2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
186 static seqcount_t devnet_rename_seq;
188 static inline void dev_base_seq_inc(struct net *net)
190 while (++net->dev_base_seq == 0);
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 static inline void rps_lock(struct softnet_data *sd)
208 spin_lock(&sd->input_pkt_queue.lock);
212 static inline void rps_unlock(struct softnet_data *sd)
215 spin_unlock(&sd->input_pkt_queue.lock);
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
222 struct net *net = dev_net(dev);
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
233 dev_base_seq_inc(net);
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
239 static void unlist_netdevice(struct net_device *dev)
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
250 dev_base_seq_inc(dev_net(dev));
257 static RAW_NOTIFIER_HEAD(netdev_chain);
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 #ifdef CONFIG_LOCKDEP
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 /*******************************************************************************
351 Protocol management and registration routines
353 *******************************************************************************/
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 if (pt->type == htons(ETH_P_ALL))
376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 * dev_add_pack - add packet handler
381 * @pt: packet type declaration
383 * Add a protocol handler to the networking stack. The passed &packet_type
384 * is linked into kernel lists and may not be freed until it has been
385 * removed from the kernel lists.
387 * This call does not sleep therefore it can not
388 * guarantee all CPU's that are in middle of receiving packets
389 * will see the new packet type (until the next received packet).
392 void dev_add_pack(struct packet_type *pt)
394 struct list_head *head = ptype_head(pt);
396 spin_lock(&ptype_lock);
397 list_add_rcu(&pt->list, head);
398 spin_unlock(&ptype_lock);
400 EXPORT_SYMBOL(dev_add_pack);
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
415 void __dev_remove_pack(struct packet_type *pt)
417 struct list_head *head = ptype_head(pt);
418 struct packet_type *pt1;
420 spin_lock(&ptype_lock);
422 list_for_each_entry(pt1, head, list) {
424 list_del_rcu(&pt->list);
429 pr_warn("dev_remove_pack: %p not found\n", pt);
431 spin_unlock(&ptype_lock);
433 EXPORT_SYMBOL(__dev_remove_pack);
436 * dev_remove_pack - remove packet handler
437 * @pt: packet type declaration
439 * Remove a protocol handler that was previously added to the kernel
440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
441 * from the kernel lists and can be freed or reused once this function
444 * This call sleeps to guarantee that no CPU is looking at the packet
447 void dev_remove_pack(struct packet_type *pt)
449 __dev_remove_pack(pt);
453 EXPORT_SYMBOL(dev_remove_pack);
457 * dev_add_offload - register offload handlers
458 * @po: protocol offload declaration
460 * Add protocol offload handlers to the networking stack. The passed
461 * &proto_offload is linked into kernel lists and may not be freed until
462 * it has been removed from the kernel lists.
464 * This call does not sleep therefore it can not
465 * guarantee all CPU's that are in middle of receiving packets
466 * will see the new offload handlers (until the next received packet).
468 void dev_add_offload(struct packet_offload *po)
470 struct list_head *head = &offload_base;
472 spin_lock(&offload_lock);
473 list_add_rcu(&po->list, head);
474 spin_unlock(&offload_lock);
476 EXPORT_SYMBOL(dev_add_offload);
479 * __dev_remove_offload - remove offload handler
480 * @po: packet offload declaration
482 * Remove a protocol offload handler that was previously added to the
483 * kernel offload handlers by dev_add_offload(). The passed &offload_type
484 * is removed from the kernel lists and can be freed or reused once this
487 * The packet type might still be in use by receivers
488 * and must not be freed until after all the CPU's have gone
489 * through a quiescent state.
491 static void __dev_remove_offload(struct packet_offload *po)
493 struct list_head *head = &offload_base;
494 struct packet_offload *po1;
496 spin_lock(&offload_lock);
498 list_for_each_entry(po1, head, list) {
500 list_del_rcu(&po->list);
505 pr_warn("dev_remove_offload: %p not found\n", po);
507 spin_unlock(&offload_lock);
511 * dev_remove_offload - remove packet offload handler
512 * @po: packet offload declaration
514 * Remove a packet offload handler that was previously added to the kernel
515 * offload handlers by dev_add_offload(). The passed &offload_type is
516 * removed from the kernel lists and can be freed or reused once this
519 * This call sleeps to guarantee that no CPU is looking at the packet
522 void dev_remove_offload(struct packet_offload *po)
524 __dev_remove_offload(po);
528 EXPORT_SYMBOL(dev_remove_offload);
530 /******************************************************************************
532 Device Boot-time Settings Routines
534 *******************************************************************************/
536 /* Boot time configuration table */
537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
540 * netdev_boot_setup_add - add new setup entry
541 * @name: name of the device
542 * @map: configured settings for the device
544 * Adds new setup entry to the dev_boot_setup list. The function
545 * returns 0 on error and 1 on success. This is a generic routine to
548 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 struct netdev_boot_setup *s;
554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556 memset(s[i].name, 0, sizeof(s[i].name));
557 strlcpy(s[i].name, name, IFNAMSIZ);
558 memcpy(&s[i].map, map, sizeof(s[i].map));
563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
567 * netdev_boot_setup_check - check boot time settings
568 * @dev: the netdevice
570 * Check boot time settings for the device.
571 * The found settings are set for the device to be used
572 * later in the device probing.
573 * Returns 0 if no settings found, 1 if they are.
575 int netdev_boot_setup_check(struct net_device *dev)
577 struct netdev_boot_setup *s = dev_boot_setup;
580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
582 !strcmp(dev->name, s[i].name)) {
583 dev->irq = s[i].map.irq;
584 dev->base_addr = s[i].map.base_addr;
585 dev->mem_start = s[i].map.mem_start;
586 dev->mem_end = s[i].map.mem_end;
592 EXPORT_SYMBOL(netdev_boot_setup_check);
596 * netdev_boot_base - get address from boot time settings
597 * @prefix: prefix for network device
598 * @unit: id for network device
600 * Check boot time settings for the base address of device.
601 * The found settings are set for the device to be used
602 * later in the device probing.
603 * Returns 0 if no settings found.
605 unsigned long netdev_boot_base(const char *prefix, int unit)
607 const struct netdev_boot_setup *s = dev_boot_setup;
611 sprintf(name, "%s%d", prefix, unit);
614 * If device already registered then return base of 1
615 * to indicate not to probe for this interface
617 if (__dev_get_by_name(&init_net, name))
620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621 if (!strcmp(name, s[i].name))
622 return s[i].map.base_addr;
627 * Saves at boot time configured settings for any netdevice.
629 int __init netdev_boot_setup(char *str)
634 str = get_options(str, ARRAY_SIZE(ints), ints);
639 memset(&map, 0, sizeof(map));
643 map.base_addr = ints[2];
645 map.mem_start = ints[3];
647 map.mem_end = ints[4];
649 /* Add new entry to the list */
650 return netdev_boot_setup_add(str, &map);
653 __setup("netdev=", netdev_boot_setup);
655 /*******************************************************************************
657 Device Interface Subroutines
659 *******************************************************************************/
662 * __dev_get_by_name - find a device by its name
663 * @net: the applicable net namespace
664 * @name: name to find
666 * Find an interface by name. Must be called under RTNL semaphore
667 * or @dev_base_lock. If the name is found a pointer to the device
668 * is returned. If the name is not found then %NULL is returned. The
669 * reference counters are not incremented so the caller must be
670 * careful with locks.
673 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 struct net_device *dev;
676 struct hlist_head *head = dev_name_hash(net, name);
678 hlist_for_each_entry(dev, head, name_hlist)
679 if (!strncmp(dev->name, name, IFNAMSIZ))
684 EXPORT_SYMBOL(__dev_get_by_name);
687 * dev_get_by_name_rcu - find a device by its name
688 * @net: the applicable net namespace
689 * @name: name to find
691 * Find an interface by name.
692 * If the name is found a pointer to the device is returned.
693 * If the name is not found then %NULL is returned.
694 * The reference counters are not incremented so the caller must be
695 * careful with locks. The caller must hold RCU lock.
698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 struct net_device *dev;
701 struct hlist_head *head = dev_name_hash(net, name);
703 hlist_for_each_entry_rcu(dev, head, name_hlist)
704 if (!strncmp(dev->name, name, IFNAMSIZ))
709 EXPORT_SYMBOL(dev_get_by_name_rcu);
712 * dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
716 * Find an interface by name. This can be called from any
717 * context and does its own locking. The returned handle has
718 * the usage count incremented and the caller must use dev_put() to
719 * release it when it is no longer needed. %NULL is returned if no
720 * matching device is found.
723 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 struct net_device *dev;
728 dev = dev_get_by_name_rcu(net, name);
734 EXPORT_SYMBOL(dev_get_by_name);
737 * __dev_get_by_index - find a device by its ifindex
738 * @net: the applicable net namespace
739 * @ifindex: index of device
741 * Search for an interface by index. Returns %NULL if the device
742 * is not found or a pointer to the device. The device has not
743 * had its reference counter increased so the caller must be careful
744 * about locking. The caller must hold either the RTNL semaphore
748 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 struct net_device *dev;
751 struct hlist_head *head = dev_index_hash(net, ifindex);
753 hlist_for_each_entry(dev, head, index_hlist)
754 if (dev->ifindex == ifindex)
759 EXPORT_SYMBOL(__dev_get_by_index);
762 * dev_get_by_index_rcu - find a device by its ifindex
763 * @net: the applicable net namespace
764 * @ifindex: index of device
766 * Search for an interface by index. Returns %NULL if the device
767 * is not found or a pointer to the device. The device has not
768 * had its reference counter increased so the caller must be careful
769 * about locking. The caller must hold RCU lock.
772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
777 hlist_for_each_entry_rcu(dev, head, index_hlist)
778 if (dev->ifindex == ifindex)
783 EXPORT_SYMBOL(dev_get_by_index_rcu);
787 * dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
791 * Search for an interface by index. Returns NULL if the device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
797 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 struct net_device *dev;
802 dev = dev_get_by_index_rcu(net, ifindex);
808 EXPORT_SYMBOL(dev_get_by_index);
811 * netdev_get_name - get a netdevice name, knowing its ifindex.
812 * @net: network namespace
813 * @name: a pointer to the buffer where the name will be stored.
814 * @ifindex: the ifindex of the interface to get the name from.
816 * The use of raw_seqcount_begin() and cond_resched() before
817 * retrying is required as we want to give the writers a chance
818 * to complete when CONFIG_PREEMPT is not set.
820 int netdev_get_name(struct net *net, char *name, int ifindex)
822 struct net_device *dev;
826 seq = raw_seqcount_begin(&devnet_rename_seq);
828 dev = dev_get_by_index_rcu(net, ifindex);
834 strcpy(name, dev->name);
836 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
845 * dev_getbyhwaddr_rcu - find a device by its hardware address
846 * @net: the applicable net namespace
847 * @type: media type of device
848 * @ha: hardware address
850 * Search for an interface by MAC address. Returns NULL if the device
851 * is not found or a pointer to the device.
852 * The caller must hold RCU or RTNL.
853 * The returned device has not had its ref count increased
854 * and the caller must therefore be careful about locking
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
861 struct net_device *dev;
863 for_each_netdev_rcu(net, dev)
864 if (dev->type == type &&
865 !memcmp(dev->dev_addr, ha, dev->addr_len))
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 struct net_device *dev;
877 for_each_netdev(net, dev)
878 if (dev->type == type)
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 struct net_device *dev, *ret = NULL;
890 for_each_netdev_rcu(net, dev)
891 if (dev->type == type) {
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
902 * __dev_get_by_flags - find any device with given flags
903 * @net: the applicable net namespace
904 * @if_flags: IFF_* values
905 * @mask: bitmask of bits in if_flags to check
907 * Search for any interface with the given flags. Returns NULL if a device
908 * is not found or a pointer to the device. Must be called inside
909 * rtnl_lock(), and result refcount is unchanged.
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
915 struct net_device *dev, *ret;
920 for_each_netdev(net, dev) {
921 if (((dev->flags ^ if_flags) & mask) == 0) {
928 EXPORT_SYMBOL(__dev_get_by_flags);
931 * dev_valid_name - check if name is okay for network device
934 * Network device names need to be valid file names to
935 * to allow sysfs to work. We also disallow any kind of
938 bool dev_valid_name(const char *name)
942 if (strlen(name) >= IFNAMSIZ)
944 if (!strcmp(name, ".") || !strcmp(name, ".."))
948 if (*name == '/' || isspace(*name))
954 EXPORT_SYMBOL(dev_valid_name);
957 * __dev_alloc_name - allocate a name for a device
958 * @net: network namespace to allocate the device name in
959 * @name: name format string
960 * @buf: scratch buffer and result name string
962 * Passed a format string - eg "lt%d" it will try and find a suitable
963 * id. It scans list of devices to build up a free map, then chooses
964 * the first empty slot. The caller must hold the dev_base or rtnl lock
965 * while allocating the name and adding the device in order to avoid
967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968 * Returns the number of the unit assigned or a negative errno code.
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
975 const int max_netdevices = 8*PAGE_SIZE;
976 unsigned long *inuse;
977 struct net_device *d;
979 p = strnchr(name, IFNAMSIZ-1, '%');
982 * Verify the string as this thing may have come from
983 * the user. There must be either one "%d" and no other "%"
986 if (p[1] != 'd' || strchr(p + 2, '%'))
989 /* Use one page as a bit array of possible slots */
990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
994 for_each_netdev(net, d) {
995 if (!sscanf(d->name, name, &i))
997 if (i < 0 || i >= max_netdevices)
1000 /* avoid cases where sscanf is not exact inverse of printf */
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!strncmp(buf, d->name, IFNAMSIZ))
1006 i = find_first_zero_bit(inuse, max_netdevices);
1007 free_page((unsigned long) inuse);
1011 snprintf(buf, IFNAMSIZ, name, i);
1012 if (!__dev_get_by_name(net, buf))
1015 /* It is possible to run out of possible slots
1016 * when the name is long and there isn't enough space left
1017 * for the digits, or if all bits are used.
1023 * dev_alloc_name - allocate a name for a device
1025 * @name: name format string
1027 * Passed a format string - eg "lt%d" it will try and find a suitable
1028 * id. It scans list of devices to build up a free map, then chooses
1029 * the first empty slot. The caller must hold the dev_base or rtnl lock
1030 * while allocating the name and adding the device in order to avoid
1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033 * Returns the number of the unit assigned or a negative errno code.
1036 int dev_alloc_name(struct net_device *dev, const char *name)
1042 BUG_ON(!dev_net(dev));
1044 ret = __dev_alloc_name(net, name, buf);
1046 strlcpy(dev->name, buf, IFNAMSIZ);
1049 EXPORT_SYMBOL(dev_alloc_name);
1051 static int dev_alloc_name_ns(struct net *net,
1052 struct net_device *dev,
1058 ret = __dev_alloc_name(net, name, buf);
1060 strlcpy(dev->name, buf, IFNAMSIZ);
1064 static int dev_get_valid_name(struct net *net,
1065 struct net_device *dev,
1070 if (!dev_valid_name(name))
1073 if (strchr(name, '%'))
1074 return dev_alloc_name_ns(net, dev, name);
1075 else if (__dev_get_by_name(net, name))
1077 else if (dev->name != name)
1078 strlcpy(dev->name, name, IFNAMSIZ);
1084 * dev_change_name - change name of a device
1086 * @newname: name (or format string) must be at least IFNAMSIZ
1088 * Change name of a device, can pass format strings "eth%d".
1091 int dev_change_name(struct net_device *dev, const char *newname)
1093 unsigned char old_assign_type;
1094 char oldname[IFNAMSIZ];
1100 BUG_ON(!dev_net(dev));
1103 if (dev->flags & IFF_UP)
1106 write_seqcount_begin(&devnet_rename_seq);
1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1109 write_seqcount_end(&devnet_rename_seq);
1113 memcpy(oldname, dev->name, IFNAMSIZ);
1115 err = dev_get_valid_name(net, dev, newname);
1117 write_seqcount_end(&devnet_rename_seq);
1121 if (oldname[0] && !strchr(oldname, '%'))
1122 netdev_info(dev, "renamed from %s\n", oldname);
1124 old_assign_type = dev->name_assign_type;
1125 dev->name_assign_type = NET_NAME_RENAMED;
1128 ret = device_rename(&dev->dev, dev->name);
1130 memcpy(dev->name, oldname, IFNAMSIZ);
1131 dev->name_assign_type = old_assign_type;
1132 write_seqcount_end(&devnet_rename_seq);
1136 write_seqcount_end(&devnet_rename_seq);
1138 netdev_adjacent_rename_links(dev, oldname);
1140 write_lock_bh(&dev_base_lock);
1141 hlist_del_rcu(&dev->name_hlist);
1142 write_unlock_bh(&dev_base_lock);
1146 write_lock_bh(&dev_base_lock);
1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1148 write_unlock_bh(&dev_base_lock);
1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1151 ret = notifier_to_errno(ret);
1154 /* err >= 0 after dev_alloc_name() or stores the first errno */
1157 write_seqcount_begin(&devnet_rename_seq);
1158 memcpy(dev->name, oldname, IFNAMSIZ);
1159 memcpy(oldname, newname, IFNAMSIZ);
1160 dev->name_assign_type = old_assign_type;
1161 old_assign_type = NET_NAME_RENAMED;
1164 pr_err("%s: name change rollback failed: %d\n",
1173 * dev_set_alias - change ifalias of a device
1175 * @alias: name up to IFALIASZ
1176 * @len: limit of bytes to copy from info
1178 * Set ifalias for a device,
1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1186 if (len >= IFALIASZ)
1190 kfree(dev->ifalias);
1191 dev->ifalias = NULL;
1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1198 dev->ifalias = new_ifalias;
1200 strlcpy(dev->ifalias, alias, len+1);
1206 * netdev_features_change - device changes features
1207 * @dev: device to cause notification
1209 * Called to indicate a device has changed features.
1211 void netdev_features_change(struct net_device *dev)
1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 EXPORT_SYMBOL(netdev_features_change);
1218 * netdev_state_change - device changes state
1219 * @dev: device to cause notification
1221 * Called to indicate a device has changed state. This function calls
1222 * the notifier chains for netdev_chain and sends a NEWLINK message
1223 * to the routing socket.
1225 void netdev_state_change(struct net_device *dev)
1227 if (dev->flags & IFF_UP) {
1228 struct netdev_notifier_change_info change_info;
1230 change_info.flags_changed = 0;
1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1236 EXPORT_SYMBOL(netdev_state_change);
1239 * netdev_notify_peers - notify network peers about existence of @dev
1240 * @dev: network device
1242 * Generate traffic such that interested network peers are aware of
1243 * @dev, such as by generating a gratuitous ARP. This may be used when
1244 * a device wants to inform the rest of the network about some sort of
1245 * reconfiguration such as a failover event or virtual machine
1248 void netdev_notify_peers(struct net_device *dev)
1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1254 EXPORT_SYMBOL(netdev_notify_peers);
1256 static int __dev_open(struct net_device *dev)
1258 const struct net_device_ops *ops = dev->netdev_ops;
1263 if (!netif_device_present(dev))
1266 /* Block netpoll from trying to do any rx path servicing.
1267 * If we don't do this there is a chance ndo_poll_controller
1268 * or ndo_poll may be running while we open the device
1270 netpoll_poll_disable(dev);
1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 ret = notifier_to_errno(ret);
1277 set_bit(__LINK_STATE_START, &dev->state);
1279 if (ops->ndo_validate_addr)
1280 ret = ops->ndo_validate_addr(dev);
1282 if (!ret && ops->ndo_open)
1283 ret = ops->ndo_open(dev);
1285 netpoll_poll_enable(dev);
1288 clear_bit(__LINK_STATE_START, &dev->state);
1290 dev->flags |= IFF_UP;
1291 dev_set_rx_mode(dev);
1293 add_device_randomness(dev->dev_addr, dev->addr_len);
1300 * dev_open - prepare an interface for use.
1301 * @dev: device to open
1303 * Takes a device from down to up state. The device's private open
1304 * function is invoked and then the multicast lists are loaded. Finally
1305 * the device is moved into the up state and a %NETDEV_UP message is
1306 * sent to the netdev notifier chain.
1308 * Calling this function on an active interface is a nop. On a failure
1309 * a negative errno code is returned.
1311 int dev_open(struct net_device *dev)
1315 if (dev->flags & IFF_UP)
1318 ret = __dev_open(dev);
1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323 call_netdevice_notifiers(NETDEV_UP, dev);
1327 EXPORT_SYMBOL(dev_open);
1329 static int __dev_close_many(struct list_head *head)
1331 struct net_device *dev;
1336 list_for_each_entry(dev, head, close_list) {
1337 /* Temporarily disable netpoll until the interface is down */
1338 netpoll_poll_disable(dev);
1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342 clear_bit(__LINK_STATE_START, &dev->state);
1344 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345 * can be even on different cpu. So just clear netif_running().
1347 * dev->stop() will invoke napi_disable() on all of it's
1348 * napi_struct instances on this device.
1350 smp_mb__after_atomic(); /* Commit netif_running(). */
1353 dev_deactivate_many(head);
1355 list_for_each_entry(dev, head, close_list) {
1356 const struct net_device_ops *ops = dev->netdev_ops;
1359 * Call the device specific close. This cannot fail.
1360 * Only if device is UP
1362 * We allow it to be called even after a DETACH hot-plug
1368 dev->flags &= ~IFF_UP;
1369 netpoll_poll_enable(dev);
1375 static int __dev_close(struct net_device *dev)
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1387 static int dev_close_many(struct list_head *head)
1389 struct net_device *dev, *tmp;
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1396 __dev_close_many(head);
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1416 int dev_close(struct net_device *dev)
1418 if (dev->flags & IFF_UP) {
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1427 EXPORT_SYMBOL(dev_close);
1431 * dev_disable_lro - disable Large Receive Offload on a device
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1438 void dev_disable_lro(struct net_device *dev)
1440 struct net_device *lower_dev;
1441 struct list_head *iter;
1443 dev->wanted_features &= ~NETIF_F_LRO;
1444 netdev_update_features(dev);
1446 if (unlikely(dev->features & NETIF_F_LRO))
1447 netdev_WARN(dev, "failed to disable LRO!\n");
1449 netdev_for_each_lower_dev(dev, lower_dev, iter)
1450 dev_disable_lro(lower_dev);
1452 EXPORT_SYMBOL(dev_disable_lro);
1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1455 struct net_device *dev)
1457 struct netdev_notifier_info info;
1459 netdev_notifier_info_init(&info, dev);
1460 return nb->notifier_call(nb, val, &info);
1463 static int dev_boot_phase = 1;
1466 * register_netdevice_notifier - register a network notifier block
1469 * Register a notifier to be called when network device events occur.
1470 * The notifier passed is linked into the kernel structures and must
1471 * not be reused until it has been unregistered. A negative errno code
1472 * is returned on a failure.
1474 * When registered all registration and up events are replayed
1475 * to the new notifier to allow device to have a race free
1476 * view of the network device list.
1479 int register_netdevice_notifier(struct notifier_block *nb)
1481 struct net_device *dev;
1482 struct net_device *last;
1487 err = raw_notifier_chain_register(&netdev_chain, nb);
1493 for_each_netdev(net, dev) {
1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1495 err = notifier_to_errno(err);
1499 if (!(dev->flags & IFF_UP))
1502 call_netdevice_notifier(nb, NETDEV_UP, dev);
1513 for_each_netdev(net, dev) {
1517 if (dev->flags & IFF_UP) {
1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1527 raw_notifier_chain_unregister(&netdev_chain, nb);
1530 EXPORT_SYMBOL(register_netdevice_notifier);
1533 * unregister_netdevice_notifier - unregister a network notifier block
1536 * Unregister a notifier previously registered by
1537 * register_netdevice_notifier(). The notifier is unlinked into the
1538 * kernel structures and may then be reused. A negative errno code
1539 * is returned on a failure.
1541 * After unregistering unregister and down device events are synthesized
1542 * for all devices on the device list to the removed notifier to remove
1543 * the need for special case cleanup code.
1546 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 struct net_device *dev;
1553 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1558 for_each_netdev(net, dev) {
1559 if (dev->flags & IFF_UP) {
1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1571 EXPORT_SYMBOL(unregister_netdevice_notifier);
1574 * call_netdevice_notifiers_info - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1577 * @info: notifier information data
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1583 static int call_netdevice_notifiers_info(unsigned long val,
1584 struct net_device *dev,
1585 struct netdev_notifier_info *info)
1588 netdev_notifier_info_init(info, dev);
1589 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 * call_netdevice_notifiers - call all network notifier blocks
1594 * @val: value passed unmodified to notifier function
1595 * @dev: net_device pointer passed unmodified to notifier function
1597 * Call all network notifier blocks. Parameters and return value
1598 * are as for raw_notifier_call_chain().
1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 struct netdev_notifier_info info;
1605 return call_netdevice_notifiers_info(val, dev, &info);
1607 EXPORT_SYMBOL(call_netdevice_notifiers);
1609 static struct static_key netstamp_needed __read_mostly;
1610 #ifdef HAVE_JUMP_LABEL
1611 /* We are not allowed to call static_key_slow_dec() from irq context
1612 * If net_disable_timestamp() is called from irq context, defer the
1613 * static_key_slow_dec() calls.
1615 static atomic_t netstamp_needed_deferred;
1618 void net_enable_timestamp(void)
1620 #ifdef HAVE_JUMP_LABEL
1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625 static_key_slow_dec(&netstamp_needed);
1629 static_key_slow_inc(&netstamp_needed);
1631 EXPORT_SYMBOL(net_enable_timestamp);
1633 void net_disable_timestamp(void)
1635 #ifdef HAVE_JUMP_LABEL
1636 if (in_interrupt()) {
1637 atomic_inc(&netstamp_needed_deferred);
1641 static_key_slow_dec(&netstamp_needed);
1643 EXPORT_SYMBOL(net_disable_timestamp);
1645 static inline void net_timestamp_set(struct sk_buff *skb)
1647 skb->tstamp.tv64 = 0;
1648 if (static_key_false(&netstamp_needed))
1649 __net_timestamp(skb);
1652 #define net_timestamp_check(COND, SKB) \
1653 if (static_key_false(&netstamp_needed)) { \
1654 if ((COND) && !(SKB)->tstamp.tv64) \
1655 __net_timestamp(SKB); \
1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 if (!(dev->flags & IFF_UP))
1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666 if (skb->len <= len)
1669 /* if TSO is enabled, we don't care about the length as the packet
1670 * could be forwarded without being segmented before
1672 if (skb_is_gso(skb))
1677 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1695 skb_scrub_packet(skb, true);
1696 skb->protocol = eth_type_trans(skb, dev);
1697 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1701 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704 * dev_forward_skb - loopback an skb to another netif
1706 * @dev: destination network device
1707 * @skb: buffer to forward
1710 * NET_RX_SUCCESS (no congestion)
1711 * NET_RX_DROP (packet was dropped, but freed)
1713 * dev_forward_skb can be used for injecting an skb from the
1714 * start_xmit function of one device into the receive queue
1715 * of another device.
1717 * The receiving device may be in another namespace, so
1718 * we have to clear all information in the skb that could
1719 * impact namespace isolation.
1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725 EXPORT_SYMBOL_GPL(dev_forward_skb);
1727 static inline int deliver_skb(struct sk_buff *skb,
1728 struct packet_type *pt_prev,
1729 struct net_device *orig_dev)
1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 atomic_inc(&skb->users);
1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1739 if (!ptype->af_packet_priv || !skb->sk)
1742 if (ptype->id_match)
1743 return ptype->id_match(ptype, skb->sk);
1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1751 * Support routine. Sends outgoing frames to any network
1752 * taps currently in use.
1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1757 struct packet_type *ptype;
1758 struct sk_buff *skb2 = NULL;
1759 struct packet_type *pt_prev = NULL;
1762 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763 /* Never send packets back to the socket
1766 if ((ptype->dev == dev || !ptype->dev) &&
1767 (!skb_loop_sk(ptype, skb))) {
1769 deliver_skb(skb2, pt_prev, skb->dev);
1774 skb2 = skb_clone(skb, GFP_ATOMIC);
1778 net_timestamp_set(skb2);
1780 /* skb->nh should be correctly
1781 set by sender, so that the second statement is
1782 just protection against buggy protocols.
1784 skb_reset_mac_header(skb2);
1786 if (skb_network_header(skb2) < skb2->data ||
1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789 ntohs(skb2->protocol),
1791 skb_reset_network_header(skb2);
1794 skb2->transport_header = skb2->network_header;
1795 skb2->pkt_type = PACKET_OUTGOING;
1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1806 * @dev: Network device
1807 * @txq: number of queues available
1809 * If real_num_tx_queues is changed the tc mappings may no longer be
1810 * valid. To resolve this verify the tc mapping remains valid and if
1811 * not NULL the mapping. With no priorities mapping to this
1812 * offset/count pair it will no longer be used. In the worst case TC0
1813 * is invalid nothing can be done so disable priority mappings. If is
1814 * expected that drivers will fix this mapping if they can before
1815 * calling netif_set_real_num_tx_queues.
1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1822 /* If TC0 is invalidated disable TC mapping */
1823 if (tc->offset + tc->count > txq) {
1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1829 /* Invalidated prio to tc mappings set to TC0 */
1830 for (i = 1; i < TC_BITMASK + 1; i++) {
1831 int q = netdev_get_prio_tc_map(dev, i);
1833 tc = &dev->tc_to_txq[q];
1834 if (tc->offset + tc->count > txq) {
1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1837 netdev_set_prio_tc_map(dev, i, 0);
1843 static DEFINE_MUTEX(xps_map_mutex);
1844 #define xmap_dereference(P) \
1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 struct xps_map *map = NULL;
1854 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1856 for (pos = 0; map && pos < map->len; pos++) {
1857 if (map->queues[pos] == index) {
1859 map->queues[pos] = map->queues[--map->len];
1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1862 kfree_rcu(map, rcu);
1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1874 struct xps_dev_maps *dev_maps;
1876 bool active = false;
1878 mutex_lock(&xps_map_mutex);
1879 dev_maps = xmap_dereference(dev->xps_maps);
1884 for_each_possible_cpu(cpu) {
1885 for (i = index; i < dev->num_tx_queues; i++) {
1886 if (!remove_xps_queue(dev_maps, cpu, i))
1889 if (i == dev->num_tx_queues)
1894 RCU_INIT_POINTER(dev->xps_maps, NULL);
1895 kfree_rcu(dev_maps, rcu);
1898 for (i = index; i < dev->num_tx_queues; i++)
1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1903 mutex_unlock(&xps_map_mutex);
1906 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 struct xps_map *new_map;
1910 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 for (pos = 0; map && pos < map->len; pos++) {
1914 if (map->queues[pos] != index)
1919 /* Need to add queue to this CPU's existing map */
1921 if (pos < map->alloc_len)
1924 alloc_len = map->alloc_len * 2;
1927 /* Need to allocate new map to store queue on this CPU's map */
1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1933 for (i = 0; i < pos; i++)
1934 new_map->queues[i] = map->queues[i];
1935 new_map->alloc_len = alloc_len;
1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1945 struct xps_map *map, *new_map;
1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1947 int cpu, numa_node_id = -2;
1948 bool active = false;
1950 mutex_lock(&xps_map_mutex);
1952 dev_maps = xmap_dereference(dev->xps_maps);
1954 /* allocate memory for queue storage */
1955 for_each_online_cpu(cpu) {
1956 if (!cpumask_test_cpu(cpu, mask))
1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1961 if (!new_dev_maps) {
1962 mutex_unlock(&xps_map_mutex);
1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 map = expand_xps_map(map, cpu, index);
1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1977 goto out_no_new_maps;
1979 for_each_possible_cpu(cpu) {
1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981 /* add queue to CPU maps */
1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985 while ((pos < map->len) && (map->queues[pos] != index))
1988 if (pos == map->len)
1989 map->queues[map->len++] = index;
1991 if (numa_node_id == -2)
1992 numa_node_id = cpu_to_node(cpu);
1993 else if (numa_node_id != cpu_to_node(cpu))
1996 } else if (dev_maps) {
1997 /* fill in the new device map from the old device map */
1998 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2006 /* Cleanup old maps */
2008 for_each_possible_cpu(cpu) {
2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011 if (map && map != new_map)
2012 kfree_rcu(map, rcu);
2015 kfree_rcu(dev_maps, rcu);
2018 dev_maps = new_dev_maps;
2022 /* update Tx queue numa node */
2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024 (numa_node_id >= 0) ? numa_node_id :
2030 /* removes queue from unused CPUs */
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 if (remove_xps_queue(dev_maps, cpu, index))
2039 /* free map if not active */
2041 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 kfree_rcu(dev_maps, rcu);
2046 mutex_unlock(&xps_map_mutex);
2050 /* remove any maps that we added */
2051 for_each_possible_cpu(cpu) {
2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2055 if (new_map && new_map != map)
2059 mutex_unlock(&xps_map_mutex);
2061 kfree(new_dev_maps);
2064 EXPORT_SYMBOL(netif_set_xps_queue);
2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2075 if (txq < 1 || txq > dev->num_tx_queues)
2078 if (dev->reg_state == NETREG_REGISTERED ||
2079 dev->reg_state == NETREG_UNREGISTERING) {
2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2088 netif_setup_tc(dev, txq);
2090 if (txq < dev->real_num_tx_queues) {
2091 qdisc_reset_all_tx_gt(dev, txq);
2093 netif_reset_xps_queues_gt(dev, txq);
2098 dev->real_num_tx_queues = txq;
2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2105 * netif_set_real_num_rx_queues - set actual number of RX queues used
2106 * @dev: Network device
2107 * @rxq: Actual number of RX queues
2109 * This must be called either with the rtnl_lock held or before
2110 * registration of the net device. Returns 0 on success, or a
2111 * negative error code. If called before registration, it always
2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2118 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 if (dev->reg_state == NETREG_REGISTERED) {
2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2130 dev->real_num_rx_queues = rxq;
2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2137 * netif_get_num_default_rss_queues - default number of RSS queues
2139 * This routine should set an upper limit on the number of RSS queues
2140 * used by default by multiqueue devices.
2142 int netif_get_num_default_rss_queues(void)
2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2148 static inline void __netif_reschedule(struct Qdisc *q)
2150 struct softnet_data *sd;
2151 unsigned long flags;
2153 local_irq_save(flags);
2154 sd = this_cpu_ptr(&softnet_data);
2155 q->next_sched = NULL;
2156 *sd->output_queue_tailp = q;
2157 sd->output_queue_tailp = &q->next_sched;
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2162 void __netif_schedule(struct Qdisc *q)
2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165 __netif_reschedule(q);
2167 EXPORT_SYMBOL(__netif_schedule);
2169 struct dev_kfree_skb_cb {
2170 enum skb_free_reason reason;
2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2175 return (struct dev_kfree_skb_cb *)skb->cb;
2178 void netif_schedule_queue(struct netdev_queue *txq)
2181 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2182 struct Qdisc *q = rcu_dereference(txq->qdisc);
2184 __netif_schedule(q);
2188 EXPORT_SYMBOL(netif_schedule_queue);
2191 * netif_wake_subqueue - allow sending packets on subqueue
2192 * @dev: network device
2193 * @queue_index: sub queue index
2195 * Resume individual transmit queue of a device with multiple transmit queues.
2197 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2205 q = rcu_dereference(txq->qdisc);
2206 __netif_schedule(q);
2210 EXPORT_SYMBOL(netif_wake_subqueue);
2212 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2214 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2218 q = rcu_dereference(dev_queue->qdisc);
2219 __netif_schedule(q);
2223 EXPORT_SYMBOL(netif_tx_wake_queue);
2225 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2227 unsigned long flags;
2229 if (likely(atomic_read(&skb->users) == 1)) {
2231 atomic_set(&skb->users, 0);
2232 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2235 get_kfree_skb_cb(skb)->reason = reason;
2236 local_irq_save(flags);
2237 skb->next = __this_cpu_read(softnet_data.completion_queue);
2238 __this_cpu_write(softnet_data.completion_queue, skb);
2239 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2240 local_irq_restore(flags);
2242 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2244 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2246 if (in_irq() || irqs_disabled())
2247 __dev_kfree_skb_irq(skb, reason);
2251 EXPORT_SYMBOL(__dev_kfree_skb_any);
2255 * netif_device_detach - mark device as removed
2256 * @dev: network device
2258 * Mark device as removed from system and therefore no longer available.
2260 void netif_device_detach(struct net_device *dev)
2262 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2263 netif_running(dev)) {
2264 netif_tx_stop_all_queues(dev);
2267 EXPORT_SYMBOL(netif_device_detach);
2270 * netif_device_attach - mark device as attached
2271 * @dev: network device
2273 * Mark device as attached from system and restart if needed.
2275 void netif_device_attach(struct net_device *dev)
2277 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2278 netif_running(dev)) {
2279 netif_tx_wake_all_queues(dev);
2280 __netdev_watchdog_up(dev);
2283 EXPORT_SYMBOL(netif_device_attach);
2285 static void skb_warn_bad_offload(const struct sk_buff *skb)
2287 static const netdev_features_t null_features = 0;
2288 struct net_device *dev = skb->dev;
2289 const char *driver = "";
2291 if (!net_ratelimit())
2294 if (dev && dev->dev.parent)
2295 driver = dev_driver_string(dev->dev.parent);
2297 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2298 "gso_type=%d ip_summed=%d\n",
2299 driver, dev ? &dev->features : &null_features,
2300 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2301 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2302 skb_shinfo(skb)->gso_type, skb->ip_summed);
2306 * Invalidate hardware checksum when packet is to be mangled, and
2307 * complete checksum manually on outgoing path.
2309 int skb_checksum_help(struct sk_buff *skb)
2312 int ret = 0, offset;
2314 if (skb->ip_summed == CHECKSUM_COMPLETE)
2315 goto out_set_summed;
2317 if (unlikely(skb_shinfo(skb)->gso_size)) {
2318 skb_warn_bad_offload(skb);
2322 /* Before computing a checksum, we should make sure no frag could
2323 * be modified by an external entity : checksum could be wrong.
2325 if (skb_has_shared_frag(skb)) {
2326 ret = __skb_linearize(skb);
2331 offset = skb_checksum_start_offset(skb);
2332 BUG_ON(offset >= skb_headlen(skb));
2333 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2335 offset += skb->csum_offset;
2336 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2338 if (skb_cloned(skb) &&
2339 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2340 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2345 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2347 skb->ip_summed = CHECKSUM_NONE;
2351 EXPORT_SYMBOL(skb_checksum_help);
2353 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2355 unsigned int vlan_depth = skb->mac_len;
2356 __be16 type = skb->protocol;
2358 /* Tunnel gso handlers can set protocol to ethernet. */
2359 if (type == htons(ETH_P_TEB)) {
2362 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2365 eth = (struct ethhdr *)skb_mac_header(skb);
2366 type = eth->h_proto;
2369 /* if skb->protocol is 802.1Q/AD then the header should already be
2370 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2371 * ETH_HLEN otherwise
2373 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2375 if (WARN_ON(vlan_depth < VLAN_HLEN))
2377 vlan_depth -= VLAN_HLEN;
2379 vlan_depth = ETH_HLEN;
2382 struct vlan_hdr *vh;
2384 if (unlikely(!pskb_may_pull(skb,
2385 vlan_depth + VLAN_HLEN)))
2388 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2389 type = vh->h_vlan_encapsulated_proto;
2390 vlan_depth += VLAN_HLEN;
2391 } while (type == htons(ETH_P_8021Q) ||
2392 type == htons(ETH_P_8021AD));
2395 *depth = vlan_depth;
2401 * skb_mac_gso_segment - mac layer segmentation handler.
2402 * @skb: buffer to segment
2403 * @features: features for the output path (see dev->features)
2405 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2406 netdev_features_t features)
2408 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2409 struct packet_offload *ptype;
2410 int vlan_depth = skb->mac_len;
2411 __be16 type = skb_network_protocol(skb, &vlan_depth);
2413 if (unlikely(!type))
2414 return ERR_PTR(-EINVAL);
2416 __skb_pull(skb, vlan_depth);
2419 list_for_each_entry_rcu(ptype, &offload_base, list) {
2420 if (ptype->type == type && ptype->callbacks.gso_segment) {
2421 segs = ptype->callbacks.gso_segment(skb, features);
2427 __skb_push(skb, skb->data - skb_mac_header(skb));
2431 EXPORT_SYMBOL(skb_mac_gso_segment);
2434 /* openvswitch calls this on rx path, so we need a different check.
2436 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2439 return skb->ip_summed != CHECKSUM_PARTIAL;
2441 return skb->ip_summed == CHECKSUM_NONE;
2445 * __skb_gso_segment - Perform segmentation on skb.
2446 * @skb: buffer to segment
2447 * @features: features for the output path (see dev->features)
2448 * @tx_path: whether it is called in TX path
2450 * This function segments the given skb and returns a list of segments.
2452 * It may return NULL if the skb requires no segmentation. This is
2453 * only possible when GSO is used for verifying header integrity.
2455 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2456 netdev_features_t features, bool tx_path)
2458 if (unlikely(skb_needs_check(skb, tx_path))) {
2461 skb_warn_bad_offload(skb);
2463 err = skb_cow_head(skb, 0);
2465 return ERR_PTR(err);
2468 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2469 SKB_GSO_CB(skb)->encap_level = 0;
2471 skb_reset_mac_header(skb);
2472 skb_reset_mac_len(skb);
2474 return skb_mac_gso_segment(skb, features);
2476 EXPORT_SYMBOL(__skb_gso_segment);
2478 /* Take action when hardware reception checksum errors are detected. */
2480 void netdev_rx_csum_fault(struct net_device *dev)
2482 if (net_ratelimit()) {
2483 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2487 EXPORT_SYMBOL(netdev_rx_csum_fault);
2490 /* Actually, we should eliminate this check as soon as we know, that:
2491 * 1. IOMMU is present and allows to map all the memory.
2492 * 2. No high memory really exists on this machine.
2495 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2497 #ifdef CONFIG_HIGHMEM
2499 if (!(dev->features & NETIF_F_HIGHDMA)) {
2500 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2501 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2502 if (PageHighMem(skb_frag_page(frag)))
2507 if (PCI_DMA_BUS_IS_PHYS) {
2508 struct device *pdev = dev->dev.parent;
2512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2514 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2515 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2523 /* If MPLS offload request, verify we are testing hardware MPLS features
2524 * instead of standard features for the netdev.
2526 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2527 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2528 netdev_features_t features,
2531 if (eth_p_mpls(type))
2532 features &= skb->dev->mpls_features;
2537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2538 netdev_features_t features,
2545 static netdev_features_t harmonize_features(struct sk_buff *skb,
2546 netdev_features_t features)
2551 type = skb_network_protocol(skb, &tmp);
2552 features = net_mpls_features(skb, features, type);
2554 if (skb->ip_summed != CHECKSUM_NONE &&
2555 !can_checksum_protocol(features, type)) {
2556 features &= ~NETIF_F_ALL_CSUM;
2557 } else if (illegal_highdma(skb->dev, skb)) {
2558 features &= ~NETIF_F_SG;
2564 netdev_features_t netif_skb_features(struct sk_buff *skb)
2566 struct net_device *dev = skb->dev;
2567 netdev_features_t features = dev->features;
2568 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2569 __be16 protocol = skb->protocol;
2571 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2572 features &= ~NETIF_F_GSO_MASK;
2574 /* If encapsulation offload request, verify we are testing
2575 * hardware encapsulation features instead of standard
2576 * features for the netdev
2578 if (skb->encapsulation)
2579 features &= dev->hw_enc_features;
2581 if (!vlan_tx_tag_present(skb)) {
2582 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2583 protocol == htons(ETH_P_8021AD))) {
2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 protocol = veh->h_vlan_encapsulated_proto;
2591 features = netdev_intersect_features(features,
2592 dev->vlan_features |
2593 NETIF_F_HW_VLAN_CTAG_TX |
2594 NETIF_F_HW_VLAN_STAG_TX);
2596 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2597 features = netdev_intersect_features(features,
2602 NETIF_F_HW_VLAN_CTAG_TX |
2603 NETIF_F_HW_VLAN_STAG_TX);
2606 if (dev->netdev_ops->ndo_features_check)
2607 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2610 return harmonize_features(skb, features);
2612 EXPORT_SYMBOL(netif_skb_features);
2614 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2615 struct netdev_queue *txq, bool more)
2620 if (!list_empty(&ptype_all))
2621 dev_queue_xmit_nit(skb, dev);
2624 trace_net_dev_start_xmit(skb, dev);
2625 rc = netdev_start_xmit(skb, dev, txq, more);
2626 trace_net_dev_xmit(skb, rc, dev, len);
2631 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2632 struct netdev_queue *txq, int *ret)
2634 struct sk_buff *skb = first;
2635 int rc = NETDEV_TX_OK;
2638 struct sk_buff *next = skb->next;
2641 rc = xmit_one(skb, dev, txq, next != NULL);
2642 if (unlikely(!dev_xmit_complete(rc))) {
2648 if (netif_xmit_stopped(txq) && skb) {
2649 rc = NETDEV_TX_BUSY;
2659 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2660 netdev_features_t features)
2662 if (vlan_tx_tag_present(skb) &&
2663 !vlan_hw_offload_capable(features, skb->vlan_proto))
2664 skb = __vlan_hwaccel_push_inside(skb);
2668 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2670 netdev_features_t features;
2675 features = netif_skb_features(skb);
2676 skb = validate_xmit_vlan(skb, features);
2680 if (netif_needs_gso(dev, skb, features)) {
2681 struct sk_buff *segs;
2683 segs = skb_gso_segment(skb, features);
2691 if (skb_needs_linearize(skb, features) &&
2692 __skb_linearize(skb))
2695 /* If packet is not checksummed and device does not
2696 * support checksumming for this protocol, complete
2697 * checksumming here.
2699 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2700 if (skb->encapsulation)
2701 skb_set_inner_transport_header(skb,
2702 skb_checksum_start_offset(skb));
2704 skb_set_transport_header(skb,
2705 skb_checksum_start_offset(skb));
2706 if (!(features & NETIF_F_ALL_CSUM) &&
2707 skb_checksum_help(skb))
2720 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2722 struct sk_buff *next, *head = NULL, *tail;
2724 for (; skb != NULL; skb = next) {
2728 /* in case skb wont be segmented, point to itself */
2731 skb = validate_xmit_skb(skb, dev);
2739 /* If skb was segmented, skb->prev points to
2740 * the last segment. If not, it still contains skb.
2747 static void qdisc_pkt_len_init(struct sk_buff *skb)
2749 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2751 qdisc_skb_cb(skb)->pkt_len = skb->len;
2753 /* To get more precise estimation of bytes sent on wire,
2754 * we add to pkt_len the headers size of all segments
2756 if (shinfo->gso_size) {
2757 unsigned int hdr_len;
2758 u16 gso_segs = shinfo->gso_segs;
2760 /* mac layer + network layer */
2761 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2763 /* + transport layer */
2764 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2765 hdr_len += tcp_hdrlen(skb);
2767 hdr_len += sizeof(struct udphdr);
2769 if (shinfo->gso_type & SKB_GSO_DODGY)
2770 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2773 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2778 struct net_device *dev,
2779 struct netdev_queue *txq)
2781 spinlock_t *root_lock = qdisc_lock(q);
2785 qdisc_pkt_len_init(skb);
2786 qdisc_calculate_pkt_len(skb, q);
2788 * Heuristic to force contended enqueues to serialize on a
2789 * separate lock before trying to get qdisc main lock.
2790 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2791 * often and dequeue packets faster.
2793 contended = qdisc_is_running(q);
2794 if (unlikely(contended))
2795 spin_lock(&q->busylock);
2797 spin_lock(root_lock);
2798 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2801 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2802 qdisc_run_begin(q)) {
2804 * This is a work-conserving queue; there are no old skbs
2805 * waiting to be sent out; and the qdisc is not running -
2806 * xmit the skb directly.
2809 qdisc_bstats_update(q, skb);
2811 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2812 if (unlikely(contended)) {
2813 spin_unlock(&q->busylock);
2820 rc = NET_XMIT_SUCCESS;
2822 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2823 if (qdisc_run_begin(q)) {
2824 if (unlikely(contended)) {
2825 spin_unlock(&q->busylock);
2831 spin_unlock(root_lock);
2832 if (unlikely(contended))
2833 spin_unlock(&q->busylock);
2837 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2838 static void skb_update_prio(struct sk_buff *skb)
2840 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2842 if (!skb->priority && skb->sk && map) {
2843 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2845 if (prioidx < map->priomap_len)
2846 skb->priority = map->priomap[prioidx];
2850 #define skb_update_prio(skb)
2853 static DEFINE_PER_CPU(int, xmit_recursion);
2854 #define RECURSION_LIMIT 10
2857 * dev_loopback_xmit - loop back @skb
2858 * @skb: buffer to transmit
2860 int dev_loopback_xmit(struct sk_buff *skb)
2862 skb_reset_mac_header(skb);
2863 __skb_pull(skb, skb_network_offset(skb));
2864 skb->pkt_type = PACKET_LOOPBACK;
2865 skb->ip_summed = CHECKSUM_UNNECESSARY;
2866 WARN_ON(!skb_dst(skb));
2871 EXPORT_SYMBOL(dev_loopback_xmit);
2874 * __dev_queue_xmit - transmit a buffer
2875 * @skb: buffer to transmit
2876 * @accel_priv: private data used for L2 forwarding offload
2878 * Queue a buffer for transmission to a network device. The caller must
2879 * have set the device and priority and built the buffer before calling
2880 * this function. The function can be called from an interrupt.
2882 * A negative errno code is returned on a failure. A success does not
2883 * guarantee the frame will be transmitted as it may be dropped due
2884 * to congestion or traffic shaping.
2886 * -----------------------------------------------------------------------------------
2887 * I notice this method can also return errors from the queue disciplines,
2888 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2891 * Regardless of the return value, the skb is consumed, so it is currently
2892 * difficult to retry a send to this method. (You can bump the ref count
2893 * before sending to hold a reference for retry if you are careful.)
2895 * When calling this method, interrupts MUST be enabled. This is because
2896 * the BH enable code must have IRQs enabled so that it will not deadlock.
2899 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2901 struct net_device *dev = skb->dev;
2902 struct netdev_queue *txq;
2906 skb_reset_mac_header(skb);
2908 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2909 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2911 /* Disable soft irqs for various locks below. Also
2912 * stops preemption for RCU.
2916 skb_update_prio(skb);
2918 /* If device/qdisc don't need skb->dst, release it right now while
2919 * its hot in this cpu cache.
2921 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2926 txq = netdev_pick_tx(dev, skb, accel_priv);
2927 q = rcu_dereference_bh(txq->qdisc);
2929 #ifdef CONFIG_NET_CLS_ACT
2930 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2932 trace_net_dev_queue(skb);
2934 rc = __dev_xmit_skb(skb, q, dev, txq);
2938 /* The device has no queue. Common case for software devices:
2939 loopback, all the sorts of tunnels...
2941 Really, it is unlikely that netif_tx_lock protection is necessary
2942 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2944 However, it is possible, that they rely on protection
2947 Check this and shot the lock. It is not prone from deadlocks.
2948 Either shot noqueue qdisc, it is even simpler 8)
2950 if (dev->flags & IFF_UP) {
2951 int cpu = smp_processor_id(); /* ok because BHs are off */
2953 if (txq->xmit_lock_owner != cpu) {
2955 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956 goto recursion_alert;
2958 skb = validate_xmit_skb(skb, dev);
2962 HARD_TX_LOCK(dev, txq, cpu);
2964 if (!netif_xmit_stopped(txq)) {
2965 __this_cpu_inc(xmit_recursion);
2966 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2967 __this_cpu_dec(xmit_recursion);
2968 if (dev_xmit_complete(rc)) {
2969 HARD_TX_UNLOCK(dev, txq);
2973 HARD_TX_UNLOCK(dev, txq);
2974 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2977 /* Recursion is detected! It is possible,
2981 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2988 rcu_read_unlock_bh();
2990 atomic_long_inc(&dev->tx_dropped);
2991 kfree_skb_list(skb);
2994 rcu_read_unlock_bh();
2998 int dev_queue_xmit(struct sk_buff *skb)
3000 return __dev_queue_xmit(skb, NULL);
3002 EXPORT_SYMBOL(dev_queue_xmit);
3004 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3006 return __dev_queue_xmit(skb, accel_priv);
3008 EXPORT_SYMBOL(dev_queue_xmit_accel);
3011 /*=======================================================================
3013 =======================================================================*/
3015 int netdev_max_backlog __read_mostly = 1000;
3016 EXPORT_SYMBOL(netdev_max_backlog);
3018 int netdev_tstamp_prequeue __read_mostly = 1;
3019 int netdev_budget __read_mostly = 300;
3020 int weight_p __read_mostly = 64; /* old backlog weight */
3022 /* Called with irq disabled */
3023 static inline void ____napi_schedule(struct softnet_data *sd,
3024 struct napi_struct *napi)
3026 list_add_tail(&napi->poll_list, &sd->poll_list);
3027 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3032 /* One global table that all flow-based protocols share. */
3033 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3034 EXPORT_SYMBOL(rps_sock_flow_table);
3036 struct static_key rps_needed __read_mostly;
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 struct rps_dev_flow *rflow, u16 next_cpu)
3042 if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044 struct netdev_rx_queue *rxqueue;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_dev_flow *old_rflow;
3051 /* Should we steer this flow to a different hardware queue? */
3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 !(dev->features & NETIF_F_NTUPLE))
3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 if (rxq_index == skb_get_rx_queue(skb))
3059 rxqueue = dev->_rx + rxq_index;
3060 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3063 flow_id = skb_get_hash(skb) & flow_table->mask;
3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 rxq_index, flow_id);
3069 rflow = &flow_table->flows[flow_id];
3071 if (old_rflow->filter == rflow->filter)
3072 old_rflow->filter = RPS_NO_FILTER;
3076 per_cpu(softnet_data, next_cpu).input_queue_head;
3079 rflow->cpu = next_cpu;
3084 * get_rps_cpu is called from netif_receive_skb and returns the target
3085 * CPU from the RPS map of the receiving queue for a given skb.
3086 * rcu_read_lock must be held on entry.
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 struct rps_dev_flow **rflowp)
3091 struct netdev_rx_queue *rxqueue;
3092 struct rps_map *map;
3093 struct rps_dev_flow_table *flow_table;
3094 struct rps_sock_flow_table *sock_flow_table;
3099 if (skb_rx_queue_recorded(skb)) {
3100 u16 index = skb_get_rx_queue(skb);
3101 if (unlikely(index >= dev->real_num_rx_queues)) {
3102 WARN_ONCE(dev->real_num_rx_queues > 1,
3103 "%s received packet on queue %u, but number "
3104 "of RX queues is %u\n",
3105 dev->name, index, dev->real_num_rx_queues);
3108 rxqueue = dev->_rx + index;
3112 map = rcu_dereference(rxqueue->rps_map);
3114 if (map->len == 1 &&
3115 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3116 tcpu = map->cpus[0];
3117 if (cpu_online(tcpu))
3121 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3125 skb_reset_network_header(skb);
3126 hash = skb_get_hash(skb);
3130 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3131 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3132 if (flow_table && sock_flow_table) {
3134 struct rps_dev_flow *rflow;
3136 rflow = &flow_table->flows[hash & flow_table->mask];
3139 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3142 * If the desired CPU (where last recvmsg was done) is
3143 * different from current CPU (one in the rx-queue flow
3144 * table entry), switch if one of the following holds:
3145 * - Current CPU is unset (equal to RPS_NO_CPU).
3146 * - Current CPU is offline.
3147 * - The current CPU's queue tail has advanced beyond the
3148 * last packet that was enqueued using this table entry.
3149 * This guarantees that all previous packets for the flow
3150 * have been dequeued, thus preserving in order delivery.
3152 if (unlikely(tcpu != next_cpu) &&
3153 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3154 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3155 rflow->last_qtail)) >= 0)) {
3157 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3160 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3168 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3169 if (cpu_online(tcpu)) {
3179 #ifdef CONFIG_RFS_ACCEL
3182 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3183 * @dev: Device on which the filter was set
3184 * @rxq_index: RX queue index
3185 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3186 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3188 * Drivers that implement ndo_rx_flow_steer() should periodically call
3189 * this function for each installed filter and remove the filters for
3190 * which it returns %true.
3192 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3193 u32 flow_id, u16 filter_id)
3195 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3196 struct rps_dev_flow_table *flow_table;
3197 struct rps_dev_flow *rflow;
3202 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3203 if (flow_table && flow_id <= flow_table->mask) {
3204 rflow = &flow_table->flows[flow_id];
3205 cpu = ACCESS_ONCE(rflow->cpu);
3206 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3207 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3208 rflow->last_qtail) <
3209 (int)(10 * flow_table->mask)))
3215 EXPORT_SYMBOL(rps_may_expire_flow);
3217 #endif /* CONFIG_RFS_ACCEL */
3219 /* Called from hardirq (IPI) context */
3220 static void rps_trigger_softirq(void *data)
3222 struct softnet_data *sd = data;
3224 ____napi_schedule(sd, &sd->backlog);
3228 #endif /* CONFIG_RPS */
3231 * Check if this softnet_data structure is another cpu one
3232 * If yes, queue it to our IPI list and return 1
3235 static int rps_ipi_queued(struct softnet_data *sd)
3238 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3241 sd->rps_ipi_next = mysd->rps_ipi_list;
3242 mysd->rps_ipi_list = sd;
3244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3247 #endif /* CONFIG_RPS */
3251 #ifdef CONFIG_NET_FLOW_LIMIT
3252 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3255 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3257 #ifdef CONFIG_NET_FLOW_LIMIT
3258 struct sd_flow_limit *fl;
3259 struct softnet_data *sd;
3260 unsigned int old_flow, new_flow;
3262 if (qlen < (netdev_max_backlog >> 1))
3265 sd = this_cpu_ptr(&softnet_data);
3268 fl = rcu_dereference(sd->flow_limit);
3270 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3271 old_flow = fl->history[fl->history_head];
3272 fl->history[fl->history_head] = new_flow;
3275 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3277 if (likely(fl->buckets[old_flow]))
3278 fl->buckets[old_flow]--;
3280 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3292 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3293 * queue (may be a remote CPU queue).
3295 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3296 unsigned int *qtail)
3298 struct softnet_data *sd;
3299 unsigned long flags;
3302 sd = &per_cpu(softnet_data, cpu);
3304 local_irq_save(flags);
3307 qlen = skb_queue_len(&sd->input_pkt_queue);
3308 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3311 __skb_queue_tail(&sd->input_pkt_queue, skb);
3312 input_queue_tail_incr_save(sd, qtail);
3314 local_irq_restore(flags);
3315 return NET_RX_SUCCESS;
3318 /* Schedule NAPI for backlog device
3319 * We can use non atomic operation since we own the queue lock
3321 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3322 if (!rps_ipi_queued(sd))
3323 ____napi_schedule(sd, &sd->backlog);
3331 local_irq_restore(flags);
3333 atomic_long_inc(&skb->dev->rx_dropped);
3338 static int netif_rx_internal(struct sk_buff *skb)
3342 net_timestamp_check(netdev_tstamp_prequeue, skb);
3344 trace_netif_rx(skb);
3346 if (static_key_false(&rps_needed)) {
3347 struct rps_dev_flow voidflow, *rflow = &voidflow;
3353 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3355 cpu = smp_processor_id();
3357 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3365 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3372 * netif_rx - post buffer to the network code
3373 * @skb: buffer to post
3375 * This function receives a packet from a device driver and queues it for
3376 * the upper (protocol) levels to process. It always succeeds. The buffer
3377 * may be dropped during processing for congestion control or by the
3381 * NET_RX_SUCCESS (no congestion)
3382 * NET_RX_DROP (packet was dropped)
3386 int netif_rx(struct sk_buff *skb)
3388 trace_netif_rx_entry(skb);
3390 return netif_rx_internal(skb);
3392 EXPORT_SYMBOL(netif_rx);
3394 int netif_rx_ni(struct sk_buff *skb)
3398 trace_netif_rx_ni_entry(skb);
3401 err = netif_rx_internal(skb);
3402 if (local_softirq_pending())
3408 EXPORT_SYMBOL(netif_rx_ni);
3410 static void net_tx_action(struct softirq_action *h)
3412 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3414 if (sd->completion_queue) {
3415 struct sk_buff *clist;
3417 local_irq_disable();
3418 clist = sd->completion_queue;
3419 sd->completion_queue = NULL;
3423 struct sk_buff *skb = clist;
3424 clist = clist->next;
3426 WARN_ON(atomic_read(&skb->users));
3427 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3428 trace_consume_skb(skb);
3430 trace_kfree_skb(skb, net_tx_action);
3435 if (sd->output_queue) {
3438 local_irq_disable();
3439 head = sd->output_queue;
3440 sd->output_queue = NULL;
3441 sd->output_queue_tailp = &sd->output_queue;
3445 struct Qdisc *q = head;
3446 spinlock_t *root_lock;
3448 head = head->next_sched;
3450 root_lock = qdisc_lock(q);
3451 if (spin_trylock(root_lock)) {
3452 smp_mb__before_atomic();
3453 clear_bit(__QDISC_STATE_SCHED,
3456 spin_unlock(root_lock);
3458 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3460 __netif_reschedule(q);
3462 smp_mb__before_atomic();
3463 clear_bit(__QDISC_STATE_SCHED,
3471 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3472 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3473 /* This hook is defined here for ATM LANE */
3474 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3475 unsigned char *addr) __read_mostly;
3476 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3479 #ifdef CONFIG_NET_CLS_ACT
3480 /* TODO: Maybe we should just force sch_ingress to be compiled in
3481 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3482 * a compare and 2 stores extra right now if we dont have it on
3483 * but have CONFIG_NET_CLS_ACT
3484 * NOTE: This doesn't stop any functionality; if you dont have
3485 * the ingress scheduler, you just can't add policies on ingress.
3488 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3490 struct net_device *dev = skb->dev;
3491 u32 ttl = G_TC_RTTL(skb->tc_verd);
3492 int result = TC_ACT_OK;
3495 if (unlikely(MAX_RED_LOOP < ttl++)) {
3496 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3497 skb->skb_iif, dev->ifindex);
3501 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3502 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3504 q = rcu_dereference(rxq->qdisc);
3505 if (q != &noop_qdisc) {
3506 spin_lock(qdisc_lock(q));
3507 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3508 result = qdisc_enqueue_root(skb, q);
3509 spin_unlock(qdisc_lock(q));
3515 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3516 struct packet_type **pt_prev,
3517 int *ret, struct net_device *orig_dev)
3519 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3521 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3525 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3529 switch (ing_filter(skb, rxq)) {
3543 * netdev_rx_handler_register - register receive handler
3544 * @dev: device to register a handler for
3545 * @rx_handler: receive handler to register
3546 * @rx_handler_data: data pointer that is used by rx handler
3548 * Register a receive handler for a device. This handler will then be
3549 * called from __netif_receive_skb. A negative errno code is returned
3552 * The caller must hold the rtnl_mutex.
3554 * For a general description of rx_handler, see enum rx_handler_result.
3556 int netdev_rx_handler_register(struct net_device *dev,
3557 rx_handler_func_t *rx_handler,
3558 void *rx_handler_data)
3562 if (dev->rx_handler)
3565 /* Note: rx_handler_data must be set before rx_handler */
3566 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3567 rcu_assign_pointer(dev->rx_handler, rx_handler);
3571 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3574 * netdev_rx_handler_unregister - unregister receive handler
3575 * @dev: device to unregister a handler from
3577 * Unregister a receive handler from a device.
3579 * The caller must hold the rtnl_mutex.
3581 void netdev_rx_handler_unregister(struct net_device *dev)
3585 RCU_INIT_POINTER(dev->rx_handler, NULL);
3586 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3587 * section has a guarantee to see a non NULL rx_handler_data
3591 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3593 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3596 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3597 * the special handling of PFMEMALLOC skbs.
3599 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3601 switch (skb->protocol) {
3602 case htons(ETH_P_ARP):
3603 case htons(ETH_P_IP):
3604 case htons(ETH_P_IPV6):
3605 case htons(ETH_P_8021Q):
3606 case htons(ETH_P_8021AD):
3613 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3615 struct packet_type *ptype, *pt_prev;
3616 rx_handler_func_t *rx_handler;
3617 struct net_device *orig_dev;
3618 struct net_device *null_or_dev;
3619 bool deliver_exact = false;
3620 int ret = NET_RX_DROP;
3623 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3625 trace_netif_receive_skb(skb);
3627 orig_dev = skb->dev;
3629 skb_reset_network_header(skb);
3630 if (!skb_transport_header_was_set(skb))
3631 skb_reset_transport_header(skb);
3632 skb_reset_mac_len(skb);
3639 skb->skb_iif = skb->dev->ifindex;
3641 __this_cpu_inc(softnet_data.processed);
3643 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3644 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3645 skb = skb_vlan_untag(skb);
3650 #ifdef CONFIG_NET_CLS_ACT
3651 if (skb->tc_verd & TC_NCLS) {
3652 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3660 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3661 if (!ptype->dev || ptype->dev == skb->dev) {
3663 ret = deliver_skb(skb, pt_prev, orig_dev);
3669 #ifdef CONFIG_NET_CLS_ACT
3670 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3676 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3679 if (vlan_tx_tag_present(skb)) {
3681 ret = deliver_skb(skb, pt_prev, orig_dev);
3684 if (vlan_do_receive(&skb))
3686 else if (unlikely(!skb))
3690 rx_handler = rcu_dereference(skb->dev->rx_handler);
3693 ret = deliver_skb(skb, pt_prev, orig_dev);
3696 switch (rx_handler(&skb)) {
3697 case RX_HANDLER_CONSUMED:
3698 ret = NET_RX_SUCCESS;
3700 case RX_HANDLER_ANOTHER:
3702 case RX_HANDLER_EXACT:
3703 deliver_exact = true;
3704 case RX_HANDLER_PASS:
3711 if (unlikely(vlan_tx_tag_present(skb))) {
3712 if (vlan_tx_tag_get_id(skb))
3713 skb->pkt_type = PACKET_OTHERHOST;
3714 /* Note: we might in the future use prio bits
3715 * and set skb->priority like in vlan_do_receive()
3716 * For the time being, just ignore Priority Code Point
3721 /* deliver only exact match when indicated */
3722 null_or_dev = deliver_exact ? skb->dev : NULL;
3724 type = skb->protocol;
3725 list_for_each_entry_rcu(ptype,
3726 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3727 if (ptype->type == type &&
3728 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3729 ptype->dev == orig_dev)) {
3731 ret = deliver_skb(skb, pt_prev, orig_dev);
3737 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3740 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3743 atomic_long_inc(&skb->dev->rx_dropped);
3745 /* Jamal, now you will not able to escape explaining
3746 * me how you were going to use this. :-)
3756 static int __netif_receive_skb(struct sk_buff *skb)
3760 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3761 unsigned long pflags = current->flags;
3764 * PFMEMALLOC skbs are special, they should
3765 * - be delivered to SOCK_MEMALLOC sockets only
3766 * - stay away from userspace
3767 * - have bounded memory usage
3769 * Use PF_MEMALLOC as this saves us from propagating the allocation
3770 * context down to all allocation sites.
3772 current->flags |= PF_MEMALLOC;
3773 ret = __netif_receive_skb_core(skb, true);
3774 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3776 ret = __netif_receive_skb_core(skb, false);
3781 static int netif_receive_skb_internal(struct sk_buff *skb)
3783 net_timestamp_check(netdev_tstamp_prequeue, skb);
3785 if (skb_defer_rx_timestamp(skb))
3786 return NET_RX_SUCCESS;
3789 if (static_key_false(&rps_needed)) {
3790 struct rps_dev_flow voidflow, *rflow = &voidflow;
3795 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3798 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3805 return __netif_receive_skb(skb);
3809 * netif_receive_skb - process receive buffer from network
3810 * @skb: buffer to process
3812 * netif_receive_skb() is the main receive data processing function.
3813 * It always succeeds. The buffer may be dropped during processing
3814 * for congestion control or by the protocol layers.
3816 * This function may only be called from softirq context and interrupts
3817 * should be enabled.
3819 * Return values (usually ignored):
3820 * NET_RX_SUCCESS: no congestion
3821 * NET_RX_DROP: packet was dropped
3823 int netif_receive_skb(struct sk_buff *skb)
3825 trace_netif_receive_skb_entry(skb);
3827 return netif_receive_skb_internal(skb);
3829 EXPORT_SYMBOL(netif_receive_skb);
3831 /* Network device is going away, flush any packets still pending
3832 * Called with irqs disabled.
3834 static void flush_backlog(void *arg)
3836 struct net_device *dev = arg;
3837 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3838 struct sk_buff *skb, *tmp;
3841 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3842 if (skb->dev == dev) {
3843 __skb_unlink(skb, &sd->input_pkt_queue);
3845 input_queue_head_incr(sd);
3850 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3851 if (skb->dev == dev) {
3852 __skb_unlink(skb, &sd->process_queue);
3854 input_queue_head_incr(sd);
3859 static int napi_gro_complete(struct sk_buff *skb)
3861 struct packet_offload *ptype;
3862 __be16 type = skb->protocol;
3863 struct list_head *head = &offload_base;
3866 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3868 if (NAPI_GRO_CB(skb)->count == 1) {
3869 skb_shinfo(skb)->gso_size = 0;
3874 list_for_each_entry_rcu(ptype, head, list) {
3875 if (ptype->type != type || !ptype->callbacks.gro_complete)
3878 err = ptype->callbacks.gro_complete(skb, 0);
3884 WARN_ON(&ptype->list == head);
3886 return NET_RX_SUCCESS;
3890 return netif_receive_skb_internal(skb);
3893 /* napi->gro_list contains packets ordered by age.
3894 * youngest packets at the head of it.
3895 * Complete skbs in reverse order to reduce latencies.
3897 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3899 struct sk_buff *skb, *prev = NULL;
3901 /* scan list and build reverse chain */
3902 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3907 for (skb = prev; skb; skb = prev) {
3910 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3914 napi_gro_complete(skb);
3918 napi->gro_list = NULL;
3920 EXPORT_SYMBOL(napi_gro_flush);
3922 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3925 unsigned int maclen = skb->dev->hard_header_len;
3926 u32 hash = skb_get_hash_raw(skb);
3928 for (p = napi->gro_list; p; p = p->next) {
3929 unsigned long diffs;
3931 NAPI_GRO_CB(p)->flush = 0;
3933 if (hash != skb_get_hash_raw(p)) {
3934 NAPI_GRO_CB(p)->same_flow = 0;
3938 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3939 diffs |= p->vlan_tci ^ skb->vlan_tci;
3940 if (maclen == ETH_HLEN)
3941 diffs |= compare_ether_header(skb_mac_header(p),
3942 skb_mac_header(skb));
3944 diffs = memcmp(skb_mac_header(p),
3945 skb_mac_header(skb),
3947 NAPI_GRO_CB(p)->same_flow = !diffs;
3951 static void skb_gro_reset_offset(struct sk_buff *skb)
3953 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3954 const skb_frag_t *frag0 = &pinfo->frags[0];
3956 NAPI_GRO_CB(skb)->data_offset = 0;
3957 NAPI_GRO_CB(skb)->frag0 = NULL;
3958 NAPI_GRO_CB(skb)->frag0_len = 0;
3960 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3962 !PageHighMem(skb_frag_page(frag0))) {
3963 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3964 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3968 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3970 struct skb_shared_info *pinfo = skb_shinfo(skb);
3972 BUG_ON(skb->end - skb->tail < grow);
3974 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3976 skb->data_len -= grow;
3979 pinfo->frags[0].page_offset += grow;
3980 skb_frag_size_sub(&pinfo->frags[0], grow);
3982 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3983 skb_frag_unref(skb, 0);
3984 memmove(pinfo->frags, pinfo->frags + 1,
3985 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3989 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3991 struct sk_buff **pp = NULL;
3992 struct packet_offload *ptype;
3993 __be16 type = skb->protocol;
3994 struct list_head *head = &offload_base;
3996 enum gro_result ret;
3999 if (!(skb->dev->features & NETIF_F_GRO))
4002 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4005 gro_list_prepare(napi, skb);
4008 list_for_each_entry_rcu(ptype, head, list) {
4009 if (ptype->type != type || !ptype->callbacks.gro_receive)
4012 skb_set_network_header(skb, skb_gro_offset(skb));
4013 skb_reset_mac_len(skb);
4014 NAPI_GRO_CB(skb)->same_flow = 0;
4015 NAPI_GRO_CB(skb)->flush = 0;
4016 NAPI_GRO_CB(skb)->free = 0;
4017 NAPI_GRO_CB(skb)->udp_mark = 0;
4019 /* Setup for GRO checksum validation */
4020 switch (skb->ip_summed) {
4021 case CHECKSUM_COMPLETE:
4022 NAPI_GRO_CB(skb)->csum = skb->csum;
4023 NAPI_GRO_CB(skb)->csum_valid = 1;
4024 NAPI_GRO_CB(skb)->csum_cnt = 0;
4026 case CHECKSUM_UNNECESSARY:
4027 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4028 NAPI_GRO_CB(skb)->csum_valid = 0;
4031 NAPI_GRO_CB(skb)->csum_cnt = 0;
4032 NAPI_GRO_CB(skb)->csum_valid = 0;
4035 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4040 if (&ptype->list == head)
4043 same_flow = NAPI_GRO_CB(skb)->same_flow;
4044 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4047 struct sk_buff *nskb = *pp;
4051 napi_gro_complete(nskb);
4058 if (NAPI_GRO_CB(skb)->flush)
4061 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4062 struct sk_buff *nskb = napi->gro_list;
4064 /* locate the end of the list to select the 'oldest' flow */
4065 while (nskb->next) {
4071 napi_gro_complete(nskb);
4075 NAPI_GRO_CB(skb)->count = 1;
4076 NAPI_GRO_CB(skb)->age = jiffies;
4077 NAPI_GRO_CB(skb)->last = skb;
4078 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4079 skb->next = napi->gro_list;
4080 napi->gro_list = skb;
4084 grow = skb_gro_offset(skb) - skb_headlen(skb);
4086 gro_pull_from_frag0(skb, grow);
4095 struct packet_offload *gro_find_receive_by_type(__be16 type)
4097 struct list_head *offload_head = &offload_base;
4098 struct packet_offload *ptype;
4100 list_for_each_entry_rcu(ptype, offload_head, list) {
4101 if (ptype->type != type || !ptype->callbacks.gro_receive)
4107 EXPORT_SYMBOL(gro_find_receive_by_type);
4109 struct packet_offload *gro_find_complete_by_type(__be16 type)
4111 struct list_head *offload_head = &offload_base;
4112 struct packet_offload *ptype;
4114 list_for_each_entry_rcu(ptype, offload_head, list) {
4115 if (ptype->type != type || !ptype->callbacks.gro_complete)
4121 EXPORT_SYMBOL(gro_find_complete_by_type);
4123 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4127 if (netif_receive_skb_internal(skb))
4135 case GRO_MERGED_FREE:
4136 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4137 kmem_cache_free(skbuff_head_cache, skb);
4150 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4152 trace_napi_gro_receive_entry(skb);
4154 skb_gro_reset_offset(skb);
4156 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4158 EXPORT_SYMBOL(napi_gro_receive);
4160 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4162 if (unlikely(skb->pfmemalloc)) {
4166 __skb_pull(skb, skb_headlen(skb));
4167 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4168 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4170 skb->dev = napi->dev;
4172 skb->encapsulation = 0;
4173 skb_shinfo(skb)->gso_type = 0;
4174 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4179 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4181 struct sk_buff *skb = napi->skb;
4184 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4189 EXPORT_SYMBOL(napi_get_frags);
4191 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4192 struct sk_buff *skb,
4198 __skb_push(skb, ETH_HLEN);
4199 skb->protocol = eth_type_trans(skb, skb->dev);
4200 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4205 case GRO_MERGED_FREE:
4206 napi_reuse_skb(napi, skb);
4216 /* Upper GRO stack assumes network header starts at gro_offset=0
4217 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4218 * We copy ethernet header into skb->data to have a common layout.
4220 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4222 struct sk_buff *skb = napi->skb;
4223 const struct ethhdr *eth;
4224 unsigned int hlen = sizeof(*eth);
4228 skb_reset_mac_header(skb);
4229 skb_gro_reset_offset(skb);
4231 eth = skb_gro_header_fast(skb, 0);
4232 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4233 eth = skb_gro_header_slow(skb, hlen, 0);
4234 if (unlikely(!eth)) {
4235 napi_reuse_skb(napi, skb);
4239 gro_pull_from_frag0(skb, hlen);
4240 NAPI_GRO_CB(skb)->frag0 += hlen;
4241 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4243 __skb_pull(skb, hlen);
4246 * This works because the only protocols we care about don't require
4248 * We'll fix it up properly in napi_frags_finish()
4250 skb->protocol = eth->h_proto;
4255 gro_result_t napi_gro_frags(struct napi_struct *napi)
4257 struct sk_buff *skb = napi_frags_skb(napi);
4262 trace_napi_gro_frags_entry(skb);
4264 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4266 EXPORT_SYMBOL(napi_gro_frags);
4268 /* Compute the checksum from gro_offset and return the folded value
4269 * after adding in any pseudo checksum.
4271 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4276 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4278 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4279 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4281 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4282 !skb->csum_complete_sw)
4283 netdev_rx_csum_fault(skb->dev);
4286 NAPI_GRO_CB(skb)->csum = wsum;
4287 NAPI_GRO_CB(skb)->csum_valid = 1;
4291 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4294 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4295 * Note: called with local irq disabled, but exits with local irq enabled.
4297 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4300 struct softnet_data *remsd = sd->rps_ipi_list;
4303 sd->rps_ipi_list = NULL;
4307 /* Send pending IPI's to kick RPS processing on remote cpus. */
4309 struct softnet_data *next = remsd->rps_ipi_next;
4311 if (cpu_online(remsd->cpu))
4312 smp_call_function_single_async(remsd->cpu,
4321 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4324 return sd->rps_ipi_list != NULL;
4330 static int process_backlog(struct napi_struct *napi, int quota)
4333 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4335 /* Check if we have pending ipi, its better to send them now,
4336 * not waiting net_rx_action() end.
4338 if (sd_has_rps_ipi_waiting(sd)) {
4339 local_irq_disable();
4340 net_rps_action_and_irq_enable(sd);
4343 napi->weight = weight_p;
4344 local_irq_disable();
4346 struct sk_buff *skb;
4348 while ((skb = __skb_dequeue(&sd->process_queue))) {
4350 __netif_receive_skb(skb);
4351 local_irq_disable();
4352 input_queue_head_incr(sd);
4353 if (++work >= quota) {
4360 if (skb_queue_empty(&sd->input_pkt_queue)) {
4362 * Inline a custom version of __napi_complete().
4363 * only current cpu owns and manipulates this napi,
4364 * and NAPI_STATE_SCHED is the only possible flag set
4366 * We can use a plain write instead of clear_bit(),
4367 * and we dont need an smp_mb() memory barrier.
4375 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4376 &sd->process_queue);
4385 * __napi_schedule - schedule for receive
4386 * @n: entry to schedule
4388 * The entry's receive function will be scheduled to run.
4389 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4391 void __napi_schedule(struct napi_struct *n)
4393 unsigned long flags;
4395 local_irq_save(flags);
4396 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4397 local_irq_restore(flags);
4399 EXPORT_SYMBOL(__napi_schedule);
4402 * __napi_schedule_irqoff - schedule for receive
4403 * @n: entry to schedule
4405 * Variant of __napi_schedule() assuming hard irqs are masked
4407 void __napi_schedule_irqoff(struct napi_struct *n)
4409 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4411 EXPORT_SYMBOL(__napi_schedule_irqoff);
4413 void __napi_complete(struct napi_struct *n)
4415 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4417 list_del_init(&n->poll_list);
4418 smp_mb__before_atomic();
4419 clear_bit(NAPI_STATE_SCHED, &n->state);
4421 EXPORT_SYMBOL(__napi_complete);
4423 void napi_complete_done(struct napi_struct *n, int work_done)
4425 unsigned long flags;
4428 * don't let napi dequeue from the cpu poll list
4429 * just in case its running on a different cpu
4431 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4435 unsigned long timeout = 0;
4438 timeout = n->dev->gro_flush_timeout;
4441 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4442 HRTIMER_MODE_REL_PINNED);
4444 napi_gro_flush(n, false);
4446 if (likely(list_empty(&n->poll_list))) {
4447 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4449 /* If n->poll_list is not empty, we need to mask irqs */
4450 local_irq_save(flags);
4452 local_irq_restore(flags);
4455 EXPORT_SYMBOL(napi_complete_done);
4457 /* must be called under rcu_read_lock(), as we dont take a reference */
4458 struct napi_struct *napi_by_id(unsigned int napi_id)
4460 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4461 struct napi_struct *napi;
4463 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4464 if (napi->napi_id == napi_id)
4469 EXPORT_SYMBOL_GPL(napi_by_id);
4471 void napi_hash_add(struct napi_struct *napi)
4473 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4475 spin_lock(&napi_hash_lock);
4477 /* 0 is not a valid id, we also skip an id that is taken
4478 * we expect both events to be extremely rare
4481 while (!napi->napi_id) {
4482 napi->napi_id = ++napi_gen_id;
4483 if (napi_by_id(napi->napi_id))
4487 hlist_add_head_rcu(&napi->napi_hash_node,
4488 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4490 spin_unlock(&napi_hash_lock);
4493 EXPORT_SYMBOL_GPL(napi_hash_add);
4495 /* Warning : caller is responsible to make sure rcu grace period
4496 * is respected before freeing memory containing @napi
4498 void napi_hash_del(struct napi_struct *napi)
4500 spin_lock(&napi_hash_lock);
4502 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4503 hlist_del_rcu(&napi->napi_hash_node);
4505 spin_unlock(&napi_hash_lock);
4507 EXPORT_SYMBOL_GPL(napi_hash_del);
4509 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4511 struct napi_struct *napi;
4513 napi = container_of(timer, struct napi_struct, timer);
4515 napi_schedule(napi);
4517 return HRTIMER_NORESTART;
4520 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4521 int (*poll)(struct napi_struct *, int), int weight)
4523 INIT_LIST_HEAD(&napi->poll_list);
4524 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4525 napi->timer.function = napi_watchdog;
4526 napi->gro_count = 0;
4527 napi->gro_list = NULL;
4530 if (weight > NAPI_POLL_WEIGHT)
4531 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4533 napi->weight = weight;
4534 list_add(&napi->dev_list, &dev->napi_list);
4536 #ifdef CONFIG_NETPOLL
4537 spin_lock_init(&napi->poll_lock);
4538 napi->poll_owner = -1;
4540 set_bit(NAPI_STATE_SCHED, &napi->state);
4542 EXPORT_SYMBOL(netif_napi_add);
4544 void napi_disable(struct napi_struct *n)
4547 set_bit(NAPI_STATE_DISABLE, &n->state);
4549 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4552 hrtimer_cancel(&n->timer);
4554 clear_bit(NAPI_STATE_DISABLE, &n->state);
4556 EXPORT_SYMBOL(napi_disable);
4558 void netif_napi_del(struct napi_struct *napi)
4560 list_del_init(&napi->dev_list);
4561 napi_free_frags(napi);
4563 kfree_skb_list(napi->gro_list);
4564 napi->gro_list = NULL;
4565 napi->gro_count = 0;
4567 EXPORT_SYMBOL(netif_napi_del);
4569 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4574 list_del_init(&n->poll_list);
4576 have = netpoll_poll_lock(n);
4580 /* This NAPI_STATE_SCHED test is for avoiding a race
4581 * with netpoll's poll_napi(). Only the entity which
4582 * obtains the lock and sees NAPI_STATE_SCHED set will
4583 * actually make the ->poll() call. Therefore we avoid
4584 * accidentally calling ->poll() when NAPI is not scheduled.
4587 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4588 work = n->poll(n, weight);
4592 WARN_ON_ONCE(work > weight);
4594 if (likely(work < weight))
4597 /* Drivers must not modify the NAPI state if they
4598 * consume the entire weight. In such cases this code
4599 * still "owns" the NAPI instance and therefore can
4600 * move the instance around on the list at-will.
4602 if (unlikely(napi_disable_pending(n))) {
4608 /* flush too old packets
4609 * If HZ < 1000, flush all packets.
4611 napi_gro_flush(n, HZ >= 1000);
4614 /* Some drivers may have called napi_schedule
4615 * prior to exhausting their budget.
4617 if (unlikely(!list_empty(&n->poll_list))) {
4618 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4619 n->dev ? n->dev->name : "backlog");
4623 list_add_tail(&n->poll_list, repoll);
4626 netpoll_poll_unlock(have);
4631 static void net_rx_action(struct softirq_action *h)
4633 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4634 unsigned long time_limit = jiffies + 2;
4635 int budget = netdev_budget;
4639 local_irq_disable();
4640 list_splice_init(&sd->poll_list, &list);
4644 struct napi_struct *n;
4646 if (list_empty(&list)) {
4647 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4652 n = list_first_entry(&list, struct napi_struct, poll_list);
4653 budget -= napi_poll(n, &repoll);
4655 /* If softirq window is exhausted then punt.
4656 * Allow this to run for 2 jiffies since which will allow
4657 * an average latency of 1.5/HZ.
4659 if (unlikely(budget <= 0 ||
4660 time_after_eq(jiffies, time_limit))) {
4666 local_irq_disable();
4668 list_splice_tail_init(&sd->poll_list, &list);
4669 list_splice_tail(&repoll, &list);
4670 list_splice(&list, &sd->poll_list);
4671 if (!list_empty(&sd->poll_list))
4672 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4674 net_rps_action_and_irq_enable(sd);
4677 struct netdev_adjacent {
4678 struct net_device *dev;
4680 /* upper master flag, there can only be one master device per list */
4683 /* counter for the number of times this device was added to us */
4686 /* private field for the users */
4689 struct list_head list;
4690 struct rcu_head rcu;
4693 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4694 struct net_device *adj_dev,
4695 struct list_head *adj_list)
4697 struct netdev_adjacent *adj;
4699 list_for_each_entry(adj, adj_list, list) {
4700 if (adj->dev == adj_dev)
4707 * netdev_has_upper_dev - Check if device is linked to an upper device
4709 * @upper_dev: upper device to check
4711 * Find out if a device is linked to specified upper device and return true
4712 * in case it is. Note that this checks only immediate upper device,
4713 * not through a complete stack of devices. The caller must hold the RTNL lock.
4715 bool netdev_has_upper_dev(struct net_device *dev,
4716 struct net_device *upper_dev)
4720 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4722 EXPORT_SYMBOL(netdev_has_upper_dev);
4725 * netdev_has_any_upper_dev - Check if device is linked to some device
4728 * Find out if a device is linked to an upper device and return true in case
4729 * it is. The caller must hold the RTNL lock.
4731 static bool netdev_has_any_upper_dev(struct net_device *dev)
4735 return !list_empty(&dev->all_adj_list.upper);
4739 * netdev_master_upper_dev_get - Get master upper device
4742 * Find a master upper device and return pointer to it or NULL in case
4743 * it's not there. The caller must hold the RTNL lock.
4745 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4747 struct netdev_adjacent *upper;
4751 if (list_empty(&dev->adj_list.upper))
4754 upper = list_first_entry(&dev->adj_list.upper,
4755 struct netdev_adjacent, list);
4756 if (likely(upper->master))
4760 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4762 void *netdev_adjacent_get_private(struct list_head *adj_list)
4764 struct netdev_adjacent *adj;
4766 adj = list_entry(adj_list, struct netdev_adjacent, list);
4768 return adj->private;
4770 EXPORT_SYMBOL(netdev_adjacent_get_private);
4773 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4775 * @iter: list_head ** of the current position
4777 * Gets the next device from the dev's upper list, starting from iter
4778 * position. The caller must hold RCU read lock.
4780 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4781 struct list_head **iter)
4783 struct netdev_adjacent *upper;
4785 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4787 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4789 if (&upper->list == &dev->adj_list.upper)
4792 *iter = &upper->list;
4796 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4799 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4801 * @iter: list_head ** of the current position
4803 * Gets the next device from the dev's upper list, starting from iter
4804 * position. The caller must hold RCU read lock.
4806 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4807 struct list_head **iter)
4809 struct netdev_adjacent *upper;
4811 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4813 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4815 if (&upper->list == &dev->all_adj_list.upper)
4818 *iter = &upper->list;
4822 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4825 * netdev_lower_get_next_private - Get the next ->private from the
4826 * lower neighbour list
4828 * @iter: list_head ** of the current position
4830 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4831 * list, starting from iter position. The caller must hold either hold the
4832 * RTNL lock or its own locking that guarantees that the neighbour lower
4833 * list will remain unchainged.
4835 void *netdev_lower_get_next_private(struct net_device *dev,
4836 struct list_head **iter)
4838 struct netdev_adjacent *lower;
4840 lower = list_entry(*iter, struct netdev_adjacent, list);
4842 if (&lower->list == &dev->adj_list.lower)
4845 *iter = lower->list.next;
4847 return lower->private;
4849 EXPORT_SYMBOL(netdev_lower_get_next_private);
4852 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4853 * lower neighbour list, RCU
4856 * @iter: list_head ** of the current position
4858 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4859 * list, starting from iter position. The caller must hold RCU read lock.
4861 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4862 struct list_head **iter)
4864 struct netdev_adjacent *lower;
4866 WARN_ON_ONCE(!rcu_read_lock_held());
4868 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4870 if (&lower->list == &dev->adj_list.lower)
4873 *iter = &lower->list;
4875 return lower->private;
4877 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4880 * netdev_lower_get_next - Get the next device from the lower neighbour
4883 * @iter: list_head ** of the current position
4885 * Gets the next netdev_adjacent from the dev's lower neighbour
4886 * list, starting from iter position. The caller must hold RTNL lock or
4887 * its own locking that guarantees that the neighbour lower
4888 * list will remain unchainged.
4890 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4892 struct netdev_adjacent *lower;
4894 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4896 if (&lower->list == &dev->adj_list.lower)
4899 *iter = &lower->list;
4903 EXPORT_SYMBOL(netdev_lower_get_next);
4906 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4907 * lower neighbour list, RCU
4911 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4912 * list. The caller must hold RCU read lock.
4914 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4916 struct netdev_adjacent *lower;
4918 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4919 struct netdev_adjacent, list);
4921 return lower->private;
4924 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4927 * netdev_master_upper_dev_get_rcu - Get master upper device
4930 * Find a master upper device and return pointer to it or NULL in case
4931 * it's not there. The caller must hold the RCU read lock.
4933 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4935 struct netdev_adjacent *upper;
4937 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4938 struct netdev_adjacent, list);
4939 if (upper && likely(upper->master))
4943 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4945 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4946 struct net_device *adj_dev,
4947 struct list_head *dev_list)
4949 char linkname[IFNAMSIZ+7];
4950 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4951 "upper_%s" : "lower_%s", adj_dev->name);
4952 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4955 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4957 struct list_head *dev_list)
4959 char linkname[IFNAMSIZ+7];
4960 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4961 "upper_%s" : "lower_%s", name);
4962 sysfs_remove_link(&(dev->dev.kobj), linkname);
4965 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4966 struct net_device *adj_dev,
4967 struct list_head *dev_list)
4969 return (dev_list == &dev->adj_list.upper ||
4970 dev_list == &dev->adj_list.lower) &&
4971 net_eq(dev_net(dev), dev_net(adj_dev));
4974 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4975 struct net_device *adj_dev,
4976 struct list_head *dev_list,
4977 void *private, bool master)
4979 struct netdev_adjacent *adj;
4982 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4989 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4994 adj->master = master;
4996 adj->private = private;
4999 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5000 adj_dev->name, dev->name, adj_dev->name);
5002 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5003 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5008 /* Ensure that master link is always the first item in list. */
5010 ret = sysfs_create_link(&(dev->dev.kobj),
5011 &(adj_dev->dev.kobj), "master");
5013 goto remove_symlinks;
5015 list_add_rcu(&adj->list, dev_list);
5017 list_add_tail_rcu(&adj->list, dev_list);
5023 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5024 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5032 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5033 struct net_device *adj_dev,
5034 struct list_head *dev_list)
5036 struct netdev_adjacent *adj;
5038 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5041 pr_err("tried to remove device %s from %s\n",
5042 dev->name, adj_dev->name);
5046 if (adj->ref_nr > 1) {
5047 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5054 sysfs_remove_link(&(dev->dev.kobj), "master");
5056 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5057 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5059 list_del_rcu(&adj->list);
5060 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5061 adj_dev->name, dev->name, adj_dev->name);
5063 kfree_rcu(adj, rcu);
5066 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5067 struct net_device *upper_dev,
5068 struct list_head *up_list,
5069 struct list_head *down_list,
5070 void *private, bool master)
5074 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5079 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5082 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5089 static int __netdev_adjacent_dev_link(struct net_device *dev,
5090 struct net_device *upper_dev)
5092 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5093 &dev->all_adj_list.upper,
5094 &upper_dev->all_adj_list.lower,
5098 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5099 struct net_device *upper_dev,
5100 struct list_head *up_list,
5101 struct list_head *down_list)
5103 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5104 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5107 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5108 struct net_device *upper_dev)
5110 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5111 &dev->all_adj_list.upper,
5112 &upper_dev->all_adj_list.lower);
5115 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5116 struct net_device *upper_dev,
5117 void *private, bool master)
5119 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5124 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5125 &dev->adj_list.upper,
5126 &upper_dev->adj_list.lower,
5129 __netdev_adjacent_dev_unlink(dev, upper_dev);
5136 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5137 struct net_device *upper_dev)
5139 __netdev_adjacent_dev_unlink(dev, upper_dev);
5140 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5141 &dev->adj_list.upper,
5142 &upper_dev->adj_list.lower);
5145 static int __netdev_upper_dev_link(struct net_device *dev,
5146 struct net_device *upper_dev, bool master,
5149 struct netdev_adjacent *i, *j, *to_i, *to_j;
5154 if (dev == upper_dev)
5157 /* To prevent loops, check if dev is not upper device to upper_dev. */
5158 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5161 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5164 if (master && netdev_master_upper_dev_get(dev))
5167 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5172 /* Now that we linked these devs, make all the upper_dev's
5173 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5174 * versa, and don't forget the devices itself. All of these
5175 * links are non-neighbours.
5177 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5178 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5179 pr_debug("Interlinking %s with %s, non-neighbour\n",
5180 i->dev->name, j->dev->name);
5181 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5187 /* add dev to every upper_dev's upper device */
5188 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5189 pr_debug("linking %s's upper device %s with %s\n",
5190 upper_dev->name, i->dev->name, dev->name);
5191 ret = __netdev_adjacent_dev_link(dev, i->dev);
5193 goto rollback_upper_mesh;
5196 /* add upper_dev to every dev's lower device */
5197 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5198 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5199 i->dev->name, upper_dev->name);
5200 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5202 goto rollback_lower_mesh;
5205 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5208 rollback_lower_mesh:
5210 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5213 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5218 rollback_upper_mesh:
5220 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5223 __netdev_adjacent_dev_unlink(dev, i->dev);
5231 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5232 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5233 if (i == to_i && j == to_j)
5235 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5241 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5247 * netdev_upper_dev_link - Add a link to the upper device
5249 * @upper_dev: new upper device
5251 * Adds a link to device which is upper to this one. The caller must hold
5252 * the RTNL lock. On a failure a negative errno code is returned.
5253 * On success the reference counts are adjusted and the function
5256 int netdev_upper_dev_link(struct net_device *dev,
5257 struct net_device *upper_dev)
5259 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5261 EXPORT_SYMBOL(netdev_upper_dev_link);
5264 * netdev_master_upper_dev_link - Add a master link to the upper device
5266 * @upper_dev: new upper device
5268 * Adds a link to device which is upper to this one. In this case, only
5269 * one master upper device can be linked, although other non-master devices
5270 * might be linked as well. The caller must hold the RTNL lock.
5271 * On a failure a negative errno code is returned. On success the reference
5272 * counts are adjusted and the function returns zero.
5274 int netdev_master_upper_dev_link(struct net_device *dev,
5275 struct net_device *upper_dev)
5277 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5279 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5281 int netdev_master_upper_dev_link_private(struct net_device *dev,
5282 struct net_device *upper_dev,
5285 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5287 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5290 * netdev_upper_dev_unlink - Removes a link to upper device
5292 * @upper_dev: new upper device
5294 * Removes a link to device which is upper to this one. The caller must hold
5297 void netdev_upper_dev_unlink(struct net_device *dev,
5298 struct net_device *upper_dev)
5300 struct netdev_adjacent *i, *j;
5303 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5305 /* Here is the tricky part. We must remove all dev's lower
5306 * devices from all upper_dev's upper devices and vice
5307 * versa, to maintain the graph relationship.
5309 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5310 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5311 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5313 /* remove also the devices itself from lower/upper device
5316 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5317 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5319 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5320 __netdev_adjacent_dev_unlink(dev, i->dev);
5322 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5324 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5326 void netdev_adjacent_add_links(struct net_device *dev)
5328 struct netdev_adjacent *iter;
5330 struct net *net = dev_net(dev);
5332 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5333 if (!net_eq(net,dev_net(iter->dev)))
5335 netdev_adjacent_sysfs_add(iter->dev, dev,
5336 &iter->dev->adj_list.lower);
5337 netdev_adjacent_sysfs_add(dev, iter->dev,
5338 &dev->adj_list.upper);
5341 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5342 if (!net_eq(net,dev_net(iter->dev)))
5344 netdev_adjacent_sysfs_add(iter->dev, dev,
5345 &iter->dev->adj_list.upper);
5346 netdev_adjacent_sysfs_add(dev, iter->dev,
5347 &dev->adj_list.lower);
5351 void netdev_adjacent_del_links(struct net_device *dev)
5353 struct netdev_adjacent *iter;
5355 struct net *net = dev_net(dev);
5357 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5358 if (!net_eq(net,dev_net(iter->dev)))
5360 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5361 &iter->dev->adj_list.lower);
5362 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5363 &dev->adj_list.upper);
5366 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5367 if (!net_eq(net,dev_net(iter->dev)))
5369 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5370 &iter->dev->adj_list.upper);
5371 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5372 &dev->adj_list.lower);
5376 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5378 struct netdev_adjacent *iter;
5380 struct net *net = dev_net(dev);
5382 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5383 if (!net_eq(net,dev_net(iter->dev)))
5385 netdev_adjacent_sysfs_del(iter->dev, oldname,
5386 &iter->dev->adj_list.lower);
5387 netdev_adjacent_sysfs_add(iter->dev, dev,
5388 &iter->dev->adj_list.lower);
5391 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5392 if (!net_eq(net,dev_net(iter->dev)))
5394 netdev_adjacent_sysfs_del(iter->dev, oldname,
5395 &iter->dev->adj_list.upper);
5396 netdev_adjacent_sysfs_add(iter->dev, dev,
5397 &iter->dev->adj_list.upper);
5401 void *netdev_lower_dev_get_private(struct net_device *dev,
5402 struct net_device *lower_dev)
5404 struct netdev_adjacent *lower;
5408 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5412 return lower->private;
5414 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5417 int dev_get_nest_level(struct net_device *dev,
5418 bool (*type_check)(struct net_device *dev))
5420 struct net_device *lower = NULL;
5421 struct list_head *iter;
5427 netdev_for_each_lower_dev(dev, lower, iter) {
5428 nest = dev_get_nest_level(lower, type_check);
5429 if (max_nest < nest)
5433 if (type_check(dev))
5438 EXPORT_SYMBOL(dev_get_nest_level);
5440 static void dev_change_rx_flags(struct net_device *dev, int flags)
5442 const struct net_device_ops *ops = dev->netdev_ops;
5444 if (ops->ndo_change_rx_flags)
5445 ops->ndo_change_rx_flags(dev, flags);
5448 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5450 unsigned int old_flags = dev->flags;
5456 dev->flags |= IFF_PROMISC;
5457 dev->promiscuity += inc;
5458 if (dev->promiscuity == 0) {
5461 * If inc causes overflow, untouch promisc and return error.
5464 dev->flags &= ~IFF_PROMISC;
5466 dev->promiscuity -= inc;
5467 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5472 if (dev->flags != old_flags) {
5473 pr_info("device %s %s promiscuous mode\n",
5475 dev->flags & IFF_PROMISC ? "entered" : "left");
5476 if (audit_enabled) {
5477 current_uid_gid(&uid, &gid);
5478 audit_log(current->audit_context, GFP_ATOMIC,
5479 AUDIT_ANOM_PROMISCUOUS,
5480 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5481 dev->name, (dev->flags & IFF_PROMISC),
5482 (old_flags & IFF_PROMISC),
5483 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5484 from_kuid(&init_user_ns, uid),
5485 from_kgid(&init_user_ns, gid),
5486 audit_get_sessionid(current));
5489 dev_change_rx_flags(dev, IFF_PROMISC);
5492 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5497 * dev_set_promiscuity - update promiscuity count on a device
5501 * Add or remove promiscuity from a device. While the count in the device
5502 * remains above zero the interface remains promiscuous. Once it hits zero
5503 * the device reverts back to normal filtering operation. A negative inc
5504 * value is used to drop promiscuity on the device.
5505 * Return 0 if successful or a negative errno code on error.
5507 int dev_set_promiscuity(struct net_device *dev, int inc)
5509 unsigned int old_flags = dev->flags;
5512 err = __dev_set_promiscuity(dev, inc, true);
5515 if (dev->flags != old_flags)
5516 dev_set_rx_mode(dev);
5519 EXPORT_SYMBOL(dev_set_promiscuity);
5521 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5523 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5527 dev->flags |= IFF_ALLMULTI;
5528 dev->allmulti += inc;
5529 if (dev->allmulti == 0) {
5532 * If inc causes overflow, untouch allmulti and return error.
5535 dev->flags &= ~IFF_ALLMULTI;
5537 dev->allmulti -= inc;
5538 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5543 if (dev->flags ^ old_flags) {
5544 dev_change_rx_flags(dev, IFF_ALLMULTI);
5545 dev_set_rx_mode(dev);
5547 __dev_notify_flags(dev, old_flags,
5548 dev->gflags ^ old_gflags);
5554 * dev_set_allmulti - update allmulti count on a device
5558 * Add or remove reception of all multicast frames to a device. While the
5559 * count in the device remains above zero the interface remains listening
5560 * to all interfaces. Once it hits zero the device reverts back to normal
5561 * filtering operation. A negative @inc value is used to drop the counter
5562 * when releasing a resource needing all multicasts.
5563 * Return 0 if successful or a negative errno code on error.
5566 int dev_set_allmulti(struct net_device *dev, int inc)
5568 return __dev_set_allmulti(dev, inc, true);
5570 EXPORT_SYMBOL(dev_set_allmulti);
5573 * Upload unicast and multicast address lists to device and
5574 * configure RX filtering. When the device doesn't support unicast
5575 * filtering it is put in promiscuous mode while unicast addresses
5578 void __dev_set_rx_mode(struct net_device *dev)
5580 const struct net_device_ops *ops = dev->netdev_ops;
5582 /* dev_open will call this function so the list will stay sane. */
5583 if (!(dev->flags&IFF_UP))
5586 if (!netif_device_present(dev))
5589 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5590 /* Unicast addresses changes may only happen under the rtnl,
5591 * therefore calling __dev_set_promiscuity here is safe.
5593 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5594 __dev_set_promiscuity(dev, 1, false);
5595 dev->uc_promisc = true;
5596 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5597 __dev_set_promiscuity(dev, -1, false);
5598 dev->uc_promisc = false;
5602 if (ops->ndo_set_rx_mode)
5603 ops->ndo_set_rx_mode(dev);
5606 void dev_set_rx_mode(struct net_device *dev)
5608 netif_addr_lock_bh(dev);
5609 __dev_set_rx_mode(dev);
5610 netif_addr_unlock_bh(dev);
5614 * dev_get_flags - get flags reported to userspace
5617 * Get the combination of flag bits exported through APIs to userspace.
5619 unsigned int dev_get_flags(const struct net_device *dev)
5623 flags = (dev->flags & ~(IFF_PROMISC |
5628 (dev->gflags & (IFF_PROMISC |
5631 if (netif_running(dev)) {
5632 if (netif_oper_up(dev))
5633 flags |= IFF_RUNNING;
5634 if (netif_carrier_ok(dev))
5635 flags |= IFF_LOWER_UP;
5636 if (netif_dormant(dev))
5637 flags |= IFF_DORMANT;
5642 EXPORT_SYMBOL(dev_get_flags);
5644 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5646 unsigned int old_flags = dev->flags;
5652 * Set the flags on our device.
5655 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5656 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5658 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5662 * Load in the correct multicast list now the flags have changed.
5665 if ((old_flags ^ flags) & IFF_MULTICAST)
5666 dev_change_rx_flags(dev, IFF_MULTICAST);
5668 dev_set_rx_mode(dev);
5671 * Have we downed the interface. We handle IFF_UP ourselves
5672 * according to user attempts to set it, rather than blindly
5677 if ((old_flags ^ flags) & IFF_UP)
5678 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5680 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5681 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5682 unsigned int old_flags = dev->flags;
5684 dev->gflags ^= IFF_PROMISC;
5686 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5687 if (dev->flags != old_flags)
5688 dev_set_rx_mode(dev);
5691 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5692 is important. Some (broken) drivers set IFF_PROMISC, when
5693 IFF_ALLMULTI is requested not asking us and not reporting.
5695 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5696 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5698 dev->gflags ^= IFF_ALLMULTI;
5699 __dev_set_allmulti(dev, inc, false);
5705 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5706 unsigned int gchanges)
5708 unsigned int changes = dev->flags ^ old_flags;
5711 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5713 if (changes & IFF_UP) {
5714 if (dev->flags & IFF_UP)
5715 call_netdevice_notifiers(NETDEV_UP, dev);
5717 call_netdevice_notifiers(NETDEV_DOWN, dev);
5720 if (dev->flags & IFF_UP &&
5721 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5722 struct netdev_notifier_change_info change_info;
5724 change_info.flags_changed = changes;
5725 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5731 * dev_change_flags - change device settings
5733 * @flags: device state flags
5735 * Change settings on device based state flags. The flags are
5736 * in the userspace exported format.
5738 int dev_change_flags(struct net_device *dev, unsigned int flags)
5741 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5743 ret = __dev_change_flags(dev, flags);
5747 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5748 __dev_notify_flags(dev, old_flags, changes);
5751 EXPORT_SYMBOL(dev_change_flags);
5753 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5755 const struct net_device_ops *ops = dev->netdev_ops;
5757 if (ops->ndo_change_mtu)
5758 return ops->ndo_change_mtu(dev, new_mtu);
5765 * dev_set_mtu - Change maximum transfer unit
5767 * @new_mtu: new transfer unit
5769 * Change the maximum transfer size of the network device.
5771 int dev_set_mtu(struct net_device *dev, int new_mtu)
5775 if (new_mtu == dev->mtu)
5778 /* MTU must be positive. */
5782 if (!netif_device_present(dev))
5785 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5786 err = notifier_to_errno(err);
5790 orig_mtu = dev->mtu;
5791 err = __dev_set_mtu(dev, new_mtu);
5794 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5795 err = notifier_to_errno(err);
5797 /* setting mtu back and notifying everyone again,
5798 * so that they have a chance to revert changes.
5800 __dev_set_mtu(dev, orig_mtu);
5801 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5806 EXPORT_SYMBOL(dev_set_mtu);
5809 * dev_set_group - Change group this device belongs to
5811 * @new_group: group this device should belong to
5813 void dev_set_group(struct net_device *dev, int new_group)
5815 dev->group = new_group;
5817 EXPORT_SYMBOL(dev_set_group);
5820 * dev_set_mac_address - Change Media Access Control Address
5824 * Change the hardware (MAC) address of the device
5826 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5828 const struct net_device_ops *ops = dev->netdev_ops;
5831 if (!ops->ndo_set_mac_address)
5833 if (sa->sa_family != dev->type)
5835 if (!netif_device_present(dev))
5837 err = ops->ndo_set_mac_address(dev, sa);
5840 dev->addr_assign_type = NET_ADDR_SET;
5841 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5842 add_device_randomness(dev->dev_addr, dev->addr_len);
5845 EXPORT_SYMBOL(dev_set_mac_address);
5848 * dev_change_carrier - Change device carrier
5850 * @new_carrier: new value
5852 * Change device carrier
5854 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5856 const struct net_device_ops *ops = dev->netdev_ops;
5858 if (!ops->ndo_change_carrier)
5860 if (!netif_device_present(dev))
5862 return ops->ndo_change_carrier(dev, new_carrier);
5864 EXPORT_SYMBOL(dev_change_carrier);
5867 * dev_get_phys_port_id - Get device physical port ID
5871 * Get device physical port ID
5873 int dev_get_phys_port_id(struct net_device *dev,
5874 struct netdev_phys_item_id *ppid)
5876 const struct net_device_ops *ops = dev->netdev_ops;
5878 if (!ops->ndo_get_phys_port_id)
5880 return ops->ndo_get_phys_port_id(dev, ppid);
5882 EXPORT_SYMBOL(dev_get_phys_port_id);
5885 * dev_new_index - allocate an ifindex
5886 * @net: the applicable net namespace
5888 * Returns a suitable unique value for a new device interface
5889 * number. The caller must hold the rtnl semaphore or the
5890 * dev_base_lock to be sure it remains unique.
5892 static int dev_new_index(struct net *net)
5894 int ifindex = net->ifindex;
5898 if (!__dev_get_by_index(net, ifindex))
5899 return net->ifindex = ifindex;
5903 /* Delayed registration/unregisteration */
5904 static LIST_HEAD(net_todo_list);
5905 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5907 static void net_set_todo(struct net_device *dev)
5909 list_add_tail(&dev->todo_list, &net_todo_list);
5910 dev_net(dev)->dev_unreg_count++;
5913 static void rollback_registered_many(struct list_head *head)
5915 struct net_device *dev, *tmp;
5916 LIST_HEAD(close_head);
5918 BUG_ON(dev_boot_phase);
5921 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5922 /* Some devices call without registering
5923 * for initialization unwind. Remove those
5924 * devices and proceed with the remaining.
5926 if (dev->reg_state == NETREG_UNINITIALIZED) {
5927 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5931 list_del(&dev->unreg_list);
5934 dev->dismantle = true;
5935 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5938 /* If device is running, close it first. */
5939 list_for_each_entry(dev, head, unreg_list)
5940 list_add_tail(&dev->close_list, &close_head);
5941 dev_close_many(&close_head);
5943 list_for_each_entry(dev, head, unreg_list) {
5944 /* And unlink it from device chain. */
5945 unlist_netdevice(dev);
5947 dev->reg_state = NETREG_UNREGISTERING;
5952 list_for_each_entry(dev, head, unreg_list) {
5953 struct sk_buff *skb = NULL;
5955 /* Shutdown queueing discipline. */
5959 /* Notify protocols, that we are about to destroy
5960 this device. They should clean all the things.
5962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5964 if (!dev->rtnl_link_ops ||
5965 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5966 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5970 * Flush the unicast and multicast chains
5975 if (dev->netdev_ops->ndo_uninit)
5976 dev->netdev_ops->ndo_uninit(dev);
5979 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
5981 /* Notifier chain MUST detach us all upper devices. */
5982 WARN_ON(netdev_has_any_upper_dev(dev));
5984 /* Remove entries from kobject tree */
5985 netdev_unregister_kobject(dev);
5987 /* Remove XPS queueing entries */
5988 netif_reset_xps_queues_gt(dev, 0);
5994 list_for_each_entry(dev, head, unreg_list)
5998 static void rollback_registered(struct net_device *dev)
6002 list_add(&dev->unreg_list, &single);
6003 rollback_registered_many(&single);
6007 static netdev_features_t netdev_fix_features(struct net_device *dev,
6008 netdev_features_t features)
6010 /* Fix illegal checksum combinations */
6011 if ((features & NETIF_F_HW_CSUM) &&
6012 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6013 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6014 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6017 /* TSO requires that SG is present as well. */
6018 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6019 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6020 features &= ~NETIF_F_ALL_TSO;
6023 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6024 !(features & NETIF_F_IP_CSUM)) {
6025 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6026 features &= ~NETIF_F_TSO;
6027 features &= ~NETIF_F_TSO_ECN;
6030 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6031 !(features & NETIF_F_IPV6_CSUM)) {
6032 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6033 features &= ~NETIF_F_TSO6;
6036 /* TSO ECN requires that TSO is present as well. */
6037 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6038 features &= ~NETIF_F_TSO_ECN;
6040 /* Software GSO depends on SG. */
6041 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6042 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6043 features &= ~NETIF_F_GSO;
6046 /* UFO needs SG and checksumming */
6047 if (features & NETIF_F_UFO) {
6048 /* maybe split UFO into V4 and V6? */
6049 if (!((features & NETIF_F_GEN_CSUM) ||
6050 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6051 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6053 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6054 features &= ~NETIF_F_UFO;
6057 if (!(features & NETIF_F_SG)) {
6059 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6060 features &= ~NETIF_F_UFO;
6064 #ifdef CONFIG_NET_RX_BUSY_POLL
6065 if (dev->netdev_ops->ndo_busy_poll)
6066 features |= NETIF_F_BUSY_POLL;
6069 features &= ~NETIF_F_BUSY_POLL;
6074 int __netdev_update_features(struct net_device *dev)
6076 netdev_features_t features;
6081 features = netdev_get_wanted_features(dev);
6083 if (dev->netdev_ops->ndo_fix_features)
6084 features = dev->netdev_ops->ndo_fix_features(dev, features);
6086 /* driver might be less strict about feature dependencies */
6087 features = netdev_fix_features(dev, features);
6089 if (dev->features == features)
6092 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6093 &dev->features, &features);
6095 if (dev->netdev_ops->ndo_set_features)
6096 err = dev->netdev_ops->ndo_set_features(dev, features);
6098 if (unlikely(err < 0)) {
6100 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6101 err, &features, &dev->features);
6106 dev->features = features;
6112 * netdev_update_features - recalculate device features
6113 * @dev: the device to check
6115 * Recalculate dev->features set and send notifications if it
6116 * has changed. Should be called after driver or hardware dependent
6117 * conditions might have changed that influence the features.
6119 void netdev_update_features(struct net_device *dev)
6121 if (__netdev_update_features(dev))
6122 netdev_features_change(dev);
6124 EXPORT_SYMBOL(netdev_update_features);
6127 * netdev_change_features - recalculate device features
6128 * @dev: the device to check
6130 * Recalculate dev->features set and send notifications even
6131 * if they have not changed. Should be called instead of
6132 * netdev_update_features() if also dev->vlan_features might
6133 * have changed to allow the changes to be propagated to stacked
6136 void netdev_change_features(struct net_device *dev)
6138 __netdev_update_features(dev);
6139 netdev_features_change(dev);
6141 EXPORT_SYMBOL(netdev_change_features);
6144 * netif_stacked_transfer_operstate - transfer operstate
6145 * @rootdev: the root or lower level device to transfer state from
6146 * @dev: the device to transfer operstate to
6148 * Transfer operational state from root to device. This is normally
6149 * called when a stacking relationship exists between the root
6150 * device and the device(a leaf device).
6152 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6153 struct net_device *dev)
6155 if (rootdev->operstate == IF_OPER_DORMANT)
6156 netif_dormant_on(dev);
6158 netif_dormant_off(dev);
6160 if (netif_carrier_ok(rootdev)) {
6161 if (!netif_carrier_ok(dev))
6162 netif_carrier_on(dev);
6164 if (netif_carrier_ok(dev))
6165 netif_carrier_off(dev);
6168 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6171 static int netif_alloc_rx_queues(struct net_device *dev)
6173 unsigned int i, count = dev->num_rx_queues;
6174 struct netdev_rx_queue *rx;
6178 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6184 for (i = 0; i < count; i++)
6190 static void netdev_init_one_queue(struct net_device *dev,
6191 struct netdev_queue *queue, void *_unused)
6193 /* Initialize queue lock */
6194 spin_lock_init(&queue->_xmit_lock);
6195 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6196 queue->xmit_lock_owner = -1;
6197 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6200 dql_init(&queue->dql, HZ);
6204 static void netif_free_tx_queues(struct net_device *dev)
6209 static int netif_alloc_netdev_queues(struct net_device *dev)
6211 unsigned int count = dev->num_tx_queues;
6212 struct netdev_queue *tx;
6213 size_t sz = count * sizeof(*tx);
6215 BUG_ON(count < 1 || count > 0xffff);
6217 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6225 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6226 spin_lock_init(&dev->tx_global_lock);
6232 * register_netdevice - register a network device
6233 * @dev: device to register
6235 * Take a completed network device structure and add it to the kernel
6236 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6237 * chain. 0 is returned on success. A negative errno code is returned
6238 * on a failure to set up the device, or if the name is a duplicate.
6240 * Callers must hold the rtnl semaphore. You may want
6241 * register_netdev() instead of this.
6244 * The locking appears insufficient to guarantee two parallel registers
6245 * will not get the same name.
6248 int register_netdevice(struct net_device *dev)
6251 struct net *net = dev_net(dev);
6253 BUG_ON(dev_boot_phase);
6258 /* When net_device's are persistent, this will be fatal. */
6259 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6262 spin_lock_init(&dev->addr_list_lock);
6263 netdev_set_addr_lockdep_class(dev);
6267 ret = dev_get_valid_name(net, dev, dev->name);
6271 /* Init, if this function is available */
6272 if (dev->netdev_ops->ndo_init) {
6273 ret = dev->netdev_ops->ndo_init(dev);
6281 if (((dev->hw_features | dev->features) &
6282 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6283 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6284 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6285 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6292 dev->ifindex = dev_new_index(net);
6293 else if (__dev_get_by_index(net, dev->ifindex))
6296 if (dev->iflink == -1)
6297 dev->iflink = dev->ifindex;
6299 /* Transfer changeable features to wanted_features and enable
6300 * software offloads (GSO and GRO).
6302 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6303 dev->features |= NETIF_F_SOFT_FEATURES;
6304 dev->wanted_features = dev->features & dev->hw_features;
6306 if (!(dev->flags & IFF_LOOPBACK)) {
6307 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6310 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6312 dev->vlan_features |= NETIF_F_HIGHDMA;
6314 /* Make NETIF_F_SG inheritable to tunnel devices.
6316 dev->hw_enc_features |= NETIF_F_SG;
6318 /* Make NETIF_F_SG inheritable to MPLS.
6320 dev->mpls_features |= NETIF_F_SG;
6322 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6323 ret = notifier_to_errno(ret);
6327 ret = netdev_register_kobject(dev);
6330 dev->reg_state = NETREG_REGISTERED;
6332 __netdev_update_features(dev);
6335 * Default initial state at registry is that the
6336 * device is present.
6339 set_bit(__LINK_STATE_PRESENT, &dev->state);
6341 linkwatch_init_dev(dev);
6343 dev_init_scheduler(dev);
6345 list_netdevice(dev);
6346 add_device_randomness(dev->dev_addr, dev->addr_len);
6348 /* If the device has permanent device address, driver should
6349 * set dev_addr and also addr_assign_type should be set to
6350 * NET_ADDR_PERM (default value).
6352 if (dev->addr_assign_type == NET_ADDR_PERM)
6353 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6355 /* Notify protocols, that a new device appeared. */
6356 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6357 ret = notifier_to_errno(ret);
6359 rollback_registered(dev);
6360 dev->reg_state = NETREG_UNREGISTERED;
6363 * Prevent userspace races by waiting until the network
6364 * device is fully setup before sending notifications.
6366 if (!dev->rtnl_link_ops ||
6367 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6368 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6374 if (dev->netdev_ops->ndo_uninit)
6375 dev->netdev_ops->ndo_uninit(dev);
6378 EXPORT_SYMBOL(register_netdevice);
6381 * init_dummy_netdev - init a dummy network device for NAPI
6382 * @dev: device to init
6384 * This takes a network device structure and initialize the minimum
6385 * amount of fields so it can be used to schedule NAPI polls without
6386 * registering a full blown interface. This is to be used by drivers
6387 * that need to tie several hardware interfaces to a single NAPI
6388 * poll scheduler due to HW limitations.
6390 int init_dummy_netdev(struct net_device *dev)
6392 /* Clear everything. Note we don't initialize spinlocks
6393 * are they aren't supposed to be taken by any of the
6394 * NAPI code and this dummy netdev is supposed to be
6395 * only ever used for NAPI polls
6397 memset(dev, 0, sizeof(struct net_device));
6399 /* make sure we BUG if trying to hit standard
6400 * register/unregister code path
6402 dev->reg_state = NETREG_DUMMY;
6404 /* NAPI wants this */
6405 INIT_LIST_HEAD(&dev->napi_list);
6407 /* a dummy interface is started by default */
6408 set_bit(__LINK_STATE_PRESENT, &dev->state);
6409 set_bit(__LINK_STATE_START, &dev->state);
6411 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6412 * because users of this 'device' dont need to change
6418 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6422 * register_netdev - register a network device
6423 * @dev: device to register
6425 * Take a completed network device structure and add it to the kernel
6426 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6427 * chain. 0 is returned on success. A negative errno code is returned
6428 * on a failure to set up the device, or if the name is a duplicate.
6430 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6431 * and expands the device name if you passed a format string to
6434 int register_netdev(struct net_device *dev)
6439 err = register_netdevice(dev);
6443 EXPORT_SYMBOL(register_netdev);
6445 int netdev_refcnt_read(const struct net_device *dev)
6449 for_each_possible_cpu(i)
6450 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6453 EXPORT_SYMBOL(netdev_refcnt_read);
6456 * netdev_wait_allrefs - wait until all references are gone.
6457 * @dev: target net_device
6459 * This is called when unregistering network devices.
6461 * Any protocol or device that holds a reference should register
6462 * for netdevice notification, and cleanup and put back the
6463 * reference if they receive an UNREGISTER event.
6464 * We can get stuck here if buggy protocols don't correctly
6467 static void netdev_wait_allrefs(struct net_device *dev)
6469 unsigned long rebroadcast_time, warning_time;
6472 linkwatch_forget_dev(dev);
6474 rebroadcast_time = warning_time = jiffies;
6475 refcnt = netdev_refcnt_read(dev);
6477 while (refcnt != 0) {
6478 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6481 /* Rebroadcast unregister notification */
6482 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6488 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6489 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6491 /* We must not have linkwatch events
6492 * pending on unregister. If this
6493 * happens, we simply run the queue
6494 * unscheduled, resulting in a noop
6497 linkwatch_run_queue();
6502 rebroadcast_time = jiffies;
6507 refcnt = netdev_refcnt_read(dev);
6509 if (time_after(jiffies, warning_time + 10 * HZ)) {
6510 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6512 warning_time = jiffies;
6521 * register_netdevice(x1);
6522 * register_netdevice(x2);
6524 * unregister_netdevice(y1);
6525 * unregister_netdevice(y2);
6531 * We are invoked by rtnl_unlock().
6532 * This allows us to deal with problems:
6533 * 1) We can delete sysfs objects which invoke hotplug
6534 * without deadlocking with linkwatch via keventd.
6535 * 2) Since we run with the RTNL semaphore not held, we can sleep
6536 * safely in order to wait for the netdev refcnt to drop to zero.
6538 * We must not return until all unregister events added during
6539 * the interval the lock was held have been completed.
6541 void netdev_run_todo(void)
6543 struct list_head list;
6545 /* Snapshot list, allow later requests */
6546 list_replace_init(&net_todo_list, &list);
6551 /* Wait for rcu callbacks to finish before next phase */
6552 if (!list_empty(&list))
6555 while (!list_empty(&list)) {
6556 struct net_device *dev
6557 = list_first_entry(&list, struct net_device, todo_list);
6558 list_del(&dev->todo_list);
6561 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6564 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6565 pr_err("network todo '%s' but state %d\n",
6566 dev->name, dev->reg_state);
6571 dev->reg_state = NETREG_UNREGISTERED;
6573 on_each_cpu(flush_backlog, dev, 1);
6575 netdev_wait_allrefs(dev);
6578 BUG_ON(netdev_refcnt_read(dev));
6579 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6580 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6581 WARN_ON(dev->dn_ptr);
6583 if (dev->destructor)
6584 dev->destructor(dev);
6586 /* Report a network device has been unregistered */
6588 dev_net(dev)->dev_unreg_count--;
6590 wake_up(&netdev_unregistering_wq);
6592 /* Free network device */
6593 kobject_put(&dev->dev.kobj);
6597 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6598 * fields in the same order, with only the type differing.
6600 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6601 const struct net_device_stats *netdev_stats)
6603 #if BITS_PER_LONG == 64
6604 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6605 memcpy(stats64, netdev_stats, sizeof(*stats64));
6607 size_t i, n = sizeof(*stats64) / sizeof(u64);
6608 const unsigned long *src = (const unsigned long *)netdev_stats;
6609 u64 *dst = (u64 *)stats64;
6611 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6612 sizeof(*stats64) / sizeof(u64));
6613 for (i = 0; i < n; i++)
6617 EXPORT_SYMBOL(netdev_stats_to_stats64);
6620 * dev_get_stats - get network device statistics
6621 * @dev: device to get statistics from
6622 * @storage: place to store stats
6624 * Get network statistics from device. Return @storage.
6625 * The device driver may provide its own method by setting
6626 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6627 * otherwise the internal statistics structure is used.
6629 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6630 struct rtnl_link_stats64 *storage)
6632 const struct net_device_ops *ops = dev->netdev_ops;
6634 if (ops->ndo_get_stats64) {
6635 memset(storage, 0, sizeof(*storage));
6636 ops->ndo_get_stats64(dev, storage);
6637 } else if (ops->ndo_get_stats) {
6638 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6640 netdev_stats_to_stats64(storage, &dev->stats);
6642 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6643 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6646 EXPORT_SYMBOL(dev_get_stats);
6648 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6650 struct netdev_queue *queue = dev_ingress_queue(dev);
6652 #ifdef CONFIG_NET_CLS_ACT
6655 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6658 netdev_init_one_queue(dev, queue, NULL);
6659 queue->qdisc = &noop_qdisc;
6660 queue->qdisc_sleeping = &noop_qdisc;
6661 rcu_assign_pointer(dev->ingress_queue, queue);
6666 static const struct ethtool_ops default_ethtool_ops;
6668 void netdev_set_default_ethtool_ops(struct net_device *dev,
6669 const struct ethtool_ops *ops)
6671 if (dev->ethtool_ops == &default_ethtool_ops)
6672 dev->ethtool_ops = ops;
6674 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6676 void netdev_freemem(struct net_device *dev)
6678 char *addr = (char *)dev - dev->padded;
6684 * alloc_netdev_mqs - allocate network device
6685 * @sizeof_priv: size of private data to allocate space for
6686 * @name: device name format string
6687 * @name_assign_type: origin of device name
6688 * @setup: callback to initialize device
6689 * @txqs: the number of TX subqueues to allocate
6690 * @rxqs: the number of RX subqueues to allocate
6692 * Allocates a struct net_device with private data area for driver use
6693 * and performs basic initialization. Also allocates subqueue structs
6694 * for each queue on the device.
6696 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6697 unsigned char name_assign_type,
6698 void (*setup)(struct net_device *),
6699 unsigned int txqs, unsigned int rxqs)
6701 struct net_device *dev;
6703 struct net_device *p;
6705 BUG_ON(strlen(name) >= sizeof(dev->name));
6708 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6714 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6719 alloc_size = sizeof(struct net_device);
6721 /* ensure 32-byte alignment of private area */
6722 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6723 alloc_size += sizeof_priv;
6725 /* ensure 32-byte alignment of whole construct */
6726 alloc_size += NETDEV_ALIGN - 1;
6728 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6730 p = vzalloc(alloc_size);
6734 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6735 dev->padded = (char *)dev - (char *)p;
6737 dev->pcpu_refcnt = alloc_percpu(int);
6738 if (!dev->pcpu_refcnt)
6741 if (dev_addr_init(dev))
6747 dev_net_set(dev, &init_net);
6749 dev->gso_max_size = GSO_MAX_SIZE;
6750 dev->gso_max_segs = GSO_MAX_SEGS;
6751 dev->gso_min_segs = 0;
6753 INIT_LIST_HEAD(&dev->napi_list);
6754 INIT_LIST_HEAD(&dev->unreg_list);
6755 INIT_LIST_HEAD(&dev->close_list);
6756 INIT_LIST_HEAD(&dev->link_watch_list);
6757 INIT_LIST_HEAD(&dev->adj_list.upper);
6758 INIT_LIST_HEAD(&dev->adj_list.lower);
6759 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6760 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6761 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6764 dev->num_tx_queues = txqs;
6765 dev->real_num_tx_queues = txqs;
6766 if (netif_alloc_netdev_queues(dev))
6770 dev->num_rx_queues = rxqs;
6771 dev->real_num_rx_queues = rxqs;
6772 if (netif_alloc_rx_queues(dev))
6776 strcpy(dev->name, name);
6777 dev->name_assign_type = name_assign_type;
6778 dev->group = INIT_NETDEV_GROUP;
6779 if (!dev->ethtool_ops)
6780 dev->ethtool_ops = &default_ethtool_ops;
6788 free_percpu(dev->pcpu_refcnt);
6790 netdev_freemem(dev);
6793 EXPORT_SYMBOL(alloc_netdev_mqs);
6796 * free_netdev - free network device
6799 * This function does the last stage of destroying an allocated device
6800 * interface. The reference to the device object is released.
6801 * If this is the last reference then it will be freed.
6803 void free_netdev(struct net_device *dev)
6805 struct napi_struct *p, *n;
6807 release_net(dev_net(dev));
6809 netif_free_tx_queues(dev);
6814 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6816 /* Flush device addresses */
6817 dev_addr_flush(dev);
6819 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6822 free_percpu(dev->pcpu_refcnt);
6823 dev->pcpu_refcnt = NULL;
6825 /* Compatibility with error handling in drivers */
6826 if (dev->reg_state == NETREG_UNINITIALIZED) {
6827 netdev_freemem(dev);
6831 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6832 dev->reg_state = NETREG_RELEASED;
6834 /* will free via device release */
6835 put_device(&dev->dev);
6837 EXPORT_SYMBOL(free_netdev);
6840 * synchronize_net - Synchronize with packet receive processing
6842 * Wait for packets currently being received to be done.
6843 * Does not block later packets from starting.
6845 void synchronize_net(void)
6848 if (rtnl_is_locked())
6849 synchronize_rcu_expedited();
6853 EXPORT_SYMBOL(synchronize_net);
6856 * unregister_netdevice_queue - remove device from the kernel
6860 * This function shuts down a device interface and removes it
6861 * from the kernel tables.
6862 * If head not NULL, device is queued to be unregistered later.
6864 * Callers must hold the rtnl semaphore. You may want
6865 * unregister_netdev() instead of this.
6868 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6873 list_move_tail(&dev->unreg_list, head);
6875 rollback_registered(dev);
6876 /* Finish processing unregister after unlock */
6880 EXPORT_SYMBOL(unregister_netdevice_queue);
6883 * unregister_netdevice_many - unregister many devices
6884 * @head: list of devices
6886 * Note: As most callers use a stack allocated list_head,
6887 * we force a list_del() to make sure stack wont be corrupted later.
6889 void unregister_netdevice_many(struct list_head *head)
6891 struct net_device *dev;
6893 if (!list_empty(head)) {
6894 rollback_registered_many(head);
6895 list_for_each_entry(dev, head, unreg_list)
6900 EXPORT_SYMBOL(unregister_netdevice_many);
6903 * unregister_netdev - remove device from the kernel
6906 * This function shuts down a device interface and removes it
6907 * from the kernel tables.
6909 * This is just a wrapper for unregister_netdevice that takes
6910 * the rtnl semaphore. In general you want to use this and not
6911 * unregister_netdevice.
6913 void unregister_netdev(struct net_device *dev)
6916 unregister_netdevice(dev);
6919 EXPORT_SYMBOL(unregister_netdev);
6922 * dev_change_net_namespace - move device to different nethost namespace
6924 * @net: network namespace
6925 * @pat: If not NULL name pattern to try if the current device name
6926 * is already taken in the destination network namespace.
6928 * This function shuts down a device interface and moves it
6929 * to a new network namespace. On success 0 is returned, on
6930 * a failure a netagive errno code is returned.
6932 * Callers must hold the rtnl semaphore.
6935 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6941 /* Don't allow namespace local devices to be moved. */
6943 if (dev->features & NETIF_F_NETNS_LOCAL)
6946 /* Ensure the device has been registrered */
6947 if (dev->reg_state != NETREG_REGISTERED)
6950 /* Get out if there is nothing todo */
6952 if (net_eq(dev_net(dev), net))
6955 /* Pick the destination device name, and ensure
6956 * we can use it in the destination network namespace.
6959 if (__dev_get_by_name(net, dev->name)) {
6960 /* We get here if we can't use the current device name */
6963 if (dev_get_valid_name(net, dev, pat) < 0)
6968 * And now a mini version of register_netdevice unregister_netdevice.
6971 /* If device is running close it first. */
6974 /* And unlink it from device chain */
6976 unlist_netdevice(dev);
6980 /* Shutdown queueing discipline. */
6983 /* Notify protocols, that we are about to destroy
6984 this device. They should clean all the things.
6986 Note that dev->reg_state stays at NETREG_REGISTERED.
6987 This is wanted because this way 8021q and macvlan know
6988 the device is just moving and can keep their slaves up.
6990 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6992 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6993 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6996 * Flush the unicast and multicast chains
7001 /* Send a netdev-removed uevent to the old namespace */
7002 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7003 netdev_adjacent_del_links(dev);
7005 /* Actually switch the network namespace */
7006 dev_net_set(dev, net);
7008 /* If there is an ifindex conflict assign a new one */
7009 if (__dev_get_by_index(net, dev->ifindex)) {
7010 int iflink = (dev->iflink == dev->ifindex);
7011 dev->ifindex = dev_new_index(net);
7013 dev->iflink = dev->ifindex;
7016 /* Send a netdev-add uevent to the new namespace */
7017 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7018 netdev_adjacent_add_links(dev);
7020 /* Fixup kobjects */
7021 err = device_rename(&dev->dev, dev->name);
7024 /* Add the device back in the hashes */
7025 list_netdevice(dev);
7027 /* Notify protocols, that a new device appeared. */
7028 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7031 * Prevent userspace races by waiting until the network
7032 * device is fully setup before sending notifications.
7034 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7041 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7043 static int dev_cpu_callback(struct notifier_block *nfb,
7044 unsigned long action,
7047 struct sk_buff **list_skb;
7048 struct sk_buff *skb;
7049 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7050 struct softnet_data *sd, *oldsd;
7052 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7055 local_irq_disable();
7056 cpu = smp_processor_id();
7057 sd = &per_cpu(softnet_data, cpu);
7058 oldsd = &per_cpu(softnet_data, oldcpu);
7060 /* Find end of our completion_queue. */
7061 list_skb = &sd->completion_queue;
7063 list_skb = &(*list_skb)->next;
7064 /* Append completion queue from offline CPU. */
7065 *list_skb = oldsd->completion_queue;
7066 oldsd->completion_queue = NULL;
7068 /* Append output queue from offline CPU. */
7069 if (oldsd->output_queue) {
7070 *sd->output_queue_tailp = oldsd->output_queue;
7071 sd->output_queue_tailp = oldsd->output_queue_tailp;
7072 oldsd->output_queue = NULL;
7073 oldsd->output_queue_tailp = &oldsd->output_queue;
7075 /* Append NAPI poll list from offline CPU. */
7076 if (!list_empty(&oldsd->poll_list)) {
7077 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7078 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7081 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7084 /* Process offline CPU's input_pkt_queue */
7085 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7086 netif_rx_internal(skb);
7087 input_queue_head_incr(oldsd);
7089 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7090 netif_rx_internal(skb);
7091 input_queue_head_incr(oldsd);
7099 * netdev_increment_features - increment feature set by one
7100 * @all: current feature set
7101 * @one: new feature set
7102 * @mask: mask feature set
7104 * Computes a new feature set after adding a device with feature set
7105 * @one to the master device with current feature set @all. Will not
7106 * enable anything that is off in @mask. Returns the new feature set.
7108 netdev_features_t netdev_increment_features(netdev_features_t all,
7109 netdev_features_t one, netdev_features_t mask)
7111 if (mask & NETIF_F_GEN_CSUM)
7112 mask |= NETIF_F_ALL_CSUM;
7113 mask |= NETIF_F_VLAN_CHALLENGED;
7115 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7116 all &= one | ~NETIF_F_ALL_FOR_ALL;
7118 /* If one device supports hw checksumming, set for all. */
7119 if (all & NETIF_F_GEN_CSUM)
7120 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7124 EXPORT_SYMBOL(netdev_increment_features);
7126 static struct hlist_head * __net_init netdev_create_hash(void)
7129 struct hlist_head *hash;
7131 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7133 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7134 INIT_HLIST_HEAD(&hash[i]);
7139 /* Initialize per network namespace state */
7140 static int __net_init netdev_init(struct net *net)
7142 if (net != &init_net)
7143 INIT_LIST_HEAD(&net->dev_base_head);
7145 net->dev_name_head = netdev_create_hash();
7146 if (net->dev_name_head == NULL)
7149 net->dev_index_head = netdev_create_hash();
7150 if (net->dev_index_head == NULL)
7156 kfree(net->dev_name_head);
7162 * netdev_drivername - network driver for the device
7163 * @dev: network device
7165 * Determine network driver for device.
7167 const char *netdev_drivername(const struct net_device *dev)
7169 const struct device_driver *driver;
7170 const struct device *parent;
7171 const char *empty = "";
7173 parent = dev->dev.parent;
7177 driver = parent->driver;
7178 if (driver && driver->name)
7179 return driver->name;
7183 static void __netdev_printk(const char *level, const struct net_device *dev,
7184 struct va_format *vaf)
7186 if (dev && dev->dev.parent) {
7187 dev_printk_emit(level[1] - '0',
7190 dev_driver_string(dev->dev.parent),
7191 dev_name(dev->dev.parent),
7192 netdev_name(dev), netdev_reg_state(dev),
7195 printk("%s%s%s: %pV",
7196 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7198 printk("%s(NULL net_device): %pV", level, vaf);
7202 void netdev_printk(const char *level, const struct net_device *dev,
7203 const char *format, ...)
7205 struct va_format vaf;
7208 va_start(args, format);
7213 __netdev_printk(level, dev, &vaf);
7217 EXPORT_SYMBOL(netdev_printk);
7219 #define define_netdev_printk_level(func, level) \
7220 void func(const struct net_device *dev, const char *fmt, ...) \
7222 struct va_format vaf; \
7225 va_start(args, fmt); \
7230 __netdev_printk(level, dev, &vaf); \
7234 EXPORT_SYMBOL(func);
7236 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7237 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7238 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7239 define_netdev_printk_level(netdev_err, KERN_ERR);
7240 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7241 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7242 define_netdev_printk_level(netdev_info, KERN_INFO);
7244 static void __net_exit netdev_exit(struct net *net)
7246 kfree(net->dev_name_head);
7247 kfree(net->dev_index_head);
7250 static struct pernet_operations __net_initdata netdev_net_ops = {
7251 .init = netdev_init,
7252 .exit = netdev_exit,
7255 static void __net_exit default_device_exit(struct net *net)
7257 struct net_device *dev, *aux;
7259 * Push all migratable network devices back to the
7260 * initial network namespace
7263 for_each_netdev_safe(net, dev, aux) {
7265 char fb_name[IFNAMSIZ];
7267 /* Ignore unmoveable devices (i.e. loopback) */
7268 if (dev->features & NETIF_F_NETNS_LOCAL)
7271 /* Leave virtual devices for the generic cleanup */
7272 if (dev->rtnl_link_ops)
7275 /* Push remaining network devices to init_net */
7276 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7277 err = dev_change_net_namespace(dev, &init_net, fb_name);
7279 pr_emerg("%s: failed to move %s to init_net: %d\n",
7280 __func__, dev->name, err);
7287 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7289 /* Return with the rtnl_lock held when there are no network
7290 * devices unregistering in any network namespace in net_list.
7294 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7296 add_wait_queue(&netdev_unregistering_wq, &wait);
7298 unregistering = false;
7300 list_for_each_entry(net, net_list, exit_list) {
7301 if (net->dev_unreg_count > 0) {
7302 unregistering = true;
7310 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7312 remove_wait_queue(&netdev_unregistering_wq, &wait);
7315 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7317 /* At exit all network devices most be removed from a network
7318 * namespace. Do this in the reverse order of registration.
7319 * Do this across as many network namespaces as possible to
7320 * improve batching efficiency.
7322 struct net_device *dev;
7324 LIST_HEAD(dev_kill_list);
7326 /* To prevent network device cleanup code from dereferencing
7327 * loopback devices or network devices that have been freed
7328 * wait here for all pending unregistrations to complete,
7329 * before unregistring the loopback device and allowing the
7330 * network namespace be freed.
7332 * The netdev todo list containing all network devices
7333 * unregistrations that happen in default_device_exit_batch
7334 * will run in the rtnl_unlock() at the end of
7335 * default_device_exit_batch.
7337 rtnl_lock_unregistering(net_list);
7338 list_for_each_entry(net, net_list, exit_list) {
7339 for_each_netdev_reverse(net, dev) {
7340 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7341 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7343 unregister_netdevice_queue(dev, &dev_kill_list);
7346 unregister_netdevice_many(&dev_kill_list);
7350 static struct pernet_operations __net_initdata default_device_ops = {
7351 .exit = default_device_exit,
7352 .exit_batch = default_device_exit_batch,
7356 * Initialize the DEV module. At boot time this walks the device list and
7357 * unhooks any devices that fail to initialise (normally hardware not
7358 * present) and leaves us with a valid list of present and active devices.
7363 * This is called single threaded during boot, so no need
7364 * to take the rtnl semaphore.
7366 static int __init net_dev_init(void)
7368 int i, rc = -ENOMEM;
7370 BUG_ON(!dev_boot_phase);
7372 if (dev_proc_init())
7375 if (netdev_kobject_init())
7378 INIT_LIST_HEAD(&ptype_all);
7379 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7380 INIT_LIST_HEAD(&ptype_base[i]);
7382 INIT_LIST_HEAD(&offload_base);
7384 if (register_pernet_subsys(&netdev_net_ops))
7388 * Initialise the packet receive queues.
7391 for_each_possible_cpu(i) {
7392 struct softnet_data *sd = &per_cpu(softnet_data, i);
7394 skb_queue_head_init(&sd->input_pkt_queue);
7395 skb_queue_head_init(&sd->process_queue);
7396 INIT_LIST_HEAD(&sd->poll_list);
7397 sd->output_queue_tailp = &sd->output_queue;
7399 sd->csd.func = rps_trigger_softirq;
7404 sd->backlog.poll = process_backlog;
7405 sd->backlog.weight = weight_p;
7410 /* The loopback device is special if any other network devices
7411 * is present in a network namespace the loopback device must
7412 * be present. Since we now dynamically allocate and free the
7413 * loopback device ensure this invariant is maintained by
7414 * keeping the loopback device as the first device on the
7415 * list of network devices. Ensuring the loopback devices
7416 * is the first device that appears and the last network device
7419 if (register_pernet_device(&loopback_net_ops))
7422 if (register_pernet_device(&default_device_ops))
7425 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7426 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7428 hotcpu_notifier(dev_cpu_callback, 0);
7435 subsys_initcall(net_dev_init);