2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
36 #include <linux/types.h>
37 #include <linux/compiler.h>
38 #include <linux/atomic.h>
39 #include <linux/irqflags.h>
40 #include <linux/preempt.h>
41 #include <linux/bottom_half.h>
42 #include <linux/lockdep.h>
43 #include <asm/processor.h>
44 #include <linux/cpumask.h>
46 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
47 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
48 #define ulong2long(a) (*(long *)(&(a)))
50 /* Exported common interfaces */
52 #ifdef CONFIG_PREEMPT_RCU
53 void call_rcu(struct rcu_head *head, rcu_callback_t func);
54 #else /* #ifdef CONFIG_PREEMPT_RCU */
55 #define call_rcu call_rcu_sched
56 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
58 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
59 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60 void synchronize_sched(void);
61 void rcu_barrier_tasks(void);
63 #ifdef CONFIG_PREEMPT_RCU
65 void __rcu_read_lock(void);
66 void __rcu_read_unlock(void);
67 void rcu_read_unlock_special(struct task_struct *t);
68 void synchronize_rcu(void);
71 * Defined as a macro as it is a very low level header included from
72 * areas that don't even know about current. This gives the rcu_read_lock()
73 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
74 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
76 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
78 #else /* #ifdef CONFIG_PREEMPT_RCU */
80 static inline void __rcu_read_lock(void)
82 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
86 static inline void __rcu_read_unlock(void)
88 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
92 static inline void synchronize_rcu(void)
97 static inline int rcu_preempt_depth(void)
102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
104 /* Internal to kernel */
106 extern int rcu_scheduler_active __read_mostly;
107 void rcu_sched_qs(void);
108 void rcu_bh_qs(void);
109 void rcu_check_callbacks(int user);
110 void rcu_report_dead(unsigned int cpu);
111 void rcutree_migrate_callbacks(int cpu);
113 #ifdef CONFIG_RCU_STALL_COMMON
114 void rcu_sysrq_start(void);
115 void rcu_sysrq_end(void);
116 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
117 static inline void rcu_sysrq_start(void) { }
118 static inline void rcu_sysrq_end(void) { }
119 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
121 #ifdef CONFIG_NO_HZ_FULL
122 void rcu_user_enter(void);
123 void rcu_user_exit(void);
125 static inline void rcu_user_enter(void) { }
126 static inline void rcu_user_exit(void) { }
127 #endif /* CONFIG_NO_HZ_FULL */
129 #ifdef CONFIG_RCU_NOCB_CPU
130 void rcu_init_nohz(void);
131 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
132 static inline void rcu_init_nohz(void) { }
133 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
136 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
137 * @a: Code that RCU needs to pay attention to.
139 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
140 * in the inner idle loop, that is, between the rcu_idle_enter() and
141 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
142 * critical sections. However, things like powertop need tracepoints
143 * in the inner idle loop.
145 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
146 * will tell RCU that it needs to pay attention, invoke its argument
147 * (in this example, calling the do_something_with_RCU() function),
148 * and then tell RCU to go back to ignoring this CPU. It is permissible
149 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
150 * on the order of a million or so, even on 32-bit systems). It is
151 * not legal to block within RCU_NONIDLE(), nor is it permissible to
152 * transfer control either into or out of RCU_NONIDLE()'s statement.
154 #define RCU_NONIDLE(a) \
156 rcu_irq_enter_irqson(); \
157 do { a; } while (0); \
158 rcu_irq_exit_irqson(); \
162 * Note a voluntary context switch for RCU-tasks benefit. This is a
163 * macro rather than an inline function to avoid #include hell.
165 #ifdef CONFIG_TASKS_RCU
166 #define rcu_note_voluntary_context_switch_lite(t) \
168 if (READ_ONCE((t)->rcu_tasks_holdout)) \
169 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
171 #define rcu_note_voluntary_context_switch(t) \
174 rcu_note_voluntary_context_switch_lite(t); \
176 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
177 void synchronize_rcu_tasks(void);
178 void exit_tasks_rcu_start(void);
179 void exit_tasks_rcu_finish(void);
180 #else /* #ifdef CONFIG_TASKS_RCU */
181 #define rcu_note_voluntary_context_switch_lite(t) do { } while (0)
182 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
183 #define call_rcu_tasks call_rcu_sched
184 #define synchronize_rcu_tasks synchronize_sched
185 static inline void exit_tasks_rcu_start(void) { }
186 static inline void exit_tasks_rcu_finish(void) { }
187 #endif /* #else #ifdef CONFIG_TASKS_RCU */
190 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
192 * This macro resembles cond_resched(), except that it is defined to
193 * report potential quiescent states to RCU-tasks even if the cond_resched()
194 * machinery were to be shut off, as some advocate for PREEMPT kernels.
196 #define cond_resched_tasks_rcu_qs() \
198 if (!cond_resched()) \
199 rcu_note_voluntary_context_switch_lite(current); \
203 * Infrastructure to implement the synchronize_() primitives in
204 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
207 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
208 #include <linux/rcutree.h>
209 #elif defined(CONFIG_TINY_RCU)
210 #include <linux/rcutiny.h>
212 #error "Unknown RCU implementation specified to kernel configuration"
216 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
217 * are needed for dynamic initialization and destruction of rcu_head
218 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
219 * dynamic initialization and destruction of statically allocated rcu_head
220 * structures. However, rcu_head structures allocated dynamically in the
221 * heap don't need any initialization.
223 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
224 void init_rcu_head(struct rcu_head *head);
225 void destroy_rcu_head(struct rcu_head *head);
226 void init_rcu_head_on_stack(struct rcu_head *head);
227 void destroy_rcu_head_on_stack(struct rcu_head *head);
228 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
229 static inline void init_rcu_head(struct rcu_head *head) { }
230 static inline void destroy_rcu_head(struct rcu_head *head) { }
231 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
232 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
233 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
235 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
236 bool rcu_lockdep_current_cpu_online(void);
237 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
238 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
239 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
241 #ifdef CONFIG_DEBUG_LOCK_ALLOC
243 static inline void rcu_lock_acquire(struct lockdep_map *map)
245 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
248 static inline void rcu_lock_release(struct lockdep_map *map)
250 lock_release(map, 1, _THIS_IP_);
253 extern struct lockdep_map rcu_lock_map;
254 extern struct lockdep_map rcu_bh_lock_map;
255 extern struct lockdep_map rcu_sched_lock_map;
256 extern struct lockdep_map rcu_callback_map;
257 int debug_lockdep_rcu_enabled(void);
258 int rcu_read_lock_held(void);
259 int rcu_read_lock_bh_held(void);
260 int rcu_read_lock_sched_held(void);
262 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
264 # define rcu_lock_acquire(a) do { } while (0)
265 # define rcu_lock_release(a) do { } while (0)
267 static inline int rcu_read_lock_held(void)
272 static inline int rcu_read_lock_bh_held(void)
277 static inline int rcu_read_lock_sched_held(void)
279 return !preemptible();
281 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
283 #ifdef CONFIG_PROVE_RCU
286 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
287 * @c: condition to check
288 * @s: informative message
290 #define RCU_LOCKDEP_WARN(c, s) \
292 static bool __section(.data.unlikely) __warned; \
293 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
295 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
299 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
300 static inline void rcu_preempt_sleep_check(void)
302 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
303 "Illegal context switch in RCU read-side critical section");
305 #else /* #ifdef CONFIG_PROVE_RCU */
306 static inline void rcu_preempt_sleep_check(void) { }
307 #endif /* #else #ifdef CONFIG_PROVE_RCU */
309 #define rcu_sleep_check() \
311 rcu_preempt_sleep_check(); \
312 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
313 "Illegal context switch in RCU-bh read-side critical section"); \
314 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
315 "Illegal context switch in RCU-sched read-side critical section"); \
318 #else /* #ifdef CONFIG_PROVE_RCU */
320 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
321 #define rcu_sleep_check() do { } while (0)
323 #endif /* #else #ifdef CONFIG_PROVE_RCU */
326 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
327 * and rcu_assign_pointer(). Some of these could be folded into their
328 * callers, but they are left separate in order to ease introduction of
329 * multiple flavors of pointers to match the multiple flavors of RCU
330 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
335 #define rcu_dereference_sparse(p, space) \
336 ((void)(((typeof(*p) space *)p) == p))
337 #else /* #ifdef __CHECKER__ */
338 #define rcu_dereference_sparse(p, space)
339 #endif /* #else #ifdef __CHECKER__ */
341 #define __rcu_access_pointer(p, space) \
343 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
344 rcu_dereference_sparse(p, space); \
345 ((typeof(*p) __force __kernel *)(_________p1)); \
347 #define __rcu_dereference_check(p, c, space) \
349 /* Dependency order vs. p above. */ \
350 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
351 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
352 rcu_dereference_sparse(p, space); \
353 ((typeof(*p) __force __kernel *)(________p1)); \
355 #define __rcu_dereference_protected(p, c, space) \
357 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
358 rcu_dereference_sparse(p, space); \
359 ((typeof(*p) __force __kernel *)(p)); \
361 #define rcu_dereference_raw(p) \
363 /* Dependency order vs. p above. */ \
364 typeof(p) ________p1 = READ_ONCE(p); \
365 ((typeof(*p) __force __kernel *)(________p1)); \
369 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
370 * @v: The value to statically initialize with.
372 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
375 * rcu_assign_pointer() - assign to RCU-protected pointer
376 * @p: pointer to assign to
377 * @v: value to assign (publish)
379 * Assigns the specified value to the specified RCU-protected
380 * pointer, ensuring that any concurrent RCU readers will see
381 * any prior initialization.
383 * Inserts memory barriers on architectures that require them
384 * (which is most of them), and also prevents the compiler from
385 * reordering the code that initializes the structure after the pointer
386 * assignment. More importantly, this call documents which pointers
387 * will be dereferenced by RCU read-side code.
389 * In some special cases, you may use RCU_INIT_POINTER() instead
390 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
391 * to the fact that it does not constrain either the CPU or the compiler.
392 * That said, using RCU_INIT_POINTER() when you should have used
393 * rcu_assign_pointer() is a very bad thing that results in
394 * impossible-to-diagnose memory corruption. So please be careful.
395 * See the RCU_INIT_POINTER() comment header for details.
397 * Note that rcu_assign_pointer() evaluates each of its arguments only
398 * once, appearances notwithstanding. One of the "extra" evaluations
399 * is in typeof() and the other visible only to sparse (__CHECKER__),
400 * neither of which actually execute the argument. As with most cpp
401 * macros, this execute-arguments-only-once property is important, so
402 * please be careful when making changes to rcu_assign_pointer() and the
403 * other macros that it invokes.
405 #define rcu_assign_pointer(p, v) \
407 uintptr_t _r_a_p__v = (uintptr_t)(v); \
409 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
410 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
412 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
417 * rcu_swap_protected() - swap an RCU and a regular pointer
418 * @rcu_ptr: RCU pointer
419 * @ptr: regular pointer
420 * @c: the conditions under which the dereference will take place
422 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
423 * @c is the argument that is passed to the rcu_dereference_protected() call
424 * used to read that pointer.
426 #define rcu_swap_protected(rcu_ptr, ptr, c) do { \
427 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
428 rcu_assign_pointer((rcu_ptr), (ptr)); \
433 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
434 * @p: The pointer to read
436 * Return the value of the specified RCU-protected pointer, but omit the
437 * lockdep checks for being in an RCU read-side critical section. This is
438 * useful when the value of this pointer is accessed, but the pointer is
439 * not dereferenced, for example, when testing an RCU-protected pointer
440 * against NULL. Although rcu_access_pointer() may also be used in cases
441 * where update-side locks prevent the value of the pointer from changing,
442 * you should instead use rcu_dereference_protected() for this use case.
444 * It is also permissible to use rcu_access_pointer() when read-side
445 * access to the pointer was removed at least one grace period ago, as
446 * is the case in the context of the RCU callback that is freeing up
447 * the data, or after a synchronize_rcu() returns. This can be useful
448 * when tearing down multi-linked structures after a grace period
451 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
454 * rcu_dereference_check() - rcu_dereference with debug checking
455 * @p: The pointer to read, prior to dereferencing
456 * @c: The conditions under which the dereference will take place
458 * Do an rcu_dereference(), but check that the conditions under which the
459 * dereference will take place are correct. Typically the conditions
460 * indicate the various locking conditions that should be held at that
461 * point. The check should return true if the conditions are satisfied.
462 * An implicit check for being in an RCU read-side critical section
463 * (rcu_read_lock()) is included.
467 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
469 * could be used to indicate to lockdep that foo->bar may only be dereferenced
470 * if either rcu_read_lock() is held, or that the lock required to replace
471 * the bar struct at foo->bar is held.
473 * Note that the list of conditions may also include indications of when a lock
474 * need not be held, for example during initialisation or destruction of the
477 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
478 * atomic_read(&foo->usage) == 0);
480 * Inserts memory barriers on architectures that require them
481 * (currently only the Alpha), prevents the compiler from refetching
482 * (and from merging fetches), and, more importantly, documents exactly
483 * which pointers are protected by RCU and checks that the pointer is
484 * annotated as __rcu.
486 #define rcu_dereference_check(p, c) \
487 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
490 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
491 * @p: The pointer to read, prior to dereferencing
492 * @c: The conditions under which the dereference will take place
494 * This is the RCU-bh counterpart to rcu_dereference_check().
496 #define rcu_dereference_bh_check(p, c) \
497 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
500 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
501 * @p: The pointer to read, prior to dereferencing
502 * @c: The conditions under which the dereference will take place
504 * This is the RCU-sched counterpart to rcu_dereference_check().
506 #define rcu_dereference_sched_check(p, c) \
507 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
511 * The tracing infrastructure traces RCU (we want that), but unfortunately
512 * some of the RCU checks causes tracing to lock up the system.
514 * The no-tracing version of rcu_dereference_raw() must not call
515 * rcu_read_lock_held().
517 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
520 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
521 * @p: The pointer to read, prior to dereferencing
522 * @c: The conditions under which the dereference will take place
524 * Return the value of the specified RCU-protected pointer, but omit
525 * the READ_ONCE(). This is useful in cases where update-side locks
526 * prevent the value of the pointer from changing. Please note that this
527 * primitive does *not* prevent the compiler from repeating this reference
528 * or combining it with other references, so it should not be used without
529 * protection of appropriate locks.
531 * This function is only for update-side use. Using this function
532 * when protected only by rcu_read_lock() will result in infrequent
533 * but very ugly failures.
535 #define rcu_dereference_protected(p, c) \
536 __rcu_dereference_protected((p), (c), __rcu)
540 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
541 * @p: The pointer to read, prior to dereferencing
543 * This is a simple wrapper around rcu_dereference_check().
545 #define rcu_dereference(p) rcu_dereference_check(p, 0)
548 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
549 * @p: The pointer to read, prior to dereferencing
551 * Makes rcu_dereference_check() do the dirty work.
553 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
556 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
557 * @p: The pointer to read, prior to dereferencing
559 * Makes rcu_dereference_check() do the dirty work.
561 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
564 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
565 * @p: The pointer to hand off
567 * This is simply an identity function, but it documents where a pointer
568 * is handed off from RCU to some other synchronization mechanism, for
569 * example, reference counting or locking. In C11, it would map to
570 * kill_dependency(). It could be used as follows:
573 * p = rcu_dereference(gp);
574 * long_lived = is_long_lived(p);
576 * if (!atomic_inc_not_zero(p->refcnt))
577 * long_lived = false;
579 * p = rcu_pointer_handoff(p);
584 #define rcu_pointer_handoff(p) (p)
587 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
589 * When synchronize_rcu() is invoked on one CPU while other CPUs
590 * are within RCU read-side critical sections, then the
591 * synchronize_rcu() is guaranteed to block until after all the other
592 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
593 * on one CPU while other CPUs are within RCU read-side critical
594 * sections, invocation of the corresponding RCU callback is deferred
595 * until after the all the other CPUs exit their critical sections.
597 * Note, however, that RCU callbacks are permitted to run concurrently
598 * with new RCU read-side critical sections. One way that this can happen
599 * is via the following sequence of events: (1) CPU 0 enters an RCU
600 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
601 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
602 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
603 * callback is invoked. This is legal, because the RCU read-side critical
604 * section that was running concurrently with the call_rcu() (and which
605 * therefore might be referencing something that the corresponding RCU
606 * callback would free up) has completed before the corresponding
607 * RCU callback is invoked.
609 * RCU read-side critical sections may be nested. Any deferred actions
610 * will be deferred until the outermost RCU read-side critical section
613 * You can avoid reading and understanding the next paragraph by
614 * following this rule: don't put anything in an rcu_read_lock() RCU
615 * read-side critical section that would block in a !PREEMPT kernel.
616 * But if you want the full story, read on!
618 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
619 * it is illegal to block while in an RCU read-side critical section.
620 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
621 * kernel builds, RCU read-side critical sections may be preempted,
622 * but explicit blocking is illegal. Finally, in preemptible RCU
623 * implementations in real-time (with -rt patchset) kernel builds, RCU
624 * read-side critical sections may be preempted and they may also block, but
625 * only when acquiring spinlocks that are subject to priority inheritance.
627 static inline void rcu_read_lock(void)
631 rcu_lock_acquire(&rcu_lock_map);
632 RCU_LOCKDEP_WARN(!rcu_is_watching(),
633 "rcu_read_lock() used illegally while idle");
637 * So where is rcu_write_lock()? It does not exist, as there is no
638 * way for writers to lock out RCU readers. This is a feature, not
639 * a bug -- this property is what provides RCU's performance benefits.
640 * Of course, writers must coordinate with each other. The normal
641 * spinlock primitives work well for this, but any other technique may be
642 * used as well. RCU does not care how the writers keep out of each
643 * others' way, as long as they do so.
647 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
649 * In most situations, rcu_read_unlock() is immune from deadlock.
650 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
651 * is responsible for deboosting, which it does via rt_mutex_unlock().
652 * Unfortunately, this function acquires the scheduler's runqueue and
653 * priority-inheritance spinlocks. This means that deadlock could result
654 * if the caller of rcu_read_unlock() already holds one of these locks or
655 * any lock that is ever acquired while holding them.
657 * That said, RCU readers are never priority boosted unless they were
658 * preempted. Therefore, one way to avoid deadlock is to make sure
659 * that preemption never happens within any RCU read-side critical
660 * section whose outermost rcu_read_unlock() is called with one of
661 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
662 * a number of ways, for example, by invoking preempt_disable() before
663 * critical section's outermost rcu_read_lock().
665 * Given that the set of locks acquired by rt_mutex_unlock() might change
666 * at any time, a somewhat more future-proofed approach is to make sure
667 * that that preemption never happens within any RCU read-side critical
668 * section whose outermost rcu_read_unlock() is called with irqs disabled.
669 * This approach relies on the fact that rt_mutex_unlock() currently only
670 * acquires irq-disabled locks.
672 * The second of these two approaches is best in most situations,
673 * however, the first approach can also be useful, at least to those
674 * developers willing to keep abreast of the set of locks acquired by
677 * See rcu_read_lock() for more information.
679 static inline void rcu_read_unlock(void)
681 RCU_LOCKDEP_WARN(!rcu_is_watching(),
682 "rcu_read_unlock() used illegally while idle");
685 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
689 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
691 * This is equivalent of rcu_read_lock(), but to be used when updates
692 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
693 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
694 * softirq handler to be a quiescent state, a process in RCU read-side
695 * critical section must be protected by disabling softirqs. Read-side
696 * critical sections in interrupt context can use just rcu_read_lock(),
697 * though this should at least be commented to avoid confusing people
700 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
701 * must occur in the same context, for example, it is illegal to invoke
702 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
703 * was invoked from some other task.
705 static inline void rcu_read_lock_bh(void)
709 rcu_lock_acquire(&rcu_bh_lock_map);
710 RCU_LOCKDEP_WARN(!rcu_is_watching(),
711 "rcu_read_lock_bh() used illegally while idle");
715 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
717 * See rcu_read_lock_bh() for more information.
719 static inline void rcu_read_unlock_bh(void)
721 RCU_LOCKDEP_WARN(!rcu_is_watching(),
722 "rcu_read_unlock_bh() used illegally while idle");
723 rcu_lock_release(&rcu_bh_lock_map);
729 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
731 * This is equivalent of rcu_read_lock(), but to be used when updates
732 * are being done using call_rcu_sched() or synchronize_rcu_sched().
733 * Read-side critical sections can also be introduced by anything that
734 * disables preemption, including local_irq_disable() and friends.
736 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
737 * must occur in the same context, for example, it is illegal to invoke
738 * rcu_read_unlock_sched() from process context if the matching
739 * rcu_read_lock_sched() was invoked from an NMI handler.
741 static inline void rcu_read_lock_sched(void)
744 __acquire(RCU_SCHED);
745 rcu_lock_acquire(&rcu_sched_lock_map);
746 RCU_LOCKDEP_WARN(!rcu_is_watching(),
747 "rcu_read_lock_sched() used illegally while idle");
750 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
751 static inline notrace void rcu_read_lock_sched_notrace(void)
753 preempt_disable_notrace();
754 __acquire(RCU_SCHED);
758 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
760 * See rcu_read_lock_sched for more information.
762 static inline void rcu_read_unlock_sched(void)
764 RCU_LOCKDEP_WARN(!rcu_is_watching(),
765 "rcu_read_unlock_sched() used illegally while idle");
766 rcu_lock_release(&rcu_sched_lock_map);
767 __release(RCU_SCHED);
771 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
772 static inline notrace void rcu_read_unlock_sched_notrace(void)
774 __release(RCU_SCHED);
775 preempt_enable_notrace();
779 * RCU_INIT_POINTER() - initialize an RCU protected pointer
780 * @p: The pointer to be initialized.
781 * @v: The value to initialized the pointer to.
783 * Initialize an RCU-protected pointer in special cases where readers
784 * do not need ordering constraints on the CPU or the compiler. These
787 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
788 * 2. The caller has taken whatever steps are required to prevent
789 * RCU readers from concurrently accessing this pointer *or*
790 * 3. The referenced data structure has already been exposed to
791 * readers either at compile time or via rcu_assign_pointer() *and*
793 * a. You have not made *any* reader-visible changes to
794 * this structure since then *or*
795 * b. It is OK for readers accessing this structure from its
796 * new location to see the old state of the structure. (For
797 * example, the changes were to statistical counters or to
798 * other state where exact synchronization is not required.)
800 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
801 * result in impossible-to-diagnose memory corruption. As in the structures
802 * will look OK in crash dumps, but any concurrent RCU readers might
803 * see pre-initialized values of the referenced data structure. So
804 * please be very careful how you use RCU_INIT_POINTER()!!!
806 * If you are creating an RCU-protected linked structure that is accessed
807 * by a single external-to-structure RCU-protected pointer, then you may
808 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
809 * pointers, but you must use rcu_assign_pointer() to initialize the
810 * external-to-structure pointer *after* you have completely initialized
811 * the reader-accessible portions of the linked structure.
813 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
814 * ordering guarantees for either the CPU or the compiler.
816 #define RCU_INIT_POINTER(p, v) \
818 rcu_dereference_sparse(p, __rcu); \
819 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
823 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
824 * @p: The pointer to be initialized.
825 * @v: The value to initialized the pointer to.
827 * GCC-style initialization for an RCU-protected pointer in a structure field.
829 #define RCU_POINTER_INITIALIZER(p, v) \
830 .p = RCU_INITIALIZER(v)
833 * Does the specified offset indicate that the corresponding rcu_head
834 * structure can be handled by kfree_rcu()?
836 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
839 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
841 #define __kfree_rcu(head, offset) \
843 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
844 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
848 * kfree_rcu() - kfree an object after a grace period.
849 * @ptr: pointer to kfree
850 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
852 * Many rcu callbacks functions just call kfree() on the base structure.
853 * These functions are trivial, but their size adds up, and furthermore
854 * when they are used in a kernel module, that module must invoke the
855 * high-latency rcu_barrier() function at module-unload time.
857 * The kfree_rcu() function handles this issue. Rather than encoding a
858 * function address in the embedded rcu_head structure, kfree_rcu() instead
859 * encodes the offset of the rcu_head structure within the base structure.
860 * Because the functions are not allowed in the low-order 4096 bytes of
861 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
862 * If the offset is larger than 4095 bytes, a compile-time error will
863 * be generated in __kfree_rcu(). If this error is triggered, you can
864 * either fall back to use of call_rcu() or rearrange the structure to
865 * position the rcu_head structure into the first 4096 bytes.
867 * Note that the allowable offset might decrease in the future, for example,
868 * to allow something like kmem_cache_free_rcu().
870 * The BUILD_BUG_ON check must not involve any function calls, hence the
871 * checks are done in macros here.
873 #define kfree_rcu(ptr, rcu_head) \
874 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
878 * Place this after a lock-acquisition primitive to guarantee that
879 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
880 * if the UNLOCK and LOCK are executed by the same CPU or if the
881 * UNLOCK and LOCK operate on the same lock variable.
883 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
884 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
885 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
886 #define smp_mb__after_unlock_lock() do { } while (0)
887 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
890 #endif /* __LINUX_RCUPDATE_H */