2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
48 #include <asm/cpu-type.h>
51 #include <asm/fpu_emulator.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
109 static void show_raw_backtrace(unsigned long reg29)
111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
125 if (__kernel_text_address(addr))
131 #ifdef CONFIG_KALLSYMS
133 static int __init set_raw_show_trace(char *str)
138 __setup("raw_show_trace", set_raw_show_trace);
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
145 unsigned long pc = regs->cp0_epc;
150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 show_raw_backtrace(sp);
154 printk("Call Trace:\n");
157 pc = unwind_stack(task, &sp, pc, &ra);
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
166 static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
169 const int field = 2 * sizeof(unsigned long);
172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 if (i && ((i % (64 / field)) == 0)) {
186 if (__get_user(stackdata, sp++)) {
187 pr_cont(" (Bad stack address)");
191 pr_cont(" %0*lx", field, stackdata);
195 show_backtrace(task, regs);
198 void show_stack(struct task_struct *task, unsigned long *sp)
201 mm_segment_t old_fs = get_fs();
203 regs.cp0_status = KSU_KERNEL;
205 regs.regs[29] = (unsigned long)sp;
209 if (task && task != current) {
210 regs.regs[29] = task->thread.reg29;
212 regs.cp0_epc = task->thread.reg31;
213 #ifdef CONFIG_KGDB_KDB
214 } else if (atomic_read(&kgdb_active) != -1 &&
216 memcpy(®s, kdb_current_regs, sizeof(regs));
217 #endif /* CONFIG_KGDB_KDB */
219 prepare_frametrace(®s);
223 * show_stack() deals exclusively with kernel mode, so be sure to access
224 * the stack in the kernel (not user) address space.
227 show_stacktrace(task, ®s);
231 static void show_code(unsigned int __user *pc)
234 unsigned short __user *pc16 = NULL;
238 if ((unsigned long)pc & 1)
239 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
240 for(i = -3 ; i < 6 ; i++) {
242 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
243 pr_cont(" (Bad address in epc)\n");
246 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
251 static void __show_regs(const struct pt_regs *regs)
253 const int field = 2 * sizeof(unsigned long);
254 unsigned int cause = regs->cp0_cause;
255 unsigned int exccode;
258 show_regs_print_info(KERN_DEFAULT);
261 * Saved main processor registers
263 for (i = 0; i < 32; ) {
267 pr_cont(" %0*lx", field, 0UL);
268 else if (i == 26 || i == 27)
269 pr_cont(" %*s", field, "");
271 pr_cont(" %0*lx", field, regs->regs[i]);
278 #ifdef CONFIG_CPU_HAS_SMARTMIPS
279 printk("Acx : %0*lx\n", field, regs->acx);
281 if (MIPS_ISA_REV < 6) {
282 printk("Hi : %0*lx\n", field, regs->hi);
283 printk("Lo : %0*lx\n", field, regs->lo);
287 * Saved cp0 registers
289 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
290 (void *) regs->cp0_epc);
291 printk("ra : %0*lx %pS\n", field, regs->regs[31],
292 (void *) regs->regs[31]);
294 printk("Status: %08x ", (uint32_t) regs->cp0_status);
297 if (regs->cp0_status & ST0_KUO)
299 if (regs->cp0_status & ST0_IEO)
301 if (regs->cp0_status & ST0_KUP)
303 if (regs->cp0_status & ST0_IEP)
305 if (regs->cp0_status & ST0_KUC)
307 if (regs->cp0_status & ST0_IEC)
309 } else if (cpu_has_4kex) {
310 if (regs->cp0_status & ST0_KX)
312 if (regs->cp0_status & ST0_SX)
314 if (regs->cp0_status & ST0_UX)
316 switch (regs->cp0_status & ST0_KSU) {
321 pr_cont("SUPERVISOR ");
327 pr_cont("BAD_MODE ");
330 if (regs->cp0_status & ST0_ERL)
332 if (regs->cp0_status & ST0_EXL)
334 if (regs->cp0_status & ST0_IE)
339 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
340 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
342 if (1 <= exccode && exccode <= 5)
343 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
345 printk("PrId : %08x (%s)\n", read_c0_prid(),
350 * FIXME: really the generic show_regs should take a const pointer argument.
352 void show_regs(struct pt_regs *regs)
358 void show_registers(struct pt_regs *regs)
360 const int field = 2 * sizeof(unsigned long);
361 mm_segment_t old_fs = get_fs();
365 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
366 current->comm, current->pid, current_thread_info(), current,
367 field, current_thread_info()->tp_value);
368 if (cpu_has_userlocal) {
371 tls = read_c0_userlocal();
372 if (tls != current_thread_info()->tp_value)
373 printk("*HwTLS: %0*lx\n", field, tls);
376 if (!user_mode(regs))
377 /* Necessary for getting the correct stack content */
379 show_stacktrace(current, regs);
380 show_code((unsigned int __user *) regs->cp0_epc);
385 static DEFINE_RAW_SPINLOCK(die_lock);
387 void __noreturn die(const char *str, struct pt_regs *regs)
389 static int die_counter;
394 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
395 SIGSEGV) == NOTIFY_STOP)
399 raw_spin_lock_irq(&die_lock);
402 printk("%s[#%d]:\n", str, ++die_counter);
403 show_registers(regs);
404 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
405 raw_spin_unlock_irq(&die_lock);
410 panic("Fatal exception in interrupt");
413 panic("Fatal exception");
415 if (regs && kexec_should_crash(current))
421 extern struct exception_table_entry __start___dbe_table[];
422 extern struct exception_table_entry __stop___dbe_table[];
425 " .section __dbe_table, \"a\"\n"
428 /* Given an address, look for it in the exception tables. */
429 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
431 const struct exception_table_entry *e;
433 e = search_extable(__start___dbe_table,
434 __stop___dbe_table - __start___dbe_table, addr);
436 e = search_module_dbetables(addr);
440 asmlinkage void do_be(struct pt_regs *regs)
442 const int field = 2 * sizeof(unsigned long);
443 const struct exception_table_entry *fixup = NULL;
444 int data = regs->cp0_cause & 4;
445 int action = MIPS_BE_FATAL;
446 enum ctx_state prev_state;
448 prev_state = exception_enter();
449 /* XXX For now. Fixme, this searches the wrong table ... */
450 if (data && !user_mode(regs))
451 fixup = search_dbe_tables(exception_epc(regs));
454 action = MIPS_BE_FIXUP;
456 if (board_be_handler)
457 action = board_be_handler(regs, fixup != NULL);
459 mips_cm_error_report();
462 case MIPS_BE_DISCARD:
466 regs->cp0_epc = fixup->nextinsn;
475 * Assume it would be too dangerous to continue ...
477 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
478 data ? "Data" : "Instruction",
479 field, regs->cp0_epc, field, regs->regs[31]);
480 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
481 SIGBUS) == NOTIFY_STOP)
484 die_if_kernel("Oops", regs);
488 exception_exit(prev_state);
492 * ll/sc, rdhwr, sync emulation
495 #define OPCODE 0xfc000000
496 #define BASE 0x03e00000
497 #define RT 0x001f0000
498 #define OFFSET 0x0000ffff
499 #define LL 0xc0000000
500 #define SC 0xe0000000
501 #define SPEC0 0x00000000
502 #define SPEC3 0x7c000000
503 #define RD 0x0000f800
504 #define FUNC 0x0000003f
505 #define SYNC 0x0000000f
506 #define RDHWR 0x0000003b
508 /* microMIPS definitions */
509 #define MM_POOL32A_FUNC 0xfc00ffff
510 #define MM_RDHWR 0x00006b3c
511 #define MM_RS 0x001f0000
512 #define MM_RT 0x03e00000
515 * The ll_bit is cleared by r*_switch.S
519 struct task_struct *ll_task;
521 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
523 unsigned long value, __user *vaddr;
527 * analyse the ll instruction that just caused a ri exception
528 * and put the referenced address to addr.
531 /* sign extend offset */
532 offset = opcode & OFFSET;
536 vaddr = (unsigned long __user *)
537 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
539 if ((unsigned long)vaddr & 3)
541 if (get_user(value, vaddr))
546 if (ll_task == NULL || ll_task == current) {
555 regs->regs[(opcode & RT) >> 16] = value;
560 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
562 unsigned long __user *vaddr;
567 * analyse the sc instruction that just caused a ri exception
568 * and put the referenced address to addr.
571 /* sign extend offset */
572 offset = opcode & OFFSET;
576 vaddr = (unsigned long __user *)
577 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
578 reg = (opcode & RT) >> 16;
580 if ((unsigned long)vaddr & 3)
585 if (ll_bit == 0 || ll_task != current) {
593 if (put_user(regs->regs[reg], vaddr))
602 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
603 * opcodes are supposed to result in coprocessor unusable exceptions if
604 * executed on ll/sc-less processors. That's the theory. In practice a
605 * few processors such as NEC's VR4100 throw reserved instruction exceptions
606 * instead, so we're doing the emulation thing in both exception handlers.
608 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
610 if ((opcode & OPCODE) == LL) {
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 return simulate_ll(regs, opcode);
615 if ((opcode & OPCODE) == SC) {
616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 return simulate_sc(regs, opcode);
621 return -1; /* Must be something else ... */
625 * Simulate trapping 'rdhwr' instructions to provide user accessible
626 * registers not implemented in hardware.
628 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
630 struct thread_info *ti = task_thread_info(current);
632 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
635 case MIPS_HWR_CPUNUM: /* CPU number */
636 regs->regs[rt] = smp_processor_id();
638 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
639 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
640 current_cpu_data.icache.linesz);
642 case MIPS_HWR_CC: /* Read count register */
643 regs->regs[rt] = read_c0_count();
645 case MIPS_HWR_CCRES: /* Count register resolution */
646 switch (current_cpu_type()) {
655 case MIPS_HWR_ULR: /* Read UserLocal register */
656 regs->regs[rt] = ti->tp_value;
663 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
665 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
666 int rd = (opcode & RD) >> 11;
667 int rt = (opcode & RT) >> 16;
669 simulate_rdhwr(regs, rd, rt);
677 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
679 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
680 int rd = (opcode & MM_RS) >> 16;
681 int rt = (opcode & MM_RT) >> 21;
682 simulate_rdhwr(regs, rd, rt);
690 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
692 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
693 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
698 return -1; /* Must be something else ... */
701 asmlinkage void do_ov(struct pt_regs *regs)
703 enum ctx_state prev_state;
705 prev_state = exception_enter();
706 die_if_kernel("Integer overflow", regs);
708 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
709 exception_exit(prev_state);
712 #ifdef CONFIG_MIPS_FP_SUPPORT
715 * Send SIGFPE according to FCSR Cause bits, which must have already
716 * been masked against Enable bits. This is impotant as Inexact can
717 * happen together with Overflow or Underflow, and `ptrace' can set
720 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
721 struct task_struct *tsk)
723 int si_code = FPE_FLTUNK;
725 if (fcr31 & FPU_CSR_INV_X)
726 si_code = FPE_FLTINV;
727 else if (fcr31 & FPU_CSR_DIV_X)
728 si_code = FPE_FLTDIV;
729 else if (fcr31 & FPU_CSR_OVF_X)
730 si_code = FPE_FLTOVF;
731 else if (fcr31 & FPU_CSR_UDF_X)
732 si_code = FPE_FLTUND;
733 else if (fcr31 & FPU_CSR_INE_X)
734 si_code = FPE_FLTRES;
736 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
742 struct vm_area_struct *vma;
749 force_fcr31_sig(fcr31, fault_addr, current);
753 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
757 down_read(¤t->mm->mmap_sem);
758 vma = find_vma(current->mm, (unsigned long)fault_addr);
759 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
760 si_code = SEGV_ACCERR;
762 si_code = SEGV_MAPERR;
763 up_read(¤t->mm->mmap_sem);
764 force_sig_fault(SIGSEGV, si_code, fault_addr);
773 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
774 unsigned long old_epc, unsigned long old_ra)
776 union mips_instruction inst = { .word = opcode };
777 void __user *fault_addr;
781 /* If it's obviously not an FP instruction, skip it */
782 switch (inst.i_format.opcode) {
796 * do_ri skipped over the instruction via compute_return_epc, undo
797 * that for the FPU emulator.
799 regs->cp0_epc = old_epc;
800 regs->regs[31] = old_ra;
802 /* Run the emulator */
803 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
807 * We can't allow the emulated instruction to leave any
808 * enabled Cause bits set in $fcr31.
810 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
811 current->thread.fpu.fcr31 &= ~fcr31;
813 /* Restore the hardware register state */
816 /* Send a signal if required. */
817 process_fpemu_return(sig, fault_addr, fcr31);
823 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
827 enum ctx_state prev_state;
828 void __user *fault_addr;
831 prev_state = exception_enter();
832 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
833 SIGFPE) == NOTIFY_STOP)
836 /* Clear FCSR.Cause before enabling interrupts */
837 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
840 die_if_kernel("FP exception in kernel code", regs);
842 if (fcr31 & FPU_CSR_UNI_X) {
844 * Unimplemented operation exception. If we've got the full
845 * software emulator on-board, let's use it...
847 * Force FPU to dump state into task/thread context. We're
848 * moving a lot of data here for what is probably a single
849 * instruction, but the alternative is to pre-decode the FP
850 * register operands before invoking the emulator, which seems
851 * a bit extreme for what should be an infrequent event.
854 /* Run the emulator */
855 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
859 * We can't allow the emulated instruction to leave any
860 * enabled Cause bits set in $fcr31.
862 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
863 current->thread.fpu.fcr31 &= ~fcr31;
865 /* Restore the hardware register state */
866 own_fpu(1); /* Using the FPU again. */
869 fault_addr = (void __user *) regs->cp0_epc;
872 /* Send a signal if required. */
873 process_fpemu_return(sig, fault_addr, fcr31);
876 exception_exit(prev_state);
880 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
881 * emulated more than some threshold number of instructions, force migration to
882 * a "CPU" that has FP support.
884 static void mt_ase_fp_affinity(void)
886 #ifdef CONFIG_MIPS_MT_FPAFF
887 if (mt_fpemul_threshold > 0 &&
888 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
890 * If there's no FPU present, or if the application has already
891 * restricted the allowed set to exclude any CPUs with FPUs,
892 * we'll skip the procedure.
894 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
897 current->thread.user_cpus_allowed
898 = current->cpus_mask;
899 cpumask_and(&tmask, ¤t->cpus_mask,
901 set_cpus_allowed_ptr(current, &tmask);
902 set_thread_flag(TIF_FPUBOUND);
905 #endif /* CONFIG_MIPS_MT_FPAFF */
908 #else /* !CONFIG_MIPS_FP_SUPPORT */
910 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
911 unsigned long old_epc, unsigned long old_ra)
916 #endif /* !CONFIG_MIPS_FP_SUPPORT */
918 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
923 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
924 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925 SIGTRAP) == NOTIFY_STOP)
927 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
929 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
930 SIGTRAP) == NOTIFY_STOP)
934 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
935 * insns, even for trap and break codes that indicate arithmetic
936 * failures. Weird ...
937 * But should we continue the brokenness??? --macro
942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 die_if_kernel(b, regs);
944 force_sig_fault(SIGFPE,
945 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
946 (void __user *) regs->cp0_epc);
949 die_if_kernel("Kernel bug detected", regs);
954 * This breakpoint code is used by the FPU emulator to retake
955 * control of the CPU after executing the instruction from the
956 * delay slot of an emulated branch.
958 * Terminate if exception was recognized as a delay slot return
959 * otherwise handle as normal.
961 if (do_dsemulret(regs))
964 die_if_kernel("Math emu break/trap", regs);
968 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
969 die_if_kernel(b, regs);
971 force_sig_fault(SIGTRAP, si_code, NULL);
978 asmlinkage void do_bp(struct pt_regs *regs)
980 unsigned long epc = msk_isa16_mode(exception_epc(regs));
981 unsigned int opcode, bcode;
982 enum ctx_state prev_state;
986 if (!user_mode(regs))
989 prev_state = exception_enter();
990 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
991 if (get_isa16_mode(regs->cp0_epc)) {
994 if (__get_user(instr[0], (u16 __user *)epc))
997 if (!cpu_has_mmips) {
999 bcode = (instr[0] >> 5) & 0x3f;
1000 } else if (mm_insn_16bit(instr[0])) {
1001 /* 16-bit microMIPS BREAK */
1002 bcode = instr[0] & 0xf;
1004 /* 32-bit microMIPS BREAK */
1005 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1007 opcode = (instr[0] << 16) | instr[1];
1008 bcode = (opcode >> 6) & ((1 << 20) - 1);
1011 if (__get_user(opcode, (unsigned int __user *)epc))
1013 bcode = (opcode >> 6) & ((1 << 20) - 1);
1017 * There is the ancient bug in the MIPS assemblers that the break
1018 * code starts left to bit 16 instead to bit 6 in the opcode.
1019 * Gas is bug-compatible, but not always, grrr...
1020 * We handle both cases with a simple heuristics. --macro
1022 if (bcode >= (1 << 10))
1023 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1026 * notify the kprobe handlers, if instruction is likely to
1031 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1032 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1036 case BRK_UPROBE_XOL:
1037 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1038 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1043 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1044 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1048 case BRK_KPROBE_SSTEPBP:
1049 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1050 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1058 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1062 exception_exit(prev_state);
1070 asmlinkage void do_tr(struct pt_regs *regs)
1072 u32 opcode, tcode = 0;
1073 enum ctx_state prev_state;
1076 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1079 if (!user_mode(regs))
1082 prev_state = exception_enter();
1083 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1084 if (get_isa16_mode(regs->cp0_epc)) {
1085 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1086 __get_user(instr[1], (u16 __user *)(epc + 2)))
1088 opcode = (instr[0] << 16) | instr[1];
1089 /* Immediate versions don't provide a code. */
1090 if (!(opcode & OPCODE))
1091 tcode = (opcode >> 12) & ((1 << 4) - 1);
1093 if (__get_user(opcode, (u32 __user *)epc))
1095 /* Immediate versions don't provide a code. */
1096 if (!(opcode & OPCODE))
1097 tcode = (opcode >> 6) & ((1 << 10) - 1);
1100 do_trap_or_bp(regs, tcode, 0, "Trap");
1104 exception_exit(prev_state);
1112 asmlinkage void do_ri(struct pt_regs *regs)
1114 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1115 unsigned long old_epc = regs->cp0_epc;
1116 unsigned long old31 = regs->regs[31];
1117 enum ctx_state prev_state;
1118 unsigned int opcode = 0;
1122 * Avoid any kernel code. Just emulate the R2 instruction
1123 * as quickly as possible.
1125 if (mipsr2_emulation && cpu_has_mips_r6 &&
1126 likely(user_mode(regs)) &&
1127 likely(get_user(opcode, epc) >= 0)) {
1128 unsigned long fcr31 = 0;
1130 status = mipsr2_decoder(regs, opcode, &fcr31);
1138 process_fpemu_return(status,
1139 ¤t->thread.cp0_baduaddr,
1147 prev_state = exception_enter();
1148 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1150 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1151 SIGILL) == NOTIFY_STOP)
1154 die_if_kernel("Reserved instruction in kernel code", regs);
1156 if (unlikely(compute_return_epc(regs) < 0))
1159 if (!get_isa16_mode(regs->cp0_epc)) {
1160 if (unlikely(get_user(opcode, epc) < 0))
1163 if (!cpu_has_llsc && status < 0)
1164 status = simulate_llsc(regs, opcode);
1167 status = simulate_rdhwr_normal(regs, opcode);
1170 status = simulate_sync(regs, opcode);
1173 status = simulate_fp(regs, opcode, old_epc, old31);
1174 } else if (cpu_has_mmips) {
1175 unsigned short mmop[2] = { 0 };
1177 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1179 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1182 opcode = (opcode << 16) | mmop[1];
1185 status = simulate_rdhwr_mm(regs, opcode);
1191 if (unlikely(status > 0)) {
1192 regs->cp0_epc = old_epc; /* Undo skip-over. */
1193 regs->regs[31] = old31;
1198 exception_exit(prev_state);
1202 * No lock; only written during early bootup by CPU 0.
1204 static RAW_NOTIFIER_HEAD(cu2_chain);
1206 int __ref register_cu2_notifier(struct notifier_block *nb)
1208 return raw_notifier_chain_register(&cu2_chain, nb);
1211 int cu2_notifier_call_chain(unsigned long val, void *v)
1213 return raw_notifier_call_chain(&cu2_chain, val, v);
1216 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1219 struct pt_regs *regs = data;
1221 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1222 "instruction", regs);
1228 #ifdef CONFIG_MIPS_FP_SUPPORT
1230 static int enable_restore_fp_context(int msa)
1232 int err, was_fpu_owner, prior_msa;
1235 /* Initialize context if it hasn't been used already */
1236 first_fp = init_fp_ctx(current);
1240 err = own_fpu_inatomic(1);
1243 set_thread_flag(TIF_USEDMSA);
1244 set_thread_flag(TIF_MSA_CTX_LIVE);
1251 * This task has formerly used the FP context.
1253 * If this thread has no live MSA vector context then we can simply
1254 * restore the scalar FP context. If it has live MSA vector context
1255 * (that is, it has or may have used MSA since last performing a
1256 * function call) then we'll need to restore the vector context. This
1257 * applies even if we're currently only executing a scalar FP
1258 * instruction. This is because if we were to later execute an MSA
1259 * instruction then we'd either have to:
1261 * - Restore the vector context & clobber any registers modified by
1262 * scalar FP instructions between now & then.
1266 * - Not restore the vector context & lose the most significant bits
1267 * of all vector registers.
1269 * Neither of those options is acceptable. We cannot restore the least
1270 * significant bits of the registers now & only restore the most
1271 * significant bits later because the most significant bits of any
1272 * vector registers whose aliased FP register is modified now will have
1273 * been zeroed. We'd have no way to know that when restoring the vector
1274 * context & thus may load an outdated value for the most significant
1275 * bits of a vector register.
1277 if (!msa && !thread_msa_context_live())
1281 * This task is using or has previously used MSA. Thus we require
1282 * that Status.FR == 1.
1285 was_fpu_owner = is_fpu_owner();
1286 err = own_fpu_inatomic(0);
1291 write_msa_csr(current->thread.fpu.msacsr);
1292 set_thread_flag(TIF_USEDMSA);
1295 * If this is the first time that the task is using MSA and it has
1296 * previously used scalar FP in this time slice then we already nave
1297 * FP context which we shouldn't clobber. We do however need to clear
1298 * the upper 64b of each vector register so that this task has no
1299 * opportunity to see data left behind by another.
1301 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1302 if (!prior_msa && was_fpu_owner) {
1310 * Restore the least significant 64b of each vector register
1311 * from the existing scalar FP context.
1313 _restore_fp(current);
1316 * The task has not formerly used MSA, so clear the upper 64b
1317 * of each vector register such that it cannot see data left
1318 * behind by another task.
1322 /* We need to restore the vector context. */
1323 restore_msa(current);
1325 /* Restore the scalar FP control & status register */
1327 write_32bit_cp1_register(CP1_STATUS,
1328 current->thread.fpu.fcr31);
1337 #else /* !CONFIG_MIPS_FP_SUPPORT */
1339 static int enable_restore_fp_context(int msa)
1344 #endif /* CONFIG_MIPS_FP_SUPPORT */
1346 asmlinkage void do_cpu(struct pt_regs *regs)
1348 enum ctx_state prev_state;
1349 unsigned int __user *epc;
1350 unsigned long old_epc, old31;
1351 unsigned int opcode;
1355 prev_state = exception_enter();
1356 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1359 die_if_kernel("do_cpu invoked from kernel context!", regs);
1363 epc = (unsigned int __user *)exception_epc(regs);
1364 old_epc = regs->cp0_epc;
1365 old31 = regs->regs[31];
1369 if (unlikely(compute_return_epc(regs) < 0))
1372 if (!get_isa16_mode(regs->cp0_epc)) {
1373 if (unlikely(get_user(opcode, epc) < 0))
1376 if (!cpu_has_llsc && status < 0)
1377 status = simulate_llsc(regs, opcode);
1383 if (unlikely(status > 0)) {
1384 regs->cp0_epc = old_epc; /* Undo skip-over. */
1385 regs->regs[31] = old31;
1391 #ifdef CONFIG_MIPS_FP_SUPPORT
1394 * The COP3 opcode space and consequently the CP0.Status.CU3
1395 * bit and the CP0.Cause.CE=3 encoding have been removed as
1396 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1397 * up the space has been reused for COP1X instructions, that
1398 * are enabled by the CP0.Status.CU1 bit and consequently
1399 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1400 * exceptions. Some FPU-less processors that implement one
1401 * of these ISAs however use this code erroneously for COP1X
1402 * instructions. Therefore we redirect this trap to the FP
1405 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1412 void __user *fault_addr;
1413 unsigned long fcr31;
1416 err = enable_restore_fp_context(0);
1418 if (raw_cpu_has_fpu && !err)
1421 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1425 * We can't allow the emulated instruction to leave
1426 * any enabled Cause bits set in $fcr31.
1428 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1429 current->thread.fpu.fcr31 &= ~fcr31;
1431 /* Send a signal if required. */
1432 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1433 mt_ase_fp_affinity();
1437 #else /* CONFIG_MIPS_FP_SUPPORT */
1442 #endif /* CONFIG_MIPS_FP_SUPPORT */
1445 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1449 exception_exit(prev_state);
1452 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1454 enum ctx_state prev_state;
1456 prev_state = exception_enter();
1457 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1458 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1459 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1462 /* Clear MSACSR.Cause before enabling interrupts */
1463 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1466 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1469 exception_exit(prev_state);
1472 asmlinkage void do_msa(struct pt_regs *regs)
1474 enum ctx_state prev_state;
1477 prev_state = exception_enter();
1479 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1484 die_if_kernel("do_msa invoked from kernel context!", regs);
1486 err = enable_restore_fp_context(1);
1490 exception_exit(prev_state);
1493 asmlinkage void do_mdmx(struct pt_regs *regs)
1495 enum ctx_state prev_state;
1497 prev_state = exception_enter();
1499 exception_exit(prev_state);
1503 * Called with interrupts disabled.
1505 asmlinkage void do_watch(struct pt_regs *regs)
1507 enum ctx_state prev_state;
1509 prev_state = exception_enter();
1511 * Clear WP (bit 22) bit of cause register so we don't loop
1514 clear_c0_cause(CAUSEF_WP);
1517 * If the current thread has the watch registers loaded, save
1518 * their values and send SIGTRAP. Otherwise another thread
1519 * left the registers set, clear them and continue.
1521 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1522 mips_read_watch_registers();
1524 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1526 mips_clear_watch_registers();
1529 exception_exit(prev_state);
1532 asmlinkage void do_mcheck(struct pt_regs *regs)
1534 int multi_match = regs->cp0_status & ST0_TS;
1535 enum ctx_state prev_state;
1536 mm_segment_t old_fs = get_fs();
1538 prev_state = exception_enter();
1547 if (!user_mode(regs))
1550 show_code((unsigned int __user *) regs->cp0_epc);
1555 * Some chips may have other causes of machine check (e.g. SB1
1558 panic("Caught Machine Check exception - %scaused by multiple "
1559 "matching entries in the TLB.",
1560 (multi_match) ? "" : "not ");
1563 asmlinkage void do_mt(struct pt_regs *regs)
1567 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1568 >> VPECONTROL_EXCPT_SHIFT;
1571 printk(KERN_DEBUG "Thread Underflow\n");
1574 printk(KERN_DEBUG "Thread Overflow\n");
1577 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1580 printk(KERN_DEBUG "Gating Storage Exception\n");
1583 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1586 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1589 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1593 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1599 asmlinkage void do_dsp(struct pt_regs *regs)
1602 panic("Unexpected DSP exception");
1607 asmlinkage void do_reserved(struct pt_regs *regs)
1610 * Game over - no way to handle this if it ever occurs. Most probably
1611 * caused by a new unknown cpu type or after another deadly
1612 * hard/software error.
1615 panic("Caught reserved exception %ld - should not happen.",
1616 (regs->cp0_cause & 0x7f) >> 2);
1619 static int __initdata l1parity = 1;
1620 static int __init nol1parity(char *s)
1625 __setup("nol1par", nol1parity);
1626 static int __initdata l2parity = 1;
1627 static int __init nol2parity(char *s)
1632 __setup("nol2par", nol2parity);
1635 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1636 * it different ways.
1638 static inline void parity_protection_init(void)
1640 #define ERRCTL_PE 0x80000000
1641 #define ERRCTL_L2P 0x00800000
1643 if (mips_cm_revision() >= CM_REV_CM3) {
1644 ulong gcr_ectl, cp0_ectl;
1647 * With CM3 systems we need to ensure that the L1 & L2
1648 * parity enables are set to the same value, since this
1649 * is presumed by the hardware engineers.
1651 * If the user disabled either of L1 or L2 ECC checking,
1654 l1parity &= l2parity;
1655 l2parity &= l1parity;
1657 /* Probe L1 ECC support */
1658 cp0_ectl = read_c0_ecc();
1659 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1660 back_to_back_c0_hazard();
1661 cp0_ectl = read_c0_ecc();
1663 /* Probe L2 ECC support */
1664 gcr_ectl = read_gcr_err_control();
1666 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1667 !(cp0_ectl & ERRCTL_PE)) {
1669 * One of L1 or L2 ECC checking isn't supported,
1670 * so we cannot enable either.
1672 l1parity = l2parity = 0;
1675 /* Configure L1 ECC checking */
1677 cp0_ectl |= ERRCTL_PE;
1679 cp0_ectl &= ~ERRCTL_PE;
1680 write_c0_ecc(cp0_ectl);
1681 back_to_back_c0_hazard();
1682 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1684 /* Configure L2 ECC checking */
1686 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1688 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1689 write_gcr_err_control(gcr_ectl);
1690 gcr_ectl = read_gcr_err_control();
1691 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1692 WARN_ON(!!gcr_ectl != l2parity);
1694 pr_info("Cache parity protection %sabled\n",
1695 l1parity ? "en" : "dis");
1699 switch (current_cpu_type()) {
1705 case CPU_INTERAPTIV:
1708 case CPU_QEMU_GENERIC:
1711 unsigned long errctl;
1712 unsigned int l1parity_present, l2parity_present;
1714 errctl = read_c0_ecc();
1715 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1717 /* probe L1 parity support */
1718 write_c0_ecc(errctl | ERRCTL_PE);
1719 back_to_back_c0_hazard();
1720 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1722 /* probe L2 parity support */
1723 write_c0_ecc(errctl|ERRCTL_L2P);
1724 back_to_back_c0_hazard();
1725 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1727 if (l1parity_present && l2parity_present) {
1729 errctl |= ERRCTL_PE;
1730 if (l1parity ^ l2parity)
1731 errctl |= ERRCTL_L2P;
1732 } else if (l1parity_present) {
1734 errctl |= ERRCTL_PE;
1735 } else if (l2parity_present) {
1737 errctl |= ERRCTL_L2P;
1739 /* No parity available */
1742 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1744 write_c0_ecc(errctl);
1745 back_to_back_c0_hazard();
1746 errctl = read_c0_ecc();
1747 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1749 if (l1parity_present)
1750 printk(KERN_INFO "Cache parity protection %sabled\n",
1751 (errctl & ERRCTL_PE) ? "en" : "dis");
1753 if (l2parity_present) {
1754 if (l1parity_present && l1parity)
1755 errctl ^= ERRCTL_L2P;
1756 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1757 (errctl & ERRCTL_L2P) ? "en" : "dis");
1764 case CPU_LOONGSON32:
1765 write_c0_ecc(0x80000000);
1766 back_to_back_c0_hazard();
1767 /* Set the PE bit (bit 31) in the c0_errctl register. */
1768 printk(KERN_INFO "Cache parity protection %sabled\n",
1769 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1773 /* Clear the DE bit (bit 16) in the c0_status register. */
1774 printk(KERN_INFO "Enable cache parity protection for "
1775 "MIPS 20KC/25KF CPUs.\n");
1776 clear_c0_status(ST0_DE);
1783 asmlinkage void cache_parity_error(void)
1785 const int field = 2 * sizeof(unsigned long);
1786 unsigned int reg_val;
1788 /* For the moment, report the problem and hang. */
1789 printk("Cache error exception:\n");
1790 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1791 reg_val = read_c0_cacheerr();
1792 printk("c0_cacheerr == %08x\n", reg_val);
1794 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795 reg_val & (1<<30) ? "secondary" : "primary",
1796 reg_val & (1<<31) ? "data" : "insn");
1797 if ((cpu_has_mips_r2_r6) &&
1798 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1799 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1800 reg_val & (1<<29) ? "ED " : "",
1801 reg_val & (1<<28) ? "ET " : "",
1802 reg_val & (1<<27) ? "ES " : "",
1803 reg_val & (1<<26) ? "EE " : "",
1804 reg_val & (1<<25) ? "EB " : "",
1805 reg_val & (1<<24) ? "EI " : "",
1806 reg_val & (1<<23) ? "E1 " : "",
1807 reg_val & (1<<22) ? "E0 " : "");
1809 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1810 reg_val & (1<<29) ? "ED " : "",
1811 reg_val & (1<<28) ? "ET " : "",
1812 reg_val & (1<<26) ? "EE " : "",
1813 reg_val & (1<<25) ? "EB " : "",
1814 reg_val & (1<<24) ? "EI " : "",
1815 reg_val & (1<<23) ? "E1 " : "",
1816 reg_val & (1<<22) ? "E0 " : "");
1818 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1820 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1821 if (reg_val & (1<<22))
1822 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1824 if (reg_val & (1<<23))
1825 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1828 panic("Can't handle the cache error!");
1831 asmlinkage void do_ftlb(void)
1833 const int field = 2 * sizeof(unsigned long);
1834 unsigned int reg_val;
1836 /* For the moment, report the problem and hang. */
1837 if ((cpu_has_mips_r2_r6) &&
1838 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1839 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1840 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1842 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1843 reg_val = read_c0_cacheerr();
1844 pr_err("c0_cacheerr == %08x\n", reg_val);
1846 if ((reg_val & 0xc0000000) == 0xc0000000) {
1847 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1849 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1850 reg_val & (1<<30) ? "secondary" : "primary",
1851 reg_val & (1<<31) ? "data" : "insn");
1854 pr_err("FTLB error exception\n");
1856 /* Just print the cacheerr bits for now */
1857 cache_parity_error();
1861 * SDBBP EJTAG debug exception handler.
1862 * We skip the instruction and return to the next instruction.
1864 void ejtag_exception_handler(struct pt_regs *regs)
1866 const int field = 2 * sizeof(unsigned long);
1867 unsigned long depc, old_epc, old_ra;
1870 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1871 depc = read_c0_depc();
1872 debug = read_c0_debug();
1873 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1874 if (debug & 0x80000000) {
1876 * In branch delay slot.
1877 * We cheat a little bit here and use EPC to calculate the
1878 * debug return address (DEPC). EPC is restored after the
1881 old_epc = regs->cp0_epc;
1882 old_ra = regs->regs[31];
1883 regs->cp0_epc = depc;
1884 compute_return_epc(regs);
1885 depc = regs->cp0_epc;
1886 regs->cp0_epc = old_epc;
1887 regs->regs[31] = old_ra;
1890 write_c0_depc(depc);
1893 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1894 write_c0_debug(debug | 0x100);
1899 * NMI exception handler.
1900 * No lock; only written during early bootup by CPU 0.
1902 static RAW_NOTIFIER_HEAD(nmi_chain);
1904 int register_nmi_notifier(struct notifier_block *nb)
1906 return raw_notifier_chain_register(&nmi_chain, nb);
1909 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1914 raw_notifier_call_chain(&nmi_chain, 0, regs);
1916 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1917 smp_processor_id(), regs->cp0_epc);
1918 regs->cp0_epc = read_c0_errorepc();
1923 #define VECTORSPACING 0x100 /* for EI/VI mode */
1925 unsigned long ebase;
1926 EXPORT_SYMBOL_GPL(ebase);
1927 unsigned long exception_handlers[32];
1928 unsigned long vi_handlers[64];
1930 void __init *set_except_vector(int n, void *addr)
1932 unsigned long handler = (unsigned long) addr;
1933 unsigned long old_handler;
1935 #ifdef CONFIG_CPU_MICROMIPS
1937 * Only the TLB handlers are cache aligned with an even
1938 * address. All other handlers are on an odd address and
1939 * require no modification. Otherwise, MIPS32 mode will
1940 * be entered when handling any TLB exceptions. That
1941 * would be bad...since we must stay in microMIPS mode.
1943 if (!(handler & 0x1))
1946 old_handler = xchg(&exception_handlers[n], handler);
1948 if (n == 0 && cpu_has_divec) {
1949 #ifdef CONFIG_CPU_MICROMIPS
1950 unsigned long jump_mask = ~((1 << 27) - 1);
1952 unsigned long jump_mask = ~((1 << 28) - 1);
1954 u32 *buf = (u32 *)(ebase + 0x200);
1955 unsigned int k0 = 26;
1956 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1957 uasm_i_j(&buf, handler & ~jump_mask);
1960 UASM_i_LA(&buf, k0, handler);
1961 uasm_i_jr(&buf, k0);
1964 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1966 return (void *)old_handler;
1969 static void do_default_vi(void)
1971 show_regs(get_irq_regs());
1972 panic("Caught unexpected vectored interrupt.");
1975 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1977 unsigned long handler;
1978 unsigned long old_handler = vi_handlers[n];
1979 int srssets = current_cpu_data.srsets;
1983 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1986 handler = (unsigned long) do_default_vi;
1989 handler = (unsigned long) addr;
1990 vi_handlers[n] = handler;
1992 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1995 panic("Shadow register set %d not supported", srs);
1998 if (board_bind_eic_interrupt)
1999 board_bind_eic_interrupt(n, srs);
2000 } else if (cpu_has_vint) {
2001 /* SRSMap is only defined if shadow sets are implemented */
2003 change_c0_srsmap(0xf << n*4, srs << n*4);
2008 * If no shadow set is selected then use the default handler
2009 * that does normal register saving and standard interrupt exit
2011 extern char except_vec_vi, except_vec_vi_lui;
2012 extern char except_vec_vi_ori, except_vec_vi_end;
2013 extern char rollback_except_vec_vi;
2014 char *vec_start = using_rollback_handler() ?
2015 &rollback_except_vec_vi : &except_vec_vi;
2016 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2017 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2018 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2020 const int lui_offset = &except_vec_vi_lui - vec_start;
2021 const int ori_offset = &except_vec_vi_ori - vec_start;
2023 const int handler_len = &except_vec_vi_end - vec_start;
2025 if (handler_len > VECTORSPACING) {
2027 * Sigh... panicing won't help as the console
2028 * is probably not configured :(
2030 panic("VECTORSPACING too small");
2033 set_handler(((unsigned long)b - ebase), vec_start,
2034 #ifdef CONFIG_CPU_MICROMIPS
2039 h = (u16 *)(b + lui_offset);
2040 *h = (handler >> 16) & 0xffff;
2041 h = (u16 *)(b + ori_offset);
2042 *h = (handler & 0xffff);
2043 local_flush_icache_range((unsigned long)b,
2044 (unsigned long)(b+handler_len));
2048 * In other cases jump directly to the interrupt handler. It
2049 * is the handler's responsibility to save registers if required
2050 * (eg hi/lo) and return from the exception using "eret".
2056 #ifdef CONFIG_CPU_MICROMIPS
2057 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2059 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2061 h[0] = (insn >> 16) & 0xffff;
2062 h[1] = insn & 0xffff;
2065 local_flush_icache_range((unsigned long)b,
2066 (unsigned long)(b+8));
2069 return (void *)old_handler;
2072 void *set_vi_handler(int n, vi_handler_t addr)
2074 return set_vi_srs_handler(n, addr, 0);
2077 extern void tlb_init(void);
2082 int cp0_compare_irq;
2083 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2084 int cp0_compare_irq_shift;
2087 * Performance counter IRQ or -1 if shared with timer
2089 int cp0_perfcount_irq;
2090 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2093 * Fast debug channel IRQ or -1 if not present
2096 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2100 static int __init ulri_disable(char *s)
2102 pr_info("Disabling ulri\n");
2107 __setup("noulri", ulri_disable);
2109 /* configure STATUS register */
2110 static void configure_status(void)
2113 * Disable coprocessors and select 32-bit or 64-bit addressing
2114 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2115 * flag that some firmware may have left set and the TS bit (for
2116 * IP27). Set XX for ISA IV code to work.
2118 unsigned int status_set = ST0_CU0;
2120 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2122 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2123 status_set |= ST0_XX;
2125 status_set |= ST0_MX;
2127 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2131 unsigned int hwrena;
2132 EXPORT_SYMBOL_GPL(hwrena);
2134 /* configure HWRENA register */
2135 static void configure_hwrena(void)
2137 hwrena = cpu_hwrena_impl_bits;
2139 if (cpu_has_mips_r2_r6)
2140 hwrena |= MIPS_HWRENA_CPUNUM |
2141 MIPS_HWRENA_SYNCISTEP |
2145 if (!noulri && cpu_has_userlocal)
2146 hwrena |= MIPS_HWRENA_ULR;
2149 write_c0_hwrena(hwrena);
2152 static void configure_exception_vector(void)
2154 if (cpu_has_mips_r2_r6) {
2155 unsigned long sr = set_c0_status(ST0_BEV);
2156 /* If available, use WG to set top bits of EBASE */
2157 if (cpu_has_ebase_wg) {
2159 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2161 write_c0_ebase(ebase | MIPS_EBASE_WG);
2164 write_c0_ebase(ebase);
2165 write_c0_status(sr);
2167 if (cpu_has_veic || cpu_has_vint) {
2168 /* Setting vector spacing enables EI/VI mode */
2169 change_c0_intctl(0x3e0, VECTORSPACING);
2171 if (cpu_has_divec) {
2172 if (cpu_has_mipsmt) {
2173 unsigned int vpflags = dvpe();
2174 set_c0_cause(CAUSEF_IV);
2177 set_c0_cause(CAUSEF_IV);
2181 void per_cpu_trap_init(bool is_boot_cpu)
2183 unsigned int cpu = smp_processor_id();
2188 configure_exception_vector();
2191 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2193 * o read IntCtl.IPTI to determine the timer interrupt
2194 * o read IntCtl.IPPCI to determine the performance counter interrupt
2195 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2197 if (cpu_has_mips_r2_r6) {
2198 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2199 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2200 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2201 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2206 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2207 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2208 cp0_perfcount_irq = -1;
2213 cpu_data[cpu].asid_cache = 0;
2214 else if (!cpu_data[cpu].asid_cache)
2215 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2218 current->active_mm = &init_mm;
2219 BUG_ON(current->mm);
2220 enter_lazy_tlb(&init_mm, current);
2222 /* Boot CPU's cache setup in setup_arch(). */
2226 TLBMISS_HANDLER_SETUP();
2229 /* Install CPU exception handler */
2230 void set_handler(unsigned long offset, void *addr, unsigned long size)
2232 #ifdef CONFIG_CPU_MICROMIPS
2233 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2235 memcpy((void *)(ebase + offset), addr, size);
2237 local_flush_icache_range(ebase + offset, ebase + offset + size);
2240 static const char panic_null_cerr[] =
2241 "Trying to set NULL cache error exception handler\n";
2244 * Install uncached CPU exception handler.
2245 * This is suitable only for the cache error exception which is the only
2246 * exception handler that is being run uncached.
2248 void set_uncached_handler(unsigned long offset, void *addr,
2251 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2254 panic(panic_null_cerr);
2256 memcpy((void *)(uncached_ebase + offset), addr, size);
2259 static int __initdata rdhwr_noopt;
2260 static int __init set_rdhwr_noopt(char *str)
2266 __setup("rdhwr_noopt", set_rdhwr_noopt);
2268 void __init trap_init(void)
2270 extern char except_vec3_generic;
2271 extern char except_vec4;
2272 extern char except_vec3_r4000;
2273 unsigned long i, vec_size;
2274 phys_addr_t ebase_pa;
2278 if (!cpu_has_mips_r2_r6) {
2280 ebase_pa = virt_to_phys((void *)ebase);
2283 memblock_reserve(ebase_pa, vec_size);
2285 if (cpu_has_veic || cpu_has_vint)
2286 vec_size = 0x200 + VECTORSPACING*64;
2288 vec_size = PAGE_SIZE;
2290 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2292 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2293 __func__, vec_size, 1 << fls(vec_size));
2296 * Try to ensure ebase resides in KSeg0 if possible.
2298 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2299 * hitting a poorly defined exception base for Cache Errors.
2300 * The allocation is likely to be in the low 512MB of physical,
2301 * in which case we should be able to convert to KSeg0.
2303 * EVA is special though as it allows segments to be rearranged
2304 * and to become uncached during cache error handling.
2306 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2307 ebase = CKSEG0ADDR(ebase_pa);
2309 ebase = (unsigned long)phys_to_virt(ebase_pa);
2312 if (cpu_has_mmips) {
2313 unsigned int config3 = read_c0_config3();
2315 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2316 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2318 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2321 if (board_ebase_setup)
2322 board_ebase_setup();
2323 per_cpu_trap_init(true);
2324 memblock_set_bottom_up(false);
2327 * Copy the generic exception handlers to their final destination.
2328 * This will be overridden later as suitable for a particular
2331 set_handler(0x180, &except_vec3_generic, 0x80);
2334 * Setup default vectors
2336 for (i = 0; i <= 31; i++)
2337 set_except_vector(i, handle_reserved);
2340 * Copy the EJTAG debug exception vector handler code to it's final
2343 if (cpu_has_ejtag && board_ejtag_handler_setup)
2344 board_ejtag_handler_setup();
2347 * Only some CPUs have the watch exceptions.
2350 set_except_vector(EXCCODE_WATCH, handle_watch);
2353 * Initialise interrupt handlers
2355 if (cpu_has_veic || cpu_has_vint) {
2356 int nvec = cpu_has_veic ? 64 : 8;
2357 for (i = 0; i < nvec; i++)
2358 set_vi_handler(i, NULL);
2360 else if (cpu_has_divec)
2361 set_handler(0x200, &except_vec4, 0x8);
2364 * Some CPUs can enable/disable for cache parity detection, but does
2365 * it different ways.
2367 parity_protection_init();
2370 * The Data Bus Errors / Instruction Bus Errors are signaled
2371 * by external hardware. Therefore these two exceptions
2372 * may have board specific handlers.
2377 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2378 rollback_handle_int : handle_int);
2379 set_except_vector(EXCCODE_MOD, handle_tlbm);
2380 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2381 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2383 set_except_vector(EXCCODE_ADEL, handle_adel);
2384 set_except_vector(EXCCODE_ADES, handle_ades);
2386 set_except_vector(EXCCODE_IBE, handle_ibe);
2387 set_except_vector(EXCCODE_DBE, handle_dbe);
2389 set_except_vector(EXCCODE_SYS, handle_sys);
2390 set_except_vector(EXCCODE_BP, handle_bp);
2393 set_except_vector(EXCCODE_RI, handle_ri);
2395 if (cpu_has_vtag_icache)
2396 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2397 else if (current_cpu_type() == CPU_LOONGSON64)
2398 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2400 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2403 set_except_vector(EXCCODE_CPU, handle_cpu);
2404 set_except_vector(EXCCODE_OV, handle_ov);
2405 set_except_vector(EXCCODE_TR, handle_tr);
2406 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2408 if (board_nmi_handler_setup)
2409 board_nmi_handler_setup();
2411 if (cpu_has_fpu && !cpu_has_nofpuex)
2412 set_except_vector(EXCCODE_FPE, handle_fpe);
2414 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2416 if (cpu_has_rixiex) {
2417 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2418 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2421 set_except_vector(EXCCODE_MSADIS, handle_msa);
2422 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2425 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2428 set_except_vector(EXCCODE_THREAD, handle_mt);
2430 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2432 if (board_cache_error_setup)
2433 board_cache_error_setup();
2436 /* Special exception: R4[04]00 uses also the divec space. */
2437 set_handler(0x180, &except_vec3_r4000, 0x100);
2438 else if (cpu_has_4kex)
2439 set_handler(0x180, &except_vec3_generic, 0x80);
2441 set_handler(0x080, &except_vec3_generic, 0x80);
2443 local_flush_icache_range(ebase, ebase + vec_size);
2445 sort_extable(__start___dbe_table, __stop___dbe_table);
2447 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2450 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2454 case CPU_PM_ENTER_FAILED:
2458 configure_exception_vector();
2460 /* Restore register with CPU number for TLB handlers */
2461 TLBMISS_HANDLER_RESTORE();
2469 static struct notifier_block trap_pm_notifier_block = {
2470 .notifier_call = trap_pm_notifier,
2473 static int __init trap_pm_init(void)
2475 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2477 arch_initcall(trap_pm_init);