]> Git Repo - linux.git/blob - drivers/android/binder_alloc.c
dt-bindings: net: dsa: make phylink bindings required for CPU/DSA ports
[linux.git] / drivers / android / binder_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34         BINDER_DEBUG_USER_ERROR             = 1U << 0,
35         BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36         BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37         BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42                    uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45         do { \
46                 if (binder_alloc_debug_mask & mask) \
47                         pr_info_ratelimited(x); \
48         } while (0)
49
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52         return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57         return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61                                        struct binder_buffer *buffer)
62 {
63         if (list_is_last(&buffer->entry, &alloc->buffers))
64                 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65         return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69                                       struct binder_buffer *new_buffer)
70 {
71         struct rb_node **p = &alloc->free_buffers.rb_node;
72         struct rb_node *parent = NULL;
73         struct binder_buffer *buffer;
74         size_t buffer_size;
75         size_t new_buffer_size;
76
77         BUG_ON(!new_buffer->free);
78
79         new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82                      "%d: add free buffer, size %zd, at %pK\n",
83                       alloc->pid, new_buffer_size, new_buffer);
84
85         while (*p) {
86                 parent = *p;
87                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88                 BUG_ON(!buffer->free);
89
90                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92                 if (new_buffer_size < buffer_size)
93                         p = &parent->rb_left;
94                 else
95                         p = &parent->rb_right;
96         }
97         rb_link_node(&new_buffer->rb_node, parent, p);
98         rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
101 static void binder_insert_allocated_buffer_locked(
102                 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104         struct rb_node **p = &alloc->allocated_buffers.rb_node;
105         struct rb_node *parent = NULL;
106         struct binder_buffer *buffer;
107
108         BUG_ON(new_buffer->free);
109
110         while (*p) {
111                 parent = *p;
112                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113                 BUG_ON(buffer->free);
114
115                 if (new_buffer->user_data < buffer->user_data)
116                         p = &parent->rb_left;
117                 else if (new_buffer->user_data > buffer->user_data)
118                         p = &parent->rb_right;
119                 else
120                         BUG();
121         }
122         rb_link_node(&new_buffer->rb_node, parent, p);
123         rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127                 struct binder_alloc *alloc,
128                 uintptr_t user_ptr)
129 {
130         struct rb_node *n = alloc->allocated_buffers.rb_node;
131         struct binder_buffer *buffer;
132         void __user *uptr;
133
134         uptr = (void __user *)user_ptr;
135
136         while (n) {
137                 buffer = rb_entry(n, struct binder_buffer, rb_node);
138                 BUG_ON(buffer->free);
139
140                 if (uptr < buffer->user_data)
141                         n = n->rb_left;
142                 else if (uptr > buffer->user_data)
143                         n = n->rb_right;
144                 else {
145                         /*
146                          * Guard against user threads attempting to
147                          * free the buffer when in use by kernel or
148                          * after it's already been freed.
149                          */
150                         if (!buffer->allow_user_free)
151                                 return ERR_PTR(-EPERM);
152                         buffer->allow_user_free = 0;
153                         return buffer;
154                 }
155         }
156         return NULL;
157 }
158
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:      binder_alloc for this proc
162  * @user_ptr:   User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:      Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171                                                    uintptr_t user_ptr)
172 {
173         struct binder_buffer *buffer;
174
175         mutex_lock(&alloc->mutex);
176         buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177         mutex_unlock(&alloc->mutex);
178         return buffer;
179 }
180
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182                                     void __user *start, void __user *end)
183 {
184         void __user *page_addr;
185         unsigned long user_page_addr;
186         struct binder_lru_page *page;
187         struct vm_area_struct *vma = NULL;
188         struct mm_struct *mm = NULL;
189         bool need_mm = false;
190
191         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192                      "%d: %s pages %pK-%pK\n", alloc->pid,
193                      allocate ? "allocate" : "free", start, end);
194
195         if (end <= start)
196                 return 0;
197
198         trace_binder_update_page_range(alloc, allocate, start, end);
199
200         if (allocate == 0)
201                 goto free_range;
202
203         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204                 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205                 if (!page->page_ptr) {
206                         need_mm = true;
207                         break;
208                 }
209         }
210
211         if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212                 mm = alloc->vma_vm_mm;
213
214         if (mm) {
215                 mmap_read_lock(mm);
216                 vma = vma_lookup(mm, alloc->vma_addr);
217         }
218
219         if (!vma && need_mm) {
220                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221                                    "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222                                    alloc->pid);
223                 goto err_no_vma;
224         }
225
226         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227                 int ret;
228                 bool on_lru;
229                 size_t index;
230
231                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232                 page = &alloc->pages[index];
233
234                 if (page->page_ptr) {
235                         trace_binder_alloc_lru_start(alloc, index);
236
237                         on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238                         WARN_ON(!on_lru);
239
240                         trace_binder_alloc_lru_end(alloc, index);
241                         continue;
242                 }
243
244                 if (WARN_ON(!vma))
245                         goto err_page_ptr_cleared;
246
247                 trace_binder_alloc_page_start(alloc, index);
248                 page->page_ptr = alloc_page(GFP_KERNEL |
249                                             __GFP_HIGHMEM |
250                                             __GFP_ZERO);
251                 if (!page->page_ptr) {
252                         pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253                                 alloc->pid, page_addr);
254                         goto err_alloc_page_failed;
255                 }
256                 page->alloc = alloc;
257                 INIT_LIST_HEAD(&page->lru);
258
259                 user_page_addr = (uintptr_t)page_addr;
260                 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261                 if (ret) {
262                         pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263                                alloc->pid, user_page_addr);
264                         goto err_vm_insert_page_failed;
265                 }
266
267                 if (index + 1 > alloc->pages_high)
268                         alloc->pages_high = index + 1;
269
270                 trace_binder_alloc_page_end(alloc, index);
271         }
272         if (mm) {
273                 mmap_read_unlock(mm);
274                 mmput(mm);
275         }
276         return 0;
277
278 free_range:
279         for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280                 bool ret;
281                 size_t index;
282
283                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284                 page = &alloc->pages[index];
285
286                 trace_binder_free_lru_start(alloc, index);
287
288                 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289                 WARN_ON(!ret);
290
291                 trace_binder_free_lru_end(alloc, index);
292                 if (page_addr == start)
293                         break;
294                 continue;
295
296 err_vm_insert_page_failed:
297                 __free_page(page->page_ptr);
298                 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301                 if (page_addr == start)
302                         break;
303         }
304 err_no_vma:
305         if (mm) {
306                 mmap_read_unlock(mm);
307                 mmput(mm);
308         }
309         return vma ? -ENOMEM : -ESRCH;
310 }
311
312
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314                 struct vm_area_struct *vma)
315 {
316         unsigned long vm_start = 0;
317
318         /*
319          * Allow clearing the vma with holding just the read lock to allow
320          * munmapping downgrade of the write lock before freeing and closing the
321          * file using binder_alloc_vma_close().
322          */
323         if (vma) {
324                 vm_start = vma->vm_start;
325                 alloc->vma_vm_mm = vma->vm_mm;
326                 mmap_assert_write_locked(alloc->vma_vm_mm);
327         } else {
328                 mmap_assert_locked(alloc->vma_vm_mm);
329         }
330
331         alloc->vma_addr = vm_start;
332 }
333
334 static inline struct vm_area_struct *binder_alloc_get_vma(
335                 struct binder_alloc *alloc)
336 {
337         struct vm_area_struct *vma = NULL;
338
339         if (alloc->vma_addr)
340                 vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr);
341
342         return vma;
343 }
344
345 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
346 {
347         /*
348          * Find the amount and size of buffers allocated by the current caller;
349          * The idea is that once we cross the threshold, whoever is responsible
350          * for the low async space is likely to try to send another async txn,
351          * and at some point we'll catch them in the act. This is more efficient
352          * than keeping a map per pid.
353          */
354         struct rb_node *n;
355         struct binder_buffer *buffer;
356         size_t total_alloc_size = 0;
357         size_t num_buffers = 0;
358
359         for (n = rb_first(&alloc->allocated_buffers); n != NULL;
360                  n = rb_next(n)) {
361                 buffer = rb_entry(n, struct binder_buffer, rb_node);
362                 if (buffer->pid != pid)
363                         continue;
364                 if (!buffer->async_transaction)
365                         continue;
366                 total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
367                         + sizeof(struct binder_buffer);
368                 num_buffers++;
369         }
370
371         /*
372          * Warn if this pid has more than 50 transactions, or more than 50% of
373          * async space (which is 25% of total buffer size). Oneway spam is only
374          * detected when the threshold is exceeded.
375          */
376         if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
377                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
378                              "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
379                               alloc->pid, pid, num_buffers, total_alloc_size);
380                 if (!alloc->oneway_spam_detected) {
381                         alloc->oneway_spam_detected = true;
382                         return true;
383                 }
384         }
385         return false;
386 }
387
388 static struct binder_buffer *binder_alloc_new_buf_locked(
389                                 struct binder_alloc *alloc,
390                                 size_t data_size,
391                                 size_t offsets_size,
392                                 size_t extra_buffers_size,
393                                 int is_async,
394                                 int pid)
395 {
396         struct rb_node *n = alloc->free_buffers.rb_node;
397         struct binder_buffer *buffer;
398         size_t buffer_size;
399         struct rb_node *best_fit = NULL;
400         void __user *has_page_addr;
401         void __user *end_page_addr;
402         size_t size, data_offsets_size;
403         int ret;
404
405         if (!binder_alloc_get_vma(alloc)) {
406                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
407                                    "%d: binder_alloc_buf, no vma\n",
408                                    alloc->pid);
409                 return ERR_PTR(-ESRCH);
410         }
411
412         data_offsets_size = ALIGN(data_size, sizeof(void *)) +
413                 ALIGN(offsets_size, sizeof(void *));
414
415         if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
416                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
417                                 "%d: got transaction with invalid size %zd-%zd\n",
418                                 alloc->pid, data_size, offsets_size);
419                 return ERR_PTR(-EINVAL);
420         }
421         size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
422         if (size < data_offsets_size || size < extra_buffers_size) {
423                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
424                                 "%d: got transaction with invalid extra_buffers_size %zd\n",
425                                 alloc->pid, extra_buffers_size);
426                 return ERR_PTR(-EINVAL);
427         }
428         if (is_async &&
429             alloc->free_async_space < size + sizeof(struct binder_buffer)) {
430                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
431                              "%d: binder_alloc_buf size %zd failed, no async space left\n",
432                               alloc->pid, size);
433                 return ERR_PTR(-ENOSPC);
434         }
435
436         /* Pad 0-size buffers so they get assigned unique addresses */
437         size = max(size, sizeof(void *));
438
439         while (n) {
440                 buffer = rb_entry(n, struct binder_buffer, rb_node);
441                 BUG_ON(!buffer->free);
442                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
443
444                 if (size < buffer_size) {
445                         best_fit = n;
446                         n = n->rb_left;
447                 } else if (size > buffer_size)
448                         n = n->rb_right;
449                 else {
450                         best_fit = n;
451                         break;
452                 }
453         }
454         if (best_fit == NULL) {
455                 size_t allocated_buffers = 0;
456                 size_t largest_alloc_size = 0;
457                 size_t total_alloc_size = 0;
458                 size_t free_buffers = 0;
459                 size_t largest_free_size = 0;
460                 size_t total_free_size = 0;
461
462                 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
463                      n = rb_next(n)) {
464                         buffer = rb_entry(n, struct binder_buffer, rb_node);
465                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
466                         allocated_buffers++;
467                         total_alloc_size += buffer_size;
468                         if (buffer_size > largest_alloc_size)
469                                 largest_alloc_size = buffer_size;
470                 }
471                 for (n = rb_first(&alloc->free_buffers); n != NULL;
472                      n = rb_next(n)) {
473                         buffer = rb_entry(n, struct binder_buffer, rb_node);
474                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
475                         free_buffers++;
476                         total_free_size += buffer_size;
477                         if (buffer_size > largest_free_size)
478                                 largest_free_size = buffer_size;
479                 }
480                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
481                                    "%d: binder_alloc_buf size %zd failed, no address space\n",
482                                    alloc->pid, size);
483                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
484                                    "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
485                                    total_alloc_size, allocated_buffers,
486                                    largest_alloc_size, total_free_size,
487                                    free_buffers, largest_free_size);
488                 return ERR_PTR(-ENOSPC);
489         }
490         if (n == NULL) {
491                 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
492                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
493         }
494
495         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
496                      "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
497                       alloc->pid, size, buffer, buffer_size);
498
499         has_page_addr = (void __user *)
500                 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
501         WARN_ON(n && buffer_size != size);
502         end_page_addr =
503                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
504         if (end_page_addr > has_page_addr)
505                 end_page_addr = has_page_addr;
506         ret = binder_update_page_range(alloc, 1, (void __user *)
507                 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
508         if (ret)
509                 return ERR_PTR(ret);
510
511         if (buffer_size != size) {
512                 struct binder_buffer *new_buffer;
513
514                 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
515                 if (!new_buffer) {
516                         pr_err("%s: %d failed to alloc new buffer struct\n",
517                                __func__, alloc->pid);
518                         goto err_alloc_buf_struct_failed;
519                 }
520                 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
521                 list_add(&new_buffer->entry, &buffer->entry);
522                 new_buffer->free = 1;
523                 binder_insert_free_buffer(alloc, new_buffer);
524         }
525
526         rb_erase(best_fit, &alloc->free_buffers);
527         buffer->free = 0;
528         buffer->allow_user_free = 0;
529         binder_insert_allocated_buffer_locked(alloc, buffer);
530         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
531                      "%d: binder_alloc_buf size %zd got %pK\n",
532                       alloc->pid, size, buffer);
533         buffer->data_size = data_size;
534         buffer->offsets_size = offsets_size;
535         buffer->async_transaction = is_async;
536         buffer->extra_buffers_size = extra_buffers_size;
537         buffer->pid = pid;
538         buffer->oneway_spam_suspect = false;
539         if (is_async) {
540                 alloc->free_async_space -= size + sizeof(struct binder_buffer);
541                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
542                              "%d: binder_alloc_buf size %zd async free %zd\n",
543                               alloc->pid, size, alloc->free_async_space);
544                 if (alloc->free_async_space < alloc->buffer_size / 10) {
545                         /*
546                          * Start detecting spammers once we have less than 20%
547                          * of async space left (which is less than 10% of total
548                          * buffer size).
549                          */
550                         buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
551                 } else {
552                         alloc->oneway_spam_detected = false;
553                 }
554         }
555         return buffer;
556
557 err_alloc_buf_struct_failed:
558         binder_update_page_range(alloc, 0, (void __user *)
559                                  PAGE_ALIGN((uintptr_t)buffer->user_data),
560                                  end_page_addr);
561         return ERR_PTR(-ENOMEM);
562 }
563
564 /**
565  * binder_alloc_new_buf() - Allocate a new binder buffer
566  * @alloc:              binder_alloc for this proc
567  * @data_size:          size of user data buffer
568  * @offsets_size:       user specified buffer offset
569  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
570  * @is_async:           buffer for async transaction
571  * @pid:                                pid to attribute allocation to (used for debugging)
572  *
573  * Allocate a new buffer given the requested sizes. Returns
574  * the kernel version of the buffer pointer. The size allocated
575  * is the sum of the three given sizes (each rounded up to
576  * pointer-sized boundary)
577  *
578  * Return:      The allocated buffer or %NULL if error
579  */
580 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
581                                            size_t data_size,
582                                            size_t offsets_size,
583                                            size_t extra_buffers_size,
584                                            int is_async,
585                                            int pid)
586 {
587         struct binder_buffer *buffer;
588
589         mutex_lock(&alloc->mutex);
590         buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
591                                              extra_buffers_size, is_async, pid);
592         mutex_unlock(&alloc->mutex);
593         return buffer;
594 }
595
596 static void __user *buffer_start_page(struct binder_buffer *buffer)
597 {
598         return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
599 }
600
601 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
602 {
603         return (void __user *)
604                 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
605 }
606
607 static void binder_delete_free_buffer(struct binder_alloc *alloc,
608                                       struct binder_buffer *buffer)
609 {
610         struct binder_buffer *prev, *next = NULL;
611         bool to_free = true;
612
613         BUG_ON(alloc->buffers.next == &buffer->entry);
614         prev = binder_buffer_prev(buffer);
615         BUG_ON(!prev->free);
616         if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
617                 to_free = false;
618                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
619                                    "%d: merge free, buffer %pK share page with %pK\n",
620                                    alloc->pid, buffer->user_data,
621                                    prev->user_data);
622         }
623
624         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
625                 next = binder_buffer_next(buffer);
626                 if (buffer_start_page(next) == buffer_start_page(buffer)) {
627                         to_free = false;
628                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
629                                            "%d: merge free, buffer %pK share page with %pK\n",
630                                            alloc->pid,
631                                            buffer->user_data,
632                                            next->user_data);
633                 }
634         }
635
636         if (PAGE_ALIGNED(buffer->user_data)) {
637                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
638                                    "%d: merge free, buffer start %pK is page aligned\n",
639                                    alloc->pid, buffer->user_data);
640                 to_free = false;
641         }
642
643         if (to_free) {
644                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
645                                    "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
646                                    alloc->pid, buffer->user_data,
647                                    prev->user_data,
648                                    next ? next->user_data : NULL);
649                 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
650                                          buffer_start_page(buffer) + PAGE_SIZE);
651         }
652         list_del(&buffer->entry);
653         kfree(buffer);
654 }
655
656 static void binder_free_buf_locked(struct binder_alloc *alloc,
657                                    struct binder_buffer *buffer)
658 {
659         size_t size, buffer_size;
660
661         buffer_size = binder_alloc_buffer_size(alloc, buffer);
662
663         size = ALIGN(buffer->data_size, sizeof(void *)) +
664                 ALIGN(buffer->offsets_size, sizeof(void *)) +
665                 ALIGN(buffer->extra_buffers_size, sizeof(void *));
666
667         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
668                      "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
669                       alloc->pid, buffer, size, buffer_size);
670
671         BUG_ON(buffer->free);
672         BUG_ON(size > buffer_size);
673         BUG_ON(buffer->transaction != NULL);
674         BUG_ON(buffer->user_data < alloc->buffer);
675         BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
676
677         if (buffer->async_transaction) {
678                 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
679
680                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
681                              "%d: binder_free_buf size %zd async free %zd\n",
682                               alloc->pid, size, alloc->free_async_space);
683         }
684
685         binder_update_page_range(alloc, 0,
686                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
687                 (void __user *)(((uintptr_t)
688                           buffer->user_data + buffer_size) & PAGE_MASK));
689
690         rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
691         buffer->free = 1;
692         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
693                 struct binder_buffer *next = binder_buffer_next(buffer);
694
695                 if (next->free) {
696                         rb_erase(&next->rb_node, &alloc->free_buffers);
697                         binder_delete_free_buffer(alloc, next);
698                 }
699         }
700         if (alloc->buffers.next != &buffer->entry) {
701                 struct binder_buffer *prev = binder_buffer_prev(buffer);
702
703                 if (prev->free) {
704                         binder_delete_free_buffer(alloc, buffer);
705                         rb_erase(&prev->rb_node, &alloc->free_buffers);
706                         buffer = prev;
707                 }
708         }
709         binder_insert_free_buffer(alloc, buffer);
710 }
711
712 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
713                                    struct binder_buffer *buffer);
714 /**
715  * binder_alloc_free_buf() - free a binder buffer
716  * @alloc:      binder_alloc for this proc
717  * @buffer:     kernel pointer to buffer
718  *
719  * Free the buffer allocated via binder_alloc_new_buf()
720  */
721 void binder_alloc_free_buf(struct binder_alloc *alloc,
722                             struct binder_buffer *buffer)
723 {
724         /*
725          * We could eliminate the call to binder_alloc_clear_buf()
726          * from binder_alloc_deferred_release() by moving this to
727          * binder_alloc_free_buf_locked(). However, that could
728          * increase contention for the alloc mutex if clear_on_free
729          * is used frequently for large buffers. The mutex is not
730          * needed for correctness here.
731          */
732         if (buffer->clear_on_free) {
733                 binder_alloc_clear_buf(alloc, buffer);
734                 buffer->clear_on_free = false;
735         }
736         mutex_lock(&alloc->mutex);
737         binder_free_buf_locked(alloc, buffer);
738         mutex_unlock(&alloc->mutex);
739 }
740
741 /**
742  * binder_alloc_mmap_handler() - map virtual address space for proc
743  * @alloc:      alloc structure for this proc
744  * @vma:        vma passed to mmap()
745  *
746  * Called by binder_mmap() to initialize the space specified in
747  * vma for allocating binder buffers
748  *
749  * Return:
750  *      0 = success
751  *      -EBUSY = address space already mapped
752  *      -ENOMEM = failed to map memory to given address space
753  */
754 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
755                               struct vm_area_struct *vma)
756 {
757         int ret;
758         const char *failure_string;
759         struct binder_buffer *buffer;
760
761         mutex_lock(&binder_alloc_mmap_lock);
762         if (alloc->buffer_size) {
763                 ret = -EBUSY;
764                 failure_string = "already mapped";
765                 goto err_already_mapped;
766         }
767         alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
768                                    SZ_4M);
769         mutex_unlock(&binder_alloc_mmap_lock);
770
771         alloc->buffer = (void __user *)vma->vm_start;
772
773         alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
774                                sizeof(alloc->pages[0]),
775                                GFP_KERNEL);
776         if (alloc->pages == NULL) {
777                 ret = -ENOMEM;
778                 failure_string = "alloc page array";
779                 goto err_alloc_pages_failed;
780         }
781
782         buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
783         if (!buffer) {
784                 ret = -ENOMEM;
785                 failure_string = "alloc buffer struct";
786                 goto err_alloc_buf_struct_failed;
787         }
788
789         buffer->user_data = alloc->buffer;
790         list_add(&buffer->entry, &alloc->buffers);
791         buffer->free = 1;
792         binder_insert_free_buffer(alloc, buffer);
793         alloc->free_async_space = alloc->buffer_size / 2;
794         binder_alloc_set_vma(alloc, vma);
795         mmgrab(alloc->vma_vm_mm);
796
797         return 0;
798
799 err_alloc_buf_struct_failed:
800         kfree(alloc->pages);
801         alloc->pages = NULL;
802 err_alloc_pages_failed:
803         alloc->buffer = NULL;
804         mutex_lock(&binder_alloc_mmap_lock);
805         alloc->buffer_size = 0;
806 err_already_mapped:
807         mutex_unlock(&binder_alloc_mmap_lock);
808         binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
809                            "%s: %d %lx-%lx %s failed %d\n", __func__,
810                            alloc->pid, vma->vm_start, vma->vm_end,
811                            failure_string, ret);
812         return ret;
813 }
814
815
816 void binder_alloc_deferred_release(struct binder_alloc *alloc)
817 {
818         struct rb_node *n;
819         int buffers, page_count;
820         struct binder_buffer *buffer;
821
822         buffers = 0;
823         mutex_lock(&alloc->mutex);
824         BUG_ON(alloc->vma_addr &&
825                vma_lookup(alloc->vma_vm_mm, alloc->vma_addr));
826
827         while ((n = rb_first(&alloc->allocated_buffers))) {
828                 buffer = rb_entry(n, struct binder_buffer, rb_node);
829
830                 /* Transaction should already have been freed */
831                 BUG_ON(buffer->transaction);
832
833                 if (buffer->clear_on_free) {
834                         binder_alloc_clear_buf(alloc, buffer);
835                         buffer->clear_on_free = false;
836                 }
837                 binder_free_buf_locked(alloc, buffer);
838                 buffers++;
839         }
840
841         while (!list_empty(&alloc->buffers)) {
842                 buffer = list_first_entry(&alloc->buffers,
843                                           struct binder_buffer, entry);
844                 WARN_ON(!buffer->free);
845
846                 list_del(&buffer->entry);
847                 WARN_ON_ONCE(!list_empty(&alloc->buffers));
848                 kfree(buffer);
849         }
850
851         page_count = 0;
852         if (alloc->pages) {
853                 int i;
854
855                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
856                         void __user *page_addr;
857                         bool on_lru;
858
859                         if (!alloc->pages[i].page_ptr)
860                                 continue;
861
862                         on_lru = list_lru_del(&binder_alloc_lru,
863                                               &alloc->pages[i].lru);
864                         page_addr = alloc->buffer + i * PAGE_SIZE;
865                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
866                                      "%s: %d: page %d at %pK %s\n",
867                                      __func__, alloc->pid, i, page_addr,
868                                      on_lru ? "on lru" : "active");
869                         __free_page(alloc->pages[i].page_ptr);
870                         page_count++;
871                 }
872                 kfree(alloc->pages);
873         }
874         mutex_unlock(&alloc->mutex);
875         if (alloc->vma_vm_mm)
876                 mmdrop(alloc->vma_vm_mm);
877
878         binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
879                      "%s: %d buffers %d, pages %d\n",
880                      __func__, alloc->pid, buffers, page_count);
881 }
882
883 static void print_binder_buffer(struct seq_file *m, const char *prefix,
884                                 struct binder_buffer *buffer)
885 {
886         seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
887                    prefix, buffer->debug_id, buffer->user_data,
888                    buffer->data_size, buffer->offsets_size,
889                    buffer->extra_buffers_size,
890                    buffer->transaction ? "active" : "delivered");
891 }
892
893 /**
894  * binder_alloc_print_allocated() - print buffer info
895  * @m:     seq_file for output via seq_printf()
896  * @alloc: binder_alloc for this proc
897  *
898  * Prints information about every buffer associated with
899  * the binder_alloc state to the given seq_file
900  */
901 void binder_alloc_print_allocated(struct seq_file *m,
902                                   struct binder_alloc *alloc)
903 {
904         struct rb_node *n;
905
906         mutex_lock(&alloc->mutex);
907         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
908                 print_binder_buffer(m, "  buffer",
909                                     rb_entry(n, struct binder_buffer, rb_node));
910         mutex_unlock(&alloc->mutex);
911 }
912
913 /**
914  * binder_alloc_print_pages() - print page usage
915  * @m:     seq_file for output via seq_printf()
916  * @alloc: binder_alloc for this proc
917  */
918 void binder_alloc_print_pages(struct seq_file *m,
919                               struct binder_alloc *alloc)
920 {
921         struct binder_lru_page *page;
922         int i;
923         int active = 0;
924         int lru = 0;
925         int free = 0;
926
927         mutex_lock(&alloc->mutex);
928         /*
929          * Make sure the binder_alloc is fully initialized, otherwise we might
930          * read inconsistent state.
931          */
932         if (binder_alloc_get_vma(alloc) != NULL) {
933                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
934                         page = &alloc->pages[i];
935                         if (!page->page_ptr)
936                                 free++;
937                         else if (list_empty(&page->lru))
938                                 active++;
939                         else
940                                 lru++;
941                 }
942         }
943         mutex_unlock(&alloc->mutex);
944         seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
945         seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
946 }
947
948 /**
949  * binder_alloc_get_allocated_count() - return count of buffers
950  * @alloc: binder_alloc for this proc
951  *
952  * Return: count of allocated buffers
953  */
954 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
955 {
956         struct rb_node *n;
957         int count = 0;
958
959         mutex_lock(&alloc->mutex);
960         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
961                 count++;
962         mutex_unlock(&alloc->mutex);
963         return count;
964 }
965
966
967 /**
968  * binder_alloc_vma_close() - invalidate address space
969  * @alloc: binder_alloc for this proc
970  *
971  * Called from binder_vma_close() when releasing address space.
972  * Clears alloc->vma to prevent new incoming transactions from
973  * allocating more buffers.
974  */
975 void binder_alloc_vma_close(struct binder_alloc *alloc)
976 {
977         binder_alloc_set_vma(alloc, NULL);
978 }
979
980 /**
981  * binder_alloc_free_page() - shrinker callback to free pages
982  * @item:   item to free
983  * @lock:   lock protecting the item
984  * @cb_arg: callback argument
985  *
986  * Called from list_lru_walk() in binder_shrink_scan() to free
987  * up pages when the system is under memory pressure.
988  */
989 enum lru_status binder_alloc_free_page(struct list_head *item,
990                                        struct list_lru_one *lru,
991                                        spinlock_t *lock,
992                                        void *cb_arg)
993         __must_hold(lock)
994 {
995         struct mm_struct *mm = NULL;
996         struct binder_lru_page *page = container_of(item,
997                                                     struct binder_lru_page,
998                                                     lru);
999         struct binder_alloc *alloc;
1000         uintptr_t page_addr;
1001         size_t index;
1002         struct vm_area_struct *vma;
1003
1004         alloc = page->alloc;
1005         if (!mutex_trylock(&alloc->mutex))
1006                 goto err_get_alloc_mutex_failed;
1007
1008         if (!page->page_ptr)
1009                 goto err_page_already_freed;
1010
1011         index = page - alloc->pages;
1012         page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1013
1014         mm = alloc->vma_vm_mm;
1015         if (!mmget_not_zero(mm))
1016                 goto err_mmget;
1017         if (!mmap_read_trylock(mm))
1018                 goto err_mmap_read_lock_failed;
1019         vma = binder_alloc_get_vma(alloc);
1020
1021         list_lru_isolate(lru, item);
1022         spin_unlock(lock);
1023
1024         if (vma) {
1025                 trace_binder_unmap_user_start(alloc, index);
1026
1027                 zap_page_range(vma, page_addr, PAGE_SIZE);
1028
1029                 trace_binder_unmap_user_end(alloc, index);
1030         }
1031         mmap_read_unlock(mm);
1032         mmput_async(mm);
1033
1034         trace_binder_unmap_kernel_start(alloc, index);
1035
1036         __free_page(page->page_ptr);
1037         page->page_ptr = NULL;
1038
1039         trace_binder_unmap_kernel_end(alloc, index);
1040
1041         spin_lock(lock);
1042         mutex_unlock(&alloc->mutex);
1043         return LRU_REMOVED_RETRY;
1044
1045 err_mmap_read_lock_failed:
1046         mmput_async(mm);
1047 err_mmget:
1048 err_page_already_freed:
1049         mutex_unlock(&alloc->mutex);
1050 err_get_alloc_mutex_failed:
1051         return LRU_SKIP;
1052 }
1053
1054 static unsigned long
1055 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1056 {
1057         return list_lru_count(&binder_alloc_lru);
1058 }
1059
1060 static unsigned long
1061 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1062 {
1063         return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1064                             NULL, sc->nr_to_scan);
1065 }
1066
1067 static struct shrinker binder_shrinker = {
1068         .count_objects = binder_shrink_count,
1069         .scan_objects = binder_shrink_scan,
1070         .seeks = DEFAULT_SEEKS,
1071 };
1072
1073 /**
1074  * binder_alloc_init() - called by binder_open() for per-proc initialization
1075  * @alloc: binder_alloc for this proc
1076  *
1077  * Called from binder_open() to initialize binder_alloc fields for
1078  * new binder proc
1079  */
1080 void binder_alloc_init(struct binder_alloc *alloc)
1081 {
1082         alloc->pid = current->group_leader->pid;
1083         mutex_init(&alloc->mutex);
1084         INIT_LIST_HEAD(&alloc->buffers);
1085 }
1086
1087 int binder_alloc_shrinker_init(void)
1088 {
1089         int ret = list_lru_init(&binder_alloc_lru);
1090
1091         if (ret == 0) {
1092                 ret = register_shrinker(&binder_shrinker, "android-binder");
1093                 if (ret)
1094                         list_lru_destroy(&binder_alloc_lru);
1095         }
1096         return ret;
1097 }
1098
1099 /**
1100  * check_buffer() - verify that buffer/offset is safe to access
1101  * @alloc: binder_alloc for this proc
1102  * @buffer: binder buffer to be accessed
1103  * @offset: offset into @buffer data
1104  * @bytes: bytes to access from offset
1105  *
1106  * Check that the @offset/@bytes are within the size of the given
1107  * @buffer and that the buffer is currently active and not freeable.
1108  * Offsets must also be multiples of sizeof(u32). The kernel is
1109  * allowed to touch the buffer in two cases:
1110  *
1111  * 1) when the buffer is being created:
1112  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1113  * 2) when the buffer is being torn down:
1114  *     (buffer->free == 0 && buffer->transaction == NULL).
1115  *
1116  * Return: true if the buffer is safe to access
1117  */
1118 static inline bool check_buffer(struct binder_alloc *alloc,
1119                                 struct binder_buffer *buffer,
1120                                 binder_size_t offset, size_t bytes)
1121 {
1122         size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1123
1124         return buffer_size >= bytes &&
1125                 offset <= buffer_size - bytes &&
1126                 IS_ALIGNED(offset, sizeof(u32)) &&
1127                 !buffer->free &&
1128                 (!buffer->allow_user_free || !buffer->transaction);
1129 }
1130
1131 /**
1132  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1133  * @alloc: binder_alloc for this proc
1134  * @buffer: binder buffer to be accessed
1135  * @buffer_offset: offset into @buffer data
1136  * @pgoffp: address to copy final page offset to
1137  *
1138  * Lookup the struct page corresponding to the address
1139  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1140  * NULL, the byte-offset into the page is written there.
1141  *
1142  * The caller is responsible to ensure that the offset points
1143  * to a valid address within the @buffer and that @buffer is
1144  * not freeable by the user. Since it can't be freed, we are
1145  * guaranteed that the corresponding elements of @alloc->pages[]
1146  * cannot change.
1147  *
1148  * Return: struct page
1149  */
1150 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1151                                           struct binder_buffer *buffer,
1152                                           binder_size_t buffer_offset,
1153                                           pgoff_t *pgoffp)
1154 {
1155         binder_size_t buffer_space_offset = buffer_offset +
1156                 (buffer->user_data - alloc->buffer);
1157         pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1158         size_t index = buffer_space_offset >> PAGE_SHIFT;
1159         struct binder_lru_page *lru_page;
1160
1161         lru_page = &alloc->pages[index];
1162         *pgoffp = pgoff;
1163         return lru_page->page_ptr;
1164 }
1165
1166 /**
1167  * binder_alloc_clear_buf() - zero out buffer
1168  * @alloc: binder_alloc for this proc
1169  * @buffer: binder buffer to be cleared
1170  *
1171  * memset the given buffer to 0
1172  */
1173 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1174                                    struct binder_buffer *buffer)
1175 {
1176         size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1177         binder_size_t buffer_offset = 0;
1178
1179         while (bytes) {
1180                 unsigned long size;
1181                 struct page *page;
1182                 pgoff_t pgoff;
1183
1184                 page = binder_alloc_get_page(alloc, buffer,
1185                                              buffer_offset, &pgoff);
1186                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1187                 memset_page(page, pgoff, 0, size);
1188                 bytes -= size;
1189                 buffer_offset += size;
1190         }
1191 }
1192
1193 /**
1194  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1195  * @alloc: binder_alloc for this proc
1196  * @buffer: binder buffer to be accessed
1197  * @buffer_offset: offset into @buffer data
1198  * @from: userspace pointer to source buffer
1199  * @bytes: bytes to copy
1200  *
1201  * Copy bytes from source userspace to target buffer.
1202  *
1203  * Return: bytes remaining to be copied
1204  */
1205 unsigned long
1206 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1207                                  struct binder_buffer *buffer,
1208                                  binder_size_t buffer_offset,
1209                                  const void __user *from,
1210                                  size_t bytes)
1211 {
1212         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1213                 return bytes;
1214
1215         while (bytes) {
1216                 unsigned long size;
1217                 unsigned long ret;
1218                 struct page *page;
1219                 pgoff_t pgoff;
1220                 void *kptr;
1221
1222                 page = binder_alloc_get_page(alloc, buffer,
1223                                              buffer_offset, &pgoff);
1224                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1225                 kptr = kmap_local_page(page) + pgoff;
1226                 ret = copy_from_user(kptr, from, size);
1227                 kunmap_local(kptr);
1228                 if (ret)
1229                         return bytes - size + ret;
1230                 bytes -= size;
1231                 from += size;
1232                 buffer_offset += size;
1233         }
1234         return 0;
1235 }
1236
1237 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1238                                        bool to_buffer,
1239                                        struct binder_buffer *buffer,
1240                                        binder_size_t buffer_offset,
1241                                        void *ptr,
1242                                        size_t bytes)
1243 {
1244         /* All copies must be 32-bit aligned and 32-bit size */
1245         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1246                 return -EINVAL;
1247
1248         while (bytes) {
1249                 unsigned long size;
1250                 struct page *page;
1251                 pgoff_t pgoff;
1252
1253                 page = binder_alloc_get_page(alloc, buffer,
1254                                              buffer_offset, &pgoff);
1255                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1256                 if (to_buffer)
1257                         memcpy_to_page(page, pgoff, ptr, size);
1258                 else
1259                         memcpy_from_page(ptr, page, pgoff, size);
1260                 bytes -= size;
1261                 pgoff = 0;
1262                 ptr = ptr + size;
1263                 buffer_offset += size;
1264         }
1265         return 0;
1266 }
1267
1268 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1269                                 struct binder_buffer *buffer,
1270                                 binder_size_t buffer_offset,
1271                                 void *src,
1272                                 size_t bytes)
1273 {
1274         return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1275                                            src, bytes);
1276 }
1277
1278 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1279                                   void *dest,
1280                                   struct binder_buffer *buffer,
1281                                   binder_size_t buffer_offset,
1282                                   size_t bytes)
1283 {
1284         return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1285                                            dest, bytes);
1286 }
1287
This page took 0.104255 seconds and 4 git commands to generate.