2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
111 static bool largepages_enabled = true;
113 bool kvm_is_reserved_pfn(pfn_t pfn)
116 return PageReserved(pfn_to_page(pfn));
122 * Switches to specified vcpu, until a matching vcpu_put()
124 int vcpu_load(struct kvm_vcpu *vcpu)
128 if (mutex_lock_killable(&vcpu->mutex))
131 preempt_notifier_register(&vcpu->preempt_notifier);
132 kvm_arch_vcpu_load(vcpu, cpu);
137 void vcpu_put(struct kvm_vcpu *vcpu)
140 kvm_arch_vcpu_put(vcpu);
141 preempt_notifier_unregister(&vcpu->preempt_notifier);
143 mutex_unlock(&vcpu->mutex);
146 static void ack_flush(void *_completed)
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
155 struct kvm_vcpu *vcpu;
157 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
160 kvm_for_each_vcpu(i, vcpu, kvm) {
161 kvm_make_request(req, vcpu);
164 /* Set ->requests bit before we read ->mode */
167 if (cpus != NULL && cpu != -1 && cpu != me &&
168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 cpumask_set_cpu(cpu, cpus);
171 if (unlikely(cpus == NULL))
172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 else if (!cpumask_empty(cpus))
174 smp_call_function_many(cpus, ack_flush, NULL, 1);
178 free_cpumask_var(cpus);
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
185 long dirty_count = kvm->tlbs_dirty;
188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 ++kvm->stat.remote_tlb_flush;
190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
195 void kvm_reload_remote_mmus(struct kvm *kvm)
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 mutex_init(&vcpu->mutex);
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
223 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228 vcpu->run = page_address(page);
230 kvm_vcpu_set_in_spin_loop(vcpu, false);
231 kvm_vcpu_set_dy_eligible(vcpu, false);
232 vcpu->preempted = false;
234 r = kvm_arch_vcpu_init(vcpu);
240 free_page((unsigned long)vcpu->run);
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 kvm_arch_vcpu_uninit(vcpu);
250 free_page((unsigned long)vcpu->run);
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
257 return container_of(mn, struct kvm, mmu_notifier);
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address)
264 struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 int need_tlb_flush, idx;
268 * When ->invalidate_page runs, the linux pte has been zapped
269 * already but the page is still allocated until
270 * ->invalidate_page returns. So if we increase the sequence
271 * here the kvm page fault will notice if the spte can't be
272 * established because the page is going to be freed. If
273 * instead the kvm page fault establishes the spte before
274 * ->invalidate_page runs, kvm_unmap_hva will release it
277 * The sequence increase only need to be seen at spin_unlock
278 * time, and not at spin_lock time.
280 * Increasing the sequence after the spin_unlock would be
281 * unsafe because the kvm page fault could then establish the
282 * pte after kvm_unmap_hva returned, without noticing the page
283 * is going to be freed.
285 idx = srcu_read_lock(&kvm->srcu);
286 spin_lock(&kvm->mmu_lock);
288 kvm->mmu_notifier_seq++;
289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 /* we've to flush the tlb before the pages can be freed */
292 kvm_flush_remote_tlbs(kvm);
294 spin_unlock(&kvm->mmu_lock);
296 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
298 srcu_read_unlock(&kvm->srcu, idx);
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
337 kvm_flush_remote_tlbs(kvm);
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 spin_lock(&kvm->mmu_lock);
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
356 kvm->mmu_notifier_seq++;
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
366 BUG_ON(kvm->mmu_notifier_count < 0);
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
380 young = kvm_age_hva(kvm, start, end);
382 kvm_flush_remote_tlbs(kvm);
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442 static struct kvm_memslots *kvm_alloc_memslots(void)
445 struct kvm_memslots *slots;
447 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
452 * Init kvm generation close to the maximum to easily test the
453 * code of handling generation number wrap-around.
455 slots->generation = -150;
456 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
457 slots->id_to_index[i] = slots->memslots[i].id = i;
462 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
464 if (!memslot->dirty_bitmap)
467 kvfree(memslot->dirty_bitmap);
468 memslot->dirty_bitmap = NULL;
472 * Free any memory in @free but not in @dont.
474 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
475 struct kvm_memory_slot *dont)
477 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
478 kvm_destroy_dirty_bitmap(free);
480 kvm_arch_free_memslot(kvm, free, dont);
485 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
487 struct kvm_memory_slot *memslot;
492 kvm_for_each_memslot(memslot, slots)
493 kvm_free_memslot(kvm, memslot, NULL);
498 static struct kvm *kvm_create_vm(unsigned long type)
501 struct kvm *kvm = kvm_arch_alloc_vm();
504 return ERR_PTR(-ENOMEM);
506 r = kvm_arch_init_vm(kvm, type);
508 goto out_err_no_disable;
510 r = hardware_enable_all();
512 goto out_err_no_disable;
514 #ifdef CONFIG_HAVE_KVM_IRQFD
515 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
518 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
521 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
522 kvm->memslots[i] = kvm_alloc_memslots();
523 if (!kvm->memslots[i])
524 goto out_err_no_srcu;
527 if (init_srcu_struct(&kvm->srcu))
528 goto out_err_no_srcu;
529 if (init_srcu_struct(&kvm->irq_srcu))
530 goto out_err_no_irq_srcu;
531 for (i = 0; i < KVM_NR_BUSES; i++) {
532 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
538 spin_lock_init(&kvm->mmu_lock);
539 kvm->mm = current->mm;
540 atomic_inc(&kvm->mm->mm_count);
541 kvm_eventfd_init(kvm);
542 mutex_init(&kvm->lock);
543 mutex_init(&kvm->irq_lock);
544 mutex_init(&kvm->slots_lock);
545 atomic_set(&kvm->users_count, 1);
546 INIT_LIST_HEAD(&kvm->devices);
548 r = kvm_init_mmu_notifier(kvm);
552 spin_lock(&kvm_lock);
553 list_add(&kvm->vm_list, &vm_list);
554 spin_unlock(&kvm_lock);
556 preempt_notifier_inc();
561 cleanup_srcu_struct(&kvm->irq_srcu);
563 cleanup_srcu_struct(&kvm->srcu);
565 hardware_disable_all();
567 for (i = 0; i < KVM_NR_BUSES; i++)
568 kfree(kvm->buses[i]);
569 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
570 kvm_free_memslots(kvm, kvm->memslots[i]);
571 kvm_arch_free_vm(kvm);
576 * Avoid using vmalloc for a small buffer.
577 * Should not be used when the size is statically known.
579 void *kvm_kvzalloc(unsigned long size)
581 if (size > PAGE_SIZE)
582 return vzalloc(size);
584 return kzalloc(size, GFP_KERNEL);
587 static void kvm_destroy_devices(struct kvm *kvm)
589 struct list_head *node, *tmp;
591 list_for_each_safe(node, tmp, &kvm->devices) {
592 struct kvm_device *dev =
593 list_entry(node, struct kvm_device, vm_node);
596 dev->ops->destroy(dev);
600 static void kvm_destroy_vm(struct kvm *kvm)
603 struct mm_struct *mm = kvm->mm;
605 kvm_arch_sync_events(kvm);
606 spin_lock(&kvm_lock);
607 list_del(&kvm->vm_list);
608 spin_unlock(&kvm_lock);
609 kvm_free_irq_routing(kvm);
610 for (i = 0; i < KVM_NR_BUSES; i++)
611 kvm_io_bus_destroy(kvm->buses[i]);
612 kvm_coalesced_mmio_free(kvm);
613 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
614 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
616 kvm_arch_flush_shadow_all(kvm);
618 kvm_arch_destroy_vm(kvm);
619 kvm_destroy_devices(kvm);
620 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
621 kvm_free_memslots(kvm, kvm->memslots[i]);
622 cleanup_srcu_struct(&kvm->irq_srcu);
623 cleanup_srcu_struct(&kvm->srcu);
624 kvm_arch_free_vm(kvm);
625 preempt_notifier_dec();
626 hardware_disable_all();
630 void kvm_get_kvm(struct kvm *kvm)
632 atomic_inc(&kvm->users_count);
634 EXPORT_SYMBOL_GPL(kvm_get_kvm);
636 void kvm_put_kvm(struct kvm *kvm)
638 if (atomic_dec_and_test(&kvm->users_count))
641 EXPORT_SYMBOL_GPL(kvm_put_kvm);
644 static int kvm_vm_release(struct inode *inode, struct file *filp)
646 struct kvm *kvm = filp->private_data;
648 kvm_irqfd_release(kvm);
655 * Allocation size is twice as large as the actual dirty bitmap size.
656 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
658 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
660 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
662 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
663 if (!memslot->dirty_bitmap)
670 * Insert memslot and re-sort memslots based on their GFN,
671 * so binary search could be used to lookup GFN.
672 * Sorting algorithm takes advantage of having initially
673 * sorted array and known changed memslot position.
675 static void update_memslots(struct kvm_memslots *slots,
676 struct kvm_memory_slot *new)
679 int i = slots->id_to_index[id];
680 struct kvm_memory_slot *mslots = slots->memslots;
682 WARN_ON(mslots[i].id != id);
684 WARN_ON(!mslots[i].npages);
685 if (mslots[i].npages)
688 if (!mslots[i].npages)
692 while (i < KVM_MEM_SLOTS_NUM - 1 &&
693 new->base_gfn <= mslots[i + 1].base_gfn) {
694 if (!mslots[i + 1].npages)
696 mslots[i] = mslots[i + 1];
697 slots->id_to_index[mslots[i].id] = i;
702 * The ">=" is needed when creating a slot with base_gfn == 0,
703 * so that it moves before all those with base_gfn == npages == 0.
705 * On the other hand, if new->npages is zero, the above loop has
706 * already left i pointing to the beginning of the empty part of
707 * mslots, and the ">=" would move the hole backwards in this
708 * case---which is wrong. So skip the loop when deleting a slot.
712 new->base_gfn >= mslots[i - 1].base_gfn) {
713 mslots[i] = mslots[i - 1];
714 slots->id_to_index[mslots[i].id] = i;
718 WARN_ON_ONCE(i != slots->used_slots);
721 slots->id_to_index[mslots[i].id] = i;
724 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
726 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
728 #ifdef __KVM_HAVE_READONLY_MEM
729 valid_flags |= KVM_MEM_READONLY;
732 if (mem->flags & ~valid_flags)
738 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
739 int as_id, struct kvm_memslots *slots)
741 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
744 * Set the low bit in the generation, which disables SPTE caching
745 * until the end of synchronize_srcu_expedited.
747 WARN_ON(old_memslots->generation & 1);
748 slots->generation = old_memslots->generation + 1;
750 rcu_assign_pointer(kvm->memslots[as_id], slots);
751 synchronize_srcu_expedited(&kvm->srcu);
754 * Increment the new memslot generation a second time. This prevents
755 * vm exits that race with memslot updates from caching a memslot
756 * generation that will (potentially) be valid forever.
760 kvm_arch_memslots_updated(kvm, slots);
766 * Allocate some memory and give it an address in the guest physical address
769 * Discontiguous memory is allowed, mostly for framebuffers.
771 * Must be called holding kvm->slots_lock for write.
773 int __kvm_set_memory_region(struct kvm *kvm,
774 const struct kvm_userspace_memory_region *mem)
778 unsigned long npages;
779 struct kvm_memory_slot *slot;
780 struct kvm_memory_slot old, new;
781 struct kvm_memslots *slots = NULL, *old_memslots;
783 enum kvm_mr_change change;
785 r = check_memory_region_flags(mem);
790 as_id = mem->slot >> 16;
793 /* General sanity checks */
794 if (mem->memory_size & (PAGE_SIZE - 1))
796 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
798 /* We can read the guest memory with __xxx_user() later on. */
799 if ((id < KVM_USER_MEM_SLOTS) &&
800 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
801 !access_ok(VERIFY_WRITE,
802 (void __user *)(unsigned long)mem->userspace_addr,
805 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
807 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
810 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
811 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
812 npages = mem->memory_size >> PAGE_SHIFT;
814 if (npages > KVM_MEM_MAX_NR_PAGES)
820 new.base_gfn = base_gfn;
822 new.flags = mem->flags;
826 change = KVM_MR_CREATE;
827 else { /* Modify an existing slot. */
828 if ((mem->userspace_addr != old.userspace_addr) ||
829 (npages != old.npages) ||
830 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
833 if (base_gfn != old.base_gfn)
834 change = KVM_MR_MOVE;
835 else if (new.flags != old.flags)
836 change = KVM_MR_FLAGS_ONLY;
837 else { /* Nothing to change. */
846 change = KVM_MR_DELETE;
851 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
852 /* Check for overlaps */
854 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
855 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
858 if (!((base_gfn + npages <= slot->base_gfn) ||
859 (base_gfn >= slot->base_gfn + slot->npages)))
864 /* Free page dirty bitmap if unneeded */
865 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
866 new.dirty_bitmap = NULL;
869 if (change == KVM_MR_CREATE) {
870 new.userspace_addr = mem->userspace_addr;
872 if (kvm_arch_create_memslot(kvm, &new, npages))
876 /* Allocate page dirty bitmap if needed */
877 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
878 if (kvm_create_dirty_bitmap(&new) < 0)
882 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
885 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
887 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
888 slot = id_to_memslot(slots, id);
889 slot->flags |= KVM_MEMSLOT_INVALID;
891 old_memslots = install_new_memslots(kvm, as_id, slots);
893 /* slot was deleted or moved, clear iommu mapping */
894 kvm_iommu_unmap_pages(kvm, &old);
895 /* From this point no new shadow pages pointing to a deleted,
896 * or moved, memslot will be created.
898 * validation of sp->gfn happens in:
899 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
900 * - kvm_is_visible_gfn (mmu_check_roots)
902 kvm_arch_flush_shadow_memslot(kvm, slot);
905 * We can re-use the old_memslots from above, the only difference
906 * from the currently installed memslots is the invalid flag. This
907 * will get overwritten by update_memslots anyway.
909 slots = old_memslots;
912 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
916 /* actual memory is freed via old in kvm_free_memslot below */
917 if (change == KVM_MR_DELETE) {
918 new.dirty_bitmap = NULL;
919 memset(&new.arch, 0, sizeof(new.arch));
922 update_memslots(slots, &new);
923 old_memslots = install_new_memslots(kvm, as_id, slots);
925 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
927 kvm_free_memslot(kvm, &old, &new);
928 kvfree(old_memslots);
931 * IOMMU mapping: New slots need to be mapped. Old slots need to be
932 * un-mapped and re-mapped if their base changes. Since base change
933 * unmapping is handled above with slot deletion, mapping alone is
934 * needed here. Anything else the iommu might care about for existing
935 * slots (size changes, userspace addr changes and read-only flag
936 * changes) is disallowed above, so any other attribute changes getting
937 * here can be skipped.
939 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
940 r = kvm_iommu_map_pages(kvm, &new);
949 kvm_free_memslot(kvm, &new, &old);
953 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
955 int kvm_set_memory_region(struct kvm *kvm,
956 const struct kvm_userspace_memory_region *mem)
960 mutex_lock(&kvm->slots_lock);
961 r = __kvm_set_memory_region(kvm, mem);
962 mutex_unlock(&kvm->slots_lock);
965 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
967 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
968 struct kvm_userspace_memory_region *mem)
970 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
973 return kvm_set_memory_region(kvm, mem);
976 int kvm_get_dirty_log(struct kvm *kvm,
977 struct kvm_dirty_log *log, int *is_dirty)
979 struct kvm_memslots *slots;
980 struct kvm_memory_slot *memslot;
983 unsigned long any = 0;
986 as_id = log->slot >> 16;
988 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
991 slots = __kvm_memslots(kvm, as_id);
992 memslot = id_to_memslot(slots, id);
994 if (!memslot->dirty_bitmap)
997 n = kvm_dirty_bitmap_bytes(memslot);
999 for (i = 0; !any && i < n/sizeof(long); ++i)
1000 any = memslot->dirty_bitmap[i];
1003 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1013 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1015 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1017 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1018 * are dirty write protect them for next write.
1019 * @kvm: pointer to kvm instance
1020 * @log: slot id and address to which we copy the log
1021 * @is_dirty: flag set if any page is dirty
1023 * We need to keep it in mind that VCPU threads can write to the bitmap
1024 * concurrently. So, to avoid losing track of dirty pages we keep the
1027 * 1. Take a snapshot of the bit and clear it if needed.
1028 * 2. Write protect the corresponding page.
1029 * 3. Copy the snapshot to the userspace.
1030 * 4. Upon return caller flushes TLB's if needed.
1032 * Between 2 and 4, the guest may write to the page using the remaining TLB
1033 * entry. This is not a problem because the page is reported dirty using
1034 * the snapshot taken before and step 4 ensures that writes done after
1035 * exiting to userspace will be logged for the next call.
1038 int kvm_get_dirty_log_protect(struct kvm *kvm,
1039 struct kvm_dirty_log *log, bool *is_dirty)
1041 struct kvm_memslots *slots;
1042 struct kvm_memory_slot *memslot;
1043 int r, i, as_id, id;
1045 unsigned long *dirty_bitmap;
1046 unsigned long *dirty_bitmap_buffer;
1049 as_id = log->slot >> 16;
1050 id = (u16)log->slot;
1051 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1054 slots = __kvm_memslots(kvm, as_id);
1055 memslot = id_to_memslot(slots, id);
1057 dirty_bitmap = memslot->dirty_bitmap;
1062 n = kvm_dirty_bitmap_bytes(memslot);
1064 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1065 memset(dirty_bitmap_buffer, 0, n);
1067 spin_lock(&kvm->mmu_lock);
1069 for (i = 0; i < n / sizeof(long); i++) {
1073 if (!dirty_bitmap[i])
1078 mask = xchg(&dirty_bitmap[i], 0);
1079 dirty_bitmap_buffer[i] = mask;
1082 offset = i * BITS_PER_LONG;
1083 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1088 spin_unlock(&kvm->mmu_lock);
1091 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1098 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1101 bool kvm_largepages_enabled(void)
1103 return largepages_enabled;
1106 void kvm_disable_largepages(void)
1108 largepages_enabled = false;
1110 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1112 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1114 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1116 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1118 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1120 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1123 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1125 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1127 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1128 memslot->flags & KVM_MEMSLOT_INVALID)
1133 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1135 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1137 struct vm_area_struct *vma;
1138 unsigned long addr, size;
1142 addr = gfn_to_hva(kvm, gfn);
1143 if (kvm_is_error_hva(addr))
1146 down_read(¤t->mm->mmap_sem);
1147 vma = find_vma(current->mm, addr);
1151 size = vma_kernel_pagesize(vma);
1154 up_read(¤t->mm->mmap_sem);
1159 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1161 return slot->flags & KVM_MEM_READONLY;
1164 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1165 gfn_t *nr_pages, bool write)
1167 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1168 return KVM_HVA_ERR_BAD;
1170 if (memslot_is_readonly(slot) && write)
1171 return KVM_HVA_ERR_RO_BAD;
1174 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1176 return __gfn_to_hva_memslot(slot, gfn);
1179 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1182 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1185 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1188 return gfn_to_hva_many(slot, gfn, NULL);
1190 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1192 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1194 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1196 EXPORT_SYMBOL_GPL(gfn_to_hva);
1198 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1200 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1202 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1205 * If writable is set to false, the hva returned by this function is only
1206 * allowed to be read.
1208 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1209 gfn_t gfn, bool *writable)
1211 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1213 if (!kvm_is_error_hva(hva) && writable)
1214 *writable = !memslot_is_readonly(slot);
1219 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1221 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1223 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1226 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1228 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1230 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1233 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1234 unsigned long start, int write, struct page **page)
1236 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1239 flags |= FOLL_WRITE;
1241 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1244 static inline int check_user_page_hwpoison(unsigned long addr)
1246 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1248 rc = __get_user_pages(current, current->mm, addr, 1,
1249 flags, NULL, NULL, NULL);
1250 return rc == -EHWPOISON;
1254 * The atomic path to get the writable pfn which will be stored in @pfn,
1255 * true indicates success, otherwise false is returned.
1257 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1258 bool write_fault, bool *writable, pfn_t *pfn)
1260 struct page *page[1];
1263 if (!(async || atomic))
1267 * Fast pin a writable pfn only if it is a write fault request
1268 * or the caller allows to map a writable pfn for a read fault
1271 if (!(write_fault || writable))
1274 npages = __get_user_pages_fast(addr, 1, 1, page);
1276 *pfn = page_to_pfn(page[0]);
1287 * The slow path to get the pfn of the specified host virtual address,
1288 * 1 indicates success, -errno is returned if error is detected.
1290 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1291 bool *writable, pfn_t *pfn)
1293 struct page *page[1];
1299 *writable = write_fault;
1302 down_read(¤t->mm->mmap_sem);
1303 npages = get_user_page_nowait(current, current->mm,
1304 addr, write_fault, page);
1305 up_read(¤t->mm->mmap_sem);
1307 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1308 write_fault, 0, page,
1309 FOLL_TOUCH|FOLL_HWPOISON);
1313 /* map read fault as writable if possible */
1314 if (unlikely(!write_fault) && writable) {
1315 struct page *wpage[1];
1317 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1326 *pfn = page_to_pfn(page[0]);
1330 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1332 if (unlikely(!(vma->vm_flags & VM_READ)))
1335 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1342 * Pin guest page in memory and return its pfn.
1343 * @addr: host virtual address which maps memory to the guest
1344 * @atomic: whether this function can sleep
1345 * @async: whether this function need to wait IO complete if the
1346 * host page is not in the memory
1347 * @write_fault: whether we should get a writable host page
1348 * @writable: whether it allows to map a writable host page for !@write_fault
1350 * The function will map a writable host page for these two cases:
1351 * 1): @write_fault = true
1352 * 2): @write_fault = false && @writable, @writable will tell the caller
1353 * whether the mapping is writable.
1355 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1356 bool write_fault, bool *writable)
1358 struct vm_area_struct *vma;
1362 /* we can do it either atomically or asynchronously, not both */
1363 BUG_ON(atomic && async);
1365 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1369 return KVM_PFN_ERR_FAULT;
1371 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1375 down_read(¤t->mm->mmap_sem);
1376 if (npages == -EHWPOISON ||
1377 (!async && check_user_page_hwpoison(addr))) {
1378 pfn = KVM_PFN_ERR_HWPOISON;
1382 vma = find_vma_intersection(current->mm, addr, addr + 1);
1385 pfn = KVM_PFN_ERR_FAULT;
1386 else if ((vma->vm_flags & VM_PFNMAP)) {
1387 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1389 BUG_ON(!kvm_is_reserved_pfn(pfn));
1391 if (async && vma_is_valid(vma, write_fault))
1393 pfn = KVM_PFN_ERR_FAULT;
1396 up_read(¤t->mm->mmap_sem);
1400 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1401 bool *async, bool write_fault, bool *writable)
1403 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1405 if (addr == KVM_HVA_ERR_RO_BAD)
1406 return KVM_PFN_ERR_RO_FAULT;
1408 if (kvm_is_error_hva(addr))
1409 return KVM_PFN_NOSLOT;
1411 /* Do not map writable pfn in the readonly memslot. */
1412 if (writable && memslot_is_readonly(slot)) {
1417 return hva_to_pfn(addr, atomic, async, write_fault,
1420 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1422 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1425 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1426 write_fault, writable);
1428 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1430 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1432 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1434 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1436 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1438 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1440 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1442 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1444 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1446 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1448 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1450 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1452 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1454 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1456 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1458 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1460 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1462 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1464 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1466 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1467 struct page **pages, int nr_pages)
1472 addr = gfn_to_hva_many(slot, gfn, &entry);
1473 if (kvm_is_error_hva(addr))
1476 if (entry < nr_pages)
1479 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1481 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1483 static struct page *kvm_pfn_to_page(pfn_t pfn)
1485 if (is_error_noslot_pfn(pfn))
1486 return KVM_ERR_PTR_BAD_PAGE;
1488 if (kvm_is_reserved_pfn(pfn)) {
1490 return KVM_ERR_PTR_BAD_PAGE;
1493 return pfn_to_page(pfn);
1496 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1500 pfn = gfn_to_pfn(kvm, gfn);
1502 return kvm_pfn_to_page(pfn);
1504 EXPORT_SYMBOL_GPL(gfn_to_page);
1506 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1510 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1512 return kvm_pfn_to_page(pfn);
1514 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1516 void kvm_release_page_clean(struct page *page)
1518 WARN_ON(is_error_page(page));
1520 kvm_release_pfn_clean(page_to_pfn(page));
1522 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1524 void kvm_release_pfn_clean(pfn_t pfn)
1526 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1527 put_page(pfn_to_page(pfn));
1529 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1531 void kvm_release_page_dirty(struct page *page)
1533 WARN_ON(is_error_page(page));
1535 kvm_release_pfn_dirty(page_to_pfn(page));
1537 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1539 static void kvm_release_pfn_dirty(pfn_t pfn)
1541 kvm_set_pfn_dirty(pfn);
1542 kvm_release_pfn_clean(pfn);
1545 void kvm_set_pfn_dirty(pfn_t pfn)
1547 if (!kvm_is_reserved_pfn(pfn)) {
1548 struct page *page = pfn_to_page(pfn);
1550 if (!PageReserved(page))
1554 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1556 void kvm_set_pfn_accessed(pfn_t pfn)
1558 if (!kvm_is_reserved_pfn(pfn))
1559 mark_page_accessed(pfn_to_page(pfn));
1561 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1563 void kvm_get_pfn(pfn_t pfn)
1565 if (!kvm_is_reserved_pfn(pfn))
1566 get_page(pfn_to_page(pfn));
1568 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1570 static int next_segment(unsigned long len, int offset)
1572 if (len > PAGE_SIZE - offset)
1573 return PAGE_SIZE - offset;
1578 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1579 void *data, int offset, int len)
1584 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1585 if (kvm_is_error_hva(addr))
1587 r = __copy_from_user(data, (void __user *)addr + offset, len);
1593 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1596 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1598 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1600 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1602 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1603 int offset, int len)
1605 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1607 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1611 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1613 gfn_t gfn = gpa >> PAGE_SHIFT;
1615 int offset = offset_in_page(gpa);
1618 while ((seg = next_segment(len, offset)) != 0) {
1619 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1629 EXPORT_SYMBOL_GPL(kvm_read_guest);
1631 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1633 gfn_t gfn = gpa >> PAGE_SHIFT;
1635 int offset = offset_in_page(gpa);
1638 while ((seg = next_segment(len, offset)) != 0) {
1639 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1649 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1651 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1652 void *data, int offset, unsigned long len)
1657 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1658 if (kvm_is_error_hva(addr))
1660 pagefault_disable();
1661 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1668 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1671 gfn_t gfn = gpa >> PAGE_SHIFT;
1672 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1673 int offset = offset_in_page(gpa);
1675 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1677 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1679 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1680 void *data, unsigned long len)
1682 gfn_t gfn = gpa >> PAGE_SHIFT;
1683 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1684 int offset = offset_in_page(gpa);
1686 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1690 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1691 const void *data, int offset, int len)
1696 addr = gfn_to_hva_memslot(memslot, gfn);
1697 if (kvm_is_error_hva(addr))
1699 r = __copy_to_user((void __user *)addr + offset, data, len);
1702 mark_page_dirty_in_slot(memslot, gfn);
1706 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1707 const void *data, int offset, int len)
1709 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1711 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1713 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1715 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1716 const void *data, int offset, int len)
1718 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1720 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1724 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1727 gfn_t gfn = gpa >> PAGE_SHIFT;
1729 int offset = offset_in_page(gpa);
1732 while ((seg = next_segment(len, offset)) != 0) {
1733 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1743 EXPORT_SYMBOL_GPL(kvm_write_guest);
1745 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1748 gfn_t gfn = gpa >> PAGE_SHIFT;
1750 int offset = offset_in_page(gpa);
1753 while ((seg = next_segment(len, offset)) != 0) {
1754 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1766 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1767 gpa_t gpa, unsigned long len)
1769 struct kvm_memslots *slots = kvm_memslots(kvm);
1770 int offset = offset_in_page(gpa);
1771 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1772 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1773 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1774 gfn_t nr_pages_avail;
1777 ghc->generation = slots->generation;
1779 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1780 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1781 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1785 * If the requested region crosses two memslots, we still
1786 * verify that the entire region is valid here.
1788 while (start_gfn <= end_gfn) {
1789 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1790 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1792 if (kvm_is_error_hva(ghc->hva))
1794 start_gfn += nr_pages_avail;
1796 /* Use the slow path for cross page reads and writes. */
1797 ghc->memslot = NULL;
1801 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1803 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1804 void *data, unsigned long len)
1806 struct kvm_memslots *slots = kvm_memslots(kvm);
1809 BUG_ON(len > ghc->len);
1811 if (slots->generation != ghc->generation)
1812 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1814 if (unlikely(!ghc->memslot))
1815 return kvm_write_guest(kvm, ghc->gpa, data, len);
1817 if (kvm_is_error_hva(ghc->hva))
1820 r = __copy_to_user((void __user *)ghc->hva, data, len);
1823 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1827 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1829 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1830 void *data, unsigned long len)
1832 struct kvm_memslots *slots = kvm_memslots(kvm);
1835 BUG_ON(len > ghc->len);
1837 if (slots->generation != ghc->generation)
1838 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1840 if (unlikely(!ghc->memslot))
1841 return kvm_read_guest(kvm, ghc->gpa, data, len);
1843 if (kvm_is_error_hva(ghc->hva))
1846 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1852 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1854 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1856 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1858 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1860 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1862 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1864 gfn_t gfn = gpa >> PAGE_SHIFT;
1866 int offset = offset_in_page(gpa);
1869 while ((seg = next_segment(len, offset)) != 0) {
1870 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1879 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1881 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1884 if (memslot && memslot->dirty_bitmap) {
1885 unsigned long rel_gfn = gfn - memslot->base_gfn;
1887 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1891 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1893 struct kvm_memory_slot *memslot;
1895 memslot = gfn_to_memslot(kvm, gfn);
1896 mark_page_dirty_in_slot(memslot, gfn);
1898 EXPORT_SYMBOL_GPL(mark_page_dirty);
1900 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1902 struct kvm_memory_slot *memslot;
1904 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1905 mark_page_dirty_in_slot(memslot, gfn);
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1909 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1911 if (kvm_arch_vcpu_runnable(vcpu)) {
1912 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1915 if (kvm_cpu_has_pending_timer(vcpu))
1917 if (signal_pending(current))
1924 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1926 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1930 bool waited = false;
1932 start = cur = ktime_get();
1934 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1938 * This sets KVM_REQ_UNHALT if an interrupt
1941 if (kvm_vcpu_check_block(vcpu) < 0) {
1942 ++vcpu->stat.halt_successful_poll;
1946 } while (single_task_running() && ktime_before(cur, stop));
1950 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1952 if (kvm_vcpu_check_block(vcpu) < 0)
1959 finish_wait(&vcpu->wq, &wait);
1963 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1965 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1969 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1971 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1974 int cpu = vcpu->cpu;
1975 wait_queue_head_t *wqp;
1977 wqp = kvm_arch_vcpu_wq(vcpu);
1978 if (waitqueue_active(wqp)) {
1979 wake_up_interruptible(wqp);
1980 ++vcpu->stat.halt_wakeup;
1984 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1985 if (kvm_arch_vcpu_should_kick(vcpu))
1986 smp_send_reschedule(cpu);
1989 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1990 #endif /* !CONFIG_S390 */
1992 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1995 struct task_struct *task = NULL;
1999 pid = rcu_dereference(target->pid);
2001 task = get_pid_task(pid, PIDTYPE_PID);
2005 ret = yield_to(task, 1);
2006 put_task_struct(task);
2010 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2013 * Helper that checks whether a VCPU is eligible for directed yield.
2014 * Most eligible candidate to yield is decided by following heuristics:
2016 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2017 * (preempted lock holder), indicated by @in_spin_loop.
2018 * Set at the beiginning and cleared at the end of interception/PLE handler.
2020 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2021 * chance last time (mostly it has become eligible now since we have probably
2022 * yielded to lockholder in last iteration. This is done by toggling
2023 * @dy_eligible each time a VCPU checked for eligibility.)
2025 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2026 * to preempted lock-holder could result in wrong VCPU selection and CPU
2027 * burning. Giving priority for a potential lock-holder increases lock
2030 * Since algorithm is based on heuristics, accessing another VCPU data without
2031 * locking does not harm. It may result in trying to yield to same VCPU, fail
2032 * and continue with next VCPU and so on.
2034 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2036 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2039 eligible = !vcpu->spin_loop.in_spin_loop ||
2040 vcpu->spin_loop.dy_eligible;
2042 if (vcpu->spin_loop.in_spin_loop)
2043 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2051 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2053 struct kvm *kvm = me->kvm;
2054 struct kvm_vcpu *vcpu;
2055 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2061 kvm_vcpu_set_in_spin_loop(me, true);
2063 * We boost the priority of a VCPU that is runnable but not
2064 * currently running, because it got preempted by something
2065 * else and called schedule in __vcpu_run. Hopefully that
2066 * VCPU is holding the lock that we need and will release it.
2067 * We approximate round-robin by starting at the last boosted VCPU.
2069 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2070 kvm_for_each_vcpu(i, vcpu, kvm) {
2071 if (!pass && i <= last_boosted_vcpu) {
2072 i = last_boosted_vcpu;
2074 } else if (pass && i > last_boosted_vcpu)
2076 if (!ACCESS_ONCE(vcpu->preempted))
2080 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2082 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2085 yielded = kvm_vcpu_yield_to(vcpu);
2087 kvm->last_boosted_vcpu = i;
2089 } else if (yielded < 0) {
2096 kvm_vcpu_set_in_spin_loop(me, false);
2098 /* Ensure vcpu is not eligible during next spinloop */
2099 kvm_vcpu_set_dy_eligible(me, false);
2101 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2103 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2105 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2108 if (vmf->pgoff == 0)
2109 page = virt_to_page(vcpu->run);
2111 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2112 page = virt_to_page(vcpu->arch.pio_data);
2114 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2115 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2116 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2119 return kvm_arch_vcpu_fault(vcpu, vmf);
2125 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2126 .fault = kvm_vcpu_fault,
2129 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2131 vma->vm_ops = &kvm_vcpu_vm_ops;
2135 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2137 struct kvm_vcpu *vcpu = filp->private_data;
2139 kvm_put_kvm(vcpu->kvm);
2143 static struct file_operations kvm_vcpu_fops = {
2144 .release = kvm_vcpu_release,
2145 .unlocked_ioctl = kvm_vcpu_ioctl,
2146 #ifdef CONFIG_KVM_COMPAT
2147 .compat_ioctl = kvm_vcpu_compat_ioctl,
2149 .mmap = kvm_vcpu_mmap,
2150 .llseek = noop_llseek,
2154 * Allocates an inode for the vcpu.
2156 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2158 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2162 * Creates some virtual cpus. Good luck creating more than one.
2164 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2167 struct kvm_vcpu *vcpu, *v;
2169 if (id >= KVM_MAX_VCPUS)
2172 vcpu = kvm_arch_vcpu_create(kvm, id);
2174 return PTR_ERR(vcpu);
2176 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2178 r = kvm_arch_vcpu_setup(vcpu);
2182 mutex_lock(&kvm->lock);
2183 if (!kvm_vcpu_compatible(vcpu)) {
2185 goto unlock_vcpu_destroy;
2187 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2189 goto unlock_vcpu_destroy;
2192 kvm_for_each_vcpu(r, v, kvm)
2193 if (v->vcpu_id == id) {
2195 goto unlock_vcpu_destroy;
2198 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2200 /* Now it's all set up, let userspace reach it */
2202 r = create_vcpu_fd(vcpu);
2205 goto unlock_vcpu_destroy;
2208 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2210 atomic_inc(&kvm->online_vcpus);
2212 mutex_unlock(&kvm->lock);
2213 kvm_arch_vcpu_postcreate(vcpu);
2216 unlock_vcpu_destroy:
2217 mutex_unlock(&kvm->lock);
2219 kvm_arch_vcpu_destroy(vcpu);
2223 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2226 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2227 vcpu->sigset_active = 1;
2228 vcpu->sigset = *sigset;
2230 vcpu->sigset_active = 0;
2234 static long kvm_vcpu_ioctl(struct file *filp,
2235 unsigned int ioctl, unsigned long arg)
2237 struct kvm_vcpu *vcpu = filp->private_data;
2238 void __user *argp = (void __user *)arg;
2240 struct kvm_fpu *fpu = NULL;
2241 struct kvm_sregs *kvm_sregs = NULL;
2243 if (vcpu->kvm->mm != current->mm)
2246 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2249 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2251 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2252 * so vcpu_load() would break it.
2254 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2255 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2259 r = vcpu_load(vcpu);
2267 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2268 /* The thread running this VCPU changed. */
2269 struct pid *oldpid = vcpu->pid;
2270 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2272 rcu_assign_pointer(vcpu->pid, newpid);
2277 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2278 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2280 case KVM_GET_REGS: {
2281 struct kvm_regs *kvm_regs;
2284 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2287 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2291 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2298 case KVM_SET_REGS: {
2299 struct kvm_regs *kvm_regs;
2302 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2303 if (IS_ERR(kvm_regs)) {
2304 r = PTR_ERR(kvm_regs);
2307 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2311 case KVM_GET_SREGS: {
2312 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2316 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2320 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2325 case KVM_SET_SREGS: {
2326 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2327 if (IS_ERR(kvm_sregs)) {
2328 r = PTR_ERR(kvm_sregs);
2332 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2335 case KVM_GET_MP_STATE: {
2336 struct kvm_mp_state mp_state;
2338 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2342 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2347 case KVM_SET_MP_STATE: {
2348 struct kvm_mp_state mp_state;
2351 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2353 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2356 case KVM_TRANSLATE: {
2357 struct kvm_translation tr;
2360 if (copy_from_user(&tr, argp, sizeof(tr)))
2362 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2366 if (copy_to_user(argp, &tr, sizeof(tr)))
2371 case KVM_SET_GUEST_DEBUG: {
2372 struct kvm_guest_debug dbg;
2375 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2377 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2380 case KVM_SET_SIGNAL_MASK: {
2381 struct kvm_signal_mask __user *sigmask_arg = argp;
2382 struct kvm_signal_mask kvm_sigmask;
2383 sigset_t sigset, *p;
2388 if (copy_from_user(&kvm_sigmask, argp,
2389 sizeof(kvm_sigmask)))
2392 if (kvm_sigmask.len != sizeof(sigset))
2395 if (copy_from_user(&sigset, sigmask_arg->sigset,
2400 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2404 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2408 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2412 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2418 fpu = memdup_user(argp, sizeof(*fpu));
2424 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2428 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2437 #ifdef CONFIG_KVM_COMPAT
2438 static long kvm_vcpu_compat_ioctl(struct file *filp,
2439 unsigned int ioctl, unsigned long arg)
2441 struct kvm_vcpu *vcpu = filp->private_data;
2442 void __user *argp = compat_ptr(arg);
2445 if (vcpu->kvm->mm != current->mm)
2449 case KVM_SET_SIGNAL_MASK: {
2450 struct kvm_signal_mask __user *sigmask_arg = argp;
2451 struct kvm_signal_mask kvm_sigmask;
2452 compat_sigset_t csigset;
2457 if (copy_from_user(&kvm_sigmask, argp,
2458 sizeof(kvm_sigmask)))
2461 if (kvm_sigmask.len != sizeof(csigset))
2464 if (copy_from_user(&csigset, sigmask_arg->sigset,
2467 sigset_from_compat(&sigset, &csigset);
2468 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2470 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2474 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2482 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2483 int (*accessor)(struct kvm_device *dev,
2484 struct kvm_device_attr *attr),
2487 struct kvm_device_attr attr;
2492 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2495 return accessor(dev, &attr);
2498 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2501 struct kvm_device *dev = filp->private_data;
2504 case KVM_SET_DEVICE_ATTR:
2505 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2506 case KVM_GET_DEVICE_ATTR:
2507 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2508 case KVM_HAS_DEVICE_ATTR:
2509 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2511 if (dev->ops->ioctl)
2512 return dev->ops->ioctl(dev, ioctl, arg);
2518 static int kvm_device_release(struct inode *inode, struct file *filp)
2520 struct kvm_device *dev = filp->private_data;
2521 struct kvm *kvm = dev->kvm;
2527 static const struct file_operations kvm_device_fops = {
2528 .unlocked_ioctl = kvm_device_ioctl,
2529 #ifdef CONFIG_KVM_COMPAT
2530 .compat_ioctl = kvm_device_ioctl,
2532 .release = kvm_device_release,
2535 struct kvm_device *kvm_device_from_filp(struct file *filp)
2537 if (filp->f_op != &kvm_device_fops)
2540 return filp->private_data;
2543 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2544 #ifdef CONFIG_KVM_MPIC
2545 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2546 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2549 #ifdef CONFIG_KVM_XICS
2550 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2554 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2556 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2559 if (kvm_device_ops_table[type] != NULL)
2562 kvm_device_ops_table[type] = ops;
2566 void kvm_unregister_device_ops(u32 type)
2568 if (kvm_device_ops_table[type] != NULL)
2569 kvm_device_ops_table[type] = NULL;
2572 static int kvm_ioctl_create_device(struct kvm *kvm,
2573 struct kvm_create_device *cd)
2575 struct kvm_device_ops *ops = NULL;
2576 struct kvm_device *dev;
2577 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2580 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2583 ops = kvm_device_ops_table[cd->type];
2590 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2597 ret = ops->create(dev, cd->type);
2603 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2609 list_add(&dev->vm_node, &kvm->devices);
2615 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2618 case KVM_CAP_USER_MEMORY:
2619 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2620 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2621 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2622 case KVM_CAP_SET_BOOT_CPU_ID:
2624 case KVM_CAP_INTERNAL_ERROR_DATA:
2625 #ifdef CONFIG_HAVE_KVM_MSI
2626 case KVM_CAP_SIGNAL_MSI:
2628 #ifdef CONFIG_HAVE_KVM_IRQFD
2630 case KVM_CAP_IRQFD_RESAMPLE:
2632 case KVM_CAP_CHECK_EXTENSION_VM:
2634 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2635 case KVM_CAP_IRQ_ROUTING:
2636 return KVM_MAX_IRQ_ROUTES;
2638 #if KVM_ADDRESS_SPACE_NUM > 1
2639 case KVM_CAP_MULTI_ADDRESS_SPACE:
2640 return KVM_ADDRESS_SPACE_NUM;
2645 return kvm_vm_ioctl_check_extension(kvm, arg);
2648 static long kvm_vm_ioctl(struct file *filp,
2649 unsigned int ioctl, unsigned long arg)
2651 struct kvm *kvm = filp->private_data;
2652 void __user *argp = (void __user *)arg;
2655 if (kvm->mm != current->mm)
2658 case KVM_CREATE_VCPU:
2659 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2661 case KVM_SET_USER_MEMORY_REGION: {
2662 struct kvm_userspace_memory_region kvm_userspace_mem;
2665 if (copy_from_user(&kvm_userspace_mem, argp,
2666 sizeof(kvm_userspace_mem)))
2669 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2672 case KVM_GET_DIRTY_LOG: {
2673 struct kvm_dirty_log log;
2676 if (copy_from_user(&log, argp, sizeof(log)))
2678 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2681 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2682 case KVM_REGISTER_COALESCED_MMIO: {
2683 struct kvm_coalesced_mmio_zone zone;
2686 if (copy_from_user(&zone, argp, sizeof(zone)))
2688 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2691 case KVM_UNREGISTER_COALESCED_MMIO: {
2692 struct kvm_coalesced_mmio_zone zone;
2695 if (copy_from_user(&zone, argp, sizeof(zone)))
2697 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2702 struct kvm_irqfd data;
2705 if (copy_from_user(&data, argp, sizeof(data)))
2707 r = kvm_irqfd(kvm, &data);
2710 case KVM_IOEVENTFD: {
2711 struct kvm_ioeventfd data;
2714 if (copy_from_user(&data, argp, sizeof(data)))
2716 r = kvm_ioeventfd(kvm, &data);
2719 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2720 case KVM_SET_BOOT_CPU_ID:
2722 mutex_lock(&kvm->lock);
2723 if (atomic_read(&kvm->online_vcpus) != 0)
2726 kvm->bsp_vcpu_id = arg;
2727 mutex_unlock(&kvm->lock);
2730 #ifdef CONFIG_HAVE_KVM_MSI
2731 case KVM_SIGNAL_MSI: {
2735 if (copy_from_user(&msi, argp, sizeof(msi)))
2737 r = kvm_send_userspace_msi(kvm, &msi);
2741 #ifdef __KVM_HAVE_IRQ_LINE
2742 case KVM_IRQ_LINE_STATUS:
2743 case KVM_IRQ_LINE: {
2744 struct kvm_irq_level irq_event;
2747 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2750 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2751 ioctl == KVM_IRQ_LINE_STATUS);
2756 if (ioctl == KVM_IRQ_LINE_STATUS) {
2757 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2765 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2766 case KVM_SET_GSI_ROUTING: {
2767 struct kvm_irq_routing routing;
2768 struct kvm_irq_routing __user *urouting;
2769 struct kvm_irq_routing_entry *entries;
2772 if (copy_from_user(&routing, argp, sizeof(routing)))
2775 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2780 entries = vmalloc(routing.nr * sizeof(*entries));
2785 if (copy_from_user(entries, urouting->entries,
2786 routing.nr * sizeof(*entries)))
2787 goto out_free_irq_routing;
2788 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2790 out_free_irq_routing:
2794 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2795 case KVM_CREATE_DEVICE: {
2796 struct kvm_create_device cd;
2799 if (copy_from_user(&cd, argp, sizeof(cd)))
2802 r = kvm_ioctl_create_device(kvm, &cd);
2807 if (copy_to_user(argp, &cd, sizeof(cd)))
2813 case KVM_CHECK_EXTENSION:
2814 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2817 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2823 #ifdef CONFIG_KVM_COMPAT
2824 struct compat_kvm_dirty_log {
2828 compat_uptr_t dirty_bitmap; /* one bit per page */
2833 static long kvm_vm_compat_ioctl(struct file *filp,
2834 unsigned int ioctl, unsigned long arg)
2836 struct kvm *kvm = filp->private_data;
2839 if (kvm->mm != current->mm)
2842 case KVM_GET_DIRTY_LOG: {
2843 struct compat_kvm_dirty_log compat_log;
2844 struct kvm_dirty_log log;
2847 if (copy_from_user(&compat_log, (void __user *)arg,
2848 sizeof(compat_log)))
2850 log.slot = compat_log.slot;
2851 log.padding1 = compat_log.padding1;
2852 log.padding2 = compat_log.padding2;
2853 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2855 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2859 r = kvm_vm_ioctl(filp, ioctl, arg);
2867 static struct file_operations kvm_vm_fops = {
2868 .release = kvm_vm_release,
2869 .unlocked_ioctl = kvm_vm_ioctl,
2870 #ifdef CONFIG_KVM_COMPAT
2871 .compat_ioctl = kvm_vm_compat_ioctl,
2873 .llseek = noop_llseek,
2876 static int kvm_dev_ioctl_create_vm(unsigned long type)
2881 kvm = kvm_create_vm(type);
2883 return PTR_ERR(kvm);
2884 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2885 r = kvm_coalesced_mmio_init(kvm);
2891 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2898 static long kvm_dev_ioctl(struct file *filp,
2899 unsigned int ioctl, unsigned long arg)
2904 case KVM_GET_API_VERSION:
2907 r = KVM_API_VERSION;
2910 r = kvm_dev_ioctl_create_vm(arg);
2912 case KVM_CHECK_EXTENSION:
2913 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2915 case KVM_GET_VCPU_MMAP_SIZE:
2918 r = PAGE_SIZE; /* struct kvm_run */
2920 r += PAGE_SIZE; /* pio data page */
2922 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2923 r += PAGE_SIZE; /* coalesced mmio ring page */
2926 case KVM_TRACE_ENABLE:
2927 case KVM_TRACE_PAUSE:
2928 case KVM_TRACE_DISABLE:
2932 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2938 static struct file_operations kvm_chardev_ops = {
2939 .unlocked_ioctl = kvm_dev_ioctl,
2940 .compat_ioctl = kvm_dev_ioctl,
2941 .llseek = noop_llseek,
2944 static struct miscdevice kvm_dev = {
2950 static void hardware_enable_nolock(void *junk)
2952 int cpu = raw_smp_processor_id();
2955 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2958 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2960 r = kvm_arch_hardware_enable();
2963 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2964 atomic_inc(&hardware_enable_failed);
2965 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2969 static void hardware_enable(void)
2971 raw_spin_lock(&kvm_count_lock);
2972 if (kvm_usage_count)
2973 hardware_enable_nolock(NULL);
2974 raw_spin_unlock(&kvm_count_lock);
2977 static void hardware_disable_nolock(void *junk)
2979 int cpu = raw_smp_processor_id();
2981 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2983 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2984 kvm_arch_hardware_disable();
2987 static void hardware_disable(void)
2989 raw_spin_lock(&kvm_count_lock);
2990 if (kvm_usage_count)
2991 hardware_disable_nolock(NULL);
2992 raw_spin_unlock(&kvm_count_lock);
2995 static void hardware_disable_all_nolock(void)
2997 BUG_ON(!kvm_usage_count);
3000 if (!kvm_usage_count)
3001 on_each_cpu(hardware_disable_nolock, NULL, 1);
3004 static void hardware_disable_all(void)
3006 raw_spin_lock(&kvm_count_lock);
3007 hardware_disable_all_nolock();
3008 raw_spin_unlock(&kvm_count_lock);
3011 static int hardware_enable_all(void)
3015 raw_spin_lock(&kvm_count_lock);
3018 if (kvm_usage_count == 1) {
3019 atomic_set(&hardware_enable_failed, 0);
3020 on_each_cpu(hardware_enable_nolock, NULL, 1);
3022 if (atomic_read(&hardware_enable_failed)) {
3023 hardware_disable_all_nolock();
3028 raw_spin_unlock(&kvm_count_lock);
3033 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3036 val &= ~CPU_TASKS_FROZEN;
3048 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3052 * Some (well, at least mine) BIOSes hang on reboot if
3055 * And Intel TXT required VMX off for all cpu when system shutdown.
3057 pr_info("kvm: exiting hardware virtualization\n");
3058 kvm_rebooting = true;
3059 on_each_cpu(hardware_disable_nolock, NULL, 1);
3063 static struct notifier_block kvm_reboot_notifier = {
3064 .notifier_call = kvm_reboot,
3068 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3072 for (i = 0; i < bus->dev_count; i++) {
3073 struct kvm_io_device *pos = bus->range[i].dev;
3075 kvm_iodevice_destructor(pos);
3080 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3081 const struct kvm_io_range *r2)
3083 if (r1->addr < r2->addr)
3085 if (r1->addr + r1->len > r2->addr + r2->len)
3090 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3092 return kvm_io_bus_cmp(p1, p2);
3095 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3096 gpa_t addr, int len)
3098 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3104 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3105 kvm_io_bus_sort_cmp, NULL);
3110 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3111 gpa_t addr, int len)
3113 struct kvm_io_range *range, key;
3116 key = (struct kvm_io_range) {
3121 range = bsearch(&key, bus->range, bus->dev_count,
3122 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3126 off = range - bus->range;
3128 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3134 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3135 struct kvm_io_range *range, const void *val)
3139 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3143 while (idx < bus->dev_count &&
3144 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3145 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3154 /* kvm_io_bus_write - called under kvm->slots_lock */
3155 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3156 int len, const void *val)
3158 struct kvm_io_bus *bus;
3159 struct kvm_io_range range;
3162 range = (struct kvm_io_range) {
3167 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3168 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3169 return r < 0 ? r : 0;
3172 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3173 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3174 gpa_t addr, int len, const void *val, long cookie)
3176 struct kvm_io_bus *bus;
3177 struct kvm_io_range range;
3179 range = (struct kvm_io_range) {
3184 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3186 /* First try the device referenced by cookie. */
3187 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3188 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3189 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3194 * cookie contained garbage; fall back to search and return the
3195 * correct cookie value.
3197 return __kvm_io_bus_write(vcpu, bus, &range, val);
3200 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3201 struct kvm_io_range *range, void *val)
3205 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3209 while (idx < bus->dev_count &&
3210 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3211 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3219 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3221 /* kvm_io_bus_read - called under kvm->slots_lock */
3222 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3225 struct kvm_io_bus *bus;
3226 struct kvm_io_range range;
3229 range = (struct kvm_io_range) {
3234 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3235 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3236 return r < 0 ? r : 0;
3240 /* Caller must hold slots_lock. */
3241 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3242 int len, struct kvm_io_device *dev)
3244 struct kvm_io_bus *new_bus, *bus;
3246 bus = kvm->buses[bus_idx];
3247 /* exclude ioeventfd which is limited by maximum fd */
3248 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3251 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3252 sizeof(struct kvm_io_range)), GFP_KERNEL);
3255 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3256 sizeof(struct kvm_io_range)));
3257 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3258 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3259 synchronize_srcu_expedited(&kvm->srcu);
3265 /* Caller must hold slots_lock. */
3266 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3267 struct kvm_io_device *dev)
3270 struct kvm_io_bus *new_bus, *bus;
3272 bus = kvm->buses[bus_idx];
3274 for (i = 0; i < bus->dev_count; i++)
3275 if (bus->range[i].dev == dev) {
3283 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3284 sizeof(struct kvm_io_range)), GFP_KERNEL);
3288 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3289 new_bus->dev_count--;
3290 memcpy(new_bus->range + i, bus->range + i + 1,
3291 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3293 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3294 synchronize_srcu_expedited(&kvm->srcu);
3299 static struct notifier_block kvm_cpu_notifier = {
3300 .notifier_call = kvm_cpu_hotplug,
3303 static int vm_stat_get(void *_offset, u64 *val)
3305 unsigned offset = (long)_offset;
3309 spin_lock(&kvm_lock);
3310 list_for_each_entry(kvm, &vm_list, vm_list)
3311 *val += *(u32 *)((void *)kvm + offset);
3312 spin_unlock(&kvm_lock);
3316 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3318 static int vcpu_stat_get(void *_offset, u64 *val)
3320 unsigned offset = (long)_offset;
3322 struct kvm_vcpu *vcpu;
3326 spin_lock(&kvm_lock);
3327 list_for_each_entry(kvm, &vm_list, vm_list)
3328 kvm_for_each_vcpu(i, vcpu, kvm)
3329 *val += *(u32 *)((void *)vcpu + offset);
3331 spin_unlock(&kvm_lock);
3335 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3337 static const struct file_operations *stat_fops[] = {
3338 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3339 [KVM_STAT_VM] = &vm_stat_fops,
3342 static int kvm_init_debug(void)
3345 struct kvm_stats_debugfs_item *p;
3347 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3348 if (kvm_debugfs_dir == NULL)
3351 for (p = debugfs_entries; p->name; ++p) {
3352 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3353 (void *)(long)p->offset,
3354 stat_fops[p->kind]);
3355 if (p->dentry == NULL)
3362 debugfs_remove_recursive(kvm_debugfs_dir);
3367 static void kvm_exit_debug(void)
3369 struct kvm_stats_debugfs_item *p;
3371 for (p = debugfs_entries; p->name; ++p)
3372 debugfs_remove(p->dentry);
3373 debugfs_remove(kvm_debugfs_dir);
3376 static int kvm_suspend(void)
3378 if (kvm_usage_count)
3379 hardware_disable_nolock(NULL);
3383 static void kvm_resume(void)
3385 if (kvm_usage_count) {
3386 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3387 hardware_enable_nolock(NULL);
3391 static struct syscore_ops kvm_syscore_ops = {
3392 .suspend = kvm_suspend,
3393 .resume = kvm_resume,
3397 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3399 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3402 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3404 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3406 if (vcpu->preempted)
3407 vcpu->preempted = false;
3409 kvm_arch_sched_in(vcpu, cpu);
3411 kvm_arch_vcpu_load(vcpu, cpu);
3414 static void kvm_sched_out(struct preempt_notifier *pn,
3415 struct task_struct *next)
3417 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3419 if (current->state == TASK_RUNNING)
3420 vcpu->preempted = true;
3421 kvm_arch_vcpu_put(vcpu);
3424 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3425 struct module *module)
3430 r = kvm_arch_init(opaque);
3435 * kvm_arch_init makes sure there's at most one caller
3436 * for architectures that support multiple implementations,
3437 * like intel and amd on x86.
3438 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3439 * conflicts in case kvm is already setup for another implementation.
3441 r = kvm_irqfd_init();
3445 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3450 r = kvm_arch_hardware_setup();
3454 for_each_online_cpu(cpu) {
3455 smp_call_function_single(cpu,
3456 kvm_arch_check_processor_compat,
3462 r = register_cpu_notifier(&kvm_cpu_notifier);
3465 register_reboot_notifier(&kvm_reboot_notifier);
3467 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3469 vcpu_align = __alignof__(struct kvm_vcpu);
3470 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3472 if (!kvm_vcpu_cache) {
3477 r = kvm_async_pf_init();
3481 kvm_chardev_ops.owner = module;
3482 kvm_vm_fops.owner = module;
3483 kvm_vcpu_fops.owner = module;
3485 r = misc_register(&kvm_dev);
3487 pr_err("kvm: misc device register failed\n");
3491 register_syscore_ops(&kvm_syscore_ops);
3493 kvm_preempt_ops.sched_in = kvm_sched_in;
3494 kvm_preempt_ops.sched_out = kvm_sched_out;
3496 r = kvm_init_debug();
3498 pr_err("kvm: create debugfs files failed\n");
3502 r = kvm_vfio_ops_init();
3508 unregister_syscore_ops(&kvm_syscore_ops);
3509 misc_deregister(&kvm_dev);
3511 kvm_async_pf_deinit();
3513 kmem_cache_destroy(kvm_vcpu_cache);
3515 unregister_reboot_notifier(&kvm_reboot_notifier);
3516 unregister_cpu_notifier(&kvm_cpu_notifier);
3519 kvm_arch_hardware_unsetup();
3521 free_cpumask_var(cpus_hardware_enabled);
3529 EXPORT_SYMBOL_GPL(kvm_init);
3534 misc_deregister(&kvm_dev);
3535 kmem_cache_destroy(kvm_vcpu_cache);
3536 kvm_async_pf_deinit();
3537 unregister_syscore_ops(&kvm_syscore_ops);
3538 unregister_reboot_notifier(&kvm_reboot_notifier);
3539 unregister_cpu_notifier(&kvm_cpu_notifier);
3540 on_each_cpu(hardware_disable_nolock, NULL, 1);
3541 kvm_arch_hardware_unsetup();
3544 free_cpumask_var(cpus_hardware_enabled);
3545 kvm_vfio_ops_exit();
3547 EXPORT_SYMBOL_GPL(kvm_exit);