1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
43 #include "space-info.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_fs_info *fs_info);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
68 struct extent_io_tree *dirty_pages,
70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
71 struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
77 if (fs_info->csum_shash)
78 crypto_free_shash(fs_info->csum_shash);
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio {
87 struct btrfs_inode *inode;
89 enum btrfs_wq_submit_cmd submit_cmd;
92 /* Optional parameter for used by direct io */
94 struct btrfs_work work;
99 * Compute the csum of a btree block and store the result to provided buffer.
101 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
103 struct btrfs_fs_info *fs_info = buf->fs_info;
104 const int num_pages = num_extent_pages(buf);
105 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
106 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
110 shash->tfm = fs_info->csum_shash;
111 crypto_shash_init(shash);
112 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
113 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
114 first_page_part - BTRFS_CSUM_SIZE);
116 for (i = 1; i < num_pages; i++) {
117 kaddr = page_address(buf->pages[i]);
118 crypto_shash_update(shash, kaddr, PAGE_SIZE);
120 memset(result, 0, BTRFS_CSUM_SIZE);
121 crypto_shash_final(shash, result);
125 * we can't consider a given block up to date unless the transid of the
126 * block matches the transid in the parent node's pointer. This is how we
127 * detect blocks that either didn't get written at all or got written
128 * in the wrong place.
130 static int verify_parent_transid(struct extent_io_tree *io_tree,
131 struct extent_buffer *eb, u64 parent_transid,
134 struct extent_state *cached_state = NULL;
137 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
143 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
144 if (extent_buffer_uptodate(eb) &&
145 btrfs_header_generation(eb) == parent_transid) {
149 btrfs_err_rl(eb->fs_info,
150 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
151 eb->start, eb->read_mirror,
152 parent_transid, btrfs_header_generation(eb));
154 clear_extent_buffer_uptodate(eb);
156 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
161 static bool btrfs_supported_super_csum(u16 csum_type)
164 case BTRFS_CSUM_TYPE_CRC32:
165 case BTRFS_CSUM_TYPE_XXHASH:
166 case BTRFS_CSUM_TYPE_SHA256:
167 case BTRFS_CSUM_TYPE_BLAKE2:
175 * Return 0 if the superblock checksum type matches the checksum value of that
176 * algorithm. Pass the raw disk superblock data.
178 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
179 const struct btrfs_super_block *disk_sb)
181 char result[BTRFS_CSUM_SIZE];
182 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
184 shash->tfm = fs_info->csum_shash;
187 * The super_block structure does not span the whole
188 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
189 * filled with zeros and is included in the checksum.
191 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
192 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
194 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
200 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
201 struct btrfs_key *first_key, u64 parent_transid)
203 struct btrfs_fs_info *fs_info = eb->fs_info;
205 struct btrfs_key found_key;
208 found_level = btrfs_header_level(eb);
209 if (found_level != level) {
210 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
211 KERN_ERR "BTRFS: tree level check failed\n");
213 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
214 eb->start, level, found_level);
222 * For live tree block (new tree blocks in current transaction),
223 * we need proper lock context to avoid race, which is impossible here.
224 * So we only checks tree blocks which is read from disk, whose
225 * generation <= fs_info->last_trans_committed.
227 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
230 /* We have @first_key, so this @eb must have at least one item */
231 if (btrfs_header_nritems(eb) == 0) {
233 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
235 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
240 btrfs_node_key_to_cpu(eb, &found_key, 0);
242 btrfs_item_key_to_cpu(eb, &found_key, 0);
243 ret = btrfs_comp_cpu_keys(first_key, &found_key);
246 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
247 KERN_ERR "BTRFS: tree first key check failed\n");
249 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
250 eb->start, parent_transid, first_key->objectid,
251 first_key->type, first_key->offset,
252 found_key.objectid, found_key.type,
258 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
261 struct btrfs_fs_info *fs_info = eb->fs_info;
262 u64 start = eb->start;
263 int i, num_pages = num_extent_pages(eb);
266 if (sb_rdonly(fs_info->sb))
269 for (i = 0; i < num_pages; i++) {
270 struct page *p = eb->pages[i];
272 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
273 start, p, start - page_offset(p), mirror_num);
283 * helper to read a given tree block, doing retries as required when
284 * the checksums don't match and we have alternate mirrors to try.
286 * @check: expected tree parentness check, see the comments of the
287 * structure for details.
289 int btrfs_read_extent_buffer(struct extent_buffer *eb,
290 struct btrfs_tree_parent_check *check)
292 struct btrfs_fs_info *fs_info = eb->fs_info;
297 int failed_mirror = 0;
302 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
303 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
307 num_copies = btrfs_num_copies(fs_info,
312 if (!failed_mirror) {
314 failed_mirror = eb->read_mirror;
318 if (mirror_num == failed_mirror)
321 if (mirror_num > num_copies)
325 if (failed && !ret && failed_mirror)
326 btrfs_repair_eb_io_failure(eb, failed_mirror);
331 static int csum_one_extent_buffer(struct extent_buffer *eb)
333 struct btrfs_fs_info *fs_info = eb->fs_info;
334 u8 result[BTRFS_CSUM_SIZE];
337 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
338 offsetof(struct btrfs_header, fsid),
339 BTRFS_FSID_SIZE) == 0);
340 csum_tree_block(eb, result);
342 if (btrfs_header_level(eb))
343 ret = btrfs_check_node(eb);
345 ret = btrfs_check_leaf_full(eb);
351 * Also check the generation, the eb reached here must be newer than
352 * last committed. Or something seriously wrong happened.
354 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
357 "block=%llu bad generation, have %llu expect > %llu",
358 eb->start, btrfs_header_generation(eb),
359 fs_info->last_trans_committed);
362 write_extent_buffer(eb, result, 0, fs_info->csum_size);
367 btrfs_print_tree(eb, 0);
368 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
370 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
374 /* Checksum all dirty extent buffers in one bio_vec */
375 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
376 struct bio_vec *bvec)
378 struct page *page = bvec->bv_page;
379 u64 bvec_start = page_offset(page) + bvec->bv_offset;
383 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
384 cur += fs_info->nodesize) {
385 struct extent_buffer *eb;
388 eb = find_extent_buffer(fs_info, cur);
389 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
392 /* A dirty eb shouldn't disappear from buffer_radix */
396 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
397 free_extent_buffer(eb);
400 if (WARN_ON(!uptodate)) {
401 free_extent_buffer(eb);
405 ret = csum_one_extent_buffer(eb);
406 free_extent_buffer(eb);
414 * Checksum a dirty tree block before IO. This has extra checks to make sure
415 * we only fill in the checksum field in the first page of a multi-page block.
416 * For subpage extent buffers we need bvec to also read the offset in the page.
418 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
420 struct page *page = bvec->bv_page;
421 u64 start = page_offset(page);
423 struct extent_buffer *eb;
425 if (fs_info->nodesize < PAGE_SIZE)
426 return csum_dirty_subpage_buffers(fs_info, bvec);
428 eb = (struct extent_buffer *)page->private;
429 if (page != eb->pages[0])
432 found_start = btrfs_header_bytenr(eb);
434 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
435 WARN_ON(found_start != 0);
440 * Please do not consolidate these warnings into a single if.
441 * It is useful to know what went wrong.
443 if (WARN_ON(found_start != start))
445 if (WARN_ON(!PageUptodate(page)))
448 return csum_one_extent_buffer(eb);
451 static int check_tree_block_fsid(struct extent_buffer *eb)
453 struct btrfs_fs_info *fs_info = eb->fs_info;
454 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
455 u8 fsid[BTRFS_FSID_SIZE];
458 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
461 * Checking the incompat flag is only valid for the current fs. For
462 * seed devices it's forbidden to have their uuid changed so reading
463 * ->fsid in this case is fine
465 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
466 metadata_uuid = fs_devices->metadata_uuid;
468 metadata_uuid = fs_devices->fsid;
470 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
473 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
474 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
480 /* Do basic extent buffer checks at read time */
481 static int validate_extent_buffer(struct extent_buffer *eb,
482 struct btrfs_tree_parent_check *check)
484 struct btrfs_fs_info *fs_info = eb->fs_info;
486 const u32 csum_size = fs_info->csum_size;
488 u8 result[BTRFS_CSUM_SIZE];
489 const u8 *header_csum;
494 found_start = btrfs_header_bytenr(eb);
495 if (found_start != eb->start) {
496 btrfs_err_rl(fs_info,
497 "bad tree block start, mirror %u want %llu have %llu",
498 eb->read_mirror, eb->start, found_start);
502 if (check_tree_block_fsid(eb)) {
503 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
504 eb->start, eb->read_mirror);
508 found_level = btrfs_header_level(eb);
509 if (found_level >= BTRFS_MAX_LEVEL) {
511 "bad tree block level, mirror %u level %d on logical %llu",
512 eb->read_mirror, btrfs_header_level(eb), eb->start);
517 csum_tree_block(eb, result);
518 header_csum = page_address(eb->pages[0]) +
519 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
521 if (memcmp(result, header_csum, csum_size) != 0) {
522 btrfs_warn_rl(fs_info,
523 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
524 eb->start, eb->read_mirror,
525 CSUM_FMT_VALUE(csum_size, header_csum),
526 CSUM_FMT_VALUE(csum_size, result),
527 btrfs_header_level(eb));
532 if (found_level != check->level) {
536 if (unlikely(check->transid &&
537 btrfs_header_generation(eb) != check->transid)) {
538 btrfs_err_rl(eb->fs_info,
539 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
540 eb->start, eb->read_mirror, check->transid,
541 btrfs_header_generation(eb));
545 if (check->has_first_key) {
546 struct btrfs_key *expect_key = &check->first_key;
547 struct btrfs_key found_key;
550 btrfs_node_key_to_cpu(eb, &found_key, 0);
552 btrfs_item_key_to_cpu(eb, &found_key, 0);
553 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
555 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
556 eb->start, check->transid,
557 expect_key->objectid,
558 expect_key->type, expect_key->offset,
559 found_key.objectid, found_key.type,
565 if (check->owner_root) {
566 ret = btrfs_check_eb_owner(eb, check->owner_root);
572 * If this is a leaf block and it is corrupt, set the corrupt bit so
573 * that we don't try and read the other copies of this block, just
576 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
577 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
581 if (found_level > 0 && btrfs_check_node(eb))
585 set_extent_buffer_uptodate(eb);
588 "read time tree block corruption detected on logical %llu mirror %u",
589 eb->start, eb->read_mirror);
594 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
595 int mirror, struct btrfs_tree_parent_check *check)
597 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
598 struct extent_buffer *eb;
605 * We don't allow bio merge for subpage metadata read, so we should
606 * only get one eb for each endio hook.
608 ASSERT(end == start + fs_info->nodesize - 1);
609 ASSERT(PagePrivate(page));
611 eb = find_extent_buffer(fs_info, start);
613 * When we are reading one tree block, eb must have been inserted into
614 * the radix tree. If not, something is wrong.
618 reads_done = atomic_dec_and_test(&eb->io_pages);
619 /* Subpage read must finish in page read */
622 eb->read_mirror = mirror;
623 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
627 ret = validate_extent_buffer(eb, check);
631 set_extent_buffer_uptodate(eb);
633 free_extent_buffer(eb);
637 * end_bio_extent_readpage decrements io_pages in case of error,
638 * make sure it has something to decrement.
640 atomic_inc(&eb->io_pages);
641 clear_extent_buffer_uptodate(eb);
642 free_extent_buffer(eb);
646 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
647 struct page *page, u64 start, u64 end,
650 struct extent_buffer *eb;
654 ASSERT(page->private);
656 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
657 return validate_subpage_buffer(page, start, end, mirror,
658 &bbio->parent_check);
660 eb = (struct extent_buffer *)page->private;
663 * The pending IO might have been the only thing that kept this buffer
664 * in memory. Make sure we have a ref for all this other checks
666 atomic_inc(&eb->refs);
668 reads_done = atomic_dec_and_test(&eb->io_pages);
672 eb->read_mirror = mirror;
673 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
677 ret = validate_extent_buffer(eb, &bbio->parent_check);
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
685 atomic_inc(&eb->io_pages);
686 clear_extent_buffer_uptodate(eb);
688 free_extent_buffer(eb);
693 static void run_one_async_start(struct btrfs_work *work)
695 struct async_submit_bio *async;
698 async = container_of(work, struct async_submit_bio, work);
699 switch (async->submit_cmd) {
700 case WQ_SUBMIT_METADATA:
701 ret = btree_submit_bio_start(async->bio);
704 ret = btrfs_submit_bio_start(async->inode, async->bio);
706 case WQ_SUBMIT_DATA_DIO:
707 ret = btrfs_submit_bio_start_direct_io(async->inode,
708 async->bio, async->dio_file_offset);
716 * In order to insert checksums into the metadata in large chunks, we wait
717 * until bio submission time. All the pages in the bio are checksummed and
718 * sums are attached onto the ordered extent record.
720 * At IO completion time the csums attached on the ordered extent record are
721 * inserted into the tree.
723 static void run_one_async_done(struct btrfs_work *work)
725 struct async_submit_bio *async =
726 container_of(work, struct async_submit_bio, work);
727 struct btrfs_inode *inode = async->inode;
728 struct btrfs_bio *bbio = btrfs_bio(async->bio);
730 /* If an error occurred we just want to clean up the bio and move on */
732 btrfs_bio_end_io(bbio, async->status);
737 * All of the bios that pass through here are from async helpers.
738 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
739 * This changes nothing when cgroups aren't in use.
741 async->bio->bi_opf |= REQ_CGROUP_PUNT;
742 btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num);
745 static void run_one_async_free(struct btrfs_work *work)
747 struct async_submit_bio *async;
749 async = container_of(work, struct async_submit_bio, work);
754 * Submit bio to an async queue.
757 * - true if the work has been succesfuly submitted
758 * - false in case of error
760 bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num,
761 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd)
763 struct btrfs_fs_info *fs_info = inode->root->fs_info;
764 struct async_submit_bio *async;
766 async = kmalloc(sizeof(*async), GFP_NOFS);
770 async->inode = inode;
772 async->mirror_num = mirror_num;
773 async->submit_cmd = cmd;
775 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
778 async->dio_file_offset = dio_file_offset;
782 if (op_is_sync(bio->bi_opf))
783 btrfs_queue_work(fs_info->hipri_workers, &async->work);
785 btrfs_queue_work(fs_info->workers, &async->work);
789 static blk_status_t btree_csum_one_bio(struct bio *bio)
791 struct bio_vec *bvec;
792 struct btrfs_root *root;
794 struct bvec_iter_all iter_all;
796 ASSERT(!bio_flagged(bio, BIO_CLONED));
797 bio_for_each_segment_all(bvec, bio, iter_all) {
798 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
799 ret = csum_dirty_buffer(root->fs_info, bvec);
804 return errno_to_blk_status(ret);
807 blk_status_t btree_submit_bio_start(struct bio *bio)
810 * when we're called for a write, we're already in the async
811 * submission context. Just jump into btrfs_submit_bio.
813 return btree_csum_one_bio(bio);
816 static bool should_async_write(struct btrfs_fs_info *fs_info,
817 struct btrfs_inode *bi)
819 if (btrfs_is_zoned(fs_info))
821 if (atomic_read(&bi->sync_writers))
823 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
828 void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
830 struct btrfs_fs_info *fs_info = inode->root->fs_info;
831 struct btrfs_bio *bbio = btrfs_bio(bio);
834 bio->bi_opf |= REQ_META;
835 bbio->is_metadata = 1;
837 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
838 btrfs_submit_bio(fs_info, bio, mirror_num);
843 * Kthread helpers are used to submit writes so that checksumming can
844 * happen in parallel across all CPUs.
846 if (should_async_write(fs_info, inode) &&
847 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA))
850 ret = btree_csum_one_bio(bio);
852 btrfs_bio_end_io(bbio, ret);
856 btrfs_submit_bio(fs_info, bio, mirror_num);
859 #ifdef CONFIG_MIGRATION
860 static int btree_migrate_folio(struct address_space *mapping,
861 struct folio *dst, struct folio *src, enum migrate_mode mode)
864 * we can't safely write a btree page from here,
865 * we haven't done the locking hook
867 if (folio_test_dirty(src))
870 * Buffers may be managed in a filesystem specific way.
871 * We must have no buffers or drop them.
873 if (folio_get_private(src) &&
874 !filemap_release_folio(src, GFP_KERNEL))
876 return migrate_folio(mapping, dst, src, mode);
879 #define btree_migrate_folio NULL
882 static int btree_writepages(struct address_space *mapping,
883 struct writeback_control *wbc)
885 struct btrfs_fs_info *fs_info;
888 if (wbc->sync_mode == WB_SYNC_NONE) {
890 if (wbc->for_kupdate)
893 fs_info = BTRFS_I(mapping->host)->root->fs_info;
894 /* this is a bit racy, but that's ok */
895 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
896 BTRFS_DIRTY_METADATA_THRESH,
897 fs_info->dirty_metadata_batch);
901 return btree_write_cache_pages(mapping, wbc);
904 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
906 if (folio_test_writeback(folio) || folio_test_dirty(folio))
909 return try_release_extent_buffer(&folio->page);
912 static void btree_invalidate_folio(struct folio *folio, size_t offset,
915 struct extent_io_tree *tree;
916 tree = &BTRFS_I(folio->mapping->host)->io_tree;
917 extent_invalidate_folio(tree, folio, offset);
918 btree_release_folio(folio, GFP_NOFS);
919 if (folio_get_private(folio)) {
920 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
921 "folio private not zero on folio %llu",
922 (unsigned long long)folio_pos(folio));
923 folio_detach_private(folio);
928 static bool btree_dirty_folio(struct address_space *mapping,
931 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
932 struct btrfs_subpage *subpage;
933 struct extent_buffer *eb;
935 u64 page_start = folio_pos(folio);
937 if (fs_info->sectorsize == PAGE_SIZE) {
938 eb = folio_get_private(folio);
940 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
941 BUG_ON(!atomic_read(&eb->refs));
942 btrfs_assert_tree_write_locked(eb);
943 return filemap_dirty_folio(mapping, folio);
945 subpage = folio_get_private(folio);
947 ASSERT(subpage->dirty_bitmap);
948 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
951 u16 tmp = (1 << cur_bit);
953 spin_lock_irqsave(&subpage->lock, flags);
954 if (!(tmp & subpage->dirty_bitmap)) {
955 spin_unlock_irqrestore(&subpage->lock, flags);
959 spin_unlock_irqrestore(&subpage->lock, flags);
960 cur = page_start + cur_bit * fs_info->sectorsize;
962 eb = find_extent_buffer(fs_info, cur);
964 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
965 ASSERT(atomic_read(&eb->refs));
966 btrfs_assert_tree_write_locked(eb);
967 free_extent_buffer(eb);
969 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
971 return filemap_dirty_folio(mapping, folio);
974 #define btree_dirty_folio filemap_dirty_folio
977 static const struct address_space_operations btree_aops = {
978 .writepages = btree_writepages,
979 .release_folio = btree_release_folio,
980 .invalidate_folio = btree_invalidate_folio,
981 .migrate_folio = btree_migrate_folio,
982 .dirty_folio = btree_dirty_folio,
985 struct extent_buffer *btrfs_find_create_tree_block(
986 struct btrfs_fs_info *fs_info,
987 u64 bytenr, u64 owner_root,
990 if (btrfs_is_testing(fs_info))
991 return alloc_test_extent_buffer(fs_info, bytenr);
992 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
996 * Read tree block at logical address @bytenr and do variant basic but critical
999 * @check: expected tree parentness check, see comments of the
1000 * structure for details.
1002 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1003 struct btrfs_tree_parent_check *check)
1005 struct extent_buffer *buf = NULL;
1010 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
1015 ret = btrfs_read_extent_buffer(buf, check);
1017 free_extent_buffer_stale(buf);
1018 return ERR_PTR(ret);
1020 if (btrfs_check_eb_owner(buf, check->owner_root)) {
1021 free_extent_buffer_stale(buf);
1022 return ERR_PTR(-EUCLEAN);
1028 void btrfs_clean_tree_block(struct extent_buffer *buf)
1030 struct btrfs_fs_info *fs_info = buf->fs_info;
1031 if (btrfs_header_generation(buf) ==
1032 fs_info->running_transaction->transid) {
1033 btrfs_assert_tree_write_locked(buf);
1035 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1036 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1038 fs_info->dirty_metadata_batch);
1039 clear_extent_buffer_dirty(buf);
1044 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1047 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1049 memset(&root->root_key, 0, sizeof(root->root_key));
1050 memset(&root->root_item, 0, sizeof(root->root_item));
1051 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1052 root->fs_info = fs_info;
1053 root->root_key.objectid = objectid;
1055 root->commit_root = NULL;
1057 RB_CLEAR_NODE(&root->rb_node);
1059 root->last_trans = 0;
1060 root->free_objectid = 0;
1061 root->nr_delalloc_inodes = 0;
1062 root->nr_ordered_extents = 0;
1063 root->inode_tree = RB_ROOT;
1064 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1066 btrfs_init_root_block_rsv(root);
1068 INIT_LIST_HEAD(&root->dirty_list);
1069 INIT_LIST_HEAD(&root->root_list);
1070 INIT_LIST_HEAD(&root->delalloc_inodes);
1071 INIT_LIST_HEAD(&root->delalloc_root);
1072 INIT_LIST_HEAD(&root->ordered_extents);
1073 INIT_LIST_HEAD(&root->ordered_root);
1074 INIT_LIST_HEAD(&root->reloc_dirty_list);
1075 INIT_LIST_HEAD(&root->logged_list[0]);
1076 INIT_LIST_HEAD(&root->logged_list[1]);
1077 spin_lock_init(&root->inode_lock);
1078 spin_lock_init(&root->delalloc_lock);
1079 spin_lock_init(&root->ordered_extent_lock);
1080 spin_lock_init(&root->accounting_lock);
1081 spin_lock_init(&root->log_extents_lock[0]);
1082 spin_lock_init(&root->log_extents_lock[1]);
1083 spin_lock_init(&root->qgroup_meta_rsv_lock);
1084 mutex_init(&root->objectid_mutex);
1085 mutex_init(&root->log_mutex);
1086 mutex_init(&root->ordered_extent_mutex);
1087 mutex_init(&root->delalloc_mutex);
1088 init_waitqueue_head(&root->qgroup_flush_wait);
1089 init_waitqueue_head(&root->log_writer_wait);
1090 init_waitqueue_head(&root->log_commit_wait[0]);
1091 init_waitqueue_head(&root->log_commit_wait[1]);
1092 INIT_LIST_HEAD(&root->log_ctxs[0]);
1093 INIT_LIST_HEAD(&root->log_ctxs[1]);
1094 atomic_set(&root->log_commit[0], 0);
1095 atomic_set(&root->log_commit[1], 0);
1096 atomic_set(&root->log_writers, 0);
1097 atomic_set(&root->log_batch, 0);
1098 refcount_set(&root->refs, 1);
1099 atomic_set(&root->snapshot_force_cow, 0);
1100 atomic_set(&root->nr_swapfiles, 0);
1101 root->log_transid = 0;
1102 root->log_transid_committed = -1;
1103 root->last_log_commit = 0;
1106 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1107 IO_TREE_ROOT_DIRTY_LOG_PAGES);
1108 extent_io_tree_init(fs_info, &root->log_csum_range,
1109 IO_TREE_LOG_CSUM_RANGE);
1112 spin_lock_init(&root->root_item_lock);
1113 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1114 #ifdef CONFIG_BTRFS_DEBUG
1115 INIT_LIST_HEAD(&root->leak_list);
1116 spin_lock(&fs_info->fs_roots_radix_lock);
1117 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1118 spin_unlock(&fs_info->fs_roots_radix_lock);
1122 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1123 u64 objectid, gfp_t flags)
1125 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1127 __setup_root(root, fs_info, objectid);
1131 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1132 /* Should only be used by the testing infrastructure */
1133 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1135 struct btrfs_root *root;
1138 return ERR_PTR(-EINVAL);
1140 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1142 return ERR_PTR(-ENOMEM);
1144 /* We don't use the stripesize in selftest, set it as sectorsize */
1145 root->alloc_bytenr = 0;
1151 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1153 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1154 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1156 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1159 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1161 const struct btrfs_key *key = k;
1162 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1164 return btrfs_comp_cpu_keys(key, &root->root_key);
1167 int btrfs_global_root_insert(struct btrfs_root *root)
1169 struct btrfs_fs_info *fs_info = root->fs_info;
1170 struct rb_node *tmp;
1172 write_lock(&fs_info->global_root_lock);
1173 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1174 write_unlock(&fs_info->global_root_lock);
1177 return tmp ? -EEXIST : 0;
1180 void btrfs_global_root_delete(struct btrfs_root *root)
1182 struct btrfs_fs_info *fs_info = root->fs_info;
1184 write_lock(&fs_info->global_root_lock);
1185 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1186 write_unlock(&fs_info->global_root_lock);
1189 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1190 struct btrfs_key *key)
1192 struct rb_node *node;
1193 struct btrfs_root *root = NULL;
1195 read_lock(&fs_info->global_root_lock);
1196 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1198 root = container_of(node, struct btrfs_root, rb_node);
1199 read_unlock(&fs_info->global_root_lock);
1204 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1206 struct btrfs_block_group *block_group;
1209 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1213 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1215 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1216 ASSERT(block_group);
1219 ret = block_group->global_root_id;
1220 btrfs_put_block_group(block_group);
1225 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1227 struct btrfs_key key = {
1228 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1229 .type = BTRFS_ROOT_ITEM_KEY,
1230 .offset = btrfs_global_root_id(fs_info, bytenr),
1233 return btrfs_global_root(fs_info, &key);
1236 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1238 struct btrfs_key key = {
1239 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1240 .type = BTRFS_ROOT_ITEM_KEY,
1241 .offset = btrfs_global_root_id(fs_info, bytenr),
1244 return btrfs_global_root(fs_info, &key);
1247 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1249 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1250 return fs_info->block_group_root;
1251 return btrfs_extent_root(fs_info, 0);
1254 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info = trans->fs_info;
1258 struct extent_buffer *leaf;
1259 struct btrfs_root *tree_root = fs_info->tree_root;
1260 struct btrfs_root *root;
1261 struct btrfs_key key;
1262 unsigned int nofs_flag;
1266 * We're holding a transaction handle, so use a NOFS memory allocation
1267 * context to avoid deadlock if reclaim happens.
1269 nofs_flag = memalloc_nofs_save();
1270 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1271 memalloc_nofs_restore(nofs_flag);
1273 return ERR_PTR(-ENOMEM);
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1279 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1280 BTRFS_NESTING_NORMAL);
1282 ret = PTR_ERR(leaf);
1288 btrfs_mark_buffer_dirty(leaf);
1290 root->commit_root = btrfs_root_node(root);
1291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1293 btrfs_set_root_flags(&root->root_item, 0);
1294 btrfs_set_root_limit(&root->root_item, 0);
1295 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1296 btrfs_set_root_generation(&root->root_item, trans->transid);
1297 btrfs_set_root_level(&root->root_item, 0);
1298 btrfs_set_root_refs(&root->root_item, 1);
1299 btrfs_set_root_used(&root->root_item, leaf->len);
1300 btrfs_set_root_last_snapshot(&root->root_item, 0);
1301 btrfs_set_root_dirid(&root->root_item, 0);
1302 if (is_fstree(objectid))
1303 generate_random_guid(root->root_item.uuid);
1305 export_guid(root->root_item.uuid, &guid_null);
1306 btrfs_set_root_drop_level(&root->root_item, 0);
1308 btrfs_tree_unlock(leaf);
1310 key.objectid = objectid;
1311 key.type = BTRFS_ROOT_ITEM_KEY;
1313 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320 btrfs_put_root(root);
1322 return ERR_PTR(ret);
1325 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1326 struct btrfs_fs_info *fs_info)
1328 struct btrfs_root *root;
1330 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1332 return ERR_PTR(-ENOMEM);
1334 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1341 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1342 struct btrfs_root *root)
1344 struct extent_buffer *leaf;
1347 * DON'T set SHAREABLE bit for log trees.
1349 * Log trees are not exposed to user space thus can't be snapshotted,
1350 * and they go away before a real commit is actually done.
1352 * They do store pointers to file data extents, and those reference
1353 * counts still get updated (along with back refs to the log tree).
1356 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1357 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1359 return PTR_ERR(leaf);
1363 btrfs_mark_buffer_dirty(root->node);
1364 btrfs_tree_unlock(root->node);
1369 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1370 struct btrfs_fs_info *fs_info)
1372 struct btrfs_root *log_root;
1374 log_root = alloc_log_tree(trans, fs_info);
1375 if (IS_ERR(log_root))
1376 return PTR_ERR(log_root);
1378 if (!btrfs_is_zoned(fs_info)) {
1379 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1382 btrfs_put_root(log_root);
1387 WARN_ON(fs_info->log_root_tree);
1388 fs_info->log_root_tree = log_root;
1392 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1393 struct btrfs_root *root)
1395 struct btrfs_fs_info *fs_info = root->fs_info;
1396 struct btrfs_root *log_root;
1397 struct btrfs_inode_item *inode_item;
1400 log_root = alloc_log_tree(trans, fs_info);
1401 if (IS_ERR(log_root))
1402 return PTR_ERR(log_root);
1404 ret = btrfs_alloc_log_tree_node(trans, log_root);
1406 btrfs_put_root(log_root);
1410 log_root->last_trans = trans->transid;
1411 log_root->root_key.offset = root->root_key.objectid;
1413 inode_item = &log_root->root_item.inode;
1414 btrfs_set_stack_inode_generation(inode_item, 1);
1415 btrfs_set_stack_inode_size(inode_item, 3);
1416 btrfs_set_stack_inode_nlink(inode_item, 1);
1417 btrfs_set_stack_inode_nbytes(inode_item,
1419 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1421 btrfs_set_root_node(&log_root->root_item, log_root->node);
1423 WARN_ON(root->log_root);
1424 root->log_root = log_root;
1425 root->log_transid = 0;
1426 root->log_transid_committed = -1;
1427 root->last_log_commit = 0;
1431 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1432 struct btrfs_path *path,
1433 struct btrfs_key *key)
1435 struct btrfs_root *root;
1436 struct btrfs_tree_parent_check check = { 0 };
1437 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1442 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1444 return ERR_PTR(-ENOMEM);
1446 ret = btrfs_find_root(tree_root, key, path,
1447 &root->root_item, &root->root_key);
1454 generation = btrfs_root_generation(&root->root_item);
1455 level = btrfs_root_level(&root->root_item);
1456 check.level = level;
1457 check.transid = generation;
1458 check.owner_root = key->objectid;
1459 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1461 if (IS_ERR(root->node)) {
1462 ret = PTR_ERR(root->node);
1466 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1472 * For real fs, and not log/reloc trees, root owner must
1473 * match its root node owner
1475 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1476 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1477 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1478 root->root_key.objectid != btrfs_header_owner(root->node)) {
1480 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1481 root->root_key.objectid, root->node->start,
1482 btrfs_header_owner(root->node),
1483 root->root_key.objectid);
1487 root->commit_root = btrfs_root_node(root);
1490 btrfs_put_root(root);
1491 return ERR_PTR(ret);
1494 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1495 struct btrfs_key *key)
1497 struct btrfs_root *root;
1498 struct btrfs_path *path;
1500 path = btrfs_alloc_path();
1502 return ERR_PTR(-ENOMEM);
1503 root = read_tree_root_path(tree_root, path, key);
1504 btrfs_free_path(path);
1510 * Initialize subvolume root in-memory structure
1512 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1514 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1517 unsigned int nofs_flag;
1520 * We might be called under a transaction (e.g. indirect backref
1521 * resolution) which could deadlock if it triggers memory reclaim
1523 nofs_flag = memalloc_nofs_save();
1524 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1525 memalloc_nofs_restore(nofs_flag);
1529 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1530 !btrfs_is_data_reloc_root(root)) {
1531 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1532 btrfs_check_and_init_root_item(&root->root_item);
1536 * Don't assign anonymous block device to roots that are not exposed to
1537 * userspace, the id pool is limited to 1M
1539 if (is_fstree(root->root_key.objectid) &&
1540 btrfs_root_refs(&root->root_item) > 0) {
1542 ret = get_anon_bdev(&root->anon_dev);
1546 root->anon_dev = anon_dev;
1550 mutex_lock(&root->objectid_mutex);
1551 ret = btrfs_init_root_free_objectid(root);
1553 mutex_unlock(&root->objectid_mutex);
1557 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1559 mutex_unlock(&root->objectid_mutex);
1563 /* The caller is responsible to call btrfs_free_fs_root */
1567 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1570 struct btrfs_root *root;
1572 spin_lock(&fs_info->fs_roots_radix_lock);
1573 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1574 (unsigned long)root_id);
1576 root = btrfs_grab_root(root);
1577 spin_unlock(&fs_info->fs_roots_radix_lock);
1581 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1584 struct btrfs_key key = {
1585 .objectid = objectid,
1586 .type = BTRFS_ROOT_ITEM_KEY,
1590 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1591 return btrfs_grab_root(fs_info->tree_root);
1592 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1593 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1594 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1595 return btrfs_grab_root(fs_info->chunk_root);
1596 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1597 return btrfs_grab_root(fs_info->dev_root);
1598 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1599 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1600 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1601 return btrfs_grab_root(fs_info->quota_root) ?
1602 fs_info->quota_root : ERR_PTR(-ENOENT);
1603 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1604 return btrfs_grab_root(fs_info->uuid_root) ?
1605 fs_info->uuid_root : ERR_PTR(-ENOENT);
1606 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1607 return btrfs_grab_root(fs_info->block_group_root) ?
1608 fs_info->block_group_root : ERR_PTR(-ENOENT);
1609 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1610 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1612 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1617 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1618 struct btrfs_root *root)
1622 ret = radix_tree_preload(GFP_NOFS);
1626 spin_lock(&fs_info->fs_roots_radix_lock);
1627 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1628 (unsigned long)root->root_key.objectid,
1631 btrfs_grab_root(root);
1632 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1634 spin_unlock(&fs_info->fs_roots_radix_lock);
1635 radix_tree_preload_end();
1640 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1642 #ifdef CONFIG_BTRFS_DEBUG
1643 struct btrfs_root *root;
1645 while (!list_empty(&fs_info->allocated_roots)) {
1646 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1648 root = list_first_entry(&fs_info->allocated_roots,
1649 struct btrfs_root, leak_list);
1650 btrfs_err(fs_info, "leaked root %s refcount %d",
1651 btrfs_root_name(&root->root_key, buf),
1652 refcount_read(&root->refs));
1653 while (refcount_read(&root->refs) > 1)
1654 btrfs_put_root(root);
1655 btrfs_put_root(root);
1660 static void free_global_roots(struct btrfs_fs_info *fs_info)
1662 struct btrfs_root *root;
1663 struct rb_node *node;
1665 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1666 root = rb_entry(node, struct btrfs_root, rb_node);
1667 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1668 btrfs_put_root(root);
1672 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1674 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1675 percpu_counter_destroy(&fs_info->delalloc_bytes);
1676 percpu_counter_destroy(&fs_info->ordered_bytes);
1677 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1678 btrfs_free_csum_hash(fs_info);
1679 btrfs_free_stripe_hash_table(fs_info);
1680 btrfs_free_ref_cache(fs_info);
1681 kfree(fs_info->balance_ctl);
1682 kfree(fs_info->delayed_root);
1683 free_global_roots(fs_info);
1684 btrfs_put_root(fs_info->tree_root);
1685 btrfs_put_root(fs_info->chunk_root);
1686 btrfs_put_root(fs_info->dev_root);
1687 btrfs_put_root(fs_info->quota_root);
1688 btrfs_put_root(fs_info->uuid_root);
1689 btrfs_put_root(fs_info->fs_root);
1690 btrfs_put_root(fs_info->data_reloc_root);
1691 btrfs_put_root(fs_info->block_group_root);
1692 btrfs_check_leaked_roots(fs_info);
1693 btrfs_extent_buffer_leak_debug_check(fs_info);
1694 kfree(fs_info->super_copy);
1695 kfree(fs_info->super_for_commit);
1696 kfree(fs_info->subpage_info);
1702 * Get an in-memory reference of a root structure.
1704 * For essential trees like root/extent tree, we grab it from fs_info directly.
1705 * For subvolume trees, we check the cached filesystem roots first. If not
1706 * found, then read it from disk and add it to cached fs roots.
1708 * Caller should release the root by calling btrfs_put_root() after the usage.
1710 * NOTE: Reloc and log trees can't be read by this function as they share the
1711 * same root objectid.
1713 * @objectid: root id
1714 * @anon_dev: preallocated anonymous block device number for new roots,
1715 * pass 0 for new allocation.
1716 * @check_ref: whether to check root item references, If true, return -ENOENT
1719 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1720 u64 objectid, dev_t anon_dev,
1723 struct btrfs_root *root;
1724 struct btrfs_path *path;
1725 struct btrfs_key key;
1728 root = btrfs_get_global_root(fs_info, objectid);
1732 root = btrfs_lookup_fs_root(fs_info, objectid);
1734 /* Shouldn't get preallocated anon_dev for cached roots */
1736 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1737 btrfs_put_root(root);
1738 return ERR_PTR(-ENOENT);
1743 key.objectid = objectid;
1744 key.type = BTRFS_ROOT_ITEM_KEY;
1745 key.offset = (u64)-1;
1746 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1750 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1755 ret = btrfs_init_fs_root(root, anon_dev);
1759 path = btrfs_alloc_path();
1764 key.objectid = BTRFS_ORPHAN_OBJECTID;
1765 key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 key.offset = objectid;
1768 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1769 btrfs_free_path(path);
1773 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1775 ret = btrfs_insert_fs_root(fs_info, root);
1777 if (ret == -EEXIST) {
1778 btrfs_put_root(root);
1786 * If our caller provided us an anonymous device, then it's his
1787 * responsibility to free it in case we fail. So we have to set our
1788 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1789 * and once again by our caller.
1793 btrfs_put_root(root);
1794 return ERR_PTR(ret);
1798 * Get in-memory reference of a root structure
1800 * @objectid: tree objectid
1801 * @check_ref: if set, verify that the tree exists and the item has at least
1804 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1805 u64 objectid, bool check_ref)
1807 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1811 * Get in-memory reference of a root structure, created as new, optionally pass
1812 * the anonymous block device id
1814 * @objectid: tree objectid
1815 * @anon_dev: if zero, allocate a new anonymous block device or use the
1818 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1819 u64 objectid, dev_t anon_dev)
1821 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1825 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1826 * @fs_info: the fs_info
1827 * @objectid: the objectid we need to lookup
1829 * This is exclusively used for backref walking, and exists specifically because
1830 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1831 * creation time, which means we may have to read the tree_root in order to look
1832 * up a fs root that is not in memory. If the root is not in memory we will
1833 * read the tree root commit root and look up the fs root from there. This is a
1834 * temporary root, it will not be inserted into the radix tree as it doesn't
1835 * have the most uptodate information, it'll simply be discarded once the
1836 * backref code is finished using the root.
1838 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1839 struct btrfs_path *path,
1842 struct btrfs_root *root;
1843 struct btrfs_key key;
1845 ASSERT(path->search_commit_root && path->skip_locking);
1848 * This can return -ENOENT if we ask for a root that doesn't exist, but
1849 * since this is called via the backref walking code we won't be looking
1850 * up a root that doesn't exist, unless there's corruption. So if root
1851 * != NULL just return it.
1853 root = btrfs_get_global_root(fs_info, objectid);
1857 root = btrfs_lookup_fs_root(fs_info, objectid);
1861 key.objectid = objectid;
1862 key.type = BTRFS_ROOT_ITEM_KEY;
1863 key.offset = (u64)-1;
1864 root = read_tree_root_path(fs_info->tree_root, path, &key);
1865 btrfs_release_path(path);
1870 static int cleaner_kthread(void *arg)
1872 struct btrfs_fs_info *fs_info = arg;
1878 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1880 /* Make the cleaner go to sleep early. */
1881 if (btrfs_need_cleaner_sleep(fs_info))
1885 * Do not do anything if we might cause open_ctree() to block
1886 * before we have finished mounting the filesystem.
1888 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1891 if (!mutex_trylock(&fs_info->cleaner_mutex))
1895 * Avoid the problem that we change the status of the fs
1896 * during the above check and trylock.
1898 if (btrfs_need_cleaner_sleep(fs_info)) {
1899 mutex_unlock(&fs_info->cleaner_mutex);
1903 btrfs_run_delayed_iputs(fs_info);
1905 again = btrfs_clean_one_deleted_snapshot(fs_info);
1906 mutex_unlock(&fs_info->cleaner_mutex);
1909 * The defragger has dealt with the R/O remount and umount,
1910 * needn't do anything special here.
1912 btrfs_run_defrag_inodes(fs_info);
1915 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1916 * with relocation (btrfs_relocate_chunk) and relocation
1917 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1918 * after acquiring fs_info->reclaim_bgs_lock. So we
1919 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1920 * unused block groups.
1922 btrfs_delete_unused_bgs(fs_info);
1925 * Reclaim block groups in the reclaim_bgs list after we deleted
1926 * all unused block_groups. This possibly gives us some more free
1929 btrfs_reclaim_bgs(fs_info);
1931 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1932 if (kthread_should_park())
1934 if (kthread_should_stop())
1937 set_current_state(TASK_INTERRUPTIBLE);
1939 __set_current_state(TASK_RUNNING);
1944 static int transaction_kthread(void *arg)
1946 struct btrfs_root *root = arg;
1947 struct btrfs_fs_info *fs_info = root->fs_info;
1948 struct btrfs_trans_handle *trans;
1949 struct btrfs_transaction *cur;
1952 unsigned long delay;
1956 cannot_commit = false;
1957 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1958 mutex_lock(&fs_info->transaction_kthread_mutex);
1960 spin_lock(&fs_info->trans_lock);
1961 cur = fs_info->running_transaction;
1963 spin_unlock(&fs_info->trans_lock);
1967 delta = ktime_get_seconds() - cur->start_time;
1968 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1969 cur->state < TRANS_STATE_COMMIT_START &&
1970 delta < fs_info->commit_interval) {
1971 spin_unlock(&fs_info->trans_lock);
1972 delay -= msecs_to_jiffies((delta - 1) * 1000);
1974 msecs_to_jiffies(fs_info->commit_interval * 1000));
1977 transid = cur->transid;
1978 spin_unlock(&fs_info->trans_lock);
1980 /* If the file system is aborted, this will always fail. */
1981 trans = btrfs_attach_transaction(root);
1982 if (IS_ERR(trans)) {
1983 if (PTR_ERR(trans) != -ENOENT)
1984 cannot_commit = true;
1987 if (transid == trans->transid) {
1988 btrfs_commit_transaction(trans);
1990 btrfs_end_transaction(trans);
1993 wake_up_process(fs_info->cleaner_kthread);
1994 mutex_unlock(&fs_info->transaction_kthread_mutex);
1996 if (BTRFS_FS_ERROR(fs_info))
1997 btrfs_cleanup_transaction(fs_info);
1998 if (!kthread_should_stop() &&
1999 (!btrfs_transaction_blocked(fs_info) ||
2001 schedule_timeout_interruptible(delay);
2002 } while (!kthread_should_stop());
2007 * This will find the highest generation in the array of root backups. The
2008 * index of the highest array is returned, or -EINVAL if we can't find
2011 * We check to make sure the array is valid by comparing the
2012 * generation of the latest root in the array with the generation
2013 * in the super block. If they don't match we pitch it.
2015 static int find_newest_super_backup(struct btrfs_fs_info *info)
2017 const u64 newest_gen = btrfs_super_generation(info->super_copy);
2019 struct btrfs_root_backup *root_backup;
2022 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2023 root_backup = info->super_copy->super_roots + i;
2024 cur = btrfs_backup_tree_root_gen(root_backup);
2025 if (cur == newest_gen)
2033 * copy all the root pointers into the super backup array.
2034 * this will bump the backup pointer by one when it is
2037 static void backup_super_roots(struct btrfs_fs_info *info)
2039 const int next_backup = info->backup_root_index;
2040 struct btrfs_root_backup *root_backup;
2042 root_backup = info->super_for_commit->super_roots + next_backup;
2045 * make sure all of our padding and empty slots get zero filled
2046 * regardless of which ones we use today
2048 memset(root_backup, 0, sizeof(*root_backup));
2050 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2052 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2053 btrfs_set_backup_tree_root_gen(root_backup,
2054 btrfs_header_generation(info->tree_root->node));
2056 btrfs_set_backup_tree_root_level(root_backup,
2057 btrfs_header_level(info->tree_root->node));
2059 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2060 btrfs_set_backup_chunk_root_gen(root_backup,
2061 btrfs_header_generation(info->chunk_root->node));
2062 btrfs_set_backup_chunk_root_level(root_backup,
2063 btrfs_header_level(info->chunk_root->node));
2065 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
2066 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2067 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2069 btrfs_set_backup_extent_root(root_backup,
2070 extent_root->node->start);
2071 btrfs_set_backup_extent_root_gen(root_backup,
2072 btrfs_header_generation(extent_root->node));
2073 btrfs_set_backup_extent_root_level(root_backup,
2074 btrfs_header_level(extent_root->node));
2076 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2077 btrfs_set_backup_csum_root_gen(root_backup,
2078 btrfs_header_generation(csum_root->node));
2079 btrfs_set_backup_csum_root_level(root_backup,
2080 btrfs_header_level(csum_root->node));
2084 * we might commit during log recovery, which happens before we set
2085 * the fs_root. Make sure it is valid before we fill it in.
2087 if (info->fs_root && info->fs_root->node) {
2088 btrfs_set_backup_fs_root(root_backup,
2089 info->fs_root->node->start);
2090 btrfs_set_backup_fs_root_gen(root_backup,
2091 btrfs_header_generation(info->fs_root->node));
2092 btrfs_set_backup_fs_root_level(root_backup,
2093 btrfs_header_level(info->fs_root->node));
2096 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2097 btrfs_set_backup_dev_root_gen(root_backup,
2098 btrfs_header_generation(info->dev_root->node));
2099 btrfs_set_backup_dev_root_level(root_backup,
2100 btrfs_header_level(info->dev_root->node));
2102 btrfs_set_backup_total_bytes(root_backup,
2103 btrfs_super_total_bytes(info->super_copy));
2104 btrfs_set_backup_bytes_used(root_backup,
2105 btrfs_super_bytes_used(info->super_copy));
2106 btrfs_set_backup_num_devices(root_backup,
2107 btrfs_super_num_devices(info->super_copy));
2110 * if we don't copy this out to the super_copy, it won't get remembered
2111 * for the next commit
2113 memcpy(&info->super_copy->super_roots,
2114 &info->super_for_commit->super_roots,
2115 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2119 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2120 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2122 * fs_info - filesystem whose backup roots need to be read
2123 * priority - priority of backup root required
2125 * Returns backup root index on success and -EINVAL otherwise.
2127 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2129 int backup_index = find_newest_super_backup(fs_info);
2130 struct btrfs_super_block *super = fs_info->super_copy;
2131 struct btrfs_root_backup *root_backup;
2133 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2135 return backup_index;
2137 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2138 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2143 root_backup = super->super_roots + backup_index;
2145 btrfs_set_super_generation(super,
2146 btrfs_backup_tree_root_gen(root_backup));
2147 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2148 btrfs_set_super_root_level(super,
2149 btrfs_backup_tree_root_level(root_backup));
2150 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2153 * Fixme: the total bytes and num_devices need to match or we should
2156 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2157 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2159 return backup_index;
2162 /* helper to cleanup workers */
2163 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2165 btrfs_destroy_workqueue(fs_info->fixup_workers);
2166 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2167 btrfs_destroy_workqueue(fs_info->hipri_workers);
2168 btrfs_destroy_workqueue(fs_info->workers);
2169 if (fs_info->endio_workers)
2170 destroy_workqueue(fs_info->endio_workers);
2171 if (fs_info->rmw_workers)
2172 destroy_workqueue(fs_info->rmw_workers);
2173 if (fs_info->compressed_write_workers)
2174 destroy_workqueue(fs_info->compressed_write_workers);
2175 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2176 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2177 btrfs_destroy_workqueue(fs_info->delayed_workers);
2178 btrfs_destroy_workqueue(fs_info->caching_workers);
2179 btrfs_destroy_workqueue(fs_info->flush_workers);
2180 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2181 if (fs_info->discard_ctl.discard_workers)
2182 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2184 * Now that all other work queues are destroyed, we can safely destroy
2185 * the queues used for metadata I/O, since tasks from those other work
2186 * queues can do metadata I/O operations.
2188 if (fs_info->endio_meta_workers)
2189 destroy_workqueue(fs_info->endio_meta_workers);
2192 static void free_root_extent_buffers(struct btrfs_root *root)
2195 free_extent_buffer(root->node);
2196 free_extent_buffer(root->commit_root);
2198 root->commit_root = NULL;
2202 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2204 struct btrfs_root *root, *tmp;
2206 rbtree_postorder_for_each_entry_safe(root, tmp,
2207 &fs_info->global_root_tree,
2209 free_root_extent_buffers(root);
2212 /* helper to cleanup tree roots */
2213 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2215 free_root_extent_buffers(info->tree_root);
2217 free_global_root_pointers(info);
2218 free_root_extent_buffers(info->dev_root);
2219 free_root_extent_buffers(info->quota_root);
2220 free_root_extent_buffers(info->uuid_root);
2221 free_root_extent_buffers(info->fs_root);
2222 free_root_extent_buffers(info->data_reloc_root);
2223 free_root_extent_buffers(info->block_group_root);
2224 if (free_chunk_root)
2225 free_root_extent_buffers(info->chunk_root);
2228 void btrfs_put_root(struct btrfs_root *root)
2233 if (refcount_dec_and_test(&root->refs)) {
2234 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2235 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2237 free_anon_bdev(root->anon_dev);
2238 btrfs_drew_lock_destroy(&root->snapshot_lock);
2239 free_root_extent_buffers(root);
2240 #ifdef CONFIG_BTRFS_DEBUG
2241 spin_lock(&root->fs_info->fs_roots_radix_lock);
2242 list_del_init(&root->leak_list);
2243 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2249 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2252 struct btrfs_root *gang[8];
2255 while (!list_empty(&fs_info->dead_roots)) {
2256 gang[0] = list_entry(fs_info->dead_roots.next,
2257 struct btrfs_root, root_list);
2258 list_del(&gang[0]->root_list);
2260 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2261 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2262 btrfs_put_root(gang[0]);
2266 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2271 for (i = 0; i < ret; i++)
2272 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2276 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2278 mutex_init(&fs_info->scrub_lock);
2279 atomic_set(&fs_info->scrubs_running, 0);
2280 atomic_set(&fs_info->scrub_pause_req, 0);
2281 atomic_set(&fs_info->scrubs_paused, 0);
2282 atomic_set(&fs_info->scrub_cancel_req, 0);
2283 init_waitqueue_head(&fs_info->scrub_pause_wait);
2284 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2287 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2289 spin_lock_init(&fs_info->balance_lock);
2290 mutex_init(&fs_info->balance_mutex);
2291 atomic_set(&fs_info->balance_pause_req, 0);
2292 atomic_set(&fs_info->balance_cancel_req, 0);
2293 fs_info->balance_ctl = NULL;
2294 init_waitqueue_head(&fs_info->balance_wait_q);
2295 atomic_set(&fs_info->reloc_cancel_req, 0);
2298 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2300 struct inode *inode = fs_info->btree_inode;
2301 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2302 fs_info->tree_root);
2304 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2305 set_nlink(inode, 1);
2307 * we set the i_size on the btree inode to the max possible int.
2308 * the real end of the address space is determined by all of
2309 * the devices in the system
2311 inode->i_size = OFFSET_MAX;
2312 inode->i_mapping->a_ops = &btree_aops;
2314 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2315 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2316 IO_TREE_BTREE_INODE_IO);
2317 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2319 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2320 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2321 BTRFS_I(inode)->location.type = 0;
2322 BTRFS_I(inode)->location.offset = 0;
2323 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2324 __insert_inode_hash(inode, hash);
2327 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2329 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2330 init_rwsem(&fs_info->dev_replace.rwsem);
2331 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2334 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2336 spin_lock_init(&fs_info->qgroup_lock);
2337 mutex_init(&fs_info->qgroup_ioctl_lock);
2338 fs_info->qgroup_tree = RB_ROOT;
2339 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2340 fs_info->qgroup_seq = 1;
2341 fs_info->qgroup_ulist = NULL;
2342 fs_info->qgroup_rescan_running = false;
2343 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2344 mutex_init(&fs_info->qgroup_rescan_lock);
2347 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2349 u32 max_active = fs_info->thread_pool_size;
2350 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2353 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2354 fs_info->hipri_workers =
2355 btrfs_alloc_workqueue(fs_info, "worker-high",
2356 flags | WQ_HIGHPRI, max_active, 16);
2358 fs_info->delalloc_workers =
2359 btrfs_alloc_workqueue(fs_info, "delalloc",
2360 flags, max_active, 2);
2362 fs_info->flush_workers =
2363 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2364 flags, max_active, 0);
2366 fs_info->caching_workers =
2367 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2369 fs_info->fixup_workers =
2370 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2372 fs_info->endio_workers =
2373 alloc_workqueue("btrfs-endio", flags, max_active);
2374 fs_info->endio_meta_workers =
2375 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2376 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2377 fs_info->endio_write_workers =
2378 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2380 fs_info->compressed_write_workers =
2381 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2382 fs_info->endio_freespace_worker =
2383 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2385 fs_info->delayed_workers =
2386 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2388 fs_info->qgroup_rescan_workers =
2389 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2390 fs_info->discard_ctl.discard_workers =
2391 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2393 if (!(fs_info->workers && fs_info->hipri_workers &&
2394 fs_info->delalloc_workers && fs_info->flush_workers &&
2395 fs_info->endio_workers && fs_info->endio_meta_workers &&
2396 fs_info->compressed_write_workers &&
2397 fs_info->endio_write_workers &&
2398 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2399 fs_info->caching_workers && fs_info->fixup_workers &&
2400 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2401 fs_info->discard_ctl.discard_workers)) {
2408 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2410 struct crypto_shash *csum_shash;
2411 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2413 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2415 if (IS_ERR(csum_shash)) {
2416 btrfs_err(fs_info, "error allocating %s hash for checksum",
2418 return PTR_ERR(csum_shash);
2421 fs_info->csum_shash = csum_shash;
2423 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2424 btrfs_super_csum_name(csum_type),
2425 crypto_shash_driver_name(csum_shash));
2429 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2430 struct btrfs_fs_devices *fs_devices)
2433 struct btrfs_tree_parent_check check = { 0 };
2434 struct btrfs_root *log_tree_root;
2435 struct btrfs_super_block *disk_super = fs_info->super_copy;
2436 u64 bytenr = btrfs_super_log_root(disk_super);
2437 int level = btrfs_super_log_root_level(disk_super);
2439 if (fs_devices->rw_devices == 0) {
2440 btrfs_warn(fs_info, "log replay required on RO media");
2444 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2449 check.level = level;
2450 check.transid = fs_info->generation + 1;
2451 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2452 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2453 if (IS_ERR(log_tree_root->node)) {
2454 btrfs_warn(fs_info, "failed to read log tree");
2455 ret = PTR_ERR(log_tree_root->node);
2456 log_tree_root->node = NULL;
2457 btrfs_put_root(log_tree_root);
2460 if (!extent_buffer_uptodate(log_tree_root->node)) {
2461 btrfs_err(fs_info, "failed to read log tree");
2462 btrfs_put_root(log_tree_root);
2466 /* returns with log_tree_root freed on success */
2467 ret = btrfs_recover_log_trees(log_tree_root);
2469 btrfs_handle_fs_error(fs_info, ret,
2470 "Failed to recover log tree");
2471 btrfs_put_root(log_tree_root);
2475 if (sb_rdonly(fs_info->sb)) {
2476 ret = btrfs_commit_super(fs_info);
2484 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2485 struct btrfs_path *path, u64 objectid,
2488 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2489 struct btrfs_root *root;
2490 u64 max_global_id = 0;
2492 struct btrfs_key key = {
2493 .objectid = objectid,
2494 .type = BTRFS_ROOT_ITEM_KEY,
2499 /* If we have IGNOREDATACSUMS skip loading these roots. */
2500 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2501 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2502 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2507 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2511 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2512 ret = btrfs_next_leaf(tree_root, path);
2521 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2522 if (key.objectid != objectid)
2524 btrfs_release_path(path);
2527 * Just worry about this for extent tree, it'll be the same for
2530 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2531 max_global_id = max(max_global_id, key.offset);
2534 root = read_tree_root_path(tree_root, path, &key);
2536 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2537 ret = PTR_ERR(root);
2540 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2541 ret = btrfs_global_root_insert(root);
2543 btrfs_put_root(root);
2548 btrfs_release_path(path);
2550 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2551 fs_info->nr_global_roots = max_global_id + 1;
2553 if (!found || ret) {
2554 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2555 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2557 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2558 ret = ret ? ret : -ENOENT;
2561 btrfs_err(fs_info, "failed to load root %s", name);
2566 static int load_global_roots(struct btrfs_root *tree_root)
2568 struct btrfs_path *path;
2571 path = btrfs_alloc_path();
2575 ret = load_global_roots_objectid(tree_root, path,
2576 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2579 ret = load_global_roots_objectid(tree_root, path,
2580 BTRFS_CSUM_TREE_OBJECTID, "csum");
2583 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2585 ret = load_global_roots_objectid(tree_root, path,
2586 BTRFS_FREE_SPACE_TREE_OBJECTID,
2589 btrfs_free_path(path);
2593 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2595 struct btrfs_root *tree_root = fs_info->tree_root;
2596 struct btrfs_root *root;
2597 struct btrfs_key location;
2600 BUG_ON(!fs_info->tree_root);
2602 ret = load_global_roots(tree_root);
2606 location.type = BTRFS_ROOT_ITEM_KEY;
2607 location.offset = 0;
2609 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2610 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2611 root = btrfs_read_tree_root(tree_root, &location);
2613 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2614 ret = PTR_ERR(root);
2618 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2619 fs_info->block_group_root = root;
2623 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2624 root = btrfs_read_tree_root(tree_root, &location);
2626 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2627 ret = PTR_ERR(root);
2631 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2632 fs_info->dev_root = root;
2634 /* Initialize fs_info for all devices in any case */
2635 ret = btrfs_init_devices_late(fs_info);
2640 * This tree can share blocks with some other fs tree during relocation
2641 * and we need a proper setup by btrfs_get_fs_root
2643 root = btrfs_get_fs_root(tree_root->fs_info,
2644 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2646 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2647 ret = PTR_ERR(root);
2651 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2652 fs_info->data_reloc_root = root;
2655 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2656 root = btrfs_read_tree_root(tree_root, &location);
2657 if (!IS_ERR(root)) {
2658 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2659 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2660 fs_info->quota_root = root;
2663 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2664 root = btrfs_read_tree_root(tree_root, &location);
2666 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2667 ret = PTR_ERR(root);
2672 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2673 fs_info->uuid_root = root;
2678 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2679 location.objectid, ret);
2684 * Real super block validation
2685 * NOTE: super csum type and incompat features will not be checked here.
2687 * @sb: super block to check
2688 * @mirror_num: the super block number to check its bytenr:
2689 * 0 the primary (1st) sb
2690 * 1, 2 2nd and 3rd backup copy
2691 * -1 skip bytenr check
2693 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2694 struct btrfs_super_block *sb, int mirror_num)
2696 u64 nodesize = btrfs_super_nodesize(sb);
2697 u64 sectorsize = btrfs_super_sectorsize(sb);
2700 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2701 btrfs_err(fs_info, "no valid FS found");
2704 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2705 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2706 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2709 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2710 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2711 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2714 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2715 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2716 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2719 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2720 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2721 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2726 * Check sectorsize and nodesize first, other check will need it.
2727 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2729 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2730 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2731 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2736 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2738 * We can support 16K sectorsize with 64K page size without problem,
2739 * but such sectorsize/pagesize combination doesn't make much sense.
2740 * 4K will be our future standard, PAGE_SIZE is supported from the very
2743 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2745 "sectorsize %llu not yet supported for page size %lu",
2746 sectorsize, PAGE_SIZE);
2750 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2751 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2752 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2755 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2756 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2757 le32_to_cpu(sb->__unused_leafsize), nodesize);
2761 /* Root alignment check */
2762 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2763 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2764 btrfs_super_root(sb));
2767 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2768 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2769 btrfs_super_chunk_root(sb));
2772 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2773 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2774 btrfs_super_log_root(sb));
2778 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2781 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2782 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2786 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2787 memcmp(fs_info->fs_devices->metadata_uuid,
2788 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2790 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2791 fs_info->super_copy->metadata_uuid,
2792 fs_info->fs_devices->metadata_uuid);
2797 * Artificial requirement for block-group-tree to force newer features
2798 * (free-space-tree, no-holes) so the test matrix is smaller.
2800 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2801 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2802 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2804 "block-group-tree feature requires fres-space-tree and no-holes");
2808 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2809 BTRFS_FSID_SIZE) != 0) {
2811 "dev_item UUID does not match metadata fsid: %pU != %pU",
2812 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2817 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2820 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2821 btrfs_err(fs_info, "bytes_used is too small %llu",
2822 btrfs_super_bytes_used(sb));
2825 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2826 btrfs_err(fs_info, "invalid stripesize %u",
2827 btrfs_super_stripesize(sb));
2830 if (btrfs_super_num_devices(sb) > (1UL << 31))
2831 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2832 btrfs_super_num_devices(sb));
2833 if (btrfs_super_num_devices(sb) == 0) {
2834 btrfs_err(fs_info, "number of devices is 0");
2838 if (mirror_num >= 0 &&
2839 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2840 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2841 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2846 * Obvious sys_chunk_array corruptions, it must hold at least one key
2849 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2850 btrfs_err(fs_info, "system chunk array too big %u > %u",
2851 btrfs_super_sys_array_size(sb),
2852 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2855 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2856 + sizeof(struct btrfs_chunk)) {
2857 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2858 btrfs_super_sys_array_size(sb),
2859 sizeof(struct btrfs_disk_key)
2860 + sizeof(struct btrfs_chunk));
2865 * The generation is a global counter, we'll trust it more than the others
2866 * but it's still possible that it's the one that's wrong.
2868 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2870 "suspicious: generation < chunk_root_generation: %llu < %llu",
2871 btrfs_super_generation(sb),
2872 btrfs_super_chunk_root_generation(sb));
2873 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2874 && btrfs_super_cache_generation(sb) != (u64)-1)
2876 "suspicious: generation < cache_generation: %llu < %llu",
2877 btrfs_super_generation(sb),
2878 btrfs_super_cache_generation(sb));
2884 * Validation of super block at mount time.
2885 * Some checks already done early at mount time, like csum type and incompat
2886 * flags will be skipped.
2888 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2890 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2894 * Validation of super block at write time.
2895 * Some checks like bytenr check will be skipped as their values will be
2897 * Extra checks like csum type and incompat flags will be done here.
2899 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2900 struct btrfs_super_block *sb)
2904 ret = btrfs_validate_super(fs_info, sb, -1);
2907 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2909 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2910 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2913 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2916 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2917 btrfs_super_incompat_flags(sb),
2918 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2924 "super block corruption detected before writing it to disk");
2928 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2930 struct btrfs_tree_parent_check check = {
2933 .owner_root = root->root_key.objectid
2937 root->node = read_tree_block(root->fs_info, bytenr, &check);
2938 if (IS_ERR(root->node)) {
2939 ret = PTR_ERR(root->node);
2943 if (!extent_buffer_uptodate(root->node)) {
2944 free_extent_buffer(root->node);
2949 btrfs_set_root_node(&root->root_item, root->node);
2950 root->commit_root = btrfs_root_node(root);
2951 btrfs_set_root_refs(&root->root_item, 1);
2955 static int load_important_roots(struct btrfs_fs_info *fs_info)
2957 struct btrfs_super_block *sb = fs_info->super_copy;
2961 bytenr = btrfs_super_root(sb);
2962 gen = btrfs_super_generation(sb);
2963 level = btrfs_super_root_level(sb);
2964 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2966 btrfs_warn(fs_info, "couldn't read tree root");
2972 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2974 int backup_index = find_newest_super_backup(fs_info);
2975 struct btrfs_super_block *sb = fs_info->super_copy;
2976 struct btrfs_root *tree_root = fs_info->tree_root;
2977 bool handle_error = false;
2981 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2983 if (!IS_ERR(tree_root->node))
2984 free_extent_buffer(tree_root->node);
2985 tree_root->node = NULL;
2987 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2990 free_root_pointers(fs_info, 0);
2993 * Don't use the log in recovery mode, it won't be
2996 btrfs_set_super_log_root(sb, 0);
2998 /* We can't trust the free space cache either */
2999 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3001 ret = read_backup_root(fs_info, i);
3007 ret = load_important_roots(fs_info);
3009 handle_error = true;
3014 * No need to hold btrfs_root::objectid_mutex since the fs
3015 * hasn't been fully initialised and we are the only user
3017 ret = btrfs_init_root_free_objectid(tree_root);
3019 handle_error = true;
3023 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3025 ret = btrfs_read_roots(fs_info);
3027 handle_error = true;
3031 /* All successful */
3032 fs_info->generation = btrfs_header_generation(tree_root->node);
3033 fs_info->last_trans_committed = fs_info->generation;
3034 fs_info->last_reloc_trans = 0;
3036 /* Always begin writing backup roots after the one being used */
3037 if (backup_index < 0) {
3038 fs_info->backup_root_index = 0;
3040 fs_info->backup_root_index = backup_index + 1;
3041 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3049 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3051 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3052 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3053 INIT_LIST_HEAD(&fs_info->trans_list);
3054 INIT_LIST_HEAD(&fs_info->dead_roots);
3055 INIT_LIST_HEAD(&fs_info->delayed_iputs);
3056 INIT_LIST_HEAD(&fs_info->delalloc_roots);
3057 INIT_LIST_HEAD(&fs_info->caching_block_groups);
3058 spin_lock_init(&fs_info->delalloc_root_lock);
3059 spin_lock_init(&fs_info->trans_lock);
3060 spin_lock_init(&fs_info->fs_roots_radix_lock);
3061 spin_lock_init(&fs_info->delayed_iput_lock);
3062 spin_lock_init(&fs_info->defrag_inodes_lock);
3063 spin_lock_init(&fs_info->super_lock);
3064 spin_lock_init(&fs_info->buffer_lock);
3065 spin_lock_init(&fs_info->unused_bgs_lock);
3066 spin_lock_init(&fs_info->treelog_bg_lock);
3067 spin_lock_init(&fs_info->zone_active_bgs_lock);
3068 spin_lock_init(&fs_info->relocation_bg_lock);
3069 rwlock_init(&fs_info->tree_mod_log_lock);
3070 rwlock_init(&fs_info->global_root_lock);
3071 mutex_init(&fs_info->unused_bg_unpin_mutex);
3072 mutex_init(&fs_info->reclaim_bgs_lock);
3073 mutex_init(&fs_info->reloc_mutex);
3074 mutex_init(&fs_info->delalloc_root_mutex);
3075 mutex_init(&fs_info->zoned_meta_io_lock);
3076 mutex_init(&fs_info->zoned_data_reloc_io_lock);
3077 seqlock_init(&fs_info->profiles_lock);
3079 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3080 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3081 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3082 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3083 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3084 BTRFS_LOCKDEP_TRANS_COMMIT_START);
3085 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3086 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3087 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3088 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3089 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3090 BTRFS_LOCKDEP_TRANS_COMPLETED);
3092 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3093 INIT_LIST_HEAD(&fs_info->space_info);
3094 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3095 INIT_LIST_HEAD(&fs_info->unused_bgs);
3096 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3097 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3098 #ifdef CONFIG_BTRFS_DEBUG
3099 INIT_LIST_HEAD(&fs_info->allocated_roots);
3100 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3101 spin_lock_init(&fs_info->eb_leak_lock);
3103 extent_map_tree_init(&fs_info->mapping_tree);
3104 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3105 BTRFS_BLOCK_RSV_GLOBAL);
3106 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3107 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3108 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3109 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3110 BTRFS_BLOCK_RSV_DELOPS);
3111 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3112 BTRFS_BLOCK_RSV_DELREFS);
3114 atomic_set(&fs_info->async_delalloc_pages, 0);
3115 atomic_set(&fs_info->defrag_running, 0);
3116 atomic_set(&fs_info->nr_delayed_iputs, 0);
3117 atomic64_set(&fs_info->tree_mod_seq, 0);
3118 fs_info->global_root_tree = RB_ROOT;
3119 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3120 fs_info->metadata_ratio = 0;
3121 fs_info->defrag_inodes = RB_ROOT;
3122 atomic64_set(&fs_info->free_chunk_space, 0);
3123 fs_info->tree_mod_log = RB_ROOT;
3124 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3125 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3126 btrfs_init_ref_verify(fs_info);
3128 fs_info->thread_pool_size = min_t(unsigned long,
3129 num_online_cpus() + 2, 8);
3131 INIT_LIST_HEAD(&fs_info->ordered_roots);
3132 spin_lock_init(&fs_info->ordered_root_lock);
3134 btrfs_init_scrub(fs_info);
3135 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3136 fs_info->check_integrity_print_mask = 0;
3138 btrfs_init_balance(fs_info);
3139 btrfs_init_async_reclaim_work(fs_info);
3141 rwlock_init(&fs_info->block_group_cache_lock);
3142 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3144 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3145 IO_TREE_FS_EXCLUDED_EXTENTS);
3147 mutex_init(&fs_info->ordered_operations_mutex);
3148 mutex_init(&fs_info->tree_log_mutex);
3149 mutex_init(&fs_info->chunk_mutex);
3150 mutex_init(&fs_info->transaction_kthread_mutex);
3151 mutex_init(&fs_info->cleaner_mutex);
3152 mutex_init(&fs_info->ro_block_group_mutex);
3153 init_rwsem(&fs_info->commit_root_sem);
3154 init_rwsem(&fs_info->cleanup_work_sem);
3155 init_rwsem(&fs_info->subvol_sem);
3156 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3158 btrfs_init_dev_replace_locks(fs_info);
3159 btrfs_init_qgroup(fs_info);
3160 btrfs_discard_init(fs_info);
3162 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3163 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3165 init_waitqueue_head(&fs_info->transaction_throttle);
3166 init_waitqueue_head(&fs_info->transaction_wait);
3167 init_waitqueue_head(&fs_info->transaction_blocked_wait);
3168 init_waitqueue_head(&fs_info->async_submit_wait);
3169 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3171 /* Usable values until the real ones are cached from the superblock */
3172 fs_info->nodesize = 4096;
3173 fs_info->sectorsize = 4096;
3174 fs_info->sectorsize_bits = ilog2(4096);
3175 fs_info->stripesize = 4096;
3177 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3179 spin_lock_init(&fs_info->swapfile_pins_lock);
3180 fs_info->swapfile_pins = RB_ROOT;
3182 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3183 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3186 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3191 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3192 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3194 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3198 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3202 fs_info->dirty_metadata_batch = PAGE_SIZE *
3203 (1 + ilog2(nr_cpu_ids));
3205 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3209 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3214 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3216 if (!fs_info->delayed_root)
3218 btrfs_init_delayed_root(fs_info->delayed_root);
3221 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3223 return btrfs_alloc_stripe_hash_table(fs_info);
3226 static int btrfs_uuid_rescan_kthread(void *data)
3228 struct btrfs_fs_info *fs_info = data;
3232 * 1st step is to iterate through the existing UUID tree and
3233 * to delete all entries that contain outdated data.
3234 * 2nd step is to add all missing entries to the UUID tree.
3236 ret = btrfs_uuid_tree_iterate(fs_info);
3239 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3241 up(&fs_info->uuid_tree_rescan_sem);
3244 return btrfs_uuid_scan_kthread(data);
3247 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3249 struct task_struct *task;
3251 down(&fs_info->uuid_tree_rescan_sem);
3252 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3254 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3255 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3256 up(&fs_info->uuid_tree_rescan_sem);
3257 return PTR_ERR(task);
3264 * Some options only have meaning at mount time and shouldn't persist across
3265 * remounts, or be displayed. Clear these at the end of mount and remount
3268 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3270 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3271 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3275 * Mounting logic specific to read-write file systems. Shared by open_ctree
3276 * and btrfs_remount when remounting from read-only to read-write.
3278 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3281 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3282 bool clear_free_space_tree = false;
3284 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3285 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3286 clear_free_space_tree = true;
3287 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3288 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3289 btrfs_warn(fs_info, "free space tree is invalid");
3290 clear_free_space_tree = true;
3293 if (clear_free_space_tree) {
3294 btrfs_info(fs_info, "clearing free space tree");
3295 ret = btrfs_clear_free_space_tree(fs_info);
3298 "failed to clear free space tree: %d", ret);
3304 * btrfs_find_orphan_roots() is responsible for finding all the dead
3305 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3306 * them into the fs_info->fs_roots_radix tree. This must be done before
3307 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3308 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3309 * item before the root's tree is deleted - this means that if we unmount
3310 * or crash before the deletion completes, on the next mount we will not
3311 * delete what remains of the tree because the orphan item does not
3312 * exists anymore, which is what tells us we have a pending deletion.
3314 ret = btrfs_find_orphan_roots(fs_info);
3318 ret = btrfs_cleanup_fs_roots(fs_info);
3322 down_read(&fs_info->cleanup_work_sem);
3323 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3324 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3325 up_read(&fs_info->cleanup_work_sem);
3328 up_read(&fs_info->cleanup_work_sem);
3330 mutex_lock(&fs_info->cleaner_mutex);
3331 ret = btrfs_recover_relocation(fs_info);
3332 mutex_unlock(&fs_info->cleaner_mutex);
3334 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3338 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3339 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3340 btrfs_info(fs_info, "creating free space tree");
3341 ret = btrfs_create_free_space_tree(fs_info);
3344 "failed to create free space tree: %d", ret);
3349 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3350 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3355 ret = btrfs_resume_balance_async(fs_info);
3359 ret = btrfs_resume_dev_replace_async(fs_info);
3361 btrfs_warn(fs_info, "failed to resume dev_replace");
3365 btrfs_qgroup_rescan_resume(fs_info);
3367 if (!fs_info->uuid_root) {
3368 btrfs_info(fs_info, "creating UUID tree");
3369 ret = btrfs_create_uuid_tree(fs_info);
3372 "failed to create the UUID tree %d", ret);
3382 * Do various sanity and dependency checks of different features.
3384 * This is the place for less strict checks (like for subpage or artificial
3385 * feature dependencies).
3387 * For strict checks or possible corruption detection, see
3388 * btrfs_validate_super().
3390 * This should be called after btrfs_parse_options(), as some mount options
3391 * (space cache related) can modify on-disk format like free space tree and
3392 * screw up certain feature dependencies.
3394 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3396 struct btrfs_super_block *disk_super = fs_info->super_copy;
3397 u64 incompat = btrfs_super_incompat_flags(disk_super);
3398 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3399 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3401 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3403 "cannot mount because of unknown incompat features (0x%llx)",
3408 /* Runtime limitation for mixed block groups. */
3409 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3410 (fs_info->sectorsize != fs_info->nodesize)) {
3412 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3413 fs_info->nodesize, fs_info->sectorsize);
3417 /* Mixed backref is an always-enabled feature. */
3418 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3420 /* Set compression related flags just in case. */
3421 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3422 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3423 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3424 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3427 * An ancient flag, which should really be marked deprecated.
3428 * Such runtime limitation doesn't really need a incompat flag.
3430 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3431 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3433 if (compat_ro_unsupp && !sb_rdonly(sb)) {
3435 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3441 * We have unsupported RO compat features, although RO mounted, we
3442 * should not cause any metadata writes, including log replay.
3443 * Or we could screw up whatever the new feature requires.
3445 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3446 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3448 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3454 * Artificial limitations for block group tree, to force
3455 * block-group-tree to rely on no-holes and free-space-tree.
3457 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3458 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3459 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3461 "block-group-tree feature requires no-holes and free-space-tree features");
3466 * Subpage runtime limitation on v1 cache.
3468 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3469 * we're already defaulting to v2 cache, no need to bother v1 as it's
3470 * going to be deprecated anyway.
3472 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3474 "v1 space cache is not supported for page size %lu with sectorsize %u",
3475 PAGE_SIZE, fs_info->sectorsize);
3479 /* This can be called by remount, we need to protect the super block. */
3480 spin_lock(&fs_info->super_lock);
3481 btrfs_set_super_incompat_flags(disk_super, incompat);
3482 spin_unlock(&fs_info->super_lock);
3487 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3496 struct btrfs_super_block *disk_super;
3497 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3498 struct btrfs_root *tree_root;
3499 struct btrfs_root *chunk_root;
3504 ret = init_mount_fs_info(fs_info, sb);
3510 /* These need to be init'ed before we start creating inodes and such. */
3511 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3513 fs_info->tree_root = tree_root;
3514 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3516 fs_info->chunk_root = chunk_root;
3517 if (!tree_root || !chunk_root) {
3522 fs_info->btree_inode = new_inode(sb);
3523 if (!fs_info->btree_inode) {
3527 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3528 btrfs_init_btree_inode(fs_info);
3530 invalidate_bdev(fs_devices->latest_dev->bdev);
3533 * Read super block and check the signature bytes only
3535 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3536 if (IS_ERR(disk_super)) {
3537 err = PTR_ERR(disk_super);
3542 * Verify the type first, if that or the checksum value are
3543 * corrupted, we'll find out
3545 csum_type = btrfs_super_csum_type(disk_super);
3546 if (!btrfs_supported_super_csum(csum_type)) {
3547 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3550 btrfs_release_disk_super(disk_super);
3554 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3556 ret = btrfs_init_csum_hash(fs_info, csum_type);
3559 btrfs_release_disk_super(disk_super);
3564 * We want to check superblock checksum, the type is stored inside.
3565 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3567 if (btrfs_check_super_csum(fs_info, disk_super)) {
3568 btrfs_err(fs_info, "superblock checksum mismatch");
3570 btrfs_release_disk_super(disk_super);
3575 * super_copy is zeroed at allocation time and we never touch the
3576 * following bytes up to INFO_SIZE, the checksum is calculated from
3577 * the whole block of INFO_SIZE
3579 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3580 btrfs_release_disk_super(disk_super);
3582 disk_super = fs_info->super_copy;
3585 features = btrfs_super_flags(disk_super);
3586 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3587 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3588 btrfs_set_super_flags(disk_super, features);
3590 "found metadata UUID change in progress flag, clearing");
3593 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3594 sizeof(*fs_info->super_for_commit));
3596 ret = btrfs_validate_mount_super(fs_info);
3598 btrfs_err(fs_info, "superblock contains fatal errors");
3603 if (!btrfs_super_root(disk_super))
3606 /* check FS state, whether FS is broken. */
3607 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3608 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3611 * In the long term, we'll store the compression type in the super
3612 * block, and it'll be used for per file compression control.
3614 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3617 /* Set up fs_info before parsing mount options */
3618 nodesize = btrfs_super_nodesize(disk_super);
3619 sectorsize = btrfs_super_sectorsize(disk_super);
3620 stripesize = sectorsize;
3621 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3622 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3624 fs_info->nodesize = nodesize;
3625 fs_info->sectorsize = sectorsize;
3626 fs_info->sectorsize_bits = ilog2(sectorsize);
3627 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3628 fs_info->stripesize = stripesize;
3630 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3636 ret = btrfs_check_features(fs_info, sb);
3642 if (sectorsize < PAGE_SIZE) {
3643 struct btrfs_subpage_info *subpage_info;
3646 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3647 * going to be deprecated.
3649 * Force to use v2 cache for subpage case.
3651 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3652 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3653 "forcing free space tree for sector size %u with page size %lu",
3654 sectorsize, PAGE_SIZE);
3657 "read-write for sector size %u with page size %lu is experimental",
3658 sectorsize, PAGE_SIZE);
3659 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3662 btrfs_init_subpage_info(subpage_info, sectorsize);
3663 fs_info->subpage_info = subpage_info;
3666 ret = btrfs_init_workqueues(fs_info);
3669 goto fail_sb_buffer;
3672 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3673 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3675 sb->s_blocksize = sectorsize;
3676 sb->s_blocksize_bits = blksize_bits(sectorsize);
3677 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3679 mutex_lock(&fs_info->chunk_mutex);
3680 ret = btrfs_read_sys_array(fs_info);
3681 mutex_unlock(&fs_info->chunk_mutex);
3683 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3684 goto fail_sb_buffer;
3687 generation = btrfs_super_chunk_root_generation(disk_super);
3688 level = btrfs_super_chunk_root_level(disk_super);
3689 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3692 btrfs_err(fs_info, "failed to read chunk root");
3693 goto fail_tree_roots;
3696 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3697 offsetof(struct btrfs_header, chunk_tree_uuid),
3700 ret = btrfs_read_chunk_tree(fs_info);
3702 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3703 goto fail_tree_roots;
3707 * At this point we know all the devices that make this filesystem,
3708 * including the seed devices but we don't know yet if the replace
3709 * target is required. So free devices that are not part of this
3710 * filesystem but skip the replace target device which is checked
3711 * below in btrfs_init_dev_replace().
3713 btrfs_free_extra_devids(fs_devices);
3714 if (!fs_devices->latest_dev->bdev) {
3715 btrfs_err(fs_info, "failed to read devices");
3716 goto fail_tree_roots;
3719 ret = init_tree_roots(fs_info);
3721 goto fail_tree_roots;
3724 * Get zone type information of zoned block devices. This will also
3725 * handle emulation of a zoned filesystem if a regular device has the
3726 * zoned incompat feature flag set.
3728 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3731 "zoned: failed to read device zone info: %d",
3733 goto fail_block_groups;
3737 * If we have a uuid root and we're not being told to rescan we need to
3738 * check the generation here so we can set the
3739 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3740 * transaction during a balance or the log replay without updating the
3741 * uuid generation, and then if we crash we would rescan the uuid tree,
3742 * even though it was perfectly fine.
3744 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3745 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3746 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3748 ret = btrfs_verify_dev_extents(fs_info);
3751 "failed to verify dev extents against chunks: %d",
3753 goto fail_block_groups;
3755 ret = btrfs_recover_balance(fs_info);
3757 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3758 goto fail_block_groups;
3761 ret = btrfs_init_dev_stats(fs_info);
3763 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3764 goto fail_block_groups;
3767 ret = btrfs_init_dev_replace(fs_info);
3769 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3770 goto fail_block_groups;
3773 ret = btrfs_check_zoned_mode(fs_info);
3775 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3777 goto fail_block_groups;
3780 ret = btrfs_sysfs_add_fsid(fs_devices);
3782 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3784 goto fail_block_groups;
3787 ret = btrfs_sysfs_add_mounted(fs_info);
3789 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3790 goto fail_fsdev_sysfs;
3793 ret = btrfs_init_space_info(fs_info);
3795 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3799 ret = btrfs_read_block_groups(fs_info);
3801 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3805 btrfs_free_zone_cache(fs_info);
3807 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3808 !btrfs_check_rw_degradable(fs_info, NULL)) {
3810 "writable mount is not allowed due to too many missing devices");
3814 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3816 if (IS_ERR(fs_info->cleaner_kthread))
3819 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3821 "btrfs-transaction");
3822 if (IS_ERR(fs_info->transaction_kthread))
3825 if (!btrfs_test_opt(fs_info, NOSSD) &&
3826 !fs_info->fs_devices->rotating) {
3827 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3831 * For devices supporting discard turn on discard=async automatically,
3832 * unless it's already set or disabled. This could be turned off by
3833 * nodiscard for the same mount.
3835 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3836 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3837 btrfs_test_opt(fs_info, NODISCARD)) &&
3838 fs_info->fs_devices->discardable) {
3839 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3840 "auto enabling async discard");
3841 btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3844 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3845 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3846 ret = btrfsic_mount(fs_info, fs_devices,
3847 btrfs_test_opt(fs_info,
3848 CHECK_INTEGRITY_DATA) ? 1 : 0,
3849 fs_info->check_integrity_print_mask);
3852 "failed to initialize integrity check module: %d",
3856 ret = btrfs_read_qgroup_config(fs_info);
3858 goto fail_trans_kthread;
3860 if (btrfs_build_ref_tree(fs_info))
3861 btrfs_err(fs_info, "couldn't build ref tree");
3863 /* do not make disk changes in broken FS or nologreplay is given */
3864 if (btrfs_super_log_root(disk_super) != 0 &&
3865 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3866 btrfs_info(fs_info, "start tree-log replay");
3867 ret = btrfs_replay_log(fs_info, fs_devices);
3874 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3875 if (IS_ERR(fs_info->fs_root)) {
3876 err = PTR_ERR(fs_info->fs_root);
3877 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3878 fs_info->fs_root = NULL;
3885 ret = btrfs_start_pre_rw_mount(fs_info);
3887 close_ctree(fs_info);
3890 btrfs_discard_resume(fs_info);
3892 if (fs_info->uuid_root &&
3893 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3894 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3895 btrfs_info(fs_info, "checking UUID tree");
3896 ret = btrfs_check_uuid_tree(fs_info);
3899 "failed to check the UUID tree: %d", ret);
3900 close_ctree(fs_info);
3905 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3907 /* Kick the cleaner thread so it'll start deleting snapshots. */
3908 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3909 wake_up_process(fs_info->cleaner_kthread);
3912 btrfs_clear_oneshot_options(fs_info);
3916 btrfs_free_qgroup_config(fs_info);
3918 kthread_stop(fs_info->transaction_kthread);
3919 btrfs_cleanup_transaction(fs_info);
3920 btrfs_free_fs_roots(fs_info);
3922 kthread_stop(fs_info->cleaner_kthread);
3925 * make sure we're done with the btree inode before we stop our
3928 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3931 btrfs_sysfs_remove_mounted(fs_info);
3934 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3937 btrfs_put_block_group_cache(fs_info);
3940 if (fs_info->data_reloc_root)
3941 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3942 free_root_pointers(fs_info, true);
3943 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3946 btrfs_stop_all_workers(fs_info);
3947 btrfs_free_block_groups(fs_info);
3949 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3951 iput(fs_info->btree_inode);
3953 btrfs_close_devices(fs_info->fs_devices);
3956 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3958 static void btrfs_end_super_write(struct bio *bio)
3960 struct btrfs_device *device = bio->bi_private;
3961 struct bio_vec *bvec;
3962 struct bvec_iter_all iter_all;
3965 bio_for_each_segment_all(bvec, bio, iter_all) {
3966 page = bvec->bv_page;
3968 if (bio->bi_status) {
3969 btrfs_warn_rl_in_rcu(device->fs_info,
3970 "lost page write due to IO error on %s (%d)",
3971 btrfs_dev_name(device),
3972 blk_status_to_errno(bio->bi_status));
3973 ClearPageUptodate(page);
3975 btrfs_dev_stat_inc_and_print(device,
3976 BTRFS_DEV_STAT_WRITE_ERRS);
3978 SetPageUptodate(page);
3988 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3989 int copy_num, bool drop_cache)
3991 struct btrfs_super_block *super;
3993 u64 bytenr, bytenr_orig;
3994 struct address_space *mapping = bdev->bd_inode->i_mapping;
3997 bytenr_orig = btrfs_sb_offset(copy_num);
3998 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4000 return ERR_PTR(-EINVAL);
4002 return ERR_PTR(ret);
4004 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4005 return ERR_PTR(-EINVAL);
4008 /* This should only be called with the primary sb. */
4009 ASSERT(copy_num == 0);
4012 * Drop the page of the primary superblock, so later read will
4013 * always read from the device.
4015 invalidate_inode_pages2_range(mapping,
4016 bytenr >> PAGE_SHIFT,
4017 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
4020 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4022 return ERR_CAST(page);
4024 super = page_address(page);
4025 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4026 btrfs_release_disk_super(super);
4027 return ERR_PTR(-ENODATA);
4030 if (btrfs_super_bytenr(super) != bytenr_orig) {
4031 btrfs_release_disk_super(super);
4032 return ERR_PTR(-EINVAL);
4039 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4041 struct btrfs_super_block *super, *latest = NULL;
4045 /* we would like to check all the supers, but that would make
4046 * a btrfs mount succeed after a mkfs from a different FS.
4047 * So, we need to add a special mount option to scan for
4048 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4050 for (i = 0; i < 1; i++) {
4051 super = btrfs_read_dev_one_super(bdev, i, false);
4055 if (!latest || btrfs_super_generation(super) > transid) {
4057 btrfs_release_disk_super(super);
4060 transid = btrfs_super_generation(super);
4068 * Write superblock @sb to the @device. Do not wait for completion, all the
4069 * pages we use for writing are locked.
4071 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4072 * the expected device size at commit time. Note that max_mirrors must be
4073 * same for write and wait phases.
4075 * Return number of errors when page is not found or submission fails.
4077 static int write_dev_supers(struct btrfs_device *device,
4078 struct btrfs_super_block *sb, int max_mirrors)
4080 struct btrfs_fs_info *fs_info = device->fs_info;
4081 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4082 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4086 u64 bytenr, bytenr_orig;
4088 if (max_mirrors == 0)
4089 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4091 shash->tfm = fs_info->csum_shash;
4093 for (i = 0; i < max_mirrors; i++) {
4096 struct btrfs_super_block *disk_super;
4098 bytenr_orig = btrfs_sb_offset(i);
4099 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4100 if (ret == -ENOENT) {
4102 } else if (ret < 0) {
4103 btrfs_err(device->fs_info,
4104 "couldn't get super block location for mirror %d",
4109 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4110 device->commit_total_bytes)
4113 btrfs_set_super_bytenr(sb, bytenr_orig);
4115 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4116 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4119 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4122 btrfs_err(device->fs_info,
4123 "couldn't get super block page for bytenr %llu",
4129 /* Bump the refcount for wait_dev_supers() */
4132 disk_super = page_address(page);
4133 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4136 * Directly use bios here instead of relying on the page cache
4137 * to do I/O, so we don't lose the ability to do integrity
4140 bio = bio_alloc(device->bdev, 1,
4141 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4143 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4144 bio->bi_private = device;
4145 bio->bi_end_io = btrfs_end_super_write;
4146 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4147 offset_in_page(bytenr));
4150 * We FUA only the first super block. The others we allow to
4151 * go down lazy and there's a short window where the on-disk
4152 * copies might still contain the older version.
4154 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4155 bio->bi_opf |= REQ_FUA;
4157 btrfsic_check_bio(bio);
4160 if (btrfs_advance_sb_log(device, i))
4163 return errors < i ? 0 : -1;
4167 * Wait for write completion of superblocks done by write_dev_supers,
4168 * @max_mirrors same for write and wait phases.
4170 * Return number of errors when page is not found or not marked up to
4173 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4177 bool primary_failed = false;
4181 if (max_mirrors == 0)
4182 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4184 for (i = 0; i < max_mirrors; i++) {
4187 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4188 if (ret == -ENOENT) {
4190 } else if (ret < 0) {
4193 primary_failed = true;
4196 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4197 device->commit_total_bytes)
4200 page = find_get_page(device->bdev->bd_inode->i_mapping,
4201 bytenr >> PAGE_SHIFT);
4205 primary_failed = true;
4208 /* Page is submitted locked and unlocked once the IO completes */
4209 wait_on_page_locked(page);
4210 if (PageError(page)) {
4213 primary_failed = true;
4216 /* Drop our reference */
4219 /* Drop the reference from the writing run */
4223 /* log error, force error return */
4224 if (primary_failed) {
4225 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4230 return errors < i ? 0 : -1;
4234 * endio for the write_dev_flush, this will wake anyone waiting
4235 * for the barrier when it is done
4237 static void btrfs_end_empty_barrier(struct bio *bio)
4240 complete(bio->bi_private);
4244 * Submit a flush request to the device if it supports it. Error handling is
4245 * done in the waiting counterpart.
4247 static void write_dev_flush(struct btrfs_device *device)
4249 struct bio *bio = &device->flush_bio;
4251 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4253 * When a disk has write caching disabled, we skip submission of a bio
4254 * with flush and sync requests before writing the superblock, since
4255 * it's not needed. However when the integrity checker is enabled, this
4256 * results in reports that there are metadata blocks referred by a
4257 * superblock that were not properly flushed. So don't skip the bio
4258 * submission only when the integrity checker is enabled for the sake
4259 * of simplicity, since this is a debug tool and not meant for use in
4262 if (!bdev_write_cache(device->bdev))
4266 bio_init(bio, device->bdev, NULL, 0,
4267 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4268 bio->bi_end_io = btrfs_end_empty_barrier;
4269 init_completion(&device->flush_wait);
4270 bio->bi_private = &device->flush_wait;
4272 btrfsic_check_bio(bio);
4274 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4278 * If the flush bio has been submitted by write_dev_flush, wait for it.
4280 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4282 struct bio *bio = &device->flush_bio;
4284 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4287 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4288 wait_for_completion_io(&device->flush_wait);
4290 return bio->bi_status;
4293 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4295 if (!btrfs_check_rw_degradable(fs_info, NULL))
4301 * send an empty flush down to each device in parallel,
4302 * then wait for them
4304 static int barrier_all_devices(struct btrfs_fs_info *info)
4306 struct list_head *head;
4307 struct btrfs_device *dev;
4308 int errors_wait = 0;
4311 lockdep_assert_held(&info->fs_devices->device_list_mutex);
4312 /* send down all the barriers */
4313 head = &info->fs_devices->devices;
4314 list_for_each_entry(dev, head, dev_list) {
4315 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4319 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4320 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4323 write_dev_flush(dev);
4324 dev->last_flush_error = BLK_STS_OK;
4327 /* wait for all the barriers */
4328 list_for_each_entry(dev, head, dev_list) {
4329 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4335 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4336 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4339 ret = wait_dev_flush(dev);
4341 dev->last_flush_error = ret;
4342 btrfs_dev_stat_inc_and_print(dev,
4343 BTRFS_DEV_STAT_FLUSH_ERRS);
4350 * At some point we need the status of all disks
4351 * to arrive at the volume status. So error checking
4352 * is being pushed to a separate loop.
4354 return check_barrier_error(info);
4359 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4362 int min_tolerated = INT_MAX;
4364 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4365 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4366 min_tolerated = min_t(int, min_tolerated,
4367 btrfs_raid_array[BTRFS_RAID_SINGLE].
4368 tolerated_failures);
4370 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4371 if (raid_type == BTRFS_RAID_SINGLE)
4373 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4375 min_tolerated = min_t(int, min_tolerated,
4376 btrfs_raid_array[raid_type].
4377 tolerated_failures);
4380 if (min_tolerated == INT_MAX) {
4381 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4385 return min_tolerated;
4388 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4390 struct list_head *head;
4391 struct btrfs_device *dev;
4392 struct btrfs_super_block *sb;
4393 struct btrfs_dev_item *dev_item;
4397 int total_errors = 0;
4400 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4403 * max_mirrors == 0 indicates we're from commit_transaction,
4404 * not from fsync where the tree roots in fs_info have not
4405 * been consistent on disk.
4407 if (max_mirrors == 0)
4408 backup_super_roots(fs_info);
4410 sb = fs_info->super_for_commit;
4411 dev_item = &sb->dev_item;
4413 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4414 head = &fs_info->fs_devices->devices;
4415 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4418 ret = barrier_all_devices(fs_info);
4421 &fs_info->fs_devices->device_list_mutex);
4422 btrfs_handle_fs_error(fs_info, ret,
4423 "errors while submitting device barriers.");
4428 list_for_each_entry(dev, head, dev_list) {
4433 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4434 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4437 btrfs_set_stack_device_generation(dev_item, 0);
4438 btrfs_set_stack_device_type(dev_item, dev->type);
4439 btrfs_set_stack_device_id(dev_item, dev->devid);
4440 btrfs_set_stack_device_total_bytes(dev_item,
4441 dev->commit_total_bytes);
4442 btrfs_set_stack_device_bytes_used(dev_item,
4443 dev->commit_bytes_used);
4444 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4445 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4446 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4447 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4448 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4451 flags = btrfs_super_flags(sb);
4452 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4454 ret = btrfs_validate_write_super(fs_info, sb);
4456 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4457 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4458 "unexpected superblock corruption detected");
4462 ret = write_dev_supers(dev, sb, max_mirrors);
4466 if (total_errors > max_errors) {
4467 btrfs_err(fs_info, "%d errors while writing supers",
4469 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4471 /* FUA is masked off if unsupported and can't be the reason */
4472 btrfs_handle_fs_error(fs_info, -EIO,
4473 "%d errors while writing supers",
4479 list_for_each_entry(dev, head, dev_list) {
4482 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4483 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4486 ret = wait_dev_supers(dev, max_mirrors);
4490 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4491 if (total_errors > max_errors) {
4492 btrfs_handle_fs_error(fs_info, -EIO,
4493 "%d errors while writing supers",
4500 /* Drop a fs root from the radix tree and free it. */
4501 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4502 struct btrfs_root *root)
4504 bool drop_ref = false;
4506 spin_lock(&fs_info->fs_roots_radix_lock);
4507 radix_tree_delete(&fs_info->fs_roots_radix,
4508 (unsigned long)root->root_key.objectid);
4509 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4511 spin_unlock(&fs_info->fs_roots_radix_lock);
4513 if (BTRFS_FS_ERROR(fs_info)) {
4514 ASSERT(root->log_root == NULL);
4515 if (root->reloc_root) {
4516 btrfs_put_root(root->reloc_root);
4517 root->reloc_root = NULL;
4522 btrfs_put_root(root);
4525 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4527 u64 root_objectid = 0;
4528 struct btrfs_root *gang[8];
4531 unsigned int ret = 0;
4534 spin_lock(&fs_info->fs_roots_radix_lock);
4535 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4536 (void **)gang, root_objectid,
4539 spin_unlock(&fs_info->fs_roots_radix_lock);
4542 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4544 for (i = 0; i < ret; i++) {
4545 /* Avoid to grab roots in dead_roots */
4546 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4550 /* grab all the search result for later use */
4551 gang[i] = btrfs_grab_root(gang[i]);
4553 spin_unlock(&fs_info->fs_roots_radix_lock);
4555 for (i = 0; i < ret; i++) {
4558 root_objectid = gang[i]->root_key.objectid;
4559 err = btrfs_orphan_cleanup(gang[i]);
4562 btrfs_put_root(gang[i]);
4567 /* release the uncleaned roots due to error */
4568 for (; i < ret; i++) {
4570 btrfs_put_root(gang[i]);
4575 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4577 struct btrfs_root *root = fs_info->tree_root;
4578 struct btrfs_trans_handle *trans;
4580 mutex_lock(&fs_info->cleaner_mutex);
4581 btrfs_run_delayed_iputs(fs_info);
4582 mutex_unlock(&fs_info->cleaner_mutex);
4583 wake_up_process(fs_info->cleaner_kthread);
4585 /* wait until ongoing cleanup work done */
4586 down_write(&fs_info->cleanup_work_sem);
4587 up_write(&fs_info->cleanup_work_sem);
4589 trans = btrfs_join_transaction(root);
4591 return PTR_ERR(trans);
4592 return btrfs_commit_transaction(trans);
4595 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4597 struct btrfs_transaction *trans;
4598 struct btrfs_transaction *tmp;
4601 if (list_empty(&fs_info->trans_list))
4605 * This function is only called at the very end of close_ctree(),
4606 * thus no other running transaction, no need to take trans_lock.
4608 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4609 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4610 struct extent_state *cached = NULL;
4611 u64 dirty_bytes = 0;
4617 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4618 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4619 dirty_bytes += found_end + 1 - found_start;
4620 cur = found_end + 1;
4623 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4624 trans->transid, dirty_bytes);
4625 btrfs_cleanup_one_transaction(trans, fs_info);
4627 if (trans == fs_info->running_transaction)
4628 fs_info->running_transaction = NULL;
4629 list_del_init(&trans->list);
4631 btrfs_put_transaction(trans);
4632 trace_btrfs_transaction_commit(fs_info);
4637 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4641 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4644 * If we had UNFINISHED_DROPS we could still be processing them, so
4645 * clear that bit and wake up relocation so it can stop.
4646 * We must do this before stopping the block group reclaim task, because
4647 * at btrfs_relocate_block_group() we wait for this bit, and after the
4648 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4649 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4652 btrfs_wake_unfinished_drop(fs_info);
4655 * We may have the reclaim task running and relocating a data block group,
4656 * in which case it may create delayed iputs. So stop it before we park
4657 * the cleaner kthread otherwise we can get new delayed iputs after
4658 * parking the cleaner, and that can make the async reclaim task to hang
4659 * if it's waiting for delayed iputs to complete, since the cleaner is
4660 * parked and can not run delayed iputs - this will make us hang when
4661 * trying to stop the async reclaim task.
4663 cancel_work_sync(&fs_info->reclaim_bgs_work);
4665 * We don't want the cleaner to start new transactions, add more delayed
4666 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4667 * because that frees the task_struct, and the transaction kthread might
4668 * still try to wake up the cleaner.
4670 kthread_park(fs_info->cleaner_kthread);
4672 /* wait for the qgroup rescan worker to stop */
4673 btrfs_qgroup_wait_for_completion(fs_info, false);
4675 /* wait for the uuid_scan task to finish */
4676 down(&fs_info->uuid_tree_rescan_sem);
4677 /* avoid complains from lockdep et al., set sem back to initial state */
4678 up(&fs_info->uuid_tree_rescan_sem);
4680 /* pause restriper - we want to resume on mount */
4681 btrfs_pause_balance(fs_info);
4683 btrfs_dev_replace_suspend_for_unmount(fs_info);
4685 btrfs_scrub_cancel(fs_info);
4687 /* wait for any defraggers to finish */
4688 wait_event(fs_info->transaction_wait,
4689 (atomic_read(&fs_info->defrag_running) == 0));
4691 /* clear out the rbtree of defraggable inodes */
4692 btrfs_cleanup_defrag_inodes(fs_info);
4695 * After we parked the cleaner kthread, ordered extents may have
4696 * completed and created new delayed iputs. If one of the async reclaim
4697 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4698 * can hang forever trying to stop it, because if a delayed iput is
4699 * added after it ran btrfs_run_delayed_iputs() and before it called
4700 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4701 * no one else to run iputs.
4703 * So wait for all ongoing ordered extents to complete and then run
4704 * delayed iputs. This works because once we reach this point no one
4705 * can either create new ordered extents nor create delayed iputs
4706 * through some other means.
4708 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4709 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4710 * but the delayed iput for the respective inode is made only when doing
4711 * the final btrfs_put_ordered_extent() (which must happen at
4712 * btrfs_finish_ordered_io() when we are unmounting).
4714 btrfs_flush_workqueue(fs_info->endio_write_workers);
4715 /* Ordered extents for free space inodes. */
4716 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4717 btrfs_run_delayed_iputs(fs_info);
4719 cancel_work_sync(&fs_info->async_reclaim_work);
4720 cancel_work_sync(&fs_info->async_data_reclaim_work);
4721 cancel_work_sync(&fs_info->preempt_reclaim_work);
4723 /* Cancel or finish ongoing discard work */
4724 btrfs_discard_cleanup(fs_info);
4726 if (!sb_rdonly(fs_info->sb)) {
4728 * The cleaner kthread is stopped, so do one final pass over
4729 * unused block groups.
4731 btrfs_delete_unused_bgs(fs_info);
4734 * There might be existing delayed inode workers still running
4735 * and holding an empty delayed inode item. We must wait for
4736 * them to complete first because they can create a transaction.
4737 * This happens when someone calls btrfs_balance_delayed_items()
4738 * and then a transaction commit runs the same delayed nodes
4739 * before any delayed worker has done something with the nodes.
4740 * We must wait for any worker here and not at transaction
4741 * commit time since that could cause a deadlock.
4742 * This is a very rare case.
4744 btrfs_flush_workqueue(fs_info->delayed_workers);
4746 ret = btrfs_commit_super(fs_info);
4748 btrfs_err(fs_info, "commit super ret %d", ret);
4751 if (BTRFS_FS_ERROR(fs_info))
4752 btrfs_error_commit_super(fs_info);
4754 kthread_stop(fs_info->transaction_kthread);
4755 kthread_stop(fs_info->cleaner_kthread);
4757 ASSERT(list_empty(&fs_info->delayed_iputs));
4758 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4760 if (btrfs_check_quota_leak(fs_info)) {
4761 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4762 btrfs_err(fs_info, "qgroup reserved space leaked");
4765 btrfs_free_qgroup_config(fs_info);
4766 ASSERT(list_empty(&fs_info->delalloc_roots));
4768 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4769 btrfs_info(fs_info, "at unmount delalloc count %lld",
4770 percpu_counter_sum(&fs_info->delalloc_bytes));
4773 if (percpu_counter_sum(&fs_info->ordered_bytes))
4774 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4775 percpu_counter_sum(&fs_info->ordered_bytes));
4777 btrfs_sysfs_remove_mounted(fs_info);
4778 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4780 btrfs_put_block_group_cache(fs_info);
4783 * we must make sure there is not any read request to
4784 * submit after we stopping all workers.
4786 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4787 btrfs_stop_all_workers(fs_info);
4789 /* We shouldn't have any transaction open at this point */
4790 warn_about_uncommitted_trans(fs_info);
4792 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4793 free_root_pointers(fs_info, true);
4794 btrfs_free_fs_roots(fs_info);
4797 * We must free the block groups after dropping the fs_roots as we could
4798 * have had an IO error and have left over tree log blocks that aren't
4799 * cleaned up until the fs roots are freed. This makes the block group
4800 * accounting appear to be wrong because there's pending reserved bytes,
4801 * so make sure we do the block group cleanup afterwards.
4803 btrfs_free_block_groups(fs_info);
4805 iput(fs_info->btree_inode);
4807 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4808 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4809 btrfsic_unmount(fs_info->fs_devices);
4812 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4813 btrfs_close_devices(fs_info->fs_devices);
4816 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4820 struct inode *btree_inode = buf->pages[0]->mapping->host;
4822 ret = extent_buffer_uptodate(buf);
4826 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4827 parent_transid, atomic);
4833 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4835 struct btrfs_fs_info *fs_info = buf->fs_info;
4836 u64 transid = btrfs_header_generation(buf);
4839 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4841 * This is a fast path so only do this check if we have sanity tests
4842 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4843 * outside of the sanity tests.
4845 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4848 btrfs_assert_tree_write_locked(buf);
4849 if (transid != fs_info->generation)
4850 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4851 buf->start, transid, fs_info->generation);
4852 was_dirty = set_extent_buffer_dirty(buf);
4854 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4856 fs_info->dirty_metadata_batch);
4857 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4859 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4860 * but item data not updated.
4861 * So here we should only check item pointers, not item data.
4863 if (btrfs_header_level(buf) == 0 &&
4864 btrfs_check_leaf_relaxed(buf)) {
4865 btrfs_print_leaf(buf);
4871 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4875 * looks as though older kernels can get into trouble with
4876 * this code, they end up stuck in balance_dirty_pages forever
4880 if (current->flags & PF_MEMALLOC)
4884 btrfs_balance_delayed_items(fs_info);
4886 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4887 BTRFS_DIRTY_METADATA_THRESH,
4888 fs_info->dirty_metadata_batch);
4890 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4894 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4896 __btrfs_btree_balance_dirty(fs_info, 1);
4899 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4901 __btrfs_btree_balance_dirty(fs_info, 0);
4904 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4906 /* cleanup FS via transaction */
4907 btrfs_cleanup_transaction(fs_info);
4909 mutex_lock(&fs_info->cleaner_mutex);
4910 btrfs_run_delayed_iputs(fs_info);
4911 mutex_unlock(&fs_info->cleaner_mutex);
4913 down_write(&fs_info->cleanup_work_sem);
4914 up_write(&fs_info->cleanup_work_sem);
4917 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4919 struct btrfs_root *gang[8];
4920 u64 root_objectid = 0;
4923 spin_lock(&fs_info->fs_roots_radix_lock);
4924 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4925 (void **)gang, root_objectid,
4926 ARRAY_SIZE(gang))) != 0) {
4929 for (i = 0; i < ret; i++)
4930 gang[i] = btrfs_grab_root(gang[i]);
4931 spin_unlock(&fs_info->fs_roots_radix_lock);
4933 for (i = 0; i < ret; i++) {
4936 root_objectid = gang[i]->root_key.objectid;
4937 btrfs_free_log(NULL, gang[i]);
4938 btrfs_put_root(gang[i]);
4941 spin_lock(&fs_info->fs_roots_radix_lock);
4943 spin_unlock(&fs_info->fs_roots_radix_lock);
4944 btrfs_free_log_root_tree(NULL, fs_info);
4947 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4949 struct btrfs_ordered_extent *ordered;
4951 spin_lock(&root->ordered_extent_lock);
4953 * This will just short circuit the ordered completion stuff which will
4954 * make sure the ordered extent gets properly cleaned up.
4956 list_for_each_entry(ordered, &root->ordered_extents,
4958 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4959 spin_unlock(&root->ordered_extent_lock);
4962 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4964 struct btrfs_root *root;
4965 struct list_head splice;
4967 INIT_LIST_HEAD(&splice);
4969 spin_lock(&fs_info->ordered_root_lock);
4970 list_splice_init(&fs_info->ordered_roots, &splice);
4971 while (!list_empty(&splice)) {
4972 root = list_first_entry(&splice, struct btrfs_root,
4974 list_move_tail(&root->ordered_root,
4975 &fs_info->ordered_roots);
4977 spin_unlock(&fs_info->ordered_root_lock);
4978 btrfs_destroy_ordered_extents(root);
4981 spin_lock(&fs_info->ordered_root_lock);
4983 spin_unlock(&fs_info->ordered_root_lock);
4986 * We need this here because if we've been flipped read-only we won't
4987 * get sync() from the umount, so we need to make sure any ordered
4988 * extents that haven't had their dirty pages IO start writeout yet
4989 * actually get run and error out properly.
4991 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4994 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4995 struct btrfs_fs_info *fs_info)
4997 struct rb_node *node;
4998 struct btrfs_delayed_ref_root *delayed_refs;
4999 struct btrfs_delayed_ref_node *ref;
5002 delayed_refs = &trans->delayed_refs;
5004 spin_lock(&delayed_refs->lock);
5005 if (atomic_read(&delayed_refs->num_entries) == 0) {
5006 spin_unlock(&delayed_refs->lock);
5007 btrfs_debug(fs_info, "delayed_refs has NO entry");
5011 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
5012 struct btrfs_delayed_ref_head *head;
5014 bool pin_bytes = false;
5016 head = rb_entry(node, struct btrfs_delayed_ref_head,
5018 if (btrfs_delayed_ref_lock(delayed_refs, head))
5021 spin_lock(&head->lock);
5022 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5023 ref = rb_entry(n, struct btrfs_delayed_ref_node,
5026 rb_erase_cached(&ref->ref_node, &head->ref_tree);
5027 RB_CLEAR_NODE(&ref->ref_node);
5028 if (!list_empty(&ref->add_list))
5029 list_del(&ref->add_list);
5030 atomic_dec(&delayed_refs->num_entries);
5031 btrfs_put_delayed_ref(ref);
5033 if (head->must_insert_reserved)
5035 btrfs_free_delayed_extent_op(head->extent_op);
5036 btrfs_delete_ref_head(delayed_refs, head);
5037 spin_unlock(&head->lock);
5038 spin_unlock(&delayed_refs->lock);
5039 mutex_unlock(&head->mutex);
5042 struct btrfs_block_group *cache;
5044 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5047 spin_lock(&cache->space_info->lock);
5048 spin_lock(&cache->lock);
5049 cache->pinned += head->num_bytes;
5050 btrfs_space_info_update_bytes_pinned(fs_info,
5051 cache->space_info, head->num_bytes);
5052 cache->reserved -= head->num_bytes;
5053 cache->space_info->bytes_reserved -= head->num_bytes;
5054 spin_unlock(&cache->lock);
5055 spin_unlock(&cache->space_info->lock);
5057 btrfs_put_block_group(cache);
5059 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5060 head->bytenr + head->num_bytes - 1);
5062 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5063 btrfs_put_delayed_ref_head(head);
5065 spin_lock(&delayed_refs->lock);
5067 btrfs_qgroup_destroy_extent_records(trans);
5069 spin_unlock(&delayed_refs->lock);
5074 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5076 struct btrfs_inode *btrfs_inode;
5077 struct list_head splice;
5079 INIT_LIST_HEAD(&splice);
5081 spin_lock(&root->delalloc_lock);
5082 list_splice_init(&root->delalloc_inodes, &splice);
5084 while (!list_empty(&splice)) {
5085 struct inode *inode = NULL;
5086 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5088 __btrfs_del_delalloc_inode(root, btrfs_inode);
5089 spin_unlock(&root->delalloc_lock);
5092 * Make sure we get a live inode and that it'll not disappear
5095 inode = igrab(&btrfs_inode->vfs_inode);
5097 invalidate_inode_pages2(inode->i_mapping);
5100 spin_lock(&root->delalloc_lock);
5102 spin_unlock(&root->delalloc_lock);
5105 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5107 struct btrfs_root *root;
5108 struct list_head splice;
5110 INIT_LIST_HEAD(&splice);
5112 spin_lock(&fs_info->delalloc_root_lock);
5113 list_splice_init(&fs_info->delalloc_roots, &splice);
5114 while (!list_empty(&splice)) {
5115 root = list_first_entry(&splice, struct btrfs_root,
5117 root = btrfs_grab_root(root);
5119 spin_unlock(&fs_info->delalloc_root_lock);
5121 btrfs_destroy_delalloc_inodes(root);
5122 btrfs_put_root(root);
5124 spin_lock(&fs_info->delalloc_root_lock);
5126 spin_unlock(&fs_info->delalloc_root_lock);
5129 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5130 struct extent_io_tree *dirty_pages,
5134 struct extent_buffer *eb;
5139 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5144 clear_extent_bits(dirty_pages, start, end, mark);
5145 while (start <= end) {
5146 eb = find_extent_buffer(fs_info, start);
5147 start += fs_info->nodesize;
5150 wait_on_extent_buffer_writeback(eb);
5152 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5154 clear_extent_buffer_dirty(eb);
5155 free_extent_buffer_stale(eb);
5162 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5163 struct extent_io_tree *unpin)
5170 struct extent_state *cached_state = NULL;
5173 * The btrfs_finish_extent_commit() may get the same range as
5174 * ours between find_first_extent_bit and clear_extent_dirty.
5175 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5176 * the same extent range.
5178 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5179 ret = find_first_extent_bit(unpin, 0, &start, &end,
5180 EXTENT_DIRTY, &cached_state);
5182 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5186 clear_extent_dirty(unpin, start, end, &cached_state);
5187 free_extent_state(cached_state);
5188 btrfs_error_unpin_extent_range(fs_info, start, end);
5189 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5196 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5198 struct inode *inode;
5200 inode = cache->io_ctl.inode;
5202 invalidate_inode_pages2(inode->i_mapping);
5203 BTRFS_I(inode)->generation = 0;
5204 cache->io_ctl.inode = NULL;
5207 ASSERT(cache->io_ctl.pages == NULL);
5208 btrfs_put_block_group(cache);
5211 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5212 struct btrfs_fs_info *fs_info)
5214 struct btrfs_block_group *cache;
5216 spin_lock(&cur_trans->dirty_bgs_lock);
5217 while (!list_empty(&cur_trans->dirty_bgs)) {
5218 cache = list_first_entry(&cur_trans->dirty_bgs,
5219 struct btrfs_block_group,
5222 if (!list_empty(&cache->io_list)) {
5223 spin_unlock(&cur_trans->dirty_bgs_lock);
5224 list_del_init(&cache->io_list);
5225 btrfs_cleanup_bg_io(cache);
5226 spin_lock(&cur_trans->dirty_bgs_lock);
5229 list_del_init(&cache->dirty_list);
5230 spin_lock(&cache->lock);
5231 cache->disk_cache_state = BTRFS_DC_ERROR;
5232 spin_unlock(&cache->lock);
5234 spin_unlock(&cur_trans->dirty_bgs_lock);
5235 btrfs_put_block_group(cache);
5236 btrfs_delayed_refs_rsv_release(fs_info, 1);
5237 spin_lock(&cur_trans->dirty_bgs_lock);
5239 spin_unlock(&cur_trans->dirty_bgs_lock);
5242 * Refer to the definition of io_bgs member for details why it's safe
5243 * to use it without any locking
5245 while (!list_empty(&cur_trans->io_bgs)) {
5246 cache = list_first_entry(&cur_trans->io_bgs,
5247 struct btrfs_block_group,
5250 list_del_init(&cache->io_list);
5251 spin_lock(&cache->lock);
5252 cache->disk_cache_state = BTRFS_DC_ERROR;
5253 spin_unlock(&cache->lock);
5254 btrfs_cleanup_bg_io(cache);
5258 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5259 struct btrfs_fs_info *fs_info)
5261 struct btrfs_device *dev, *tmp;
5263 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5264 ASSERT(list_empty(&cur_trans->dirty_bgs));
5265 ASSERT(list_empty(&cur_trans->io_bgs));
5267 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5269 list_del_init(&dev->post_commit_list);
5272 btrfs_destroy_delayed_refs(cur_trans, fs_info);
5274 cur_trans->state = TRANS_STATE_COMMIT_START;
5275 wake_up(&fs_info->transaction_blocked_wait);
5277 cur_trans->state = TRANS_STATE_UNBLOCKED;
5278 wake_up(&fs_info->transaction_wait);
5280 btrfs_destroy_delayed_inodes(fs_info);
5282 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5284 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5286 btrfs_free_redirty_list(cur_trans);
5288 cur_trans->state =TRANS_STATE_COMPLETED;
5289 wake_up(&cur_trans->commit_wait);
5292 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5294 struct btrfs_transaction *t;
5296 mutex_lock(&fs_info->transaction_kthread_mutex);
5298 spin_lock(&fs_info->trans_lock);
5299 while (!list_empty(&fs_info->trans_list)) {
5300 t = list_first_entry(&fs_info->trans_list,
5301 struct btrfs_transaction, list);
5302 if (t->state >= TRANS_STATE_COMMIT_START) {
5303 refcount_inc(&t->use_count);
5304 spin_unlock(&fs_info->trans_lock);
5305 btrfs_wait_for_commit(fs_info, t->transid);
5306 btrfs_put_transaction(t);
5307 spin_lock(&fs_info->trans_lock);
5310 if (t == fs_info->running_transaction) {
5311 t->state = TRANS_STATE_COMMIT_DOING;
5312 spin_unlock(&fs_info->trans_lock);
5314 * We wait for 0 num_writers since we don't hold a trans
5315 * handle open currently for this transaction.
5317 wait_event(t->writer_wait,
5318 atomic_read(&t->num_writers) == 0);
5320 spin_unlock(&fs_info->trans_lock);
5322 btrfs_cleanup_one_transaction(t, fs_info);
5324 spin_lock(&fs_info->trans_lock);
5325 if (t == fs_info->running_transaction)
5326 fs_info->running_transaction = NULL;
5327 list_del_init(&t->list);
5328 spin_unlock(&fs_info->trans_lock);
5330 btrfs_put_transaction(t);
5331 trace_btrfs_transaction_commit(fs_info);
5332 spin_lock(&fs_info->trans_lock);
5334 spin_unlock(&fs_info->trans_lock);
5335 btrfs_destroy_all_ordered_extents(fs_info);
5336 btrfs_destroy_delayed_inodes(fs_info);
5337 btrfs_assert_delayed_root_empty(fs_info);
5338 btrfs_destroy_all_delalloc_inodes(fs_info);
5339 btrfs_drop_all_logs(fs_info);
5340 mutex_unlock(&fs_info->transaction_kthread_mutex);
5345 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5347 struct btrfs_path *path;
5349 struct extent_buffer *l;
5350 struct btrfs_key search_key;
5351 struct btrfs_key found_key;
5354 path = btrfs_alloc_path();
5358 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5359 search_key.type = -1;
5360 search_key.offset = (u64)-1;
5361 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5364 BUG_ON(ret == 0); /* Corruption */
5365 if (path->slots[0] > 0) {
5366 slot = path->slots[0] - 1;
5368 btrfs_item_key_to_cpu(l, &found_key, slot);
5369 root->free_objectid = max_t(u64, found_key.objectid + 1,
5370 BTRFS_FIRST_FREE_OBJECTID);
5372 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5376 btrfs_free_path(path);
5380 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5383 mutex_lock(&root->objectid_mutex);
5385 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5386 btrfs_warn(root->fs_info,
5387 "the objectid of root %llu reaches its highest value",
5388 root->root_key.objectid);
5393 *objectid = root->free_objectid++;
5396 mutex_unlock(&root->objectid_mutex);