2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
11 * Big-endian to little-endian byte-swapping/bitmaps by
15 #include <linux/time.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
28 #include "ext4_jbd2.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
57 if (start_bit >= end_bit)
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
73 struct ext4_group_info *grp;
74 struct ext4_sb_info *sbi = EXT4_SB(sb);
75 J_ASSERT_BH(bh, buffer_locked(bh));
77 /* If checksum is bad mark all blocks and inodes use to prevent
78 * allocation, essentially implementing a per-group read-only flag. */
79 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
80 ext4_error(sb, "Checksum bad for group %u", block_group);
81 grp = ext4_get_group_info(sb, block_group);
82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
83 percpu_counter_sub(&sbi->s_freeclusters_counter,
85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
88 count = ext4_free_inodes_count(sb, gdp);
89 percpu_counter_sub(&sbi->s_freeinodes_counter,
92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
100 EXT4_INODES_PER_GROUP(sb) / 8);
101 ext4_group_desc_csum_set(sb, block_group, gdp);
103 return EXT4_INODES_PER_GROUP(sb);
106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
109 set_buffer_uptodate(bh);
110 set_bitmap_uptodate(bh);
117 * Read the inode allocation bitmap for a given block_group, reading
118 * into the specified slot in the superblock's bitmap cache.
120 * Return buffer_head of bitmap on success or NULL.
122 static struct buffer_head *
123 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
125 struct ext4_group_desc *desc;
126 struct buffer_head *bh = NULL;
127 ext4_fsblk_t bitmap_blk;
128 struct ext4_group_info *grp;
129 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 desc = ext4_get_group_desc(sb, block_group, NULL);
135 bitmap_blk = ext4_inode_bitmap(sb, desc);
136 bh = sb_getblk(sb, bitmap_blk);
138 ext4_error(sb, "Cannot read inode bitmap - "
139 "block_group = %u, inode_bitmap = %llu",
140 block_group, bitmap_blk);
143 if (bitmap_uptodate(bh))
147 if (bitmap_uptodate(bh)) {
152 ext4_lock_group(sb, block_group);
153 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
154 ext4_init_inode_bitmap(sb, bh, block_group, desc);
155 set_bitmap_uptodate(bh);
156 set_buffer_uptodate(bh);
157 set_buffer_verified(bh);
158 ext4_unlock_group(sb, block_group);
162 ext4_unlock_group(sb, block_group);
164 if (buffer_uptodate(bh)) {
166 * if not uninit if bh is uptodate,
167 * bitmap is also uptodate
169 set_bitmap_uptodate(bh);
174 * submit the buffer_head for reading
176 trace_ext4_load_inode_bitmap(sb, block_group);
177 bh->b_end_io = ext4_end_bitmap_read;
179 submit_bh(READ | REQ_META | REQ_PRIO, bh);
181 if (!buffer_uptodate(bh)) {
183 ext4_error(sb, "Cannot read inode bitmap - "
184 "block_group = %u, inode_bitmap = %llu",
185 block_group, bitmap_blk);
190 ext4_lock_group(sb, block_group);
191 if (!buffer_verified(bh) &&
192 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
193 EXT4_INODES_PER_GROUP(sb) / 8)) {
194 ext4_unlock_group(sb, block_group);
196 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
197 "inode_bitmap = %llu", block_group, bitmap_blk);
198 grp = ext4_get_group_info(sb, block_group);
199 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
201 count = ext4_free_inodes_count(sb, desc);
202 percpu_counter_sub(&sbi->s_freeinodes_counter,
205 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
208 ext4_unlock_group(sb, block_group);
209 set_buffer_verified(bh);
214 * NOTE! When we get the inode, we're the only people
215 * that have access to it, and as such there are no
216 * race conditions we have to worry about. The inode
217 * is not on the hash-lists, and it cannot be reached
218 * through the filesystem because the directory entry
219 * has been deleted earlier.
221 * HOWEVER: we must make sure that we get no aliases,
222 * which means that we have to call "clear_inode()"
223 * _before_ we mark the inode not in use in the inode
224 * bitmaps. Otherwise a newly created file might use
225 * the same inode number (not actually the same pointer
226 * though), and then we'd have two inodes sharing the
227 * same inode number and space on the harddisk.
229 void ext4_free_inode(handle_t *handle, struct inode *inode)
231 struct super_block *sb = inode->i_sb;
234 struct buffer_head *bitmap_bh = NULL;
235 struct buffer_head *bh2;
236 ext4_group_t block_group;
238 struct ext4_group_desc *gdp;
239 struct ext4_super_block *es;
240 struct ext4_sb_info *sbi;
241 int fatal = 0, err, count, cleared;
242 struct ext4_group_info *grp;
245 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
246 "nonexistent device\n", __func__, __LINE__);
249 if (atomic_read(&inode->i_count) > 1) {
250 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
251 __func__, __LINE__, inode->i_ino,
252 atomic_read(&inode->i_count));
255 if (inode->i_nlink) {
256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
257 __func__, __LINE__, inode->i_ino, inode->i_nlink);
263 ext4_debug("freeing inode %lu\n", ino);
264 trace_ext4_free_inode(inode);
267 * Note: we must free any quota before locking the superblock,
268 * as writing the quota to disk may need the lock as well.
270 dquot_initialize(inode);
271 ext4_xattr_delete_inode(handle, inode);
272 dquot_free_inode(inode);
275 is_directory = S_ISDIR(inode->i_mode);
277 /* Do this BEFORE marking the inode not in use or returning an error */
278 ext4_clear_inode(inode);
280 es = EXT4_SB(sb)->s_es;
281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
282 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
288 /* Don't bother if the inode bitmap is corrupt. */
289 grp = ext4_get_group_info(sb, block_group);
290 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
293 BUFFER_TRACE(bitmap_bh, "get_write_access");
294 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
299 gdp = ext4_get_group_desc(sb, block_group, &bh2);
301 BUFFER_TRACE(bh2, "get_write_access");
302 fatal = ext4_journal_get_write_access(handle, bh2);
304 ext4_lock_group(sb, block_group);
305 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
306 if (fatal || !cleared) {
307 ext4_unlock_group(sb, block_group);
311 count = ext4_free_inodes_count(sb, gdp) + 1;
312 ext4_free_inodes_set(sb, gdp, count);
314 count = ext4_used_dirs_count(sb, gdp) - 1;
315 ext4_used_dirs_set(sb, gdp, count);
316 percpu_counter_dec(&sbi->s_dirs_counter);
318 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
319 EXT4_INODES_PER_GROUP(sb) / 8);
320 ext4_group_desc_csum_set(sb, block_group, gdp);
321 ext4_unlock_group(sb, block_group);
323 percpu_counter_inc(&sbi->s_freeinodes_counter);
324 if (sbi->s_log_groups_per_flex) {
325 ext4_group_t f = ext4_flex_group(sbi, block_group);
327 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
329 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
331 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
332 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
335 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
336 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
340 ext4_error(sb, "bit already cleared for inode %lu", ino);
341 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
343 count = ext4_free_inodes_count(sb, gdp);
344 percpu_counter_sub(&sbi->s_freeinodes_counter,
347 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
352 ext4_std_error(sb, fatal);
362 * Helper function for Orlov's allocator; returns critical information
363 * for a particular block group or flex_bg. If flex_size is 1, then g
364 * is a block group number; otherwise it is flex_bg number.
366 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
367 int flex_size, struct orlov_stats *stats)
369 struct ext4_group_desc *desc;
370 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
373 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
374 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
375 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
379 desc = ext4_get_group_desc(sb, g, NULL);
381 stats->free_inodes = ext4_free_inodes_count(sb, desc);
382 stats->free_clusters = ext4_free_group_clusters(sb, desc);
383 stats->used_dirs = ext4_used_dirs_count(sb, desc);
385 stats->free_inodes = 0;
386 stats->free_clusters = 0;
387 stats->used_dirs = 0;
392 * Orlov's allocator for directories.
394 * We always try to spread first-level directories.
396 * If there are blockgroups with both free inodes and free blocks counts
397 * not worse than average we return one with smallest directory count.
398 * Otherwise we simply return a random group.
400 * For the rest rules look so:
402 * It's OK to put directory into a group unless
403 * it has too many directories already (max_dirs) or
404 * it has too few free inodes left (min_inodes) or
405 * it has too few free blocks left (min_blocks) or
406 * Parent's group is preferred, if it doesn't satisfy these
407 * conditions we search cyclically through the rest. If none
408 * of the groups look good we just look for a group with more
409 * free inodes than average (starting at parent's group).
412 static int find_group_orlov(struct super_block *sb, struct inode *parent,
413 ext4_group_t *group, umode_t mode,
414 const struct qstr *qstr)
416 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
417 struct ext4_sb_info *sbi = EXT4_SB(sb);
418 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
419 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
420 unsigned int freei, avefreei, grp_free;
421 ext4_fsblk_t freeb, avefreec;
423 int max_dirs, min_inodes;
424 ext4_grpblk_t min_clusters;
425 ext4_group_t i, grp, g, ngroups;
426 struct ext4_group_desc *desc;
427 struct orlov_stats stats;
428 int flex_size = ext4_flex_bg_size(sbi);
429 struct dx_hash_info hinfo;
431 ngroups = real_ngroups;
433 ngroups = (real_ngroups + flex_size - 1) >>
434 sbi->s_log_groups_per_flex;
435 parent_group >>= sbi->s_log_groups_per_flex;
438 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
439 avefreei = freei / ngroups;
440 freeb = EXT4_C2B(sbi,
441 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
443 do_div(avefreec, ngroups);
444 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
447 ((parent == sb->s_root->d_inode) ||
448 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
449 int best_ndir = inodes_per_group;
453 hinfo.hash_version = DX_HASH_HALF_MD4;
454 hinfo.seed = sbi->s_hash_seed;
455 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
459 parent_group = (unsigned)grp % ngroups;
460 for (i = 0; i < ngroups; i++) {
461 g = (parent_group + i) % ngroups;
462 get_orlov_stats(sb, g, flex_size, &stats);
463 if (!stats.free_inodes)
465 if (stats.used_dirs >= best_ndir)
467 if (stats.free_inodes < avefreei)
469 if (stats.free_clusters < avefreec)
473 best_ndir = stats.used_dirs;
478 if (flex_size == 1) {
484 * We pack inodes at the beginning of the flexgroup's
485 * inode tables. Block allocation decisions will do
486 * something similar, although regular files will
487 * start at 2nd block group of the flexgroup. See
488 * ext4_ext_find_goal() and ext4_find_near().
491 for (i = 0; i < flex_size; i++) {
492 if (grp+i >= real_ngroups)
494 desc = ext4_get_group_desc(sb, grp+i, NULL);
495 if (desc && ext4_free_inodes_count(sb, desc)) {
503 max_dirs = ndirs / ngroups + inodes_per_group / 16;
504 min_inodes = avefreei - inodes_per_group*flex_size / 4;
507 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
510 * Start looking in the flex group where we last allocated an
511 * inode for this parent directory
513 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
514 parent_group = EXT4_I(parent)->i_last_alloc_group;
516 parent_group >>= sbi->s_log_groups_per_flex;
519 for (i = 0; i < ngroups; i++) {
520 grp = (parent_group + i) % ngroups;
521 get_orlov_stats(sb, grp, flex_size, &stats);
522 if (stats.used_dirs >= max_dirs)
524 if (stats.free_inodes < min_inodes)
526 if (stats.free_clusters < min_clusters)
532 ngroups = real_ngroups;
533 avefreei = freei / ngroups;
535 parent_group = EXT4_I(parent)->i_block_group;
536 for (i = 0; i < ngroups; i++) {
537 grp = (parent_group + i) % ngroups;
538 desc = ext4_get_group_desc(sb, grp, NULL);
540 grp_free = ext4_free_inodes_count(sb, desc);
541 if (grp_free && grp_free >= avefreei) {
550 * The free-inodes counter is approximate, and for really small
551 * filesystems the above test can fail to find any blockgroups
560 static int find_group_other(struct super_block *sb, struct inode *parent,
561 ext4_group_t *group, umode_t mode)
563 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
564 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
565 struct ext4_group_desc *desc;
566 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
569 * Try to place the inode is the same flex group as its
570 * parent. If we can't find space, use the Orlov algorithm to
571 * find another flex group, and store that information in the
572 * parent directory's inode information so that use that flex
573 * group for future allocations.
579 parent_group &= ~(flex_size-1);
580 last = parent_group + flex_size;
583 for (i = parent_group; i < last; i++) {
584 desc = ext4_get_group_desc(sb, i, NULL);
585 if (desc && ext4_free_inodes_count(sb, desc)) {
590 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
592 parent_group = EXT4_I(parent)->i_last_alloc_group;
596 * If this didn't work, use the Orlov search algorithm
597 * to find a new flex group; we pass in the mode to
598 * avoid the topdir algorithms.
600 *group = parent_group + flex_size;
601 if (*group > ngroups)
603 return find_group_orlov(sb, parent, group, mode, NULL);
607 * Try to place the inode in its parent directory
609 *group = parent_group;
610 desc = ext4_get_group_desc(sb, *group, NULL);
611 if (desc && ext4_free_inodes_count(sb, desc) &&
612 ext4_free_group_clusters(sb, desc))
616 * We're going to place this inode in a different blockgroup from its
617 * parent. We want to cause files in a common directory to all land in
618 * the same blockgroup. But we want files which are in a different
619 * directory which shares a blockgroup with our parent to land in a
620 * different blockgroup.
622 * So add our directory's i_ino into the starting point for the hash.
624 *group = (*group + parent->i_ino) % ngroups;
627 * Use a quadratic hash to find a group with a free inode and some free
630 for (i = 1; i < ngroups; i <<= 1) {
632 if (*group >= ngroups)
634 desc = ext4_get_group_desc(sb, *group, NULL);
635 if (desc && ext4_free_inodes_count(sb, desc) &&
636 ext4_free_group_clusters(sb, desc))
641 * That failed: try linear search for a free inode, even if that group
642 * has no free blocks.
644 *group = parent_group;
645 for (i = 0; i < ngroups; i++) {
646 if (++*group >= ngroups)
648 desc = ext4_get_group_desc(sb, *group, NULL);
649 if (desc && ext4_free_inodes_count(sb, desc))
657 * In no journal mode, if an inode has recently been deleted, we want
658 * to avoid reusing it until we're reasonably sure the inode table
659 * block has been written back to disk. (Yes, these values are
660 * somewhat arbitrary...)
662 #define RECENTCY_MIN 5
663 #define RECENTCY_DIRTY 30
665 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
667 struct ext4_group_desc *gdp;
668 struct ext4_inode *raw_inode;
669 struct buffer_head *bh;
670 unsigned long dtime, now;
671 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
672 int offset, ret = 0, recentcy = RECENTCY_MIN;
674 gdp = ext4_get_group_desc(sb, group, NULL);
678 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
679 (ino / inodes_per_block));
680 if (unlikely(!bh) || !buffer_uptodate(bh))
682 * If the block is not in the buffer cache, then it
683 * must have been written out.
687 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
688 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
689 dtime = le32_to_cpu(raw_inode->i_dtime);
691 if (buffer_dirty(bh))
692 recentcy += RECENTCY_DIRTY;
694 if (dtime && (dtime < now) && (now < dtime + recentcy))
702 * There are two policies for allocating an inode. If the new inode is
703 * a directory, then a forward search is made for a block group with both
704 * free space and a low directory-to-inode ratio; if that fails, then of
705 * the groups with above-average free space, that group with the fewest
706 * directories already is chosen.
708 * For other inodes, search forward from the parent directory's block
709 * group to find a free inode.
711 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
712 umode_t mode, const struct qstr *qstr,
713 __u32 goal, uid_t *owner, int handle_type,
714 unsigned int line_no, int nblocks)
716 struct super_block *sb;
717 struct buffer_head *inode_bitmap_bh = NULL;
718 struct buffer_head *group_desc_bh;
719 ext4_group_t ngroups, group = 0;
720 unsigned long ino = 0;
722 struct ext4_group_desc *gdp = NULL;
723 struct ext4_inode_info *ei;
724 struct ext4_sb_info *sbi;
728 ext4_group_t flex_group;
729 struct ext4_group_info *grp;
731 /* Cannot create files in a deleted directory */
732 if (!dir || !dir->i_nlink)
733 return ERR_PTR(-EPERM);
736 ngroups = ext4_get_groups_count(sb);
737 trace_ext4_request_inode(dir, mode);
738 inode = new_inode(sb);
740 return ERR_PTR(-ENOMEM);
745 * Initalize owners and quota early so that we don't have to account
746 * for quota initialization worst case in standard inode creating
750 inode->i_mode = mode;
751 i_uid_write(inode, owner[0]);
752 i_gid_write(inode, owner[1]);
753 } else if (test_opt(sb, GRPID)) {
754 inode->i_mode = mode;
755 inode->i_uid = current_fsuid();
756 inode->i_gid = dir->i_gid;
758 inode_init_owner(inode, dir, mode);
759 dquot_initialize(inode);
762 goal = sbi->s_inode_goal;
764 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
765 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
766 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
772 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
774 ret2 = find_group_other(sb, dir, &group, mode);
777 EXT4_I(dir)->i_last_alloc_group = group;
783 * Normally we will only go through one pass of this loop,
784 * unless we get unlucky and it turns out the group we selected
785 * had its last inode grabbed by someone else.
787 for (i = 0; i < ngroups; i++, ino = 0) {
790 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
795 * Check free inodes count before loading bitmap.
797 if (ext4_free_inodes_count(sb, gdp) == 0) {
798 if (++group == ngroups)
803 grp = ext4_get_group_info(sb, group);
804 /* Skip groups with already-known suspicious inode tables */
805 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
806 if (++group == ngroups)
811 brelse(inode_bitmap_bh);
812 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
813 /* Skip groups with suspicious inode tables */
814 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
815 if (++group == ngroups)
820 repeat_in_this_group:
821 ino = ext4_find_next_zero_bit((unsigned long *)
822 inode_bitmap_bh->b_data,
823 EXT4_INODES_PER_GROUP(sb), ino);
824 if (ino >= EXT4_INODES_PER_GROUP(sb))
826 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
827 ext4_error(sb, "reserved inode found cleared - "
828 "inode=%lu", ino + 1);
831 if ((EXT4_SB(sb)->s_journal == NULL) &&
832 recently_deleted(sb, group, ino)) {
837 BUG_ON(nblocks <= 0);
838 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
839 handle_type, nblocks,
841 if (IS_ERR(handle)) {
842 err = PTR_ERR(handle);
843 ext4_std_error(sb, err);
847 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
848 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
850 ext4_std_error(sb, err);
853 ext4_lock_group(sb, group);
854 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
855 ext4_unlock_group(sb, group);
856 ino++; /* the inode bitmap is zero-based */
858 goto got; /* we grabbed the inode! */
860 if (ino < EXT4_INODES_PER_GROUP(sb))
861 goto repeat_in_this_group;
863 if (++group == ngroups)
870 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
873 ext4_std_error(sb, err);
877 /* We may have to initialize the block bitmap if it isn't already */
878 if (ext4_has_group_desc_csum(sb) &&
879 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
880 struct buffer_head *block_bitmap_bh;
882 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
883 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
884 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
886 brelse(block_bitmap_bh);
887 ext4_std_error(sb, err);
891 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
892 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
894 /* recheck and clear flag under lock if we still need to */
895 ext4_lock_group(sb, group);
896 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
897 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
898 ext4_free_group_clusters_set(sb, gdp,
899 ext4_free_clusters_after_init(sb, group, gdp));
900 ext4_block_bitmap_csum_set(sb, group, gdp,
902 ext4_group_desc_csum_set(sb, group, gdp);
904 ext4_unlock_group(sb, group);
905 brelse(block_bitmap_bh);
908 ext4_std_error(sb, err);
913 BUFFER_TRACE(group_desc_bh, "get_write_access");
914 err = ext4_journal_get_write_access(handle, group_desc_bh);
916 ext4_std_error(sb, err);
920 /* Update the relevant bg descriptor fields */
921 if (ext4_has_group_desc_csum(sb)) {
923 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
925 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
926 ext4_lock_group(sb, group); /* while we modify the bg desc */
927 free = EXT4_INODES_PER_GROUP(sb) -
928 ext4_itable_unused_count(sb, gdp);
929 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
930 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
934 * Check the relative inode number against the last used
935 * relative inode number in this group. if it is greater
936 * we need to update the bg_itable_unused count
939 ext4_itable_unused_set(sb, gdp,
940 (EXT4_INODES_PER_GROUP(sb) - ino));
941 up_read(&grp->alloc_sem);
943 ext4_lock_group(sb, group);
946 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
948 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
949 if (sbi->s_log_groups_per_flex) {
950 ext4_group_t f = ext4_flex_group(sbi, group);
952 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
955 if (ext4_has_group_desc_csum(sb)) {
956 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
957 EXT4_INODES_PER_GROUP(sb) / 8);
958 ext4_group_desc_csum_set(sb, group, gdp);
960 ext4_unlock_group(sb, group);
962 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
963 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
965 ext4_std_error(sb, err);
969 percpu_counter_dec(&sbi->s_freeinodes_counter);
971 percpu_counter_inc(&sbi->s_dirs_counter);
973 if (sbi->s_log_groups_per_flex) {
974 flex_group = ext4_flex_group(sbi, group);
975 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
978 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
979 /* This is the optimal IO size (for stat), not the fs block size */
981 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
982 ext4_current_time(inode);
984 memset(ei->i_data, 0, sizeof(ei->i_data));
985 ei->i_dir_start_lookup = 0;
988 /* Don't inherit extent flag from directory, amongst others. */
990 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
993 ei->i_block_group = group;
994 ei->i_last_alloc_group = ~0;
996 ext4_set_inode_flags(inode);
997 if (IS_DIRSYNC(inode))
998 ext4_handle_sync(handle);
999 if (insert_inode_locked(inode) < 0) {
1001 * Likely a bitmap corruption causing inode to be allocated
1005 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1009 spin_lock(&sbi->s_next_gen_lock);
1010 inode->i_generation = sbi->s_next_generation++;
1011 spin_unlock(&sbi->s_next_gen_lock);
1013 /* Precompute checksum seed for inode metadata */
1014 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1015 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
1017 __le32 inum = cpu_to_le32(inode->i_ino);
1018 __le32 gen = cpu_to_le32(inode->i_generation);
1019 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1021 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1025 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1026 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1028 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1030 ei->i_inline_off = 0;
1031 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1032 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1035 err = dquot_alloc_inode(inode);
1039 err = ext4_init_acl(handle, inode, dir);
1041 goto fail_free_drop;
1043 err = ext4_init_security(handle, inode, dir, qstr);
1045 goto fail_free_drop;
1047 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1048 /* set extent flag only for directory, file and normal symlink*/
1049 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1050 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1051 ext4_ext_tree_init(handle, inode);
1055 if (ext4_handle_valid(handle)) {
1056 ei->i_sync_tid = handle->h_transaction->t_tid;
1057 ei->i_datasync_tid = handle->h_transaction->t_tid;
1060 err = ext4_mark_inode_dirty(handle, inode);
1062 ext4_std_error(sb, err);
1063 goto fail_free_drop;
1066 ext4_debug("allocating inode %lu\n", inode->i_ino);
1067 trace_ext4_allocate_inode(inode, dir, mode);
1068 brelse(inode_bitmap_bh);
1072 dquot_free_inode(inode);
1075 unlock_new_inode(inode);
1078 inode->i_flags |= S_NOQUOTA;
1080 brelse(inode_bitmap_bh);
1081 return ERR_PTR(err);
1084 /* Verify that we are loading a valid orphan from disk */
1085 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1087 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1088 ext4_group_t block_group;
1090 struct buffer_head *bitmap_bh;
1091 struct inode *inode = NULL;
1094 /* Error cases - e2fsck has already cleaned up for us */
1095 if (ino > max_ino) {
1096 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1100 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1101 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1102 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1104 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1108 /* Having the inode bit set should be a 100% indicator that this
1109 * is a valid orphan (no e2fsck run on fs). Orphans also include
1110 * inodes that were being truncated, so we can't check i_nlink==0.
1112 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1115 inode = ext4_iget(sb, ino);
1120 * If the orphans has i_nlinks > 0 then it should be able to be
1121 * truncated, otherwise it won't be removed from the orphan list
1122 * during processing and an infinite loop will result.
1124 if (inode->i_nlink && !ext4_can_truncate(inode))
1127 if (NEXT_ORPHAN(inode) > max_ino)
1133 err = PTR_ERR(inode);
1136 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1137 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1138 bit, (unsigned long long)bitmap_bh->b_blocknr,
1139 ext4_test_bit(bit, bitmap_bh->b_data));
1140 printk(KERN_WARNING "inode=%p\n", inode);
1142 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1143 is_bad_inode(inode));
1144 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1145 NEXT_ORPHAN(inode));
1146 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1147 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1148 /* Avoid freeing blocks if we got a bad deleted inode */
1149 if (inode->i_nlink == 0)
1150 inode->i_blocks = 0;
1155 return ERR_PTR(err);
1158 unsigned long ext4_count_free_inodes(struct super_block *sb)
1160 unsigned long desc_count;
1161 struct ext4_group_desc *gdp;
1162 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1164 struct ext4_super_block *es;
1165 unsigned long bitmap_count, x;
1166 struct buffer_head *bitmap_bh = NULL;
1168 es = EXT4_SB(sb)->s_es;
1172 for (i = 0; i < ngroups; i++) {
1173 gdp = ext4_get_group_desc(sb, i, NULL);
1176 desc_count += ext4_free_inodes_count(sb, gdp);
1178 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1182 x = ext4_count_free(bitmap_bh->b_data,
1183 EXT4_INODES_PER_GROUP(sb) / 8);
1184 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1185 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1189 printk(KERN_DEBUG "ext4_count_free_inodes: "
1190 "stored = %u, computed = %lu, %lu\n",
1191 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1195 for (i = 0; i < ngroups; i++) {
1196 gdp = ext4_get_group_desc(sb, i, NULL);
1199 desc_count += ext4_free_inodes_count(sb, gdp);
1206 /* Called at mount-time, super-block is locked */
1207 unsigned long ext4_count_dirs(struct super_block * sb)
1209 unsigned long count = 0;
1210 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1212 for (i = 0; i < ngroups; i++) {
1213 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1216 count += ext4_used_dirs_count(sb, gdp);
1222 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1223 * inode table. Must be called without any spinlock held. The only place
1224 * where it is called from on active part of filesystem is ext4lazyinit
1225 * thread, so we do not need any special locks, however we have to prevent
1226 * inode allocation from the current group, so we take alloc_sem lock, to
1227 * block ext4_new_inode() until we are finished.
1229 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1232 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1233 struct ext4_sb_info *sbi = EXT4_SB(sb);
1234 struct ext4_group_desc *gdp = NULL;
1235 struct buffer_head *group_desc_bh;
1238 int num, ret = 0, used_blks = 0;
1240 /* This should not happen, but just to be sure check this */
1241 if (sb->s_flags & MS_RDONLY) {
1246 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1251 * We do not need to lock this, because we are the only one
1252 * handling this flag.
1254 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1257 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1258 if (IS_ERR(handle)) {
1259 ret = PTR_ERR(handle);
1263 down_write(&grp->alloc_sem);
1265 * If inode bitmap was already initialized there may be some
1266 * used inodes so we need to skip blocks with used inodes in
1269 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1270 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1271 ext4_itable_unused_count(sb, gdp)),
1272 sbi->s_inodes_per_block);
1274 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1275 ext4_error(sb, "Something is wrong with group %u: "
1276 "used itable blocks: %d; "
1277 "itable unused count: %u",
1279 ext4_itable_unused_count(sb, gdp));
1284 blk = ext4_inode_table(sb, gdp) + used_blks;
1285 num = sbi->s_itb_per_group - used_blks;
1287 BUFFER_TRACE(group_desc_bh, "get_write_access");
1288 ret = ext4_journal_get_write_access(handle,
1294 * Skip zeroout if the inode table is full. But we set the ZEROED
1295 * flag anyway, because obviously, when it is full it does not need
1298 if (unlikely(num == 0))
1301 ext4_debug("going to zero out inode table in group %d\n",
1303 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1307 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1310 ext4_lock_group(sb, group);
1311 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1312 ext4_group_desc_csum_set(sb, group, gdp);
1313 ext4_unlock_group(sb, group);
1315 BUFFER_TRACE(group_desc_bh,
1316 "call ext4_handle_dirty_metadata");
1317 ret = ext4_handle_dirty_metadata(handle, NULL,
1321 up_write(&grp->alloc_sem);
1322 ext4_journal_stop(handle);