]> Git Repo - linux.git/blob - arch/sh/kernel/kprobes.c
Merge tag 'auxdisplay-for-v6.11-tag1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / sh / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Kernel probes (kprobes) for SuperH
4  *
5  * Copyright (C) 2007 Chris Smith <[email protected]>
6  * Copyright (C) 2006 Lineo Solutions, Inc.
7  */
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/ptrace.h>
11 #include <linux/preempt.h>
12 #include <linux/kdebug.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
16
17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
19
20 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
21 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
22 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
23
24 #define OPCODE_JMP(x)   (((x) & 0xF0FF) == 0x402b)
25 #define OPCODE_JSR(x)   (((x) & 0xF0FF) == 0x400b)
26 #define OPCODE_BRA(x)   (((x) & 0xF000) == 0xa000)
27 #define OPCODE_BRAF(x)  (((x) & 0xF0FF) == 0x0023)
28 #define OPCODE_BSR(x)   (((x) & 0xF000) == 0xb000)
29 #define OPCODE_BSRF(x)  (((x) & 0xF0FF) == 0x0003)
30
31 #define OPCODE_BF_S(x)  (((x) & 0xFF00) == 0x8f00)
32 #define OPCODE_BT_S(x)  (((x) & 0xFF00) == 0x8d00)
33
34 #define OPCODE_BF(x)    (((x) & 0xFF00) == 0x8b00)
35 #define OPCODE_BT(x)    (((x) & 0xFF00) == 0x8900)
36
37 #define OPCODE_RTS(x)   (((x) & 0x000F) == 0x000b)
38 #define OPCODE_RTE(x)   (((x) & 0xFFFF) == 0x002b)
39
40 int __kprobes arch_prepare_kprobe(struct kprobe *p)
41 {
42         kprobe_opcode_t opcode = *p->addr;
43
44         if (OPCODE_RTE(opcode))
45                 return -EFAULT; /* Bad breakpoint */
46
47         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
48         p->opcode = opcode;
49
50         return 0;
51 }
52
53 void __kprobes arch_arm_kprobe(struct kprobe *p)
54 {
55         *p->addr = BREAKPOINT_INSTRUCTION;
56         flush_icache_range((unsigned long)p->addr,
57                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
58 }
59
60 void __kprobes arch_disarm_kprobe(struct kprobe *p)
61 {
62         *p->addr = p->opcode;
63         flush_icache_range((unsigned long)p->addr,
64                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
65 }
66
67 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
68 {
69         if (*p->addr == BREAKPOINT_INSTRUCTION)
70                 return 1;
71
72         return 0;
73 }
74
75 /**
76  * If an illegal slot instruction exception occurs for an address
77  * containing a kprobe, remove the probe.
78  *
79  * Returns 0 if the exception was handled successfully, 1 otherwise.
80  */
81 int __kprobes kprobe_handle_illslot(unsigned long pc)
82 {
83         struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
84
85         if (p != NULL) {
86                 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
87                        (unsigned int)pc + 2);
88                 unregister_kprobe(p);
89                 return 0;
90         }
91
92         return 1;
93 }
94
95 void __kprobes arch_remove_kprobe(struct kprobe *p)
96 {
97         struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
98
99         if (saved->addr) {
100                 arch_disarm_kprobe(p);
101                 arch_disarm_kprobe(saved);
102
103                 saved->addr = NULL;
104                 saved->opcode = 0;
105
106                 saved = this_cpu_ptr(&saved_next_opcode2);
107                 if (saved->addr) {
108                         arch_disarm_kprobe(saved);
109
110                         saved->addr = NULL;
111                         saved->opcode = 0;
112                 }
113         }
114 }
115
116 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
117 {
118         kcb->prev_kprobe.kp = kprobe_running();
119         kcb->prev_kprobe.status = kcb->kprobe_status;
120 }
121
122 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
123 {
124         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
125         kcb->kprobe_status = kcb->prev_kprobe.status;
126 }
127
128 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
129                                          struct kprobe_ctlblk *kcb)
130 {
131         __this_cpu_write(current_kprobe, p);
132 }
133
134 /*
135  * Singlestep is implemented by disabling the current kprobe and setting one
136  * on the next instruction, following branches. Two probes are set if the
137  * branch is conditional.
138  */
139 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
140 {
141         __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
142
143         if (p != NULL) {
144                 struct kprobe *op1, *op2;
145
146                 arch_disarm_kprobe(p);
147
148                 op1 = this_cpu_ptr(&saved_next_opcode);
149                 op2 = this_cpu_ptr(&saved_next_opcode2);
150
151                 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
152                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
153                         op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
154                 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
155                         unsigned long disp = (p->opcode & 0x0FFF);
156                         op1->addr =
157                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
158
159                 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
160                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
161                         op1->addr =
162                             (kprobe_opcode_t *) (regs->pc + 4 +
163                                                  regs->regs[reg_nr]);
164
165                 } else if (OPCODE_RTS(p->opcode)) {
166                         op1->addr = (kprobe_opcode_t *) regs->pr;
167
168                 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
169                         unsigned long disp = (p->opcode & 0x00FF);
170                         /* case 1 */
171                         op1->addr = p->addr + 1;
172                         /* case 2 */
173                         op2->addr =
174                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
175                         op2->opcode = *(op2->addr);
176                         arch_arm_kprobe(op2);
177
178                 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
179                         unsigned long disp = (p->opcode & 0x00FF);
180                         /* case 1 */
181                         op1->addr = p->addr + 2;
182                         /* case 2 */
183                         op2->addr =
184                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
185                         op2->opcode = *(op2->addr);
186                         arch_arm_kprobe(op2);
187
188                 } else {
189                         op1->addr = p->addr + 1;
190                 }
191
192                 op1->opcode = *(op1->addr);
193                 arch_arm_kprobe(op1);
194         }
195 }
196
197 /* Called with kretprobe_lock held */
198 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
199                                       struct pt_regs *regs)
200 {
201         ri->ret_addr = (kprobe_opcode_t *) regs->pr;
202         ri->fp = NULL;
203
204         /* Replace the return addr with trampoline addr */
205         regs->pr = (unsigned long)__kretprobe_trampoline;
206 }
207
208 static int __kprobes kprobe_handler(struct pt_regs *regs)
209 {
210         struct kprobe *p;
211         int ret = 0;
212         kprobe_opcode_t *addr = NULL;
213         struct kprobe_ctlblk *kcb;
214
215         /*
216          * We don't want to be preempted for the entire
217          * duration of kprobe processing
218          */
219         preempt_disable();
220         kcb = get_kprobe_ctlblk();
221
222         addr = (kprobe_opcode_t *) (regs->pc);
223
224         /* Check we're not actually recursing */
225         if (kprobe_running()) {
226                 p = get_kprobe(addr);
227                 if (p) {
228                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
229                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
230                                 goto no_kprobe;
231                         }
232                         /* We have reentered the kprobe_handler(), since
233                          * another probe was hit while within the handler.
234                          * We here save the original kprobes variables and
235                          * just single step on the instruction of the new probe
236                          * without calling any user handlers.
237                          */
238                         save_previous_kprobe(kcb);
239                         set_current_kprobe(p, regs, kcb);
240                         kprobes_inc_nmissed_count(p);
241                         prepare_singlestep(p, regs);
242                         kcb->kprobe_status = KPROBE_REENTER;
243                         return 1;
244                 }
245                 goto no_kprobe;
246         }
247
248         p = get_kprobe(addr);
249         if (!p) {
250                 /* Not one of ours: let kernel handle it */
251                 if (*addr != BREAKPOINT_INSTRUCTION) {
252                         /*
253                          * The breakpoint instruction was removed right
254                          * after we hit it. Another cpu has removed
255                          * either a probepoint or a debugger breakpoint
256                          * at this address. In either case, no further
257                          * handling of this interrupt is appropriate.
258                          */
259                         ret = 1;
260                 }
261
262                 goto no_kprobe;
263         }
264
265         set_current_kprobe(p, regs, kcb);
266         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
267
268         if (p->pre_handler && p->pre_handler(p, regs)) {
269                 /* handler has already set things up, so skip ss setup */
270                 reset_current_kprobe();
271                 preempt_enable_no_resched();
272                 return 1;
273         }
274
275         prepare_singlestep(p, regs);
276         kcb->kprobe_status = KPROBE_HIT_SS;
277         return 1;
278
279 no_kprobe:
280         preempt_enable_no_resched();
281         return ret;
282 }
283
284 /*
285  * For function-return probes, init_kprobes() establishes a probepoint
286  * here. When a retprobed function returns, this probe is hit and
287  * trampoline_probe_handler() runs, calling the kretprobe's handler.
288  */
289 static void __used kretprobe_trampoline_holder(void)
290 {
291         asm volatile (".globl __kretprobe_trampoline\n"
292                       "__kretprobe_trampoline:\n\t"
293                       "nop\n");
294 }
295
296 /*
297  * Called when we hit the probe point at __kretprobe_trampoline
298  */
299 static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
300 {
301         regs->pc = __kretprobe_trampoline_handler(regs, NULL);
302
303         return 1;
304 }
305
306 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
307 {
308         struct kprobe *cur = kprobe_running();
309         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
310         kprobe_opcode_t *addr = NULL;
311         struct kprobe *p = NULL;
312
313         if (!cur)
314                 return 0;
315
316         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
317                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
318                 cur->post_handler(cur, regs, 0);
319         }
320
321         p = this_cpu_ptr(&saved_next_opcode);
322         if (p->addr) {
323                 arch_disarm_kprobe(p);
324                 p->addr = NULL;
325                 p->opcode = 0;
326
327                 addr = __this_cpu_read(saved_current_opcode.addr);
328                 __this_cpu_write(saved_current_opcode.addr, NULL);
329
330                 p = get_kprobe(addr);
331                 arch_arm_kprobe(p);
332
333                 p = this_cpu_ptr(&saved_next_opcode2);
334                 if (p->addr) {
335                         arch_disarm_kprobe(p);
336                         p->addr = NULL;
337                         p->opcode = 0;
338                 }
339         }
340
341         /* Restore back the original saved kprobes variables and continue. */
342         if (kcb->kprobe_status == KPROBE_REENTER) {
343                 restore_previous_kprobe(kcb);
344                 goto out;
345         }
346
347         reset_current_kprobe();
348
349 out:
350         preempt_enable_no_resched();
351
352         return 1;
353 }
354
355 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
356 {
357         struct kprobe *cur = kprobe_running();
358         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
359         const struct exception_table_entry *entry;
360
361         switch (kcb->kprobe_status) {
362         case KPROBE_HIT_SS:
363         case KPROBE_REENTER:
364                 /*
365                  * We are here because the instruction being single
366                  * stepped caused a page fault. We reset the current
367                  * kprobe, point the pc back to the probe address
368                  * and allow the page fault handler to continue as a
369                  * normal page fault.
370                  */
371                 regs->pc = (unsigned long)cur->addr;
372                 if (kcb->kprobe_status == KPROBE_REENTER)
373                         restore_previous_kprobe(kcb);
374                 else
375                         reset_current_kprobe();
376                 preempt_enable_no_resched();
377                 break;
378         case KPROBE_HIT_ACTIVE:
379         case KPROBE_HIT_SSDONE:
380                 /*
381                  * In case the user-specified fault handler returned
382                  * zero, try to fix up.
383                  */
384                 if ((entry = search_exception_tables(regs->pc)) != NULL) {
385                         regs->pc = entry->fixup;
386                         return 1;
387                 }
388
389                 /*
390                  * fixup_exception() could not handle it,
391                  * Let do_page_fault() fix it.
392                  */
393                 break;
394         default:
395                 break;
396         }
397
398         return 0;
399 }
400
401 /*
402  * Wrapper routine to for handling exceptions.
403  */
404 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
405                                        unsigned long val, void *data)
406 {
407         struct kprobe *p = NULL;
408         struct die_args *args = (struct die_args *)data;
409         int ret = NOTIFY_DONE;
410         kprobe_opcode_t *addr = NULL;
411         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
412
413         addr = (kprobe_opcode_t *) (args->regs->pc);
414         if (val == DIE_TRAP &&
415             args->trapnr == (BREAKPOINT_INSTRUCTION & 0xff)) {
416                 if (!kprobe_running()) {
417                         if (kprobe_handler(args->regs)) {
418                                 ret = NOTIFY_STOP;
419                         } else {
420                                 /* Not a kprobe trap */
421                                 ret = NOTIFY_DONE;
422                         }
423                 } else {
424                         p = get_kprobe(addr);
425                         if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
426                             (kcb->kprobe_status == KPROBE_REENTER)) {
427                                 if (post_kprobe_handler(args->regs))
428                                         ret = NOTIFY_STOP;
429                         } else {
430                                 if (kprobe_handler(args->regs))
431                                         ret = NOTIFY_STOP;
432                         }
433                 }
434         }
435
436         return ret;
437 }
438
439 static struct kprobe trampoline_p = {
440         .addr = (kprobe_opcode_t *)&__kretprobe_trampoline,
441         .pre_handler = trampoline_probe_handler
442 };
443
444 int __init arch_init_kprobes(void)
445 {
446         return register_kprobe(&trampoline_p);
447 }
This page took 0.057883 seconds and 4 git commands to generate.