1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
7 #include <linux/hwspinlock.h>
9 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/platform_device.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/soc/qcom/smem.h>
18 * The Qualcomm shared memory system is a allocate only heap structure that
19 * consists of one of more memory areas that can be accessed by the processors
22 * All systems contains a global heap, accessible by all processors in the SoC,
23 * with a table of contents data structure (@smem_header) at the beginning of
24 * the main shared memory block.
26 * The global header contains meta data for allocations as well as a fixed list
27 * of 512 entries (@smem_global_entry) that can be initialized to reference
28 * parts of the shared memory space.
31 * In addition to this global heap a set of "private" heaps can be set up at
32 * boot time with access restrictions so that only certain processor pairs can
35 * These partitions are referenced from an optional partition table
36 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
37 * partition table entries (@smem_ptable_entry) lists the involved processors
38 * (or hosts) and their location in the main shared memory region.
40 * Each partition starts with a header (@smem_partition_header) that identifies
41 * the partition and holds properties for the two internal memory regions. The
42 * two regions are cached and non-cached memory respectively. Each region
43 * contain a link list of allocation headers (@smem_private_entry) followed by
46 * Items in the non-cached region are allocated from the start of the partition
47 * while items in the cached region are allocated from the end. The free area
48 * is hence the region between the cached and non-cached offsets. The header of
49 * cached items comes after the data.
51 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
52 * for the global heap. A new global partition is created from the global heap
53 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
54 * set by the bootloader.
56 * To synchronize allocations in the shared memory heaps a remote spinlock must
57 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
63 * The version member of the smem header contains an array of versions for the
64 * various software components in the SoC. We verify that the boot loader
65 * version is a valid version as a sanity check.
67 #define SMEM_MASTER_SBL_VERSION_INDEX 7
68 #define SMEM_GLOBAL_HEAP_VERSION 11
69 #define SMEM_GLOBAL_PART_VERSION 12
72 * The first 8 items are only to be allocated by the boot loader while
73 * initializing the heap.
75 #define SMEM_ITEM_LAST_FIXED 8
77 /* Highest accepted item number, for both global and private heaps */
78 #define SMEM_ITEM_COUNT 512
80 /* Processor/host identifier for the application processor */
81 #define SMEM_HOST_APPS 0
83 /* Processor/host identifier for the global partition */
84 #define SMEM_GLOBAL_HOST 0xfffe
86 /* Max number of processors/hosts in a system */
87 #define SMEM_HOST_COUNT 10
90 * struct smem_proc_comm - proc_comm communication struct (legacy)
91 * @command: current command to be executed
92 * @status: status of the currently requested command
93 * @params: parameters to the command
95 struct smem_proc_comm {
102 * struct smem_global_entry - entry to reference smem items on the heap
103 * @allocated: boolean to indicate if this entry is used
104 * @offset: offset to the allocated space
105 * @size: size of the allocated space, 8 byte aligned
106 * @aux_base: base address for the memory region used by this unit, or 0 for
107 * the default region. bits 0,1 are reserved
109 struct smem_global_entry {
113 __le32 aux_base; /* bits 1:0 reserved */
115 #define AUX_BASE_MASK 0xfffffffc
118 * struct smem_header - header found in beginning of primary smem region
119 * @proc_comm: proc_comm communication interface (legacy)
120 * @version: array of versions for the various subsystems
121 * @initialized: boolean to indicate that smem is initialized
122 * @free_offset: index of the first unallocated byte in smem
123 * @available: number of bytes available for allocation
124 * @reserved: reserved field, must be 0
125 * toc: array of references to items
128 struct smem_proc_comm proc_comm[4];
134 struct smem_global_entry toc[SMEM_ITEM_COUNT];
138 * struct smem_ptable_entry - one entry in the @smem_ptable list
139 * @offset: offset, within the main shared memory region, of the partition
140 * @size: size of the partition
141 * @flags: flags for the partition (currently unused)
142 * @host0: first processor/host with access to this partition
143 * @host1: second processor/host with access to this partition
144 * @cacheline: alignment for "cached" entries
145 * @reserved: reserved entries for later use
147 struct smem_ptable_entry {
158 * struct smem_ptable - partition table for the private partitions
159 * @magic: magic number, must be SMEM_PTABLE_MAGIC
160 * @version: version of the partition table
161 * @num_entries: number of partitions in the table
162 * @reserved: for now reserved entries
163 * @entry: list of @smem_ptable_entry for the @num_entries partitions
170 struct smem_ptable_entry entry[];
173 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176 * struct smem_partition_header - header of the partitions
177 * @magic: magic number, must be SMEM_PART_MAGIC
178 * @host0: first processor/host with access to this partition
179 * @host1: second processor/host with access to this partition
180 * @size: size of the partition
181 * @offset_free_uncached: offset to the first free byte of uncached memory in
183 * @offset_free_cached: offset to the first free byte of cached memory in this
185 * @reserved: for now reserved entries
187 struct smem_partition_header {
192 __le32 offset_free_uncached;
193 __le32 offset_free_cached;
197 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
200 * struct smem_private_entry - header of each item in the private partition
201 * @canary: magic number, must be SMEM_PRIVATE_CANARY
202 * @item: identifying number of the smem item
203 * @size: size of the data, including padding bytes
204 * @padding_data: number of bytes of padding of data
205 * @padding_hdr: number of bytes of padding between the header and the data
206 * @reserved: for now reserved entry
208 struct smem_private_entry {
209 u16 canary; /* bytes are the same so no swapping needed */
211 __le32 size; /* includes padding bytes */
216 #define SMEM_PRIVATE_CANARY 0xa5a5
219 * struct smem_info - smem region info located after the table of contents
220 * @magic: magic number, must be SMEM_INFO_MAGIC
221 * @size: size of the smem region
222 * @base_addr: base address of the smem region
223 * @reserved: for now reserved entry
224 * @num_items: highest accepted item number
234 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
237 * struct smem_region - representation of a chunk of memory used for smem
238 * @aux_base: identifier of aux_mem base
239 * @virt_base: virtual base address of memory with this aux_mem identifier
240 * @size: size of the memory region
244 void __iomem *virt_base;
249 * struct qcom_smem - device data for the smem device
250 * @dev: device pointer
251 * @hwlock: reference to a hwspinlock
252 * @global_partition: pointer to global partition when in use
253 * @global_cacheline: cacheline size for global partition
254 * @partitions: list of pointers to partitions affecting the current
256 * @cacheline: list of cacheline sizes for each host
257 * @item_count: max accepted item number
258 * @num_regions: number of @regions
259 * @regions: list of the memory regions defining the shared memory
264 struct hwspinlock *hwlock;
266 struct smem_partition_header *global_partition;
267 size_t global_cacheline;
268 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
269 size_t cacheline[SMEM_HOST_COUNT];
272 unsigned num_regions;
273 struct smem_region regions[];
277 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
281 return p + le32_to_cpu(phdr->offset_free_uncached);
284 static struct smem_private_entry *
285 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
289 struct smem_private_entry *e;
291 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
295 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
299 return p + le32_to_cpu(phdr->offset_free_cached);
302 static struct smem_private_entry *
303 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
307 return p + sizeof(*phdr);
310 static struct smem_private_entry *
311 uncached_entry_next(struct smem_private_entry *e)
315 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
316 le32_to_cpu(e->size);
319 static struct smem_private_entry *
320 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
324 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
327 static void *uncached_entry_to_item(struct smem_private_entry *e)
331 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
334 static void *cached_entry_to_item(struct smem_private_entry *e)
338 return p - le32_to_cpu(e->size);
341 /* Pointer to the one and only smem handle */
342 static struct qcom_smem *__smem;
344 /* Timeout (ms) for the trylock of remote spinlocks */
345 #define HWSPINLOCK_TIMEOUT 1000
347 static int qcom_smem_alloc_private(struct qcom_smem *smem,
348 struct smem_partition_header *phdr,
352 struct smem_private_entry *hdr, *end;
356 hdr = phdr_to_first_uncached_entry(phdr);
357 end = phdr_to_last_uncached_entry(phdr);
358 cached = phdr_to_last_cached_entry(phdr);
361 if (hdr->canary != SMEM_PRIVATE_CANARY)
363 if (le16_to_cpu(hdr->item) == item)
366 hdr = uncached_entry_next(hdr);
369 /* Check that we don't grow into the cached region */
370 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
371 if ((void *)hdr + alloc_size > cached) {
372 dev_err(smem->dev, "Out of memory\n");
376 hdr->canary = SMEM_PRIVATE_CANARY;
377 hdr->item = cpu_to_le16(item);
378 hdr->size = cpu_to_le32(ALIGN(size, 8));
379 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
380 hdr->padding_hdr = 0;
383 * Ensure the header is written before we advance the free offset, so
384 * that remote processors that does not take the remote spinlock still
385 * gets a consistent view of the linked list.
388 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
392 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
393 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
398 static int qcom_smem_alloc_global(struct qcom_smem *smem,
402 struct smem_global_entry *entry;
403 struct smem_header *header;
405 header = smem->regions[0].virt_base;
406 entry = &header->toc[item];
407 if (entry->allocated)
410 size = ALIGN(size, 8);
411 if (WARN_ON(size > le32_to_cpu(header->available)))
414 entry->offset = header->free_offset;
415 entry->size = cpu_to_le32(size);
418 * Ensure the header is consistent before we mark the item allocated,
419 * so that remote processors will get a consistent view of the item
420 * even though they do not take the spinlock on read.
423 entry->allocated = cpu_to_le32(1);
425 le32_add_cpu(&header->free_offset, size);
426 le32_add_cpu(&header->available, -size);
432 * qcom_smem_alloc() - allocate space for a smem item
433 * @host: remote processor id, or -1
434 * @item: smem item handle
435 * @size: number of bytes to be allocated
437 * Allocate space for a given smem item of size @size, given that the item is
440 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
442 struct smem_partition_header *phdr;
447 return -EPROBE_DEFER;
449 if (item < SMEM_ITEM_LAST_FIXED) {
451 "Rejecting allocation of static entry %d\n", item);
455 if (WARN_ON(item >= __smem->item_count))
458 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
464 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
465 phdr = __smem->partitions[host];
466 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
467 } else if (__smem->global_partition) {
468 phdr = __smem->global_partition;
469 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
471 ret = qcom_smem_alloc_global(__smem, item, size);
474 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
478 EXPORT_SYMBOL(qcom_smem_alloc);
480 static void *qcom_smem_get_global(struct qcom_smem *smem,
484 struct smem_header *header;
485 struct smem_region *region;
486 struct smem_global_entry *entry;
490 header = smem->regions[0].virt_base;
491 entry = &header->toc[item];
492 if (!entry->allocated)
493 return ERR_PTR(-ENXIO);
495 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
497 for (i = 0; i < smem->num_regions; i++) {
498 region = &smem->regions[i];
500 if (region->aux_base == aux_base || !aux_base) {
502 *size = le32_to_cpu(entry->size);
503 return region->virt_base + le32_to_cpu(entry->offset);
507 return ERR_PTR(-ENOENT);
510 static void *qcom_smem_get_private(struct qcom_smem *smem,
511 struct smem_partition_header *phdr,
516 struct smem_private_entry *e, *end;
518 e = phdr_to_first_uncached_entry(phdr);
519 end = phdr_to_last_uncached_entry(phdr);
522 if (e->canary != SMEM_PRIVATE_CANARY)
525 if (le16_to_cpu(e->item) == item) {
527 *size = le32_to_cpu(e->size) -
528 le16_to_cpu(e->padding_data);
530 return uncached_entry_to_item(e);
533 e = uncached_entry_next(e);
536 /* Item was not found in the uncached list, search the cached list */
538 e = phdr_to_first_cached_entry(phdr, cacheline);
539 end = phdr_to_last_cached_entry(phdr);
542 if (e->canary != SMEM_PRIVATE_CANARY)
545 if (le16_to_cpu(e->item) == item) {
547 *size = le32_to_cpu(e->size) -
548 le16_to_cpu(e->padding_data);
550 return cached_entry_to_item(e);
553 e = cached_entry_next(e, cacheline);
556 return ERR_PTR(-ENOENT);
559 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
560 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
562 return ERR_PTR(-EINVAL);
566 * qcom_smem_get() - resolve ptr of size of a smem item
567 * @host: the remote processor, or -1
568 * @item: smem item handle
569 * @size: pointer to be filled out with size of the item
571 * Looks up smem item and returns pointer to it. Size of smem
572 * item is returned in @size.
574 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
576 struct smem_partition_header *phdr;
580 void *ptr = ERR_PTR(-EPROBE_DEFER);
585 if (WARN_ON(item >= __smem->item_count))
586 return ERR_PTR(-EINVAL);
588 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
594 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
595 phdr = __smem->partitions[host];
596 cacheln = __smem->cacheline[host];
597 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
598 } else if (__smem->global_partition) {
599 phdr = __smem->global_partition;
600 cacheln = __smem->global_cacheline;
601 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
603 ptr = qcom_smem_get_global(__smem, item, size);
606 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
611 EXPORT_SYMBOL(qcom_smem_get);
614 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
615 * @host: the remote processor identifying a partition, or -1
617 * To be used by smem clients as a quick way to determine if any new
618 * allocations has been made.
620 int qcom_smem_get_free_space(unsigned host)
622 struct smem_partition_header *phdr;
623 struct smem_header *header;
627 return -EPROBE_DEFER;
629 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
630 phdr = __smem->partitions[host];
631 ret = le32_to_cpu(phdr->offset_free_cached) -
632 le32_to_cpu(phdr->offset_free_uncached);
633 } else if (__smem->global_partition) {
634 phdr = __smem->global_partition;
635 ret = le32_to_cpu(phdr->offset_free_cached) -
636 le32_to_cpu(phdr->offset_free_uncached);
638 header = __smem->regions[0].virt_base;
639 ret = le32_to_cpu(header->available);
644 EXPORT_SYMBOL(qcom_smem_get_free_space);
647 * qcom_smem_virt_to_phys() - return the physical address associated
648 * with an smem item pointer (previously returned by qcom_smem_get()
649 * @p: the virtual address to convert
651 * Returns 0 if the pointer provided is not within any smem region.
653 phys_addr_t qcom_smem_virt_to_phys(void *p)
657 for (i = 0; i < __smem->num_regions; i++) {
658 struct smem_region *region = &__smem->regions[i];
660 if (p < region->virt_base)
662 if (p < region->virt_base + region->size) {
663 u64 offset = p - region->virt_base;
665 return (phys_addr_t)region->aux_base + offset;
671 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
673 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
675 struct smem_header *header;
678 header = smem->regions[0].virt_base;
679 versions = header->version;
681 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
684 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
686 struct smem_ptable *ptable;
689 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
690 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
691 return ERR_PTR(-ENOENT);
693 version = le32_to_cpu(ptable->version);
696 "Unsupported partition header version %d\n", version);
697 return ERR_PTR(-EINVAL);
702 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
704 struct smem_ptable *ptable;
705 struct smem_info *info;
707 ptable = qcom_smem_get_ptable(smem);
708 if (IS_ERR_OR_NULL(ptable))
709 return SMEM_ITEM_COUNT;
711 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
712 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
713 return SMEM_ITEM_COUNT;
715 return le16_to_cpu(info->num_items);
719 * Validate the partition header for a partition whose partition
720 * table entry is supplied. Returns a pointer to its header if
721 * valid, or a null pointer otherwise.
723 static struct smem_partition_header *
724 qcom_smem_partition_header(struct qcom_smem *smem,
725 struct smem_ptable_entry *entry, u16 host0, u16 host1)
727 struct smem_partition_header *header;
730 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
732 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
733 dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
734 header->magic[0], header->magic[1],
735 header->magic[2], header->magic[3]);
739 if (host0 != le16_to_cpu(header->host0)) {
740 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
741 host0, le16_to_cpu(header->host0));
744 if (host1 != le16_to_cpu(header->host1)) {
745 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
746 host1, le16_to_cpu(header->host1));
750 size = le32_to_cpu(header->size);
751 if (size != le32_to_cpu(entry->size)) {
752 dev_err(smem->dev, "bad partition size (%u != %u)\n",
753 size, le32_to_cpu(entry->size));
757 if (le32_to_cpu(header->offset_free_uncached) > size) {
758 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
759 le32_to_cpu(header->offset_free_uncached), size);
766 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
768 struct smem_partition_header *header;
769 struct smem_ptable_entry *entry;
770 struct smem_ptable *ptable;
774 if (smem->global_partition) {
775 dev_err(smem->dev, "Already found the global partition\n");
779 ptable = qcom_smem_get_ptable(smem);
781 return PTR_ERR(ptable);
783 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
784 entry = &ptable->entry[i];
785 if (!le32_to_cpu(entry->offset))
787 if (!le32_to_cpu(entry->size))
790 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
793 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
800 dev_err(smem->dev, "Missing entry for global partition\n");
804 header = qcom_smem_partition_header(smem, entry,
805 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
809 smem->global_partition = header;
810 smem->global_cacheline = le32_to_cpu(entry->cacheline);
816 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
818 struct smem_partition_header *header;
819 struct smem_ptable_entry *entry;
820 struct smem_ptable *ptable;
821 unsigned int remote_host;
825 ptable = qcom_smem_get_ptable(smem);
827 return PTR_ERR(ptable);
829 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
830 entry = &ptable->entry[i];
831 if (!le32_to_cpu(entry->offset))
833 if (!le32_to_cpu(entry->size))
836 host0 = le16_to_cpu(entry->host0);
837 host1 = le16_to_cpu(entry->host1);
838 if (host0 == local_host)
840 else if (host1 == local_host)
845 if (remote_host >= SMEM_HOST_COUNT) {
846 dev_err(smem->dev, "bad host %hu\n", remote_host);
850 if (smem->partitions[remote_host]) {
851 dev_err(smem->dev, "duplicate host %hu\n", remote_host);
855 header = qcom_smem_partition_header(smem, entry, host0, host1);
859 smem->partitions[remote_host] = header;
860 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
866 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
867 const char *name, int i)
869 struct device_node *np;
871 resource_size_t size;
874 np = of_parse_phandle(dev->of_node, name, 0);
876 dev_err(dev, "No %s specified\n", name);
880 ret = of_address_to_resource(np, 0, &r);
884 size = resource_size(&r);
886 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
887 if (!smem->regions[i].virt_base)
889 smem->regions[i].aux_base = (u32)r.start;
890 smem->regions[i].size = size;
895 static int qcom_smem_probe(struct platform_device *pdev)
897 struct smem_header *header;
898 struct qcom_smem *smem;
906 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
909 array_size = num_regions * sizeof(struct smem_region);
910 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
914 smem->dev = &pdev->dev;
915 smem->num_regions = num_regions;
917 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
921 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
922 "qcom,rpm-msg-ram", 1)))
925 header = smem->regions[0].virt_base;
926 if (le32_to_cpu(header->initialized) != 1 ||
927 le32_to_cpu(header->reserved)) {
928 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
932 version = qcom_smem_get_sbl_version(smem);
933 switch (version >> 16) {
934 case SMEM_GLOBAL_PART_VERSION:
935 ret = qcom_smem_set_global_partition(smem);
938 smem->item_count = qcom_smem_get_item_count(smem);
940 case SMEM_GLOBAL_HEAP_VERSION:
941 smem->item_count = SMEM_ITEM_COUNT;
944 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
948 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
949 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
950 if (ret < 0 && ret != -ENOENT)
953 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
955 if (hwlock_id != -EPROBE_DEFER)
956 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
960 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
969 static int qcom_smem_remove(struct platform_device *pdev)
971 hwspin_lock_free(__smem->hwlock);
977 static const struct of_device_id qcom_smem_of_match[] = {
978 { .compatible = "qcom,smem" },
981 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
983 static struct platform_driver qcom_smem_driver = {
984 .probe = qcom_smem_probe,
985 .remove = qcom_smem_remove,
988 .of_match_table = qcom_smem_of_match,
989 .suppress_bind_attrs = true,
993 static int __init qcom_smem_init(void)
995 return platform_driver_register(&qcom_smem_driver);
997 arch_initcall(qcom_smem_init);
999 static void __exit qcom_smem_exit(void)
1001 platform_driver_unregister(&qcom_smem_driver);
1003 module_exit(qcom_smem_exit)
1006 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1007 MODULE_LICENSE("GPL v2");