1 /* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */
3 Written 1996-1999 by Donald Becker.
5 The driver also contains updates by different kernel developers
6 (see incomplete list below).
8 Please use this email address and linux-kernel mailing list for bug reports.
10 This software may be used and distributed according to the terms
11 of the GNU General Public License, incorporated herein by reference.
13 This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
14 It should work with all i82557/558/559 boards.
18 Serious fixes for multicast filter list setting, TX timeout routine;
19 RX ring refilling logic; other stuff
21 Convert to new PCI driver interface
23 Disabled FC and ER, to avoid lockups when when we get FCP interrupts.
25 PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary
27 rx_align support: enables rx DMA without causing unaligned accesses.
30 static const char * const version =
31 "eepro100.c:v1.09j-t 9/29/99 Donald Becker http://www.scyld.com/network/eepro100.html\n"
32 "eepro100.c: $Revision: 1.36 $ 2000/11/17 Modified by Andrey V. Savochkin <
[email protected]> and others\n";
34 /* A few user-configurable values that apply to all boards.
35 First set is undocumented and spelled per Intel recommendations. */
37 static int congenb /* = 0 */; /* Enable congestion control in the DP83840. */
38 static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */
39 static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */
40 /* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
41 static int txdmacount = 128;
42 static int rxdmacount /* = 0 */;
44 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) || defined(__mips__) || \
46 /* align rx buffers to 2 bytes so that IP header is aligned */
47 # define rx_align(skb) skb_reserve((skb), 2)
48 # define RxFD_ALIGNMENT __attribute__ ((aligned (2), packed))
50 # define rx_align(skb)
51 # define RxFD_ALIGNMENT
54 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx method.
55 Lower values use more memory, but are faster. */
56 static int rx_copybreak = 200;
58 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
59 static int max_interrupt_work = 20;
61 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
62 static int multicast_filter_limit = 64;
64 /* 'options' is used to pass a transceiver override or full-duplex flag
65 e.g. "options=16" for FD, "options=32" for 100mbps-only. */
66 static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1};
67 static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1};
69 /* A few values that may be tweaked. */
70 /* The ring sizes should be a power of two for efficiency. */
71 #define TX_RING_SIZE 64
72 #define RX_RING_SIZE 64
73 /* How much slots multicast filter setup may take.
74 Do not descrease without changing set_rx_mode() implementaion. */
75 #define TX_MULTICAST_SIZE 2
76 #define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2)
77 /* Actual number of TX packets queued, must be
78 <= TX_RING_SIZE-TX_MULTICAST_RESERV. */
79 #define TX_QUEUE_LIMIT (TX_RING_SIZE-TX_MULTICAST_RESERV)
80 /* Hysteresis marking queue as no longer full. */
81 #define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4)
83 /* Operational parameters that usually are not changed. */
85 /* Time in jiffies before concluding the transmitter is hung. */
86 #define TX_TIMEOUT (2*HZ)
87 /* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/
88 #define PKT_BUF_SZ 1536
90 #include <linux/module.h>
92 #include <linux/kernel.h>
93 #include <linux/string.h>
94 #include <linux/errno.h>
95 #include <linux/ioport.h>
96 #include <linux/slab.h>
97 #include <linux/interrupt.h>
98 #include <linux/timer.h>
99 #include <linux/pci.h>
100 #include <linux/spinlock.h>
101 #include <linux/init.h>
102 #include <linux/mii.h>
103 #include <linux/delay.h>
104 #include <linux/bitops.h>
107 #include <asm/uaccess.h>
110 #include <linux/netdevice.h>
111 #include <linux/etherdevice.h>
112 #include <linux/rtnetlink.h>
113 #include <linux/skbuff.h>
114 #include <linux/ethtool.h>
117 static int debug = -1;
118 #define DEBUG_DEFAULT (NETIF_MSG_DRV | \
122 #define DEBUG ((debug >= 0) ? (1<<debug)-1 : DEBUG_DEFAULT)
126 MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver");
127 MODULE_LICENSE("GPL");
128 module_param(use_io, int, 0);
129 module_param(debug, int, 0);
130 module_param_array(options, int, NULL, 0);
131 module_param_array(full_duplex, int, NULL, 0);
132 module_param(congenb, int, 0);
133 module_param(txfifo, int, 0);
134 module_param(rxfifo, int, 0);
135 module_param(txdmacount, int, 0);
136 module_param(rxdmacount, int, 0);
137 module_param(rx_copybreak, int, 0);
138 module_param(max_interrupt_work, int, 0);
139 module_param(multicast_filter_limit, int, 0);
140 MODULE_PARM_DESC(debug, "debug level (0-6)");
141 MODULE_PARM_DESC(options, "Bits 0-3: transceiver type, bit 4: full duplex, bit 5: 100Mbps");
142 MODULE_PARM_DESC(full_duplex, "full duplex setting(s) (1)");
143 MODULE_PARM_DESC(congenb, "Enable congestion control (1)");
144 MODULE_PARM_DESC(txfifo, "Tx FIFO threshold in 4 byte units, (0-15)");
145 MODULE_PARM_DESC(rxfifo, "Rx FIFO threshold in 4 byte units, (0-15)");
146 MODULE_PARM_DESC(txdmacount, "Tx DMA burst length; 128 - disable (0-128)");
147 MODULE_PARM_DESC(rxdmacount, "Rx DMA burst length; 128 - disable (0-128)");
148 MODULE_PARM_DESC(rx_copybreak, "copy breakpoint for copy-only-tiny-frames");
149 MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt");
150 MODULE_PARM_DESC(multicast_filter_limit, "maximum number of filtered multicast addresses");
152 #define RUN_AT(x) (jiffies + (x))
154 #define netdevice_start(dev)
155 #define netdevice_stop(dev)
156 #define netif_set_tx_timeout(dev, tf, tm) \
158 (dev)->tx_timeout = (tf); \
159 (dev)->watchdog_timeo = (tm); \
167 I. Board Compatibility
169 This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
170 single-chip fast Ethernet controller for PCI, as used on the Intel
171 EtherExpress Pro 100 adapter.
173 II. Board-specific settings
175 PCI bus devices are configured by the system at boot time, so no jumpers
176 need to be set on the board. The system BIOS should be set to assign the
177 PCI INTA signal to an otherwise unused system IRQ line. While it's
178 possible to share PCI interrupt lines, it negatively impacts performance and
179 only recent kernels support it.
181 III. Driver operation
184 The Speedo3 is very similar to other Intel network chips, that is to say
185 "apparently designed on a different planet". This chips retains the complex
186 Rx and Tx descriptors and multiple buffers pointers as previous chips, but
187 also has simplified Tx and Rx buffer modes. This driver uses the "flexible"
188 Tx mode, but in a simplified lower-overhead manner: it associates only a
189 single buffer descriptor with each frame descriptor.
191 Despite the extra space overhead in each receive skbuff, the driver must use
192 the simplified Rx buffer mode to assure that only a single data buffer is
193 associated with each RxFD. The driver implements this by reserving space
194 for the Rx descriptor at the head of each Rx skbuff.
196 The Speedo-3 has receive and command unit base addresses that are added to
197 almost all descriptor pointers. The driver sets these to zero, so that all
198 pointer fields are absolute addresses.
200 The System Control Block (SCB) of some previous Intel chips exists on the
201 chip in both PCI I/O and memory space. This driver uses the I/O space
202 registers, but might switch to memory mapped mode to better support non-x86
205 IIIB. Transmit structure
207 The driver must use the complex Tx command+descriptor mode in order to
208 have a indirect pointer to the skbuff data section. Each Tx command block
209 (TxCB) is associated with two immediately appended Tx Buffer Descriptor
210 (TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the
211 speedo_private data structure for each adapter instance.
213 The newer i82558 explicitly supports this structure, and can read the two
214 TxBDs in the same PCI burst as the TxCB.
216 This ring structure is used for all normal transmit packets, but the
217 transmit packet descriptors aren't long enough for most non-Tx commands such
218 as CmdConfigure. This is complicated by the possibility that the chip has
219 already loaded the link address in the previous descriptor. So for these
220 commands we convert the next free descriptor on the ring to a NoOp, and point
221 that descriptor's link to the complex command.
223 An additional complexity of these non-transmit commands are that they may be
224 added asynchronous to the normal transmit queue, so we disable interrupts
225 whenever the Tx descriptor ring is manipulated.
227 A notable aspect of these special configure commands is that they do
228 work with the normal Tx ring entry scavenge method. The Tx ring scavenge
229 is done at interrupt time using the 'dirty_tx' index, and checking for the
230 command-complete bit. While the setup frames may have the NoOp command on the
231 Tx ring marked as complete, but not have completed the setup command, this
232 is not a problem. The tx_ring entry can be still safely reused, as the
233 tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.
235 Commands may have bits set e.g. CmdSuspend in the command word to either
236 suspend or stop the transmit/command unit. This driver always flags the last
237 command with CmdSuspend, erases the CmdSuspend in the previous command, and
238 then issues a CU_RESUME.
239 Note: Watch out for the potential race condition here: imagine
240 erasing the previous suspend
241 the chip processes the previous command
242 the chip processes the final command, and suspends
244 the chip processes the next-yet-valid post-final-command.
245 So blindly sending a CU_RESUME is only safe if we do it immediately after
246 after erasing the previous CmdSuspend, without the possibility of an
247 intervening delay. Thus the resume command is always within the
248 interrupts-disabled region. This is a timing dependence, but handling this
249 condition in a timing-independent way would considerably complicate the code.
251 Note: In previous generation Intel chips, restarting the command unit was a
252 notoriously slow process. This is presumably no longer true.
254 IIIC. Receive structure
256 Because of the bus-master support on the Speedo3 this driver uses the new
257 SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
258 This scheme allocates full-sized skbuffs as receive buffers. The value
259 SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
260 trade-off the memory wasted by passing the full-sized skbuff to the queue
261 layer for all frames vs. the copying cost of copying a frame to a
262 correctly-sized skbuff.
264 For small frames the copying cost is negligible (esp. considering that we
265 are pre-loading the cache with immediately useful header information), so we
266 allocate a new, minimally-sized skbuff. For large frames the copying cost
267 is non-trivial, and the larger copy might flush the cache of useful data, so
268 we pass up the skbuff the packet was received into.
272 Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
273 that stated that I could disclose the information. But I still resent
274 having to sign an Intel NDA when I'm helping Intel sell their own product!
278 static int speedo_found1(struct pci_dev *pdev, void __iomem *ioaddr, int fnd_cnt, int acpi_idle_state);
280 /* Offsets to the various registers.
281 All accesses need not be longword aligned. */
282 enum speedo_offsets {
283 SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */
285 SCBPointer = 4, /* General purpose pointer. */
286 SCBPort = 8, /* Misc. commands and operands. */
287 SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
288 SCBCtrlMDI = 16, /* MDI interface control. */
289 SCBEarlyRx = 20, /* Early receive byte count. */
291 /* Commands that can be put in a command list entry. */
293 CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
294 CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
295 CmdDump = 0x60000, CmdDiagnose = 0x70000,
296 CmdSuspend = 0x40000000, /* Suspend after completion. */
297 CmdIntr = 0x20000000, /* Interrupt after completion. */
298 CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */
300 /* Clear CmdSuspend (1<<30) avoiding interference with the card access to the
301 status bits. Previous driver versions used separate 16 bit fields for
302 commands and statuses. --SAW
304 #if defined(__alpha__)
305 # define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status);
307 # if defined(__LITTLE_ENDIAN)
308 # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x4000
309 # elif defined(__BIG_ENDIAN)
310 # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x0040
312 # error Unsupported byteorder
317 SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
318 SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
319 SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
320 /* The rest are Rx and Tx commands. */
321 CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050,
322 CUCmdBase=0x0060, /* CU Base address (set to zero) . */
323 CUDumpStats=0x0070, /* Dump then reset stats counters. */
324 RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
325 RxResumeNoResources=0x0007,
329 PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
332 /* The Speedo3 Rx and Tx frame/buffer descriptors. */
333 struct descriptor { /* A generic descriptor. */
334 volatile s32 cmd_status; /* All command and status fields. */
335 u32 link; /* struct descriptor * */
336 unsigned char params[0];
339 /* The Speedo3 Rx and Tx buffer descriptors. */
340 struct RxFD { /* Receive frame descriptor. */
342 u32 link; /* struct RxFD * */
343 u32 rx_buf_addr; /* void * */
347 /* Selected elements of the Tx/RxFD.status word. */
349 RxComplete=0x8000, RxOK=0x2000,
350 RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
351 RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
352 TxUnderrun=0x1000, StatusComplete=0x8000,
355 #define CONFIG_DATA_SIZE 22
356 struct TxFD { /* Transmit frame descriptor set. */
358 u32 link; /* void * */
359 u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
360 s32 count; /* # of TBD (=1), Tx start thresh., etc. */
361 /* This constitutes two "TBD" entries -- we only use one. */
362 #define TX_DESCR_BUF_OFFSET 16
363 u32 tx_buf_addr0; /* void *, frame to be transmitted. */
364 s32 tx_buf_size0; /* Length of Tx frame. */
365 u32 tx_buf_addr1; /* void *, frame to be transmitted. */
366 s32 tx_buf_size1; /* Length of Tx frame. */
367 /* the structure must have space for at least CONFIG_DATA_SIZE starting
368 * from tx_desc_addr field */
371 /* Multicast filter setting block. --SAW */
372 struct speedo_mc_block {
373 struct speedo_mc_block *next;
375 dma_addr_t frame_dma;
377 struct descriptor frame __attribute__ ((__aligned__(16)));
380 /* Elements of the dump_statistics block. This block must be lword aligned. */
381 struct speedo_stats {
394 u32 rx_resource_errs;
401 enum Rx_ring_state_bits {
402 RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8,
405 /* Do not change the position (alignment) of the first few elements!
406 The later elements are grouped for cache locality.
408 Unfortunately, all the positions have been shifted since there.
409 A new re-alignment is required. 2000/03/06 SAW */
410 struct speedo_private {
412 struct TxFD *tx_ring; /* Commands (usually CmdTxPacket). */
413 struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */
414 /* The addresses of a Tx/Rx-in-place packets/buffers. */
415 struct sk_buff *tx_skbuff[TX_RING_SIZE];
416 struct sk_buff *rx_skbuff[RX_RING_SIZE];
417 /* Mapped addresses of the rings. */
418 dma_addr_t tx_ring_dma;
419 #define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD))
420 dma_addr_t rx_ring_dma[RX_RING_SIZE];
421 struct descriptor *last_cmd; /* Last command sent. */
422 unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */
423 spinlock_t lock; /* Group with Tx control cache line. */
424 u32 tx_threshold; /* The value for txdesc.count. */
425 struct RxFD *last_rxf; /* Last filled RX buffer. */
426 dma_addr_t last_rxf_dma;
427 unsigned int cur_rx, dirty_rx; /* The next free ring entry */
428 long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */
429 struct net_device_stats stats;
430 struct speedo_stats *lstats;
431 dma_addr_t lstats_dma;
433 struct pci_dev *pdev;
434 struct timer_list timer; /* Media selection timer. */
435 struct speedo_mc_block *mc_setup_head; /* Multicast setup frame list head. */
436 struct speedo_mc_block *mc_setup_tail; /* Multicast setup frame list tail. */
437 long in_interrupt; /* Word-aligned dev->interrupt */
438 unsigned char acpi_pwr;
439 signed char rx_mode; /* Current PROMISC/ALLMULTI setting. */
440 unsigned int tx_full:1; /* The Tx queue is full. */
441 unsigned int flow_ctrl:1; /* Use 802.3x flow control. */
442 unsigned int rx_bug:1; /* Work around receiver hang errata. */
443 unsigned char default_port:8; /* Last dev->if_port value. */
444 unsigned char rx_ring_state; /* RX ring status flags. */
445 unsigned short phy[2]; /* PHY media interfaces available. */
446 unsigned short partner; /* Link partner caps. */
447 struct mii_if_info mii_if; /* MII API hooks, info */
448 u32 msg_enable; /* debug message level */
451 /* The parameters for a CmdConfigure operation.
452 There are so many options that it would be difficult to document each bit.
453 We mostly use the default or recommended settings. */
454 static const char i82557_config_cmd[CONFIG_DATA_SIZE] = {
455 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
457 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
459 static const char i82558_config_cmd[CONFIG_DATA_SIZE] = {
460 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
461 0, 0x2E, 0, 0x60, 0x08, 0x88,
462 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
465 /* PHY media interface chips. */
466 static const char * const phys[] = {
467 "None", "i82553-A/B", "i82553-C", "i82503",
468 "DP83840", "80c240", "80c24", "i82555",
469 "unknown-8", "unknown-9", "DP83840A", "unknown-11",
470 "unknown-12", "unknown-13", "unknown-14", "unknown-15", };
471 enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
472 S80C24, I82555, DP83840A=10, };
473 static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 };
474 #define EE_READ_CMD (6)
476 static int eepro100_init_one(struct pci_dev *pdev,
477 const struct pci_device_id *ent);
479 static int do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len);
480 static int mdio_read(struct net_device *dev, int phy_id, int location);
481 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
482 static int speedo_open(struct net_device *dev);
483 static void speedo_resume(struct net_device *dev);
484 static void speedo_timer(unsigned long data);
485 static void speedo_init_rx_ring(struct net_device *dev);
486 static void speedo_tx_timeout(struct net_device *dev);
487 static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev);
488 static void speedo_refill_rx_buffers(struct net_device *dev, int force);
489 static int speedo_rx(struct net_device *dev);
490 static void speedo_tx_buffer_gc(struct net_device *dev);
491 static irqreturn_t speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
492 static int speedo_close(struct net_device *dev);
493 static struct net_device_stats *speedo_get_stats(struct net_device *dev);
494 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
495 static void set_rx_mode(struct net_device *dev);
496 static void speedo_show_state(struct net_device *dev);
497 static struct ethtool_ops ethtool_ops;
501 #ifdef honor_default_port
502 /* Optional driver feature to allow forcing the transceiver setting.
504 static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100,
505 0x2000, 0x2100, 0x0400, 0x3100};
508 /* How to wait for the command unit to accept a command.
509 Typically this takes 0 ticks. */
510 static inline unsigned char wait_for_cmd_done(struct net_device *dev,
511 struct speedo_private *sp)
514 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
519 r = ioread8(cmd_ioaddr);
520 } while(r && --wait >= 0);
523 printk(KERN_ALERT "%s: wait_for_cmd_done timeout!\n", dev->name);
527 static int __devinit eepro100_init_one (struct pci_dev *pdev,
528 const struct pci_device_id *ent)
530 void __iomem *ioaddr;
532 int acpi_idle_state = 0, pm;
533 static int cards_found /* = 0 */;
534 unsigned long pci_base;
537 /* when built-in, we only print version if device is found */
538 static int did_version;
539 if (did_version++ == 0)
543 /* save power state before pci_enable_device overwrites it */
544 pm = pci_find_capability(pdev, PCI_CAP_ID_PM);
547 pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command);
548 acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
551 if (pci_enable_device(pdev))
552 goto err_out_free_mmio_region;
554 pci_set_master(pdev);
556 if (!request_region(pci_resource_start(pdev, 1),
557 pci_resource_len(pdev, 1), "eepro100")) {
558 dev_printk (KERN_ERR, &pdev->dev,
559 "eepro100: cannot reserve I/O ports\n");
562 if (!request_mem_region(pci_resource_start(pdev, 0),
563 pci_resource_len(pdev, 0), "eepro100")) {
564 dev_printk (KERN_ERR, &pdev->dev,
565 "eepro100: cannot reserve MMIO region\n");
566 goto err_out_free_pio_region;
570 pci_bar = use_io ? 1 : 0;
571 pci_base = pci_resource_start(pdev, pci_bar);
572 if (DEBUG & NETIF_MSG_PROBE)
573 printk("Found Intel i82557 PCI Speedo at %#lx, IRQ %d.\n",
576 ioaddr = pci_iomap(pdev, pci_bar, 0);
578 dev_printk (KERN_ERR, &pdev->dev, "eepro100: cannot remap IO\n");
579 goto err_out_free_mmio_region;
582 if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) == 0)
585 goto err_out_iounmap;
590 pci_iounmap(pdev, ioaddr);
591 err_out_free_mmio_region:
592 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
593 err_out_free_pio_region:
594 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
599 #ifdef CONFIG_NET_POLL_CONTROLLER
601 * Polling 'interrupt' - used by things like netconsole to send skbs
602 * without having to re-enable interrupts. It's not called while
603 * the interrupt routine is executing.
606 static void poll_speedo (struct net_device *dev)
608 /* disable_irq is not very nice, but with the funny lockless design
609 we have no other choice. */
610 disable_irq(dev->irq);
611 speedo_interrupt (dev->irq, dev, NULL);
612 enable_irq(dev->irq);
616 static int __devinit speedo_found1(struct pci_dev *pdev,
617 void __iomem *ioaddr, int card_idx, int acpi_idle_state)
619 struct net_device *dev;
620 struct speedo_private *sp;
626 dma_addr_t tx_ring_dma;
628 size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats);
629 tx_ring_space = pci_alloc_consistent(pdev, size, &tx_ring_dma);
630 if (tx_ring_space == NULL)
633 dev = alloc_etherdev(sizeof(struct speedo_private));
635 printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n");
636 pci_free_consistent(pdev, size, tx_ring_space, tx_ring_dma);
640 SET_MODULE_OWNER(dev);
641 SET_NETDEV_DEV(dev, &pdev->dev);
643 if (dev->mem_start > 0)
644 option = dev->mem_start;
645 else if (card_idx >= 0 && options[card_idx] >= 0)
646 option = options[card_idx];
651 if (dev_alloc_name(dev, dev->name) < 0)
652 goto err_free_unlock;
654 /* Read the station address EEPROM before doing the reset.
655 Nominally his should even be done before accepting the device, but
656 then we wouldn't have a device name with which to report the error.
657 The size test is for 6 bit vs. 8 bit address serial EEPROMs.
660 void __iomem *iobase;
661 int read_cmd, ee_size;
665 /* Use IO only to avoid postponed writes and satisfy EEPROM timing
667 iobase = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
669 goto err_free_unlock;
670 if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000)
673 read_cmd = EE_READ_CMD << 24;
676 read_cmd = EE_READ_CMD << 22;
679 for (j = 0, i = 0, sum = 0; i < ee_size; i++) {
680 u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27);
684 dev->dev_addr[j++] = value;
685 dev->dev_addr[j++] = value >> 8;
689 printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
690 "check settings before activating this device!\n",
692 /* Don't unregister_netdev(dev); as the EEPro may actually be
693 usable, especially if the MAC address is set later.
694 On the other hand, it may be unusable if MDI data is corrupted. */
696 pci_iounmap(pdev, iobase);
699 /* Reset the chip: stop Tx and Rx processes and clear counters.
700 This takes less than 10usec and will easily finish before the next
702 iowrite32(PortReset, ioaddr + SCBPort);
703 ioread32(ioaddr + SCBPort);
706 if (eeprom[3] & 0x0100)
707 product = "OEM i82557/i82558 10/100 Ethernet";
709 product = pci_name(pdev);
711 printk(KERN_INFO "%s: %s, ", dev->name, product);
713 for (i = 0; i < 5; i++)
714 printk("%2.2X:", dev->dev_addr[i]);
715 printk("%2.2X, ", dev->dev_addr[i]);
716 printk("IRQ %d.\n", pdev->irq);
718 sp = netdev_priv(dev);
720 /* we must initialize this early, for mdio_{read,write} */
723 #if 1 || defined(kernel_bloat)
724 /* OK, this is pure kernel bloat. I don't like it when other drivers
725 waste non-pageable kernel space to emit similar messages, but I need
726 them for bug reports. */
728 const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"};
729 /* The self-test results must be paragraph aligned. */
730 volatile s32 *self_test_results;
731 int boguscnt = 16000; /* Timeout for set-test. */
732 if ((eeprom[3] & 0x03) != 0x03)
733 printk(KERN_INFO " Receiver lock-up bug exists -- enabling"
735 printk(KERN_INFO " Board assembly %4.4x%2.2x-%3.3d, Physical"
736 " connectors present:",
737 eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff);
738 for (i = 0; i < 4; i++)
739 if (eeprom[5] & (1<<i))
740 printk(connectors[i]);
741 printk("\n"KERN_INFO" Primary interface chip %s PHY #%d.\n",
742 phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f);
743 if (eeprom[7] & 0x0700)
744 printk(KERN_INFO " Secondary interface chip %s.\n",
745 phys[(eeprom[7]>>8)&7]);
746 if (((eeprom[6]>>8) & 0x3f) == DP83840
747 || ((eeprom[6]>>8) & 0x3f) == DP83840A) {
748 int mdi_reg23 = mdio_read(dev, eeprom[6] & 0x1f, 23) | 0x0422;
751 printk(KERN_INFO" DP83840 specific setup, setting register 23 to %4.4x.\n",
753 mdio_write(dev, eeprom[6] & 0x1f, 23, mdi_reg23);
755 if ((option >= 0) && (option & 0x70)) {
756 printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n",
757 (option & 0x20 ? 100 : 10),
758 (option & 0x10 ? "full" : "half"));
759 mdio_write(dev, eeprom[6] & 0x1f, MII_BMCR,
760 ((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */
761 ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */
764 /* Perform a system self-test. */
765 self_test_results = (s32*) ((((long) tx_ring_space) + 15) & ~0xf);
766 self_test_results[0] = 0;
767 self_test_results[1] = -1;
768 iowrite32(tx_ring_dma | PortSelfTest, ioaddr + SCBPort);
771 } while (self_test_results[1] == -1 && --boguscnt >= 0);
773 if (boguscnt < 0) { /* Test optimized out. */
774 printk(KERN_ERR "Self test failed, status %8.8x:\n"
775 KERN_ERR " Failure to initialize the i82557.\n"
776 KERN_ERR " Verify that the card is a bus-master"
778 self_test_results[1]);
780 printk(KERN_INFO " General self-test: %s.\n"
781 KERN_INFO " Serial sub-system self-test: %s.\n"
782 KERN_INFO " Internal registers self-test: %s.\n"
783 KERN_INFO " ROM checksum self-test: %s (%#8.8x).\n",
784 self_test_results[1] & 0x1000 ? "failed" : "passed",
785 self_test_results[1] & 0x0020 ? "failed" : "passed",
786 self_test_results[1] & 0x0008 ? "failed" : "passed",
787 self_test_results[1] & 0x0004 ? "failed" : "passed",
788 self_test_results[0]);
790 #endif /* kernel_bloat */
792 iowrite32(PortReset, ioaddr + SCBPort);
793 ioread32(ioaddr + SCBPort);
796 /* Return the chip to its original power state. */
797 pci_set_power_state(pdev, acpi_idle_state);
799 pci_set_drvdata (pdev, dev);
800 SET_NETDEV_DEV(dev, &pdev->dev);
802 dev->irq = pdev->irq;
805 sp->msg_enable = DEBUG;
806 sp->acpi_pwr = acpi_idle_state;
807 sp->tx_ring = tx_ring_space;
808 sp->tx_ring_dma = tx_ring_dma;
809 sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE);
810 sp->lstats_dma = TX_RING_ELEM_DMA(sp, TX_RING_SIZE);
811 init_timer(&sp->timer); /* used in ioctl() */
812 spin_lock_init(&sp->lock);
814 sp->mii_if.full_duplex = option >= 0 && (option & 0x10) ? 1 : 0;
816 if (full_duplex[card_idx] >= 0)
817 sp->mii_if.full_duplex = full_duplex[card_idx];
819 sp->default_port = option >= 0 ? (option & 0x0f) : 0;
821 sp->phy[0] = eeprom[6];
822 sp->phy[1] = eeprom[7];
824 sp->mii_if.phy_id = eeprom[6] & 0x1f;
825 sp->mii_if.phy_id_mask = 0x1f;
826 sp->mii_if.reg_num_mask = 0x1f;
827 sp->mii_if.dev = dev;
828 sp->mii_if.mdio_read = mdio_read;
829 sp->mii_if.mdio_write = mdio_write;
831 sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;
832 if (((pdev->device > 0x1030 && (pdev->device < 0x103F)))
833 || (pdev->device == 0x2449) || (pdev->device == 0x2459)
834 || (pdev->device == 0x245D)) {
839 printk(KERN_INFO " Receiver lock-up workaround activated.\n");
841 /* The Speedo-specific entries in the device structure. */
842 dev->open = &speedo_open;
843 dev->hard_start_xmit = &speedo_start_xmit;
844 netif_set_tx_timeout(dev, &speedo_tx_timeout, TX_TIMEOUT);
845 dev->stop = &speedo_close;
846 dev->get_stats = &speedo_get_stats;
847 dev->set_multicast_list = &set_rx_mode;
848 dev->do_ioctl = &speedo_ioctl;
849 SET_ETHTOOL_OPS(dev, ðtool_ops);
850 #ifdef CONFIG_NET_POLL_CONTROLLER
851 dev->poll_controller = &poll_speedo;
854 if (register_netdevice(dev))
855 goto err_free_unlock;
866 static void do_slow_command(struct net_device *dev, struct speedo_private *sp, int cmd)
868 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
871 if (ioread8(cmd_ioaddr) == 0) break;
872 while(++wait <= 200);
874 printk(KERN_ERR "Command %4.4x never accepted (%d polls)!\n",
875 ioread8(cmd_ioaddr), wait);
877 iowrite8(cmd, cmd_ioaddr);
879 for (wait = 0; wait <= 100; wait++)
880 if (ioread8(cmd_ioaddr) == 0) return;
881 for (; wait <= 20000; wait++)
882 if (ioread8(cmd_ioaddr) == 0) return;
884 printk(KERN_ERR "Command %4.4x was not accepted after %d polls!"
885 " Current status %8.8x.\n",
886 cmd, wait, ioread32(sp->regs + SCBStatus));
889 /* Serial EEPROM section.
890 A "bit" grungy, but we work our way through bit-by-bit :->. */
891 /* EEPROM_Ctrl bits. */
892 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
893 #define EE_CS 0x02 /* EEPROM chip select. */
894 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
895 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
896 #define EE_ENB (0x4800 | EE_CS)
897 #define EE_WRITE_0 0x4802
898 #define EE_WRITE_1 0x4806
899 #define EE_OFFSET SCBeeprom
901 /* The fixes for the code were kindly provided by Dragan Stancevic
904 The publicly available sheet 64486302 (sec. 3.1) specifies 1us access
905 interval for serial EEPROM. However, it looks like that there is an
906 additional requirement dictating larger udelay's in the code below.
908 static int __devinit do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len)
911 void __iomem *ee_addr = ioaddr + SCBeeprom;
913 iowrite16(EE_ENB, ee_addr); udelay(2);
914 iowrite16(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2);
916 /* Shift the command bits out. */
918 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
919 iowrite16(dataval, ee_addr); udelay(2);
920 iowrite16(dataval | EE_SHIFT_CLK, ee_addr); udelay(2);
921 retval = (retval << 1) | ((ioread16(ee_addr) & EE_DATA_READ) ? 1 : 0);
922 } while (--cmd_len >= 0);
923 iowrite16(EE_ENB, ee_addr); udelay(2);
925 /* Terminate the EEPROM access. */
926 iowrite16(EE_ENB & ~EE_CS, ee_addr);
930 static int mdio_read(struct net_device *dev, int phy_id, int location)
932 struct speedo_private *sp = netdev_priv(dev);
933 void __iomem *ioaddr = sp->regs;
934 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
935 iowrite32(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
937 val = ioread32(ioaddr + SCBCtrlMDI);
938 if (--boguscnt < 0) {
939 printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val);
942 } while (! (val & 0x10000000));
946 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
948 struct speedo_private *sp = netdev_priv(dev);
949 void __iomem *ioaddr = sp->regs;
950 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
951 iowrite32(0x04000000 | (location<<16) | (phy_id<<21) | value,
952 ioaddr + SCBCtrlMDI);
954 val = ioread32(ioaddr + SCBCtrlMDI);
955 if (--boguscnt < 0) {
956 printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val);
959 } while (! (val & 0x10000000));
963 speedo_open(struct net_device *dev)
965 struct speedo_private *sp = netdev_priv(dev);
966 void __iomem *ioaddr = sp->regs;
969 if (netif_msg_ifup(sp))
970 printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq);
972 pci_set_power_state(sp->pdev, PCI_D0);
974 /* Set up the Tx queue early.. */
979 sp->in_interrupt = 0;
981 /* .. we can safely take handler calls during init. */
982 retval = request_irq(dev->irq, &speedo_interrupt, IRQF_SHARED, dev->name, dev);
987 dev->if_port = sp->default_port;
989 #ifdef oh_no_you_dont_unless_you_honour_the_options_passed_in_to_us
990 /* Retrigger negotiation to reset previous errors. */
991 if ((sp->phy[0] & 0x8000) == 0) {
992 int phy_addr = sp->phy[0] & 0x1f ;
993 /* Use 0x3300 for restarting NWay, other values to force xcvr:
999 #ifdef honor_default_port
1000 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
1002 mdio_write(dev, phy_addr, MII_BMCR, 0x3300);
1007 speedo_init_rx_ring(dev);
1009 /* Fire up the hardware. */
1010 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1013 netdevice_start(dev);
1014 netif_start_queue(dev);
1016 /* Setup the chip and configure the multicast list. */
1017 sp->mc_setup_head = NULL;
1018 sp->mc_setup_tail = NULL;
1019 sp->flow_ctrl = sp->partner = 0;
1020 sp->rx_mode = -1; /* Invalid -> always reset the mode. */
1022 if ((sp->phy[0] & 0x8000) == 0)
1023 sp->mii_if.advertising = mdio_read(dev, sp->phy[0] & 0x1f, MII_ADVERTISE);
1025 mii_check_link(&sp->mii_if);
1027 if (netif_msg_ifup(sp)) {
1028 printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
1029 dev->name, ioread16(ioaddr + SCBStatus));
1032 /* Set the timer. The timer serves a dual purpose:
1033 1) to monitor the media interface (e.g. link beat) and perhaps switch
1034 to an alternate media type
1035 2) to monitor Rx activity, and restart the Rx process if the receiver
1037 sp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
1038 sp->timer.data = (unsigned long)dev;
1039 sp->timer.function = &speedo_timer; /* timer handler */
1040 add_timer(&sp->timer);
1042 /* No need to wait for the command unit to accept here. */
1043 if ((sp->phy[0] & 0x8000) == 0)
1044 mdio_read(dev, sp->phy[0] & 0x1f, MII_BMCR);
1049 /* Start the chip hardware after a full reset. */
1050 static void speedo_resume(struct net_device *dev)
1052 struct speedo_private *sp = netdev_priv(dev);
1053 void __iomem *ioaddr = sp->regs;
1055 /* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
1056 sp->tx_threshold = 0x01208000;
1058 /* Set the segment registers to '0'. */
1059 if (wait_for_cmd_done(dev, sp) != 0) {
1060 iowrite32(PortPartialReset, ioaddr + SCBPort);
1064 iowrite32(0, ioaddr + SCBPointer);
1065 ioread32(ioaddr + SCBPointer); /* Flush to PCI. */
1066 udelay(10); /* Bogus, but it avoids the bug. */
1068 /* Note: these next two operations can take a while. */
1069 do_slow_command(dev, sp, RxAddrLoad);
1070 do_slow_command(dev, sp, CUCmdBase);
1072 /* Load the statistics block and rx ring addresses. */
1073 iowrite32(sp->lstats_dma, ioaddr + SCBPointer);
1074 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1076 iowrite8(CUStatsAddr, ioaddr + SCBCmd);
1077 sp->lstats->done_marker = 0;
1078 wait_for_cmd_done(dev, sp);
1080 if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) {
1081 if (netif_msg_rx_err(sp))
1082 printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n",
1085 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1086 ioaddr + SCBPointer);
1087 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1090 /* Note: RxStart should complete instantly. */
1091 do_slow_command(dev, sp, RxStart);
1092 do_slow_command(dev, sp, CUDumpStats);
1094 /* Fill the first command with our physical address. */
1096 struct descriptor *ias_cmd;
1099 (struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE];
1100 /* Avoid a bug(?!) here by marking the command already completed. */
1101 ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
1103 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1104 memcpy(ias_cmd->params, dev->dev_addr, 6);
1106 clear_suspend(sp->last_cmd);
1107 sp->last_cmd = ias_cmd;
1110 /* Start the chip's Tx process and unmask interrupts. */
1111 iowrite32(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE),
1112 ioaddr + SCBPointer);
1113 /* We are not ACK-ing FCP and ER in the interrupt handler yet so they should
1114 remain masked --Dragan */
1115 iowrite16(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd);
1119 * Sometimes the receiver stops making progress. This routine knows how to
1120 * get it going again, without losing packets or being otherwise nasty like
1121 * a chip reset would be. Previously the driver had a whole sequence
1122 * of if RxSuspended, if it's no buffers do one thing, if it's no resources,
1123 * do another, etc. But those things don't really matter. Separate logic
1124 * in the ISR provides for allocating buffers--the other half of operation
1125 * is just making sure the receiver is active. speedo_rx_soft_reset does that.
1126 * This problem with the old, more involved algorithm is shown up under
1127 * ping floods on the order of 60K packets/second on a 100Mbps fdx network.
1130 speedo_rx_soft_reset(struct net_device *dev)
1132 struct speedo_private *sp = netdev_priv(dev);
1134 void __iomem *ioaddr;
1137 if (wait_for_cmd_done(dev, sp) != 0) {
1138 printk("%s: previous command stalled\n", dev->name);
1142 * Put the hardware into a known state.
1144 iowrite8(RxAbort, ioaddr + SCBCmd);
1146 rfd = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
1148 rfd->rx_buf_addr = 0xffffffff;
1150 if (wait_for_cmd_done(dev, sp) != 0) {
1151 printk("%s: RxAbort command stalled\n", dev->name);
1154 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1155 ioaddr + SCBPointer);
1156 iowrite8(RxStart, ioaddr + SCBCmd);
1160 /* Media monitoring and control. */
1161 static void speedo_timer(unsigned long data)
1163 struct net_device *dev = (struct net_device *)data;
1164 struct speedo_private *sp = netdev_priv(dev);
1165 void __iomem *ioaddr = sp->regs;
1166 int phy_num = sp->phy[0] & 0x1f;
1168 /* We have MII and lost link beat. */
1169 if ((sp->phy[0] & 0x8000) == 0) {
1170 int partner = mdio_read(dev, phy_num, MII_LPA);
1171 if (partner != sp->partner) {
1172 int flow_ctrl = sp->mii_if.advertising & partner & 0x0400 ? 1 : 0;
1173 if (netif_msg_link(sp)) {
1174 printk(KERN_DEBUG "%s: Link status change.\n", dev->name);
1175 printk(KERN_DEBUG "%s: Old partner %x, new %x, adv %x.\n",
1176 dev->name, sp->partner, partner, sp->mii_if.advertising);
1178 sp->partner = partner;
1179 if (flow_ctrl != sp->flow_ctrl) {
1180 sp->flow_ctrl = flow_ctrl;
1181 sp->rx_mode = -1; /* Trigger a reload. */
1185 mii_check_link(&sp->mii_if);
1186 if (netif_msg_timer(sp)) {
1187 printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n",
1188 dev->name, ioread16(ioaddr + SCBStatus));
1190 if (sp->rx_mode < 0 ||
1191 (sp->rx_bug && jiffies - sp->last_rx_time > 2*HZ)) {
1192 /* We haven't received a packet in a Long Time. We might have been
1193 bitten by the receiver hang bug. This can be cleared by sending
1194 a set multicast list command. */
1195 if (netif_msg_timer(sp))
1196 printk(KERN_DEBUG "%s: Sending a multicast list set command"
1197 " from a timer routine,"
1198 " m=%d, j=%ld, l=%ld.\n",
1199 dev->name, sp->rx_mode, jiffies, sp->last_rx_time);
1202 /* We must continue to monitor the media. */
1203 sp->timer.expires = RUN_AT(2*HZ); /* 2.0 sec. */
1204 add_timer(&sp->timer);
1207 static void speedo_show_state(struct net_device *dev)
1209 struct speedo_private *sp = netdev_priv(dev);
1212 if (netif_msg_pktdata(sp)) {
1213 printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %u / %u:\n",
1214 dev->name, sp->cur_tx, sp->dirty_tx);
1215 for (i = 0; i < TX_RING_SIZE; i++)
1216 printk(KERN_DEBUG "%s: %c%c%2d %8.8x.\n", dev->name,
1217 i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
1218 i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
1219 i, sp->tx_ring[i].status);
1221 printk(KERN_DEBUG "%s: Printing Rx ring"
1222 " (next to receive into %u, dirty index %u).\n",
1223 dev->name, sp->cur_rx, sp->dirty_rx);
1224 for (i = 0; i < RX_RING_SIZE; i++)
1225 printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", dev->name,
1226 sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ',
1227 i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ',
1228 i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ',
1229 i, (sp->rx_ringp[i] != NULL) ?
1230 (unsigned)sp->rx_ringp[i]->status : 0);
1235 void __iomem *ioaddr = sp->regs;
1236 int phy_num = sp->phy[0] & 0x1f;
1237 for (i = 0; i < 16; i++) {
1238 /* FIXME: what does it mean? --SAW */
1240 printk(KERN_DEBUG "%s: PHY index %d register %d is %4.4x.\n",
1241 dev->name, phy_num, i, mdio_read(dev, phy_num, i));
1248 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1250 speedo_init_rx_ring(struct net_device *dev)
1252 struct speedo_private *sp = netdev_priv(dev);
1253 struct RxFD *rxf, *last_rxf = NULL;
1254 dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */;
1259 for (i = 0; i < RX_RING_SIZE; i++) {
1260 struct sk_buff *skb;
1261 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1263 rx_align(skb); /* Align IP on 16 byte boundary */
1264 sp->rx_skbuff[i] = skb;
1266 break; /* OK. Just initially short of Rx bufs. */
1267 skb->dev = dev; /* Mark as being used by this device. */
1268 rxf = (struct RxFD *)skb->data;
1269 sp->rx_ringp[i] = rxf;
1270 sp->rx_ring_dma[i] =
1271 pci_map_single(sp->pdev, rxf,
1272 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_BIDIRECTIONAL);
1273 skb_reserve(skb, sizeof(struct RxFD));
1275 last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]);
1276 pci_dma_sync_single_for_device(sp->pdev, last_rxf_dma,
1277 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1280 last_rxf_dma = sp->rx_ring_dma[i];
1281 rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */
1282 rxf->link = 0; /* None yet. */
1283 /* This field unused by i82557. */
1284 rxf->rx_buf_addr = 0xffffffff;
1285 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1286 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[i],
1287 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1289 sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1290 /* Mark the last entry as end-of-list. */
1291 last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */
1292 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[RX_RING_SIZE-1],
1293 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1294 sp->last_rxf = last_rxf;
1295 sp->last_rxf_dma = last_rxf_dma;
1298 static void speedo_purge_tx(struct net_device *dev)
1300 struct speedo_private *sp = netdev_priv(dev);
1303 while ((int)(sp->cur_tx - sp->dirty_tx) > 0) {
1304 entry = sp->dirty_tx % TX_RING_SIZE;
1305 if (sp->tx_skbuff[entry]) {
1306 sp->stats.tx_errors++;
1307 pci_unmap_single(sp->pdev,
1308 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1309 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1310 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1311 sp->tx_skbuff[entry] = NULL;
1315 while (sp->mc_setup_head != NULL) {
1316 struct speedo_mc_block *t;
1317 if (netif_msg_tx_err(sp))
1318 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1319 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1320 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1321 t = sp->mc_setup_head->next;
1322 kfree(sp->mc_setup_head);
1323 sp->mc_setup_head = t;
1325 sp->mc_setup_tail = NULL;
1327 netif_wake_queue(dev);
1330 static void reset_mii(struct net_device *dev)
1332 struct speedo_private *sp = netdev_priv(dev);
1334 /* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */
1335 if ((sp->phy[0] & 0x8000) == 0) {
1336 int phy_addr = sp->phy[0] & 0x1f;
1337 int advertising = mdio_read(dev, phy_addr, MII_ADVERTISE);
1338 int mii_bmcr = mdio_read(dev, phy_addr, MII_BMCR);
1339 mdio_write(dev, phy_addr, MII_BMCR, 0x0400);
1340 mdio_write(dev, phy_addr, MII_BMSR, 0x0000);
1341 mdio_write(dev, phy_addr, MII_ADVERTISE, 0x0000);
1342 mdio_write(dev, phy_addr, MII_BMCR, 0x8000);
1343 #ifdef honor_default_port
1344 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
1346 mdio_read(dev, phy_addr, MII_BMCR);
1347 mdio_write(dev, phy_addr, MII_BMCR, mii_bmcr);
1348 mdio_write(dev, phy_addr, MII_ADVERTISE, advertising);
1353 static void speedo_tx_timeout(struct net_device *dev)
1355 struct speedo_private *sp = netdev_priv(dev);
1356 void __iomem *ioaddr = sp->regs;
1357 int status = ioread16(ioaddr + SCBStatus);
1358 unsigned long flags;
1360 if (netif_msg_tx_err(sp)) {
1361 printk(KERN_WARNING "%s: Transmit timed out: status %4.4x "
1362 " %4.4x at %d/%d command %8.8x.\n",
1363 dev->name, status, ioread16(ioaddr + SCBCmd),
1364 sp->dirty_tx, sp->cur_tx,
1365 sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status);
1368 speedo_show_state(dev);
1370 if ((status & 0x00C0) != 0x0080
1371 && (status & 0x003C) == 0x0010) {
1372 /* Only the command unit has stopped. */
1373 printk(KERN_WARNING "%s: Trying to restart the transmitter...\n",
1375 iowrite32(TX_RING_ELEM_DMA(sp, dirty_tx % TX_RING_SIZE]),
1376 ioaddr + SCBPointer);
1377 iowrite16(CUStart, ioaddr + SCBCmd);
1383 del_timer_sync(&sp->timer);
1384 /* Reset the Tx and Rx units. */
1385 iowrite32(PortReset, ioaddr + SCBPort);
1386 /* We may get spurious interrupts here. But I don't think that they
1387 may do much harm. 1999/12/09 SAW */
1389 /* Disable interrupts. */
1390 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1391 synchronize_irq(dev->irq);
1392 speedo_tx_buffer_gc(dev);
1393 /* Free as much as possible.
1394 It helps to recover from a hang because of out-of-memory.
1395 It also simplifies speedo_resume() in case TX ring is full or
1396 close-to-be full. */
1397 speedo_purge_tx(dev);
1398 speedo_refill_rx_buffers(dev, 1);
1399 spin_lock_irqsave(&sp->lock, flags);
1402 dev->trans_start = jiffies;
1403 spin_unlock_irqrestore(&sp->lock, flags);
1404 set_rx_mode(dev); /* it takes the spinlock itself --SAW */
1405 /* Reset MII transceiver. Do it before starting the timer to serialize
1406 mdio_xxx operations. Yes, it's a paranoya :-) 2000/05/09 SAW */
1408 sp->timer.expires = RUN_AT(2*HZ);
1409 add_timer(&sp->timer);
1415 speedo_start_xmit(struct sk_buff *skb, struct net_device *dev)
1417 struct speedo_private *sp = netdev_priv(dev);
1418 void __iomem *ioaddr = sp->regs;
1421 /* Prevent interrupts from changing the Tx ring from underneath us. */
1422 unsigned long flags;
1424 spin_lock_irqsave(&sp->lock, flags);
1426 /* Check if there are enough space. */
1427 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1428 printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", dev->name);
1429 netif_stop_queue(dev);
1431 spin_unlock_irqrestore(&sp->lock, flags);
1435 /* Calculate the Tx descriptor entry. */
1436 entry = sp->cur_tx++ % TX_RING_SIZE;
1438 sp->tx_skbuff[entry] = skb;
1439 sp->tx_ring[entry].status =
1440 cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
1441 if (!(entry & ((TX_RING_SIZE>>2)-1)))
1442 sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr);
1443 sp->tx_ring[entry].link =
1444 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1445 sp->tx_ring[entry].tx_desc_addr =
1446 cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET);
1447 /* The data region is always in one buffer descriptor. */
1448 sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
1449 sp->tx_ring[entry].tx_buf_addr0 =
1450 cpu_to_le32(pci_map_single(sp->pdev, skb->data,
1451 skb->len, PCI_DMA_TODEVICE));
1452 sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
1454 /* workaround for hardware bug on 10 mbit half duplex */
1456 if ((sp->partner == 0) && (sp->chip_id == 1)) {
1457 wait_for_cmd_done(dev, sp);
1458 iowrite8(0 , ioaddr + SCBCmd);
1462 /* Trigger the command unit resume. */
1463 wait_for_cmd_done(dev, sp);
1464 clear_suspend(sp->last_cmd);
1465 /* We want the time window between clearing suspend flag on the previous
1466 command and resuming CU to be as small as possible.
1467 Interrupts in between are very undesired. --SAW */
1468 iowrite8(CUResume, ioaddr + SCBCmd);
1469 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
1471 /* Leave room for set_rx_mode(). If there is no more space than reserved
1472 for multicast filter mark the ring as full. */
1473 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1474 netif_stop_queue(dev);
1478 spin_unlock_irqrestore(&sp->lock, flags);
1480 dev->trans_start = jiffies;
1485 static void speedo_tx_buffer_gc(struct net_device *dev)
1487 unsigned int dirty_tx;
1488 struct speedo_private *sp = netdev_priv(dev);
1490 dirty_tx = sp->dirty_tx;
1491 while ((int)(sp->cur_tx - dirty_tx) > 0) {
1492 int entry = dirty_tx % TX_RING_SIZE;
1493 int status = le32_to_cpu(sp->tx_ring[entry].status);
1495 if (netif_msg_tx_done(sp))
1496 printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
1498 if ((status & StatusComplete) == 0)
1499 break; /* It still hasn't been processed. */
1500 if (status & TxUnderrun)
1501 if (sp->tx_threshold < 0x01e08000) {
1502 if (netif_msg_tx_err(sp))
1503 printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n",
1505 sp->tx_threshold += 0x00040000;
1507 /* Free the original skb. */
1508 if (sp->tx_skbuff[entry]) {
1509 sp->stats.tx_packets++; /* Count only user packets. */
1510 sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
1511 pci_unmap_single(sp->pdev,
1512 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1513 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1514 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1515 sp->tx_skbuff[entry] = NULL;
1520 if (netif_msg_tx_err(sp) && (int)(sp->cur_tx - dirty_tx) > TX_RING_SIZE) {
1521 printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d,"
1523 dirty_tx, sp->cur_tx, sp->tx_full);
1524 dirty_tx += TX_RING_SIZE;
1527 while (sp->mc_setup_head != NULL
1528 && (int)(dirty_tx - sp->mc_setup_head->tx - 1) > 0) {
1529 struct speedo_mc_block *t;
1530 if (netif_msg_tx_err(sp))
1531 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1532 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1533 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1534 t = sp->mc_setup_head->next;
1535 kfree(sp->mc_setup_head);
1536 sp->mc_setup_head = t;
1538 if (sp->mc_setup_head == NULL)
1539 sp->mc_setup_tail = NULL;
1541 sp->dirty_tx = dirty_tx;
1544 /* The interrupt handler does all of the Rx thread work and cleans up
1545 after the Tx thread. */
1546 static irqreturn_t speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
1548 struct net_device *dev = (struct net_device *)dev_instance;
1549 struct speedo_private *sp;
1550 void __iomem *ioaddr;
1551 long boguscnt = max_interrupt_work;
1552 unsigned short status;
1553 unsigned int handled = 0;
1555 sp = netdev_priv(dev);
1558 #ifndef final_version
1559 /* A lock to prevent simultaneous entry on SMP machines. */
1560 if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
1561 printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
1563 sp->in_interrupt = 0; /* Avoid halting machine. */
1569 status = ioread16(ioaddr + SCBStatus);
1570 /* Acknowledge all of the current interrupt sources ASAP. */
1571 /* Will change from 0xfc00 to 0xff00 when we start handling
1572 FCP and ER interrupts --Dragan */
1573 iowrite16(status & 0xfc00, ioaddr + SCBStatus);
1575 if (netif_msg_intr(sp))
1576 printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n",
1579 if ((status & 0xfc00) == 0)
1584 if ((status & 0x5000) || /* Packet received, or Rx error. */
1585 (sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed)
1586 /* Need to gather the postponed packet. */
1589 /* Always check if all rx buffers are allocated. --SAW */
1590 speedo_refill_rx_buffers(dev, 0);
1592 spin_lock(&sp->lock);
1594 * The chip may have suspended reception for various reasons.
1595 * Check for that, and re-prime it should this be the case.
1597 switch ((status >> 2) & 0xf) {
1600 case 1: /* Suspended */
1601 case 2: /* No resources (RxFDs) */
1602 case 9: /* Suspended with no more RBDs */
1603 case 10: /* No resources due to no RBDs */
1604 case 12: /* Ready with no RBDs */
1605 speedo_rx_soft_reset(dev);
1607 case 3: case 5: case 6: case 7: case 8:
1608 case 11: case 13: case 14: case 15:
1609 /* these are all reserved values */
1614 /* User interrupt, Command/Tx unit interrupt or CU not active. */
1615 if (status & 0xA400) {
1616 speedo_tx_buffer_gc(dev);
1618 && (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) {
1619 /* The ring is no longer full. */
1621 netif_wake_queue(dev); /* Attention: under a spinlock. --SAW */
1625 spin_unlock(&sp->lock);
1627 if (--boguscnt < 0) {
1628 printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
1630 /* Clear all interrupt sources. */
1631 /* Will change from 0xfc00 to 0xff00 when we start handling
1632 FCP and ER interrupts --Dragan */
1633 iowrite16(0xfc00, ioaddr + SCBStatus);
1638 if (netif_msg_intr(sp))
1639 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1640 dev->name, ioread16(ioaddr + SCBStatus));
1642 clear_bit(0, (void*)&sp->in_interrupt);
1643 return IRQ_RETVAL(handled);
1646 static inline struct RxFD *speedo_rx_alloc(struct net_device *dev, int entry)
1648 struct speedo_private *sp = netdev_priv(dev);
1650 struct sk_buff *skb;
1651 /* Get a fresh skbuff to replace the consumed one. */
1652 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1654 rx_align(skb); /* Align IP on 16 byte boundary */
1655 sp->rx_skbuff[entry] = skb;
1657 sp->rx_ringp[entry] = NULL;
1660 rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->data;
1661 sp->rx_ring_dma[entry] =
1662 pci_map_single(sp->pdev, rxf,
1663 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1665 skb_reserve(skb, sizeof(struct RxFD));
1666 rxf->rx_buf_addr = 0xffffffff;
1667 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1668 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1672 static inline void speedo_rx_link(struct net_device *dev, int entry,
1673 struct RxFD *rxf, dma_addr_t rxf_dma)
1675 struct speedo_private *sp = netdev_priv(dev);
1676 rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */
1677 rxf->link = 0; /* None yet. */
1678 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1679 sp->last_rxf->link = cpu_to_le32(rxf_dma);
1680 sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
1681 pci_dma_sync_single_for_device(sp->pdev, sp->last_rxf_dma,
1682 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1684 sp->last_rxf_dma = rxf_dma;
1687 static int speedo_refill_rx_buf(struct net_device *dev, int force)
1689 struct speedo_private *sp = netdev_priv(dev);
1693 entry = sp->dirty_rx % RX_RING_SIZE;
1694 if (sp->rx_skbuff[entry] == NULL) {
1695 rxf = speedo_rx_alloc(dev, entry);
1699 if (netif_msg_rx_err(sp) || !(sp->rx_ring_state & RrOOMReported)) {
1700 printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n",
1702 sp->rx_ring_state |= RrOOMReported;
1704 speedo_show_state(dev);
1706 return -1; /* Better luck next time! */
1707 /* Borrow an skb from one of next entries. */
1708 for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++)
1709 if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL)
1711 if (forw == sp->cur_rx)
1713 forw_entry = forw % RX_RING_SIZE;
1714 sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry];
1715 sp->rx_skbuff[forw_entry] = NULL;
1716 rxf = sp->rx_ringp[forw_entry];
1717 sp->rx_ringp[forw_entry] = NULL;
1718 sp->rx_ringp[entry] = rxf;
1721 rxf = sp->rx_ringp[entry];
1723 speedo_rx_link(dev, entry, rxf, sp->rx_ring_dma[entry]);
1725 sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */
1729 static void speedo_refill_rx_buffers(struct net_device *dev, int force)
1731 struct speedo_private *sp = netdev_priv(dev);
1733 /* Refill the RX ring. */
1734 while ((int)(sp->cur_rx - sp->dirty_rx) > 0 &&
1735 speedo_refill_rx_buf(dev, force) != -1);
1739 speedo_rx(struct net_device *dev)
1741 struct speedo_private *sp = netdev_priv(dev);
1742 int entry = sp->cur_rx % RX_RING_SIZE;
1743 int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;
1747 if (netif_msg_intr(sp))
1748 printk(KERN_DEBUG " In speedo_rx().\n");
1749 /* If we own the next entry, it's a new packet. Send it up. */
1750 while (sp->rx_ringp[entry] != NULL) {
1754 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1755 sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1756 status = le32_to_cpu(sp->rx_ringp[entry]->status);
1757 pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff;
1759 if (!(status & RxComplete))
1762 if (--rx_work_limit < 0)
1765 /* Check for a rare out-of-memory case: the current buffer is
1766 the last buffer allocated in the RX ring. --SAW */
1767 if (sp->last_rxf == sp->rx_ringp[entry]) {
1768 /* Postpone the packet. It'll be reaped at an interrupt when this
1769 packet is no longer the last packet in the ring. */
1770 if (netif_msg_rx_err(sp))
1771 printk(KERN_DEBUG "%s: RX packet postponed!\n",
1773 sp->rx_ring_state |= RrPostponed;
1777 if (netif_msg_rx_status(sp))
1778 printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status,
1780 if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
1781 if (status & RxErrTooBig)
1782 printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
1783 "status %8.8x!\n", dev->name, status);
1784 else if (! (status & RxOK)) {
1785 /* There was a fatal error. This *should* be impossible. */
1786 sp->stats.rx_errors++;
1787 printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
1792 struct sk_buff *skb;
1794 /* Check if the packet is long enough to just accept without
1795 copying to a properly sized skbuff. */
1796 if (pkt_len < rx_copybreak
1797 && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
1799 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1800 /* 'skb_put()' points to the start of sk_buff data area. */
1801 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1802 sizeof(struct RxFD) + pkt_len,
1803 PCI_DMA_FROMDEVICE);
1805 #if 1 || USE_IP_CSUM
1806 /* Packet is in one chunk -- we can copy + cksum. */
1807 eth_copy_and_sum(skb, sp->rx_skbuff[entry]->data, pkt_len, 0);
1808 skb_put(skb, pkt_len);
1810 memcpy(skb_put(skb, pkt_len), sp->rx_skbuff[entry]->data,
1813 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1814 sizeof(struct RxFD) + pkt_len,
1815 PCI_DMA_FROMDEVICE);
1818 /* Pass up the already-filled skbuff. */
1819 skb = sp->rx_skbuff[entry];
1821 printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
1825 sp->rx_skbuff[entry] = NULL;
1826 skb_put(skb, pkt_len);
1828 sp->rx_ringp[entry] = NULL;
1829 pci_unmap_single(sp->pdev, sp->rx_ring_dma[entry],
1830 PKT_BUF_SZ + sizeof(struct RxFD),
1831 PCI_DMA_FROMDEVICE);
1833 skb->protocol = eth_type_trans(skb, dev);
1835 dev->last_rx = jiffies;
1836 sp->stats.rx_packets++;
1837 sp->stats.rx_bytes += pkt_len;
1839 entry = (++sp->cur_rx) % RX_RING_SIZE;
1840 sp->rx_ring_state &= ~RrPostponed;
1841 /* Refill the recently taken buffers.
1842 Do it one-by-one to handle traffic bursts better. */
1843 if (alloc_ok && speedo_refill_rx_buf(dev, 0) == -1)
1847 /* Try hard to refill the recently taken buffers. */
1848 speedo_refill_rx_buffers(dev, 1);
1851 sp->last_rx_time = jiffies;
1857 speedo_close(struct net_device *dev)
1859 struct speedo_private *sp = netdev_priv(dev);
1860 void __iomem *ioaddr = sp->regs;
1863 netdevice_stop(dev);
1864 netif_stop_queue(dev);
1866 if (netif_msg_ifdown(sp))
1867 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n",
1868 dev->name, ioread16(ioaddr + SCBStatus));
1870 /* Shut off the media monitoring timer. */
1871 del_timer_sync(&sp->timer);
1873 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1875 /* Shutting down the chip nicely fails to disable flow control. So.. */
1876 iowrite32(PortPartialReset, ioaddr + SCBPort);
1877 ioread32(ioaddr + SCBPort); /* flush posted write */
1879 * The chip requires a 10 microsecond quiet period. Wait here!
1883 free_irq(dev->irq, dev);
1884 speedo_show_state(dev);
1886 /* Free all the skbuffs in the Rx and Tx queues. */
1887 for (i = 0; i < RX_RING_SIZE; i++) {
1888 struct sk_buff *skb = sp->rx_skbuff[i];
1889 sp->rx_skbuff[i] = NULL;
1890 /* Clear the Rx descriptors. */
1892 pci_unmap_single(sp->pdev,
1894 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1899 for (i = 0; i < TX_RING_SIZE; i++) {
1900 struct sk_buff *skb = sp->tx_skbuff[i];
1901 sp->tx_skbuff[i] = NULL;
1902 /* Clear the Tx descriptors. */
1904 pci_unmap_single(sp->pdev,
1905 le32_to_cpu(sp->tx_ring[i].tx_buf_addr0),
1906 skb->len, PCI_DMA_TODEVICE);
1911 /* Free multicast setting blocks. */
1912 for (i = 0; sp->mc_setup_head != NULL; i++) {
1913 struct speedo_mc_block *t;
1914 t = sp->mc_setup_head->next;
1915 kfree(sp->mc_setup_head);
1916 sp->mc_setup_head = t;
1918 sp->mc_setup_tail = NULL;
1919 if (netif_msg_ifdown(sp))
1920 printk(KERN_DEBUG "%s: %d multicast blocks dropped.\n", dev->name, i);
1922 pci_set_power_state(sp->pdev, PCI_D2);
1927 /* The Speedo-3 has an especially awkward and unusable method of getting
1928 statistics out of the chip. It takes an unpredictable length of time
1929 for the dump-stats command to complete. To avoid a busy-wait loop we
1930 update the stats with the previous dump results, and then trigger a
1933 Oh, and incoming frames are dropped while executing dump-stats!
1935 static struct net_device_stats *
1936 speedo_get_stats(struct net_device *dev)
1938 struct speedo_private *sp = netdev_priv(dev);
1939 void __iomem *ioaddr = sp->regs;
1941 /* Update only if the previous dump finished. */
1942 if (sp->lstats->done_marker == le32_to_cpu(0xA007)) {
1943 sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats->tx_coll16_errs);
1944 sp->stats.tx_window_errors += le32_to_cpu(sp->lstats->tx_late_colls);
1945 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_underruns);
1946 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_lost_carrier);
1947 /*sp->stats.tx_deferred += le32_to_cpu(sp->lstats->tx_deferred);*/
1948 sp->stats.collisions += le32_to_cpu(sp->lstats->tx_total_colls);
1949 sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats->rx_crc_errs);
1950 sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats->rx_align_errs);
1951 sp->stats.rx_over_errors += le32_to_cpu(sp->lstats->rx_resource_errs);
1952 sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats->rx_overrun_errs);
1953 sp->stats.rx_length_errors += le32_to_cpu(sp->lstats->rx_runt_errs);
1954 sp->lstats->done_marker = 0x0000;
1955 if (netif_running(dev)) {
1956 unsigned long flags;
1957 /* Take a spinlock to make wait_for_cmd_done and sending the
1958 command atomic. --SAW */
1959 spin_lock_irqsave(&sp->lock, flags);
1960 wait_for_cmd_done(dev, sp);
1961 iowrite8(CUDumpStats, ioaddr + SCBCmd);
1962 spin_unlock_irqrestore(&sp->lock, flags);
1968 static void speedo_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1970 struct speedo_private *sp = netdev_priv(dev);
1971 strncpy(info->driver, "eepro100", sizeof(info->driver)-1);
1972 strncpy(info->version, version, sizeof(info->version)-1);
1974 strcpy(info->bus_info, pci_name(sp->pdev));
1977 static int speedo_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1979 struct speedo_private *sp = netdev_priv(dev);
1980 spin_lock_irq(&sp->lock);
1981 mii_ethtool_gset(&sp->mii_if, ecmd);
1982 spin_unlock_irq(&sp->lock);
1986 static int speedo_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1988 struct speedo_private *sp = netdev_priv(dev);
1990 spin_lock_irq(&sp->lock);
1991 res = mii_ethtool_sset(&sp->mii_if, ecmd);
1992 spin_unlock_irq(&sp->lock);
1996 static int speedo_nway_reset(struct net_device *dev)
1998 struct speedo_private *sp = netdev_priv(dev);
1999 return mii_nway_restart(&sp->mii_if);
2002 static u32 speedo_get_link(struct net_device *dev)
2004 struct speedo_private *sp = netdev_priv(dev);
2005 return mii_link_ok(&sp->mii_if);
2008 static u32 speedo_get_msglevel(struct net_device *dev)
2010 struct speedo_private *sp = netdev_priv(dev);
2011 return sp->msg_enable;
2014 static void speedo_set_msglevel(struct net_device *dev, u32 v)
2016 struct speedo_private *sp = netdev_priv(dev);
2020 static struct ethtool_ops ethtool_ops = {
2021 .get_drvinfo = speedo_get_drvinfo,
2022 .get_settings = speedo_get_settings,
2023 .set_settings = speedo_set_settings,
2024 .nway_reset = speedo_nway_reset,
2025 .get_link = speedo_get_link,
2026 .get_msglevel = speedo_get_msglevel,
2027 .set_msglevel = speedo_set_msglevel,
2030 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2032 struct speedo_private *sp = netdev_priv(dev);
2033 struct mii_ioctl_data *data = if_mii(rq);
2034 int phy = sp->phy[0] & 0x1f;
2039 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2042 case SIOCGMIIREG: /* Read MII PHY register. */
2043 /* FIXME: these operations need to be serialized with MDIO
2044 access from the timeout handler.
2045 They are currently serialized only with MDIO access from the
2046 timer routine. 2000/05/09 SAW */
2047 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2048 t = del_timer_sync(&sp->timer);
2049 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2051 add_timer(&sp->timer); /* may be set to the past --SAW */
2052 pci_set_power_state(sp->pdev, saved_acpi);
2055 case SIOCSMIIREG: /* Write MII PHY register. */
2056 if (!capable(CAP_NET_ADMIN))
2058 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2059 t = del_timer_sync(&sp->timer);
2060 mdio_write(dev, data->phy_id, data->reg_num, data->val_in);
2062 add_timer(&sp->timer); /* may be set to the past --SAW */
2063 pci_set_power_state(sp->pdev, saved_acpi);
2070 /* Set or clear the multicast filter for this adaptor.
2071 This is very ugly with Intel chips -- we usually have to execute an
2072 entire configuration command, plus process a multicast command.
2073 This is complicated. We must put a large configuration command and
2074 an arbitrarily-sized multicast command in the transmit list.
2075 To minimize the disruption -- the previous command might have already
2076 loaded the link -- we convert the current command block, normally a Tx
2077 command, into a no-op and link it to the new command.
2079 static void set_rx_mode(struct net_device *dev)
2081 struct speedo_private *sp = netdev_priv(dev);
2082 void __iomem *ioaddr = sp->regs;
2083 struct descriptor *last_cmd;
2085 unsigned long flags;
2088 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2090 } else if ((dev->flags & IFF_ALLMULTI) ||
2091 dev->mc_count > multicast_filter_limit) {
2096 if (netif_msg_rx_status(sp))
2097 printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", dev->name,
2098 sp->rx_mode, new_rx_mode);
2100 if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) {
2101 /* The Tx ring is full -- don't add anything! Hope the mode will be
2102 * set again later. */
2107 if (new_rx_mode != sp->rx_mode) {
2108 u8 *config_cmd_data;
2110 spin_lock_irqsave(&sp->lock, flags);
2111 entry = sp->cur_tx++ % TX_RING_SIZE;
2112 last_cmd = sp->last_cmd;
2113 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2115 sp->tx_skbuff[entry] = NULL; /* Redundant. */
2116 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
2117 sp->tx_ring[entry].link =
2118 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2119 config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
2120 /* Construct a full CmdConfig frame. */
2121 memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE);
2122 config_cmd_data[1] = (txfifo << 4) | rxfifo;
2123 config_cmd_data[4] = rxdmacount;
2124 config_cmd_data[5] = txdmacount + 0x80;
2125 config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0;
2126 /* 0x80 doesn't disable FC 0x84 does.
2127 Disable Flow control since we are not ACK-ing any FC interrupts
2128 for now. --Dragan */
2129 config_cmd_data[19] = 0x84;
2130 config_cmd_data[19] |= sp->mii_if.full_duplex ? 0x40 : 0;
2131 config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05;
2132 if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */
2133 config_cmd_data[15] |= 0x80;
2134 config_cmd_data[8] = 0;
2136 /* Trigger the command unit resume. */
2137 wait_for_cmd_done(dev, sp);
2138 clear_suspend(last_cmd);
2139 iowrite8(CUResume, ioaddr + SCBCmd);
2140 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2141 netif_stop_queue(dev);
2144 spin_unlock_irqrestore(&sp->lock, flags);
2147 if (new_rx_mode == 0 && dev->mc_count < 4) {
2148 /* The simple case of 0-3 multicast list entries occurs often, and
2149 fits within one tx_ring[] entry. */
2150 struct dev_mc_list *mclist;
2151 u16 *setup_params, *eaddrs;
2153 spin_lock_irqsave(&sp->lock, flags);
2154 entry = sp->cur_tx++ % TX_RING_SIZE;
2155 last_cmd = sp->last_cmd;
2156 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2158 sp->tx_skbuff[entry] = NULL;
2159 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
2160 sp->tx_ring[entry].link =
2161 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2162 sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
2163 setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr;
2164 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2165 /* Fill in the multicast addresses. */
2166 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2167 i++, mclist = mclist->next) {
2168 eaddrs = (u16 *)mclist->dmi_addr;
2169 *setup_params++ = *eaddrs++;
2170 *setup_params++ = *eaddrs++;
2171 *setup_params++ = *eaddrs++;
2174 wait_for_cmd_done(dev, sp);
2175 clear_suspend(last_cmd);
2176 /* Immediately trigger the command unit resume. */
2177 iowrite8(CUResume, ioaddr + SCBCmd);
2179 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2180 netif_stop_queue(dev);
2183 spin_unlock_irqrestore(&sp->lock, flags);
2184 } else if (new_rx_mode == 0) {
2185 struct dev_mc_list *mclist;
2186 u16 *setup_params, *eaddrs;
2187 struct speedo_mc_block *mc_blk;
2188 struct descriptor *mc_setup_frm;
2191 mc_blk = kmalloc(sizeof(*mc_blk) + 2 + multicast_filter_limit*6,
2193 if (mc_blk == NULL) {
2194 printk(KERN_ERR "%s: Failed to allocate a setup frame.\n",
2196 sp->rx_mode = -1; /* We failed, try again. */
2199 mc_blk->next = NULL;
2200 mc_blk->len = 2 + multicast_filter_limit*6;
2202 pci_map_single(sp->pdev, &mc_blk->frame, mc_blk->len,
2204 mc_setup_frm = &mc_blk->frame;
2206 /* Fill the setup frame. */
2207 if (netif_msg_ifup(sp))
2208 printk(KERN_DEBUG "%s: Constructing a setup frame at %p.\n",
2209 dev->name, mc_setup_frm);
2210 mc_setup_frm->cmd_status =
2211 cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList);
2212 /* Link set below. */
2213 setup_params = (u16 *)&mc_setup_frm->params;
2214 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2215 /* Fill in the multicast addresses. */
2216 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2217 i++, mclist = mclist->next) {
2218 eaddrs = (u16 *)mclist->dmi_addr;
2219 *setup_params++ = *eaddrs++;
2220 *setup_params++ = *eaddrs++;
2221 *setup_params++ = *eaddrs++;
2224 /* Disable interrupts while playing with the Tx Cmd list. */
2225 spin_lock_irqsave(&sp->lock, flags);
2227 if (sp->mc_setup_tail)
2228 sp->mc_setup_tail->next = mc_blk;
2230 sp->mc_setup_head = mc_blk;
2231 sp->mc_setup_tail = mc_blk;
2232 mc_blk->tx = sp->cur_tx;
2234 entry = sp->cur_tx++ % TX_RING_SIZE;
2235 last_cmd = sp->last_cmd;
2236 sp->last_cmd = mc_setup_frm;
2238 /* Change the command to a NoOp, pointing to the CmdMulti command. */
2239 sp->tx_skbuff[entry] = NULL;
2240 sp->tx_ring[entry].status = cpu_to_le32(CmdNOp);
2241 sp->tx_ring[entry].link = cpu_to_le32(mc_blk->frame_dma);
2243 /* Set the link in the setup frame. */
2244 mc_setup_frm->link =
2245 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2247 pci_dma_sync_single_for_device(sp->pdev, mc_blk->frame_dma,
2248 mc_blk->len, PCI_DMA_TODEVICE);
2250 wait_for_cmd_done(dev, sp);
2251 clear_suspend(last_cmd);
2252 /* Immediately trigger the command unit resume. */
2253 iowrite8(CUResume, ioaddr + SCBCmd);
2255 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2256 netif_stop_queue(dev);
2259 spin_unlock_irqrestore(&sp->lock, flags);
2261 if (netif_msg_rx_status(sp))
2262 printk(" CmdMCSetup frame length %d in entry %d.\n",
2263 dev->mc_count, entry);
2266 sp->rx_mode = new_rx_mode;
2270 static int eepro100_suspend(struct pci_dev *pdev, pm_message_t state)
2272 struct net_device *dev = pci_get_drvdata (pdev);
2273 struct speedo_private *sp = netdev_priv(dev);
2274 void __iomem *ioaddr = sp->regs;
2276 pci_save_state(pdev);
2278 if (!netif_running(dev))
2281 del_timer_sync(&sp->timer);
2283 netif_device_detach(dev);
2284 iowrite32(PortPartialReset, ioaddr + SCBPort);
2286 /* XXX call pci_set_power_state ()? */
2287 pci_disable_device(pdev);
2288 pci_set_power_state (pdev, PCI_D3hot);
2292 static int eepro100_resume(struct pci_dev *pdev)
2294 struct net_device *dev = pci_get_drvdata (pdev);
2295 struct speedo_private *sp = netdev_priv(dev);
2296 void __iomem *ioaddr = sp->regs;
2298 pci_set_power_state(pdev, PCI_D0);
2299 pci_restore_state(pdev);
2300 pci_enable_device(pdev);
2301 pci_set_master(pdev);
2303 if (!netif_running(dev))
2306 /* I'm absolutely uncertain if this part of code may work.
2308 - correct hardware reinitialization;
2309 - correct driver behavior between different steps of the
2311 - serialization with other driver calls.
2313 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
2315 netif_device_attach(dev);
2317 sp->flow_ctrl = sp->partner = 0;
2319 sp->timer.expires = RUN_AT(2*HZ);
2320 add_timer(&sp->timer);
2323 #endif /* CONFIG_PM */
2325 static void __devexit eepro100_remove_one (struct pci_dev *pdev)
2327 struct net_device *dev = pci_get_drvdata (pdev);
2328 struct speedo_private *sp = netdev_priv(dev);
2330 unregister_netdev(dev);
2332 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
2333 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
2335 pci_iounmap(pdev, sp->regs);
2336 pci_free_consistent(pdev, TX_RING_SIZE * sizeof(struct TxFD)
2337 + sizeof(struct speedo_stats),
2338 sp->tx_ring, sp->tx_ring_dma);
2339 pci_disable_device(pdev);
2343 static struct pci_device_id eepro100_pci_tbl[] = {
2344 { PCI_VENDOR_ID_INTEL, 0x1229, PCI_ANY_ID, PCI_ANY_ID, },
2345 { PCI_VENDOR_ID_INTEL, 0x1209, PCI_ANY_ID, PCI_ANY_ID, },
2346 { PCI_VENDOR_ID_INTEL, 0x1029, PCI_ANY_ID, PCI_ANY_ID, },
2347 { PCI_VENDOR_ID_INTEL, 0x1030, PCI_ANY_ID, PCI_ANY_ID, },
2348 { PCI_VENDOR_ID_INTEL, 0x1031, PCI_ANY_ID, PCI_ANY_ID, },
2349 { PCI_VENDOR_ID_INTEL, 0x1032, PCI_ANY_ID, PCI_ANY_ID, },
2350 { PCI_VENDOR_ID_INTEL, 0x1033, PCI_ANY_ID, PCI_ANY_ID, },
2351 { PCI_VENDOR_ID_INTEL, 0x1034, PCI_ANY_ID, PCI_ANY_ID, },
2352 { PCI_VENDOR_ID_INTEL, 0x1035, PCI_ANY_ID, PCI_ANY_ID, },
2353 { PCI_VENDOR_ID_INTEL, 0x1036, PCI_ANY_ID, PCI_ANY_ID, },
2354 { PCI_VENDOR_ID_INTEL, 0x1037, PCI_ANY_ID, PCI_ANY_ID, },
2355 { PCI_VENDOR_ID_INTEL, 0x1038, PCI_ANY_ID, PCI_ANY_ID, },
2356 { PCI_VENDOR_ID_INTEL, 0x1039, PCI_ANY_ID, PCI_ANY_ID, },
2357 { PCI_VENDOR_ID_INTEL, 0x103A, PCI_ANY_ID, PCI_ANY_ID, },
2358 { PCI_VENDOR_ID_INTEL, 0x103B, PCI_ANY_ID, PCI_ANY_ID, },
2359 { PCI_VENDOR_ID_INTEL, 0x103C, PCI_ANY_ID, PCI_ANY_ID, },
2360 { PCI_VENDOR_ID_INTEL, 0x103D, PCI_ANY_ID, PCI_ANY_ID, },
2361 { PCI_VENDOR_ID_INTEL, 0x103E, PCI_ANY_ID, PCI_ANY_ID, },
2362 { PCI_VENDOR_ID_INTEL, 0x1050, PCI_ANY_ID, PCI_ANY_ID, },
2363 { PCI_VENDOR_ID_INTEL, 0x1059, PCI_ANY_ID, PCI_ANY_ID, },
2364 { PCI_VENDOR_ID_INTEL, 0x1227, PCI_ANY_ID, PCI_ANY_ID, },
2365 { PCI_VENDOR_ID_INTEL, 0x2449, PCI_ANY_ID, PCI_ANY_ID, },
2366 { PCI_VENDOR_ID_INTEL, 0x2459, PCI_ANY_ID, PCI_ANY_ID, },
2367 { PCI_VENDOR_ID_INTEL, 0x245D, PCI_ANY_ID, PCI_ANY_ID, },
2368 { PCI_VENDOR_ID_INTEL, 0x5200, PCI_ANY_ID, PCI_ANY_ID, },
2369 { PCI_VENDOR_ID_INTEL, 0x5201, PCI_ANY_ID, PCI_ANY_ID, },
2372 MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl);
2374 static struct pci_driver eepro100_driver = {
2376 .id_table = eepro100_pci_tbl,
2377 .probe = eepro100_init_one,
2378 .remove = __devexit_p(eepro100_remove_one),
2380 .suspend = eepro100_suspend,
2381 .resume = eepro100_resume,
2382 #endif /* CONFIG_PM */
2385 static int __init eepro100_init_module(void)
2390 return pci_module_init(&eepro100_driver);
2393 static void __exit eepro100_cleanup_module(void)
2395 pci_unregister_driver(&eepro100_driver);
2398 module_init(eepro100_init_module);
2399 module_exit(eepro100_cleanup_module);
2403 * compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"