2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
31 #define pr_fmt(fmt) "rcu: " fmt
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
64 #include <linux/tick.h>
69 #ifdef MODULE_PARAM_PREFIX
70 #undef MODULE_PARAM_PREFIX
72 #define MODULE_PARAM_PREFIX "rcutree."
74 /* Data structures. */
77 * Steal a bit from the bottom of ->dynticks for idle entry/exit
78 * control. Initially this is for TLB flushing.
80 #define RCU_DYNTICK_CTRL_MASK 0x1
81 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
82 #ifndef rcu_eqs_special_exit
83 #define rcu_eqs_special_exit() do { } while (0)
86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
87 .dynticks_nesting = 1,
88 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
89 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
91 struct rcu_state rcu_state = {
92 .level = { &rcu_state.node[0] },
93 .gp_state = RCU_GP_IDLE,
94 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
95 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
98 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
99 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
100 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
103 /* Dump rcu_node combining tree at boot to verify correct setup. */
104 static bool dump_tree;
105 module_param(dump_tree, bool, 0444);
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 /* panic() on RCU Stall sysctl. */
117 int sysctl_panic_on_rcu_stall __read_mostly;
120 * The rcu_scheduler_active variable is initialized to the value
121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
122 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
123 * RCU can assume that there is but one task, allowing RCU to (for example)
124 * optimize synchronize_rcu() to a simple barrier(). When this variable
125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
126 * to detect real grace periods. This variable is also used to suppress
127 * boot-time false positives from lockdep-RCU error checking. Finally, it
128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
129 * is fully initialized, including all of its kthreads having been spawned.
131 int rcu_scheduler_active __read_mostly;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
146 static int rcu_scheduler_fully_active __read_mostly;
148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
149 unsigned long gps, unsigned long flags);
150 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
151 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
152 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
153 static void invoke_rcu_core(void);
154 static void invoke_rcu_callbacks(struct rcu_data *rdp);
155 static void rcu_report_exp_rdp(struct rcu_data *rdp);
156 static void sync_sched_exp_online_cleanup(int cpu);
158 /* rcuc/rcub kthread realtime priority */
159 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
160 module_param(kthread_prio, int, 0644);
162 /* Delay in jiffies for grace-period initialization delays, debug only. */
164 static int gp_preinit_delay;
165 module_param(gp_preinit_delay, int, 0444);
166 static int gp_init_delay;
167 module_param(gp_init_delay, int, 0444);
168 static int gp_cleanup_delay;
169 module_param(gp_cleanup_delay, int, 0444);
171 /* Retrieve RCU kthreads priority for rcutorture */
172 int rcu_get_gp_kthreads_prio(void)
176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
179 * Number of grace periods between delays, normalized by the duration of
180 * the delay. The longer the delay, the more the grace periods between
181 * each delay. The reason for this normalization is that it means that,
182 * for non-zero delays, the overall slowdown of grace periods is constant
183 * regardless of the duration of the delay. This arrangement balances
184 * the need for long delays to increase some race probabilities with the
185 * need for fast grace periods to increase other race probabilities.
187 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
190 * Compute the mask of online CPUs for the specified rcu_node structure.
191 * This will not be stable unless the rcu_node structure's ->lock is
192 * held, but the bit corresponding to the current CPU will be stable
195 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
197 return READ_ONCE(rnp->qsmaskinitnext);
201 * Return true if an RCU grace period is in progress. The READ_ONCE()s
202 * permit this function to be invoked without holding the root rcu_node
203 * structure's ->lock, but of course results can be subject to change.
205 static int rcu_gp_in_progress(void)
207 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
211 * Return the number of callbacks queued on the specified CPU.
212 * Handles both the nocbs and normal cases.
214 static long rcu_get_n_cbs_cpu(int cpu)
216 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
218 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
219 return rcu_segcblist_n_cbs(&rdp->cblist);
220 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
223 void rcu_softirq_qs(void)
226 rcu_preempt_deferred_qs(current);
230 * Record entry into an extended quiescent state. This is only to be
231 * called when not already in an extended quiescent state.
233 static void rcu_dynticks_eqs_enter(void)
235 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
239 * CPUs seeing atomic_add_return() must see prior RCU read-side
240 * critical sections, and we also must force ordering with the
243 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
244 /* Better be in an extended quiescent state! */
245 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
246 (seq & RCU_DYNTICK_CTRL_CTR));
247 /* Better not have special action (TLB flush) pending! */
248 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
249 (seq & RCU_DYNTICK_CTRL_MASK));
253 * Record exit from an extended quiescent state. This is only to be
254 * called from an extended quiescent state.
256 static void rcu_dynticks_eqs_exit(void)
258 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
262 * CPUs seeing atomic_add_return() must see prior idle sojourns,
263 * and we also must force ordering with the next RCU read-side
266 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
267 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
268 !(seq & RCU_DYNTICK_CTRL_CTR));
269 if (seq & RCU_DYNTICK_CTRL_MASK) {
270 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
271 smp_mb__after_atomic(); /* _exit after clearing mask. */
272 /* Prefer duplicate flushes to losing a flush. */
273 rcu_eqs_special_exit();
278 * Reset the current CPU's ->dynticks counter to indicate that the
279 * newly onlined CPU is no longer in an extended quiescent state.
280 * This will either leave the counter unchanged, or increment it
281 * to the next non-quiescent value.
283 * The non-atomic test/increment sequence works because the upper bits
284 * of the ->dynticks counter are manipulated only by the corresponding CPU,
285 * or when the corresponding CPU is offline.
287 static void rcu_dynticks_eqs_online(void)
289 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
293 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
297 * Is the current CPU in an extended quiescent state?
299 * No ordering, as we are sampling CPU-local information.
301 bool rcu_dynticks_curr_cpu_in_eqs(void)
303 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
305 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
309 * Snapshot the ->dynticks counter with full ordering so as to allow
310 * stable comparison of this counter with past and future snapshots.
312 int rcu_dynticks_snap(struct rcu_data *rdp)
314 int snap = atomic_add_return(0, &rdp->dynticks);
316 return snap & ~RCU_DYNTICK_CTRL_MASK;
320 * Return true if the snapshot returned from rcu_dynticks_snap()
321 * indicates that RCU is in an extended quiescent state.
323 static bool rcu_dynticks_in_eqs(int snap)
325 return !(snap & RCU_DYNTICK_CTRL_CTR);
329 * Return true if the CPU corresponding to the specified rcu_data
330 * structure has spent some time in an extended quiescent state since
331 * rcu_dynticks_snap() returned the specified snapshot.
333 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
335 return snap != rcu_dynticks_snap(rdp);
339 * Set the special (bottom) bit of the specified CPU so that it
340 * will take special action (such as flushing its TLB) on the
341 * next exit from an extended quiescent state. Returns true if
342 * the bit was successfully set, or false if the CPU was not in
343 * an extended quiescent state.
345 bool rcu_eqs_special_set(int cpu)
349 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
352 old = atomic_read(&rdp->dynticks);
353 if (old & RCU_DYNTICK_CTRL_CTR)
355 new = old | RCU_DYNTICK_CTRL_MASK;
356 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
361 * Let the RCU core know that this CPU has gone through the scheduler,
362 * which is a quiescent state. This is called when the need for a
363 * quiescent state is urgent, so we burn an atomic operation and full
364 * memory barriers to let the RCU core know about it, regardless of what
365 * this CPU might (or might not) do in the near future.
367 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
369 * The caller must have disabled interrupts and must not be idle.
371 static void __maybe_unused rcu_momentary_dyntick_idle(void)
375 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
376 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
377 &this_cpu_ptr(&rcu_data)->dynticks);
378 /* It is illegal to call this from idle state. */
379 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
380 rcu_preempt_deferred_qs(current);
384 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
386 * If the current CPU is idle or running at a first-level (not nested)
387 * interrupt from idle, return true. The caller must have at least
388 * disabled preemption.
390 static int rcu_is_cpu_rrupt_from_idle(void)
392 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
393 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
396 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
397 static long blimit = DEFAULT_RCU_BLIMIT;
398 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
399 static long qhimark = DEFAULT_RCU_QHIMARK;
400 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
401 static long qlowmark = DEFAULT_RCU_QLOMARK;
403 module_param(blimit, long, 0444);
404 module_param(qhimark, long, 0444);
405 module_param(qlowmark, long, 0444);
407 static ulong jiffies_till_first_fqs = ULONG_MAX;
408 static ulong jiffies_till_next_fqs = ULONG_MAX;
409 static bool rcu_kick_kthreads;
412 * How long the grace period must be before we start recruiting
413 * quiescent-state help from rcu_note_context_switch().
415 static ulong jiffies_till_sched_qs = ULONG_MAX;
416 module_param(jiffies_till_sched_qs, ulong, 0444);
417 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
418 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
421 * Make sure that we give the grace-period kthread time to detect any
422 * idle CPUs before taking active measures to force quiescent states.
423 * However, don't go below 100 milliseconds, adjusted upwards for really
426 static void adjust_jiffies_till_sched_qs(void)
430 /* If jiffies_till_sched_qs was specified, respect the request. */
431 if (jiffies_till_sched_qs != ULONG_MAX) {
432 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
435 j = READ_ONCE(jiffies_till_first_fqs) +
436 2 * READ_ONCE(jiffies_till_next_fqs);
437 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
438 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
439 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
440 WRITE_ONCE(jiffies_to_sched_qs, j);
443 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
446 int ret = kstrtoul(val, 0, &j);
449 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
450 adjust_jiffies_till_sched_qs();
455 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
458 int ret = kstrtoul(val, 0, &j);
461 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
462 adjust_jiffies_till_sched_qs();
467 static struct kernel_param_ops first_fqs_jiffies_ops = {
468 .set = param_set_first_fqs_jiffies,
469 .get = param_get_ulong,
472 static struct kernel_param_ops next_fqs_jiffies_ops = {
473 .set = param_set_next_fqs_jiffies,
474 .get = param_get_ulong,
477 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
478 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
479 module_param(rcu_kick_kthreads, bool, 0644);
481 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
482 static void force_quiescent_state(void);
483 static int rcu_pending(void);
486 * Return the number of RCU GPs completed thus far for debug & stats.
488 unsigned long rcu_get_gp_seq(void)
490 return READ_ONCE(rcu_state.gp_seq);
492 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
495 * Return the number of RCU expedited batches completed thus far for
496 * debug & stats. Odd numbers mean that a batch is in progress, even
497 * numbers mean idle. The value returned will thus be roughly double
498 * the cumulative batches since boot.
500 unsigned long rcu_exp_batches_completed(void)
502 return rcu_state.expedited_sequence;
504 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
507 * Force a quiescent state.
509 void rcu_force_quiescent_state(void)
511 force_quiescent_state();
513 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
516 * Convert a ->gp_state value to a character string.
518 static const char *gp_state_getname(short gs)
520 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
522 return gp_state_names[gs];
526 * Show the state of the grace-period kthreads.
528 void show_rcu_gp_kthreads(void)
532 struct rcu_data *rdp;
533 struct rcu_node *rnp;
535 j = jiffies - READ_ONCE(rcu_state.gp_activity);
536 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %ld\n",
537 rcu_state.name, gp_state_getname(rcu_state.gp_state),
538 rcu_state.gp_state, rcu_state.gp_kthread->state, j);
539 rcu_for_each_node_breadth_first(rnp) {
540 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
542 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
543 rnp->grplo, rnp->grphi, rnp->gp_seq,
545 if (!rcu_is_leaf_node(rnp))
547 for_each_leaf_node_possible_cpu(rnp, cpu) {
548 rdp = per_cpu_ptr(&rcu_data, cpu);
550 ULONG_CMP_GE(rcu_state.gp_seq,
553 pr_info("\tcpu %d ->gp_seq_needed %lu\n",
554 cpu, rdp->gp_seq_needed);
557 /* sched_show_task(rcu_state.gp_kthread); */
559 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
562 * Send along grace-period-related data for rcutorture diagnostics.
564 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
565 unsigned long *gp_seq)
570 case RCU_SCHED_FLAVOR:
571 *flags = READ_ONCE(rcu_state.gp_flags);
572 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
578 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
581 * Return the root node of the rcu_state structure.
583 static struct rcu_node *rcu_get_root(void)
585 return &rcu_state.node[0];
589 * Enter an RCU extended quiescent state, which can be either the
590 * idle loop or adaptive-tickless usermode execution.
592 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
593 * the possibility of usermode upcalls having messed up our count
594 * of interrupt nesting level during the prior busy period.
596 static void rcu_eqs_enter(bool user)
598 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
600 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
601 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
602 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
603 rdp->dynticks_nesting == 0);
604 if (rdp->dynticks_nesting != 1) {
605 rdp->dynticks_nesting--;
609 lockdep_assert_irqs_disabled();
610 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
611 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
612 rdp = this_cpu_ptr(&rcu_data);
613 do_nocb_deferred_wakeup(rdp);
614 rcu_prepare_for_idle();
615 rcu_preempt_deferred_qs(current);
616 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
617 rcu_dynticks_eqs_enter();
618 rcu_dynticks_task_enter();
622 * rcu_idle_enter - inform RCU that current CPU is entering idle
624 * Enter idle mode, in other words, -leave- the mode in which RCU
625 * read-side critical sections can occur. (Though RCU read-side
626 * critical sections can occur in irq handlers in idle, a possibility
627 * handled by irq_enter() and irq_exit().)
629 * If you add or remove a call to rcu_idle_enter(), be sure to test with
630 * CONFIG_RCU_EQS_DEBUG=y.
632 void rcu_idle_enter(void)
634 lockdep_assert_irqs_disabled();
635 rcu_eqs_enter(false);
638 #ifdef CONFIG_NO_HZ_FULL
640 * rcu_user_enter - inform RCU that we are resuming userspace.
642 * Enter RCU idle mode right before resuming userspace. No use of RCU
643 * is permitted between this call and rcu_user_exit(). This way the
644 * CPU doesn't need to maintain the tick for RCU maintenance purposes
645 * when the CPU runs in userspace.
647 * If you add or remove a call to rcu_user_enter(), be sure to test with
648 * CONFIG_RCU_EQS_DEBUG=y.
650 void rcu_user_enter(void)
652 lockdep_assert_irqs_disabled();
655 #endif /* CONFIG_NO_HZ_FULL */
658 * If we are returning from the outermost NMI handler that interrupted an
659 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
660 * to let the RCU grace-period handling know that the CPU is back to
663 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
664 * with CONFIG_RCU_EQS_DEBUG=y.
666 static __always_inline void rcu_nmi_exit_common(bool irq)
668 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
671 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
672 * (We are exiting an NMI handler, so RCU better be paying attention
675 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
676 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
679 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
680 * leave it in non-RCU-idle state.
682 if (rdp->dynticks_nmi_nesting != 1) {
683 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
684 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
685 rdp->dynticks_nmi_nesting - 2);
689 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
690 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
691 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
694 rcu_prepare_for_idle();
696 rcu_dynticks_eqs_enter();
699 rcu_dynticks_task_enter();
703 * rcu_nmi_exit - inform RCU of exit from NMI context
704 * @irq: Is this call from rcu_irq_exit?
706 * If you add or remove a call to rcu_nmi_exit(), be sure to test
707 * with CONFIG_RCU_EQS_DEBUG=y.
709 void rcu_nmi_exit(void)
711 rcu_nmi_exit_common(false);
715 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
717 * Exit from an interrupt handler, which might possibly result in entering
718 * idle mode, in other words, leaving the mode in which read-side critical
719 * sections can occur. The caller must have disabled interrupts.
721 * This code assumes that the idle loop never does anything that might
722 * result in unbalanced calls to irq_enter() and irq_exit(). If your
723 * architecture's idle loop violates this assumption, RCU will give you what
724 * you deserve, good and hard. But very infrequently and irreproducibly.
726 * Use things like work queues to work around this limitation.
728 * You have been warned.
730 * If you add or remove a call to rcu_irq_exit(), be sure to test with
731 * CONFIG_RCU_EQS_DEBUG=y.
733 void rcu_irq_exit(void)
735 lockdep_assert_irqs_disabled();
736 rcu_nmi_exit_common(true);
740 * Wrapper for rcu_irq_exit() where interrupts are enabled.
742 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
743 * with CONFIG_RCU_EQS_DEBUG=y.
745 void rcu_irq_exit_irqson(void)
749 local_irq_save(flags);
751 local_irq_restore(flags);
755 * Exit an RCU extended quiescent state, which can be either the
756 * idle loop or adaptive-tickless usermode execution.
758 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
759 * allow for the possibility of usermode upcalls messing up our count of
760 * interrupt nesting level during the busy period that is just now starting.
762 static void rcu_eqs_exit(bool user)
764 struct rcu_data *rdp;
767 lockdep_assert_irqs_disabled();
768 rdp = this_cpu_ptr(&rcu_data);
769 oldval = rdp->dynticks_nesting;
770 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
772 rdp->dynticks_nesting++;
775 rcu_dynticks_task_exit();
776 rcu_dynticks_eqs_exit();
777 rcu_cleanup_after_idle();
778 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
779 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
780 WRITE_ONCE(rdp->dynticks_nesting, 1);
781 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
782 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
786 * rcu_idle_exit - inform RCU that current CPU is leaving idle
788 * Exit idle mode, in other words, -enter- the mode in which RCU
789 * read-side critical sections can occur.
791 * If you add or remove a call to rcu_idle_exit(), be sure to test with
792 * CONFIG_RCU_EQS_DEBUG=y.
794 void rcu_idle_exit(void)
798 local_irq_save(flags);
800 local_irq_restore(flags);
803 #ifdef CONFIG_NO_HZ_FULL
805 * rcu_user_exit - inform RCU that we are exiting userspace.
807 * Exit RCU idle mode while entering the kernel because it can
808 * run a RCU read side critical section anytime.
810 * If you add or remove a call to rcu_user_exit(), be sure to test with
811 * CONFIG_RCU_EQS_DEBUG=y.
813 void rcu_user_exit(void)
817 #endif /* CONFIG_NO_HZ_FULL */
820 * rcu_nmi_enter_common - inform RCU of entry to NMI context
821 * @irq: Is this call from rcu_irq_enter?
823 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
824 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
825 * that the CPU is active. This implementation permits nested NMIs, as
826 * long as the nesting level does not overflow an int. (You will probably
827 * run out of stack space first.)
829 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
830 * with CONFIG_RCU_EQS_DEBUG=y.
832 static __always_inline void rcu_nmi_enter_common(bool irq)
834 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
837 /* Complain about underflow. */
838 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
841 * If idle from RCU viewpoint, atomically increment ->dynticks
842 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
843 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
844 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
845 * to be in the outermost NMI handler that interrupted an RCU-idle
846 * period (observation due to Andy Lutomirski).
848 if (rcu_dynticks_curr_cpu_in_eqs()) {
851 rcu_dynticks_task_exit();
853 rcu_dynticks_eqs_exit();
856 rcu_cleanup_after_idle();
860 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
861 rdp->dynticks_nmi_nesting,
862 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
863 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
864 rdp->dynticks_nmi_nesting + incby);
869 * rcu_nmi_enter - inform RCU of entry to NMI context
871 void rcu_nmi_enter(void)
873 rcu_nmi_enter_common(false);
877 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
879 * Enter an interrupt handler, which might possibly result in exiting
880 * idle mode, in other words, entering the mode in which read-side critical
881 * sections can occur. The caller must have disabled interrupts.
883 * Note that the Linux kernel is fully capable of entering an interrupt
884 * handler that it never exits, for example when doing upcalls to user mode!
885 * This code assumes that the idle loop never does upcalls to user mode.
886 * If your architecture's idle loop does do upcalls to user mode (or does
887 * anything else that results in unbalanced calls to the irq_enter() and
888 * irq_exit() functions), RCU will give you what you deserve, good and hard.
889 * But very infrequently and irreproducibly.
891 * Use things like work queues to work around this limitation.
893 * You have been warned.
895 * If you add or remove a call to rcu_irq_enter(), be sure to test with
896 * CONFIG_RCU_EQS_DEBUG=y.
898 void rcu_irq_enter(void)
900 lockdep_assert_irqs_disabled();
901 rcu_nmi_enter_common(true);
905 * Wrapper for rcu_irq_enter() where interrupts are enabled.
907 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
908 * with CONFIG_RCU_EQS_DEBUG=y.
910 void rcu_irq_enter_irqson(void)
914 local_irq_save(flags);
916 local_irq_restore(flags);
920 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
922 * Return true if RCU is watching the running CPU, which means that this
923 * CPU can safely enter RCU read-side critical sections. In other words,
924 * if the current CPU is not in its idle loop or is in an interrupt or
925 * NMI handler, return true.
927 bool notrace rcu_is_watching(void)
931 preempt_disable_notrace();
932 ret = !rcu_dynticks_curr_cpu_in_eqs();
933 preempt_enable_notrace();
936 EXPORT_SYMBOL_GPL(rcu_is_watching);
939 * If a holdout task is actually running, request an urgent quiescent
940 * state from its CPU. This is unsynchronized, so migrations can cause
941 * the request to go to the wrong CPU. Which is OK, all that will happen
942 * is that the CPU's next context switch will be a bit slower and next
943 * time around this task will generate another request.
945 void rcu_request_urgent_qs_task(struct task_struct *t)
952 return; /* This task is not running on that CPU. */
953 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
956 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
959 * Is the current CPU online as far as RCU is concerned?
961 * Disable preemption to avoid false positives that could otherwise
962 * happen due to the current CPU number being sampled, this task being
963 * preempted, its old CPU being taken offline, resuming on some other CPU,
964 * then determining that its old CPU is now offline.
966 * Disable checking if in an NMI handler because we cannot safely
967 * report errors from NMI handlers anyway. In addition, it is OK to use
968 * RCU on an offline processor during initial boot, hence the check for
969 * rcu_scheduler_fully_active.
971 bool rcu_lockdep_current_cpu_online(void)
973 struct rcu_data *rdp;
974 struct rcu_node *rnp;
977 if (in_nmi() || !rcu_scheduler_fully_active)
980 rdp = this_cpu_ptr(&rcu_data);
982 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
987 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
989 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
992 * We are reporting a quiescent state on behalf of some other CPU, so
993 * it is our responsibility to check for and handle potential overflow
994 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
995 * After all, the CPU might be in deep idle state, and thus executing no
998 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1000 raw_lockdep_assert_held_rcu_node(rnp);
1001 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1003 WRITE_ONCE(rdp->gpwrap, true);
1004 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1005 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1009 * Snapshot the specified CPU's dynticks counter so that we can later
1010 * credit them with an implicit quiescent state. Return 1 if this CPU
1011 * is in dynticks idle mode, which is an extended quiescent state.
1013 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1015 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1016 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1017 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1018 rcu_gpnum_ovf(rdp->mynode, rdp);
1025 * Handler for the irq_work request posted when a grace period has
1026 * gone on for too long, but not yet long enough for an RCU CPU
1027 * stall warning. Set state appropriately, but just complain if
1028 * there is unexpected state on entry.
1030 static void rcu_iw_handler(struct irq_work *iwp)
1032 struct rcu_data *rdp;
1033 struct rcu_node *rnp;
1035 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1037 raw_spin_lock_rcu_node(rnp);
1038 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1039 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1040 rdp->rcu_iw_pending = false;
1042 raw_spin_unlock_rcu_node(rnp);
1046 * Return true if the specified CPU has passed through a quiescent
1047 * state by virtue of being in or having passed through an dynticks
1048 * idle state since the last call to dyntick_save_progress_counter()
1049 * for this same CPU, or by virtue of having been offline.
1051 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1056 struct rcu_node *rnp = rdp->mynode;
1059 * If the CPU passed through or entered a dynticks idle phase with
1060 * no active irq/NMI handlers, then we can safely pretend that the CPU
1061 * already acknowledged the request to pass through a quiescent
1062 * state. Either way, that CPU cannot possibly be in an RCU
1063 * read-side critical section that started before the beginning
1064 * of the current RCU grace period.
1066 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1067 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1068 rcu_gpnum_ovf(rnp, rdp);
1072 /* If waiting too long on an offline CPU, complain. */
1073 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1074 time_after(jiffies, rcu_state.gp_start + HZ)) {
1076 struct rcu_node *rnp1;
1078 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1079 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1080 __func__, rnp->grplo, rnp->grphi, rnp->level,
1081 (long)rnp->gp_seq, (long)rnp->completedqs);
1082 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1083 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1084 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1085 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1086 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1087 __func__, rdp->cpu, ".o"[onl],
1088 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1089 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1090 return 1; /* Break things loose after complaining. */
1094 * A CPU running for an extended time within the kernel can
1095 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1096 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1097 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1098 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1099 * variable are safe because the assignments are repeated if this
1100 * CPU failed to pass through a quiescent state. This code
1101 * also checks .jiffies_resched in case jiffies_to_sched_qs
1104 jtsq = READ_ONCE(jiffies_to_sched_qs);
1105 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1106 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1107 if (!READ_ONCE(*rnhqp) &&
1108 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1109 time_after(jiffies, rcu_state.jiffies_resched))) {
1110 WRITE_ONCE(*rnhqp, true);
1111 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1112 smp_store_release(ruqp, true);
1113 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1114 WRITE_ONCE(*ruqp, true);
1118 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
1119 * The above code handles this, but only for straight cond_resched().
1120 * And some in-kernel loops check need_resched() before calling
1121 * cond_resched(), which defeats the above code for CPUs that are
1122 * running in-kernel with scheduling-clock interrupts disabled.
1123 * So hit them over the head with the resched_cpu() hammer!
1125 if (tick_nohz_full_cpu(rdp->cpu) &&
1127 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1128 resched_cpu(rdp->cpu);
1129 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1133 * If more than halfway to RCU CPU stall-warning time, invoke
1134 * resched_cpu() more frequently to try to loosen things up a bit.
1135 * Also check to see if the CPU is getting hammered with interrupts,
1136 * but only once per grace period, just to keep the IPIs down to
1139 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1140 if (time_after(jiffies,
1141 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1142 resched_cpu(rdp->cpu);
1143 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1145 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1146 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1147 (rnp->ffmask & rdp->grpmask)) {
1148 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1149 rdp->rcu_iw_pending = true;
1150 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1151 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1158 static void record_gp_stall_check_time(void)
1160 unsigned long j = jiffies;
1163 rcu_state.gp_start = j;
1164 j1 = rcu_jiffies_till_stall_check();
1165 /* Record ->gp_start before ->jiffies_stall. */
1166 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1167 rcu_state.jiffies_resched = j + j1 / 2;
1168 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
1172 * Complain about starvation of grace-period kthread.
1174 static void rcu_check_gp_kthread_starvation(void)
1176 struct task_struct *gpk = rcu_state.gp_kthread;
1179 j = jiffies - READ_ONCE(rcu_state.gp_activity);
1181 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1183 (long)rcu_seq_current(&rcu_state.gp_seq),
1185 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1186 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1188 pr_err("RCU grace-period kthread stack dump:\n");
1189 sched_show_task(gpk);
1190 wake_up_process(gpk);
1196 * Dump stacks of all tasks running on stalled CPUs. First try using
1197 * NMIs, but fall back to manual remote stack tracing on architectures
1198 * that don't support NMI-based stack dumps. The NMI-triggered stack
1199 * traces are more accurate because they are printed by the target CPU.
1201 static void rcu_dump_cpu_stacks(void)
1204 unsigned long flags;
1205 struct rcu_node *rnp;
1207 rcu_for_each_leaf_node(rnp) {
1208 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1209 for_each_leaf_node_possible_cpu(rnp, cpu)
1210 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1211 if (!trigger_single_cpu_backtrace(cpu))
1213 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1218 * If too much time has passed in the current grace period, and if
1219 * so configured, go kick the relevant kthreads.
1221 static void rcu_stall_kick_kthreads(void)
1225 if (!rcu_kick_kthreads)
1227 j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1228 if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1229 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1230 WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1232 rcu_ftrace_dump(DUMP_ALL);
1233 wake_up_process(rcu_state.gp_kthread);
1234 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
1238 static void panic_on_rcu_stall(void)
1240 if (sysctl_panic_on_rcu_stall)
1241 panic("RCU Stall\n");
1244 static void print_other_cpu_stall(unsigned long gp_seq)
1247 unsigned long flags;
1251 struct rcu_node *rnp = rcu_get_root();
1254 /* Kick and suppress, if so configured. */
1255 rcu_stall_kick_kthreads();
1256 if (rcu_cpu_stall_suppress)
1260 * OK, time to rat on our buddy...
1261 * See Documentation/RCU/stallwarn.txt for info on how to debug
1262 * RCU CPU stall warnings.
1264 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
1265 print_cpu_stall_info_begin();
1266 rcu_for_each_leaf_node(rnp) {
1267 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1268 ndetected += rcu_print_task_stall(rnp);
1269 if (rnp->qsmask != 0) {
1270 for_each_leaf_node_possible_cpu(rnp, cpu)
1271 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1272 print_cpu_stall_info(cpu);
1276 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1279 print_cpu_stall_info_end();
1280 for_each_possible_cpu(cpu)
1281 totqlen += rcu_get_n_cbs_cpu(cpu);
1282 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1283 smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1284 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1286 rcu_dump_cpu_stacks();
1288 /* Complain about tasks blocking the grace period. */
1289 rcu_print_detail_task_stall();
1291 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
1292 pr_err("INFO: Stall ended before state dump start\n");
1295 gpa = READ_ONCE(rcu_state.gp_activity);
1296 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1297 rcu_state.name, j - gpa, j, gpa,
1298 READ_ONCE(jiffies_till_next_fqs),
1299 rcu_get_root()->qsmask);
1300 /* In this case, the current CPU might be at fault. */
1301 sched_show_task(current);
1304 /* Rewrite if needed in case of slow consoles. */
1305 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1306 WRITE_ONCE(rcu_state.jiffies_stall,
1307 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1309 rcu_check_gp_kthread_starvation();
1311 panic_on_rcu_stall();
1313 force_quiescent_state(); /* Kick them all. */
1316 static void print_cpu_stall(void)
1319 unsigned long flags;
1320 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1321 struct rcu_node *rnp = rcu_get_root();
1324 /* Kick and suppress, if so configured. */
1325 rcu_stall_kick_kthreads();
1326 if (rcu_cpu_stall_suppress)
1330 * OK, time to rat on ourselves...
1331 * See Documentation/RCU/stallwarn.txt for info on how to debug
1332 * RCU CPU stall warnings.
1334 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
1335 print_cpu_stall_info_begin();
1336 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1337 print_cpu_stall_info(smp_processor_id());
1338 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1339 print_cpu_stall_info_end();
1340 for_each_possible_cpu(cpu)
1341 totqlen += rcu_get_n_cbs_cpu(cpu);
1342 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1343 jiffies - rcu_state.gp_start,
1344 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1346 rcu_check_gp_kthread_starvation();
1348 rcu_dump_cpu_stacks();
1350 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1351 /* Rewrite if needed in case of slow consoles. */
1352 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1353 WRITE_ONCE(rcu_state.jiffies_stall,
1354 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1357 panic_on_rcu_stall();
1360 * Attempt to revive the RCU machinery by forcing a context switch.
1362 * A context switch would normally allow the RCU state machine to make
1363 * progress and it could be we're stuck in kernel space without context
1364 * switches for an entirely unreasonable amount of time.
1366 set_tsk_need_resched(current);
1367 set_preempt_need_resched();
1370 static void check_cpu_stall(struct rcu_data *rdp)
1378 struct rcu_node *rnp;
1380 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1381 !rcu_gp_in_progress())
1383 rcu_stall_kick_kthreads();
1387 * Lots of memory barriers to reject false positives.
1389 * The idea is to pick up rcu_state.gp_seq, then
1390 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1391 * another copy of rcu_state.gp_seq. These values are updated in
1392 * the opposite order with memory barriers (or equivalent) during
1393 * grace-period initialization and cleanup. Now, a false positive
1394 * can occur if we get an new value of rcu_state.gp_start and a old
1395 * value of rcu_state.jiffies_stall. But given the memory barriers,
1396 * the only way that this can happen is if one grace period ends
1397 * and another starts between these two fetches. This is detected
1398 * by comparing the second fetch of rcu_state.gp_seq with the
1399 * previous fetch from rcu_state.gp_seq.
1401 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1402 * and rcu_state.gp_start suffice to forestall false positives.
1404 gs1 = READ_ONCE(rcu_state.gp_seq);
1405 smp_rmb(); /* Pick up ->gp_seq first... */
1406 js = READ_ONCE(rcu_state.jiffies_stall);
1407 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1408 gps = READ_ONCE(rcu_state.gp_start);
1409 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1410 gs2 = READ_ONCE(rcu_state.gp_seq);
1412 ULONG_CMP_LT(j, js) ||
1413 ULONG_CMP_GE(gps, js))
1414 return; /* No stall or GP completed since entering function. */
1416 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1417 if (rcu_gp_in_progress() &&
1418 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1419 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1421 /* We haven't checked in, so go dump stack. */
1424 } else if (rcu_gp_in_progress() &&
1425 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1426 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1428 /* They had a few time units to dump stack, so complain. */
1429 print_other_cpu_stall(gs2);
1434 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1436 * Set the stall-warning timeout way off into the future, thus preventing
1437 * any RCU CPU stall-warning messages from appearing in the current set of
1438 * RCU grace periods.
1440 * The caller must disable hard irqs.
1442 void rcu_cpu_stall_reset(void)
1444 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
1447 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1448 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1449 unsigned long gp_seq_req, const char *s)
1451 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1452 rnp->level, rnp->grplo, rnp->grphi, s);
1456 * rcu_start_this_gp - Request the start of a particular grace period
1457 * @rnp_start: The leaf node of the CPU from which to start.
1458 * @rdp: The rcu_data corresponding to the CPU from which to start.
1459 * @gp_seq_req: The gp_seq of the grace period to start.
1461 * Start the specified grace period, as needed to handle newly arrived
1462 * callbacks. The required future grace periods are recorded in each
1463 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1464 * is reason to awaken the grace-period kthread.
1466 * The caller must hold the specified rcu_node structure's ->lock, which
1467 * is why the caller is responsible for waking the grace-period kthread.
1469 * Returns true if the GP thread needs to be awakened else false.
1471 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1472 unsigned long gp_seq_req)
1475 struct rcu_node *rnp;
1478 * Use funnel locking to either acquire the root rcu_node
1479 * structure's lock or bail out if the need for this grace period
1480 * has already been recorded -- or if that grace period has in
1481 * fact already started. If there is already a grace period in
1482 * progress in a non-leaf node, no recording is needed because the
1483 * end of the grace period will scan the leaf rcu_node structures.
1484 * Note that rnp_start->lock must not be released.
1486 raw_lockdep_assert_held_rcu_node(rnp_start);
1487 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1488 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1489 if (rnp != rnp_start)
1490 raw_spin_lock_rcu_node(rnp);
1491 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1492 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1493 (rnp != rnp_start &&
1494 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1495 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1499 rnp->gp_seq_needed = gp_seq_req;
1500 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1502 * We just marked the leaf or internal node, and a
1503 * grace period is in progress, which means that
1504 * rcu_gp_cleanup() will see the marking. Bail to
1505 * reduce contention.
1507 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1508 TPS("Startedleaf"));
1511 if (rnp != rnp_start && rnp->parent != NULL)
1512 raw_spin_unlock_rcu_node(rnp);
1514 break; /* At root, and perhaps also leaf. */
1517 /* If GP already in progress, just leave, otherwise start one. */
1518 if (rcu_gp_in_progress()) {
1519 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1522 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1523 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1524 rcu_state.gp_req_activity = jiffies;
1525 if (!rcu_state.gp_kthread) {
1526 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1529 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1530 ret = true; /* Caller must wake GP kthread. */
1532 /* Push furthest requested GP to leaf node and rcu_data structure. */
1533 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1534 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1535 rdp->gp_seq_needed = rnp->gp_seq_needed;
1537 if (rnp != rnp_start)
1538 raw_spin_unlock_rcu_node(rnp);
1543 * Clean up any old requests for the just-ended grace period. Also return
1544 * whether any additional grace periods have been requested.
1546 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1551 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1553 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1554 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1555 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1560 * Awaken the grace-period kthread. Don't do a self-awaken, and don't
1561 * bother awakening when there is nothing for the grace-period kthread
1562 * to do (as in several CPUs raced to awaken, and we lost), and finally
1563 * don't try to awaken a kthread that has not yet been created.
1565 static void rcu_gp_kthread_wake(void)
1567 if (current == rcu_state.gp_kthread ||
1568 !READ_ONCE(rcu_state.gp_flags) ||
1569 !rcu_state.gp_kthread)
1571 swake_up_one(&rcu_state.gp_wq);
1575 * If there is room, assign a ->gp_seq number to any callbacks on this
1576 * CPU that have not already been assigned. Also accelerate any callbacks
1577 * that were previously assigned a ->gp_seq number that has since proven
1578 * to be too conservative, which can happen if callbacks get assigned a
1579 * ->gp_seq number while RCU is idle, but with reference to a non-root
1580 * rcu_node structure. This function is idempotent, so it does not hurt
1581 * to call it repeatedly. Returns an flag saying that we should awaken
1582 * the RCU grace-period kthread.
1584 * The caller must hold rnp->lock with interrupts disabled.
1586 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1588 unsigned long gp_seq_req;
1591 raw_lockdep_assert_held_rcu_node(rnp);
1593 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1594 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1598 * Callbacks are often registered with incomplete grace-period
1599 * information. Something about the fact that getting exact
1600 * information requires acquiring a global lock... RCU therefore
1601 * makes a conservative estimate of the grace period number at which
1602 * a given callback will become ready to invoke. The following
1603 * code checks this estimate and improves it when possible, thus
1604 * accelerating callback invocation to an earlier grace-period
1607 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1608 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1609 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1611 /* Trace depending on how much we were able to accelerate. */
1612 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1613 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1615 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1620 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1621 * rcu_node structure's ->lock be held. It consults the cached value
1622 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1623 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1624 * while holding the leaf rcu_node structure's ->lock.
1626 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1627 struct rcu_data *rdp)
1632 lockdep_assert_irqs_disabled();
1633 c = rcu_seq_snap(&rcu_state.gp_seq);
1634 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1635 /* Old request still live, so mark recent callbacks. */
1636 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1639 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1640 needwake = rcu_accelerate_cbs(rnp, rdp);
1641 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1643 rcu_gp_kthread_wake();
1647 * Move any callbacks whose grace period has completed to the
1648 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1649 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1650 * sublist. This function is idempotent, so it does not hurt to
1651 * invoke it repeatedly. As long as it is not invoked -too- often...
1652 * Returns true if the RCU grace-period kthread needs to be awakened.
1654 * The caller must hold rnp->lock with interrupts disabled.
1656 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1658 raw_lockdep_assert_held_rcu_node(rnp);
1660 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1661 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1665 * Find all callbacks whose ->gp_seq numbers indicate that they
1666 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1668 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1670 /* Classify any remaining callbacks. */
1671 return rcu_accelerate_cbs(rnp, rdp);
1675 * Update CPU-local rcu_data state to record the beginnings and ends of
1676 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1677 * structure corresponding to the current CPU, and must have irqs disabled.
1678 * Returns true if the grace-period kthread needs to be awakened.
1680 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1685 raw_lockdep_assert_held_rcu_node(rnp);
1687 if (rdp->gp_seq == rnp->gp_seq)
1688 return false; /* Nothing to do. */
1690 /* Handle the ends of any preceding grace periods first. */
1691 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1692 unlikely(READ_ONCE(rdp->gpwrap))) {
1693 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1694 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1696 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1699 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1700 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1701 unlikely(READ_ONCE(rdp->gpwrap))) {
1703 * If the current grace period is waiting for this CPU,
1704 * set up to detect a quiescent state, otherwise don't
1705 * go looking for one.
1707 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1708 need_gp = !!(rnp->qsmask & rdp->grpmask);
1709 rdp->cpu_no_qs.b.norm = need_gp;
1710 rdp->core_needs_qs = need_gp;
1711 zero_cpu_stall_ticks(rdp);
1713 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1714 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1715 rdp->gp_seq_needed = rnp->gp_seq_needed;
1716 WRITE_ONCE(rdp->gpwrap, false);
1717 rcu_gpnum_ovf(rnp, rdp);
1721 static void note_gp_changes(struct rcu_data *rdp)
1723 unsigned long flags;
1725 struct rcu_node *rnp;
1727 local_irq_save(flags);
1729 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1730 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1731 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1732 local_irq_restore(flags);
1735 needwake = __note_gp_changes(rnp, rdp);
1736 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1738 rcu_gp_kthread_wake();
1741 static void rcu_gp_slow(int delay)
1744 !(rcu_seq_ctr(rcu_state.gp_seq) %
1745 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1746 schedule_timeout_uninterruptible(delay);
1750 * Initialize a new grace period. Return false if no grace period required.
1752 static bool rcu_gp_init(void)
1754 unsigned long flags;
1755 unsigned long oldmask;
1757 struct rcu_data *rdp;
1758 struct rcu_node *rnp = rcu_get_root();
1760 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1761 raw_spin_lock_irq_rcu_node(rnp);
1762 if (!READ_ONCE(rcu_state.gp_flags)) {
1763 /* Spurious wakeup, tell caller to go back to sleep. */
1764 raw_spin_unlock_irq_rcu_node(rnp);
1767 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1769 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1771 * Grace period already in progress, don't start another.
1772 * Not supposed to be able to happen.
1774 raw_spin_unlock_irq_rcu_node(rnp);
1778 /* Advance to a new grace period and initialize state. */
1779 record_gp_stall_check_time();
1780 /* Record GP times before starting GP, hence rcu_seq_start(). */
1781 rcu_seq_start(&rcu_state.gp_seq);
1782 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1783 raw_spin_unlock_irq_rcu_node(rnp);
1786 * Apply per-leaf buffered online and offline operations to the
1787 * rcu_node tree. Note that this new grace period need not wait
1788 * for subsequent online CPUs, and that quiescent-state forcing
1789 * will handle subsequent offline CPUs.
1791 rcu_state.gp_state = RCU_GP_ONOFF;
1792 rcu_for_each_leaf_node(rnp) {
1793 raw_spin_lock(&rcu_state.ofl_lock);
1794 raw_spin_lock_irq_rcu_node(rnp);
1795 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1796 !rnp->wait_blkd_tasks) {
1797 /* Nothing to do on this leaf rcu_node structure. */
1798 raw_spin_unlock_irq_rcu_node(rnp);
1799 raw_spin_unlock(&rcu_state.ofl_lock);
1803 /* Record old state, apply changes to ->qsmaskinit field. */
1804 oldmask = rnp->qsmaskinit;
1805 rnp->qsmaskinit = rnp->qsmaskinitnext;
1807 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1808 if (!oldmask != !rnp->qsmaskinit) {
1809 if (!oldmask) { /* First online CPU for rcu_node. */
1810 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1811 rcu_init_new_rnp(rnp);
1812 } else if (rcu_preempt_has_tasks(rnp)) {
1813 rnp->wait_blkd_tasks = true; /* blocked tasks */
1814 } else { /* Last offline CPU and can propagate. */
1815 rcu_cleanup_dead_rnp(rnp);
1820 * If all waited-on tasks from prior grace period are
1821 * done, and if all this rcu_node structure's CPUs are
1822 * still offline, propagate up the rcu_node tree and
1823 * clear ->wait_blkd_tasks. Otherwise, if one of this
1824 * rcu_node structure's CPUs has since come back online,
1825 * simply clear ->wait_blkd_tasks.
1827 if (rnp->wait_blkd_tasks &&
1828 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1829 rnp->wait_blkd_tasks = false;
1830 if (!rnp->qsmaskinit)
1831 rcu_cleanup_dead_rnp(rnp);
1834 raw_spin_unlock_irq_rcu_node(rnp);
1835 raw_spin_unlock(&rcu_state.ofl_lock);
1837 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1840 * Set the quiescent-state-needed bits in all the rcu_node
1841 * structures for all currently online CPUs in breadth-first
1842 * order, starting from the root rcu_node structure, relying on the
1843 * layout of the tree within the rcu_state.node[] array. Note that
1844 * other CPUs will access only the leaves of the hierarchy, thus
1845 * seeing that no grace period is in progress, at least until the
1846 * corresponding leaf node has been initialized.
1848 * The grace period cannot complete until the initialization
1849 * process finishes, because this kthread handles both.
1851 rcu_state.gp_state = RCU_GP_INIT;
1852 rcu_for_each_node_breadth_first(rnp) {
1853 rcu_gp_slow(gp_init_delay);
1854 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1855 rdp = this_cpu_ptr(&rcu_data);
1856 rcu_preempt_check_blocked_tasks(rnp);
1857 rnp->qsmask = rnp->qsmaskinit;
1858 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1859 if (rnp == rdp->mynode)
1860 (void)__note_gp_changes(rnp, rdp);
1861 rcu_preempt_boost_start_gp(rnp);
1862 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1863 rnp->level, rnp->grplo,
1864 rnp->grphi, rnp->qsmask);
1865 /* Quiescent states for tasks on any now-offline CPUs. */
1866 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1867 rnp->rcu_gp_init_mask = mask;
1868 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1869 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1871 raw_spin_unlock_irq_rcu_node(rnp);
1872 cond_resched_tasks_rcu_qs();
1873 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1880 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1883 static bool rcu_gp_fqs_check_wake(int *gfp)
1885 struct rcu_node *rnp = rcu_get_root();
1887 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1888 *gfp = READ_ONCE(rcu_state.gp_flags);
1889 if (*gfp & RCU_GP_FLAG_FQS)
1892 /* The current grace period has completed. */
1893 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1900 * Do one round of quiescent-state forcing.
1902 static void rcu_gp_fqs(bool first_time)
1904 struct rcu_node *rnp = rcu_get_root();
1906 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1907 rcu_state.n_force_qs++;
1909 /* Collect dyntick-idle snapshots. */
1910 force_qs_rnp(dyntick_save_progress_counter);
1912 /* Handle dyntick-idle and offline CPUs. */
1913 force_qs_rnp(rcu_implicit_dynticks_qs);
1915 /* Clear flag to prevent immediate re-entry. */
1916 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1917 raw_spin_lock_irq_rcu_node(rnp);
1918 WRITE_ONCE(rcu_state.gp_flags,
1919 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1920 raw_spin_unlock_irq_rcu_node(rnp);
1925 * Loop doing repeated quiescent-state forcing until the grace period ends.
1927 static void rcu_gp_fqs_loop(void)
1933 struct rcu_node *rnp = rcu_get_root();
1935 first_gp_fqs = true;
1936 j = READ_ONCE(jiffies_till_first_fqs);
1940 rcu_state.jiffies_force_qs = jiffies + j;
1941 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1944 trace_rcu_grace_period(rcu_state.name,
1945 READ_ONCE(rcu_state.gp_seq),
1947 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1948 ret = swait_event_idle_timeout_exclusive(
1949 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1950 rcu_state.gp_state = RCU_GP_DOING_FQS;
1951 /* Locking provides needed memory barriers. */
1952 /* If grace period done, leave loop. */
1953 if (!READ_ONCE(rnp->qsmask) &&
1954 !rcu_preempt_blocked_readers_cgp(rnp))
1956 /* If time for quiescent-state forcing, do it. */
1957 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1958 (gf & RCU_GP_FLAG_FQS)) {
1959 trace_rcu_grace_period(rcu_state.name,
1960 READ_ONCE(rcu_state.gp_seq),
1962 rcu_gp_fqs(first_gp_fqs);
1963 first_gp_fqs = false;
1964 trace_rcu_grace_period(rcu_state.name,
1965 READ_ONCE(rcu_state.gp_seq),
1967 cond_resched_tasks_rcu_qs();
1968 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1969 ret = 0; /* Force full wait till next FQS. */
1970 j = READ_ONCE(jiffies_till_next_fqs);
1972 /* Deal with stray signal. */
1973 cond_resched_tasks_rcu_qs();
1974 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1975 WARN_ON(signal_pending(current));
1976 trace_rcu_grace_period(rcu_state.name,
1977 READ_ONCE(rcu_state.gp_seq),
1979 ret = 1; /* Keep old FQS timing. */
1981 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1984 j = rcu_state.jiffies_force_qs - j;
1990 * Clean up after the old grace period.
1992 static void rcu_gp_cleanup(void)
1994 unsigned long gp_duration;
1995 bool needgp = false;
1996 unsigned long new_gp_seq;
1997 struct rcu_data *rdp;
1998 struct rcu_node *rnp = rcu_get_root();
1999 struct swait_queue_head *sq;
2001 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2002 raw_spin_lock_irq_rcu_node(rnp);
2003 rcu_state.gp_end = jiffies;
2004 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2005 if (gp_duration > rcu_state.gp_max)
2006 rcu_state.gp_max = gp_duration;
2009 * We know the grace period is complete, but to everyone else
2010 * it appears to still be ongoing. But it is also the case
2011 * that to everyone else it looks like there is nothing that
2012 * they can do to advance the grace period. It is therefore
2013 * safe for us to drop the lock in order to mark the grace
2014 * period as completed in all of the rcu_node structures.
2016 raw_spin_unlock_irq_rcu_node(rnp);
2019 * Propagate new ->gp_seq value to rcu_node structures so that
2020 * other CPUs don't have to wait until the start of the next grace
2021 * period to process their callbacks. This also avoids some nasty
2022 * RCU grace-period initialization races by forcing the end of
2023 * the current grace period to be completely recorded in all of
2024 * the rcu_node structures before the beginning of the next grace
2025 * period is recorded in any of the rcu_node structures.
2027 new_gp_seq = rcu_state.gp_seq;
2028 rcu_seq_end(&new_gp_seq);
2029 rcu_for_each_node_breadth_first(rnp) {
2030 raw_spin_lock_irq_rcu_node(rnp);
2031 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2032 dump_blkd_tasks(rnp, 10);
2033 WARN_ON_ONCE(rnp->qsmask);
2034 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2035 rdp = this_cpu_ptr(&rcu_data);
2036 if (rnp == rdp->mynode)
2037 needgp = __note_gp_changes(rnp, rdp) || needgp;
2038 /* smp_mb() provided by prior unlock-lock pair. */
2039 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2040 sq = rcu_nocb_gp_get(rnp);
2041 raw_spin_unlock_irq_rcu_node(rnp);
2042 rcu_nocb_gp_cleanup(sq);
2043 cond_resched_tasks_rcu_qs();
2044 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2045 rcu_gp_slow(gp_cleanup_delay);
2047 rnp = rcu_get_root();
2048 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2050 /* Declare grace period done, trace first to use old GP number. */
2051 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2052 rcu_seq_end(&rcu_state.gp_seq);
2053 rcu_state.gp_state = RCU_GP_IDLE;
2054 /* Check for GP requests since above loop. */
2055 rdp = this_cpu_ptr(&rcu_data);
2056 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2057 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2058 TPS("CleanupMore"));
2061 /* Advance CBs to reduce false positives below. */
2062 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
2063 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2064 rcu_state.gp_req_activity = jiffies;
2065 trace_rcu_grace_period(rcu_state.name,
2066 READ_ONCE(rcu_state.gp_seq),
2069 WRITE_ONCE(rcu_state.gp_flags,
2070 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2072 raw_spin_unlock_irq_rcu_node(rnp);
2076 * Body of kthread that handles grace periods.
2078 static int __noreturn rcu_gp_kthread(void *unused)
2080 rcu_bind_gp_kthread();
2083 /* Handle grace-period start. */
2085 trace_rcu_grace_period(rcu_state.name,
2086 READ_ONCE(rcu_state.gp_seq),
2088 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2089 swait_event_idle_exclusive(rcu_state.gp_wq,
2090 READ_ONCE(rcu_state.gp_flags) &
2092 rcu_state.gp_state = RCU_GP_DONE_GPS;
2093 /* Locking provides needed memory barrier. */
2096 cond_resched_tasks_rcu_qs();
2097 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2098 WARN_ON(signal_pending(current));
2099 trace_rcu_grace_period(rcu_state.name,
2100 READ_ONCE(rcu_state.gp_seq),
2104 /* Handle quiescent-state forcing. */
2107 /* Handle grace-period end. */
2108 rcu_state.gp_state = RCU_GP_CLEANUP;
2110 rcu_state.gp_state = RCU_GP_CLEANED;
2115 * Report a full set of quiescent states to the rcu_state data structure.
2116 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2117 * another grace period is required. Whether we wake the grace-period
2118 * kthread or it awakens itself for the next round of quiescent-state
2119 * forcing, that kthread will clean up after the just-completed grace
2120 * period. Note that the caller must hold rnp->lock, which is released
2123 static void rcu_report_qs_rsp(unsigned long flags)
2124 __releases(rcu_get_root()->lock)
2126 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2127 WARN_ON_ONCE(!rcu_gp_in_progress());
2128 WRITE_ONCE(rcu_state.gp_flags,
2129 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2130 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2131 rcu_gp_kthread_wake();
2135 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2136 * Allows quiescent states for a group of CPUs to be reported at one go
2137 * to the specified rcu_node structure, though all the CPUs in the group
2138 * must be represented by the same rcu_node structure (which need not be a
2139 * leaf rcu_node structure, though it often will be). The gps parameter
2140 * is the grace-period snapshot, which means that the quiescent states
2141 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2142 * must be held upon entry, and it is released before return.
2144 * As a special case, if mask is zero, the bit-already-cleared check is
2145 * disabled. This allows propagating quiescent state due to resumed tasks
2146 * during grace-period initialization.
2148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2149 unsigned long gps, unsigned long flags)
2150 __releases(rnp->lock)
2152 unsigned long oldmask = 0;
2153 struct rcu_node *rnp_c;
2155 raw_lockdep_assert_held_rcu_node(rnp);
2157 /* Walk up the rcu_node hierarchy. */
2159 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2162 * Our bit has already been cleared, or the
2163 * relevant grace period is already over, so done.
2165 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2168 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2169 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2170 rcu_preempt_blocked_readers_cgp(rnp));
2171 rnp->qsmask &= ~mask;
2172 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2173 mask, rnp->qsmask, rnp->level,
2174 rnp->grplo, rnp->grphi,
2176 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2178 /* Other bits still set at this level, so done. */
2179 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2182 rnp->completedqs = rnp->gp_seq;
2183 mask = rnp->grpmask;
2184 if (rnp->parent == NULL) {
2186 /* No more levels. Exit loop holding root lock. */
2190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2193 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2194 oldmask = rnp_c->qsmask;
2198 * Get here if we are the last CPU to pass through a quiescent
2199 * state for this grace period. Invoke rcu_report_qs_rsp()
2200 * to clean up and start the next grace period if one is needed.
2202 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2206 * Record a quiescent state for all tasks that were previously queued
2207 * on the specified rcu_node structure and that were blocking the current
2208 * RCU grace period. The caller must hold the corresponding rnp->lock with
2209 * irqs disabled, and this lock is released upon return, but irqs remain
2212 static void __maybe_unused
2213 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2214 __releases(rnp->lock)
2218 struct rcu_node *rnp_p;
2220 raw_lockdep_assert_held_rcu_node(rnp);
2221 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
2222 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2224 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2225 return; /* Still need more quiescent states! */
2228 rnp->completedqs = rnp->gp_seq;
2229 rnp_p = rnp->parent;
2230 if (rnp_p == NULL) {
2232 * Only one rcu_node structure in the tree, so don't
2233 * try to report up to its nonexistent parent!
2235 rcu_report_qs_rsp(flags);
2239 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2241 mask = rnp->grpmask;
2242 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2243 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2244 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2248 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2249 * structure. This must be called from the specified CPU.
2252 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2254 unsigned long flags;
2257 struct rcu_node *rnp;
2260 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2261 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2265 * The grace period in which this quiescent state was
2266 * recorded has ended, so don't report it upwards.
2267 * We will instead need a new quiescent state that lies
2268 * within the current grace period.
2270 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2271 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2274 mask = rdp->grpmask;
2275 if ((rnp->qsmask & mask) == 0) {
2276 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2278 rdp->core_needs_qs = false;
2281 * This GP can't end until cpu checks in, so all of our
2282 * callbacks can be processed during the next GP.
2284 needwake = rcu_accelerate_cbs(rnp, rdp);
2286 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2287 /* ^^^ Released rnp->lock */
2289 rcu_gp_kthread_wake();
2294 * Check to see if there is a new grace period of which this CPU
2295 * is not yet aware, and if so, set up local rcu_data state for it.
2296 * Otherwise, see if this CPU has just passed through its first
2297 * quiescent state for this grace period, and record that fact if so.
2300 rcu_check_quiescent_state(struct rcu_data *rdp)
2302 /* Check for grace-period ends and beginnings. */
2303 note_gp_changes(rdp);
2306 * Does this CPU still need to do its part for current grace period?
2307 * If no, return and let the other CPUs do their part as well.
2309 if (!rdp->core_needs_qs)
2313 * Was there a quiescent state since the beginning of the grace
2314 * period? If no, then exit and wait for the next call.
2316 if (rdp->cpu_no_qs.b.norm)
2320 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2323 rcu_report_qs_rdp(rdp->cpu, rdp);
2327 * Near the end of the offline process. Trace the fact that this CPU
2330 int rcutree_dying_cpu(unsigned int cpu)
2332 RCU_TRACE(bool blkd;)
2333 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
2334 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2336 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2339 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2340 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2341 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2346 * All CPUs for the specified rcu_node structure have gone offline,
2347 * and all tasks that were preempted within an RCU read-side critical
2348 * section while running on one of those CPUs have since exited their RCU
2349 * read-side critical section. Some other CPU is reporting this fact with
2350 * the specified rcu_node structure's ->lock held and interrupts disabled.
2351 * This function therefore goes up the tree of rcu_node structures,
2352 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2353 * the leaf rcu_node structure's ->qsmaskinit field has already been
2356 * This function does check that the specified rcu_node structure has
2357 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2358 * prematurely. That said, invoking it after the fact will cost you
2359 * a needless lock acquisition. So once it has done its work, don't
2362 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2365 struct rcu_node *rnp = rnp_leaf;
2367 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2368 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2369 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2370 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2373 mask = rnp->grpmask;
2377 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2378 rnp->qsmaskinit &= ~mask;
2379 /* Between grace periods, so better already be zero! */
2380 WARN_ON_ONCE(rnp->qsmask);
2381 if (rnp->qsmaskinit) {
2382 raw_spin_unlock_rcu_node(rnp);
2383 /* irqs remain disabled. */
2386 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2391 * The CPU has been completely removed, and some other CPU is reporting
2392 * this fact from process context. Do the remainder of the cleanup.
2393 * There can only be one CPU hotplug operation at a time, so no need for
2396 int rcutree_dead_cpu(unsigned int cpu)
2398 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2399 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2401 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2404 /* Adjust any no-longer-needed kthreads. */
2405 rcu_boost_kthread_setaffinity(rnp, -1);
2406 /* Do any needed no-CB deferred wakeups from this CPU. */
2407 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2412 * Invoke any RCU callbacks that have made it to the end of their grace
2413 * period. Thottle as specified by rdp->blimit.
2415 static void rcu_do_batch(struct rcu_data *rdp)
2417 unsigned long flags;
2418 struct rcu_head *rhp;
2419 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2422 /* If no callbacks are ready, just return. */
2423 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2424 trace_rcu_batch_start(rcu_state.name,
2425 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2426 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2427 trace_rcu_batch_end(rcu_state.name, 0,
2428 !rcu_segcblist_empty(&rdp->cblist),
2429 need_resched(), is_idle_task(current),
2430 rcu_is_callbacks_kthread());
2435 * Extract the list of ready callbacks, disabling to prevent
2436 * races with call_rcu() from interrupt handlers. Leave the
2437 * callback counts, as rcu_barrier() needs to be conservative.
2439 local_irq_save(flags);
2440 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2442 trace_rcu_batch_start(rcu_state.name,
2443 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2444 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2445 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2446 local_irq_restore(flags);
2448 /* Invoke callbacks. */
2449 rhp = rcu_cblist_dequeue(&rcl);
2450 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2451 debug_rcu_head_unqueue(rhp);
2452 if (__rcu_reclaim(rcu_state.name, rhp))
2453 rcu_cblist_dequeued_lazy(&rcl);
2455 * Stop only if limit reached and CPU has something to do.
2456 * Note: The rcl structure counts down from zero.
2458 if (-rcl.len >= bl &&
2460 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2464 local_irq_save(flags);
2466 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2467 is_idle_task(current), rcu_is_callbacks_kthread());
2469 /* Update counts and requeue any remaining callbacks. */
2470 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2471 smp_mb(); /* List handling before counting for rcu_barrier(). */
2472 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2474 /* Reinstate batch limit if we have worked down the excess. */
2475 count = rcu_segcblist_n_cbs(&rdp->cblist);
2476 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2477 rdp->blimit = blimit;
2479 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2480 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2481 rdp->qlen_last_fqs_check = 0;
2482 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2483 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2484 rdp->qlen_last_fqs_check = count;
2487 * The following usually indicates a double call_rcu(). To track
2488 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2490 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2492 local_irq_restore(flags);
2494 /* Re-invoke RCU core processing if there are callbacks remaining. */
2495 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2500 * Check to see if this CPU is in a non-context-switch quiescent state
2501 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2502 * Also schedule RCU core processing.
2504 * This function must be called from hardirq context. It is normally
2505 * invoked from the scheduling-clock interrupt.
2507 void rcu_check_callbacks(int user)
2509 trace_rcu_utilization(TPS("Start scheduler-tick"));
2510 raw_cpu_inc(rcu_data.ticks_this_gp);
2511 /* The load-acquire pairs with the store-release setting to true. */
2512 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2513 /* Idle and userspace execution already are quiescent states. */
2514 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2515 set_tsk_need_resched(current);
2516 set_preempt_need_resched();
2518 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2520 rcu_flavor_check_callbacks(user);
2524 trace_rcu_utilization(TPS("End scheduler-tick"));
2528 * Scan the leaf rcu_node structures, processing dyntick state for any that
2529 * have not yet encountered a quiescent state, using the function specified.
2530 * Also initiate boosting for any threads blocked on the root rcu_node.
2532 * The caller must have suppressed start of new grace periods.
2534 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2537 unsigned long flags;
2539 struct rcu_node *rnp;
2541 rcu_for_each_leaf_node(rnp) {
2542 cond_resched_tasks_rcu_qs();
2544 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2545 if (rnp->qsmask == 0) {
2546 if (!IS_ENABLED(CONFIG_PREEMPT) ||
2547 rcu_preempt_blocked_readers_cgp(rnp)) {
2549 * No point in scanning bits because they
2550 * are all zero. But we might need to
2551 * priority-boost blocked readers.
2553 rcu_initiate_boost(rnp, flags);
2554 /* rcu_initiate_boost() releases rnp->lock */
2557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2560 for_each_leaf_node_possible_cpu(rnp, cpu) {
2561 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2562 if ((rnp->qsmask & bit) != 0) {
2563 if (f(per_cpu_ptr(&rcu_data, cpu)))
2568 /* Idle/offline CPUs, report (releases rnp->lock). */
2569 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2571 /* Nothing to do here, so just drop the lock. */
2572 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2578 * Force quiescent states on reluctant CPUs, and also detect which
2579 * CPUs are in dyntick-idle mode.
2581 static void force_quiescent_state(void)
2583 unsigned long flags;
2585 struct rcu_node *rnp;
2586 struct rcu_node *rnp_old = NULL;
2588 /* Funnel through hierarchy to reduce memory contention. */
2589 rnp = __this_cpu_read(rcu_data.mynode);
2590 for (; rnp != NULL; rnp = rnp->parent) {
2591 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2592 !raw_spin_trylock(&rnp->fqslock);
2593 if (rnp_old != NULL)
2594 raw_spin_unlock(&rnp_old->fqslock);
2599 /* rnp_old == rcu_get_root(), rnp == NULL. */
2601 /* Reached the root of the rcu_node tree, acquire lock. */
2602 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2603 raw_spin_unlock(&rnp_old->fqslock);
2604 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2605 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2606 return; /* Someone beat us to it. */
2608 WRITE_ONCE(rcu_state.gp_flags,
2609 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2610 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2611 rcu_gp_kthread_wake();
2615 * This function checks for grace-period requests that fail to motivate
2616 * RCU to come out of its idle mode.
2619 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp,
2620 const unsigned long gpssdelay)
2622 unsigned long flags;
2624 struct rcu_node *rnp_root = rcu_get_root();
2625 static atomic_t warned = ATOMIC_INIT(0);
2627 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
2628 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2630 j = jiffies; /* Expensive access, and in common case don't get here. */
2631 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2632 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2633 atomic_read(&warned))
2636 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2638 if (rcu_gp_in_progress() ||
2639 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2640 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2641 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2642 atomic_read(&warned)) {
2643 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2646 /* Hold onto the leaf lock to make others see warned==1. */
2648 if (rnp_root != rnp)
2649 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2651 if (rcu_gp_in_progress() ||
2652 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2653 time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2654 time_before(j, rcu_state.gp_activity + gpssdelay) ||
2655 atomic_xchg(&warned, 1)) {
2656 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2657 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2660 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2661 __func__, (long)READ_ONCE(rcu_state.gp_seq),
2662 (long)READ_ONCE(rnp_root->gp_seq_needed),
2663 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity,
2664 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name,
2665 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL);
2667 if (rnp_root != rnp)
2668 raw_spin_unlock_rcu_node(rnp_root);
2669 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2673 * Do a forward-progress check for rcutorture. This is normally invoked
2674 * due to an OOM event. The argument "j" gives the time period during
2675 * which rcutorture would like progress to have been made.
2677 void rcu_fwd_progress_check(unsigned long j)
2681 unsigned long max_cbs = 0;
2683 struct rcu_data *rdp;
2685 if (rcu_gp_in_progress()) {
2686 pr_info("%s: GP age %lu jiffies\n",
2687 __func__, jiffies - rcu_state.gp_start);
2688 show_rcu_gp_kthreads();
2690 pr_info("%s: Last GP end %lu jiffies ago\n",
2691 __func__, jiffies - rcu_state.gp_end);
2693 rdp = this_cpu_ptr(&rcu_data);
2694 rcu_check_gp_start_stall(rdp->mynode, rdp, j);
2697 for_each_possible_cpu(cpu) {
2698 cbs = rcu_get_n_cbs_cpu(cpu);
2702 pr_info("%s: callbacks", __func__);
2703 pr_cont(" %d: %lu", cpu, cbs);
2712 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check);
2715 * This does the RCU core processing work for the specified rcu_data
2716 * structures. This may be called only from the CPU to whom the rdp
2719 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2721 unsigned long flags;
2722 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2723 struct rcu_node *rnp = rdp->mynode;
2725 if (cpu_is_offline(smp_processor_id()))
2727 trace_rcu_utilization(TPS("Start RCU core"));
2728 WARN_ON_ONCE(!rdp->beenonline);
2730 /* Report any deferred quiescent states if preemption enabled. */
2731 if (!(preempt_count() & PREEMPT_MASK)) {
2732 rcu_preempt_deferred_qs(current);
2733 } else if (rcu_preempt_need_deferred_qs(current)) {
2734 set_tsk_need_resched(current);
2735 set_preempt_need_resched();
2738 /* Update RCU state based on any recent quiescent states. */
2739 rcu_check_quiescent_state(rdp);
2741 /* No grace period and unregistered callbacks? */
2742 if (!rcu_gp_in_progress() &&
2743 rcu_segcblist_is_enabled(&rdp->cblist)) {
2744 local_irq_save(flags);
2745 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2746 rcu_accelerate_cbs_unlocked(rnp, rdp);
2747 local_irq_restore(flags);
2750 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2752 /* If there are callbacks ready, invoke them. */
2753 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2754 invoke_rcu_callbacks(rdp);
2756 /* Do any needed deferred wakeups of rcuo kthreads. */
2757 do_nocb_deferred_wakeup(rdp);
2758 trace_rcu_utilization(TPS("End RCU core"));
2762 * Schedule RCU callback invocation. If the running implementation of RCU
2763 * does not support RCU priority boosting, just do a direct call, otherwise
2764 * wake up the per-CPU kernel kthread. Note that because we are running
2765 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2766 * cannot disappear out from under us.
2768 static void invoke_rcu_callbacks(struct rcu_data *rdp)
2770 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2772 if (likely(!rcu_state.boost)) {
2776 invoke_rcu_callbacks_kthread();
2779 static void invoke_rcu_core(void)
2781 if (cpu_online(smp_processor_id()))
2782 raise_softirq(RCU_SOFTIRQ);
2786 * Handle any core-RCU processing required by a call_rcu() invocation.
2788 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2789 unsigned long flags)
2792 * If called from an extended quiescent state, invoke the RCU
2793 * core in order to force a re-evaluation of RCU's idleness.
2795 if (!rcu_is_watching())
2798 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2799 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2803 * Force the grace period if too many callbacks or too long waiting.
2804 * Enforce hysteresis, and don't invoke force_quiescent_state()
2805 * if some other CPU has recently done so. Also, don't bother
2806 * invoking force_quiescent_state() if the newly enqueued callback
2807 * is the only one waiting for a grace period to complete.
2809 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2810 rdp->qlen_last_fqs_check + qhimark)) {
2812 /* Are we ignoring a completed grace period? */
2813 note_gp_changes(rdp);
2815 /* Start a new grace period if one not already started. */
2816 if (!rcu_gp_in_progress()) {
2817 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2819 /* Give the grace period a kick. */
2820 rdp->blimit = LONG_MAX;
2821 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2822 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2823 force_quiescent_state();
2824 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2825 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2831 * RCU callback function to leak a callback.
2833 static void rcu_leak_callback(struct rcu_head *rhp)
2838 * Helper function for call_rcu() and friends. The cpu argument will
2839 * normally be -1, indicating "currently running CPU". It may specify
2840 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2841 * is expected to specify a CPU.
2844 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2846 unsigned long flags;
2847 struct rcu_data *rdp;
2849 /* Misaligned rcu_head! */
2850 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2852 if (debug_rcu_head_queue(head)) {
2854 * Probable double call_rcu(), so leak the callback.
2855 * Use rcu:rcu_callback trace event to find the previous
2856 * time callback was passed to __call_rcu().
2858 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2860 WRITE_ONCE(head->func, rcu_leak_callback);
2865 local_irq_save(flags);
2866 rdp = this_cpu_ptr(&rcu_data);
2868 /* Add the callback to our list. */
2869 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2873 rdp = per_cpu_ptr(&rcu_data, cpu);
2874 if (likely(rdp->mynode)) {
2875 /* Post-boot, so this should be for a no-CBs CPU. */
2876 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2877 WARN_ON_ONCE(offline);
2878 /* Offline CPU, _call_rcu() illegal, leak callback. */
2879 local_irq_restore(flags);
2883 * Very early boot, before rcu_init(). Initialize if needed
2884 * and then drop through to queue the callback.
2886 WARN_ON_ONCE(cpu != -1);
2887 WARN_ON_ONCE(!rcu_is_watching());
2888 if (rcu_segcblist_empty(&rdp->cblist))
2889 rcu_segcblist_init(&rdp->cblist);
2891 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2893 rcu_idle_count_callbacks_posted();
2895 if (__is_kfree_rcu_offset((unsigned long)func))
2896 trace_rcu_kfree_callback(rcu_state.name, head,
2897 (unsigned long)func,
2898 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2899 rcu_segcblist_n_cbs(&rdp->cblist));
2901 trace_rcu_callback(rcu_state.name, head,
2902 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2903 rcu_segcblist_n_cbs(&rdp->cblist));
2905 /* Go handle any RCU core processing required. */
2906 __call_rcu_core(rdp, head, flags);
2907 local_irq_restore(flags);
2911 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2912 * @head: structure to be used for queueing the RCU updates.
2913 * @func: actual callback function to be invoked after the grace period
2915 * The callback function will be invoked some time after a full grace
2916 * period elapses, in other words after all pre-existing RCU read-side
2917 * critical sections have completed. However, the callback function
2918 * might well execute concurrently with RCU read-side critical sections
2919 * that started after call_rcu() was invoked. RCU read-side critical
2920 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2921 * may be nested. In addition, regions of code across which interrupts,
2922 * preemption, or softirqs have been disabled also serve as RCU read-side
2923 * critical sections. This includes hardware interrupt handlers, softirq
2924 * handlers, and NMI handlers.
2926 * Note that all CPUs must agree that the grace period extended beyond
2927 * all pre-existing RCU read-side critical section. On systems with more
2928 * than one CPU, this means that when "func()" is invoked, each CPU is
2929 * guaranteed to have executed a full memory barrier since the end of its
2930 * last RCU read-side critical section whose beginning preceded the call
2931 * to call_rcu(). It also means that each CPU executing an RCU read-side
2932 * critical section that continues beyond the start of "func()" must have
2933 * executed a memory barrier after the call_rcu() but before the beginning
2934 * of that RCU read-side critical section. Note that these guarantees
2935 * include CPUs that are offline, idle, or executing in user mode, as
2936 * well as CPUs that are executing in the kernel.
2938 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2939 * resulting RCU callback function "func()", then both CPU A and CPU B are
2940 * guaranteed to execute a full memory barrier during the time interval
2941 * between the call to call_rcu() and the invocation of "func()" -- even
2942 * if CPU A and CPU B are the same CPU (but again only if the system has
2943 * more than one CPU).
2945 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2947 __call_rcu(head, func, -1, 0);
2949 EXPORT_SYMBOL_GPL(call_rcu);
2952 * Queue an RCU callback for lazy invocation after a grace period.
2953 * This will likely be later named something like "call_rcu_lazy()",
2954 * but this change will require some way of tagging the lazy RCU
2955 * callbacks in the list of pending callbacks. Until then, this
2956 * function may only be called from __kfree_rcu().
2958 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2960 __call_rcu(head, func, -1, 1);
2962 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2965 * get_state_synchronize_rcu - Snapshot current RCU state
2967 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2968 * to determine whether or not a full grace period has elapsed in the
2971 unsigned long get_state_synchronize_rcu(void)
2974 * Any prior manipulation of RCU-protected data must happen
2975 * before the load from ->gp_seq.
2978 return rcu_seq_snap(&rcu_state.gp_seq);
2980 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2983 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2985 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2987 * If a full RCU grace period has elapsed since the earlier call to
2988 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2989 * synchronize_rcu() to wait for a full grace period.
2991 * Yes, this function does not take counter wrap into account. But
2992 * counter wrap is harmless. If the counter wraps, we have waited for
2993 * more than 2 billion grace periods (and way more on a 64-bit system!),
2994 * so waiting for one additional grace period should be just fine.
2996 void cond_synchronize_rcu(unsigned long oldstate)
2998 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3001 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3003 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3006 * Check to see if there is any immediate RCU-related work to be done by
3007 * the current CPU, returning 1 if so and zero otherwise. The checks are
3008 * in order of increasing expense: checks that can be carried out against
3009 * CPU-local state are performed first. However, we must check for CPU
3010 * stalls first, else we might not get a chance.
3012 static int rcu_pending(void)
3014 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3015 struct rcu_node *rnp = rdp->mynode;
3017 /* Check for CPU stalls, if enabled. */
3018 check_cpu_stall(rdp);
3020 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3021 if (rcu_nohz_full_cpu())
3024 /* Is the RCU core waiting for a quiescent state from this CPU? */
3025 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3028 /* Does this CPU have callbacks ready to invoke? */
3029 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3032 /* Has RCU gone idle with this CPU needing another grace period? */
3033 if (!rcu_gp_in_progress() &&
3034 rcu_segcblist_is_enabled(&rdp->cblist) &&
3035 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3038 /* Have RCU grace period completed or started? */
3039 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3040 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3043 /* Does this CPU need a deferred NOCB wakeup? */
3044 if (rcu_nocb_need_deferred_wakeup(rdp))
3052 * Return true if the specified CPU has any callback. If all_lazy is
3053 * non-NULL, store an indication of whether all callbacks are lazy.
3054 * (If there are no callbacks, all of them are deemed to be lazy.)
3056 static bool rcu_cpu_has_callbacks(bool *all_lazy)
3060 struct rcu_data *rdp;
3062 rdp = this_cpu_ptr(&rcu_data);
3063 if (!rcu_segcblist_empty(&rdp->cblist)) {
3065 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist))
3074 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3075 * the compiler is expected to optimize this away.
3077 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3079 trace_rcu_barrier(rcu_state.name, s, cpu,
3080 atomic_read(&rcu_state.barrier_cpu_count), done);
3084 * RCU callback function for rcu_barrier(). If we are last, wake
3085 * up the task executing rcu_barrier().
3087 static void rcu_barrier_callback(struct rcu_head *rhp)
3089 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3090 rcu_barrier_trace(TPS("LastCB"), -1,
3091 rcu_state.barrier_sequence);
3092 complete(&rcu_state.barrier_completion);
3094 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3099 * Called with preemption disabled, and from cross-cpu IRQ context.
3101 static void rcu_barrier_func(void *unused)
3103 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3105 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3106 rdp->barrier_head.func = rcu_barrier_callback;
3107 debug_rcu_head_queue(&rdp->barrier_head);
3108 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3109 atomic_inc(&rcu_state.barrier_cpu_count);
3111 debug_rcu_head_unqueue(&rdp->barrier_head);
3112 rcu_barrier_trace(TPS("IRQNQ"), -1,
3113 rcu_state.barrier_sequence);
3118 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3120 * Note that this primitive does not necessarily wait for an RCU grace period
3121 * to complete. For example, if there are no RCU callbacks queued anywhere
3122 * in the system, then rcu_barrier() is within its rights to return
3123 * immediately, without waiting for anything, much less an RCU grace period.
3125 void rcu_barrier(void)
3128 struct rcu_data *rdp;
3129 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3131 rcu_barrier_trace(TPS("Begin"), -1, s);
3133 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3134 mutex_lock(&rcu_state.barrier_mutex);
3136 /* Did someone else do our work for us? */
3137 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3138 rcu_barrier_trace(TPS("EarlyExit"), -1,
3139 rcu_state.barrier_sequence);
3140 smp_mb(); /* caller's subsequent code after above check. */
3141 mutex_unlock(&rcu_state.barrier_mutex);
3145 /* Mark the start of the barrier operation. */
3146 rcu_seq_start(&rcu_state.barrier_sequence);
3147 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3150 * Initialize the count to one rather than to zero in order to
3151 * avoid a too-soon return to zero in case of a short grace period
3152 * (or preemption of this task). Exclude CPU-hotplug operations
3153 * to ensure that no offline CPU has callbacks queued.
3155 init_completion(&rcu_state.barrier_completion);
3156 atomic_set(&rcu_state.barrier_cpu_count, 1);
3160 * Force each CPU with callbacks to register a new callback.
3161 * When that callback is invoked, we will know that all of the
3162 * corresponding CPU's preceding callbacks have been invoked.
3164 for_each_possible_cpu(cpu) {
3165 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3167 rdp = per_cpu_ptr(&rcu_data, cpu);
3168 if (rcu_is_nocb_cpu(cpu)) {
3169 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
3170 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
3171 rcu_state.barrier_sequence);
3173 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
3174 rcu_state.barrier_sequence);
3175 smp_mb__before_atomic();
3176 atomic_inc(&rcu_state.barrier_cpu_count);
3177 __call_rcu(&rdp->barrier_head,
3178 rcu_barrier_callback, cpu, 0);
3180 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3181 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3182 rcu_state.barrier_sequence);
3183 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3185 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3186 rcu_state.barrier_sequence);
3192 * Now that we have an rcu_barrier_callback() callback on each
3193 * CPU, and thus each counted, remove the initial count.
3195 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3196 complete(&rcu_state.barrier_completion);
3198 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3199 wait_for_completion(&rcu_state.barrier_completion);
3201 /* Mark the end of the barrier operation. */
3202 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3203 rcu_seq_end(&rcu_state.barrier_sequence);
3205 /* Other rcu_barrier() invocations can now safely proceed. */
3206 mutex_unlock(&rcu_state.barrier_mutex);
3208 EXPORT_SYMBOL_GPL(rcu_barrier);
3211 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3212 * first CPU in a given leaf rcu_node structure coming online. The caller
3213 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3216 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3220 struct rcu_node *rnp = rnp_leaf;
3222 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3223 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3225 mask = rnp->grpmask;
3229 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3230 oldmask = rnp->qsmaskinit;
3231 rnp->qsmaskinit |= mask;
3232 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3239 * Do boot-time initialization of a CPU's per-CPU RCU data.
3242 rcu_boot_init_percpu_data(int cpu)
3244 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3246 /* Set up local state, ensuring consistent view of global state. */
3247 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3248 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3249 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3250 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3251 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3252 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3253 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3255 rcu_boot_init_nocb_percpu_data(rdp);
3259 * Invoked early in the CPU-online process, when pretty much all services
3260 * are available. The incoming CPU is not present.
3262 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3263 * offline event can be happening at a given time. Note also that we can
3264 * accept some slop in the rsp->gp_seq access due to the fact that this
3265 * CPU cannot possibly have any RCU callbacks in flight yet.
3267 int rcutree_prepare_cpu(unsigned int cpu)
3269 unsigned long flags;
3270 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3271 struct rcu_node *rnp = rcu_get_root();
3273 /* Set up local state, ensuring consistent view of global state. */
3274 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3275 rdp->qlen_last_fqs_check = 0;
3276 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3277 rdp->blimit = blimit;
3278 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3279 !init_nocb_callback_list(rdp))
3280 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3281 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3282 rcu_dynticks_eqs_online();
3283 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3286 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3287 * propagation up the rcu_node tree will happen at the beginning
3288 * of the next grace period.
3291 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3292 rdp->beenonline = true; /* We have now been online. */
3293 rdp->gp_seq = rnp->gp_seq;
3294 rdp->gp_seq_needed = rnp->gp_seq;
3295 rdp->cpu_no_qs.b.norm = true;
3296 rdp->core_needs_qs = false;
3297 rdp->rcu_iw_pending = false;
3298 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3299 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3300 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3301 rcu_prepare_kthreads(cpu);
3302 rcu_spawn_all_nocb_kthreads(cpu);
3308 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3310 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3312 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3314 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3318 * Near the end of the CPU-online process. Pretty much all services
3319 * enabled, and the CPU is now very much alive.
3321 int rcutree_online_cpu(unsigned int cpu)
3323 unsigned long flags;
3324 struct rcu_data *rdp;
3325 struct rcu_node *rnp;
3327 rdp = per_cpu_ptr(&rcu_data, cpu);
3329 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3330 rnp->ffmask |= rdp->grpmask;
3331 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3332 if (IS_ENABLED(CONFIG_TREE_SRCU))
3333 srcu_online_cpu(cpu);
3334 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3335 return 0; /* Too early in boot for scheduler work. */
3336 sync_sched_exp_online_cleanup(cpu);
3337 rcutree_affinity_setting(cpu, -1);
3342 * Near the beginning of the process. The CPU is still very much alive
3343 * with pretty much all services enabled.
3345 int rcutree_offline_cpu(unsigned int cpu)
3347 unsigned long flags;
3348 struct rcu_data *rdp;
3349 struct rcu_node *rnp;
3351 rdp = per_cpu_ptr(&rcu_data, cpu);
3353 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3354 rnp->ffmask &= ~rdp->grpmask;
3355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3357 rcutree_affinity_setting(cpu, cpu);
3358 if (IS_ENABLED(CONFIG_TREE_SRCU))
3359 srcu_offline_cpu(cpu);
3363 static DEFINE_PER_CPU(int, rcu_cpu_started);
3366 * Mark the specified CPU as being online so that subsequent grace periods
3367 * (both expedited and normal) will wait on it. Note that this means that
3368 * incoming CPUs are not allowed to use RCU read-side critical sections
3369 * until this function is called. Failing to observe this restriction
3370 * will result in lockdep splats.
3372 * Note that this function is special in that it is invoked directly
3373 * from the incoming CPU rather than from the cpuhp_step mechanism.
3374 * This is because this function must be invoked at a precise location.
3376 void rcu_cpu_starting(unsigned int cpu)
3378 unsigned long flags;
3381 unsigned long oldmask;
3382 struct rcu_data *rdp;
3383 struct rcu_node *rnp;
3385 if (per_cpu(rcu_cpu_started, cpu))
3388 per_cpu(rcu_cpu_started, cpu) = 1;
3390 rdp = per_cpu_ptr(&rcu_data, cpu);
3392 mask = rdp->grpmask;
3393 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3394 rnp->qsmaskinitnext |= mask;
3395 oldmask = rnp->expmaskinitnext;
3396 rnp->expmaskinitnext |= mask;
3397 oldmask ^= rnp->expmaskinitnext;
3398 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3399 /* Allow lockless access for expedited grace periods. */
3400 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3401 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3402 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3403 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3404 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3405 /* Report QS -after- changing ->qsmaskinitnext! */
3406 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3408 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3410 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3413 #ifdef CONFIG_HOTPLUG_CPU
3415 * The outgoing function has no further need of RCU, so remove it from
3416 * the rcu_node tree's ->qsmaskinitnext bit masks.
3418 * Note that this function is special in that it is invoked directly
3419 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3420 * This is because this function must be invoked at a precise location.
3422 void rcu_report_dead(unsigned int cpu)
3424 unsigned long flags;
3426 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3427 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3429 /* QS for any half-done expedited grace period. */
3431 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3433 rcu_preempt_deferred_qs(current);
3435 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3436 mask = rdp->grpmask;
3437 raw_spin_lock(&rcu_state.ofl_lock);
3438 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3439 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3440 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3441 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3442 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3443 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3444 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3446 rnp->qsmaskinitnext &= ~mask;
3447 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3448 raw_spin_unlock(&rcu_state.ofl_lock);
3450 per_cpu(rcu_cpu_started, cpu) = 0;
3454 * The outgoing CPU has just passed through the dying-idle state, and we
3455 * are being invoked from the CPU that was IPIed to continue the offline
3456 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3458 void rcutree_migrate_callbacks(int cpu)
3460 unsigned long flags;
3461 struct rcu_data *my_rdp;
3462 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3463 struct rcu_node *rnp_root = rcu_get_root();
3466 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3467 return; /* No callbacks to migrate. */
3469 local_irq_save(flags);
3470 my_rdp = this_cpu_ptr(&rcu_data);
3471 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3472 local_irq_restore(flags);
3475 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3476 /* Leverage recent GPs and set GP for new callbacks. */
3477 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3478 rcu_advance_cbs(rnp_root, my_rdp);
3479 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3480 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3481 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3482 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3484 rcu_gp_kthread_wake();
3485 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3486 !rcu_segcblist_empty(&rdp->cblist),
3487 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3488 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3489 rcu_segcblist_first_cb(&rdp->cblist));
3494 * On non-huge systems, use expedited RCU grace periods to make suspend
3495 * and hibernation run faster.
3497 static int rcu_pm_notify(struct notifier_block *self,
3498 unsigned long action, void *hcpu)
3501 case PM_HIBERNATION_PREPARE:
3502 case PM_SUSPEND_PREPARE:
3503 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3506 case PM_POST_HIBERNATION:
3507 case PM_POST_SUSPEND:
3508 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3509 rcu_unexpedite_gp();
3518 * Spawn the kthreads that handle RCU's grace periods.
3520 static int __init rcu_spawn_gp_kthread(void)
3522 unsigned long flags;
3523 int kthread_prio_in = kthread_prio;
3524 struct rcu_node *rnp;
3525 struct sched_param sp;
3526 struct task_struct *t;
3528 /* Force priority into range. */
3529 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3530 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3532 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3534 else if (kthread_prio < 0)
3536 else if (kthread_prio > 99)
3539 if (kthread_prio != kthread_prio_in)
3540 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3541 kthread_prio, kthread_prio_in);
3543 rcu_scheduler_fully_active = 1;
3544 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3545 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3547 rnp = rcu_get_root();
3548 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3549 rcu_state.gp_kthread = t;
3551 sp.sched_priority = kthread_prio;
3552 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3554 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3556 rcu_spawn_nocb_kthreads();
3557 rcu_spawn_boost_kthreads();
3560 early_initcall(rcu_spawn_gp_kthread);
3563 * This function is invoked towards the end of the scheduler's
3564 * initialization process. Before this is called, the idle task might
3565 * contain synchronous grace-period primitives (during which time, this idle
3566 * task is booting the system, and such primitives are no-ops). After this
3567 * function is called, any synchronous grace-period primitives are run as
3568 * expedited, with the requesting task driving the grace period forward.
3569 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3570 * runtime RCU functionality.
3572 void rcu_scheduler_starting(void)
3574 WARN_ON(num_online_cpus() != 1);
3575 WARN_ON(nr_context_switches() > 0);
3576 rcu_test_sync_prims();
3577 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3578 rcu_test_sync_prims();
3582 * Helper function for rcu_init() that initializes the rcu_state structure.
3584 static void __init rcu_init_one(void)
3586 static const char * const buf[] = RCU_NODE_NAME_INIT;
3587 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3588 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3589 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3591 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3595 struct rcu_node *rnp;
3597 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3599 /* Silence gcc 4.8 false positive about array index out of range. */
3600 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3601 panic("rcu_init_one: rcu_num_lvls out of range");
3603 /* Initialize the level-tracking arrays. */
3605 for (i = 1; i < rcu_num_lvls; i++)
3606 rcu_state.level[i] =
3607 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3608 rcu_init_levelspread(levelspread, num_rcu_lvl);
3610 /* Initialize the elements themselves, starting from the leaves. */
3612 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3613 cpustride *= levelspread[i];
3614 rnp = rcu_state.level[i];
3615 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3616 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3617 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3618 &rcu_node_class[i], buf[i]);
3619 raw_spin_lock_init(&rnp->fqslock);
3620 lockdep_set_class_and_name(&rnp->fqslock,
3621 &rcu_fqs_class[i], fqs[i]);
3622 rnp->gp_seq = rcu_state.gp_seq;
3623 rnp->gp_seq_needed = rcu_state.gp_seq;
3624 rnp->completedqs = rcu_state.gp_seq;
3626 rnp->qsmaskinit = 0;
3627 rnp->grplo = j * cpustride;
3628 rnp->grphi = (j + 1) * cpustride - 1;
3629 if (rnp->grphi >= nr_cpu_ids)
3630 rnp->grphi = nr_cpu_ids - 1;
3636 rnp->grpnum = j % levelspread[i - 1];
3637 rnp->grpmask = BIT(rnp->grpnum);
3638 rnp->parent = rcu_state.level[i - 1] +
3639 j / levelspread[i - 1];
3642 INIT_LIST_HEAD(&rnp->blkd_tasks);
3643 rcu_init_one_nocb(rnp);
3644 init_waitqueue_head(&rnp->exp_wq[0]);
3645 init_waitqueue_head(&rnp->exp_wq[1]);
3646 init_waitqueue_head(&rnp->exp_wq[2]);
3647 init_waitqueue_head(&rnp->exp_wq[3]);
3648 spin_lock_init(&rnp->exp_lock);
3652 init_swait_queue_head(&rcu_state.gp_wq);
3653 init_swait_queue_head(&rcu_state.expedited_wq);
3654 rnp = rcu_first_leaf_node();
3655 for_each_possible_cpu(i) {
3656 while (i > rnp->grphi)
3658 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3659 rcu_boot_init_percpu_data(i);
3664 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3665 * replace the definitions in tree.h because those are needed to size
3666 * the ->node array in the rcu_state structure.
3668 static void __init rcu_init_geometry(void)
3672 int rcu_capacity[RCU_NUM_LVLS];
3675 * Initialize any unspecified boot parameters.
3676 * The default values of jiffies_till_first_fqs and
3677 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3678 * value, which is a function of HZ, then adding one for each
3679 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3681 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3682 if (jiffies_till_first_fqs == ULONG_MAX)
3683 jiffies_till_first_fqs = d;
3684 if (jiffies_till_next_fqs == ULONG_MAX)
3685 jiffies_till_next_fqs = d;
3686 if (jiffies_till_sched_qs == ULONG_MAX)
3687 adjust_jiffies_till_sched_qs();
3689 /* If the compile-time values are accurate, just leave. */
3690 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3691 nr_cpu_ids == NR_CPUS)
3693 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3694 rcu_fanout_leaf, nr_cpu_ids);
3697 * The boot-time rcu_fanout_leaf parameter must be at least two
3698 * and cannot exceed the number of bits in the rcu_node masks.
3699 * Complain and fall back to the compile-time values if this
3700 * limit is exceeded.
3702 if (rcu_fanout_leaf < 2 ||
3703 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3704 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3710 * Compute number of nodes that can be handled an rcu_node tree
3711 * with the given number of levels.
3713 rcu_capacity[0] = rcu_fanout_leaf;
3714 for (i = 1; i < RCU_NUM_LVLS; i++)
3715 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3718 * The tree must be able to accommodate the configured number of CPUs.
3719 * If this limit is exceeded, fall back to the compile-time values.
3721 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3722 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3727 /* Calculate the number of levels in the tree. */
3728 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3730 rcu_num_lvls = i + 1;
3732 /* Calculate the number of rcu_nodes at each level of the tree. */
3733 for (i = 0; i < rcu_num_lvls; i++) {
3734 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3735 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3738 /* Calculate the total number of rcu_node structures. */
3740 for (i = 0; i < rcu_num_lvls; i++)
3741 rcu_num_nodes += num_rcu_lvl[i];
3745 * Dump out the structure of the rcu_node combining tree associated
3746 * with the rcu_state structure.
3748 static void __init rcu_dump_rcu_node_tree(void)
3751 struct rcu_node *rnp;
3753 pr_info("rcu_node tree layout dump\n");
3755 rcu_for_each_node_breadth_first(rnp) {
3756 if (rnp->level != level) {
3761 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3766 struct workqueue_struct *rcu_gp_wq;
3767 struct workqueue_struct *rcu_par_gp_wq;
3769 void __init rcu_init(void)
3773 rcu_early_boot_tests();
3775 rcu_bootup_announce();
3776 rcu_init_geometry();
3779 rcu_dump_rcu_node_tree();
3780 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3783 * We don't need protection against CPU-hotplug here because
3784 * this is called early in boot, before either interrupts
3785 * or the scheduler are operational.
3787 pm_notifier(rcu_pm_notify, 0);
3788 for_each_online_cpu(cpu) {
3789 rcutree_prepare_cpu(cpu);
3790 rcu_cpu_starting(cpu);
3791 rcutree_online_cpu(cpu);
3794 /* Create workqueue for expedited GPs and for Tree SRCU. */
3795 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3796 WARN_ON(!rcu_gp_wq);
3797 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3798 WARN_ON(!rcu_par_gp_wq);
3802 #include "tree_exp.h"
3803 #include "tree_plugin.h"