC
8646          * WaFbcDisableDpfcClockGating:ilk
8647          */
8648         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8649                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8650                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8651
8652         I915_WRITE(PCH_3DCGDIS0,
8653                    MARIUNIT_CLOCK_GATE_DISABLE |
8654                    SVSMUNIT_CLOCK_GATE_DISABLE);
8655         I915_WRITE(PCH_3DCGDIS1,
8656                    VFMUNIT_CLOCK_GATE_DISABLE);
8657
8658         /*
8659          * According to the spec the following bits should be set in
8660          * order to enable memory self-refresh
8661          * The bit 22/21 of 0x42004
8662          * The bit 5 of 0x42020
8663          * The bit 15 of 0x45000
8664          */
8665         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8666                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8667                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8668         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8669         I915_WRITE(DISP_ARB_CTL,
8670                    (I915_READ(DISP_ARB_CTL) |
8671                     DISP_FBC_WM_DIS));
8672
8673         /*
8674          * Based on the document from hardware guys the following bits
8675          * should be set unconditionally in order to enable FBC.
8676          * The bit 22 of 0x42000
8677          * The bit 22 of 0x42004
8678          * The bit 7,8,9 of 0x42020.
8679          */
8680         if (IS_IRONLAKE_M(dev_priv)) {
8681                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8682                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8683                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8684                            ILK_FBCQ_DIS);
8685                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8686                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8687                            ILK_DPARB_GATE);
8688         }
8689
8690         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8691
8692         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8693                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8694                    ILK_ELPIN_409_SELECT);
8695         I915_WRITE(_3D_CHICKEN2,
8696                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8697                    _3D_CHICKEN2_WM_READ_PIPELINED);
8698
8699         /* WaDisableRenderCachePipelinedFlush:ilk */
8700         I915_WRITE(CACHE_MODE_0,
8701                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8702
8703         /* WaDisable_RenderCache_OperationalFlush:ilk */
8704         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8705
8706         g4x_disable_trickle_feed(dev_priv);
8707
8708         ibx_init_clock_gating(dev_priv);
8709 }
8710
8711 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8712 {
8713         int pipe;
8714         uint32_t val;
8715
8716         /*
8717          * On Ibex Peak and Cougar Point, we need to disable clock
8718          * gating for the panel power sequencer or it will fail to
8719          * start up when no ports are active.
8720          */
8721         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8722                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8723                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8724         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8725                    DPLS_EDP_PPS_FIX_DIS);
8726         /* The below fixes the weird display corruption, a few pixels shifted
8727          * downward, on (only) LVDS of some HP laptops with IVY.
8728          */
8729         for_each_pipe(dev_priv, pipe) {
8730                 val = I915_READ(TRANS_CHICKEN2(pipe));
8731                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8732                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8733                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8734                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8735                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8736                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8737                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8738                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8739         }
8740         /* WADP0ClockGatingDisable */
8741         for_each_pipe(dev_priv, pipe) {
8742                 I915_WRITE(TRANS_CHICKEN1(pipe),
8743                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8744         }
8745 }
8746
8747 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8748 {
8749         uint32_t tmp;
8750
8751         tmp = I915_READ(MCH_SSKPD);
8752         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8753                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8754                               tmp);
8755 }
8756
8757 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8758 {
8759         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8760
8761         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8762
8763         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8764                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8765                    ILK_ELPIN_409_SELECT);
8766
8767         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8768         I915_WRITE(_3D_CHICKEN,
8769                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8770
8771         /* WaDisable_RenderCache_OperationalFlush:snb */
8772         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8773
8774         /*
8775          * BSpec recoomends 8x4 when MSAA is used,
8776          * however in practice 16x4 seems fastest.
8777          *
8778          * Note that PS/WM thread counts depend on the WIZ hashing
8779          * disable bit, which we don't touch here, but it's good
8780          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8781          */
8782         I915_WRITE(GEN6_GT_MODE,
8783                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8784
8785         I915_WRITE(CACHE_MODE_0,
8786                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8787
8788         I915_WRITE(GEN6_UCGCTL1,
8789                    I915_READ(GEN6_UCGCTL1) |
8790                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8791                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8792
8793         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8794          * gating disable must be set.  Failure to set it results in
8795          * flickering pixels due to Z write ordering failures after
8796          * some amount of runtime in the Mesa "fire" demo, and Unigine
8797          * Sanctuary and Tropics, and apparently anything else with
8798          * alpha test or pixel discard.
8799          *
8800          * According to the spec, bit 11 (RCCUNIT) must also be set,
8801          * but we didn't debug actual testcases to find it out.
8802          *
8803          * WaDisableRCCUnitClockGating:snb
8804          * WaDisableRCPBUnitClockGating:snb
8805          */
8806         I915_WRITE(GEN6_UCGCTL2,
8807                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8808                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8809
8810         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8811         I915_WRITE(_3D_CHICKEN3,
8812                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8813
8814         /*
8815          * Bspec says:
8816          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8817          * 3DSTATE_SF number of SF output attributes is more than 16."
8818          */
8819         I915_WRITE(_3D_CHICKEN3,
8820                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8821
8822         /*
8823          * According to the spec the following bits should be
8824          * set in order to enable memory self-refresh and fbc:
8825          * The bit21 and bit22 of 0x42000
8826          * The bit21 and bit22 of 0x42004
8827          * The bit5 and bit7 of 0x42020
8828          * The bit14 of 0x70180
8829          * The bit14 of 0x71180
8830          *
8831          * WaFbcAsynchFlipDisableFbcQueue:snb
8832          */
8833         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8834                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8835                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8836         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8837                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8838                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8839         I915_WRITE(ILK_DSPCLK_GATE_D,
8840                    I915_READ(ILK_DSPCLK_GATE_D) |
8841                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8842                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8843
8844         g4x_disable_trickle_feed(dev_priv);
8845
8846         cpt_init_clock_gating(dev_priv);
8847
8848         gen6_check_mch_setup(dev_priv);
8849 }
8850
8851 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8852 {
8853         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8854
8855         /*
8856          * WaVSThreadDispatchOverride:ivb,vlv
8857          *
8858          * This actually overrides the dispatch
8859          * mode for all thread types.
8860          */
8861         reg &= ~GEN7_FF_SCHED_MASK;
8862         reg |= GEN7_FF_TS_SCHED_HW;
8863         reg |= GEN7_FF_VS_SCHED_HW;
8864         reg |= GEN7_FF_DS_SCHED_HW;
8865
8866         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8867 }
8868
8869 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8870 {
8871         /*
8872          * TODO: this bit should only be enabled when really needed, then
8873          * disabled when not needed anymore in order to save power.
8874          */
8875         if (HAS_PCH_LPT_LP(dev_priv))
8876                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8877                            I915_READ(SOUTH_DSPCLK_GATE_D) |
8878                            PCH_LP_PARTITION_LEVEL_DISABLE);
8879
8880         /* WADPOClockGatingDisable:hsw */
8881         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8882                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8883                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8884 }
8885
8886 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8887 {
8888         if (HAS_PCH_LPT_LP(dev_priv)) {
8889                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8890
8891                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8892                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8893         }
8894 }
8895
8896 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8897                                    int general_prio_credits,
8898                                    int high_prio_credits)
8899 {
8900         u32 misccpctl;
8901         u32 val;
8902
8903         /* WaTempDisableDOPClkGating:bdw */
8904         misccpctl = I915_READ(GEN7_MISCCPCTL);
8905         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8906
8907         val = I915_READ(GEN8_L3SQCREG1);
8908         val &= ~L3_PRIO_CREDITS_MASK;
8909         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8910         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8911         I915_WRITE(GEN8_L3SQCREG1, val);
8912
8913         /*
8914          * Wait at least 100 clocks before re-enabling clock gating.
8915          * See the definition of L3SQCREG1 in BSpec.
8916          */
8917         POSTING_READ(GEN8_L3SQCREG1);
8918         udelay(1);
8919         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8920 }
8921
8922 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8923 {
8924         /* This is not an Wa. Enable to reduce Sampler power */
8925         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8926                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8927
8928         /* WaEnable32PlaneMode:icl */
8929         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
8930                    _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
8931 }
8932
8933 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8934 {
8935         if (!HAS_PCH_CNP(dev_priv))
8936                 return;
8937
8938         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8939         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8940                    CNP_PWM_CGE_GATING_DISABLE);
8941 }
8942
8943 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8944 {
8945         u32 val;
8946         cnp_init_clock_gating(dev_priv);
8947
8948         /* This is not an Wa. Enable for better image quality */
8949         I915_WRITE(_3D_CHICKEN3,
8950                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8951
8952         /* WaEnableChickenDCPR:cnl */
8953         I915_WRITE(GEN8_CHICKEN_DCPR_1,
8954                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8955
8956         /* WaFbcWakeMemOn:cnl */
8957         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8958                    DISP_FBC_MEMORY_WAKE);
8959
8960         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8961         /* ReadHitWriteOnlyDisable:cnl */
8962         val |= RCCUNIT_CLKGATE_DIS;
8963         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8964         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8965                 val |= SARBUNIT_CLKGATE_DIS;
8966         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8967
8968         /* Wa_2201832410:cnl */
8969         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8970         val |= GWUNIT_CLKGATE_DIS;
8971         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8972
8973         /* WaDisableVFclkgate:cnl */
8974         /* WaVFUnitClockGatingDisable:cnl */
8975         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8976         val |= VFUNIT_CLKGATE_DIS;
8977         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8978 }
8979
8980 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8981 {
8982         cnp_init_clock_gating(dev_priv);
8983         gen9_init_clock_gating(dev_priv);
8984
8985         /* WaFbcNukeOnHostModify:cfl */
8986         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8987                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8988 }
8989
8990 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8991 {
8992         gen9_init_clock_gating(dev_priv);
8993
8994         /* WaDisableSDEUnitClockGating:kbl */
8995         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8996                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8997                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8998
8999         /* WaDisableGamClockGating:kbl */
9000         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9001                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9002                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9003
9004         /* WaFbcNukeOnHostModify:kbl */
9005         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9006                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9007 }
9008
9009 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9010 {
9011         gen9_init_clock_gating(dev_priv);
9012
9013         /* WAC6entrylatency:skl */
9014         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
9015                    FBC_LLC_FULLY_OPEN);
9016
9017         /* WaFbcNukeOnHostModify:skl */
9018         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9019                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9020 }
9021
9022 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
9023 {
9024         /* The GTT cache must be disabled if the system is using 2M pages. */
9025         bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
9026                                                  I915_GTT_PAGE_SIZE_2M);
9027         enum pipe pipe;
9028
9029         /* WaSwitchSolVfFArbitrationPriority:bdw */
9030         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9031
9032         /* WaPsrDPAMaskVBlankInSRD:bdw */
9033         I915_WRITE(CHICKEN_PAR1_1,
9034                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
9035
9036         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9037         for_each_pipe(dev_priv, pipe) {
9038                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
9039                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
9040                            BDW_DPRS_MASK_VBLANK_SRD);
9041         }
9042
9043         /* WaVSRefCountFullforceMissDisable:bdw */
9044         /* WaDSRefCountFullforceMissDisable:bdw */
9045         I915_WRITE(GEN7_FF_THREAD_MODE,
9046                    I915_READ(GEN7_FF_THREAD_MODE) &
9047                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9048
9049         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9050                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9051
9052         /* WaDisableSDEUnitClockGating:bdw */
9053         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9054                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9055
9056         /* WaProgramL3SqcReg1Default:bdw */
9057         gen8_set_l3sqc_credits(dev_priv, 30, 2);
9058
9059         /* WaGttCachingOffByDefault:bdw */
9060         I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9061
9062         /* WaKVMNotificationOnConfigChange:bdw */
9063         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
9064                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
9065
9066         lpt_init_clock_gating(dev_priv);
9067
9068         /* WaDisableDopClockGating:bdw
9069          *
9070          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
9071          * clock gating.
9072          */
9073         I915_WRITE(GEN6_UCGCTL1,
9074                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
9075 }
9076
9077 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9078 {
9079         /* L3 caching of data atomics doesn't work -- disable it. */
9080         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9081         I915_WRITE(HSW_ROW_CHICKEN3,
9082                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9083
9084         /* This is required by WaCatErrorRejectionIssue:hsw */
9085         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9086                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9087                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9088
9089         /* WaVSRefCountFullforceMissDisable:hsw */
9090         I915_WRITE(GEN7_FF_THREAD_MODE,
9091                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9092
9093         /* WaDisable_RenderCache_OperationalFlush:hsw */
9094         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9095
9096         /* enable HiZ Raw Stall Optimization */
9097         I915_WRITE(CACHE_MODE_0_GEN7,
9098                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9099
9100         /* WaDisable4x2SubspanOptimization:hsw */
9101         I915_WRITE(CACHE_MODE_1,
9102                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9103
9104         /*
9105          * BSpec recommends 8x4 when MSAA is used,
9106          * however in practice 16x4 seems fastest.
9107          *
9108          * Note that PS/WM thread counts depend on the WIZ hashing
9109          * disable bit, which we don't touch here, but it's good
9110          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9111          */
9112         I915_WRITE(GEN7_GT_MODE,
9113                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9114
9115         /* WaSampleCChickenBitEnable:hsw */
9116         I915_WRITE(HALF_SLICE_CHICKEN3,
9117                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9118
9119         /* WaSwitchSolVfFArbitrationPriority:hsw */
9120         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9121
9122         lpt_init_clock_gating(dev_priv);
9123 }
9124
9125 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9126 {
9127         uint32_t snpcr;
9128
9129         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9130
9131         /* WaDisableEarlyCull:ivb */
9132         I915_WRITE(_3D_CHICKEN3,
9133                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9134
9135         /* WaDisableBackToBackFlipFix:ivb */
9136         I915_WRITE(IVB_CHICKEN3,
9137                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9138                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9139
9140         /* WaDisablePSDDualDispatchEnable:ivb */
9141         if (IS_IVB_GT1(dev_priv))
9142                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9143                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9144
9145         /* WaDisable_RenderCache_OperationalFlush:ivb */
9146         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9147
9148         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9149         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9150                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9151
9152         /* WaApplyL3ControlAndL3ChickenMode:ivb */
9153         I915_WRITE(GEN7_L3CNTLREG1,
9154                         GEN7_WA_FOR_GEN7_L3_CONTROL);
9155         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9156                    GEN7_WA_L3_CHICKEN_MODE);
9157         if (IS_IVB_GT1(dev_priv))
9158                 I915_WRITE(GEN7_ROW_CHICKEN2,
9159                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9160         else {
9161                 /* must write both registers */
9162                 I915_WRITE(GEN7_ROW_CHICKEN2,
9163                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9164                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9165                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9166         }
9167
9168         /* WaForceL3Serialization:ivb */
9169         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9170                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9171
9172         /*
9173          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9174          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9175          */
9176         I915_WRITE(GEN6_UCGCTL2,
9177                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9178
9179         /* This is required by WaCatErrorRejectionIssue:ivb */
9180         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9181                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9182                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9183
9184         g4x_disable_trickle_feed(dev_priv);
9185
9186         gen7_setup_fixed_func_scheduler(dev_priv);
9187
9188         if (0) { /* causes HiZ corruption on ivb:gt1 */
9189                 /* enable HiZ Raw Stall Optimization */
9190                 I915_WRITE(CACHE_MODE_0_GEN7,
9191                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9192         }
9193
9194         /* WaDisable4x2SubspanOptimization:ivb */
9195         I915_WRITE(CACHE_MODE_1,
9196                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9197
9198         /*
9199          * BSpec recommends 8x4 when MSAA is used,
9200          * however in practice 16x4 seems fastest.
9201          *
9202          * Note that PS/WM thread counts depend on the WIZ hashing
9203          * disable bit, which we don't touch here, but it's good
9204          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9205          */
9206         I915_WRITE(GEN7_GT_MODE,
9207                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9208
9209         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9210         snpcr &= ~GEN6_MBC_SNPCR_MASK;
9211         snpcr |= GEN6_MBC_SNPCR_MED;
9212         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9213
9214         if (!HAS_PCH_NOP(dev_priv))
9215                 cpt_init_clock_gating(dev_priv);
9216
9217         gen6_check_mch_setup(dev_priv);
9218 }
9219
9220 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9221 {
9222         /* WaDisableEarlyCull:vlv */
9223         I915_WRITE(_3D_CHICKEN3,
9224                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9225
9226         /* WaDisableBackToBackFlipFix:vlv */
9227         I915_WRITE(IVB_CHICKEN3,
9228                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9229                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9230
9231         /* WaPsdDispatchEnable:vlv */
9232         /* WaDisablePSDDualDispatchEnable:vlv */
9233         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9234                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9235                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9236
9237         /* WaDisable_RenderCache_OperationalFlush:vlv */
9238         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9239
9240         /* WaForceL3Serialization:vlv */
9241         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9242                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9243
9244         /* WaDisableDopClockGating:vlv */
9245         I915_WRITE(GEN7_ROW_CHICKEN2,
9246                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9247
9248         /* This is required by WaCatErrorRejectionIssue:vlv */
9249         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9250                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9251                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9252
9253         gen7_setup_fixed_func_scheduler(dev_priv);
9254
9255         /*
9256          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9257          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9258          */
9259         I915_WRITE(GEN6_UCGCTL2,
9260                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9261
9262         /* WaDisableL3Bank2xClockGate:vlv
9263          * Disabling L3 clock gating- MMIO 940c[25] = 1
9264          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9265         I915_WRITE(GEN7_UCGCTL4,
9266                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9267
9268         /*
9269          * BSpec says this must be set, even though
9270          * WaDisable4x2SubspanOptimization isn't listed for VLV.
9271          */
9272         I915_WRITE(CACHE_MODE_1,
9273                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9274
9275         /*
9276          * BSpec recommends 8x4 when MSAA is used,
9277          * however in practice 16x4 seems fastest.
9278          *
9279          * Note that PS/WM thread counts depend on the WIZ hashing
9280          * disable bit, which we don't touch here, but it's good
9281          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9282          */
9283         I915_WRITE(GEN7_GT_MODE,
9284                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9285
9286         /*
9287          * WaIncreaseL3CreditsForVLVB0:vlv
9288          * This is the hardware default actually.
9289          */
9290         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9291
9292         /*
9293          * WaDisableVLVClockGating_VBIIssue:vlv
9294          * Disable clock gating on th GCFG unit to prevent a delay
9295          * in the reporting of vblank events.
9296          */
9297         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9298 }
9299
9300 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9301 {
9302         /* WaVSRefCountFullforceMissDisable:chv */
9303         /* WaDSRefCountFullforceMissDisable:chv */
9304         I915_WRITE(GEN7_FF_THREAD_MODE,
9305                    I915_READ(GEN7_FF_THREAD_MODE) &
9306                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9307
9308         /* WaDisableSemaphoreAndSyncFlipWait:chv */
9309         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9310                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9311
9312         /* WaDisableCSUnitClockGating:chv */
9313         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9314                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9315
9316         /* WaDisableSDEUnitClockGating:chv */
9317         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9318                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9319
9320         /*
9321          * WaProgramL3SqcReg1Default:chv
9322          * See gfxspecs/Related Documents/Performance Guide/
9323          * LSQC Setting Recommendations.
9324          */
9325         gen8_set_l3sqc_credits(dev_priv, 38, 2);
9326
9327         /*
9328          * GTT cache may not work with big pages, so if those
9329          * are ever enabled GTT cache may need to be disabled.
9330          */
9331         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9332 }
9333
9334 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9335 {
9336         uint32_t dspclk_gate;
9337
9338         I915_WRITE(RENCLK_GATE_D1, 0);
9339         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9340                    GS_UNIT_CLOCK_GATE_DISABLE |
9341                    CL_UNIT_CLOCK_GATE_DISABLE);
9342         I915_WRITE(RAMCLK_GATE_D, 0);
9343         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9344                 OVRUNIT_CLOCK_GATE_DISABLE |
9345                 OVCUNIT_CLOCK_GATE_DISABLE;
9346         if (IS_GM45(dev_priv))
9347                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9348         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9349
9350         /* WaDisableRenderCachePipelinedFlush */
9351         I915_WRITE(CACHE_MODE_0,
9352                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9353
9354         /* WaDisable_RenderCache_OperationalFlush:g4x */
9355         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9356
9357         g4x_disable_trickle_feed(dev_priv);
9358 }
9359
9360 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9361 {
9362         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9363         I915_WRITE(RENCLK_GATE_D2, 0);
9364         I915_WRITE(DSPCLK_GATE_D, 0);
9365         I915_WRITE(RAMCLK_GATE_D, 0);
9366         I915_WRITE16(DEUC, 0);
9367         I915_WRITE(MI_ARB_STATE,
9368                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9369
9370         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9371         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9372 }
9373
9374 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9375 {
9376         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9377                    I965_RCC_CLOCK_GATE_DISABLE |
9378                    I965_RCPB_CLOCK_GATE_DISABLE |
9379                    I965_ISC_CLOCK_GATE_DISABLE |
9380                    I965_FBC_CLOCK_GATE_DISABLE);
9381         I915_WRITE(RENCLK_GATE_D2, 0);
9382         I915_WRITE(MI_ARB_STATE,
9383                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9384
9385         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9386         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9387 }
9388
9389 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9390 {
9391         u32 dstate = I915_READ(D_STATE);
9392
9393         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9394                 DSTATE_DOT_CLOCK_GATING;
9395         I915_WRITE(D_STATE, dstate);
9396
9397         if (IS_PINEVIEW(dev_priv))
9398                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9399
9400         /* IIR "flip pending" means done if this bit is set */
9401         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9402
9403         /* interrupts should cause a wake up from C3 */
9404         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9405
9406         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9407         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9408
9409         I915_WRITE(MI_ARB_STATE,
9410                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9411 }
9412
9413 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9414 {
9415         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9416
9417         /* interrupts should cause a wake up from C3 */
9418         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9419                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9420
9421         I915_WRITE(MEM_MODE,
9422                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9423 }
9424
9425 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9426 {
9427         I915_WRITE(MEM_MODE,
9428                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9429                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9430 }
9431
9432 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9433 {
9434         dev_priv->display.init_clock_gating(dev_priv);
9435 }
9436
9437 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9438 {
9439         if (HAS_PCH_LPT(dev_priv))
9440                 lpt_suspend_hw(dev_priv);
9441 }
9442
9443 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9444 {
9445         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9446 }
9447
9448 /**
9449  * intel_init_clock_gating_hooks - setup the clock gating hooks
9450  * @dev_priv: device private
9451  *
9452  * Setup the hooks that configure which clocks of a given platform can be
9453  * gated and also apply various GT and display specific workarounds for these
9454  * platforms. Note that some GT specific workarounds are applied separately
9455  * when GPU contexts or batchbuffers start their execution.
9456  */
9457 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9458 {
9459         if (IS_ICELAKE(dev_priv))
9460                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9461         else if (IS_CANNONLAKE(dev_priv))
9462                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9463         else if (IS_COFFEELAKE(dev_priv))
9464                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9465         else if (IS_SKYLAKE(dev_priv))
9466                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9467         else if (IS_KABYLAKE(dev_priv))
9468                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9469         else if (IS_BROXTON(dev_priv))
9470                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9471         else if (IS_GEMINILAKE(dev_priv))
9472                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9473         else if (IS_BROADWELL(dev_priv))
9474                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9475         else if (IS_CHERRYVIEW(dev_priv))
9476                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9477         else if (IS_HASWELL(dev_priv))
9478                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9479         else if (IS_IVYBRIDGE(dev_priv))
9480                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9481         else if (IS_VALLEYVIEW(dev_priv))
9482                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9483         else if (IS_GEN6(dev_priv))
9484                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9485         else if (IS_GEN5(dev_priv))
9486                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9487         else if (IS_G4X(dev_priv))
9488                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9489         else if (IS_I965GM(dev_priv))
9490                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9491         else if (IS_I965G(dev_priv))
9492                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9493         else if (IS_GEN3(dev_priv))
9494                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9495         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9496                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9497         else if (IS_GEN2(dev_priv))
9498                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9499         else {
9500                 MISSING_CASE(INTEL_DEVID(dev_priv));
9501                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9502         }
9503 }
9504
9505 /* Set up chip specific power management-related functions */
9506 void intel_init_pm(struct drm_i915_private *dev_priv)
9507 {
9508         /* For cxsr */
9509         if (IS_PINEVIEW(dev_priv))
9510                 i915_pineview_get_mem_freq(dev_priv);
9511         else if (IS_GEN5(dev_priv))
9512                 i915_ironlake_get_mem_freq(dev_priv);
9513
9514         /* For FIFO watermark updates */
9515         if (INTEL_GEN(dev_priv) >= 9) {
9516                 skl_setup_wm_latency(dev_priv);
9517                 dev_priv->display.initial_watermarks = skl_initial_wm;
9518                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9519                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9520         } else if (HAS_PCH_SPLIT(dev_priv)) {
9521                 ilk_setup_wm_latency(dev_priv);
9522
9523                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9524                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9525                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9526                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9527                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9528                         dev_priv->display.compute_intermediate_wm =
9529                                 ilk_compute_intermediate_wm;
9530                         dev_priv->display.initial_watermarks =
9531                                 ilk_initial_watermarks;
9532                         dev_priv->display.optimize_watermarks =
9533                                 ilk_optimize_watermarks;
9534                 } else {
9535                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9536                                       "Disable CxSR\n");
9537                 }
9538         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9539                 vlv_setup_wm_latency(dev_priv);
9540                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9541                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9542                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9543                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9544                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9545         } else if (IS_G4X(dev_priv)) {
9546                 g4x_setup_wm_latency(dev_priv);
9547                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9548                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9549                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9550                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9551         } else if (IS_PINEVIEW(dev_priv)) {
9552                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9553                                             dev_priv->is_ddr3,
9554                                             dev_priv->fsb_freq,
9555                                             dev_priv->mem_freq)) {
9556                         DRM_INFO("failed to find known CxSR latency "
9557                                  "(found ddr%s fsb freq %d, mem freq %d), "
9558                                  "disabling CxSR\n",
9559                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9560                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9561                         /* Disable CxSR and never update its watermark again */
9562                         intel_set_memory_cxsr(dev_priv, false);
9563                         dev_priv->display.update_wm = NULL;
9564                 } else
9565                         dev_priv->display.update_wm = pineview_update_wm;
9566         } else if (IS_GEN4(dev_priv)) {
9567                 dev_priv->display.update_wm = i965_update_wm;
9568         } else if (IS_GEN3(dev_priv)) {
9569                 dev_priv->display.update_wm = i9xx_update_wm;
9570                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9571         } else if (IS_GEN2(dev_priv)) {
9572                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9573                         dev_priv->display.update_wm = i845_update_wm;
9574                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9575                 } else {
9576                         dev_priv->display.update_wm = i9xx_update_wm;
9577                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9578                 }
9579         } else {
9580                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9581         }
9582 }
9583
9584 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9585 {
9586         uint32_t flags =
9587                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9588
9589         switch (flags) {
9590         case GEN6_PCODE_SUCCESS:
9591                 return 0;
9592         case GEN6_PCODE_UNIMPLEMENTED_CMD:
9593                 return -ENODEV;
9594         case GEN6_PCODE_ILLEGAL_CMD:
9595                 return -ENXIO;
9596         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9597         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9598                 return -EOVERFLOW;
9599         case GEN6_PCODE_TIMEOUT:
9600                 return -ETIMEDOUT;
9601         default:
9602                 MISSING_CASE(flags);
9603                 return 0;
9604         }
9605 }
9606
9607 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9608 {
9609         uint32_t flags =
9610                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9611
9612         switch (flags) {
9613         case GEN6_PCODE_SUCCESS:
9614                 return 0;
9615         case GEN6_PCODE_ILLEGAL_CMD:
9616                 return -ENXIO;
9617         case GEN7_PCODE_TIMEOUT:
9618                 return -ETIMEDOUT;
9619         case GEN7_PCODE_ILLEGAL_DATA:
9620                 return -EINVAL;
9621         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9622                 return -EOVERFLOW;
9623         default:
9624                 MISSING_CASE(flags);
9625                 return 0;
9626         }
9627 }
9628
9629 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9630 {
9631         int status;
9632
9633         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9634
9635         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9636          * use te fw I915_READ variants to reduce the amount of work
9637          * required when reading/writing.
9638          */
9639
9640         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9641                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9642                                  mbox, __builtin_return_address(0));
9643                 return -EAGAIN;
9644         }
9645
9646         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9647         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9648         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9649
9650         if (__intel_wait_for_register_fw(dev_priv,
9651                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9652                                          500, 0, NULL)) {
9653                 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9654                           mbox, __builtin_return_address(0));
9655                 return -ETIMEDOUT;
9656         }
9657
9658         *val = I915_READ_FW(GEN6_PCODE_DATA);
9659         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9660
9661         if (INTEL_GEN(dev_priv) > 6)
9662                 status = gen7_check_mailbox_status(dev_priv);
9663         else
9664                 status = gen6_check_mailbox_status(dev_priv);
9665
9666         if (status) {
9667                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9668                                  mbox, __builtin_return_address(0), status);
9669                 return status;
9670         }
9671
9672         return 0;
9673 }
9674
9675 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9676                                     u32 mbox, u32 val,
9677                                     int fast_timeout_us, int slow_timeout_ms)
9678 {
9679         int status;
9680
9681         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9682
9683         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9684          * use te fw I915_READ variants to reduce the amount of work
9685          * required when reading/writing.
9686          */
9687
9688         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9689                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9690                                  val, mbox, __builtin_return_address(0));
9691                 return -EAGAIN;
9692         }
9693
9694         I915_WRITE_FW(GEN6_PCODE_DATA, val);
9695         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9696         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9697
9698         if (__intel_wait_for_register_fw(dev_priv,
9699                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9700                                          fast_timeout_us, slow_timeout_ms,
9701                                          NULL)) {
9702                 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9703                           val, mbox, __builtin_return_address(0));
9704                 return -ETIMEDOUT;
9705         }
9706
9707         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9708
9709         if (INTEL_GEN(dev_priv) > 6)
9710                 status = gen7_check_mailbox_status(dev_priv);
9711         else
9712                 status = gen6_check_mailbox_status(dev_priv);
9713
9714         if (status) {
9715                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9716                                  val, mbox, __builtin_return_address(0), status);
9717                 return status;
9718         }
9719
9720         return 0;
9721 }
9722
9723 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9724                                   u32 request, u32 reply_mask, u32 reply,
9725                                   u32 *status)
9726 {
9727         u32 val = request;
9728
9729         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9730
9731         return *status || ((val & reply_mask) == reply);
9732 }
9733
9734 /**
9735  * skl_pcode_request - send PCODE request until acknowledgment
9736  * @dev_priv: device private
9737  * @mbox: PCODE mailbox ID the request is targeted for
9738  * @request: request ID
9739  * @reply_mask: mask used to check for request acknowledgment
9740  * @reply: value used to check for request acknowledgment
9741  * @timeout_base_ms: timeout for polling with preemption enabled
9742  *
9743  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9744  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9745  * The request is acknowledged once the PCODE reply dword equals @reply after
9746  * applying @reply_mask. Polling is first attempted with preemption enabled
9747  * for @timeout_base_ms and if this times out for another 50 ms with
9748  * preemption disabled.
9749  *
9750  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9751  * other error as reported by PCODE.
9752  */
9753 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9754                       u32 reply_mask, u32 reply, int timeout_base_ms)
9755 {
9756         u32 status;
9757         int ret;
9758
9759         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9760
9761 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9762                                    &status)
9763
9764         /*
9765          * Prime the PCODE by doing a request first. Normally it guarantees
9766          * that a subsequent request, at most @timeout_base_ms later, succeeds.
9767          * _wait_for() doesn't guarantee when its passed condition is evaluated
9768          * first, so send the first request explicitly.
9769          */
9770         if (COND) {
9771                 ret = 0;
9772                 goto out;
9773         }
9774         ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9775         if (!ret)
9776                 goto out;
9777
9778         /*
9779          * The above can time out if the number of requests was low (2 in the
9780          * worst case) _and_ PCODE was busy for some reason even after a
9781          * (queued) request and @timeout_base_ms delay. As a workaround retry
9782          * the poll with preemption disabled to maximize the number of
9783          * requests. Increase the timeout from @timeout_base_ms to 50ms to
9784          * account for interrupts that could reduce the number of these
9785          * requests, and for any quirks of the PCODE firmware that delays
9786          * the request completion.
9787          */
9788         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9789         WARN_ON_ONCE(timeout_base_ms > 3);
9790         preempt_disable();
9791         ret = wait_for_atomic(COND, 50);
9792         preempt_enable();
9793
9794 out:
9795         return ret ? ret : status;
9796 #undef COND
9797 }
9798
9799 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9800 {
9801         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9802
9803         /*
9804          * N = val - 0xb7
9805          * Slow = Fast = GPLL ref * N
9806          */
9807         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9808 }
9809
9810 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9811 {
9812         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9813
9814         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9815 }
9816
9817 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9818 {
9819         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9820
9821         /*
9822          * N = val / 2
9823          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9824          */
9825         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9826 }
9827
9828 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9829 {
9830         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9831
9832         /* CHV needs even values */
9833         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9834 }
9835
9836 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9837 {
9838         if (INTEL_GEN(dev_priv) >= 9)
9839                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9840                                          GEN9_FREQ_SCALER);
9841         else if (IS_CHERRYVIEW(dev_priv))
9842                 return chv_gpu_freq(dev_priv, val);
9843         else if (IS_VALLEYVIEW(dev_priv))
9844                 return byt_gpu_freq(dev_priv, val);
9845         else
9846                 return val * GT_FREQUENCY_MULTIPLIER;
9847 }
9848
9849 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9850 {
9851         if (INTEL_GEN(dev_priv) >= 9)
9852                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9853                                          GT_FREQUENCY_MULTIPLIER);
9854         else if (IS_CHERRYVIEW(dev_priv))
9855                 return chv_freq_opcode(dev_priv, val);
9856         else if (IS_VALLEYVIEW(dev_priv))
9857                 return byt_freq_opcode(dev_priv, val);
9858         else
9859                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9860 }
9861
9862 void intel_pm_setup(struct drm_i915_private *dev_priv)
9863 {
9864         mutex_init(&dev_priv->pcu_lock);
9865         mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9866
9867         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9868
9869         dev_priv->runtime_pm.suspended = false;
9870         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9871 }
9872
9873 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9874                              const i915_reg_t reg)
9875 {
9876         u32 lower, upper, tmp;
9877         int loop = 2;
9878
9879         /*
9880          * The register accessed do not need forcewake. We borrow
9881          * uncore lock to prevent concurrent access to range reg.
9882          */
9883         lockdep_assert_held(&dev_priv->uncore.lock);
9884
9885         /*
9886          * vlv and chv residency counters are 40 bits in width.
9887          * With a control bit, we can choose between upper or lower
9888          * 32bit window into this counter.
9889          *
9890          * Although we always use the counter in high-range mode elsewhere,
9891          * userspace may attempt to read the value before rc6 is initialised,
9892          * before we have set the default VLV_COUNTER_CONTROL value. So always
9893          * set the high bit to be safe.
9894          */
9895         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9896                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9897         upper = I915_READ_FW(reg);
9898         do {
9899                 tmp = upper;
9900
9901                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9902                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9903                 lower = I915_READ_FW(reg);
9904
9905                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9906                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9907                 upper = I915_READ_FW(reg);
9908         } while (upper != tmp && --loop);
9909
9910         /*
9911          * Everywhere else we always use VLV_COUNTER_CONTROL with the
9912          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9913          * now.
9914          */
9915
9916         return lower | (u64)upper << 8;
9917 }
9918
9919 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9920                            const i915_reg_t reg)
9921 {
9922         u64 time_hw, prev_hw, overflow_hw;
9923         unsigned int fw_domains;
9924         unsigned long flags;
9925         unsigned int i;
9926         u32 mul, div;
9927
9928         if (!HAS_RC6(dev_priv))
9929                 return 0;
9930
9931         /*
9932          * Store previous hw counter values for counter wrap-around handling.
9933          *
9934          * There are only four interesting registers and they live next to each
9935          * other so we can use the relative address, compared to the smallest
9936          * one as the index into driver storage.
9937          */
9938         i = (i915_mmio_reg_offset(reg) -
9939              i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9940         if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9941                 return 0;
9942
9943         fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9944
9945         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9946         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9947
9948         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9949         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9950                 mul = 1000000;
9951                 div = dev_priv->czclk_freq;
9952                 overflow_hw = BIT_ULL(40);
9953                 time_hw = vlv_residency_raw(dev_priv, reg);
9954         } else {
9955                 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9956                 if (IS_GEN9_LP(dev_priv)) {
9957                         mul = 10000;
9958                         div = 12;
9959                 } else {
9960                         mul = 1280;
9961                         div = 1;
9962                 }
9963
9964                 overflow_hw = BIT_ULL(32);
9965                 time_hw = I915_READ_FW(reg);
9966         }
9967
9968         /*
9969          * Counter wrap handling.
9970          *
9971          * But relying on a sufficient frequency of queries otherwise counters
9972          * can still wrap.
9973          */
9974         prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9975         dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9976
9977         /* RC6 delta from last sample. */
9978         if (time_hw >= prev_hw)
9979                 time_hw -= prev_hw;
9980         else
9981                 time_hw += overflow_hw - prev_hw;
9982
9983         /* Add delta to RC6 extended raw driver copy. */
9984         time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9985         dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9986
9987         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9988         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9989
9990         return mul_u64_u32_div(time_hw, mul, div);
9991 }
9992
9993 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9994 {
9995         u32 cagf;
9996
9997         if (INTEL_GEN(dev_priv) >= 9)
9998                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9999         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
10000                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
10001         else
10002                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
10003
10004         return  cagf;
10005 }
This page took 0.63824 seconds and 4 git commands to generate.