]> Git Repo - linux.git/blob - fs/btrfs/disk-io.c
x86/kasan: Print original address on #GP
[linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
46                                  BTRFS_HEADER_FLAG_RELOC |\
47                                  BTRFS_SUPER_FLAG_ERROR |\
48                                  BTRFS_SUPER_FLAG_SEEDING |\
49                                  BTRFS_SUPER_FLAG_METADUMP |\
50                                  BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106         void *private_data;
107         struct bio *bio;
108         extent_submit_bio_start_t *submit_bio_start;
109         int mirror_num;
110         /*
111          * bio_offset is optional, can be used if the pages in the bio
112          * can't tell us where in the file the bio should go
113          */
114         u64 bio_offset;
115         struct btrfs_work work;
116         blk_status_t status;
117 };
118
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148         u64                     id;             /* root objectid */
149         const char              *name_stem;     /* lock name stem */
150         char                    names[BTRFS_MAX_LEVEL + 1][20];
151         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
154         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
155         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
156         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
157         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
158         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
159         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
160         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
161         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
162         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
163         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
164         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165         { .id = 0,                              .name_stem = "tree"     },
166 };
167
168 void __init btrfs_init_lockdep(void)
169 {
170         int i, j;
171
172         /* initialize lockdep class names */
173         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177                         snprintf(ks->names[j], sizeof(ks->names[j]),
178                                  "btrfs-%s-%02d", ks->name_stem, j);
179         }
180 }
181
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183                                     int level)
184 {
185         struct btrfs_lockdep_keyset *ks;
186
187         BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189         /* find the matching keyset, id 0 is the default entry */
190         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191                 if (ks->id == objectid)
192                         break;
193
194         lockdep_set_class_and_name(&eb->lock,
195                                    &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205                 struct page *page, size_t pg_offset, u64 start, u64 len,
206                 int create)
207 {
208         struct extent_map_tree *em_tree = &inode->extent_tree;
209         struct extent_map *em;
210         int ret;
211
212         read_lock(&em_tree->lock);
213         em = lookup_extent_mapping(em_tree, start, len);
214         if (em) {
215                 read_unlock(&em_tree->lock);
216                 goto out;
217         }
218         read_unlock(&em_tree->lock);
219
220         em = alloc_extent_map();
221         if (!em) {
222                 em = ERR_PTR(-ENOMEM);
223                 goto out;
224         }
225         em->start = 0;
226         em->len = (u64)-1;
227         em->block_len = (u64)-1;
228         em->block_start = 0;
229
230         write_lock(&em_tree->lock);
231         ret = add_extent_mapping(em_tree, em, 0);
232         if (ret == -EEXIST) {
233                 free_extent_map(em);
234                 em = lookup_extent_mapping(em_tree, start, len);
235                 if (!em)
236                         em = ERR_PTR(-EIO);
237         } else if (ret) {
238                 free_extent_map(em);
239                 em = ERR_PTR(ret);
240         }
241         write_unlock(&em_tree->lock);
242
243 out:
244         return em;
245 }
246
247 /*
248  * Compute the csum of a btree block and store the result to provided buffer.
249  *
250  * Returns error if the extent buffer cannot be mapped.
251  */
252 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
253 {
254         struct btrfs_fs_info *fs_info = buf->fs_info;
255         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
256         unsigned long len;
257         unsigned long cur_len;
258         unsigned long offset = BTRFS_CSUM_SIZE;
259         char *kaddr;
260         unsigned long map_start;
261         unsigned long map_len;
262         int err;
263
264         shash->tfm = fs_info->csum_shash;
265         crypto_shash_init(shash);
266
267         len = buf->len - offset;
268
269         while (len > 0) {
270                 /*
271                  * Note: we don't need to check for the err == 1 case here, as
272                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
273                  * and 'min_len = 32' and the currently implemented mapping
274                  * algorithm we cannot cross a page boundary.
275                  */
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (WARN_ON(err))
279                         return err;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         memset(result, 0, BTRFS_CSUM_SIZE);
286
287         crypto_shash_final(shash, result);
288
289         return 0;
290 }
291
292 /*
293  * we can't consider a given block up to date unless the transid of the
294  * block matches the transid in the parent node's pointer.  This is how we
295  * detect blocks that either didn't get written at all or got written
296  * in the wrong place.
297  */
298 static int verify_parent_transid(struct extent_io_tree *io_tree,
299                                  struct extent_buffer *eb, u64 parent_transid,
300                                  int atomic)
301 {
302         struct extent_state *cached_state = NULL;
303         int ret;
304         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
305
306         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
307                 return 0;
308
309         if (atomic)
310                 return -EAGAIN;
311
312         if (need_lock) {
313                 btrfs_tree_read_lock(eb);
314                 btrfs_set_lock_blocking_read(eb);
315         }
316
317         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
318                          &cached_state);
319         if (extent_buffer_uptodate(eb) &&
320             btrfs_header_generation(eb) == parent_transid) {
321                 ret = 0;
322                 goto out;
323         }
324         btrfs_err_rl(eb->fs_info,
325                 "parent transid verify failed on %llu wanted %llu found %llu",
326                         eb->start,
327                         parent_transid, btrfs_header_generation(eb));
328         ret = 1;
329
330         /*
331          * Things reading via commit roots that don't have normal protection,
332          * like send, can have a really old block in cache that may point at a
333          * block that has been freed and re-allocated.  So don't clear uptodate
334          * if we find an eb that is under IO (dirty/writeback) because we could
335          * end up reading in the stale data and then writing it back out and
336          * making everybody very sad.
337          */
338         if (!extent_buffer_under_io(eb))
339                 clear_extent_buffer_uptodate(eb);
340 out:
341         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
342                              &cached_state);
343         if (need_lock)
344                 btrfs_tree_read_unlock_blocking(eb);
345         return ret;
346 }
347
348 static bool btrfs_supported_super_csum(u16 csum_type)
349 {
350         switch (csum_type) {
351         case BTRFS_CSUM_TYPE_CRC32:
352         case BTRFS_CSUM_TYPE_XXHASH:
353         case BTRFS_CSUM_TYPE_SHA256:
354         case BTRFS_CSUM_TYPE_BLAKE2:
355                 return true;
356         default:
357                 return false;
358         }
359 }
360
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366                                   char *raw_disk_sb)
367 {
368         struct btrfs_super_block *disk_sb =
369                 (struct btrfs_super_block *)raw_disk_sb;
370         char result[BTRFS_CSUM_SIZE];
371         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373         shash->tfm = fs_info->csum_shash;
374         crypto_shash_init(shash);
375
376         /*
377          * The super_block structure does not span the whole
378          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379          * filled with zeros and is included in the checksum.
380          */
381         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383         crypto_shash_final(shash, result);
384
385         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386                 return 1;
387
388         return 0;
389 }
390
391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392                            struct btrfs_key *first_key, u64 parent_transid)
393 {
394         struct btrfs_fs_info *fs_info = eb->fs_info;
395         int found_level;
396         struct btrfs_key found_key;
397         int ret;
398
399         found_level = btrfs_header_level(eb);
400         if (found_level != level) {
401                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402                      KERN_ERR "BTRFS: tree level check failed\n");
403                 btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405                           eb->start, level, found_level);
406                 return -EIO;
407         }
408
409         if (!first_key)
410                 return 0;
411
412         /*
413          * For live tree block (new tree blocks in current transaction),
414          * we need proper lock context to avoid race, which is impossible here.
415          * So we only checks tree blocks which is read from disk, whose
416          * generation <= fs_info->last_trans_committed.
417          */
418         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419                 return 0;
420
421         /* We have @first_key, so this @eb must have at least one item */
422         if (btrfs_header_nritems(eb) == 0) {
423                 btrfs_err(fs_info,
424                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425                           eb->start);
426                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427                 return -EUCLEAN;
428         }
429
430         if (found_level)
431                 btrfs_node_key_to_cpu(eb, &found_key, 0);
432         else
433                 btrfs_item_key_to_cpu(eb, &found_key, 0);
434         ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
436         if (ret) {
437                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438                      KERN_ERR "BTRFS: tree first key check failed\n");
439                 btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441                           eb->start, parent_transid, first_key->objectid,
442                           first_key->type, first_key->offset,
443                           found_key.objectid, found_key.type,
444                           found_key.offset);
445         }
446         return ret;
447 }
448
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:     expected transid, skip check if 0
454  * @level:              expected level, mandatory check
455  * @first_key:          expected key of first slot, skip check if NULL
456  */
457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458                                           u64 parent_transid, int level,
459                                           struct btrfs_key *first_key)
460 {
461         struct btrfs_fs_info *fs_info = eb->fs_info;
462         struct extent_io_tree *io_tree;
463         int failed = 0;
464         int ret;
465         int num_copies = 0;
466         int mirror_num = 0;
467         int failed_mirror = 0;
468
469         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470         while (1) {
471                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473                 if (!ret) {
474                         if (verify_parent_transid(io_tree, eb,
475                                                    parent_transid, 0))
476                                 ret = -EIO;
477                         else if (btrfs_verify_level_key(eb, level,
478                                                 first_key, parent_transid))
479                                 ret = -EUCLEAN;
480                         else
481                                 break;
482                 }
483
484                 num_copies = btrfs_num_copies(fs_info,
485                                               eb->start, eb->len);
486                 if (num_copies == 1)
487                         break;
488
489                 if (!failed_mirror) {
490                         failed = 1;
491                         failed_mirror = eb->read_mirror;
492                 }
493
494                 mirror_num++;
495                 if (mirror_num == failed_mirror)
496                         mirror_num++;
497
498                 if (mirror_num > num_copies)
499                         break;
500         }
501
502         if (failed && !ret && failed_mirror)
503                 btrfs_repair_eb_io_failure(eb, failed_mirror);
504
505         return ret;
506 }
507
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512
513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515         u64 start = page_offset(page);
516         u64 found_start;
517         u8 result[BTRFS_CSUM_SIZE];
518         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519         struct extent_buffer *eb;
520         int ret;
521
522         eb = (struct extent_buffer *)page->private;
523         if (page != eb->pages[0])
524                 return 0;
525
526         found_start = btrfs_header_bytenr(eb);
527         /*
528          * Please do not consolidate these warnings into a single if.
529          * It is useful to know what went wrong.
530          */
531         if (WARN_ON(found_start != start))
532                 return -EUCLEAN;
533         if (WARN_ON(!PageUptodate(page)))
534                 return -EUCLEAN;
535
536         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
539         if (csum_tree_block(eb, result))
540                 return -EINVAL;
541
542         if (btrfs_header_level(eb))
543                 ret = btrfs_check_node(eb);
544         else
545                 ret = btrfs_check_leaf_full(eb);
546
547         if (ret < 0) {
548                 btrfs_print_tree(eb, 0);
549                 btrfs_err(fs_info,
550                 "block=%llu write time tree block corruption detected",
551                           eb->start);
552                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
553                 return ret;
554         }
555         write_extent_buffer(eb, result, 0, csum_size);
556
557         return 0;
558 }
559
560 static int check_tree_block_fsid(struct extent_buffer *eb)
561 {
562         struct btrfs_fs_info *fs_info = eb->fs_info;
563         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564         u8 fsid[BTRFS_FSID_SIZE];
565         int ret = 1;
566
567         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
568         while (fs_devices) {
569                 u8 *metadata_uuid;
570
571                 /*
572                  * Checking the incompat flag is only valid for the current
573                  * fs. For seed devices it's forbidden to have their uuid
574                  * changed so reading ->fsid in this case is fine
575                  */
576                 if (fs_devices == fs_info->fs_devices &&
577                     btrfs_fs_incompat(fs_info, METADATA_UUID))
578                         metadata_uuid = fs_devices->metadata_uuid;
579                 else
580                         metadata_uuid = fs_devices->fsid;
581
582                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
583                         ret = 0;
584                         break;
585                 }
586                 fs_devices = fs_devices->seed;
587         }
588         return ret;
589 }
590
591 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
592                                       u64 phy_offset, struct page *page,
593                                       u64 start, u64 end, int mirror)
594 {
595         u64 found_start;
596         int found_level;
597         struct extent_buffer *eb;
598         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
599         struct btrfs_fs_info *fs_info = root->fs_info;
600         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
601         int ret = 0;
602         u8 result[BTRFS_CSUM_SIZE];
603         int reads_done;
604
605         if (!page->private)
606                 goto out;
607
608         eb = (struct extent_buffer *)page->private;
609
610         /* the pending IO might have been the only thing that kept this buffer
611          * in memory.  Make sure we have a ref for all this other checks
612          */
613         atomic_inc(&eb->refs);
614
615         reads_done = atomic_dec_and_test(&eb->io_pages);
616         if (!reads_done)
617                 goto err;
618
619         eb->read_mirror = mirror;
620         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
621                 ret = -EIO;
622                 goto err;
623         }
624
625         found_start = btrfs_header_bytenr(eb);
626         if (found_start != eb->start) {
627                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
628                              eb->start, found_start);
629                 ret = -EIO;
630                 goto err;
631         }
632         if (check_tree_block_fsid(eb)) {
633                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
634                              eb->start);
635                 ret = -EIO;
636                 goto err;
637         }
638         found_level = btrfs_header_level(eb);
639         if (found_level >= BTRFS_MAX_LEVEL) {
640                 btrfs_err(fs_info, "bad tree block level %d on %llu",
641                           (int)btrfs_header_level(eb), eb->start);
642                 ret = -EIO;
643                 goto err;
644         }
645
646         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
647                                        eb, found_level);
648
649         ret = csum_tree_block(eb, result);
650         if (ret)
651                 goto err;
652
653         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
654                 u32 val;
655                 u32 found = 0;
656
657                 memcpy(&found, result, csum_size);
658
659                 read_extent_buffer(eb, &val, 0, csum_size);
660                 btrfs_warn_rl(fs_info,
661                 "%s checksum verify failed on %llu wanted %x found %x level %d",
662                               fs_info->sb->s_id, eb->start,
663                               val, found, btrfs_header_level(eb));
664                 ret = -EUCLEAN;
665                 goto err;
666         }
667
668         /*
669          * If this is a leaf block and it is corrupt, set the corrupt bit so
670          * that we don't try and read the other copies of this block, just
671          * return -EIO.
672          */
673         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
674                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
675                 ret = -EIO;
676         }
677
678         if (found_level > 0 && btrfs_check_node(eb))
679                 ret = -EIO;
680
681         if (!ret)
682                 set_extent_buffer_uptodate(eb);
683         else
684                 btrfs_err(fs_info,
685                           "block=%llu read time tree block corruption detected",
686                           eb->start);
687 err:
688         if (reads_done &&
689             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690                 btree_readahead_hook(eb, ret);
691
692         if (ret) {
693                 /*
694                  * our io error hook is going to dec the io pages
695                  * again, we have to make sure it has something
696                  * to decrement
697                  */
698                 atomic_inc(&eb->io_pages);
699                 clear_extent_buffer_uptodate(eb);
700         }
701         free_extent_buffer(eb);
702 out:
703         return ret;
704 }
705
706 static void end_workqueue_bio(struct bio *bio)
707 {
708         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709         struct btrfs_fs_info *fs_info;
710         struct btrfs_workqueue *wq;
711
712         fs_info = end_io_wq->info;
713         end_io_wq->status = bio->bi_status;
714
715         if (bio_op(bio) == REQ_OP_WRITE) {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
717                         wq = fs_info->endio_meta_write_workers;
718                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
719                         wq = fs_info->endio_freespace_worker;
720                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
721                         wq = fs_info->endio_raid56_workers;
722                 else
723                         wq = fs_info->endio_write_workers;
724         } else {
725                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
726                         wq = fs_info->endio_repair_workers;
727                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
728                         wq = fs_info->endio_raid56_workers;
729                 else if (end_io_wq->metadata)
730                         wq = fs_info->endio_meta_workers;
731                 else
732                         wq = fs_info->endio_workers;
733         }
734
735         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
736         btrfs_queue_work(wq, &end_io_wq->work);
737 }
738
739 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
740                         enum btrfs_wq_endio_type metadata)
741 {
742         struct btrfs_end_io_wq *end_io_wq;
743
744         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
745         if (!end_io_wq)
746                 return BLK_STS_RESOURCE;
747
748         end_io_wq->private = bio->bi_private;
749         end_io_wq->end_io = bio->bi_end_io;
750         end_io_wq->info = info;
751         end_io_wq->status = 0;
752         end_io_wq->bio = bio;
753         end_io_wq->metadata = metadata;
754
755         bio->bi_private = end_io_wq;
756         bio->bi_end_io = end_workqueue_bio;
757         return 0;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762         struct async_submit_bio *async;
763         blk_status_t ret;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         ret = async->submit_bio_start(async->private_data, async->bio,
767                                       async->bio_offset);
768         if (ret)
769                 async->status = ret;
770 }
771
772 /*
773  * In order to insert checksums into the metadata in large chunks, we wait
774  * until bio submission time.   All the pages in the bio are checksummed and
775  * sums are attached onto the ordered extent record.
776  *
777  * At IO completion time the csums attached on the ordered extent record are
778  * inserted into the tree.
779  */
780 static void run_one_async_done(struct btrfs_work *work)
781 {
782         struct async_submit_bio *async;
783         struct inode *inode;
784         blk_status_t ret;
785
786         async = container_of(work, struct  async_submit_bio, work);
787         inode = async->private_data;
788
789         /* If an error occurred we just want to clean up the bio and move on */
790         if (async->status) {
791                 async->bio->bi_status = async->status;
792                 bio_endio(async->bio);
793                 return;
794         }
795
796         /*
797          * All of the bios that pass through here are from async helpers.
798          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
799          * This changes nothing when cgroups aren't in use.
800          */
801         async->bio->bi_opf |= REQ_CGROUP_PUNT;
802         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
803         if (ret) {
804                 async->bio->bi_status = ret;
805                 bio_endio(async->bio);
806         }
807 }
808
809 static void run_one_async_free(struct btrfs_work *work)
810 {
811         struct async_submit_bio *async;
812
813         async = container_of(work, struct  async_submit_bio, work);
814         kfree(async);
815 }
816
817 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
818                                  int mirror_num, unsigned long bio_flags,
819                                  u64 bio_offset, void *private_data,
820                                  extent_submit_bio_start_t *submit_bio_start)
821 {
822         struct async_submit_bio *async;
823
824         async = kmalloc(sizeof(*async), GFP_NOFS);
825         if (!async)
826                 return BLK_STS_RESOURCE;
827
828         async->private_data = private_data;
829         async->bio = bio;
830         async->mirror_num = mirror_num;
831         async->submit_bio_start = submit_bio_start;
832
833         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
834                         run_one_async_free);
835
836         async->bio_offset = bio_offset;
837
838         async->status = 0;
839
840         if (op_is_sync(bio->bi_opf))
841                 btrfs_set_work_high_priority(&async->work);
842
843         btrfs_queue_work(fs_info->workers, &async->work);
844         return 0;
845 }
846
847 static blk_status_t btree_csum_one_bio(struct bio *bio)
848 {
849         struct bio_vec *bvec;
850         struct btrfs_root *root;
851         int ret = 0;
852         struct bvec_iter_all iter_all;
853
854         ASSERT(!bio_flagged(bio, BIO_CLONED));
855         bio_for_each_segment_all(bvec, bio, iter_all) {
856                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
857                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
858                 if (ret)
859                         break;
860         }
861
862         return errno_to_blk_status(ret);
863 }
864
865 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
866                                              u64 bio_offset)
867 {
868         /*
869          * when we're called for a write, we're already in the async
870          * submission context.  Just jump into btrfs_map_bio
871          */
872         return btree_csum_one_bio(bio);
873 }
874
875 static int check_async_write(struct btrfs_fs_info *fs_info,
876                              struct btrfs_inode *bi)
877 {
878         if (atomic_read(&bi->sync_writers))
879                 return 0;
880         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
881                 return 0;
882         return 1;
883 }
884
885 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
886                                           int mirror_num,
887                                           unsigned long bio_flags)
888 {
889         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
890         int async = check_async_write(fs_info, BTRFS_I(inode));
891         blk_status_t ret;
892
893         if (bio_op(bio) != REQ_OP_WRITE) {
894                 /*
895                  * called for a read, do the setup so that checksum validation
896                  * can happen in the async kernel threads
897                  */
898                 ret = btrfs_bio_wq_end_io(fs_info, bio,
899                                           BTRFS_WQ_ENDIO_METADATA);
900                 if (ret)
901                         goto out_w_error;
902                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
903         } else if (!async) {
904                 ret = btree_csum_one_bio(bio);
905                 if (ret)
906                         goto out_w_error;
907                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
908         } else {
909                 /*
910                  * kthread helpers are used to submit writes so that
911                  * checksumming can happen in parallel across all CPUs
912                  */
913                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
914                                           0, inode, btree_submit_bio_start);
915         }
916
917         if (ret)
918                 goto out_w_error;
919         return 0;
920
921 out_w_error:
922         bio->bi_status = ret;
923         bio_endio(bio);
924         return ret;
925 }
926
927 #ifdef CONFIG_MIGRATION
928 static int btree_migratepage(struct address_space *mapping,
929                         struct page *newpage, struct page *page,
930                         enum migrate_mode mode)
931 {
932         /*
933          * we can't safely write a btree page from here,
934          * we haven't done the locking hook
935          */
936         if (PageDirty(page))
937                 return -EAGAIN;
938         /*
939          * Buffers may be managed in a filesystem specific way.
940          * We must have no buffers or drop them.
941          */
942         if (page_has_private(page) &&
943             !try_to_release_page(page, GFP_KERNEL))
944                 return -EAGAIN;
945         return migrate_page(mapping, newpage, page, mode);
946 }
947 #endif
948
949
950 static int btree_writepages(struct address_space *mapping,
951                             struct writeback_control *wbc)
952 {
953         struct btrfs_fs_info *fs_info;
954         int ret;
955
956         if (wbc->sync_mode == WB_SYNC_NONE) {
957
958                 if (wbc->for_kupdate)
959                         return 0;
960
961                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
962                 /* this is a bit racy, but that's ok */
963                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
964                                              BTRFS_DIRTY_METADATA_THRESH,
965                                              fs_info->dirty_metadata_batch);
966                 if (ret < 0)
967                         return 0;
968         }
969         return btree_write_cache_pages(mapping, wbc);
970 }
971
972 static int btree_readpage(struct file *file, struct page *page)
973 {
974         struct extent_io_tree *tree;
975         tree = &BTRFS_I(page->mapping->host)->io_tree;
976         return extent_read_full_page(tree, page, btree_get_extent, 0);
977 }
978
979 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
980 {
981         if (PageWriteback(page) || PageDirty(page))
982                 return 0;
983
984         return try_release_extent_buffer(page);
985 }
986
987 static void btree_invalidatepage(struct page *page, unsigned int offset,
988                                  unsigned int length)
989 {
990         struct extent_io_tree *tree;
991         tree = &BTRFS_I(page->mapping->host)->io_tree;
992         extent_invalidatepage(tree, page, offset);
993         btree_releasepage(page, GFP_NOFS);
994         if (PagePrivate(page)) {
995                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
996                            "page private not zero on page %llu",
997                            (unsigned long long)page_offset(page));
998                 ClearPagePrivate(page);
999                 set_page_private(page, 0);
1000                 put_page(page);
1001         }
1002 }
1003
1004 static int btree_set_page_dirty(struct page *page)
1005 {
1006 #ifdef DEBUG
1007         struct extent_buffer *eb;
1008
1009         BUG_ON(!PagePrivate(page));
1010         eb = (struct extent_buffer *)page->private;
1011         BUG_ON(!eb);
1012         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013         BUG_ON(!atomic_read(&eb->refs));
1014         btrfs_assert_tree_locked(eb);
1015 #endif
1016         return __set_page_dirty_nobuffers(page);
1017 }
1018
1019 static const struct address_space_operations btree_aops = {
1020         .readpage       = btree_readpage,
1021         .writepages     = btree_writepages,
1022         .releasepage    = btree_releasepage,
1023         .invalidatepage = btree_invalidatepage,
1024 #ifdef CONFIG_MIGRATION
1025         .migratepage    = btree_migratepage,
1026 #endif
1027         .set_page_dirty = btree_set_page_dirty,
1028 };
1029
1030 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1031 {
1032         struct extent_buffer *buf = NULL;
1033         int ret;
1034
1035         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036         if (IS_ERR(buf))
1037                 return;
1038
1039         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1040         if (ret < 0)
1041                 free_extent_buffer_stale(buf);
1042         else
1043                 free_extent_buffer(buf);
1044 }
1045
1046 struct extent_buffer *btrfs_find_create_tree_block(
1047                                                 struct btrfs_fs_info *fs_info,
1048                                                 u64 bytenr)
1049 {
1050         if (btrfs_is_testing(fs_info))
1051                 return alloc_test_extent_buffer(fs_info, bytenr);
1052         return alloc_extent_buffer(fs_info, bytenr);
1053 }
1054
1055 /*
1056  * Read tree block at logical address @bytenr and do variant basic but critical
1057  * verification.
1058  *
1059  * @parent_transid:     expected transid of this tree block, skip check if 0
1060  * @level:              expected level, mandatory check
1061  * @first_key:          expected key in slot 0, skip check if NULL
1062  */
1063 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1064                                       u64 parent_transid, int level,
1065                                       struct btrfs_key *first_key)
1066 {
1067         struct extent_buffer *buf = NULL;
1068         int ret;
1069
1070         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1071         if (IS_ERR(buf))
1072                 return buf;
1073
1074         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1075                                              level, first_key);
1076         if (ret) {
1077                 free_extent_buffer_stale(buf);
1078                 return ERR_PTR(ret);
1079         }
1080         return buf;
1081
1082 }
1083
1084 void btrfs_clean_tree_block(struct extent_buffer *buf)
1085 {
1086         struct btrfs_fs_info *fs_info = buf->fs_info;
1087         if (btrfs_header_generation(buf) ==
1088             fs_info->running_transaction->transid) {
1089                 btrfs_assert_tree_locked(buf);
1090
1091                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1092                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1093                                                  -buf->len,
1094                                                  fs_info->dirty_metadata_batch);
1095                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1096                         btrfs_set_lock_blocking_write(buf);
1097                         clear_extent_buffer_dirty(buf);
1098                 }
1099         }
1100 }
1101
1102 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1103 {
1104         struct btrfs_subvolume_writers *writers;
1105         int ret;
1106
1107         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1108         if (!writers)
1109                 return ERR_PTR(-ENOMEM);
1110
1111         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1112         if (ret < 0) {
1113                 kfree(writers);
1114                 return ERR_PTR(ret);
1115         }
1116
1117         init_waitqueue_head(&writers->wait);
1118         return writers;
1119 }
1120
1121 static void
1122 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1123 {
1124         percpu_counter_destroy(&writers->counter);
1125         kfree(writers);
1126 }
1127
1128 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1129                          u64 objectid)
1130 {
1131         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1132         root->node = NULL;
1133         root->commit_root = NULL;
1134         root->state = 0;
1135         root->orphan_cleanup_state = 0;
1136
1137         root->last_trans = 0;
1138         root->highest_objectid = 0;
1139         root->nr_delalloc_inodes = 0;
1140         root->nr_ordered_extents = 0;
1141         root->inode_tree = RB_ROOT;
1142         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1143         root->block_rsv = NULL;
1144
1145         INIT_LIST_HEAD(&root->dirty_list);
1146         INIT_LIST_HEAD(&root->root_list);
1147         INIT_LIST_HEAD(&root->delalloc_inodes);
1148         INIT_LIST_HEAD(&root->delalloc_root);
1149         INIT_LIST_HEAD(&root->ordered_extents);
1150         INIT_LIST_HEAD(&root->ordered_root);
1151         INIT_LIST_HEAD(&root->reloc_dirty_list);
1152         INIT_LIST_HEAD(&root->logged_list[0]);
1153         INIT_LIST_HEAD(&root->logged_list[1]);
1154         spin_lock_init(&root->inode_lock);
1155         spin_lock_init(&root->delalloc_lock);
1156         spin_lock_init(&root->ordered_extent_lock);
1157         spin_lock_init(&root->accounting_lock);
1158         spin_lock_init(&root->log_extents_lock[0]);
1159         spin_lock_init(&root->log_extents_lock[1]);
1160         spin_lock_init(&root->qgroup_meta_rsv_lock);
1161         mutex_init(&root->objectid_mutex);
1162         mutex_init(&root->log_mutex);
1163         mutex_init(&root->ordered_extent_mutex);
1164         mutex_init(&root->delalloc_mutex);
1165         init_waitqueue_head(&root->log_writer_wait);
1166         init_waitqueue_head(&root->log_commit_wait[0]);
1167         init_waitqueue_head(&root->log_commit_wait[1]);
1168         INIT_LIST_HEAD(&root->log_ctxs[0]);
1169         INIT_LIST_HEAD(&root->log_ctxs[1]);
1170         atomic_set(&root->log_commit[0], 0);
1171         atomic_set(&root->log_commit[1], 0);
1172         atomic_set(&root->log_writers, 0);
1173         atomic_set(&root->log_batch, 0);
1174         refcount_set(&root->refs, 1);
1175         atomic_set(&root->will_be_snapshotted, 0);
1176         atomic_set(&root->snapshot_force_cow, 0);
1177         atomic_set(&root->nr_swapfiles, 0);
1178         root->log_transid = 0;
1179         root->log_transid_committed = -1;
1180         root->last_log_commit = 0;
1181         if (!dummy)
1182                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1183                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1184
1185         memset(&root->root_key, 0, sizeof(root->root_key));
1186         memset(&root->root_item, 0, sizeof(root->root_item));
1187         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1188         if (!dummy)
1189                 root->defrag_trans_start = fs_info->generation;
1190         else
1191                 root->defrag_trans_start = 0;
1192         root->root_key.objectid = objectid;
1193         root->anon_dev = 0;
1194
1195         spin_lock_init(&root->root_item_lock);
1196         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1197 }
1198
1199 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1200                 gfp_t flags)
1201 {
1202         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1203         if (root)
1204                 root->fs_info = fs_info;
1205         return root;
1206 }
1207
1208 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1209 /* Should only be used by the testing infrastructure */
1210 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1211 {
1212         struct btrfs_root *root;
1213
1214         if (!fs_info)
1215                 return ERR_PTR(-EINVAL);
1216
1217         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1218         if (!root)
1219                 return ERR_PTR(-ENOMEM);
1220
1221         /* We don't use the stripesize in selftest, set it as sectorsize */
1222         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1223         root->alloc_bytenr = 0;
1224
1225         return root;
1226 }
1227 #endif
1228
1229 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1230                                      u64 objectid)
1231 {
1232         struct btrfs_fs_info *fs_info = trans->fs_info;
1233         struct extent_buffer *leaf;
1234         struct btrfs_root *tree_root = fs_info->tree_root;
1235         struct btrfs_root *root;
1236         struct btrfs_key key;
1237         unsigned int nofs_flag;
1238         int ret = 0;
1239         uuid_le uuid = NULL_UUID_LE;
1240
1241         /*
1242          * We're holding a transaction handle, so use a NOFS memory allocation
1243          * context to avoid deadlock if reclaim happens.
1244          */
1245         nofs_flag = memalloc_nofs_save();
1246         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1247         memalloc_nofs_restore(nofs_flag);
1248         if (!root)
1249                 return ERR_PTR(-ENOMEM);
1250
1251         __setup_root(root, fs_info, objectid);
1252         root->root_key.objectid = objectid;
1253         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254         root->root_key.offset = 0;
1255
1256         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1257         if (IS_ERR(leaf)) {
1258                 ret = PTR_ERR(leaf);
1259                 leaf = NULL;
1260                 goto fail;
1261         }
1262
1263         root->node = leaf;
1264         btrfs_mark_buffer_dirty(leaf);
1265
1266         root->commit_root = btrfs_root_node(root);
1267         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1268
1269         root->root_item.flags = 0;
1270         root->root_item.byte_limit = 0;
1271         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272         btrfs_set_root_generation(&root->root_item, trans->transid);
1273         btrfs_set_root_level(&root->root_item, 0);
1274         btrfs_set_root_refs(&root->root_item, 1);
1275         btrfs_set_root_used(&root->root_item, leaf->len);
1276         btrfs_set_root_last_snapshot(&root->root_item, 0);
1277         btrfs_set_root_dirid(&root->root_item, 0);
1278         if (is_fstree(objectid))
1279                 uuid_le_gen(&uuid);
1280         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1281         root->root_item.drop_level = 0;
1282
1283         key.objectid = objectid;
1284         key.type = BTRFS_ROOT_ITEM_KEY;
1285         key.offset = 0;
1286         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287         if (ret)
1288                 goto fail;
1289
1290         btrfs_tree_unlock(leaf);
1291
1292         return root;
1293
1294 fail:
1295         if (leaf) {
1296                 btrfs_tree_unlock(leaf);
1297                 free_extent_buffer(root->commit_root);
1298                 free_extent_buffer(leaf);
1299         }
1300         kfree(root);
1301
1302         return ERR_PTR(ret);
1303 }
1304
1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306                                          struct btrfs_fs_info *fs_info)
1307 {
1308         struct btrfs_root *root;
1309         struct extent_buffer *leaf;
1310
1311         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1312         if (!root)
1313                 return ERR_PTR(-ENOMEM);
1314
1315         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1316
1317         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1318         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1320
1321         /*
1322          * DON'T set REF_COWS for log trees
1323          *
1324          * log trees do not get reference counted because they go away
1325          * before a real commit is actually done.  They do store pointers
1326          * to file data extents, and those reference counts still get
1327          * updated (along with back refs to the log tree).
1328          */
1329
1330         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1331                         NULL, 0, 0, 0);
1332         if (IS_ERR(leaf)) {
1333                 kfree(root);
1334                 return ERR_CAST(leaf);
1335         }
1336
1337         root->node = leaf;
1338
1339         btrfs_mark_buffer_dirty(root->node);
1340         btrfs_tree_unlock(root->node);
1341         return root;
1342 }
1343
1344 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1345                              struct btrfs_fs_info *fs_info)
1346 {
1347         struct btrfs_root *log_root;
1348
1349         log_root = alloc_log_tree(trans, fs_info);
1350         if (IS_ERR(log_root))
1351                 return PTR_ERR(log_root);
1352         WARN_ON(fs_info->log_root_tree);
1353         fs_info->log_root_tree = log_root;
1354         return 0;
1355 }
1356
1357 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1358                        struct btrfs_root *root)
1359 {
1360         struct btrfs_fs_info *fs_info = root->fs_info;
1361         struct btrfs_root *log_root;
1362         struct btrfs_inode_item *inode_item;
1363
1364         log_root = alloc_log_tree(trans, fs_info);
1365         if (IS_ERR(log_root))
1366                 return PTR_ERR(log_root);
1367
1368         log_root->last_trans = trans->transid;
1369         log_root->root_key.offset = root->root_key.objectid;
1370
1371         inode_item = &log_root->root_item.inode;
1372         btrfs_set_stack_inode_generation(inode_item, 1);
1373         btrfs_set_stack_inode_size(inode_item, 3);
1374         btrfs_set_stack_inode_nlink(inode_item, 1);
1375         btrfs_set_stack_inode_nbytes(inode_item,
1376                                      fs_info->nodesize);
1377         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1378
1379         btrfs_set_root_node(&log_root->root_item, log_root->node);
1380
1381         WARN_ON(root->log_root);
1382         root->log_root = log_root;
1383         root->log_transid = 0;
1384         root->log_transid_committed = -1;
1385         root->last_log_commit = 0;
1386         return 0;
1387 }
1388
1389 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1390                                                struct btrfs_key *key)
1391 {
1392         struct btrfs_root *root;
1393         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1394         struct btrfs_path *path;
1395         u64 generation;
1396         int ret;
1397         int level;
1398
1399         path = btrfs_alloc_path();
1400         if (!path)
1401                 return ERR_PTR(-ENOMEM);
1402
1403         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1404         if (!root) {
1405                 ret = -ENOMEM;
1406                 goto alloc_fail;
1407         }
1408
1409         __setup_root(root, fs_info, key->objectid);
1410
1411         ret = btrfs_find_root(tree_root, key, path,
1412                               &root->root_item, &root->root_key);
1413         if (ret) {
1414                 if (ret > 0)
1415                         ret = -ENOENT;
1416                 goto find_fail;
1417         }
1418
1419         generation = btrfs_root_generation(&root->root_item);
1420         level = btrfs_root_level(&root->root_item);
1421         root->node = read_tree_block(fs_info,
1422                                      btrfs_root_bytenr(&root->root_item),
1423                                      generation, level, NULL);
1424         if (IS_ERR(root->node)) {
1425                 ret = PTR_ERR(root->node);
1426                 goto find_fail;
1427         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1428                 ret = -EIO;
1429                 free_extent_buffer(root->node);
1430                 goto find_fail;
1431         }
1432         root->commit_root = btrfs_root_node(root);
1433 out:
1434         btrfs_free_path(path);
1435         return root;
1436
1437 find_fail:
1438         kfree(root);
1439 alloc_fail:
1440         root = ERR_PTR(ret);
1441         goto out;
1442 }
1443
1444 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1445                                       struct btrfs_key *location)
1446 {
1447         struct btrfs_root *root;
1448
1449         root = btrfs_read_tree_root(tree_root, location);
1450         if (IS_ERR(root))
1451                 return root;
1452
1453         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1454                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1455                 btrfs_check_and_init_root_item(&root->root_item);
1456         }
1457
1458         return root;
1459 }
1460
1461 int btrfs_init_fs_root(struct btrfs_root *root)
1462 {
1463         int ret;
1464         struct btrfs_subvolume_writers *writers;
1465
1466         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1467         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1468                                         GFP_NOFS);
1469         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1470                 ret = -ENOMEM;
1471                 goto fail;
1472         }
1473
1474         writers = btrfs_alloc_subvolume_writers();
1475         if (IS_ERR(writers)) {
1476                 ret = PTR_ERR(writers);
1477                 goto fail;
1478         }
1479         root->subv_writers = writers;
1480
1481         btrfs_init_free_ino_ctl(root);
1482         spin_lock_init(&root->ino_cache_lock);
1483         init_waitqueue_head(&root->ino_cache_wait);
1484
1485         ret = get_anon_bdev(&root->anon_dev);
1486         if (ret)
1487                 goto fail;
1488
1489         mutex_lock(&root->objectid_mutex);
1490         ret = btrfs_find_highest_objectid(root,
1491                                         &root->highest_objectid);
1492         if (ret) {
1493                 mutex_unlock(&root->objectid_mutex);
1494                 goto fail;
1495         }
1496
1497         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1498
1499         mutex_unlock(&root->objectid_mutex);
1500
1501         return 0;
1502 fail:
1503         /* The caller is responsible to call btrfs_free_fs_root */
1504         return ret;
1505 }
1506
1507 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1508                                         u64 root_id)
1509 {
1510         struct btrfs_root *root;
1511
1512         spin_lock(&fs_info->fs_roots_radix_lock);
1513         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1514                                  (unsigned long)root_id);
1515         spin_unlock(&fs_info->fs_roots_radix_lock);
1516         return root;
1517 }
1518
1519 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1520                          struct btrfs_root *root)
1521 {
1522         int ret;
1523
1524         ret = radix_tree_preload(GFP_NOFS);
1525         if (ret)
1526                 return ret;
1527
1528         spin_lock(&fs_info->fs_roots_radix_lock);
1529         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1530                                 (unsigned long)root->root_key.objectid,
1531                                 root);
1532         if (ret == 0)
1533                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1534         spin_unlock(&fs_info->fs_roots_radix_lock);
1535         radix_tree_preload_end();
1536
1537         return ret;
1538 }
1539
1540 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1541                                      struct btrfs_key *location,
1542                                      bool check_ref)
1543 {
1544         struct btrfs_root *root;
1545         struct btrfs_path *path;
1546         struct btrfs_key key;
1547         int ret;
1548
1549         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550                 return fs_info->tree_root;
1551         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552                 return fs_info->extent_root;
1553         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554                 return fs_info->chunk_root;
1555         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556                 return fs_info->dev_root;
1557         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558                 return fs_info->csum_root;
1559         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560                 return fs_info->quota_root ? fs_info->quota_root :
1561                                              ERR_PTR(-ENOENT);
1562         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563                 return fs_info->uuid_root ? fs_info->uuid_root :
1564                                             ERR_PTR(-ENOENT);
1565         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566                 return fs_info->free_space_root ? fs_info->free_space_root :
1567                                                   ERR_PTR(-ENOENT);
1568 again:
1569         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1570         if (root) {
1571                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1572                         return ERR_PTR(-ENOENT);
1573                 return root;
1574         }
1575
1576         root = btrfs_read_fs_root(fs_info->tree_root, location);
1577         if (IS_ERR(root))
1578                 return root;
1579
1580         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1581                 ret = -ENOENT;
1582                 goto fail;
1583         }
1584
1585         ret = btrfs_init_fs_root(root);
1586         if (ret)
1587                 goto fail;
1588
1589         path = btrfs_alloc_path();
1590         if (!path) {
1591                 ret = -ENOMEM;
1592                 goto fail;
1593         }
1594         key.objectid = BTRFS_ORPHAN_OBJECTID;
1595         key.type = BTRFS_ORPHAN_ITEM_KEY;
1596         key.offset = location->objectid;
1597
1598         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1599         btrfs_free_path(path);
1600         if (ret < 0)
1601                 goto fail;
1602         if (ret == 0)
1603                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1604
1605         ret = btrfs_insert_fs_root(fs_info, root);
1606         if (ret) {
1607                 if (ret == -EEXIST) {
1608                         btrfs_free_fs_root(root);
1609                         goto again;
1610                 }
1611                 goto fail;
1612         }
1613         return root;
1614 fail:
1615         btrfs_free_fs_root(root);
1616         return ERR_PTR(ret);
1617 }
1618
1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622         int ret = 0;
1623         struct btrfs_device *device;
1624         struct backing_dev_info *bdi;
1625
1626         rcu_read_lock();
1627         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628                 if (!device->bdev)
1629                         continue;
1630                 bdi = device->bdev->bd_bdi;
1631                 if (bdi_congested(bdi, bdi_bits)) {
1632                         ret = 1;
1633                         break;
1634                 }
1635         }
1636         rcu_read_unlock();
1637         return ret;
1638 }
1639
1640 /*
1641  * called by the kthread helper functions to finally call the bio end_io
1642  * functions.  This is where read checksum verification actually happens
1643  */
1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646         struct bio *bio;
1647         struct btrfs_end_io_wq *end_io_wq;
1648
1649         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650         bio = end_io_wq->bio;
1651
1652         bio->bi_status = end_io_wq->status;
1653         bio->bi_private = end_io_wq->private;
1654         bio->bi_end_io = end_io_wq->end_io;
1655         bio_endio(bio);
1656         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658
1659 static int cleaner_kthread(void *arg)
1660 {
1661         struct btrfs_root *root = arg;
1662         struct btrfs_fs_info *fs_info = root->fs_info;
1663         int again;
1664
1665         while (1) {
1666                 again = 0;
1667
1668                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669
1670                 /* Make the cleaner go to sleep early. */
1671                 if (btrfs_need_cleaner_sleep(fs_info))
1672                         goto sleep;
1673
1674                 /*
1675                  * Do not do anything if we might cause open_ctree() to block
1676                  * before we have finished mounting the filesystem.
1677                  */
1678                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679                         goto sleep;
1680
1681                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1682                         goto sleep;
1683
1684                 /*
1685                  * Avoid the problem that we change the status of the fs
1686                  * during the above check and trylock.
1687                  */
1688                 if (btrfs_need_cleaner_sleep(fs_info)) {
1689                         mutex_unlock(&fs_info->cleaner_mutex);
1690                         goto sleep;
1691                 }
1692
1693                 btrfs_run_delayed_iputs(fs_info);
1694
1695                 again = btrfs_clean_one_deleted_snapshot(root);
1696                 mutex_unlock(&fs_info->cleaner_mutex);
1697
1698                 /*
1699                  * The defragger has dealt with the R/O remount and umount,
1700                  * needn't do anything special here.
1701                  */
1702                 btrfs_run_defrag_inodes(fs_info);
1703
1704                 /*
1705                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706                  * with relocation (btrfs_relocate_chunk) and relocation
1707                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710                  * unused block groups.
1711                  */
1712                 btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715                 if (kthread_should_park())
1716                         kthread_parkme();
1717                 if (kthread_should_stop())
1718                         return 0;
1719                 if (!again) {
1720                         set_current_state(TASK_INTERRUPTIBLE);
1721                         schedule();
1722                         __set_current_state(TASK_RUNNING);
1723                 }
1724         }
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729         struct btrfs_root *root = arg;
1730         struct btrfs_fs_info *fs_info = root->fs_info;
1731         struct btrfs_trans_handle *trans;
1732         struct btrfs_transaction *cur;
1733         u64 transid;
1734         time64_t now;
1735         unsigned long delay;
1736         bool cannot_commit;
1737
1738         do {
1739                 cannot_commit = false;
1740                 delay = HZ * fs_info->commit_interval;
1741                 mutex_lock(&fs_info->transaction_kthread_mutex);
1742
1743                 spin_lock(&fs_info->trans_lock);
1744                 cur = fs_info->running_transaction;
1745                 if (!cur) {
1746                         spin_unlock(&fs_info->trans_lock);
1747                         goto sleep;
1748                 }
1749
1750                 now = ktime_get_seconds();
1751                 if (cur->state < TRANS_STATE_COMMIT_START &&
1752                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1753                     (now < cur->start_time ||
1754                      now - cur->start_time < fs_info->commit_interval)) {
1755                         spin_unlock(&fs_info->trans_lock);
1756                         delay = HZ * 5;
1757                         goto sleep;
1758                 }
1759                 transid = cur->transid;
1760                 spin_unlock(&fs_info->trans_lock);
1761
1762                 /* If the file system is aborted, this will always fail. */
1763                 trans = btrfs_attach_transaction(root);
1764                 if (IS_ERR(trans)) {
1765                         if (PTR_ERR(trans) != -ENOENT)
1766                                 cannot_commit = true;
1767                         goto sleep;
1768                 }
1769                 if (transid == trans->transid) {
1770                         btrfs_commit_transaction(trans);
1771                 } else {
1772                         btrfs_end_transaction(trans);
1773                 }
1774 sleep:
1775                 wake_up_process(fs_info->cleaner_kthread);
1776                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1777
1778                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1779                                       &fs_info->fs_state)))
1780                         btrfs_cleanup_transaction(fs_info);
1781                 if (!kthread_should_stop() &&
1782                                 (!btrfs_transaction_blocked(fs_info) ||
1783                                  cannot_commit))
1784                         schedule_timeout_interruptible(delay);
1785         } while (!kthread_should_stop());
1786         return 0;
1787 }
1788
1789 /*
1790  * This will find the highest generation in the array of root backups.  The
1791  * index of the highest array is returned, or -EINVAL if we can't find
1792  * anything.
1793  *
1794  * We check to make sure the array is valid by comparing the
1795  * generation of the latest  root in the array with the generation
1796  * in the super block.  If they don't match we pitch it.
1797  */
1798 static int find_newest_super_backup(struct btrfs_fs_info *info)
1799 {
1800         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1801         u64 cur;
1802         struct btrfs_root_backup *root_backup;
1803         int i;
1804
1805         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806                 root_backup = info->super_copy->super_roots + i;
1807                 cur = btrfs_backup_tree_root_gen(root_backup);
1808                 if (cur == newest_gen)
1809                         return i;
1810         }
1811
1812         return -EINVAL;
1813 }
1814
1815 /*
1816  * copy all the root pointers into the super backup array.
1817  * this will bump the backup pointer by one when it is
1818  * done
1819  */
1820 static void backup_super_roots(struct btrfs_fs_info *info)
1821 {
1822         const int next_backup = info->backup_root_index;
1823         struct btrfs_root_backup *root_backup;
1824
1825         root_backup = info->super_for_commit->super_roots + next_backup;
1826
1827         /*
1828          * make sure all of our padding and empty slots get zero filled
1829          * regardless of which ones we use today
1830          */
1831         memset(root_backup, 0, sizeof(*root_backup));
1832
1833         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1834
1835         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1836         btrfs_set_backup_tree_root_gen(root_backup,
1837                                btrfs_header_generation(info->tree_root->node));
1838
1839         btrfs_set_backup_tree_root_level(root_backup,
1840                                btrfs_header_level(info->tree_root->node));
1841
1842         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1843         btrfs_set_backup_chunk_root_gen(root_backup,
1844                                btrfs_header_generation(info->chunk_root->node));
1845         btrfs_set_backup_chunk_root_level(root_backup,
1846                                btrfs_header_level(info->chunk_root->node));
1847
1848         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1849         btrfs_set_backup_extent_root_gen(root_backup,
1850                                btrfs_header_generation(info->extent_root->node));
1851         btrfs_set_backup_extent_root_level(root_backup,
1852                                btrfs_header_level(info->extent_root->node));
1853
1854         /*
1855          * we might commit during log recovery, which happens before we set
1856          * the fs_root.  Make sure it is valid before we fill it in.
1857          */
1858         if (info->fs_root && info->fs_root->node) {
1859                 btrfs_set_backup_fs_root(root_backup,
1860                                          info->fs_root->node->start);
1861                 btrfs_set_backup_fs_root_gen(root_backup,
1862                                btrfs_header_generation(info->fs_root->node));
1863                 btrfs_set_backup_fs_root_level(root_backup,
1864                                btrfs_header_level(info->fs_root->node));
1865         }
1866
1867         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1868         btrfs_set_backup_dev_root_gen(root_backup,
1869                                btrfs_header_generation(info->dev_root->node));
1870         btrfs_set_backup_dev_root_level(root_backup,
1871                                        btrfs_header_level(info->dev_root->node));
1872
1873         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1874         btrfs_set_backup_csum_root_gen(root_backup,
1875                                btrfs_header_generation(info->csum_root->node));
1876         btrfs_set_backup_csum_root_level(root_backup,
1877                                btrfs_header_level(info->csum_root->node));
1878
1879         btrfs_set_backup_total_bytes(root_backup,
1880                              btrfs_super_total_bytes(info->super_copy));
1881         btrfs_set_backup_bytes_used(root_backup,
1882                              btrfs_super_bytes_used(info->super_copy));
1883         btrfs_set_backup_num_devices(root_backup,
1884                              btrfs_super_num_devices(info->super_copy));
1885
1886         /*
1887          * if we don't copy this out to the super_copy, it won't get remembered
1888          * for the next commit
1889          */
1890         memcpy(&info->super_copy->super_roots,
1891                &info->super_for_commit->super_roots,
1892                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1893 }
1894
1895 /*
1896  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1897  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1898  *
1899  * fs_info - filesystem whose backup roots need to be read
1900  * priority - priority of backup root required
1901  *
1902  * Returns backup root index on success and -EINVAL otherwise.
1903  */
1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1905 {
1906         int backup_index = find_newest_super_backup(fs_info);
1907         struct btrfs_super_block *super = fs_info->super_copy;
1908         struct btrfs_root_backup *root_backup;
1909
1910         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1911                 if (priority == 0)
1912                         return backup_index;
1913
1914                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1915                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1916         } else {
1917                 return -EINVAL;
1918         }
1919
1920         root_backup = super->super_roots + backup_index;
1921
1922         btrfs_set_super_generation(super,
1923                                    btrfs_backup_tree_root_gen(root_backup));
1924         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925         btrfs_set_super_root_level(super,
1926                                    btrfs_backup_tree_root_level(root_backup));
1927         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928
1929         /*
1930          * Fixme: the total bytes and num_devices need to match or we should
1931          * need a fsck
1932          */
1933         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935
1936         return backup_index;
1937 }
1938
1939 /* helper to cleanup workers */
1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1941 {
1942         btrfs_destroy_workqueue(fs_info->fixup_workers);
1943         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1944         btrfs_destroy_workqueue(fs_info->workers);
1945         btrfs_destroy_workqueue(fs_info->endio_workers);
1946         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1947         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1948         btrfs_destroy_workqueue(fs_info->rmw_workers);
1949         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1950         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1951         btrfs_destroy_workqueue(fs_info->delayed_workers);
1952         btrfs_destroy_workqueue(fs_info->caching_workers);
1953         btrfs_destroy_workqueue(fs_info->readahead_workers);
1954         btrfs_destroy_workqueue(fs_info->flush_workers);
1955         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1956         /*
1957          * Now that all other work queues are destroyed, we can safely destroy
1958          * the queues used for metadata I/O, since tasks from those other work
1959          * queues can do metadata I/O operations.
1960          */
1961         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1962         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1963 }
1964
1965 static void free_root_extent_buffers(struct btrfs_root *root)
1966 {
1967         if (root) {
1968                 free_extent_buffer(root->node);
1969                 free_extent_buffer(root->commit_root);
1970                 root->node = NULL;
1971                 root->commit_root = NULL;
1972         }
1973 }
1974
1975 /* helper to cleanup tree roots */
1976 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1977 {
1978         free_root_extent_buffers(info->tree_root);
1979
1980         free_root_extent_buffers(info->dev_root);
1981         free_root_extent_buffers(info->extent_root);
1982         free_root_extent_buffers(info->csum_root);
1983         free_root_extent_buffers(info->quota_root);
1984         free_root_extent_buffers(info->uuid_root);
1985         if (free_chunk_root)
1986                 free_root_extent_buffers(info->chunk_root);
1987         free_root_extent_buffers(info->free_space_root);
1988 }
1989
1990 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1991 {
1992         int ret;
1993         struct btrfs_root *gang[8];
1994         int i;
1995
1996         while (!list_empty(&fs_info->dead_roots)) {
1997                 gang[0] = list_entry(fs_info->dead_roots.next,
1998                                      struct btrfs_root, root_list);
1999                 list_del(&gang[0]->root_list);
2000
2001                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2002                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2003                 } else {
2004                         free_extent_buffer(gang[0]->node);
2005                         free_extent_buffer(gang[0]->commit_root);
2006                         btrfs_put_fs_root(gang[0]);
2007                 }
2008         }
2009
2010         while (1) {
2011                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2012                                              (void **)gang, 0,
2013                                              ARRAY_SIZE(gang));
2014                 if (!ret)
2015                         break;
2016                 for (i = 0; i < ret; i++)
2017                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2018         }
2019
2020         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2021                 btrfs_free_log_root_tree(NULL, fs_info);
2022                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2023         }
2024 }
2025
2026 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2027 {
2028         mutex_init(&fs_info->scrub_lock);
2029         atomic_set(&fs_info->scrubs_running, 0);
2030         atomic_set(&fs_info->scrub_pause_req, 0);
2031         atomic_set(&fs_info->scrubs_paused, 0);
2032         atomic_set(&fs_info->scrub_cancel_req, 0);
2033         init_waitqueue_head(&fs_info->scrub_pause_wait);
2034         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2035 }
2036
2037 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2038 {
2039         spin_lock_init(&fs_info->balance_lock);
2040         mutex_init(&fs_info->balance_mutex);
2041         atomic_set(&fs_info->balance_pause_req, 0);
2042         atomic_set(&fs_info->balance_cancel_req, 0);
2043         fs_info->balance_ctl = NULL;
2044         init_waitqueue_head(&fs_info->balance_wait_q);
2045 }
2046
2047 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2048 {
2049         struct inode *inode = fs_info->btree_inode;
2050
2051         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2052         set_nlink(inode, 1);
2053         /*
2054          * we set the i_size on the btree inode to the max possible int.
2055          * the real end of the address space is determined by all of
2056          * the devices in the system
2057          */
2058         inode->i_size = OFFSET_MAX;
2059         inode->i_mapping->a_ops = &btree_aops;
2060
2061         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2062         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2063                             IO_TREE_INODE_IO, inode);
2064         BTRFS_I(inode)->io_tree.track_uptodate = false;
2065         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2066
2067         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2068
2069         BTRFS_I(inode)->root = fs_info->tree_root;
2070         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2071         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2072         btrfs_insert_inode_hash(inode);
2073 }
2074
2075 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2076 {
2077         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2078         init_rwsem(&fs_info->dev_replace.rwsem);
2079         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2080 }
2081
2082 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2083 {
2084         spin_lock_init(&fs_info->qgroup_lock);
2085         mutex_init(&fs_info->qgroup_ioctl_lock);
2086         fs_info->qgroup_tree = RB_ROOT;
2087         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2088         fs_info->qgroup_seq = 1;
2089         fs_info->qgroup_ulist = NULL;
2090         fs_info->qgroup_rescan_running = false;
2091         mutex_init(&fs_info->qgroup_rescan_lock);
2092 }
2093
2094 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2095                 struct btrfs_fs_devices *fs_devices)
2096 {
2097         u32 max_active = fs_info->thread_pool_size;
2098         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2099
2100         fs_info->workers =
2101                 btrfs_alloc_workqueue(fs_info, "worker",
2102                                       flags | WQ_HIGHPRI, max_active, 16);
2103
2104         fs_info->delalloc_workers =
2105                 btrfs_alloc_workqueue(fs_info, "delalloc",
2106                                       flags, max_active, 2);
2107
2108         fs_info->flush_workers =
2109                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2110                                       flags, max_active, 0);
2111
2112         fs_info->caching_workers =
2113                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2114
2115         fs_info->fixup_workers =
2116                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2117
2118         /*
2119          * endios are largely parallel and should have a very
2120          * low idle thresh
2121          */
2122         fs_info->endio_workers =
2123                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2124         fs_info->endio_meta_workers =
2125                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2126                                       max_active, 4);
2127         fs_info->endio_meta_write_workers =
2128                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2129                                       max_active, 2);
2130         fs_info->endio_raid56_workers =
2131                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2132                                       max_active, 4);
2133         fs_info->endio_repair_workers =
2134                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2135         fs_info->rmw_workers =
2136                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2137         fs_info->endio_write_workers =
2138                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2139                                       max_active, 2);
2140         fs_info->endio_freespace_worker =
2141                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2142                                       max_active, 0);
2143         fs_info->delayed_workers =
2144                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2145                                       max_active, 0);
2146         fs_info->readahead_workers =
2147                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2148                                       max_active, 2);
2149         fs_info->qgroup_rescan_workers =
2150                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2151
2152         if (!(fs_info->workers && fs_info->delalloc_workers &&
2153               fs_info->flush_workers &&
2154               fs_info->endio_workers && fs_info->endio_meta_workers &&
2155               fs_info->endio_meta_write_workers &&
2156               fs_info->endio_repair_workers &&
2157               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2158               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2159               fs_info->caching_workers && fs_info->readahead_workers &&
2160               fs_info->fixup_workers && fs_info->delayed_workers &&
2161               fs_info->qgroup_rescan_workers)) {
2162                 return -ENOMEM;
2163         }
2164
2165         return 0;
2166 }
2167
2168 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2169 {
2170         struct crypto_shash *csum_shash;
2171         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2172
2173         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2174
2175         if (IS_ERR(csum_shash)) {
2176                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2177                           csum_driver);
2178                 return PTR_ERR(csum_shash);
2179         }
2180
2181         fs_info->csum_shash = csum_shash;
2182
2183         return 0;
2184 }
2185
2186 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2187 {
2188         crypto_free_shash(fs_info->csum_shash);
2189 }
2190
2191 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2192                             struct btrfs_fs_devices *fs_devices)
2193 {
2194         int ret;
2195         struct btrfs_root *log_tree_root;
2196         struct btrfs_super_block *disk_super = fs_info->super_copy;
2197         u64 bytenr = btrfs_super_log_root(disk_super);
2198         int level = btrfs_super_log_root_level(disk_super);
2199
2200         if (fs_devices->rw_devices == 0) {
2201                 btrfs_warn(fs_info, "log replay required on RO media");
2202                 return -EIO;
2203         }
2204
2205         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2206         if (!log_tree_root)
2207                 return -ENOMEM;
2208
2209         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2210
2211         log_tree_root->node = read_tree_block(fs_info, bytenr,
2212                                               fs_info->generation + 1,
2213                                               level, NULL);
2214         if (IS_ERR(log_tree_root->node)) {
2215                 btrfs_warn(fs_info, "failed to read log tree");
2216                 ret = PTR_ERR(log_tree_root->node);
2217                 kfree(log_tree_root);
2218                 return ret;
2219         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2220                 btrfs_err(fs_info, "failed to read log tree");
2221                 free_extent_buffer(log_tree_root->node);
2222                 kfree(log_tree_root);
2223                 return -EIO;
2224         }
2225         /* returns with log_tree_root freed on success */
2226         ret = btrfs_recover_log_trees(log_tree_root);
2227         if (ret) {
2228                 btrfs_handle_fs_error(fs_info, ret,
2229                                       "Failed to recover log tree");
2230                 free_extent_buffer(log_tree_root->node);
2231                 kfree(log_tree_root);
2232                 return ret;
2233         }
2234
2235         if (sb_rdonly(fs_info->sb)) {
2236                 ret = btrfs_commit_super(fs_info);
2237                 if (ret)
2238                         return ret;
2239         }
2240
2241         return 0;
2242 }
2243
2244 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2245 {
2246         struct btrfs_root *tree_root = fs_info->tree_root;
2247         struct btrfs_root *root;
2248         struct btrfs_key location;
2249         int ret;
2250
2251         BUG_ON(!fs_info->tree_root);
2252
2253         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2254         location.type = BTRFS_ROOT_ITEM_KEY;
2255         location.offset = 0;
2256
2257         root = btrfs_read_tree_root(tree_root, &location);
2258         if (IS_ERR(root)) {
2259                 ret = PTR_ERR(root);
2260                 goto out;
2261         }
2262         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263         fs_info->extent_root = root;
2264
2265         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2266         root = btrfs_read_tree_root(tree_root, &location);
2267         if (IS_ERR(root)) {
2268                 ret = PTR_ERR(root);
2269                 goto out;
2270         }
2271         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2272         fs_info->dev_root = root;
2273         btrfs_init_devices_late(fs_info);
2274
2275         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2276         root = btrfs_read_tree_root(tree_root, &location);
2277         if (IS_ERR(root)) {
2278                 ret = PTR_ERR(root);
2279                 goto out;
2280         }
2281         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282         fs_info->csum_root = root;
2283
2284         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2285         root = btrfs_read_tree_root(tree_root, &location);
2286         if (!IS_ERR(root)) {
2287                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2289                 fs_info->quota_root = root;
2290         }
2291
2292         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2293         root = btrfs_read_tree_root(tree_root, &location);
2294         if (IS_ERR(root)) {
2295                 ret = PTR_ERR(root);
2296                 if (ret != -ENOENT)
2297                         goto out;
2298         } else {
2299                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2300                 fs_info->uuid_root = root;
2301         }
2302
2303         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2304                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2305                 root = btrfs_read_tree_root(tree_root, &location);
2306                 if (IS_ERR(root)) {
2307                         ret = PTR_ERR(root);
2308                         goto out;
2309                 }
2310                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311                 fs_info->free_space_root = root;
2312         }
2313
2314         return 0;
2315 out:
2316         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2317                    location.objectid, ret);
2318         return ret;
2319 }
2320
2321 /*
2322  * Real super block validation
2323  * NOTE: super csum type and incompat features will not be checked here.
2324  *
2325  * @sb:         super block to check
2326  * @mirror_num: the super block number to check its bytenr:
2327  *              0       the primary (1st) sb
2328  *              1, 2    2nd and 3rd backup copy
2329  *             -1       skip bytenr check
2330  */
2331 static int validate_super(struct btrfs_fs_info *fs_info,
2332                             struct btrfs_super_block *sb, int mirror_num)
2333 {
2334         u64 nodesize = btrfs_super_nodesize(sb);
2335         u64 sectorsize = btrfs_super_sectorsize(sb);
2336         int ret = 0;
2337
2338         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2339                 btrfs_err(fs_info, "no valid FS found");
2340                 ret = -EINVAL;
2341         }
2342         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2343                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2344                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2345                 ret = -EINVAL;
2346         }
2347         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2348                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2349                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2350                 ret = -EINVAL;
2351         }
2352         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2353                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2354                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2355                 ret = -EINVAL;
2356         }
2357         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2358                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2359                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2360                 ret = -EINVAL;
2361         }
2362
2363         /*
2364          * Check sectorsize and nodesize first, other check will need it.
2365          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2366          */
2367         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2368             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2369                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2370                 ret = -EINVAL;
2371         }
2372         /* Only PAGE SIZE is supported yet */
2373         if (sectorsize != PAGE_SIZE) {
2374                 btrfs_err(fs_info,
2375                         "sectorsize %llu not supported yet, only support %lu",
2376                         sectorsize, PAGE_SIZE);
2377                 ret = -EINVAL;
2378         }
2379         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2380             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2381                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2382                 ret = -EINVAL;
2383         }
2384         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2385                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2386                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2387                 ret = -EINVAL;
2388         }
2389
2390         /* Root alignment check */
2391         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2392                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2393                            btrfs_super_root(sb));
2394                 ret = -EINVAL;
2395         }
2396         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2397                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2398                            btrfs_super_chunk_root(sb));
2399                 ret = -EINVAL;
2400         }
2401         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2402                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2403                            btrfs_super_log_root(sb));
2404                 ret = -EINVAL;
2405         }
2406
2407         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2408                    BTRFS_FSID_SIZE) != 0) {
2409                 btrfs_err(fs_info,
2410                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2411                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2412                 ret = -EINVAL;
2413         }
2414
2415         /*
2416          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2417          * done later
2418          */
2419         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2420                 btrfs_err(fs_info, "bytes_used is too small %llu",
2421                           btrfs_super_bytes_used(sb));
2422                 ret = -EINVAL;
2423         }
2424         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2425                 btrfs_err(fs_info, "invalid stripesize %u",
2426                           btrfs_super_stripesize(sb));
2427                 ret = -EINVAL;
2428         }
2429         if (btrfs_super_num_devices(sb) > (1UL << 31))
2430                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2431                            btrfs_super_num_devices(sb));
2432         if (btrfs_super_num_devices(sb) == 0) {
2433                 btrfs_err(fs_info, "number of devices is 0");
2434                 ret = -EINVAL;
2435         }
2436
2437         if (mirror_num >= 0 &&
2438             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2439                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2440                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2441                 ret = -EINVAL;
2442         }
2443
2444         /*
2445          * Obvious sys_chunk_array corruptions, it must hold at least one key
2446          * and one chunk
2447          */
2448         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2449                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2450                           btrfs_super_sys_array_size(sb),
2451                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2452                 ret = -EINVAL;
2453         }
2454         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2455                         + sizeof(struct btrfs_chunk)) {
2456                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2457                           btrfs_super_sys_array_size(sb),
2458                           sizeof(struct btrfs_disk_key)
2459                           + sizeof(struct btrfs_chunk));
2460                 ret = -EINVAL;
2461         }
2462
2463         /*
2464          * The generation is a global counter, we'll trust it more than the others
2465          * but it's still possible that it's the one that's wrong.
2466          */
2467         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2468                 btrfs_warn(fs_info,
2469                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2470                         btrfs_super_generation(sb),
2471                         btrfs_super_chunk_root_generation(sb));
2472         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2473             && btrfs_super_cache_generation(sb) != (u64)-1)
2474                 btrfs_warn(fs_info,
2475                         "suspicious: generation < cache_generation: %llu < %llu",
2476                         btrfs_super_generation(sb),
2477                         btrfs_super_cache_generation(sb));
2478
2479         return ret;
2480 }
2481
2482 /*
2483  * Validation of super block at mount time.
2484  * Some checks already done early at mount time, like csum type and incompat
2485  * flags will be skipped.
2486  */
2487 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2488 {
2489         return validate_super(fs_info, fs_info->super_copy, 0);
2490 }
2491
2492 /*
2493  * Validation of super block at write time.
2494  * Some checks like bytenr check will be skipped as their values will be
2495  * overwritten soon.
2496  * Extra checks like csum type and incompat flags will be done here.
2497  */
2498 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2499                                       struct btrfs_super_block *sb)
2500 {
2501         int ret;
2502
2503         ret = validate_super(fs_info, sb, -1);
2504         if (ret < 0)
2505                 goto out;
2506         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2507                 ret = -EUCLEAN;
2508                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2509                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2510                 goto out;
2511         }
2512         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2513                 ret = -EUCLEAN;
2514                 btrfs_err(fs_info,
2515                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2516                           btrfs_super_incompat_flags(sb),
2517                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2518                 goto out;
2519         }
2520 out:
2521         if (ret < 0)
2522                 btrfs_err(fs_info,
2523                 "super block corruption detected before writing it to disk");
2524         return ret;
2525 }
2526
2527 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2528 {
2529         int backup_index = find_newest_super_backup(fs_info);
2530         struct btrfs_super_block *sb = fs_info->super_copy;
2531         struct btrfs_root *tree_root = fs_info->tree_root;
2532         bool handle_error = false;
2533         int ret = 0;
2534         int i;
2535
2536         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2537                 u64 generation;
2538                 int level;
2539
2540                 if (handle_error) {
2541                         if (!IS_ERR(tree_root->node))
2542                                 free_extent_buffer(tree_root->node);
2543                         tree_root->node = NULL;
2544
2545                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2546                                 break;
2547
2548                         free_root_pointers(fs_info, 0);
2549
2550                         /*
2551                          * Don't use the log in recovery mode, it won't be
2552                          * valid
2553                          */
2554                         btrfs_set_super_log_root(sb, 0);
2555
2556                         /* We can't trust the free space cache either */
2557                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2558
2559                         ret = read_backup_root(fs_info, i);
2560                         backup_index = ret;
2561                         if (ret < 0)
2562                                 return ret;
2563                 }
2564                 generation = btrfs_super_generation(sb);
2565                 level = btrfs_super_root_level(sb);
2566                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2567                                                   generation, level, NULL);
2568                 if (IS_ERR(tree_root->node) ||
2569                     !extent_buffer_uptodate(tree_root->node)) {
2570                         handle_error = true;
2571
2572                         if (IS_ERR(tree_root->node))
2573                                 ret = PTR_ERR(tree_root->node);
2574                         else if (!extent_buffer_uptodate(tree_root->node))
2575                                 ret = -EUCLEAN;
2576
2577                         btrfs_warn(fs_info, "failed to read tree root");
2578                         continue;
2579                 }
2580
2581                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2582                 tree_root->commit_root = btrfs_root_node(tree_root);
2583                 btrfs_set_root_refs(&tree_root->root_item, 1);
2584
2585                 /*
2586                  * No need to hold btrfs_root::objectid_mutex since the fs
2587                  * hasn't been fully initialised and we are the only user
2588                  */
2589                 ret = btrfs_find_highest_objectid(tree_root,
2590                                                 &tree_root->highest_objectid);
2591                 if (ret < 0) {
2592                         handle_error = true;
2593                         continue;
2594                 }
2595
2596                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2597
2598                 ret = btrfs_read_roots(fs_info);
2599                 if (ret < 0) {
2600                         handle_error = true;
2601                         continue;
2602                 }
2603
2604                 /* All successful */
2605                 fs_info->generation = generation;
2606                 fs_info->last_trans_committed = generation;
2607
2608                 /* Always begin writing backup roots after the one being used */
2609                 if (backup_index < 0) {
2610                         fs_info->backup_root_index = 0;
2611                 } else {
2612                         fs_info->backup_root_index = backup_index + 1;
2613                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2614                 }
2615                 break;
2616         }
2617
2618         return ret;
2619 }
2620
2621 int __cold open_ctree(struct super_block *sb,
2622                struct btrfs_fs_devices *fs_devices,
2623                char *options)
2624 {
2625         u32 sectorsize;
2626         u32 nodesize;
2627         u32 stripesize;
2628         u64 generation;
2629         u64 features;
2630         u16 csum_type;
2631         struct btrfs_key location;
2632         struct buffer_head *bh;
2633         struct btrfs_super_block *disk_super;
2634         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2635         struct btrfs_root *tree_root;
2636         struct btrfs_root *chunk_root;
2637         int ret;
2638         int err = -EINVAL;
2639         int clear_free_space_tree = 0;
2640         int level;
2641
2642         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2643         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2644         if (!tree_root || !chunk_root) {
2645                 err = -ENOMEM;
2646                 goto fail;
2647         }
2648
2649         ret = init_srcu_struct(&fs_info->subvol_srcu);
2650         if (ret) {
2651                 err = ret;
2652                 goto fail;
2653         }
2654
2655         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2656         if (ret) {
2657                 err = ret;
2658                 goto fail_srcu;
2659         }
2660
2661         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2662         if (ret) {
2663                 err = ret;
2664                 goto fail_dio_bytes;
2665         }
2666         fs_info->dirty_metadata_batch = PAGE_SIZE *
2667                                         (1 + ilog2(nr_cpu_ids));
2668
2669         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2670         if (ret) {
2671                 err = ret;
2672                 goto fail_dirty_metadata_bytes;
2673         }
2674
2675         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2676                         GFP_KERNEL);
2677         if (ret) {
2678                 err = ret;
2679                 goto fail_delalloc_bytes;
2680         }
2681
2682         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2683         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2684         INIT_LIST_HEAD(&fs_info->trans_list);
2685         INIT_LIST_HEAD(&fs_info->dead_roots);
2686         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2687         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2688         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2689         spin_lock_init(&fs_info->delalloc_root_lock);
2690         spin_lock_init(&fs_info->trans_lock);
2691         spin_lock_init(&fs_info->fs_roots_radix_lock);
2692         spin_lock_init(&fs_info->delayed_iput_lock);
2693         spin_lock_init(&fs_info->defrag_inodes_lock);
2694         spin_lock_init(&fs_info->tree_mod_seq_lock);
2695         spin_lock_init(&fs_info->super_lock);
2696         spin_lock_init(&fs_info->buffer_lock);
2697         spin_lock_init(&fs_info->unused_bgs_lock);
2698         rwlock_init(&fs_info->tree_mod_log_lock);
2699         mutex_init(&fs_info->unused_bg_unpin_mutex);
2700         mutex_init(&fs_info->delete_unused_bgs_mutex);
2701         mutex_init(&fs_info->reloc_mutex);
2702         mutex_init(&fs_info->delalloc_root_mutex);
2703         seqlock_init(&fs_info->profiles_lock);
2704
2705         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706         INIT_LIST_HEAD(&fs_info->space_info);
2707         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708         INIT_LIST_HEAD(&fs_info->unused_bgs);
2709         extent_map_tree_init(&fs_info->mapping_tree);
2710         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2711                              BTRFS_BLOCK_RSV_GLOBAL);
2712         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2713         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2714         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2715         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2716                              BTRFS_BLOCK_RSV_DELOPS);
2717         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2718                              BTRFS_BLOCK_RSV_DELREFS);
2719
2720         atomic_set(&fs_info->async_delalloc_pages, 0);
2721         atomic_set(&fs_info->defrag_running, 0);
2722         atomic_set(&fs_info->reada_works_cnt, 0);
2723         atomic_set(&fs_info->nr_delayed_iputs, 0);
2724         atomic64_set(&fs_info->tree_mod_seq, 0);
2725         fs_info->sb = sb;
2726         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2727         fs_info->metadata_ratio = 0;
2728         fs_info->defrag_inodes = RB_ROOT;
2729         atomic64_set(&fs_info->free_chunk_space, 0);
2730         fs_info->tree_mod_log = RB_ROOT;
2731         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2732         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2733         /* readahead state */
2734         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2735         spin_lock_init(&fs_info->reada_lock);
2736         btrfs_init_ref_verify(fs_info);
2737
2738         fs_info->thread_pool_size = min_t(unsigned long,
2739                                           num_online_cpus() + 2, 8);
2740
2741         INIT_LIST_HEAD(&fs_info->ordered_roots);
2742         spin_lock_init(&fs_info->ordered_root_lock);
2743
2744         fs_info->btree_inode = new_inode(sb);
2745         if (!fs_info->btree_inode) {
2746                 err = -ENOMEM;
2747                 goto fail_bio_counter;
2748         }
2749         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2750
2751         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2752                                         GFP_KERNEL);
2753         if (!fs_info->delayed_root) {
2754                 err = -ENOMEM;
2755                 goto fail_iput;
2756         }
2757         btrfs_init_delayed_root(fs_info->delayed_root);
2758
2759         btrfs_init_scrub(fs_info);
2760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2761         fs_info->check_integrity_print_mask = 0;
2762 #endif
2763         btrfs_init_balance(fs_info);
2764         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2765
2766         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2767         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2768
2769         btrfs_init_btree_inode(fs_info);
2770
2771         spin_lock_init(&fs_info->block_group_cache_lock);
2772         fs_info->block_group_cache_tree = RB_ROOT;
2773         fs_info->first_logical_byte = (u64)-1;
2774
2775         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2776                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2777         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2778                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2779         fs_info->pinned_extents = &fs_info->freed_extents[0];
2780         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2781
2782         mutex_init(&fs_info->ordered_operations_mutex);
2783         mutex_init(&fs_info->tree_log_mutex);
2784         mutex_init(&fs_info->chunk_mutex);
2785         mutex_init(&fs_info->transaction_kthread_mutex);
2786         mutex_init(&fs_info->cleaner_mutex);
2787         mutex_init(&fs_info->ro_block_group_mutex);
2788         init_rwsem(&fs_info->commit_root_sem);
2789         init_rwsem(&fs_info->cleanup_work_sem);
2790         init_rwsem(&fs_info->subvol_sem);
2791         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2792
2793         btrfs_init_dev_replace_locks(fs_info);
2794         btrfs_init_qgroup(fs_info);
2795
2796         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2797         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2798
2799         init_waitqueue_head(&fs_info->transaction_throttle);
2800         init_waitqueue_head(&fs_info->transaction_wait);
2801         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2802         init_waitqueue_head(&fs_info->async_submit_wait);
2803         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2804
2805         /* Usable values until the real ones are cached from the superblock */
2806         fs_info->nodesize = 4096;
2807         fs_info->sectorsize = 4096;
2808         fs_info->stripesize = 4096;
2809
2810         spin_lock_init(&fs_info->swapfile_pins_lock);
2811         fs_info->swapfile_pins = RB_ROOT;
2812
2813         fs_info->send_in_progress = 0;
2814
2815         ret = btrfs_alloc_stripe_hash_table(fs_info);
2816         if (ret) {
2817                 err = ret;
2818                 goto fail_alloc;
2819         }
2820
2821         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2822
2823         invalidate_bdev(fs_devices->latest_bdev);
2824
2825         /*
2826          * Read super block and check the signature bytes only
2827          */
2828         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2829         if (IS_ERR(bh)) {
2830                 err = PTR_ERR(bh);
2831                 goto fail_alloc;
2832         }
2833
2834         /*
2835          * Verify the type first, if that or the the checksum value are
2836          * corrupted, we'll find out
2837          */
2838         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2839         if (!btrfs_supported_super_csum(csum_type)) {
2840                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2841                           csum_type);
2842                 err = -EINVAL;
2843                 brelse(bh);
2844                 goto fail_alloc;
2845         }
2846
2847         ret = btrfs_init_csum_hash(fs_info, csum_type);
2848         if (ret) {
2849                 err = ret;
2850                 goto fail_alloc;
2851         }
2852
2853         /*
2854          * We want to check superblock checksum, the type is stored inside.
2855          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2856          */
2857         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2858                 btrfs_err(fs_info, "superblock checksum mismatch");
2859                 err = -EINVAL;
2860                 brelse(bh);
2861                 goto fail_csum;
2862         }
2863
2864         /*
2865          * super_copy is zeroed at allocation time and we never touch the
2866          * following bytes up to INFO_SIZE, the checksum is calculated from
2867          * the whole block of INFO_SIZE
2868          */
2869         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2870         brelse(bh);
2871
2872         disk_super = fs_info->super_copy;
2873
2874         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2875                        BTRFS_FSID_SIZE));
2876
2877         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2878                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2879                                 fs_info->super_copy->metadata_uuid,
2880                                 BTRFS_FSID_SIZE));
2881         }
2882
2883         features = btrfs_super_flags(disk_super);
2884         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2885                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2886                 btrfs_set_super_flags(disk_super, features);
2887                 btrfs_info(fs_info,
2888                         "found metadata UUID change in progress flag, clearing");
2889         }
2890
2891         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2892                sizeof(*fs_info->super_for_commit));
2893
2894         ret = btrfs_validate_mount_super(fs_info);
2895         if (ret) {
2896                 btrfs_err(fs_info, "superblock contains fatal errors");
2897                 err = -EINVAL;
2898                 goto fail_csum;
2899         }
2900
2901         if (!btrfs_super_root(disk_super))
2902                 goto fail_csum;
2903
2904         /* check FS state, whether FS is broken. */
2905         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2906                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2907
2908         /*
2909          * In the long term, we'll store the compression type in the super
2910          * block, and it'll be used for per file compression control.
2911          */
2912         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2913
2914         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2915         if (ret) {
2916                 err = ret;
2917                 goto fail_csum;
2918         }
2919
2920         features = btrfs_super_incompat_flags(disk_super) &
2921                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2922         if (features) {
2923                 btrfs_err(fs_info,
2924                     "cannot mount because of unsupported optional features (%llx)",
2925                     features);
2926                 err = -EINVAL;
2927                 goto fail_csum;
2928         }
2929
2930         features = btrfs_super_incompat_flags(disk_super);
2931         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2932         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2933                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2934         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2935                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2936
2937         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2938                 btrfs_info(fs_info, "has skinny extents");
2939
2940         /*
2941          * flag our filesystem as having big metadata blocks if
2942          * they are bigger than the page size
2943          */
2944         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2945                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2946                         btrfs_info(fs_info,
2947                                 "flagging fs with big metadata feature");
2948                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2949         }
2950
2951         nodesize = btrfs_super_nodesize(disk_super);
2952         sectorsize = btrfs_super_sectorsize(disk_super);
2953         stripesize = sectorsize;
2954         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2955         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2956
2957         /* Cache block sizes */
2958         fs_info->nodesize = nodesize;
2959         fs_info->sectorsize = sectorsize;
2960         fs_info->stripesize = stripesize;
2961
2962         /*
2963          * mixed block groups end up with duplicate but slightly offset
2964          * extent buffers for the same range.  It leads to corruptions
2965          */
2966         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2967             (sectorsize != nodesize)) {
2968                 btrfs_err(fs_info,
2969 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2970                         nodesize, sectorsize);
2971                 goto fail_csum;
2972         }
2973
2974         /*
2975          * Needn't use the lock because there is no other task which will
2976          * update the flag.
2977          */
2978         btrfs_set_super_incompat_flags(disk_super, features);
2979
2980         features = btrfs_super_compat_ro_flags(disk_super) &
2981                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2982         if (!sb_rdonly(sb) && features) {
2983                 btrfs_err(fs_info,
2984         "cannot mount read-write because of unsupported optional features (%llx)",
2985                        features);
2986                 err = -EINVAL;
2987                 goto fail_csum;
2988         }
2989
2990         ret = btrfs_init_workqueues(fs_info, fs_devices);
2991         if (ret) {
2992                 err = ret;
2993                 goto fail_sb_buffer;
2994         }
2995
2996         sb->s_bdi->congested_fn = btrfs_congested_fn;
2997         sb->s_bdi->congested_data = fs_info;
2998         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2999         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3000         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3001         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3002
3003         sb->s_blocksize = sectorsize;
3004         sb->s_blocksize_bits = blksize_bits(sectorsize);
3005         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3006
3007         mutex_lock(&fs_info->chunk_mutex);
3008         ret = btrfs_read_sys_array(fs_info);
3009         mutex_unlock(&fs_info->chunk_mutex);
3010         if (ret) {
3011                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3012                 goto fail_sb_buffer;
3013         }
3014
3015         generation = btrfs_super_chunk_root_generation(disk_super);
3016         level = btrfs_super_chunk_root_level(disk_super);
3017
3018         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3019
3020         chunk_root->node = read_tree_block(fs_info,
3021                                            btrfs_super_chunk_root(disk_super),
3022                                            generation, level, NULL);
3023         if (IS_ERR(chunk_root->node) ||
3024             !extent_buffer_uptodate(chunk_root->node)) {
3025                 btrfs_err(fs_info, "failed to read chunk root");
3026                 if (!IS_ERR(chunk_root->node))
3027                         free_extent_buffer(chunk_root->node);
3028                 chunk_root->node = NULL;
3029                 goto fail_tree_roots;
3030         }
3031         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3032         chunk_root->commit_root = btrfs_root_node(chunk_root);
3033
3034         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3035            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3036
3037         ret = btrfs_read_chunk_tree(fs_info);
3038         if (ret) {
3039                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3040                 goto fail_tree_roots;
3041         }
3042
3043         /*
3044          * Keep the devid that is marked to be the target device for the
3045          * device replace procedure
3046          */
3047         btrfs_free_extra_devids(fs_devices, 0);
3048
3049         if (!fs_devices->latest_bdev) {
3050                 btrfs_err(fs_info, "failed to read devices");
3051                 goto fail_tree_roots;
3052         }
3053
3054         ret = init_tree_roots(fs_info);
3055         if (ret)
3056                 goto fail_tree_roots;
3057
3058         ret = btrfs_verify_dev_extents(fs_info);
3059         if (ret) {
3060                 btrfs_err(fs_info,
3061                           "failed to verify dev extents against chunks: %d",
3062                           ret);
3063                 goto fail_block_groups;
3064         }
3065         ret = btrfs_recover_balance(fs_info);
3066         if (ret) {
3067                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3068                 goto fail_block_groups;
3069         }
3070
3071         ret = btrfs_init_dev_stats(fs_info);
3072         if (ret) {
3073                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3074                 goto fail_block_groups;
3075         }
3076
3077         ret = btrfs_init_dev_replace(fs_info);
3078         if (ret) {
3079                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3080                 goto fail_block_groups;
3081         }
3082
3083         btrfs_free_extra_devids(fs_devices, 1);
3084
3085         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3086         if (ret) {
3087                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3088                                 ret);
3089                 goto fail_block_groups;
3090         }
3091
3092         ret = btrfs_sysfs_add_device(fs_devices);
3093         if (ret) {
3094                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3095                                 ret);
3096                 goto fail_fsdev_sysfs;
3097         }
3098
3099         ret = btrfs_sysfs_add_mounted(fs_info);
3100         if (ret) {
3101                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3102                 goto fail_fsdev_sysfs;
3103         }
3104
3105         ret = btrfs_init_space_info(fs_info);
3106         if (ret) {
3107                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3108                 goto fail_sysfs;
3109         }
3110
3111         ret = btrfs_read_block_groups(fs_info);
3112         if (ret) {
3113                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3114                 goto fail_sysfs;
3115         }
3116
3117         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3118                 btrfs_warn(fs_info,
3119                 "writable mount is not allowed due to too many missing devices");
3120                 goto fail_sysfs;
3121         }
3122
3123         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3124                                                "btrfs-cleaner");
3125         if (IS_ERR(fs_info->cleaner_kthread))
3126                 goto fail_sysfs;
3127
3128         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3129                                                    tree_root,
3130                                                    "btrfs-transaction");
3131         if (IS_ERR(fs_info->transaction_kthread))
3132                 goto fail_cleaner;
3133
3134         if (!btrfs_test_opt(fs_info, NOSSD) &&
3135             !fs_info->fs_devices->rotating) {
3136                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3137         }
3138
3139         /*
3140          * Mount does not set all options immediately, we can do it now and do
3141          * not have to wait for transaction commit
3142          */
3143         btrfs_apply_pending_changes(fs_info);
3144
3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3147                 ret = btrfsic_mount(fs_info, fs_devices,
3148                                     btrfs_test_opt(fs_info,
3149                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3150                                     1 : 0,
3151                                     fs_info->check_integrity_print_mask);
3152                 if (ret)
3153                         btrfs_warn(fs_info,
3154                                 "failed to initialize integrity check module: %d",
3155                                 ret);
3156         }
3157 #endif
3158         ret = btrfs_read_qgroup_config(fs_info);
3159         if (ret)
3160                 goto fail_trans_kthread;
3161
3162         if (btrfs_build_ref_tree(fs_info))
3163                 btrfs_err(fs_info, "couldn't build ref tree");
3164
3165         /* do not make disk changes in broken FS or nologreplay is given */
3166         if (btrfs_super_log_root(disk_super) != 0 &&
3167             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3168                 ret = btrfs_replay_log(fs_info, fs_devices);
3169                 if (ret) {
3170                         err = ret;
3171                         goto fail_qgroup;
3172                 }
3173         }
3174
3175         ret = btrfs_find_orphan_roots(fs_info);
3176         if (ret)
3177                 goto fail_qgroup;
3178
3179         if (!sb_rdonly(sb)) {
3180                 ret = btrfs_cleanup_fs_roots(fs_info);
3181                 if (ret)
3182                         goto fail_qgroup;
3183
3184                 mutex_lock(&fs_info->cleaner_mutex);
3185                 ret = btrfs_recover_relocation(tree_root);
3186                 mutex_unlock(&fs_info->cleaner_mutex);
3187                 if (ret < 0) {
3188                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3189                                         ret);
3190                         err = -EINVAL;
3191                         goto fail_qgroup;
3192                 }
3193         }
3194
3195         location.objectid = BTRFS_FS_TREE_OBJECTID;
3196         location.type = BTRFS_ROOT_ITEM_KEY;
3197         location.offset = 0;
3198
3199         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3200         if (IS_ERR(fs_info->fs_root)) {
3201                 err = PTR_ERR(fs_info->fs_root);
3202                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3203                 goto fail_qgroup;
3204         }
3205
3206         if (sb_rdonly(sb))
3207                 return 0;
3208
3209         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3210             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3211                 clear_free_space_tree = 1;
3212         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3213                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3214                 btrfs_warn(fs_info, "free space tree is invalid");
3215                 clear_free_space_tree = 1;
3216         }
3217
3218         if (clear_free_space_tree) {
3219                 btrfs_info(fs_info, "clearing free space tree");
3220                 ret = btrfs_clear_free_space_tree(fs_info);
3221                 if (ret) {
3222                         btrfs_warn(fs_info,
3223                                    "failed to clear free space tree: %d", ret);
3224                         close_ctree(fs_info);
3225                         return ret;
3226                 }
3227         }
3228
3229         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3230             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3231                 btrfs_info(fs_info, "creating free space tree");
3232                 ret = btrfs_create_free_space_tree(fs_info);
3233                 if (ret) {
3234                         btrfs_warn(fs_info,
3235                                 "failed to create free space tree: %d", ret);
3236                         close_ctree(fs_info);
3237                         return ret;
3238                 }
3239         }
3240
3241         down_read(&fs_info->cleanup_work_sem);
3242         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3243             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3244                 up_read(&fs_info->cleanup_work_sem);
3245                 close_ctree(fs_info);
3246                 return ret;
3247         }
3248         up_read(&fs_info->cleanup_work_sem);
3249
3250         ret = btrfs_resume_balance_async(fs_info);
3251         if (ret) {
3252                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3253                 close_ctree(fs_info);
3254                 return ret;
3255         }
3256
3257         ret = btrfs_resume_dev_replace_async(fs_info);
3258         if (ret) {
3259                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3260                 close_ctree(fs_info);
3261                 return ret;
3262         }
3263
3264         btrfs_qgroup_rescan_resume(fs_info);
3265
3266         if (!fs_info->uuid_root) {
3267                 btrfs_info(fs_info, "creating UUID tree");
3268                 ret = btrfs_create_uuid_tree(fs_info);
3269                 if (ret) {
3270                         btrfs_warn(fs_info,
3271                                 "failed to create the UUID tree: %d", ret);
3272                         close_ctree(fs_info);
3273                         return ret;
3274                 }
3275         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3276                    fs_info->generation !=
3277                                 btrfs_super_uuid_tree_generation(disk_super)) {
3278                 btrfs_info(fs_info, "checking UUID tree");
3279                 ret = btrfs_check_uuid_tree(fs_info);
3280                 if (ret) {
3281                         btrfs_warn(fs_info,
3282                                 "failed to check the UUID tree: %d", ret);
3283                         close_ctree(fs_info);
3284                         return ret;
3285                 }
3286         } else {
3287                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3288         }
3289         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3290
3291         /*
3292          * backuproot only affect mount behavior, and if open_ctree succeeded,
3293          * no need to keep the flag
3294          */
3295         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3296
3297         return 0;
3298
3299 fail_qgroup:
3300         btrfs_free_qgroup_config(fs_info);
3301 fail_trans_kthread:
3302         kthread_stop(fs_info->transaction_kthread);
3303         btrfs_cleanup_transaction(fs_info);
3304         btrfs_free_fs_roots(fs_info);
3305 fail_cleaner:
3306         kthread_stop(fs_info->cleaner_kthread);
3307
3308         /*
3309          * make sure we're done with the btree inode before we stop our
3310          * kthreads
3311          */
3312         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3313
3314 fail_sysfs:
3315         btrfs_sysfs_remove_mounted(fs_info);
3316
3317 fail_fsdev_sysfs:
3318         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3319
3320 fail_block_groups:
3321         btrfs_put_block_group_cache(fs_info);
3322
3323 fail_tree_roots:
3324         free_root_pointers(fs_info, true);
3325         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3326
3327 fail_sb_buffer:
3328         btrfs_stop_all_workers(fs_info);
3329         btrfs_free_block_groups(fs_info);
3330 fail_csum:
3331         btrfs_free_csum_hash(fs_info);
3332 fail_alloc:
3333 fail_iput:
3334         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3335
3336         iput(fs_info->btree_inode);
3337 fail_bio_counter:
3338         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3339 fail_delalloc_bytes:
3340         percpu_counter_destroy(&fs_info->delalloc_bytes);
3341 fail_dirty_metadata_bytes:
3342         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3343 fail_dio_bytes:
3344         percpu_counter_destroy(&fs_info->dio_bytes);
3345 fail_srcu:
3346         cleanup_srcu_struct(&fs_info->subvol_srcu);
3347 fail:
3348         btrfs_free_stripe_hash_table(fs_info);
3349         btrfs_close_devices(fs_info->fs_devices);
3350         return err;
3351 }
3352 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3353
3354 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3355 {
3356         if (uptodate) {
3357                 set_buffer_uptodate(bh);
3358         } else {
3359                 struct btrfs_device *device = (struct btrfs_device *)
3360                         bh->b_private;
3361
3362                 btrfs_warn_rl_in_rcu(device->fs_info,
3363                                 "lost page write due to IO error on %s",
3364                                           rcu_str_deref(device->name));
3365                 /* note, we don't set_buffer_write_io_error because we have
3366                  * our own ways of dealing with the IO errors
3367                  */
3368                 clear_buffer_uptodate(bh);
3369                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3370         }
3371         unlock_buffer(bh);
3372         put_bh(bh);
3373 }
3374
3375 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3376                         struct buffer_head **bh_ret)
3377 {
3378         struct buffer_head *bh;
3379         struct btrfs_super_block *super;
3380         u64 bytenr;
3381
3382         bytenr = btrfs_sb_offset(copy_num);
3383         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3384                 return -EINVAL;
3385
3386         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3387         /*
3388          * If we fail to read from the underlying devices, as of now
3389          * the best option we have is to mark it EIO.
3390          */
3391         if (!bh)
3392                 return -EIO;
3393
3394         super = (struct btrfs_super_block *)bh->b_data;
3395         if (btrfs_super_bytenr(super) != bytenr ||
3396                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3397                 brelse(bh);
3398                 return -EINVAL;
3399         }
3400
3401         *bh_ret = bh;
3402         return 0;
3403 }
3404
3405
3406 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3407 {
3408         struct buffer_head *bh;
3409         struct buffer_head *latest = NULL;
3410         struct btrfs_super_block *super;
3411         int i;
3412         u64 transid = 0;
3413         int ret = -EINVAL;
3414
3415         /* we would like to check all the supers, but that would make
3416          * a btrfs mount succeed after a mkfs from a different FS.
3417          * So, we need to add a special mount option to scan for
3418          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3419          */
3420         for (i = 0; i < 1; i++) {
3421                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3422                 if (ret)
3423                         continue;
3424
3425                 super = (struct btrfs_super_block *)bh->b_data;
3426
3427                 if (!latest || btrfs_super_generation(super) > transid) {
3428                         brelse(latest);
3429                         latest = bh;
3430                         transid = btrfs_super_generation(super);
3431                 } else {
3432                         brelse(bh);
3433                 }
3434         }
3435
3436         if (!latest)
3437                 return ERR_PTR(ret);
3438
3439         return latest;
3440 }
3441
3442 /*
3443  * Write superblock @sb to the @device. Do not wait for completion, all the
3444  * buffer heads we write are pinned.
3445  *
3446  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3447  * the expected device size at commit time. Note that max_mirrors must be
3448  * same for write and wait phases.
3449  *
3450  * Return number of errors when buffer head is not found or submission fails.
3451  */
3452 static int write_dev_supers(struct btrfs_device *device,
3453                             struct btrfs_super_block *sb, int max_mirrors)
3454 {
3455         struct btrfs_fs_info *fs_info = device->fs_info;
3456         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3457         struct buffer_head *bh;
3458         int i;
3459         int ret;
3460         int errors = 0;
3461         u64 bytenr;
3462         int op_flags;
3463
3464         if (max_mirrors == 0)
3465                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3466
3467         shash->tfm = fs_info->csum_shash;
3468
3469         for (i = 0; i < max_mirrors; i++) {
3470                 bytenr = btrfs_sb_offset(i);
3471                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3472                     device->commit_total_bytes)
3473                         break;
3474
3475                 btrfs_set_super_bytenr(sb, bytenr);
3476
3477                 crypto_shash_init(shash);
3478                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3479                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3480                 crypto_shash_final(shash, sb->csum);
3481
3482                 /* One reference for us, and we leave it for the caller */
3483                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3484                               BTRFS_SUPER_INFO_SIZE);
3485                 if (!bh) {
3486                         btrfs_err(device->fs_info,
3487                             "couldn't get super buffer head for bytenr %llu",
3488                             bytenr);
3489                         errors++;
3490                         continue;
3491                 }
3492
3493                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3494
3495                 /* one reference for submit_bh */
3496                 get_bh(bh);
3497
3498                 set_buffer_uptodate(bh);
3499                 lock_buffer(bh);
3500                 bh->b_end_io = btrfs_end_buffer_write_sync;
3501                 bh->b_private = device;
3502
3503                 /*
3504                  * we fua the first super.  The others we allow
3505                  * to go down lazy.
3506                  */
3507                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3508                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3509                         op_flags |= REQ_FUA;
3510                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3511                 if (ret)
3512                         errors++;
3513         }
3514         return errors < i ? 0 : -1;
3515 }
3516
3517 /*
3518  * Wait for write completion of superblocks done by write_dev_supers,
3519  * @max_mirrors same for write and wait phases.
3520  *
3521  * Return number of errors when buffer head is not found or not marked up to
3522  * date.
3523  */
3524 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3525 {
3526         struct buffer_head *bh;
3527         int i;
3528         int errors = 0;
3529         bool primary_failed = false;
3530         u64 bytenr;
3531
3532         if (max_mirrors == 0)
3533                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3534
3535         for (i = 0; i < max_mirrors; i++) {
3536                 bytenr = btrfs_sb_offset(i);
3537                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3538                     device->commit_total_bytes)
3539                         break;
3540
3541                 bh = __find_get_block(device->bdev,
3542                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3543                                       BTRFS_SUPER_INFO_SIZE);
3544                 if (!bh) {
3545                         errors++;
3546                         if (i == 0)
3547                                 primary_failed = true;
3548                         continue;
3549                 }
3550                 wait_on_buffer(bh);
3551                 if (!buffer_uptodate(bh)) {
3552                         errors++;
3553                         if (i == 0)
3554                                 primary_failed = true;
3555                 }
3556
3557                 /* drop our reference */
3558                 brelse(bh);
3559
3560                 /* drop the reference from the writing run */
3561                 brelse(bh);
3562         }
3563
3564         /* log error, force error return */
3565         if (primary_failed) {
3566                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3567                           device->devid);
3568                 return -1;
3569         }
3570
3571         return errors < i ? 0 : -1;
3572 }
3573
3574 /*
3575  * endio for the write_dev_flush, this will wake anyone waiting
3576  * for the barrier when it is done
3577  */
3578 static void btrfs_end_empty_barrier(struct bio *bio)
3579 {
3580         complete(bio->bi_private);
3581 }
3582
3583 /*
3584  * Submit a flush request to the device if it supports it. Error handling is
3585  * done in the waiting counterpart.
3586  */
3587 static void write_dev_flush(struct btrfs_device *device)
3588 {
3589         struct request_queue *q = bdev_get_queue(device->bdev);
3590         struct bio *bio = device->flush_bio;
3591
3592         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3593                 return;
3594
3595         bio_reset(bio);
3596         bio->bi_end_io = btrfs_end_empty_barrier;
3597         bio_set_dev(bio, device->bdev);
3598         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3599         init_completion(&device->flush_wait);
3600         bio->bi_private = &device->flush_wait;
3601
3602         btrfsic_submit_bio(bio);
3603         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3604 }
3605
3606 /*
3607  * If the flush bio has been submitted by write_dev_flush, wait for it.
3608  */
3609 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3610 {
3611         struct bio *bio = device->flush_bio;
3612
3613         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3614                 return BLK_STS_OK;
3615
3616         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3617         wait_for_completion_io(&device->flush_wait);
3618
3619         return bio->bi_status;
3620 }
3621
3622 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3623 {
3624         if (!btrfs_check_rw_degradable(fs_info, NULL))
3625                 return -EIO;
3626         return 0;
3627 }
3628
3629 /*
3630  * send an empty flush down to each device in parallel,
3631  * then wait for them
3632  */
3633 static int barrier_all_devices(struct btrfs_fs_info *info)
3634 {
3635         struct list_head *head;
3636         struct btrfs_device *dev;
3637         int errors_wait = 0;
3638         blk_status_t ret;
3639
3640         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3641         /* send down all the barriers */
3642         head = &info->fs_devices->devices;
3643         list_for_each_entry(dev, head, dev_list) {
3644                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3645                         continue;
3646                 if (!dev->bdev)
3647                         continue;
3648                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3649                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3650                         continue;
3651
3652                 write_dev_flush(dev);
3653                 dev->last_flush_error = BLK_STS_OK;
3654         }
3655
3656         /* wait for all the barriers */
3657         list_for_each_entry(dev, head, dev_list) {
3658                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3659                         continue;
3660                 if (!dev->bdev) {
3661                         errors_wait++;
3662                         continue;
3663                 }
3664                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3665                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3666                         continue;
3667
3668                 ret = wait_dev_flush(dev);
3669                 if (ret) {
3670                         dev->last_flush_error = ret;
3671                         btrfs_dev_stat_inc_and_print(dev,
3672                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3673                         errors_wait++;
3674                 }
3675         }
3676
3677         if (errors_wait) {
3678                 /*
3679                  * At some point we need the status of all disks
3680                  * to arrive at the volume status. So error checking
3681                  * is being pushed to a separate loop.
3682                  */
3683                 return check_barrier_error(info);
3684         }
3685         return 0;
3686 }
3687
3688 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3689 {
3690         int raid_type;
3691         int min_tolerated = INT_MAX;
3692
3693         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3694             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3695                 min_tolerated = min_t(int, min_tolerated,
3696                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3697                                     tolerated_failures);
3698
3699         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3700                 if (raid_type == BTRFS_RAID_SINGLE)
3701                         continue;
3702                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3703                         continue;
3704                 min_tolerated = min_t(int, min_tolerated,
3705                                     btrfs_raid_array[raid_type].
3706                                     tolerated_failures);
3707         }
3708
3709         if (min_tolerated == INT_MAX) {
3710                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3711                 min_tolerated = 0;
3712         }
3713
3714         return min_tolerated;
3715 }
3716
3717 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3718 {
3719         struct list_head *head;
3720         struct btrfs_device *dev;
3721         struct btrfs_super_block *sb;
3722         struct btrfs_dev_item *dev_item;
3723         int ret;
3724         int do_barriers;
3725         int max_errors;
3726         int total_errors = 0;
3727         u64 flags;
3728
3729         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3730
3731         /*
3732          * max_mirrors == 0 indicates we're from commit_transaction,
3733          * not from fsync where the tree roots in fs_info have not
3734          * been consistent on disk.
3735          */
3736         if (max_mirrors == 0)
3737                 backup_super_roots(fs_info);
3738
3739         sb = fs_info->super_for_commit;
3740         dev_item = &sb->dev_item;
3741
3742         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3743         head = &fs_info->fs_devices->devices;
3744         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3745
3746         if (do_barriers) {
3747                 ret = barrier_all_devices(fs_info);
3748                 if (ret) {
3749                         mutex_unlock(
3750                                 &fs_info->fs_devices->device_list_mutex);
3751                         btrfs_handle_fs_error(fs_info, ret,
3752                                               "errors while submitting device barriers.");
3753                         return ret;
3754                 }
3755         }
3756
3757         list_for_each_entry(dev, head, dev_list) {
3758                 if (!dev->bdev) {
3759                         total_errors++;
3760                         continue;
3761                 }
3762                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3763                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3764                         continue;
3765
3766                 btrfs_set_stack_device_generation(dev_item, 0);
3767                 btrfs_set_stack_device_type(dev_item, dev->type);
3768                 btrfs_set_stack_device_id(dev_item, dev->devid);
3769                 btrfs_set_stack_device_total_bytes(dev_item,
3770                                                    dev->commit_total_bytes);
3771                 btrfs_set_stack_device_bytes_used(dev_item,
3772                                                   dev->commit_bytes_used);
3773                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3774                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3775                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3776                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3777                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3778                        BTRFS_FSID_SIZE);
3779
3780                 flags = btrfs_super_flags(sb);
3781                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3782
3783                 ret = btrfs_validate_write_super(fs_info, sb);
3784                 if (ret < 0) {
3785                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3786                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3787                                 "unexpected superblock corruption detected");
3788                         return -EUCLEAN;
3789                 }
3790
3791                 ret = write_dev_supers(dev, sb, max_mirrors);
3792                 if (ret)
3793                         total_errors++;
3794         }
3795         if (total_errors > max_errors) {
3796                 btrfs_err(fs_info, "%d errors while writing supers",
3797                           total_errors);
3798                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3799
3800                 /* FUA is masked off if unsupported and can't be the reason */
3801                 btrfs_handle_fs_error(fs_info, -EIO,
3802                                       "%d errors while writing supers",
3803                                       total_errors);
3804                 return -EIO;
3805         }
3806
3807         total_errors = 0;
3808         list_for_each_entry(dev, head, dev_list) {
3809                 if (!dev->bdev)
3810                         continue;
3811                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3812                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3813                         continue;
3814
3815                 ret = wait_dev_supers(dev, max_mirrors);
3816                 if (ret)
3817                         total_errors++;
3818         }
3819         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3820         if (total_errors > max_errors) {
3821                 btrfs_handle_fs_error(fs_info, -EIO,
3822                                       "%d errors while writing supers",
3823                                       total_errors);
3824                 return -EIO;
3825         }
3826         return 0;
3827 }
3828
3829 /* Drop a fs root from the radix tree and free it. */
3830 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3831                                   struct btrfs_root *root)
3832 {
3833         spin_lock(&fs_info->fs_roots_radix_lock);
3834         radix_tree_delete(&fs_info->fs_roots_radix,
3835                           (unsigned long)root->root_key.objectid);
3836         spin_unlock(&fs_info->fs_roots_radix_lock);
3837
3838         if (btrfs_root_refs(&root->root_item) == 0)
3839                 synchronize_srcu(&fs_info->subvol_srcu);
3840
3841         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3842                 btrfs_free_log(NULL, root);
3843                 if (root->reloc_root) {
3844                         free_extent_buffer(root->reloc_root->node);
3845                         free_extent_buffer(root->reloc_root->commit_root);
3846                         btrfs_put_fs_root(root->reloc_root);
3847                         root->reloc_root = NULL;
3848                 }
3849         }
3850
3851         if (root->free_ino_pinned)
3852                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3853         if (root->free_ino_ctl)
3854                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3855         btrfs_free_fs_root(root);
3856 }
3857
3858 void btrfs_free_fs_root(struct btrfs_root *root)
3859 {
3860         iput(root->ino_cache_inode);
3861         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3862         if (root->anon_dev)
3863                 free_anon_bdev(root->anon_dev);
3864         if (root->subv_writers)
3865                 btrfs_free_subvolume_writers(root->subv_writers);
3866         free_extent_buffer(root->node);
3867         free_extent_buffer(root->commit_root);
3868         kfree(root->free_ino_ctl);
3869         kfree(root->free_ino_pinned);
3870         btrfs_put_fs_root(root);
3871 }
3872
3873 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3874 {
3875         u64 root_objectid = 0;
3876         struct btrfs_root *gang[8];
3877         int i = 0;
3878         int err = 0;
3879         unsigned int ret = 0;
3880         int index;
3881
3882         while (1) {
3883                 index = srcu_read_lock(&fs_info->subvol_srcu);
3884                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3885                                              (void **)gang, root_objectid,
3886                                              ARRAY_SIZE(gang));
3887                 if (!ret) {
3888                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3889                         break;
3890                 }
3891                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3892
3893                 for (i = 0; i < ret; i++) {
3894                         /* Avoid to grab roots in dead_roots */
3895                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3896                                 gang[i] = NULL;
3897                                 continue;
3898                         }
3899                         /* grab all the search result for later use */
3900                         gang[i] = btrfs_grab_fs_root(gang[i]);
3901                 }
3902                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3903
3904                 for (i = 0; i < ret; i++) {
3905                         if (!gang[i])
3906                                 continue;
3907                         root_objectid = gang[i]->root_key.objectid;
3908                         err = btrfs_orphan_cleanup(gang[i]);
3909                         if (err)
3910                                 break;
3911                         btrfs_put_fs_root(gang[i]);
3912                 }
3913                 root_objectid++;
3914         }
3915
3916         /* release the uncleaned roots due to error */
3917         for (; i < ret; i++) {
3918                 if (gang[i])
3919                         btrfs_put_fs_root(gang[i]);
3920         }
3921         return err;
3922 }
3923
3924 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3925 {
3926         struct btrfs_root *root = fs_info->tree_root;
3927         struct btrfs_trans_handle *trans;
3928
3929         mutex_lock(&fs_info->cleaner_mutex);
3930         btrfs_run_delayed_iputs(fs_info);
3931         mutex_unlock(&fs_info->cleaner_mutex);
3932         wake_up_process(fs_info->cleaner_kthread);
3933
3934         /* wait until ongoing cleanup work done */
3935         down_write(&fs_info->cleanup_work_sem);
3936         up_write(&fs_info->cleanup_work_sem);
3937
3938         trans = btrfs_join_transaction(root);
3939         if (IS_ERR(trans))
3940                 return PTR_ERR(trans);
3941         return btrfs_commit_transaction(trans);
3942 }
3943
3944 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3945 {
3946         int ret;
3947
3948         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3949         /*
3950          * We don't want the cleaner to start new transactions, add more delayed
3951          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3952          * because that frees the task_struct, and the transaction kthread might
3953          * still try to wake up the cleaner.
3954          */
3955         kthread_park(fs_info->cleaner_kthread);
3956
3957         /* wait for the qgroup rescan worker to stop */
3958         btrfs_qgroup_wait_for_completion(fs_info, false);
3959
3960         /* wait for the uuid_scan task to finish */
3961         down(&fs_info->uuid_tree_rescan_sem);
3962         /* avoid complains from lockdep et al., set sem back to initial state */
3963         up(&fs_info->uuid_tree_rescan_sem);
3964
3965         /* pause restriper - we want to resume on mount */
3966         btrfs_pause_balance(fs_info);
3967
3968         btrfs_dev_replace_suspend_for_unmount(fs_info);
3969
3970         btrfs_scrub_cancel(fs_info);
3971
3972         /* wait for any defraggers to finish */
3973         wait_event(fs_info->transaction_wait,
3974                    (atomic_read(&fs_info->defrag_running) == 0));
3975
3976         /* clear out the rbtree of defraggable inodes */
3977         btrfs_cleanup_defrag_inodes(fs_info);
3978
3979         cancel_work_sync(&fs_info->async_reclaim_work);
3980
3981         if (!sb_rdonly(fs_info->sb)) {
3982                 /*
3983                  * The cleaner kthread is stopped, so do one final pass over
3984                  * unused block groups.
3985                  */
3986                 btrfs_delete_unused_bgs(fs_info);
3987
3988                 ret = btrfs_commit_super(fs_info);
3989                 if (ret)
3990                         btrfs_err(fs_info, "commit super ret %d", ret);
3991         }
3992
3993         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3994             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3995                 btrfs_error_commit_super(fs_info);
3996
3997         kthread_stop(fs_info->transaction_kthread);
3998         kthread_stop(fs_info->cleaner_kthread);
3999
4000         ASSERT(list_empty(&fs_info->delayed_iputs));
4001         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4002
4003         btrfs_free_qgroup_config(fs_info);
4004         ASSERT(list_empty(&fs_info->delalloc_roots));
4005
4006         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4007                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4008                        percpu_counter_sum(&fs_info->delalloc_bytes));
4009         }
4010
4011         if (percpu_counter_sum(&fs_info->dio_bytes))
4012                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4013                            percpu_counter_sum(&fs_info->dio_bytes));
4014
4015         btrfs_sysfs_remove_mounted(fs_info);
4016         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4017
4018         btrfs_free_fs_roots(fs_info);
4019
4020         btrfs_put_block_group_cache(fs_info);
4021
4022         /*
4023          * we must make sure there is not any read request to
4024          * submit after we stopping all workers.
4025          */
4026         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4027         btrfs_stop_all_workers(fs_info);
4028
4029         btrfs_free_block_groups(fs_info);
4030
4031         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4032         free_root_pointers(fs_info, true);
4033
4034         iput(fs_info->btree_inode);
4035
4036 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4037         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4038                 btrfsic_unmount(fs_info->fs_devices);
4039 #endif
4040
4041         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4042         btrfs_close_devices(fs_info->fs_devices);
4043
4044         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4045         percpu_counter_destroy(&fs_info->delalloc_bytes);
4046         percpu_counter_destroy(&fs_info->dio_bytes);
4047         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4048         cleanup_srcu_struct(&fs_info->subvol_srcu);
4049
4050         btrfs_free_csum_hash(fs_info);
4051         btrfs_free_stripe_hash_table(fs_info);
4052         btrfs_free_ref_cache(fs_info);
4053 }
4054
4055 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4056                           int atomic)
4057 {
4058         int ret;
4059         struct inode *btree_inode = buf->pages[0]->mapping->host;
4060
4061         ret = extent_buffer_uptodate(buf);
4062         if (!ret)
4063                 return ret;
4064
4065         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4066                                     parent_transid, atomic);
4067         if (ret == -EAGAIN)
4068                 return ret;
4069         return !ret;
4070 }
4071
4072 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4073 {
4074         struct btrfs_fs_info *fs_info;
4075         struct btrfs_root *root;
4076         u64 transid = btrfs_header_generation(buf);
4077         int was_dirty;
4078
4079 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4080         /*
4081          * This is a fast path so only do this check if we have sanity tests
4082          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4083          * outside of the sanity tests.
4084          */
4085         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4086                 return;
4087 #endif
4088         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4089         fs_info = root->fs_info;
4090         btrfs_assert_tree_locked(buf);
4091         if (transid != fs_info->generation)
4092                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4093                         buf->start, transid, fs_info->generation);
4094         was_dirty = set_extent_buffer_dirty(buf);
4095         if (!was_dirty)
4096                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4097                                          buf->len,
4098                                          fs_info->dirty_metadata_batch);
4099 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4100         /*
4101          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4102          * but item data not updated.
4103          * So here we should only check item pointers, not item data.
4104          */
4105         if (btrfs_header_level(buf) == 0 &&
4106             btrfs_check_leaf_relaxed(buf)) {
4107                 btrfs_print_leaf(buf);
4108                 ASSERT(0);
4109         }
4110 #endif
4111 }
4112
4113 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4114                                         int flush_delayed)
4115 {
4116         /*
4117          * looks as though older kernels can get into trouble with
4118          * this code, they end up stuck in balance_dirty_pages forever
4119          */
4120         int ret;
4121
4122         if (current->flags & PF_MEMALLOC)
4123                 return;
4124
4125         if (flush_delayed)
4126                 btrfs_balance_delayed_items(fs_info);
4127
4128         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4129                                      BTRFS_DIRTY_METADATA_THRESH,
4130                                      fs_info->dirty_metadata_batch);
4131         if (ret > 0) {
4132                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4133         }
4134 }
4135
4136 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4137 {
4138         __btrfs_btree_balance_dirty(fs_info, 1);
4139 }
4140
4141 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4142 {
4143         __btrfs_btree_balance_dirty(fs_info, 0);
4144 }
4145
4146 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4147                       struct btrfs_key *first_key)
4148 {
4149         return btree_read_extent_buffer_pages(buf, parent_transid,
4150                                               level, first_key);
4151 }
4152
4153 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4154 {
4155         /* cleanup FS via transaction */
4156         btrfs_cleanup_transaction(fs_info);
4157
4158         mutex_lock(&fs_info->cleaner_mutex);
4159         btrfs_run_delayed_iputs(fs_info);
4160         mutex_unlock(&fs_info->cleaner_mutex);
4161
4162         down_write(&fs_info->cleanup_work_sem);
4163         up_write(&fs_info->cleanup_work_sem);
4164 }
4165
4166 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4167 {
4168         struct btrfs_ordered_extent *ordered;
4169
4170         spin_lock(&root->ordered_extent_lock);
4171         /*
4172          * This will just short circuit the ordered completion stuff which will
4173          * make sure the ordered extent gets properly cleaned up.
4174          */
4175         list_for_each_entry(ordered, &root->ordered_extents,
4176                             root_extent_list)
4177                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4178         spin_unlock(&root->ordered_extent_lock);
4179 }
4180
4181 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4182 {
4183         struct btrfs_root *root;
4184         struct list_head splice;
4185
4186         INIT_LIST_HEAD(&splice);
4187
4188         spin_lock(&fs_info->ordered_root_lock);
4189         list_splice_init(&fs_info->ordered_roots, &splice);
4190         while (!list_empty(&splice)) {
4191                 root = list_first_entry(&splice, struct btrfs_root,
4192                                         ordered_root);
4193                 list_move_tail(&root->ordered_root,
4194                                &fs_info->ordered_roots);
4195
4196                 spin_unlock(&fs_info->ordered_root_lock);
4197                 btrfs_destroy_ordered_extents(root);
4198
4199                 cond_resched();
4200                 spin_lock(&fs_info->ordered_root_lock);
4201         }
4202         spin_unlock(&fs_info->ordered_root_lock);
4203
4204         /*
4205          * We need this here because if we've been flipped read-only we won't
4206          * get sync() from the umount, so we need to make sure any ordered
4207          * extents that haven't had their dirty pages IO start writeout yet
4208          * actually get run and error out properly.
4209          */
4210         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4211 }
4212
4213 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4214                                       struct btrfs_fs_info *fs_info)
4215 {
4216         struct rb_node *node;
4217         struct btrfs_delayed_ref_root *delayed_refs;
4218         struct btrfs_delayed_ref_node *ref;
4219         int ret = 0;
4220
4221         delayed_refs = &trans->delayed_refs;
4222
4223         spin_lock(&delayed_refs->lock);
4224         if (atomic_read(&delayed_refs->num_entries) == 0) {
4225                 spin_unlock(&delayed_refs->lock);
4226                 btrfs_info(fs_info, "delayed_refs has NO entry");
4227                 return ret;
4228         }
4229
4230         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4231                 struct btrfs_delayed_ref_head *head;
4232                 struct rb_node *n;
4233                 bool pin_bytes = false;
4234
4235                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4236                                 href_node);
4237                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4238                         continue;
4239
4240                 spin_lock(&head->lock);
4241                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4242                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4243                                        ref_node);
4244                         ref->in_tree = 0;
4245                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4246                         RB_CLEAR_NODE(&ref->ref_node);
4247                         if (!list_empty(&ref->add_list))
4248                                 list_del(&ref->add_list);
4249                         atomic_dec(&delayed_refs->num_entries);
4250                         btrfs_put_delayed_ref(ref);
4251                 }
4252                 if (head->must_insert_reserved)
4253                         pin_bytes = true;
4254                 btrfs_free_delayed_extent_op(head->extent_op);
4255                 btrfs_delete_ref_head(delayed_refs, head);
4256                 spin_unlock(&head->lock);
4257                 spin_unlock(&delayed_refs->lock);
4258                 mutex_unlock(&head->mutex);
4259
4260                 if (pin_bytes)
4261                         btrfs_pin_extent(fs_info, head->bytenr,
4262                                          head->num_bytes, 1);
4263                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4264                 btrfs_put_delayed_ref_head(head);
4265                 cond_resched();
4266                 spin_lock(&delayed_refs->lock);
4267         }
4268
4269         spin_unlock(&delayed_refs->lock);
4270
4271         return ret;
4272 }
4273
4274 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4275 {
4276         struct btrfs_inode *btrfs_inode;
4277         struct list_head splice;
4278
4279         INIT_LIST_HEAD(&splice);
4280
4281         spin_lock(&root->delalloc_lock);
4282         list_splice_init(&root->delalloc_inodes, &splice);
4283
4284         while (!list_empty(&splice)) {
4285                 struct inode *inode = NULL;
4286                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4287                                                delalloc_inodes);
4288                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4289                 spin_unlock(&root->delalloc_lock);
4290
4291                 /*
4292                  * Make sure we get a live inode and that it'll not disappear
4293                  * meanwhile.
4294                  */
4295                 inode = igrab(&btrfs_inode->vfs_inode);
4296                 if (inode) {
4297                         invalidate_inode_pages2(inode->i_mapping);
4298                         iput(inode);
4299                 }
4300                 spin_lock(&root->delalloc_lock);
4301         }
4302         spin_unlock(&root->delalloc_lock);
4303 }
4304
4305 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4306 {
4307         struct btrfs_root *root;
4308         struct list_head splice;
4309
4310         INIT_LIST_HEAD(&splice);
4311
4312         spin_lock(&fs_info->delalloc_root_lock);
4313         list_splice_init(&fs_info->delalloc_roots, &splice);
4314         while (!list_empty(&splice)) {
4315                 root = list_first_entry(&splice, struct btrfs_root,
4316                                          delalloc_root);
4317                 root = btrfs_grab_fs_root(root);
4318                 BUG_ON(!root);
4319                 spin_unlock(&fs_info->delalloc_root_lock);
4320
4321                 btrfs_destroy_delalloc_inodes(root);
4322                 btrfs_put_fs_root(root);
4323
4324                 spin_lock(&fs_info->delalloc_root_lock);
4325         }
4326         spin_unlock(&fs_info->delalloc_root_lock);
4327 }
4328
4329 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4330                                         struct extent_io_tree *dirty_pages,
4331                                         int mark)
4332 {
4333         int ret;
4334         struct extent_buffer *eb;
4335         u64 start = 0;
4336         u64 end;
4337
4338         while (1) {
4339                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4340                                             mark, NULL);
4341                 if (ret)
4342                         break;
4343
4344                 clear_extent_bits(dirty_pages, start, end, mark);
4345                 while (start <= end) {
4346                         eb = find_extent_buffer(fs_info, start);
4347                         start += fs_info->nodesize;
4348                         if (!eb)
4349                                 continue;
4350                         wait_on_extent_buffer_writeback(eb);
4351
4352                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4353                                                &eb->bflags))
4354                                 clear_extent_buffer_dirty(eb);
4355                         free_extent_buffer_stale(eb);
4356                 }
4357         }
4358
4359         return ret;
4360 }
4361
4362 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4363                                        struct extent_io_tree *pinned_extents)
4364 {
4365         struct extent_io_tree *unpin;
4366         u64 start;
4367         u64 end;
4368         int ret;
4369         bool loop = true;
4370
4371         unpin = pinned_extents;
4372 again:
4373         while (1) {
4374                 struct extent_state *cached_state = NULL;
4375
4376                 /*
4377                  * The btrfs_finish_extent_commit() may get the same range as
4378                  * ours between find_first_extent_bit and clear_extent_dirty.
4379                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4380                  * the same extent range.
4381                  */
4382                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4383                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4384                                             EXTENT_DIRTY, &cached_state);
4385                 if (ret) {
4386                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4387                         break;
4388                 }
4389
4390                 clear_extent_dirty(unpin, start, end, &cached_state);
4391                 free_extent_state(cached_state);
4392                 btrfs_error_unpin_extent_range(fs_info, start, end);
4393                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4394                 cond_resched();
4395         }
4396
4397         if (loop) {
4398                 if (unpin == &fs_info->freed_extents[0])
4399                         unpin = &fs_info->freed_extents[1];
4400                 else
4401                         unpin = &fs_info->freed_extents[0];
4402                 loop = false;
4403                 goto again;
4404         }
4405
4406         return 0;
4407 }
4408
4409 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4410 {
4411         struct inode *inode;
4412
4413         inode = cache->io_ctl.inode;
4414         if (inode) {
4415                 invalidate_inode_pages2(inode->i_mapping);
4416                 BTRFS_I(inode)->generation = 0;
4417                 cache->io_ctl.inode = NULL;
4418                 iput(inode);
4419         }
4420         btrfs_put_block_group(cache);
4421 }
4422
4423 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4424                              struct btrfs_fs_info *fs_info)
4425 {
4426         struct btrfs_block_group *cache;
4427
4428         spin_lock(&cur_trans->dirty_bgs_lock);
4429         while (!list_empty(&cur_trans->dirty_bgs)) {
4430                 cache = list_first_entry(&cur_trans->dirty_bgs,
4431                                          struct btrfs_block_group,
4432                                          dirty_list);
4433
4434                 if (!list_empty(&cache->io_list)) {
4435                         spin_unlock(&cur_trans->dirty_bgs_lock);
4436                         list_del_init(&cache->io_list);
4437                         btrfs_cleanup_bg_io(cache);
4438                         spin_lock(&cur_trans->dirty_bgs_lock);
4439                 }
4440
4441                 list_del_init(&cache->dirty_list);
4442                 spin_lock(&cache->lock);
4443                 cache->disk_cache_state = BTRFS_DC_ERROR;
4444                 spin_unlock(&cache->lock);
4445
4446                 spin_unlock(&cur_trans->dirty_bgs_lock);
4447                 btrfs_put_block_group(cache);
4448                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4449                 spin_lock(&cur_trans->dirty_bgs_lock);
4450         }
4451         spin_unlock(&cur_trans->dirty_bgs_lock);
4452
4453         /*
4454          * Refer to the definition of io_bgs member for details why it's safe
4455          * to use it without any locking
4456          */
4457         while (!list_empty(&cur_trans->io_bgs)) {
4458                 cache = list_first_entry(&cur_trans->io_bgs,
4459                                          struct btrfs_block_group,
4460                                          io_list);
4461
4462                 list_del_init(&cache->io_list);
4463                 spin_lock(&cache->lock);
4464                 cache->disk_cache_state = BTRFS_DC_ERROR;
4465                 spin_unlock(&cache->lock);
4466                 btrfs_cleanup_bg_io(cache);
4467         }
4468 }
4469
4470 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4471                                    struct btrfs_fs_info *fs_info)
4472 {
4473         struct btrfs_device *dev, *tmp;
4474
4475         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4476         ASSERT(list_empty(&cur_trans->dirty_bgs));
4477         ASSERT(list_empty(&cur_trans->io_bgs));
4478
4479         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4480                                  post_commit_list) {
4481                 list_del_init(&dev->post_commit_list);
4482         }
4483
4484         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4485
4486         cur_trans->state = TRANS_STATE_COMMIT_START;
4487         wake_up(&fs_info->transaction_blocked_wait);
4488
4489         cur_trans->state = TRANS_STATE_UNBLOCKED;
4490         wake_up(&fs_info->transaction_wait);
4491
4492         btrfs_destroy_delayed_inodes(fs_info);
4493         btrfs_assert_delayed_root_empty(fs_info);
4494
4495         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4496                                      EXTENT_DIRTY);
4497         btrfs_destroy_pinned_extent(fs_info,
4498                                     fs_info->pinned_extents);
4499
4500         cur_trans->state =TRANS_STATE_COMPLETED;
4501         wake_up(&cur_trans->commit_wait);
4502 }
4503
4504 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4505 {
4506         struct btrfs_transaction *t;
4507
4508         mutex_lock(&fs_info->transaction_kthread_mutex);
4509
4510         spin_lock(&fs_info->trans_lock);
4511         while (!list_empty(&fs_info->trans_list)) {
4512                 t = list_first_entry(&fs_info->trans_list,
4513                                      struct btrfs_transaction, list);
4514                 if (t->state >= TRANS_STATE_COMMIT_START) {
4515                         refcount_inc(&t->use_count);
4516                         spin_unlock(&fs_info->trans_lock);
4517                         btrfs_wait_for_commit(fs_info, t->transid);
4518                         btrfs_put_transaction(t);
4519                         spin_lock(&fs_info->trans_lock);
4520                         continue;
4521                 }
4522                 if (t == fs_info->running_transaction) {
4523                         t->state = TRANS_STATE_COMMIT_DOING;
4524                         spin_unlock(&fs_info->trans_lock);
4525                         /*
4526                          * We wait for 0 num_writers since we don't hold a trans
4527                          * handle open currently for this transaction.
4528                          */
4529                         wait_event(t->writer_wait,
4530                                    atomic_read(&t->num_writers) == 0);
4531                 } else {
4532                         spin_unlock(&fs_info->trans_lock);
4533                 }
4534                 btrfs_cleanup_one_transaction(t, fs_info);
4535
4536                 spin_lock(&fs_info->trans_lock);
4537                 if (t == fs_info->running_transaction)
4538                         fs_info->running_transaction = NULL;
4539                 list_del_init(&t->list);
4540                 spin_unlock(&fs_info->trans_lock);
4541
4542                 btrfs_put_transaction(t);
4543                 trace_btrfs_transaction_commit(fs_info->tree_root);
4544                 spin_lock(&fs_info->trans_lock);
4545         }
4546         spin_unlock(&fs_info->trans_lock);
4547         btrfs_destroy_all_ordered_extents(fs_info);
4548         btrfs_destroy_delayed_inodes(fs_info);
4549         btrfs_assert_delayed_root_empty(fs_info);
4550         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4551         btrfs_destroy_all_delalloc_inodes(fs_info);
4552         mutex_unlock(&fs_info->transaction_kthread_mutex);
4553
4554         return 0;
4555 }
4556
4557 static const struct extent_io_ops btree_extent_io_ops = {
4558         /* mandatory callbacks */
4559         .submit_bio_hook = btree_submit_bio_hook,
4560         .readpage_end_io_hook = btree_readpage_end_io_hook,
4561 };
This page took 0.290109 seconds and 4 git commands to generate.