1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
43 #include "delegation.h"
50 /* #define NFS_DEBUG_VERBOSE 1 */
52 static int nfs_opendir(struct inode *, struct file *);
53 static int nfs_closedir(struct inode *, struct file *);
54 static int nfs_readdir(struct file *, struct dir_context *);
55 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
56 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
57 static void nfs_readdir_clear_array(struct page*);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .iterate_shared = nfs_readdir,
64 .release = nfs_closedir,
65 .fsync = nfs_fsync_dir,
68 const struct address_space_operations nfs_dir_aops = {
69 .freepage = nfs_readdir_clear_array,
72 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
74 struct nfs_inode *nfsi = NFS_I(dir);
75 struct nfs_open_dir_context *ctx;
76 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
79 ctx->attr_gencount = nfsi->attr_gencount;
84 spin_lock(&dir->i_lock);
85 if (list_empty(&nfsi->open_files) &&
86 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
87 nfs_set_cache_invalid(dir,
88 NFS_INO_INVALID_DATA |
89 NFS_INO_REVAL_FORCED);
90 list_add(&ctx->list, &nfsi->open_files);
91 clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
92 spin_unlock(&dir->i_lock);
95 return ERR_PTR(-ENOMEM);
98 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 spin_lock(&dir->i_lock);
101 list_del(&ctx->list);
102 spin_unlock(&dir->i_lock);
110 nfs_opendir(struct inode *inode, struct file *filp)
113 struct nfs_open_dir_context *ctx;
115 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 ctx = alloc_nfs_open_dir_context(inode);
124 filp->private_data = ctx;
130 nfs_closedir(struct inode *inode, struct file *filp)
132 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136 struct nfs_cache_array_entry {
140 unsigned int name_len;
141 unsigned char d_type;
144 struct nfs_cache_array {
147 unsigned char page_full : 1,
149 cookies_are_ordered : 1;
150 struct nfs_cache_array_entry array[];
153 struct nfs_readdir_descriptor {
156 struct dir_context *ctx;
161 loff_t current_index;
164 __be32 verf[NFS_DIR_VERIFIER_SIZE];
165 unsigned long dir_verifier;
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned long attr_gencount;
169 unsigned int cache_entry_index;
176 static void nfs_readdir_array_init(struct nfs_cache_array *array)
178 memset(array, 0, sizeof(struct nfs_cache_array));
181 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
183 struct nfs_cache_array *array;
185 array = kmap_atomic(page);
186 nfs_readdir_array_init(array);
187 array->last_cookie = last_cookie;
188 array->cookies_are_ordered = 1;
189 kunmap_atomic(array);
193 * we are freeing strings created by nfs_add_to_readdir_array()
196 void nfs_readdir_clear_array(struct page *page)
198 struct nfs_cache_array *array;
201 array = kmap_atomic(page);
202 for (i = 0; i < array->size; i++)
203 kfree(array->array[i].name);
204 nfs_readdir_array_init(array);
205 kunmap_atomic(array);
209 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
211 struct page *page = alloc_page(gfp_flags);
213 nfs_readdir_page_init_array(page, last_cookie);
217 static void nfs_readdir_page_array_free(struct page *page)
220 nfs_readdir_clear_array(page);
225 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
227 array->page_is_eof = 1;
228 array->page_full = 1;
231 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
233 return array->page_full;
237 * the caller is responsible for freeing qstr.name
238 * when called by nfs_readdir_add_to_array, the strings will be freed in
239 * nfs_clear_readdir_array()
241 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
243 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
246 * Avoid a kmemleak false positive. The pointer to the name is stored
247 * in a page cache page which kmemleak does not scan.
250 kmemleak_not_leak(ret);
255 * Check that the next array entry lies entirely within the page bounds
257 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
259 struct nfs_cache_array_entry *cache_entry;
261 if (array->page_full)
263 cache_entry = &array->array[array->size + 1];
264 if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
265 array->page_full = 1;
272 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
274 struct nfs_cache_array *array;
275 struct nfs_cache_array_entry *cache_entry;
279 name = nfs_readdir_copy_name(entry->name, entry->len);
283 array = kmap_atomic(page);
284 ret = nfs_readdir_array_can_expand(array);
290 cache_entry = &array->array[array->size];
291 cache_entry->cookie = entry->prev_cookie;
292 cache_entry->ino = entry->ino;
293 cache_entry->d_type = entry->d_type;
294 cache_entry->name_len = entry->len;
295 cache_entry->name = name;
296 array->last_cookie = entry->cookie;
297 if (array->last_cookie <= cache_entry->cookie)
298 array->cookies_are_ordered = 0;
301 nfs_readdir_array_set_eof(array);
303 kunmap_atomic(array);
307 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
308 pgoff_t index, u64 last_cookie)
312 page = grab_cache_page(mapping, index);
313 if (page && !PageUptodate(page)) {
314 nfs_readdir_page_init_array(page, last_cookie);
315 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
316 nfs_zap_mapping(mapping->host, mapping);
317 SetPageUptodate(page);
323 static u64 nfs_readdir_page_last_cookie(struct page *page)
325 struct nfs_cache_array *array;
328 array = kmap_atomic(page);
329 ret = array->last_cookie;
330 kunmap_atomic(array);
334 static bool nfs_readdir_page_needs_filling(struct page *page)
336 struct nfs_cache_array *array;
339 array = kmap_atomic(page);
340 ret = !nfs_readdir_array_is_full(array);
341 kunmap_atomic(array);
345 static void nfs_readdir_page_set_eof(struct page *page)
347 struct nfs_cache_array *array;
349 array = kmap_atomic(page);
350 nfs_readdir_array_set_eof(array);
351 kunmap_atomic(array);
354 static void nfs_readdir_page_unlock_and_put(struct page *page)
360 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
361 pgoff_t index, u64 cookie)
365 page = nfs_readdir_page_get_locked(mapping, index, cookie);
367 if (nfs_readdir_page_last_cookie(page) == cookie)
369 nfs_readdir_page_unlock_and_put(page);
375 int is_32bit_api(void)
378 return in_compat_syscall();
380 return (BITS_PER_LONG == 32);
385 bool nfs_readdir_use_cookie(const struct file *filp)
387 if ((filp->f_mode & FMODE_32BITHASH) ||
388 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
393 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
394 struct nfs_readdir_descriptor *desc)
396 loff_t diff = desc->ctx->pos - desc->current_index;
401 if (diff >= array->size) {
402 if (array->page_is_eof)
407 index = (unsigned int)diff;
408 desc->dir_cookie = array->array[index].cookie;
409 desc->cache_entry_index = index;
417 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
419 if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
420 NFS_INO_INVALID_DATA))
423 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
426 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
429 if (!array->cookies_are_ordered)
431 /* Optimisation for monotonically increasing cookies */
432 if (cookie >= array->last_cookie)
434 if (array->size && cookie < array->array[0].cookie)
439 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
440 struct nfs_readdir_descriptor *desc)
444 int status = -EAGAIN;
446 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
449 for (i = 0; i < array->size; i++) {
450 if (array->array[i].cookie == desc->dir_cookie) {
451 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
453 new_pos = desc->current_index + i;
454 if (desc->attr_gencount != nfsi->attr_gencount ||
455 !nfs_readdir_inode_mapping_valid(nfsi)) {
457 desc->attr_gencount = nfsi->attr_gencount;
458 } else if (new_pos < desc->prev_index) {
460 && desc->dup_cookie == desc->dir_cookie) {
461 if (printk_ratelimit()) {
462 pr_notice("NFS: directory %pD2 contains a readdir loop."
463 "Please contact your server vendor. "
464 "The file: %s has duplicate cookie %llu\n",
465 desc->file, array->array[i].name, desc->dir_cookie);
470 desc->dup_cookie = desc->dir_cookie;
473 if (nfs_readdir_use_cookie(desc->file))
474 desc->ctx->pos = desc->dir_cookie;
476 desc->ctx->pos = new_pos;
477 desc->prev_index = new_pos;
478 desc->cache_entry_index = i;
483 if (array->page_is_eof) {
484 status = -EBADCOOKIE;
485 if (desc->dir_cookie == array->last_cookie)
492 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
494 struct nfs_cache_array *array;
497 array = kmap_atomic(desc->page);
499 if (desc->dir_cookie == 0)
500 status = nfs_readdir_search_for_pos(array, desc);
502 status = nfs_readdir_search_for_cookie(array, desc);
504 if (status == -EAGAIN) {
505 desc->last_cookie = array->last_cookie;
506 desc->current_index += array->size;
509 kunmap_atomic(array);
513 /* Fill a page with xdr information before transferring to the cache page */
514 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
515 __be32 *verf, u64 cookie,
516 struct page **pages, size_t bufsize,
519 struct inode *inode = file_inode(desc->file);
520 struct nfs_readdir_arg arg = {
521 .dentry = file_dentry(desc->file),
522 .cred = desc->file->f_cred,
529 struct nfs_readdir_res res = {
532 unsigned long timestamp, gencount;
537 gencount = nfs_inc_attr_generation_counter();
538 desc->dir_verifier = nfs_save_change_attribute(inode);
539 error = NFS_PROTO(inode)->readdir(&arg, &res);
541 /* We requested READDIRPLUS, but the server doesn't grok it */
542 if (error == -ENOTSUPP && desc->plus) {
543 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
544 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
545 desc->plus = arg.plus = false;
550 desc->timestamp = timestamp;
551 desc->gencount = gencount;
556 static int xdr_decode(struct nfs_readdir_descriptor *desc,
557 struct nfs_entry *entry, struct xdr_stream *xdr)
559 struct inode *inode = file_inode(desc->file);
562 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
565 entry->fattr->time_start = desc->timestamp;
566 entry->fattr->gencount = desc->gencount;
570 /* Match file and dirent using either filehandle or fileid
571 * Note: caller is responsible for checking the fsid
574 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
577 struct nfs_inode *nfsi;
579 if (d_really_is_negative(dentry))
582 inode = d_inode(dentry);
583 if (is_bad_inode(inode) || NFS_STALE(inode))
587 if (entry->fattr->fileid != nfsi->fileid)
589 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
595 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
597 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
599 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
607 * This function is called by the lookup and getattr code to request the
608 * use of readdirplus to accelerate any future lookups in the same
611 void nfs_advise_use_readdirplus(struct inode *dir)
613 struct nfs_inode *nfsi = NFS_I(dir);
615 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
616 !list_empty(&nfsi->open_files))
617 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
621 * This function is mainly for use by nfs_getattr().
623 * If this is an 'ls -l', we want to force use of readdirplus.
624 * Do this by checking if there is an active file descriptor
625 * and calling nfs_advise_use_readdirplus, then forcing a
628 void nfs_force_use_readdirplus(struct inode *dir)
630 struct nfs_inode *nfsi = NFS_I(dir);
632 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
633 !list_empty(&nfsi->open_files)) {
634 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
635 set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
640 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
641 unsigned long dir_verifier)
643 struct qstr filename = QSTR_INIT(entry->name, entry->len);
644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
645 struct dentry *dentry;
646 struct dentry *alias;
650 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
652 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
654 if (filename.len == 0)
656 /* Validate that the name doesn't contain any illegal '\0' */
657 if (strnlen(filename.name, filename.len) != filename.len)
660 if (strnchr(filename.name, filename.len, '/'))
662 if (filename.name[0] == '.') {
663 if (filename.len == 1)
665 if (filename.len == 2 && filename.name[1] == '.')
668 filename.hash = full_name_hash(parent, filename.name, filename.len);
670 dentry = d_lookup(parent, &filename);
673 dentry = d_alloc_parallel(parent, &filename, &wq);
677 if (!d_in_lookup(dentry)) {
678 /* Is there a mountpoint here? If so, just exit */
679 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
680 &entry->fattr->fsid))
682 if (nfs_same_file(dentry, entry)) {
683 if (!entry->fh->size)
685 nfs_set_verifier(dentry, dir_verifier);
686 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
688 nfs_setsecurity(d_inode(dentry), entry->fattr);
691 d_invalidate(dentry);
697 if (!entry->fh->size) {
698 d_lookup_done(dentry);
702 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
703 alias = d_splice_alias(inode, dentry);
704 d_lookup_done(dentry);
711 nfs_set_verifier(dentry, dir_verifier);
716 /* Perform conversion from xdr to cache array */
717 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
718 struct nfs_entry *entry,
719 struct page **xdr_pages,
721 struct page **arrays,
724 struct address_space *mapping = desc->file->f_mapping;
725 struct xdr_stream stream;
727 struct page *scratch, *new, *page = *arrays;
730 scratch = alloc_page(GFP_KERNEL);
734 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
735 xdr_set_scratch_page(&stream, scratch);
738 if (entry->fattr->label)
739 entry->fattr->label->len = NFS4_MAXLABELLEN;
741 status = xdr_decode(desc, entry, &stream);
746 nfs_prime_dcache(file_dentry(desc->file), entry,
749 status = nfs_readdir_add_to_array(entry, page);
750 if (status != -ENOSPC)
753 if (page->mapping != mapping) {
756 new = nfs_readdir_page_array_alloc(entry->prev_cookie,
761 *arrays = page = new;
763 new = nfs_readdir_page_get_next(mapping,
769 nfs_readdir_page_unlock_and_put(page);
772 status = nfs_readdir_add_to_array(entry, page);
773 } while (!status && !entry->eof);
778 nfs_readdir_page_set_eof(page);
789 nfs_readdir_page_unlock_and_put(page);
795 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
798 put_page(pages[npages]);
803 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
804 * to nfs_readdir_free_pages()
806 static struct page **nfs_readdir_alloc_pages(size_t npages)
811 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
814 for (i = 0; i < npages; i++) {
815 struct page *page = alloc_page(GFP_KERNEL);
823 nfs_readdir_free_pages(pages, i);
827 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
828 __be32 *verf_arg, __be32 *verf_res,
829 struct page **arrays, size_t narrays)
832 struct page *page = *arrays;
833 struct nfs_entry *entry;
835 struct inode *inode = file_inode(desc->file);
836 size_t dtsize = NFS_SERVER(inode)->dtsize;
837 int status = -ENOMEM;
839 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
842 entry->cookie = nfs_readdir_page_last_cookie(page);
843 entry->fh = nfs_alloc_fhandle();
844 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
845 entry->server = NFS_SERVER(inode);
846 if (entry->fh == NULL || entry->fattr == NULL)
849 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
850 pages = nfs_readdir_alloc_pages(array_size);
856 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
864 nfs_readdir_page_set_eof(page);
870 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
872 } while (!status && nfs_readdir_page_needs_filling(page) &&
875 nfs_readdir_free_pages(pages, array_size);
877 nfs_free_fattr(entry->fattr);
878 nfs_free_fhandle(entry->fh);
883 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
885 put_page(desc->page);
890 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
892 unlock_page(desc->page);
893 nfs_readdir_page_put(desc);
897 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
899 return nfs_readdir_page_get_locked(desc->file->f_mapping,
905 * Returns 0 if desc->dir_cookie was found on page desc->page_index
906 * and locks the page to prevent removal from the page cache.
908 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
910 struct inode *inode = file_inode(desc->file);
911 struct nfs_inode *nfsi = NFS_I(inode);
912 __be32 verf[NFS_DIR_VERIFIER_SIZE];
915 desc->page = nfs_readdir_page_get_cached(desc);
918 if (nfs_readdir_page_needs_filling(desc->page)) {
919 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
922 nfs_readdir_page_unlock_and_put_cached(desc);
923 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
924 invalidate_inode_pages2(desc->file->f_mapping);
925 desc->page_index = 0;
931 * Set the cookie verifier if the page cache was empty
933 if (desc->page_index == 0)
934 memcpy(nfsi->cookieverf, verf,
935 sizeof(nfsi->cookieverf));
937 res = nfs_readdir_search_array(desc);
940 nfs_readdir_page_unlock_and_put_cached(desc);
944 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
946 struct address_space *mapping = desc->file->f_mapping;
947 struct inode *dir = file_inode(desc->file);
948 unsigned int dtsize = NFS_SERVER(dir)->dtsize;
949 loff_t size = i_size_read(dir);
952 * Default to uncached readdir if the page cache is empty, and
953 * we're looking for a non-zero cookie in a large directory.
955 return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
958 /* Search for desc->dir_cookie from the beginning of the page cache */
959 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
963 if (nfs_readdir_dont_search_cache(desc))
967 if (desc->page_index == 0) {
968 desc->current_index = 0;
969 desc->prev_index = 0;
970 desc->last_cookie = 0;
972 res = find_and_lock_cache_page(desc);
973 } while (res == -EAGAIN);
978 * Once we've found the start of the dirent within a page: fill 'er up...
980 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
983 struct file *file = desc->file;
984 struct nfs_cache_array *array;
987 array = kmap(desc->page);
988 for (i = desc->cache_entry_index; i < array->size; i++) {
989 struct nfs_cache_array_entry *ent;
991 ent = &array->array[i];
992 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
993 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
997 memcpy(desc->verf, verf, sizeof(desc->verf));
998 if (i < (array->size-1))
999 desc->dir_cookie = array->array[i+1].cookie;
1001 desc->dir_cookie = array->last_cookie;
1002 if (nfs_readdir_use_cookie(file))
1003 desc->ctx->pos = desc->dir_cookie;
1006 if (desc->duped != 0)
1009 if (array->page_is_eof)
1010 desc->eof = !desc->eob;
1013 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1014 (unsigned long long)desc->dir_cookie);
1018 * If we cannot find a cookie in our cache, we suspect that this is
1019 * because it points to a deleted file, so we ask the server to return
1020 * whatever it thinks is the next entry. We then feed this to filldir.
1021 * If all goes well, we should then be able to find our way round the
1022 * cache on the next call to readdir_search_pagecache();
1024 * NOTE: we cannot add the anonymous page to the pagecache because
1025 * the data it contains might not be page aligned. Besides,
1026 * we should already have a complete representation of the
1027 * directory in the page cache by the time we get here.
1029 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1031 struct page **arrays;
1033 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1034 int status = -ENOMEM;
1036 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1037 (unsigned long long)desc->dir_cookie);
1039 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1042 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1046 desc->page_index = 0;
1047 desc->cache_entry_index = 0;
1048 desc->last_cookie = desc->dir_cookie;
1051 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1053 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1054 desc->page = arrays[i];
1055 nfs_do_filldir(desc, verf);
1060 for (i = 0; i < sz && arrays[i]; i++)
1061 nfs_readdir_page_array_free(arrays[i]);
1064 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1068 /* The file offset position represents the dirent entry number. A
1069 last cookie cache takes care of the common case of reading the
1072 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1074 struct dentry *dentry = file_dentry(file);
1075 struct inode *inode = d_inode(dentry);
1076 struct nfs_inode *nfsi = NFS_I(inode);
1077 struct nfs_open_dir_context *dir_ctx = file->private_data;
1078 struct nfs_readdir_descriptor *desc;
1082 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1083 file, (long long)ctx->pos);
1084 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1087 * ctx->pos points to the dirent entry number.
1088 * *desc->dir_cookie has the cookie for the next entry. We have
1089 * to either find the entry with the appropriate number or
1090 * revalidate the cookie.
1092 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1093 res = nfs_revalidate_mapping(inode, file->f_mapping);
1099 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1104 desc->plus = nfs_use_readdirplus(inode, ctx);
1106 spin_lock(&file->f_lock);
1107 desc->dir_cookie = dir_ctx->dir_cookie;
1108 desc->dup_cookie = dir_ctx->dup_cookie;
1109 desc->duped = dir_ctx->duped;
1110 page_index = dir_ctx->page_index;
1111 desc->attr_gencount = dir_ctx->attr_gencount;
1112 desc->eof = dir_ctx->eof;
1113 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1114 spin_unlock(&file->f_lock);
1121 if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1122 list_is_singular(&nfsi->open_files))
1123 invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1126 res = readdir_search_pagecache(desc);
1128 if (res == -EBADCOOKIE) {
1130 /* This means either end of directory */
1131 if (desc->dir_cookie && !desc->eof) {
1132 /* Or that the server has 'lost' a cookie */
1133 res = uncached_readdir(desc);
1136 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1141 if (res == -ETOOSMALL && desc->plus) {
1142 clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1143 nfs_zap_caches(inode);
1144 desc->page_index = 0;
1152 nfs_do_filldir(desc, nfsi->cookieverf);
1153 nfs_readdir_page_unlock_and_put_cached(desc);
1154 } while (!desc->eob && !desc->eof);
1156 spin_lock(&file->f_lock);
1157 dir_ctx->dir_cookie = desc->dir_cookie;
1158 dir_ctx->dup_cookie = desc->dup_cookie;
1159 dir_ctx->duped = desc->duped;
1160 dir_ctx->attr_gencount = desc->attr_gencount;
1161 dir_ctx->page_index = desc->page_index;
1162 dir_ctx->eof = desc->eof;
1163 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1164 spin_unlock(&file->f_lock);
1169 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1173 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1175 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1177 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1178 filp, offset, whence);
1186 spin_lock(&filp->f_lock);
1191 spin_lock(&filp->f_lock);
1192 offset += filp->f_pos;
1194 spin_unlock(&filp->f_lock);
1198 if (offset != filp->f_pos) {
1199 filp->f_pos = offset;
1200 if (nfs_readdir_use_cookie(filp))
1201 dir_ctx->dir_cookie = offset;
1203 dir_ctx->dir_cookie = 0;
1205 memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1207 dir_ctx->eof = false;
1209 spin_unlock(&filp->f_lock);
1214 * All directory operations under NFS are synchronous, so fsync()
1215 * is a dummy operation.
1217 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1220 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1222 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1227 * nfs_force_lookup_revalidate - Mark the directory as having changed
1228 * @dir: pointer to directory inode
1230 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1231 * full lookup on all child dentries of 'dir' whenever a change occurs
1232 * on the server that might have invalidated our dcache.
1234 * Note that we reserve bit '0' as a tag to let us know when a dentry
1235 * was revalidated while holding a delegation on its inode.
1237 * The caller should be holding dir->i_lock
1239 void nfs_force_lookup_revalidate(struct inode *dir)
1241 NFS_I(dir)->cache_change_attribute += 2;
1243 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1246 * nfs_verify_change_attribute - Detects NFS remote directory changes
1247 * @dir: pointer to parent directory inode
1248 * @verf: previously saved change attribute
1250 * Return "false" if the verifiers doesn't match the change attribute.
1251 * This would usually indicate that the directory contents have changed on
1252 * the server, and that any dentries need revalidating.
1254 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1256 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1259 static void nfs_set_verifier_delegated(unsigned long *verf)
1264 #if IS_ENABLED(CONFIG_NFS_V4)
1265 static void nfs_unset_verifier_delegated(unsigned long *verf)
1269 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1271 static bool nfs_test_verifier_delegated(unsigned long verf)
1276 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1278 return nfs_test_verifier_delegated(dentry->d_time);
1281 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1283 struct inode *inode = d_inode(dentry);
1284 struct inode *dir = d_inode(dentry->d_parent);
1286 if (!nfs_verify_change_attribute(dir, verf))
1288 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1289 nfs_set_verifier_delegated(&verf);
1290 dentry->d_time = verf;
1294 * nfs_set_verifier - save a parent directory verifier in the dentry
1295 * @dentry: pointer to dentry
1296 * @verf: verifier to save
1298 * Saves the parent directory verifier in @dentry. If the inode has
1299 * a delegation, we also tag the dentry as having been revalidated
1300 * while holding a delegation so that we know we don't have to
1301 * look it up again after a directory change.
1303 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1306 spin_lock(&dentry->d_lock);
1307 nfs_set_verifier_locked(dentry, verf);
1308 spin_unlock(&dentry->d_lock);
1310 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1312 #if IS_ENABLED(CONFIG_NFS_V4)
1314 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1315 * @inode: pointer to inode
1317 * Iterates through the dentries in the inode alias list and clears
1318 * the tag used to indicate that the dentry has been revalidated
1319 * while holding a delegation.
1320 * This function is intended for use when the delegation is being
1321 * returned or revoked.
1323 void nfs_clear_verifier_delegated(struct inode *inode)
1325 struct dentry *alias;
1329 spin_lock(&inode->i_lock);
1330 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1331 spin_lock(&alias->d_lock);
1332 nfs_unset_verifier_delegated(&alias->d_time);
1333 spin_unlock(&alias->d_lock);
1335 spin_unlock(&inode->i_lock);
1337 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1338 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1340 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1342 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1343 d_really_is_negative(dentry))
1344 return dentry->d_time == inode_peek_iversion_raw(dir);
1345 return nfs_verify_change_attribute(dir, dentry->d_time);
1349 * A check for whether or not the parent directory has changed.
1350 * In the case it has, we assume that the dentries are untrustworthy
1351 * and may need to be looked up again.
1352 * If rcu_walk prevents us from performing a full check, return 0.
1354 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1357 if (IS_ROOT(dentry))
1359 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1361 if (!nfs_dentry_verify_change(dir, dentry))
1363 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1364 if (nfs_mapping_need_revalidate_inode(dir)) {
1367 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1370 if (!nfs_dentry_verify_change(dir, dentry))
1376 * Use intent information to check whether or not we're going to do
1377 * an O_EXCL create using this path component.
1379 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1381 if (NFS_PROTO(dir)->version == 2)
1383 return flags & LOOKUP_EXCL;
1387 * Inode and filehandle revalidation for lookups.
1389 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1390 * or if the intent information indicates that we're about to open this
1391 * particular file and the "nocto" mount flag is not set.
1395 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1397 struct nfs_server *server = NFS_SERVER(inode);
1400 if (IS_AUTOMOUNT(inode))
1403 if (flags & LOOKUP_OPEN) {
1404 switch (inode->i_mode & S_IFMT) {
1406 /* A NFSv4 OPEN will revalidate later */
1407 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1411 if (server->flags & NFS_MOUNT_NOCTO)
1413 /* NFS close-to-open cache consistency validation */
1418 /* VFS wants an on-the-wire revalidation */
1419 if (flags & LOOKUP_REVAL)
1422 return (inode->i_nlink == 0) ? -ESTALE : 0;
1424 if (flags & LOOKUP_RCU)
1426 ret = __nfs_revalidate_inode(server, inode);
1432 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1434 spin_lock(&inode->i_lock);
1435 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1436 spin_unlock(&inode->i_lock);
1440 * We judge how long we want to trust negative
1441 * dentries by looking at the parent inode mtime.
1443 * If parent mtime has changed, we revalidate, else we wait for a
1444 * period corresponding to the parent's attribute cache timeout value.
1446 * If LOOKUP_RCU prevents us from performing a full check, return 1
1447 * suggesting a reval is needed.
1449 * Note that when creating a new file, or looking up a rename target,
1450 * then it shouldn't be necessary to revalidate a negative dentry.
1453 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1456 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1458 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1460 /* Case insensitive server? Revalidate negative dentries */
1461 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1463 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1467 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1468 struct inode *inode, int error)
1472 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1477 * We can't d_drop the root of a disconnected tree:
1478 * its d_hash is on the s_anon list and d_drop() would hide
1479 * it from shrink_dcache_for_unmount(), leading to busy
1480 * inodes on unmount and further oopses.
1482 if (inode && IS_ROOT(dentry))
1484 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1488 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1489 __func__, dentry, error);
1494 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1498 if (nfs_neg_need_reval(dir, dentry, flags)) {
1499 if (flags & LOOKUP_RCU)
1503 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1507 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1508 struct inode *inode)
1510 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1511 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1515 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1516 struct inode *inode)
1518 struct nfs_fh *fhandle;
1519 struct nfs_fattr *fattr;
1520 unsigned long dir_verifier;
1524 fhandle = nfs_alloc_fhandle();
1525 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1526 if (fhandle == NULL || fattr == NULL)
1529 dir_verifier = nfs_save_change_attribute(dir);
1530 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1538 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1544 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1546 if (nfs_refresh_inode(inode, fattr) < 0)
1549 nfs_setsecurity(inode, fattr);
1550 nfs_set_verifier(dentry, dir_verifier);
1552 /* set a readdirplus hint that we had a cache miss */
1553 nfs_force_use_readdirplus(dir);
1556 nfs_free_fattr(fattr);
1557 nfs_free_fhandle(fhandle);
1560 * If the lookup failed despite the dentry change attribute being
1561 * a match, then we should revalidate the directory cache.
1563 if (!ret && nfs_dentry_verify_change(dir, dentry))
1564 nfs_mark_dir_for_revalidate(dir);
1565 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1569 * This is called every time the dcache has a lookup hit,
1570 * and we should check whether we can really trust that
1573 * NOTE! The hit can be a negative hit too, don't assume
1576 * If the parent directory is seen to have changed, we throw out the
1577 * cached dentry and do a new lookup.
1580 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1583 struct inode *inode;
1586 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1587 inode = d_inode(dentry);
1590 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1592 if (is_bad_inode(inode)) {
1593 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1598 if (nfs_verifier_is_delegated(dentry))
1599 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1601 /* Force a full look up iff the parent directory has changed */
1602 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1603 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1604 error = nfs_lookup_verify_inode(inode, flags);
1606 if (error == -ESTALE)
1607 nfs_mark_dir_for_revalidate(dir);
1610 nfs_advise_use_readdirplus(dir);
1614 if (flags & LOOKUP_RCU)
1617 if (NFS_STALE(inode))
1620 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1621 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1622 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1625 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1627 if (flags & LOOKUP_RCU)
1629 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1633 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1634 int (*reval)(struct inode *, struct dentry *, unsigned int))
1636 struct dentry *parent;
1640 if (flags & LOOKUP_RCU) {
1641 parent = READ_ONCE(dentry->d_parent);
1642 dir = d_inode_rcu(parent);
1645 ret = reval(dir, dentry, flags);
1646 if (parent != READ_ONCE(dentry->d_parent))
1649 parent = dget_parent(dentry);
1650 ret = reval(d_inode(parent), dentry, flags);
1656 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1658 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1662 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1663 * when we don't really care about the dentry name. This is called when a
1664 * pathwalk ends on a dentry that was not found via a normal lookup in the
1665 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1667 * In this situation, we just want to verify that the inode itself is OK
1668 * since the dentry might have changed on the server.
1670 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1672 struct inode *inode = d_inode(dentry);
1676 * I believe we can only get a negative dentry here in the case of a
1677 * procfs-style symlink. Just assume it's correct for now, but we may
1678 * eventually need to do something more here.
1681 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1686 if (is_bad_inode(inode)) {
1687 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1692 error = nfs_lookup_verify_inode(inode, flags);
1693 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1694 __func__, inode->i_ino, error ? "invalid" : "valid");
1699 * This is called from dput() when d_count is going to 0.
1701 static int nfs_dentry_delete(const struct dentry *dentry)
1703 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1704 dentry, dentry->d_flags);
1706 /* Unhash any dentry with a stale inode */
1707 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1710 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1711 /* Unhash it, so that ->d_iput() would be called */
1714 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1715 /* Unhash it, so that ancestors of killed async unlink
1716 * files will be cleaned up during umount */
1723 /* Ensure that we revalidate inode->i_nlink */
1724 static void nfs_drop_nlink(struct inode *inode)
1726 spin_lock(&inode->i_lock);
1727 /* drop the inode if we're reasonably sure this is the last link */
1728 if (inode->i_nlink > 0)
1730 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1731 nfs_set_cache_invalid(
1732 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1733 NFS_INO_INVALID_NLINK);
1734 spin_unlock(&inode->i_lock);
1738 * Called when the dentry loses inode.
1739 * We use it to clean up silly-renamed files.
1741 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1743 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1744 nfs_complete_unlink(dentry, inode);
1745 nfs_drop_nlink(inode);
1750 static void nfs_d_release(struct dentry *dentry)
1752 /* free cached devname value, if it survived that far */
1753 if (unlikely(dentry->d_fsdata)) {
1754 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1757 kfree(dentry->d_fsdata);
1761 const struct dentry_operations nfs_dentry_operations = {
1762 .d_revalidate = nfs_lookup_revalidate,
1763 .d_weak_revalidate = nfs_weak_revalidate,
1764 .d_delete = nfs_dentry_delete,
1765 .d_iput = nfs_dentry_iput,
1766 .d_automount = nfs_d_automount,
1767 .d_release = nfs_d_release,
1769 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1771 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1774 struct inode *inode = NULL;
1775 struct nfs_fh *fhandle = NULL;
1776 struct nfs_fattr *fattr = NULL;
1777 unsigned long dir_verifier;
1780 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1781 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1783 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1784 return ERR_PTR(-ENAMETOOLONG);
1787 * If we're doing an exclusive create, optimize away the lookup
1788 * but don't hash the dentry.
1790 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1793 res = ERR_PTR(-ENOMEM);
1794 fhandle = nfs_alloc_fhandle();
1795 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1796 if (fhandle == NULL || fattr == NULL)
1799 dir_verifier = nfs_save_change_attribute(dir);
1800 trace_nfs_lookup_enter(dir, dentry, flags);
1801 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1802 if (error == -ENOENT) {
1803 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1804 dir_verifier = inode_peek_iversion_raw(dir);
1808 res = ERR_PTR(error);
1811 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1812 res = ERR_CAST(inode);
1816 /* Notify readdir to use READDIRPLUS */
1817 nfs_force_use_readdirplus(dir);
1820 res = d_splice_alias(inode, dentry);
1826 nfs_set_verifier(dentry, dir_verifier);
1828 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1829 nfs_free_fattr(fattr);
1830 nfs_free_fhandle(fhandle);
1833 EXPORT_SYMBOL_GPL(nfs_lookup);
1835 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1837 /* Case insensitive server? Revalidate dentries */
1838 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1839 d_prune_aliases(inode);
1841 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1843 #if IS_ENABLED(CONFIG_NFS_V4)
1844 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1846 const struct dentry_operations nfs4_dentry_operations = {
1847 .d_revalidate = nfs4_lookup_revalidate,
1848 .d_weak_revalidate = nfs_weak_revalidate,
1849 .d_delete = nfs_dentry_delete,
1850 .d_iput = nfs_dentry_iput,
1851 .d_automount = nfs_d_automount,
1852 .d_release = nfs_d_release,
1854 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1856 static fmode_t flags_to_mode(int flags)
1858 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1859 if ((flags & O_ACCMODE) != O_WRONLY)
1861 if ((flags & O_ACCMODE) != O_RDONLY)
1866 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1868 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1871 static int do_open(struct inode *inode, struct file *filp)
1873 nfs_fscache_open_file(inode, filp);
1877 static int nfs_finish_open(struct nfs_open_context *ctx,
1878 struct dentry *dentry,
1879 struct file *file, unsigned open_flags)
1883 err = finish_open(file, dentry, do_open);
1886 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1887 nfs_file_set_open_context(file, ctx);
1894 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1895 struct file *file, unsigned open_flags,
1898 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1899 struct nfs_open_context *ctx;
1901 struct iattr attr = { .ia_valid = ATTR_OPEN };
1902 struct inode *inode;
1903 unsigned int lookup_flags = 0;
1904 unsigned long dir_verifier;
1905 bool switched = false;
1909 /* Expect a negative dentry */
1910 BUG_ON(d_inode(dentry));
1912 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1913 dir->i_sb->s_id, dir->i_ino, dentry);
1915 err = nfs_check_flags(open_flags);
1919 /* NFS only supports OPEN on regular files */
1920 if ((open_flags & O_DIRECTORY)) {
1921 if (!d_in_lookup(dentry)) {
1923 * Hashed negative dentry with O_DIRECTORY: dentry was
1924 * revalidated and is fine, no need to perform lookup
1929 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1933 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1934 return -ENAMETOOLONG;
1936 if (open_flags & O_CREAT) {
1937 struct nfs_server *server = NFS_SERVER(dir);
1939 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1940 mode &= ~current_umask();
1942 attr.ia_valid |= ATTR_MODE;
1943 attr.ia_mode = mode;
1945 if (open_flags & O_TRUNC) {
1946 attr.ia_valid |= ATTR_SIZE;
1950 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1953 dentry = d_alloc_parallel(dentry->d_parent,
1954 &dentry->d_name, &wq);
1956 return PTR_ERR(dentry);
1957 if (unlikely(!d_in_lookup(dentry)))
1958 return finish_no_open(file, dentry);
1961 ctx = create_nfs_open_context(dentry, open_flags, file);
1966 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1967 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1969 file->f_mode |= FMODE_CREATED;
1970 if (IS_ERR(inode)) {
1971 err = PTR_ERR(inode);
1972 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1973 put_nfs_open_context(ctx);
1977 d_splice_alias(NULL, dentry);
1978 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1979 dir_verifier = inode_peek_iversion_raw(dir);
1981 dir_verifier = nfs_save_change_attribute(dir);
1982 nfs_set_verifier(dentry, dir_verifier);
1988 if (!(open_flags & O_NOFOLLOW))
1998 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1999 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2000 put_nfs_open_context(ctx);
2002 if (unlikely(switched)) {
2003 d_lookup_done(dentry);
2009 res = nfs_lookup(dir, dentry, lookup_flags);
2011 inode = d_inode(dentry);
2012 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2013 !S_ISDIR(inode->i_mode))
2014 res = ERR_PTR(-ENOTDIR);
2015 else if (inode && S_ISREG(inode->i_mode))
2016 res = ERR_PTR(-EOPENSTALE);
2017 } else if (!IS_ERR(res)) {
2018 inode = d_inode(res);
2019 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2020 !S_ISDIR(inode->i_mode)) {
2022 res = ERR_PTR(-ENOTDIR);
2023 } else if (inode && S_ISREG(inode->i_mode)) {
2025 res = ERR_PTR(-EOPENSTALE);
2029 d_lookup_done(dentry);
2036 return PTR_ERR(res);
2037 return finish_no_open(file, res);
2039 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2042 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2045 struct inode *inode;
2047 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2049 if (d_mountpoint(dentry))
2052 inode = d_inode(dentry);
2054 /* We can't create new files in nfs_open_revalidate(), so we
2055 * optimize away revalidation of negative dentries.
2060 if (nfs_verifier_is_delegated(dentry))
2061 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2063 /* NFS only supports OPEN on regular files */
2064 if (!S_ISREG(inode->i_mode))
2067 /* We cannot do exclusive creation on a positive dentry */
2068 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2071 /* Check if the directory changed */
2072 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2075 /* Let f_op->open() actually open (and revalidate) the file */
2078 if (flags & LOOKUP_RCU)
2080 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2083 return nfs_do_lookup_revalidate(dir, dentry, flags);
2086 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2088 return __nfs_lookup_revalidate(dentry, flags,
2089 nfs4_do_lookup_revalidate);
2092 #endif /* CONFIG_NFSV4 */
2095 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2096 struct nfs_fattr *fattr)
2098 struct dentry *parent = dget_parent(dentry);
2099 struct inode *dir = d_inode(parent);
2100 struct inode *inode;
2106 if (fhandle->size == 0) {
2107 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2111 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2112 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2113 struct nfs_server *server = NFS_SB(dentry->d_sb);
2114 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2119 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2120 d = d_splice_alias(inode, dentry);
2128 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2131 * Code common to create, mkdir, and mknod.
2133 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2134 struct nfs_fattr *fattr)
2138 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2142 /* Callers don't care */
2146 EXPORT_SYMBOL_GPL(nfs_instantiate);
2149 * Following a failed create operation, we drop the dentry rather
2150 * than retain a negative dentry. This avoids a problem in the event
2151 * that the operation succeeded on the server, but an error in the
2152 * reply path made it appear to have failed.
2154 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2155 struct dentry *dentry, umode_t mode, bool excl)
2158 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2161 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2162 dir->i_sb->s_id, dir->i_ino, dentry);
2164 attr.ia_mode = mode;
2165 attr.ia_valid = ATTR_MODE;
2167 trace_nfs_create_enter(dir, dentry, open_flags);
2168 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2169 trace_nfs_create_exit(dir, dentry, open_flags, error);
2177 EXPORT_SYMBOL_GPL(nfs_create);
2180 * See comments for nfs_proc_create regarding failed operations.
2183 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2184 struct dentry *dentry, umode_t mode, dev_t rdev)
2189 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2190 dir->i_sb->s_id, dir->i_ino, dentry);
2192 attr.ia_mode = mode;
2193 attr.ia_valid = ATTR_MODE;
2195 trace_nfs_mknod_enter(dir, dentry);
2196 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2197 trace_nfs_mknod_exit(dir, dentry, status);
2205 EXPORT_SYMBOL_GPL(nfs_mknod);
2208 * See comments for nfs_proc_create regarding failed operations.
2210 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2211 struct dentry *dentry, umode_t mode)
2216 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2217 dir->i_sb->s_id, dir->i_ino, dentry);
2219 attr.ia_valid = ATTR_MODE;
2220 attr.ia_mode = mode | S_IFDIR;
2222 trace_nfs_mkdir_enter(dir, dentry);
2223 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2224 trace_nfs_mkdir_exit(dir, dentry, error);
2232 EXPORT_SYMBOL_GPL(nfs_mkdir);
2234 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2236 if (simple_positive(dentry))
2240 static void nfs_dentry_remove_handle_error(struct inode *dir,
2241 struct dentry *dentry, int error)
2246 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2249 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2250 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2254 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2258 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2259 dir->i_sb->s_id, dir->i_ino, dentry);
2261 trace_nfs_rmdir_enter(dir, dentry);
2262 if (d_really_is_positive(dentry)) {
2263 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2264 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2265 /* Ensure the VFS deletes this inode */
2268 clear_nlink(d_inode(dentry));
2271 nfs_dentry_handle_enoent(dentry);
2273 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2275 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2276 nfs_dentry_remove_handle_error(dir, dentry, error);
2277 trace_nfs_rmdir_exit(dir, dentry, error);
2281 EXPORT_SYMBOL_GPL(nfs_rmdir);
2284 * Remove a file after making sure there are no pending writes,
2285 * and after checking that the file has only one user.
2287 * We invalidate the attribute cache and free the inode prior to the operation
2288 * to avoid possible races if the server reuses the inode.
2290 static int nfs_safe_remove(struct dentry *dentry)
2292 struct inode *dir = d_inode(dentry->d_parent);
2293 struct inode *inode = d_inode(dentry);
2296 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2298 /* If the dentry was sillyrenamed, we simply call d_delete() */
2299 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2304 trace_nfs_remove_enter(dir, dentry);
2305 if (inode != NULL) {
2306 error = NFS_PROTO(dir)->remove(dir, dentry);
2308 nfs_drop_nlink(inode);
2310 error = NFS_PROTO(dir)->remove(dir, dentry);
2311 if (error == -ENOENT)
2312 nfs_dentry_handle_enoent(dentry);
2313 trace_nfs_remove_exit(dir, dentry, error);
2318 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2319 * belongs to an active ".nfs..." file and we return -EBUSY.
2321 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2323 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2326 int need_rehash = 0;
2328 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2329 dir->i_ino, dentry);
2331 trace_nfs_unlink_enter(dir, dentry);
2332 spin_lock(&dentry->d_lock);
2333 if (d_count(dentry) > 1) {
2334 spin_unlock(&dentry->d_lock);
2335 /* Start asynchronous writeout of the inode */
2336 write_inode_now(d_inode(dentry), 0);
2337 error = nfs_sillyrename(dir, dentry);
2340 if (!d_unhashed(dentry)) {
2344 spin_unlock(&dentry->d_lock);
2345 error = nfs_safe_remove(dentry);
2346 nfs_dentry_remove_handle_error(dir, dentry, error);
2350 trace_nfs_unlink_exit(dir, dentry, error);
2353 EXPORT_SYMBOL_GPL(nfs_unlink);
2356 * To create a symbolic link, most file systems instantiate a new inode,
2357 * add a page to it containing the path, then write it out to the disk
2358 * using prepare_write/commit_write.
2360 * Unfortunately the NFS client can't create the in-core inode first
2361 * because it needs a file handle to create an in-core inode (see
2362 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2363 * symlink request has completed on the server.
2365 * So instead we allocate a raw page, copy the symname into it, then do
2366 * the SYMLINK request with the page as the buffer. If it succeeds, we
2367 * now have a new file handle and can instantiate an in-core NFS inode
2368 * and move the raw page into its mapping.
2370 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2371 struct dentry *dentry, const char *symname)
2376 unsigned int pathlen = strlen(symname);
2379 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2380 dir->i_ino, dentry, symname);
2382 if (pathlen > PAGE_SIZE)
2383 return -ENAMETOOLONG;
2385 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2386 attr.ia_valid = ATTR_MODE;
2388 page = alloc_page(GFP_USER);
2392 kaddr = page_address(page);
2393 memcpy(kaddr, symname, pathlen);
2394 if (pathlen < PAGE_SIZE)
2395 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2397 trace_nfs_symlink_enter(dir, dentry);
2398 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2399 trace_nfs_symlink_exit(dir, dentry, error);
2401 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2402 dir->i_sb->s_id, dir->i_ino,
2403 dentry, symname, error);
2409 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2412 * No big deal if we can't add this page to the page cache here.
2413 * READLINK will get the missing page from the server if needed.
2415 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2417 SetPageUptodate(page);
2420 * add_to_page_cache_lru() grabs an extra page refcount.
2421 * Drop it here to avoid leaking this page later.
2429 EXPORT_SYMBOL_GPL(nfs_symlink);
2432 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2434 struct inode *inode = d_inode(old_dentry);
2437 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2438 old_dentry, dentry);
2440 trace_nfs_link_enter(inode, dir, dentry);
2442 if (S_ISREG(inode->i_mode))
2443 nfs_sync_inode(inode);
2444 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2446 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2448 d_add(dentry, inode);
2450 trace_nfs_link_exit(inode, dir, dentry, error);
2453 EXPORT_SYMBOL_GPL(nfs_link);
2457 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2458 * different file handle for the same inode after a rename (e.g. when
2459 * moving to a different directory). A fail-safe method to do so would
2460 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2461 * rename the old file using the sillyrename stuff. This way, the original
2462 * file in old_dir will go away when the last process iput()s the inode.
2466 * It actually works quite well. One needs to have the possibility for
2467 * at least one ".nfs..." file in each directory the file ever gets
2468 * moved or linked to which happens automagically with the new
2469 * implementation that only depends on the dcache stuff instead of
2470 * using the inode layer
2472 * Unfortunately, things are a little more complicated than indicated
2473 * above. For a cross-directory move, we want to make sure we can get
2474 * rid of the old inode after the operation. This means there must be
2475 * no pending writes (if it's a file), and the use count must be 1.
2476 * If these conditions are met, we can drop the dentries before doing
2479 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2480 struct dentry *old_dentry, struct inode *new_dir,
2481 struct dentry *new_dentry, unsigned int flags)
2483 struct inode *old_inode = d_inode(old_dentry);
2484 struct inode *new_inode = d_inode(new_dentry);
2485 struct dentry *dentry = NULL, *rehash = NULL;
2486 struct rpc_task *task;
2492 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2493 old_dentry, new_dentry,
2494 d_count(new_dentry));
2496 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2498 * For non-directories, check whether the target is busy and if so,
2499 * make a copy of the dentry and then do a silly-rename. If the
2500 * silly-rename succeeds, the copied dentry is hashed and becomes
2503 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2505 * To prevent any new references to the target during the
2506 * rename, we unhash the dentry in advance.
2508 if (!d_unhashed(new_dentry)) {
2510 rehash = new_dentry;
2513 if (d_count(new_dentry) > 2) {
2516 /* copy the target dentry's name */
2517 dentry = d_alloc(new_dentry->d_parent,
2518 &new_dentry->d_name);
2522 /* silly-rename the existing target ... */
2523 err = nfs_sillyrename(new_dir, new_dentry);
2527 new_dentry = dentry;
2533 if (S_ISREG(old_inode->i_mode))
2534 nfs_sync_inode(old_inode);
2535 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2537 error = PTR_ERR(task);
2541 error = rpc_wait_for_completion_task(task);
2543 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2544 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2547 error = task->tk_status;
2549 /* Ensure the inode attributes are revalidated */
2551 spin_lock(&old_inode->i_lock);
2552 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2553 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2554 NFS_INO_INVALID_CTIME |
2555 NFS_INO_REVAL_FORCED);
2556 spin_unlock(&old_inode->i_lock);
2561 trace_nfs_rename_exit(old_dir, old_dentry,
2562 new_dir, new_dentry, error);
2564 if (new_inode != NULL)
2565 nfs_drop_nlink(new_inode);
2567 * The d_move() should be here instead of in an async RPC completion
2568 * handler because we need the proper locks to move the dentry. If
2569 * we're interrupted by a signal, the async RPC completion handler
2570 * should mark the directories for revalidation.
2572 d_move(old_dentry, new_dentry);
2573 nfs_set_verifier(old_dentry,
2574 nfs_save_change_attribute(new_dir));
2575 } else if (error == -ENOENT)
2576 nfs_dentry_handle_enoent(old_dentry);
2578 /* new dentry created? */
2583 EXPORT_SYMBOL_GPL(nfs_rename);
2585 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2586 static LIST_HEAD(nfs_access_lru_list);
2587 static atomic_long_t nfs_access_nr_entries;
2589 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2590 module_param(nfs_access_max_cachesize, ulong, 0644);
2591 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2593 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2595 put_group_info(entry->group_info);
2596 kfree_rcu(entry, rcu_head);
2597 smp_mb__before_atomic();
2598 atomic_long_dec(&nfs_access_nr_entries);
2599 smp_mb__after_atomic();
2602 static void nfs_access_free_list(struct list_head *head)
2604 struct nfs_access_entry *cache;
2606 while (!list_empty(head)) {
2607 cache = list_entry(head->next, struct nfs_access_entry, lru);
2608 list_del(&cache->lru);
2609 nfs_access_free_entry(cache);
2613 static unsigned long
2614 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2617 struct nfs_inode *nfsi, *next;
2618 struct nfs_access_entry *cache;
2621 spin_lock(&nfs_access_lru_lock);
2622 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2623 struct inode *inode;
2625 if (nr_to_scan-- == 0)
2627 inode = &nfsi->vfs_inode;
2628 spin_lock(&inode->i_lock);
2629 if (list_empty(&nfsi->access_cache_entry_lru))
2630 goto remove_lru_entry;
2631 cache = list_entry(nfsi->access_cache_entry_lru.next,
2632 struct nfs_access_entry, lru);
2633 list_move(&cache->lru, &head);
2634 rb_erase(&cache->rb_node, &nfsi->access_cache);
2636 if (!list_empty(&nfsi->access_cache_entry_lru))
2637 list_move_tail(&nfsi->access_cache_inode_lru,
2638 &nfs_access_lru_list);
2641 list_del_init(&nfsi->access_cache_inode_lru);
2642 smp_mb__before_atomic();
2643 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2644 smp_mb__after_atomic();
2646 spin_unlock(&inode->i_lock);
2648 spin_unlock(&nfs_access_lru_lock);
2649 nfs_access_free_list(&head);
2654 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2656 int nr_to_scan = sc->nr_to_scan;
2657 gfp_t gfp_mask = sc->gfp_mask;
2659 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2661 return nfs_do_access_cache_scan(nr_to_scan);
2666 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2668 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2672 nfs_access_cache_enforce_limit(void)
2674 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2676 unsigned int nr_to_scan;
2678 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2681 diff = nr_entries - nfs_access_max_cachesize;
2682 if (diff < nr_to_scan)
2684 nfs_do_access_cache_scan(nr_to_scan);
2687 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2689 struct rb_root *root_node = &nfsi->access_cache;
2691 struct nfs_access_entry *entry;
2693 /* Unhook entries from the cache */
2694 while ((n = rb_first(root_node)) != NULL) {
2695 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2696 rb_erase(n, root_node);
2697 list_move(&entry->lru, head);
2699 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2702 void nfs_access_zap_cache(struct inode *inode)
2706 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2708 /* Remove from global LRU init */
2709 spin_lock(&nfs_access_lru_lock);
2710 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2711 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2713 spin_lock(&inode->i_lock);
2714 __nfs_access_zap_cache(NFS_I(inode), &head);
2715 spin_unlock(&inode->i_lock);
2716 spin_unlock(&nfs_access_lru_lock);
2717 nfs_access_free_list(&head);
2719 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2721 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2723 struct group_info *ga, *gb;
2726 if (uid_lt(a->fsuid, b->fsuid))
2728 if (uid_gt(a->fsuid, b->fsuid))
2731 if (gid_lt(a->fsgid, b->fsgid))
2733 if (gid_gt(a->fsgid, b->fsgid))
2744 if (ga->ngroups < gb->ngroups)
2746 if (ga->ngroups > gb->ngroups)
2749 for (g = 0; g < ga->ngroups; g++) {
2750 if (gid_lt(ga->gid[g], gb->gid[g]))
2752 if (gid_gt(ga->gid[g], gb->gid[g]))
2758 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2760 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2763 struct nfs_access_entry *entry =
2764 rb_entry(n, struct nfs_access_entry, rb_node);
2765 int cmp = access_cmp(cred, entry);
2777 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2779 struct nfs_inode *nfsi = NFS_I(inode);
2780 struct nfs_access_entry *cache;
2784 spin_lock(&inode->i_lock);
2786 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2788 cache = nfs_access_search_rbtree(inode, cred);
2792 /* Found an entry, is our attribute cache valid? */
2793 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2800 spin_unlock(&inode->i_lock);
2801 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2804 spin_lock(&inode->i_lock);
2807 *mask = cache->mask;
2808 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2811 spin_unlock(&inode->i_lock);
2814 spin_unlock(&inode->i_lock);
2815 nfs_access_zap_cache(inode);
2819 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2821 /* Only check the most recently returned cache entry,
2822 * but do it without locking.
2824 struct nfs_inode *nfsi = NFS_I(inode);
2825 struct nfs_access_entry *cache;
2827 struct list_head *lh;
2830 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2832 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2833 cache = list_entry(lh, struct nfs_access_entry, lru);
2834 if (lh == &nfsi->access_cache_entry_lru ||
2835 access_cmp(cred, cache) != 0)
2839 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2841 *mask = cache->mask;
2848 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2849 u32 *mask, bool may_block)
2853 status = nfs_access_get_cached_rcu(inode, cred, mask);
2855 status = nfs_access_get_cached_locked(inode, cred, mask,
2860 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2862 static void nfs_access_add_rbtree(struct inode *inode,
2863 struct nfs_access_entry *set,
2864 const struct cred *cred)
2866 struct nfs_inode *nfsi = NFS_I(inode);
2867 struct rb_root *root_node = &nfsi->access_cache;
2868 struct rb_node **p = &root_node->rb_node;
2869 struct rb_node *parent = NULL;
2870 struct nfs_access_entry *entry;
2873 spin_lock(&inode->i_lock);
2874 while (*p != NULL) {
2876 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2877 cmp = access_cmp(cred, entry);
2880 p = &parent->rb_left;
2882 p = &parent->rb_right;
2886 rb_link_node(&set->rb_node, parent, p);
2887 rb_insert_color(&set->rb_node, root_node);
2888 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2889 spin_unlock(&inode->i_lock);
2892 rb_replace_node(parent, &set->rb_node, root_node);
2893 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2894 list_del(&entry->lru);
2895 spin_unlock(&inode->i_lock);
2896 nfs_access_free_entry(entry);
2899 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
2900 const struct cred *cred)
2902 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2905 RB_CLEAR_NODE(&cache->rb_node);
2906 cache->fsuid = cred->fsuid;
2907 cache->fsgid = cred->fsgid;
2908 cache->group_info = get_group_info(cred->group_info);
2909 cache->mask = set->mask;
2911 /* The above field assignments must be visible
2912 * before this item appears on the lru. We cannot easily
2913 * use rcu_assign_pointer, so just force the memory barrier.
2916 nfs_access_add_rbtree(inode, cache, cred);
2918 /* Update accounting */
2919 smp_mb__before_atomic();
2920 atomic_long_inc(&nfs_access_nr_entries);
2921 smp_mb__after_atomic();
2923 /* Add inode to global LRU list */
2924 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2925 spin_lock(&nfs_access_lru_lock);
2926 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2927 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2928 &nfs_access_lru_list);
2929 spin_unlock(&nfs_access_lru_lock);
2931 nfs_access_cache_enforce_limit();
2933 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2935 #define NFS_MAY_READ (NFS_ACCESS_READ)
2936 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2937 NFS_ACCESS_EXTEND | \
2939 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2941 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2942 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2943 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2945 nfs_access_calc_mask(u32 access_result, umode_t umode)
2949 if (access_result & NFS_MAY_READ)
2951 if (S_ISDIR(umode)) {
2952 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2954 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2956 } else if (S_ISREG(umode)) {
2957 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2959 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2961 } else if (access_result & NFS_MAY_WRITE)
2966 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2968 entry->mask = access_result;
2970 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2972 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2974 struct nfs_access_entry cache;
2975 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2976 int cache_mask = -1;
2979 trace_nfs_access_enter(inode);
2981 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2990 * Determine which access bits we want to ask for...
2992 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2993 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2994 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2997 if (S_ISDIR(inode->i_mode))
2998 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3000 cache.mask |= NFS_ACCESS_EXECUTE;
3001 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3003 if (status == -ESTALE) {
3004 if (!S_ISDIR(inode->i_mode))
3005 nfs_set_inode_stale(inode);
3007 nfs_zap_caches(inode);
3011 nfs_access_add_cache(inode, &cache, cred);
3013 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3014 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3017 trace_nfs_access_exit(inode, mask, cache_mask, status);
3021 static int nfs_open_permission_mask(int openflags)
3025 if (openflags & __FMODE_EXEC) {
3026 /* ONLY check exec rights */
3029 if ((openflags & O_ACCMODE) != O_WRONLY)
3031 if ((openflags & O_ACCMODE) != O_RDONLY)
3038 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3040 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3042 EXPORT_SYMBOL_GPL(nfs_may_open);
3044 static int nfs_execute_ok(struct inode *inode, int mask)
3046 struct nfs_server *server = NFS_SERVER(inode);
3049 if (S_ISDIR(inode->i_mode))
3051 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3052 if (mask & MAY_NOT_BLOCK)
3054 ret = __nfs_revalidate_inode(server, inode);
3056 if (ret == 0 && !execute_ok(inode))
3061 int nfs_permission(struct user_namespace *mnt_userns,
3062 struct inode *inode,
3065 const struct cred *cred = current_cred();
3068 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3070 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3072 /* Is this sys_access() ? */
3073 if (mask & (MAY_ACCESS | MAY_CHDIR))
3076 switch (inode->i_mode & S_IFMT) {
3080 if ((mask & MAY_OPEN) &&
3081 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3086 * Optimize away all write operations, since the server
3087 * will check permissions when we perform the op.
3089 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3094 if (!NFS_PROTO(inode)->access)
3097 res = nfs_do_access(inode, cred, mask);
3099 if (!res && (mask & MAY_EXEC))
3100 res = nfs_execute_ok(inode, mask);
3102 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3103 inode->i_sb->s_id, inode->i_ino, mask, res);
3106 if (mask & MAY_NOT_BLOCK)
3109 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3110 NFS_INO_INVALID_OTHER);
3112 res = generic_permission(&init_user_ns, inode, mask);
3115 EXPORT_SYMBOL_GPL(nfs_permission);