]> Git Repo - linux.git/blob - drivers/md/dm-thin.c
dm: avoid split of quoted strings where possible
[linux.git] / drivers / md / dm-thin.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25
26 #define DM_MSG_PREFIX   "thin"
27
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39                 "A percentage of time allocated for copy on write");
40
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Key building.
115  */
116 enum lock_space {
117         VIRTUAL,
118         PHYSICAL
119 };
120
121 static void build_key(struct dm_thin_device *td, enum lock_space ls,
122                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124         key->virtual = (ls == VIRTUAL);
125         key->dev = dm_thin_dev_id(td);
126         key->block_begin = b;
127         key->block_end = e;
128 }
129
130 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
131                            struct dm_cell_key *key)
132 {
133         build_key(td, PHYSICAL, b, b + 1llu, key);
134 }
135
136 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
137                               struct dm_cell_key *key)
138 {
139         build_key(td, VIRTUAL, b, b + 1llu, key);
140 }
141
142 /*----------------------------------------------------------------*/
143
144 #define THROTTLE_THRESHOLD (1 * HZ)
145
146 struct throttle {
147         struct rw_semaphore lock;
148         unsigned long threshold;
149         bool throttle_applied;
150 };
151
152 static void throttle_init(struct throttle *t)
153 {
154         init_rwsem(&t->lock);
155         t->throttle_applied = false;
156 }
157
158 static void throttle_work_start(struct throttle *t)
159 {
160         t->threshold = jiffies + THROTTLE_THRESHOLD;
161 }
162
163 static void throttle_work_update(struct throttle *t)
164 {
165         if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
166                 down_write(&t->lock);
167                 t->throttle_applied = true;
168         }
169 }
170
171 static void throttle_work_complete(struct throttle *t)
172 {
173         if (t->throttle_applied) {
174                 t->throttle_applied = false;
175                 up_write(&t->lock);
176         }
177 }
178
179 static void throttle_lock(struct throttle *t)
180 {
181         down_read(&t->lock);
182 }
183
184 static void throttle_unlock(struct throttle *t)
185 {
186         up_read(&t->lock);
187 }
188
189 /*----------------------------------------------------------------*/
190
191 /*
192  * A pool device ties together a metadata device and a data device.  It
193  * also provides the interface for creating and destroying internal
194  * devices.
195  */
196 struct dm_thin_new_mapping;
197
198 /*
199  * The pool runs in various modes.  Ordered in degraded order for comparisons.
200  */
201 enum pool_mode {
202         PM_WRITE,               /* metadata may be changed */
203         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
204
205         /*
206          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207          */
208         PM_OUT_OF_METADATA_SPACE,
209         PM_READ_ONLY,           /* metadata may not be changed */
210
211         PM_FAIL,                /* all I/O fails */
212 };
213
214 struct pool_features {
215         enum pool_mode mode;
216
217         bool zero_new_blocks:1;
218         bool discard_enabled:1;
219         bool discard_passdown:1;
220         bool error_if_no_space:1;
221 };
222
223 struct thin_c;
224 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
225 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
226 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
227
228 #define CELL_SORT_ARRAY_SIZE 8192
229
230 struct pool {
231         struct list_head list;
232         struct dm_target *ti;   /* Only set if a pool target is bound */
233
234         struct mapped_device *pool_md;
235         struct block_device *data_dev;
236         struct block_device *md_dev;
237         struct dm_pool_metadata *pmd;
238
239         dm_block_t low_water_blocks;
240         uint32_t sectors_per_block;
241         int sectors_per_block_shift;
242
243         struct pool_features pf;
244         bool low_water_triggered:1;     /* A dm event has been sent */
245         bool suspended:1;
246         bool out_of_data_space:1;
247
248         struct dm_bio_prison *prison;
249         struct dm_kcopyd_client *copier;
250
251         struct work_struct worker;
252         struct workqueue_struct *wq;
253         struct throttle throttle;
254         struct delayed_work waker;
255         struct delayed_work no_space_timeout;
256
257         unsigned long last_commit_jiffies;
258         unsigned int ref_count;
259
260         spinlock_t lock;
261         struct bio_list deferred_flush_bios;
262         struct bio_list deferred_flush_completions;
263         struct list_head prepared_mappings;
264         struct list_head prepared_discards;
265         struct list_head prepared_discards_pt2;
266         struct list_head active_thins;
267
268         struct dm_deferred_set *shared_read_ds;
269         struct dm_deferred_set *all_io_ds;
270
271         struct dm_thin_new_mapping *next_mapping;
272
273         process_bio_fn process_bio;
274         process_bio_fn process_discard;
275
276         process_cell_fn process_cell;
277         process_cell_fn process_discard_cell;
278
279         process_mapping_fn process_prepared_mapping;
280         process_mapping_fn process_prepared_discard;
281         process_mapping_fn process_prepared_discard_pt2;
282
283         struct dm_bio_prison_cell **cell_sort_array;
284
285         mempool_t mapping_pool;
286 };
287
288 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
289
290 static enum pool_mode get_pool_mode(struct pool *pool)
291 {
292         return pool->pf.mode;
293 }
294
295 static void notify_of_pool_mode_change(struct pool *pool)
296 {
297         const char *descs[] = {
298                 "write",
299                 "out-of-data-space",
300                 "read-only",
301                 "read-only",
302                 "fail"
303         };
304         const char *extra_desc = NULL;
305         enum pool_mode mode = get_pool_mode(pool);
306
307         if (mode == PM_OUT_OF_DATA_SPACE) {
308                 if (!pool->pf.error_if_no_space)
309                         extra_desc = " (queue IO)";
310                 else
311                         extra_desc = " (error IO)";
312         }
313
314         dm_table_event(pool->ti->table);
315         DMINFO("%s: switching pool to %s%s mode",
316                dm_device_name(pool->pool_md),
317                descs[(int)mode], extra_desc ? : "");
318 }
319
320 /*
321  * Target context for a pool.
322  */
323 struct pool_c {
324         struct dm_target *ti;
325         struct pool *pool;
326         struct dm_dev *data_dev;
327         struct dm_dev *metadata_dev;
328
329         dm_block_t low_water_blocks;
330         struct pool_features requested_pf; /* Features requested during table load */
331         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
332 };
333
334 /*
335  * Target context for a thin.
336  */
337 struct thin_c {
338         struct list_head list;
339         struct dm_dev *pool_dev;
340         struct dm_dev *origin_dev;
341         sector_t origin_size;
342         dm_thin_id dev_id;
343
344         struct pool *pool;
345         struct dm_thin_device *td;
346         struct mapped_device *thin_md;
347
348         bool requeue_mode:1;
349         spinlock_t lock;
350         struct list_head deferred_cells;
351         struct bio_list deferred_bio_list;
352         struct bio_list retry_on_resume_list;
353         struct rb_root sort_bio_list; /* sorted list of deferred bios */
354
355         /*
356          * Ensures the thin is not destroyed until the worker has finished
357          * iterating the active_thins list.
358          */
359         refcount_t refcount;
360         struct completion can_destroy;
361 };
362
363 /*----------------------------------------------------------------*/
364
365 static bool block_size_is_power_of_two(struct pool *pool)
366 {
367         return pool->sectors_per_block_shift >= 0;
368 }
369
370 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
371 {
372         return block_size_is_power_of_two(pool) ?
373                 (b << pool->sectors_per_block_shift) :
374                 (b * pool->sectors_per_block);
375 }
376
377 /*----------------------------------------------------------------*/
378
379 struct discard_op {
380         struct thin_c *tc;
381         struct blk_plug plug;
382         struct bio *parent_bio;
383         struct bio *bio;
384 };
385
386 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
387 {
388         BUG_ON(!parent);
389
390         op->tc = tc;
391         blk_start_plug(&op->plug);
392         op->parent_bio = parent;
393         op->bio = NULL;
394 }
395
396 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
397 {
398         struct thin_c *tc = op->tc;
399         sector_t s = block_to_sectors(tc->pool, data_b);
400         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
401
402         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
403                                       &op->bio);
404 }
405
406 static void end_discard(struct discard_op *op, int r)
407 {
408         if (op->bio) {
409                 /*
410                  * Even if one of the calls to issue_discard failed, we
411                  * need to wait for the chain to complete.
412                  */
413                 bio_chain(op->bio, op->parent_bio);
414                 op->bio->bi_opf = REQ_OP_DISCARD;
415                 submit_bio(op->bio);
416         }
417
418         blk_finish_plug(&op->plug);
419
420         /*
421          * Even if r is set, there could be sub discards in flight that we
422          * need to wait for.
423          */
424         if (r && !op->parent_bio->bi_status)
425                 op->parent_bio->bi_status = errno_to_blk_status(r);
426         bio_endio(op->parent_bio);
427 }
428
429 /*----------------------------------------------------------------*/
430
431 /*
432  * wake_worker() is used when new work is queued and when pool_resume is
433  * ready to continue deferred IO processing.
434  */
435 static void wake_worker(struct pool *pool)
436 {
437         queue_work(pool->wq, &pool->worker);
438 }
439
440 /*----------------------------------------------------------------*/
441
442 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
443                       struct dm_bio_prison_cell **cell_result)
444 {
445         int r;
446         struct dm_bio_prison_cell *cell_prealloc;
447
448         /*
449          * Allocate a cell from the prison's mempool.
450          * This might block but it can't fail.
451          */
452         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
453
454         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
455         if (r)
456                 /*
457                  * We reused an old cell; we can get rid of
458                  * the new one.
459                  */
460                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
461
462         return r;
463 }
464
465 static void cell_release(struct pool *pool,
466                          struct dm_bio_prison_cell *cell,
467                          struct bio_list *bios)
468 {
469         dm_cell_release(pool->prison, cell, bios);
470         dm_bio_prison_free_cell(pool->prison, cell);
471 }
472
473 static void cell_visit_release(struct pool *pool,
474                                void (*fn)(void *, struct dm_bio_prison_cell *),
475                                void *context,
476                                struct dm_bio_prison_cell *cell)
477 {
478         dm_cell_visit_release(pool->prison, fn, context, cell);
479         dm_bio_prison_free_cell(pool->prison, cell);
480 }
481
482 static void cell_release_no_holder(struct pool *pool,
483                                    struct dm_bio_prison_cell *cell,
484                                    struct bio_list *bios)
485 {
486         dm_cell_release_no_holder(pool->prison, cell, bios);
487         dm_bio_prison_free_cell(pool->prison, cell);
488 }
489
490 static void cell_error_with_code(struct pool *pool,
491                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
492 {
493         dm_cell_error(pool->prison, cell, error_code);
494         dm_bio_prison_free_cell(pool->prison, cell);
495 }
496
497 static blk_status_t get_pool_io_error_code(struct pool *pool)
498 {
499         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
500 }
501
502 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
503 {
504         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
505 }
506
507 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
508 {
509         cell_error_with_code(pool, cell, 0);
510 }
511
512 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
513 {
514         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
515 }
516
517 /*----------------------------------------------------------------*/
518
519 /*
520  * A global list of pools that uses a struct mapped_device as a key.
521  */
522 static struct dm_thin_pool_table {
523         struct mutex mutex;
524         struct list_head pools;
525 } dm_thin_pool_table;
526
527 static void pool_table_init(void)
528 {
529         mutex_init(&dm_thin_pool_table.mutex);
530         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
531 }
532
533 static void pool_table_exit(void)
534 {
535         mutex_destroy(&dm_thin_pool_table.mutex);
536 }
537
538 static void __pool_table_insert(struct pool *pool)
539 {
540         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
541         list_add(&pool->list, &dm_thin_pool_table.pools);
542 }
543
544 static void __pool_table_remove(struct pool *pool)
545 {
546         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
547         list_del(&pool->list);
548 }
549
550 static struct pool *__pool_table_lookup(struct mapped_device *md)
551 {
552         struct pool *pool = NULL, *tmp;
553
554         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
555
556         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
557                 if (tmp->pool_md == md) {
558                         pool = tmp;
559                         break;
560                 }
561         }
562
563         return pool;
564 }
565
566 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
567 {
568         struct pool *pool = NULL, *tmp;
569
570         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
571
572         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
573                 if (tmp->md_dev == md_dev) {
574                         pool = tmp;
575                         break;
576                 }
577         }
578
579         return pool;
580 }
581
582 /*----------------------------------------------------------------*/
583
584 struct dm_thin_endio_hook {
585         struct thin_c *tc;
586         struct dm_deferred_entry *shared_read_entry;
587         struct dm_deferred_entry *all_io_entry;
588         struct dm_thin_new_mapping *overwrite_mapping;
589         struct rb_node rb_node;
590         struct dm_bio_prison_cell *cell;
591 };
592
593 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
594 {
595         bio_list_merge(bios, master);
596         bio_list_init(master);
597 }
598
599 static void error_bio_list(struct bio_list *bios, blk_status_t error)
600 {
601         struct bio *bio;
602
603         while ((bio = bio_list_pop(bios))) {
604                 bio->bi_status = error;
605                 bio_endio(bio);
606         }
607 }
608
609 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
610                 blk_status_t error)
611 {
612         struct bio_list bios;
613
614         bio_list_init(&bios);
615
616         spin_lock_irq(&tc->lock);
617         __merge_bio_list(&bios, master);
618         spin_unlock_irq(&tc->lock);
619
620         error_bio_list(&bios, error);
621 }
622
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625         struct pool *pool = tc->pool;
626         struct list_head cells;
627         struct dm_bio_prison_cell *cell, *tmp;
628
629         INIT_LIST_HEAD(&cells);
630
631         spin_lock_irq(&tc->lock);
632         list_splice_init(&tc->deferred_cells, &cells);
633         spin_unlock_irq(&tc->lock);
634
635         list_for_each_entry_safe(cell, tmp, &cells, user_list)
636                 cell_requeue(pool, cell);
637 }
638
639 static void requeue_io(struct thin_c *tc)
640 {
641         struct bio_list bios;
642
643         bio_list_init(&bios);
644
645         spin_lock_irq(&tc->lock);
646         __merge_bio_list(&bios, &tc->deferred_bio_list);
647         __merge_bio_list(&bios, &tc->retry_on_resume_list);
648         spin_unlock_irq(&tc->lock);
649
650         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
651         requeue_deferred_cells(tc);
652 }
653
654 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
655 {
656         struct thin_c *tc;
657
658         rcu_read_lock();
659         list_for_each_entry_rcu(tc, &pool->active_thins, list)
660                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
661         rcu_read_unlock();
662 }
663
664 static void error_retry_list(struct pool *pool)
665 {
666         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
667 }
668
669 /*
670  * This section of code contains the logic for processing a thin device's IO.
671  * Much of the code depends on pool object resources (lists, workqueues, etc)
672  * but most is exclusively called from the thin target rather than the thin-pool
673  * target.
674  */
675
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678         struct pool *pool = tc->pool;
679         sector_t block_nr = bio->bi_iter.bi_sector;
680
681         if (block_size_is_power_of_two(pool))
682                 block_nr >>= pool->sectors_per_block_shift;
683         else
684                 (void) sector_div(block_nr, pool->sectors_per_block);
685
686         return block_nr;
687 }
688
689 /*
690  * Returns the _complete_ blocks that this bio covers.
691  */
692 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
693                                 dm_block_t *begin, dm_block_t *end)
694 {
695         struct pool *pool = tc->pool;
696         sector_t b = bio->bi_iter.bi_sector;
697         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
698
699         b += pool->sectors_per_block - 1ull; /* so we round up */
700
701         if (block_size_is_power_of_two(pool)) {
702                 b >>= pool->sectors_per_block_shift;
703                 e >>= pool->sectors_per_block_shift;
704         } else {
705                 (void) sector_div(b, pool->sectors_per_block);
706                 (void) sector_div(e, pool->sectors_per_block);
707         }
708
709         if (e < b)
710                 /* Can happen if the bio is within a single block. */
711                 e = b;
712
713         *begin = b;
714         *end = e;
715 }
716
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 {
719         struct pool *pool = tc->pool;
720         sector_t bi_sector = bio->bi_iter.bi_sector;
721
722         bio_set_dev(bio, tc->pool_dev->bdev);
723         if (block_size_is_power_of_two(pool))
724                 bio->bi_iter.bi_sector =
725                         (block << pool->sectors_per_block_shift) |
726                         (bi_sector & (pool->sectors_per_block - 1));
727         else
728                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
729                                  sector_div(bi_sector, pool->sectors_per_block);
730 }
731
732 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
733 {
734         bio_set_dev(bio, tc->origin_dev->bdev);
735 }
736
737 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
738 {
739         return op_is_flush(bio->bi_opf) &&
740                 dm_thin_changed_this_transaction(tc->td);
741 }
742
743 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
744 {
745         struct dm_thin_endio_hook *h;
746
747         if (bio_op(bio) == REQ_OP_DISCARD)
748                 return;
749
750         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
751         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
752 }
753
754 static void issue(struct thin_c *tc, struct bio *bio)
755 {
756         struct pool *pool = tc->pool;
757
758         if (!bio_triggers_commit(tc, bio)) {
759                 dm_submit_bio_remap(bio, NULL);
760                 return;
761         }
762
763         /*
764          * Complete bio with an error if earlier I/O caused changes to
765          * the metadata that can't be committed e.g, due to I/O errors
766          * on the metadata device.
767          */
768         if (dm_thin_aborted_changes(tc->td)) {
769                 bio_io_error(bio);
770                 return;
771         }
772
773         /*
774          * Batch together any bios that trigger commits and then issue a
775          * single commit for them in process_deferred_bios().
776          */
777         spin_lock_irq(&pool->lock);
778         bio_list_add(&pool->deferred_flush_bios, bio);
779         spin_unlock_irq(&pool->lock);
780 }
781
782 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
783 {
784         remap_to_origin(tc, bio);
785         issue(tc, bio);
786 }
787
788 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
789                             dm_block_t block)
790 {
791         remap(tc, bio, block);
792         issue(tc, bio);
793 }
794
795 /*----------------------------------------------------------------*/
796
797 /*
798  * Bio endio functions.
799  */
800 struct dm_thin_new_mapping {
801         struct list_head list;
802
803         bool pass_discard:1;
804         bool maybe_shared:1;
805
806         /*
807          * Track quiescing, copying and zeroing preparation actions.  When this
808          * counter hits zero the block is prepared and can be inserted into the
809          * btree.
810          */
811         atomic_t prepare_actions;
812
813         blk_status_t status;
814         struct thin_c *tc;
815         dm_block_t virt_begin, virt_end;
816         dm_block_t data_block;
817         struct dm_bio_prison_cell *cell;
818
819         /*
820          * If the bio covers the whole area of a block then we can avoid
821          * zeroing or copying.  Instead this bio is hooked.  The bio will
822          * still be in the cell, so care has to be taken to avoid issuing
823          * the bio twice.
824          */
825         struct bio *bio;
826         bio_end_io_t *saved_bi_end_io;
827 };
828
829 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
830 {
831         struct pool *pool = m->tc->pool;
832
833         if (atomic_dec_and_test(&m->prepare_actions)) {
834                 list_add_tail(&m->list, &pool->prepared_mappings);
835                 wake_worker(pool);
836         }
837 }
838
839 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
840 {
841         unsigned long flags;
842         struct pool *pool = m->tc->pool;
843
844         spin_lock_irqsave(&pool->lock, flags);
845         __complete_mapping_preparation(m);
846         spin_unlock_irqrestore(&pool->lock, flags);
847 }
848
849 static void copy_complete(int read_err, unsigned long write_err, void *context)
850 {
851         struct dm_thin_new_mapping *m = context;
852
853         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
854         complete_mapping_preparation(m);
855 }
856
857 static void overwrite_endio(struct bio *bio)
858 {
859         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
860         struct dm_thin_new_mapping *m = h->overwrite_mapping;
861
862         bio->bi_end_io = m->saved_bi_end_io;
863
864         m->status = bio->bi_status;
865         complete_mapping_preparation(m);
866 }
867
868 /*----------------------------------------------------------------*/
869
870 /*
871  * Workqueue.
872  */
873
874 /*
875  * Prepared mapping jobs.
876  */
877
878 /*
879  * This sends the bios in the cell, except the original holder, back
880  * to the deferred_bios list.
881  */
882 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
883 {
884         struct pool *pool = tc->pool;
885         unsigned long flags;
886         int has_work;
887
888         spin_lock_irqsave(&tc->lock, flags);
889         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
890         has_work = !bio_list_empty(&tc->deferred_bio_list);
891         spin_unlock_irqrestore(&tc->lock, flags);
892
893         if (has_work)
894                 wake_worker(pool);
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900         struct thin_c *tc;
901         struct bio_list defer_bios;
902         struct bio_list issue_bios;
903 };
904
905 static void __inc_remap_and_issue_cell(void *context,
906                                        struct dm_bio_prison_cell *cell)
907 {
908         struct remap_info *info = context;
909         struct bio *bio;
910
911         while ((bio = bio_list_pop(&cell->bios))) {
912                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913                         bio_list_add(&info->defer_bios, bio);
914                 else {
915                         inc_all_io_entry(info->tc->pool, bio);
916
917                         /*
918                          * We can't issue the bios with the bio prison lock
919                          * held, so we add them to a list to issue on
920                          * return from this function.
921                          */
922                         bio_list_add(&info->issue_bios, bio);
923                 }
924         }
925 }
926
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928                                      struct dm_bio_prison_cell *cell,
929                                      dm_block_t block)
930 {
931         struct bio *bio;
932         struct remap_info info;
933
934         info.tc = tc;
935         bio_list_init(&info.defer_bios);
936         bio_list_init(&info.issue_bios);
937
938         /*
939          * We have to be careful to inc any bios we're about to issue
940          * before the cell is released, and avoid a race with new bios
941          * being added to the cell.
942          */
943         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944                            &info, cell);
945
946         while ((bio = bio_list_pop(&info.defer_bios)))
947                 thin_defer_bio(tc, bio);
948
949         while ((bio = bio_list_pop(&info.issue_bios)))
950                 remap_and_issue(info.tc, bio, block);
951 }
952
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955         cell_error(m->tc->pool, m->cell);
956         list_del(&m->list);
957         mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962         struct pool *pool = tc->pool;
963
964         /*
965          * If the bio has the REQ_FUA flag set we must commit the metadata
966          * before signaling its completion.
967          */
968         if (!bio_triggers_commit(tc, bio)) {
969                 bio_endio(bio);
970                 return;
971         }
972
973         /*
974          * Complete bio with an error if earlier I/O caused changes to the
975          * metadata that can't be committed, e.g, due to I/O errors on the
976          * metadata device.
977          */
978         if (dm_thin_aborted_changes(tc->td)) {
979                 bio_io_error(bio);
980                 return;
981         }
982
983         /*
984          * Batch together any bios that trigger commits and then issue a
985          * single commit for them in process_deferred_bios().
986          */
987         spin_lock_irq(&pool->lock);
988         bio_list_add(&pool->deferred_flush_completions, bio);
989         spin_unlock_irq(&pool->lock);
990 }
991
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994         struct thin_c *tc = m->tc;
995         struct pool *pool = tc->pool;
996         struct bio *bio = m->bio;
997         int r;
998
999         if (m->status) {
1000                 cell_error(pool, m->cell);
1001                 goto out;
1002         }
1003
1004         /*
1005          * Commit the prepared block into the mapping btree.
1006          * Any I/O for this block arriving after this point will get
1007          * remapped to it directly.
1008          */
1009         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010         if (r) {
1011                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012                 cell_error(pool, m->cell);
1013                 goto out;
1014         }
1015
1016         /*
1017          * Release any bios held while the block was being provisioned.
1018          * If we are processing a write bio that completely covers the block,
1019          * we already processed it so can ignore it now when processing
1020          * the bios in the cell.
1021          */
1022         if (bio) {
1023                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024                 complete_overwrite_bio(tc, bio);
1025         } else {
1026                 inc_all_io_entry(tc->pool, m->cell->holder);
1027                 remap_and_issue(tc, m->cell->holder, m->data_block);
1028                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029         }
1030
1031 out:
1032         list_del(&m->list);
1033         mempool_free(m, &pool->mapping_pool);
1034 }
1035
1036 /*----------------------------------------------------------------*/
1037
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040         struct thin_c *tc = m->tc;
1041
1042         if (m->cell)
1043                 cell_defer_no_holder(tc, m->cell);
1044         mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049         bio_io_error(m->bio);
1050         free_discard_mapping(m);
1051 }
1052
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055         bio_endio(m->bio);
1056         free_discard_mapping(m);
1057 }
1058
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061         int r;
1062         struct thin_c *tc = m->tc;
1063
1064         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065         if (r) {
1066                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067                 bio_io_error(m->bio);
1068         } else
1069                 bio_endio(m->bio);
1070
1071         cell_defer_no_holder(tc, m->cell);
1072         mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078                                                    struct bio *discard_parent)
1079 {
1080         /*
1081          * We've already unmapped this range of blocks, but before we
1082          * passdown we have to check that these blocks are now unused.
1083          */
1084         int r = 0;
1085         bool shared = true;
1086         struct thin_c *tc = m->tc;
1087         struct pool *pool = tc->pool;
1088         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089         struct discard_op op;
1090
1091         begin_discard(&op, tc, discard_parent);
1092         while (b != end) {
1093                 /* find start of unmapped run */
1094                 for (; b < end; b++) {
1095                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096                         if (r)
1097                                 goto out;
1098
1099                         if (!shared)
1100                                 break;
1101                 }
1102
1103                 if (b == end)
1104                         break;
1105
1106                 /* find end of run */
1107                 for (e = b + 1; e != end; e++) {
1108                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109                         if (r)
1110                                 goto out;
1111
1112                         if (shared)
1113                                 break;
1114                 }
1115
1116                 r = issue_discard(&op, b, e);
1117                 if (r)
1118                         goto out;
1119
1120                 b = e;
1121         }
1122 out:
1123         end_discard(&op, r);
1124 }
1125
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128         unsigned long flags;
1129         struct pool *pool = m->tc->pool;
1130
1131         spin_lock_irqsave(&pool->lock, flags);
1132         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133         spin_unlock_irqrestore(&pool->lock, flags);
1134         wake_worker(pool);
1135 }
1136
1137 static void passdown_endio(struct bio *bio)
1138 {
1139         /*
1140          * It doesn't matter if the passdown discard failed, we still want
1141          * to unmap (we ignore err).
1142          */
1143         queue_passdown_pt2(bio->bi_private);
1144         bio_put(bio);
1145 }
1146
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149         int r;
1150         struct thin_c *tc = m->tc;
1151         struct pool *pool = tc->pool;
1152         struct bio *discard_parent;
1153         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155         /*
1156          * Only this thread allocates blocks, so we can be sure that the
1157          * newly unmapped blocks will not be allocated before the end of
1158          * the function.
1159          */
1160         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161         if (r) {
1162                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163                 bio_io_error(m->bio);
1164                 cell_defer_no_holder(tc, m->cell);
1165                 mempool_free(m, &pool->mapping_pool);
1166                 return;
1167         }
1168
1169         /*
1170          * Increment the unmapped blocks.  This prevents a race between the
1171          * passdown io and reallocation of freed blocks.
1172          */
1173         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174         if (r) {
1175                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176                 bio_io_error(m->bio);
1177                 cell_defer_no_holder(tc, m->cell);
1178                 mempool_free(m, &pool->mapping_pool);
1179                 return;
1180         }
1181
1182         discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183         discard_parent->bi_end_io = passdown_endio;
1184         discard_parent->bi_private = m;
1185         if (m->maybe_shared)
1186                 passdown_double_checking_shared_status(m, discard_parent);
1187         else {
1188                 struct discard_op op;
1189
1190                 begin_discard(&op, tc, discard_parent);
1191                 r = issue_discard(&op, m->data_block, data_end);
1192                 end_discard(&op, r);
1193         }
1194 }
1195
1196 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1197 {
1198         int r;
1199         struct thin_c *tc = m->tc;
1200         struct pool *pool = tc->pool;
1201
1202         /*
1203          * The passdown has completed, so now we can decrement all those
1204          * unmapped blocks.
1205          */
1206         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207                                    m->data_block + (m->virt_end - m->virt_begin));
1208         if (r) {
1209                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210                 bio_io_error(m->bio);
1211         } else
1212                 bio_endio(m->bio);
1213
1214         cell_defer_no_holder(tc, m->cell);
1215         mempool_free(m, &pool->mapping_pool);
1216 }
1217
1218 static void process_prepared(struct pool *pool, struct list_head *head,
1219                              process_mapping_fn *fn)
1220 {
1221         struct list_head maps;
1222         struct dm_thin_new_mapping *m, *tmp;
1223
1224         INIT_LIST_HEAD(&maps);
1225         spin_lock_irq(&pool->lock);
1226         list_splice_init(head, &maps);
1227         spin_unlock_irq(&pool->lock);
1228
1229         list_for_each_entry_safe(m, tmp, &maps, list)
1230                 (*fn)(m);
1231 }
1232
1233 /*
1234  * Deferred bio jobs.
1235  */
1236 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1237 {
1238         return bio->bi_iter.bi_size ==
1239                 (pool->sectors_per_block << SECTOR_SHIFT);
1240 }
1241
1242 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1243 {
1244         return (bio_data_dir(bio) == WRITE) &&
1245                 io_overlaps_block(pool, bio);
1246 }
1247
1248 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249                                bio_end_io_t *fn)
1250 {
1251         *save = bio->bi_end_io;
1252         bio->bi_end_io = fn;
1253 }
1254
1255 static int ensure_next_mapping(struct pool *pool)
1256 {
1257         if (pool->next_mapping)
1258                 return 0;
1259
1260         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1261
1262         return pool->next_mapping ? 0 : -ENOMEM;
1263 }
1264
1265 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1266 {
1267         struct dm_thin_new_mapping *m = pool->next_mapping;
1268
1269         BUG_ON(!pool->next_mapping);
1270
1271         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272         INIT_LIST_HEAD(&m->list);
1273         m->bio = NULL;
1274
1275         pool->next_mapping = NULL;
1276
1277         return m;
1278 }
1279
1280 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281                     sector_t begin, sector_t end)
1282 {
1283         struct dm_io_region to;
1284
1285         to.bdev = tc->pool_dev->bdev;
1286         to.sector = begin;
1287         to.count = end - begin;
1288
1289         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1290 }
1291
1292 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293                                       dm_block_t data_begin,
1294                                       struct dm_thin_new_mapping *m)
1295 {
1296         struct pool *pool = tc->pool;
1297         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1298
1299         h->overwrite_mapping = m;
1300         m->bio = bio;
1301         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302         inc_all_io_entry(pool, bio);
1303         remap_and_issue(tc, bio, data_begin);
1304 }
1305
1306 /*
1307  * A partial copy also needs to zero the uncopied region.
1308  */
1309 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310                           struct dm_dev *origin, dm_block_t data_origin,
1311                           dm_block_t data_dest,
1312                           struct dm_bio_prison_cell *cell, struct bio *bio,
1313                           sector_t len)
1314 {
1315         struct pool *pool = tc->pool;
1316         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1317
1318         m->tc = tc;
1319         m->virt_begin = virt_block;
1320         m->virt_end = virt_block + 1u;
1321         m->data_block = data_dest;
1322         m->cell = cell;
1323
1324         /*
1325          * quiesce action + copy action + an extra reference held for the
1326          * duration of this function (we may need to inc later for a
1327          * partial zero).
1328          */
1329         atomic_set(&m->prepare_actions, 3);
1330
1331         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332                 complete_mapping_preparation(m); /* already quiesced */
1333
1334         /*
1335          * IO to pool_dev remaps to the pool target's data_dev.
1336          *
1337          * If the whole block of data is being overwritten, we can issue the
1338          * bio immediately. Otherwise we use kcopyd to clone the data first.
1339          */
1340         if (io_overwrites_block(pool, bio))
1341                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1342         else {
1343                 struct dm_io_region from, to;
1344
1345                 from.bdev = origin->bdev;
1346                 from.sector = data_origin * pool->sectors_per_block;
1347                 from.count = len;
1348
1349                 to.bdev = tc->pool_dev->bdev;
1350                 to.sector = data_dest * pool->sectors_per_block;
1351                 to.count = len;
1352
1353                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354                                0, copy_complete, m);
1355
1356                 /*
1357                  * Do we need to zero a tail region?
1358                  */
1359                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360                         atomic_inc(&m->prepare_actions);
1361                         ll_zero(tc, m,
1362                                 data_dest * pool->sectors_per_block + len,
1363                                 (data_dest + 1) * pool->sectors_per_block);
1364                 }
1365         }
1366
1367         complete_mapping_preparation(m); /* drop our ref */
1368 }
1369
1370 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371                                    dm_block_t data_origin, dm_block_t data_dest,
1372                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1373 {
1374         schedule_copy(tc, virt_block, tc->pool_dev,
1375                       data_origin, data_dest, cell, bio,
1376                       tc->pool->sectors_per_block);
1377 }
1378
1379 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381                           struct bio *bio)
1382 {
1383         struct pool *pool = tc->pool;
1384         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1385
1386         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1387         m->tc = tc;
1388         m->virt_begin = virt_block;
1389         m->virt_end = virt_block + 1u;
1390         m->data_block = data_block;
1391         m->cell = cell;
1392
1393         /*
1394          * If the whole block of data is being overwritten or we are not
1395          * zeroing pre-existing data, we can issue the bio immediately.
1396          * Otherwise we use kcopyd to zero the data first.
1397          */
1398         if (pool->pf.zero_new_blocks) {
1399                 if (io_overwrites_block(pool, bio))
1400                         remap_and_issue_overwrite(tc, bio, data_block, m);
1401                 else
1402                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1403                                 (data_block + 1) * pool->sectors_per_block);
1404         } else
1405                 process_prepared_mapping(m);
1406 }
1407
1408 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1409                                    dm_block_t data_dest,
1410                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1411 {
1412         struct pool *pool = tc->pool;
1413         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1414         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1415
1416         if (virt_block_end <= tc->origin_size)
1417                 schedule_copy(tc, virt_block, tc->origin_dev,
1418                               virt_block, data_dest, cell, bio,
1419                               pool->sectors_per_block);
1420
1421         else if (virt_block_begin < tc->origin_size)
1422                 schedule_copy(tc, virt_block, tc->origin_dev,
1423                               virt_block, data_dest, cell, bio,
1424                               tc->origin_size - virt_block_begin);
1425
1426         else
1427                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1428 }
1429
1430 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1431
1432 static void requeue_bios(struct pool *pool);
1433
1434 static bool is_read_only_pool_mode(enum pool_mode mode)
1435 {
1436         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1437 }
1438
1439 static bool is_read_only(struct pool *pool)
1440 {
1441         return is_read_only_pool_mode(get_pool_mode(pool));
1442 }
1443
1444 static void check_for_metadata_space(struct pool *pool)
1445 {
1446         int r;
1447         const char *ooms_reason = NULL;
1448         dm_block_t nr_free;
1449
1450         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1451         if (r)
1452                 ooms_reason = "Could not get free metadata blocks";
1453         else if (!nr_free)
1454                 ooms_reason = "No free metadata blocks";
1455
1456         if (ooms_reason && !is_read_only(pool)) {
1457                 DMERR("%s", ooms_reason);
1458                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1459         }
1460 }
1461
1462 static void check_for_data_space(struct pool *pool)
1463 {
1464         int r;
1465         dm_block_t nr_free;
1466
1467         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1468                 return;
1469
1470         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1471         if (r)
1472                 return;
1473
1474         if (nr_free) {
1475                 set_pool_mode(pool, PM_WRITE);
1476                 requeue_bios(pool);
1477         }
1478 }
1479
1480 /*
1481  * A non-zero return indicates read_only or fail_io mode.
1482  * Many callers don't care about the return value.
1483  */
1484 static int commit(struct pool *pool)
1485 {
1486         int r;
1487
1488         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1489                 return -EINVAL;
1490
1491         r = dm_pool_commit_metadata(pool->pmd);
1492         if (r)
1493                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1494         else {
1495                 check_for_metadata_space(pool);
1496                 check_for_data_space(pool);
1497         }
1498
1499         return r;
1500 }
1501
1502 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1503 {
1504         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1505                 DMWARN("%s: reached low water mark for data device: sending event.",
1506                        dm_device_name(pool->pool_md));
1507                 spin_lock_irq(&pool->lock);
1508                 pool->low_water_triggered = true;
1509                 spin_unlock_irq(&pool->lock);
1510                 dm_table_event(pool->ti->table);
1511         }
1512 }
1513
1514 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1515 {
1516         int r;
1517         dm_block_t free_blocks;
1518         struct pool *pool = tc->pool;
1519
1520         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1521                 return -EINVAL;
1522
1523         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1524         if (r) {
1525                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1526                 return r;
1527         }
1528
1529         check_low_water_mark(pool, free_blocks);
1530
1531         if (!free_blocks) {
1532                 /*
1533                  * Try to commit to see if that will free up some
1534                  * more space.
1535                  */
1536                 r = commit(pool);
1537                 if (r)
1538                         return r;
1539
1540                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1541                 if (r) {
1542                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1543                         return r;
1544                 }
1545
1546                 if (!free_blocks) {
1547                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1548                         return -ENOSPC;
1549                 }
1550         }
1551
1552         r = dm_pool_alloc_data_block(pool->pmd, result);
1553         if (r) {
1554                 if (r == -ENOSPC)
1555                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556                 else
1557                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1558                 return r;
1559         }
1560
1561         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1562         if (r) {
1563                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1564                 return r;
1565         }
1566
1567         if (!free_blocks) {
1568                 /* Let's commit before we use up the metadata reserve. */
1569                 r = commit(pool);
1570                 if (r)
1571                         return r;
1572         }
1573
1574         return 0;
1575 }
1576
1577 /*
1578  * If we have run out of space, queue bios until the device is
1579  * resumed, presumably after having been reloaded with more space.
1580  */
1581 static void retry_on_resume(struct bio *bio)
1582 {
1583         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1584         struct thin_c *tc = h->tc;
1585
1586         spin_lock_irq(&tc->lock);
1587         bio_list_add(&tc->retry_on_resume_list, bio);
1588         spin_unlock_irq(&tc->lock);
1589 }
1590
1591 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1592 {
1593         enum pool_mode m = get_pool_mode(pool);
1594
1595         switch (m) {
1596         case PM_WRITE:
1597                 /* Shouldn't get here */
1598                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1599                 return BLK_STS_IOERR;
1600
1601         case PM_OUT_OF_DATA_SPACE:
1602                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1603
1604         case PM_OUT_OF_METADATA_SPACE:
1605         case PM_READ_ONLY:
1606         case PM_FAIL:
1607                 return BLK_STS_IOERR;
1608         default:
1609                 /* Shouldn't get here */
1610                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1611                 return BLK_STS_IOERR;
1612         }
1613 }
1614
1615 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1616 {
1617         blk_status_t error = should_error_unserviceable_bio(pool);
1618
1619         if (error) {
1620                 bio->bi_status = error;
1621                 bio_endio(bio);
1622         } else
1623                 retry_on_resume(bio);
1624 }
1625
1626 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1627 {
1628         struct bio *bio;
1629         struct bio_list bios;
1630         blk_status_t error;
1631
1632         error = should_error_unserviceable_bio(pool);
1633         if (error) {
1634                 cell_error_with_code(pool, cell, error);
1635                 return;
1636         }
1637
1638         bio_list_init(&bios);
1639         cell_release(pool, cell, &bios);
1640
1641         while ((bio = bio_list_pop(&bios)))
1642                 retry_on_resume(bio);
1643 }
1644
1645 static void process_discard_cell_no_passdown(struct thin_c *tc,
1646                                              struct dm_bio_prison_cell *virt_cell)
1647 {
1648         struct pool *pool = tc->pool;
1649         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1650
1651         /*
1652          * We don't need to lock the data blocks, since there's no
1653          * passdown.  We only lock data blocks for allocation and breaking sharing.
1654          */
1655         m->tc = tc;
1656         m->virt_begin = virt_cell->key.block_begin;
1657         m->virt_end = virt_cell->key.block_end;
1658         m->cell = virt_cell;
1659         m->bio = virt_cell->holder;
1660
1661         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1662                 pool->process_prepared_discard(m);
1663 }
1664
1665 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1666                                  struct bio *bio)
1667 {
1668         struct pool *pool = tc->pool;
1669
1670         int r;
1671         bool maybe_shared;
1672         struct dm_cell_key data_key;
1673         struct dm_bio_prison_cell *data_cell;
1674         struct dm_thin_new_mapping *m;
1675         dm_block_t virt_begin, virt_end, data_begin;
1676
1677         while (begin != end) {
1678                 r = ensure_next_mapping(pool);
1679                 if (r)
1680                         /* we did our best */
1681                         return;
1682
1683                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1684                                               &data_begin, &maybe_shared);
1685                 if (r)
1686                         /*
1687                          * Silently fail, letting any mappings we've
1688                          * created complete.
1689                          */
1690                         break;
1691
1692                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1693                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1694                         /* contention, we'll give up with this range */
1695                         begin = virt_end;
1696                         continue;
1697                 }
1698
1699                 /*
1700                  * IO may still be going to the destination block.  We must
1701                  * quiesce before we can do the removal.
1702                  */
1703                 m = get_next_mapping(pool);
1704                 m->tc = tc;
1705                 m->maybe_shared = maybe_shared;
1706                 m->virt_begin = virt_begin;
1707                 m->virt_end = virt_end;
1708                 m->data_block = data_begin;
1709                 m->cell = data_cell;
1710                 m->bio = bio;
1711
1712                 /*
1713                  * The parent bio must not complete before sub discard bios are
1714                  * chained to it (see end_discard's bio_chain)!
1715                  *
1716                  * This per-mapping bi_remaining increment is paired with
1717                  * the implicit decrement that occurs via bio_endio() in
1718                  * end_discard().
1719                  */
1720                 bio_inc_remaining(bio);
1721                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1722                         pool->process_prepared_discard(m);
1723
1724                 begin = virt_end;
1725         }
1726 }
1727
1728 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1729 {
1730         struct bio *bio = virt_cell->holder;
1731         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1732
1733         /*
1734          * The virt_cell will only get freed once the origin bio completes.
1735          * This means it will remain locked while all the individual
1736          * passdown bios are in flight.
1737          */
1738         h->cell = virt_cell;
1739         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1740
1741         /*
1742          * We complete the bio now, knowing that the bi_remaining field
1743          * will prevent completion until the sub range discards have
1744          * completed.
1745          */
1746         bio_endio(bio);
1747 }
1748
1749 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1750 {
1751         dm_block_t begin, end;
1752         struct dm_cell_key virt_key;
1753         struct dm_bio_prison_cell *virt_cell;
1754
1755         get_bio_block_range(tc, bio, &begin, &end);
1756         if (begin == end) {
1757                 /*
1758                  * The discard covers less than a block.
1759                  */
1760                 bio_endio(bio);
1761                 return;
1762         }
1763
1764         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1765         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1766                 /*
1767                  * Potential starvation issue: We're relying on the
1768                  * fs/application being well behaved, and not trying to
1769                  * send IO to a region at the same time as discarding it.
1770                  * If they do this persistently then it's possible this
1771                  * cell will never be granted.
1772                  */
1773                 return;
1774
1775         tc->pool->process_discard_cell(tc, virt_cell);
1776 }
1777
1778 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1779                           struct dm_cell_key *key,
1780                           struct dm_thin_lookup_result *lookup_result,
1781                           struct dm_bio_prison_cell *cell)
1782 {
1783         int r;
1784         dm_block_t data_block;
1785         struct pool *pool = tc->pool;
1786
1787         r = alloc_data_block(tc, &data_block);
1788         switch (r) {
1789         case 0:
1790                 schedule_internal_copy(tc, block, lookup_result->block,
1791                                        data_block, cell, bio);
1792                 break;
1793
1794         case -ENOSPC:
1795                 retry_bios_on_resume(pool, cell);
1796                 break;
1797
1798         default:
1799                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1800                             __func__, r);
1801                 cell_error(pool, cell);
1802                 break;
1803         }
1804 }
1805
1806 static void __remap_and_issue_shared_cell(void *context,
1807                                           struct dm_bio_prison_cell *cell)
1808 {
1809         struct remap_info *info = context;
1810         struct bio *bio;
1811
1812         while ((bio = bio_list_pop(&cell->bios))) {
1813                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1814                     bio_op(bio) == REQ_OP_DISCARD)
1815                         bio_list_add(&info->defer_bios, bio);
1816                 else {
1817                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1818
1819                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1820                         inc_all_io_entry(info->tc->pool, bio);
1821                         bio_list_add(&info->issue_bios, bio);
1822                 }
1823         }
1824 }
1825
1826 static void remap_and_issue_shared_cell(struct thin_c *tc,
1827                                         struct dm_bio_prison_cell *cell,
1828                                         dm_block_t block)
1829 {
1830         struct bio *bio;
1831         struct remap_info info;
1832
1833         info.tc = tc;
1834         bio_list_init(&info.defer_bios);
1835         bio_list_init(&info.issue_bios);
1836
1837         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1838                            &info, cell);
1839
1840         while ((bio = bio_list_pop(&info.defer_bios)))
1841                 thin_defer_bio(tc, bio);
1842
1843         while ((bio = bio_list_pop(&info.issue_bios)))
1844                 remap_and_issue(tc, bio, block);
1845 }
1846
1847 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1848                                dm_block_t block,
1849                                struct dm_thin_lookup_result *lookup_result,
1850                                struct dm_bio_prison_cell *virt_cell)
1851 {
1852         struct dm_bio_prison_cell *data_cell;
1853         struct pool *pool = tc->pool;
1854         struct dm_cell_key key;
1855
1856         /*
1857          * If cell is already occupied, then sharing is already in the process
1858          * of being broken so we have nothing further to do here.
1859          */
1860         build_data_key(tc->td, lookup_result->block, &key);
1861         if (bio_detain(pool, &key, bio, &data_cell)) {
1862                 cell_defer_no_holder(tc, virt_cell);
1863                 return;
1864         }
1865
1866         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1867                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1868                 cell_defer_no_holder(tc, virt_cell);
1869         } else {
1870                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1871
1872                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1873                 inc_all_io_entry(pool, bio);
1874                 remap_and_issue(tc, bio, lookup_result->block);
1875
1876                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1877                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1878         }
1879 }
1880
1881 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1882                             struct dm_bio_prison_cell *cell)
1883 {
1884         int r;
1885         dm_block_t data_block;
1886         struct pool *pool = tc->pool;
1887
1888         /*
1889          * Remap empty bios (flushes) immediately, without provisioning.
1890          */
1891         if (!bio->bi_iter.bi_size) {
1892                 inc_all_io_entry(pool, bio);
1893                 cell_defer_no_holder(tc, cell);
1894
1895                 remap_and_issue(tc, bio, 0);
1896                 return;
1897         }
1898
1899         /*
1900          * Fill read bios with zeroes and complete them immediately.
1901          */
1902         if (bio_data_dir(bio) == READ) {
1903                 zero_fill_bio(bio);
1904                 cell_defer_no_holder(tc, cell);
1905                 bio_endio(bio);
1906                 return;
1907         }
1908
1909         r = alloc_data_block(tc, &data_block);
1910         switch (r) {
1911         case 0:
1912                 if (tc->origin_dev)
1913                         schedule_external_copy(tc, block, data_block, cell, bio);
1914                 else
1915                         schedule_zero(tc, block, data_block, cell, bio);
1916                 break;
1917
1918         case -ENOSPC:
1919                 retry_bios_on_resume(pool, cell);
1920                 break;
1921
1922         default:
1923                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1924                             __func__, r);
1925                 cell_error(pool, cell);
1926                 break;
1927         }
1928 }
1929
1930 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1931 {
1932         int r;
1933         struct pool *pool = tc->pool;
1934         struct bio *bio = cell->holder;
1935         dm_block_t block = get_bio_block(tc, bio);
1936         struct dm_thin_lookup_result lookup_result;
1937
1938         if (tc->requeue_mode) {
1939                 cell_requeue(pool, cell);
1940                 return;
1941         }
1942
1943         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1944         switch (r) {
1945         case 0:
1946                 if (lookup_result.shared)
1947                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1948                 else {
1949                         inc_all_io_entry(pool, bio);
1950                         remap_and_issue(tc, bio, lookup_result.block);
1951                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1952                 }
1953                 break;
1954
1955         case -ENODATA:
1956                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1957                         inc_all_io_entry(pool, bio);
1958                         cell_defer_no_holder(tc, cell);
1959
1960                         if (bio_end_sector(bio) <= tc->origin_size)
1961                                 remap_to_origin_and_issue(tc, bio);
1962
1963                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1964                                 zero_fill_bio(bio);
1965                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1966                                 remap_to_origin_and_issue(tc, bio);
1967
1968                         } else {
1969                                 zero_fill_bio(bio);
1970                                 bio_endio(bio);
1971                         }
1972                 } else
1973                         provision_block(tc, bio, block, cell);
1974                 break;
1975
1976         default:
1977                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1978                             __func__, r);
1979                 cell_defer_no_holder(tc, cell);
1980                 bio_io_error(bio);
1981                 break;
1982         }
1983 }
1984
1985 static void process_bio(struct thin_c *tc, struct bio *bio)
1986 {
1987         struct pool *pool = tc->pool;
1988         dm_block_t block = get_bio_block(tc, bio);
1989         struct dm_bio_prison_cell *cell;
1990         struct dm_cell_key key;
1991
1992         /*
1993          * If cell is already occupied, then the block is already
1994          * being provisioned so we have nothing further to do here.
1995          */
1996         build_virtual_key(tc->td, block, &key);
1997         if (bio_detain(pool, &key, bio, &cell))
1998                 return;
1999
2000         process_cell(tc, cell);
2001 }
2002
2003 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2004                                     struct dm_bio_prison_cell *cell)
2005 {
2006         int r;
2007         int rw = bio_data_dir(bio);
2008         dm_block_t block = get_bio_block(tc, bio);
2009         struct dm_thin_lookup_result lookup_result;
2010
2011         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2012         switch (r) {
2013         case 0:
2014                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2015                         handle_unserviceable_bio(tc->pool, bio);
2016                         if (cell)
2017                                 cell_defer_no_holder(tc, cell);
2018                 } else {
2019                         inc_all_io_entry(tc->pool, bio);
2020                         remap_and_issue(tc, bio, lookup_result.block);
2021                         if (cell)
2022                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2023                 }
2024                 break;
2025
2026         case -ENODATA:
2027                 if (cell)
2028                         cell_defer_no_holder(tc, cell);
2029                 if (rw != READ) {
2030                         handle_unserviceable_bio(tc->pool, bio);
2031                         break;
2032                 }
2033
2034                 if (tc->origin_dev) {
2035                         inc_all_io_entry(tc->pool, bio);
2036                         remap_to_origin_and_issue(tc, bio);
2037                         break;
2038                 }
2039
2040                 zero_fill_bio(bio);
2041                 bio_endio(bio);
2042                 break;
2043
2044         default:
2045                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2046                             __func__, r);
2047                 if (cell)
2048                         cell_defer_no_holder(tc, cell);
2049                 bio_io_error(bio);
2050                 break;
2051         }
2052 }
2053
2054 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2055 {
2056         __process_bio_read_only(tc, bio, NULL);
2057 }
2058
2059 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2060 {
2061         __process_bio_read_only(tc, cell->holder, cell);
2062 }
2063
2064 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2065 {
2066         bio_endio(bio);
2067 }
2068
2069 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2070 {
2071         bio_io_error(bio);
2072 }
2073
2074 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2075 {
2076         cell_success(tc->pool, cell);
2077 }
2078
2079 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2080 {
2081         cell_error(tc->pool, cell);
2082 }
2083
2084 /*
2085  * FIXME: should we also commit due to size of transaction, measured in
2086  * metadata blocks?
2087  */
2088 static int need_commit_due_to_time(struct pool *pool)
2089 {
2090         return !time_in_range(jiffies, pool->last_commit_jiffies,
2091                               pool->last_commit_jiffies + COMMIT_PERIOD);
2092 }
2093
2094 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2095 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2096
2097 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2098 {
2099         struct rb_node **rbp, *parent;
2100         struct dm_thin_endio_hook *pbd;
2101         sector_t bi_sector = bio->bi_iter.bi_sector;
2102
2103         rbp = &tc->sort_bio_list.rb_node;
2104         parent = NULL;
2105         while (*rbp) {
2106                 parent = *rbp;
2107                 pbd = thin_pbd(parent);
2108
2109                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2110                         rbp = &(*rbp)->rb_left;
2111                 else
2112                         rbp = &(*rbp)->rb_right;
2113         }
2114
2115         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2116         rb_link_node(&pbd->rb_node, parent, rbp);
2117         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2118 }
2119
2120 static void __extract_sorted_bios(struct thin_c *tc)
2121 {
2122         struct rb_node *node;
2123         struct dm_thin_endio_hook *pbd;
2124         struct bio *bio;
2125
2126         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2127                 pbd = thin_pbd(node);
2128                 bio = thin_bio(pbd);
2129
2130                 bio_list_add(&tc->deferred_bio_list, bio);
2131                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2132         }
2133
2134         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2135 }
2136
2137 static void __sort_thin_deferred_bios(struct thin_c *tc)
2138 {
2139         struct bio *bio;
2140         struct bio_list bios;
2141
2142         bio_list_init(&bios);
2143         bio_list_merge(&bios, &tc->deferred_bio_list);
2144         bio_list_init(&tc->deferred_bio_list);
2145
2146         /* Sort deferred_bio_list using rb-tree */
2147         while ((bio = bio_list_pop(&bios)))
2148                 __thin_bio_rb_add(tc, bio);
2149
2150         /*
2151          * Transfer the sorted bios in sort_bio_list back to
2152          * deferred_bio_list to allow lockless submission of
2153          * all bios.
2154          */
2155         __extract_sorted_bios(tc);
2156 }
2157
2158 static void process_thin_deferred_bios(struct thin_c *tc)
2159 {
2160         struct pool *pool = tc->pool;
2161         struct bio *bio;
2162         struct bio_list bios;
2163         struct blk_plug plug;
2164         unsigned int count = 0;
2165
2166         if (tc->requeue_mode) {
2167                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2168                                 BLK_STS_DM_REQUEUE);
2169                 return;
2170         }
2171
2172         bio_list_init(&bios);
2173
2174         spin_lock_irq(&tc->lock);
2175
2176         if (bio_list_empty(&tc->deferred_bio_list)) {
2177                 spin_unlock_irq(&tc->lock);
2178                 return;
2179         }
2180
2181         __sort_thin_deferred_bios(tc);
2182
2183         bio_list_merge(&bios, &tc->deferred_bio_list);
2184         bio_list_init(&tc->deferred_bio_list);
2185
2186         spin_unlock_irq(&tc->lock);
2187
2188         blk_start_plug(&plug);
2189         while ((bio = bio_list_pop(&bios))) {
2190                 /*
2191                  * If we've got no free new_mapping structs, and processing
2192                  * this bio might require one, we pause until there are some
2193                  * prepared mappings to process.
2194                  */
2195                 if (ensure_next_mapping(pool)) {
2196                         spin_lock_irq(&tc->lock);
2197                         bio_list_add(&tc->deferred_bio_list, bio);
2198                         bio_list_merge(&tc->deferred_bio_list, &bios);
2199                         spin_unlock_irq(&tc->lock);
2200                         break;
2201                 }
2202
2203                 if (bio_op(bio) == REQ_OP_DISCARD)
2204                         pool->process_discard(tc, bio);
2205                 else
2206                         pool->process_bio(tc, bio);
2207
2208                 if ((count++ & 127) == 0) {
2209                         throttle_work_update(&pool->throttle);
2210                         dm_pool_issue_prefetches(pool->pmd);
2211                 }
2212         }
2213         blk_finish_plug(&plug);
2214 }
2215
2216 static int cmp_cells(const void *lhs, const void *rhs)
2217 {
2218         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2219         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2220
2221         BUG_ON(!lhs_cell->holder);
2222         BUG_ON(!rhs_cell->holder);
2223
2224         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2225                 return -1;
2226
2227         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2228                 return 1;
2229
2230         return 0;
2231 }
2232
2233 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2234 {
2235         unsigned int count = 0;
2236         struct dm_bio_prison_cell *cell, *tmp;
2237
2238         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2239                 if (count >= CELL_SORT_ARRAY_SIZE)
2240                         break;
2241
2242                 pool->cell_sort_array[count++] = cell;
2243                 list_del(&cell->user_list);
2244         }
2245
2246         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2247
2248         return count;
2249 }
2250
2251 static void process_thin_deferred_cells(struct thin_c *tc)
2252 {
2253         struct pool *pool = tc->pool;
2254         struct list_head cells;
2255         struct dm_bio_prison_cell *cell;
2256         unsigned int i, j, count;
2257
2258         INIT_LIST_HEAD(&cells);
2259
2260         spin_lock_irq(&tc->lock);
2261         list_splice_init(&tc->deferred_cells, &cells);
2262         spin_unlock_irq(&tc->lock);
2263
2264         if (list_empty(&cells))
2265                 return;
2266
2267         do {
2268                 count = sort_cells(tc->pool, &cells);
2269
2270                 for (i = 0; i < count; i++) {
2271                         cell = pool->cell_sort_array[i];
2272                         BUG_ON(!cell->holder);
2273
2274                         /*
2275                          * If we've got no free new_mapping structs, and processing
2276                          * this bio might require one, we pause until there are some
2277                          * prepared mappings to process.
2278                          */
2279                         if (ensure_next_mapping(pool)) {
2280                                 for (j = i; j < count; j++)
2281                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2282
2283                                 spin_lock_irq(&tc->lock);
2284                                 list_splice(&cells, &tc->deferred_cells);
2285                                 spin_unlock_irq(&tc->lock);
2286                                 return;
2287                         }
2288
2289                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2290                                 pool->process_discard_cell(tc, cell);
2291                         else
2292                                 pool->process_cell(tc, cell);
2293                 }
2294         } while (!list_empty(&cells));
2295 }
2296
2297 static void thin_get(struct thin_c *tc);
2298 static void thin_put(struct thin_c *tc);
2299
2300 /*
2301  * We can't hold rcu_read_lock() around code that can block.  So we
2302  * find a thin with the rcu lock held; bump a refcount; then drop
2303  * the lock.
2304  */
2305 static struct thin_c *get_first_thin(struct pool *pool)
2306 {
2307         struct thin_c *tc = NULL;
2308
2309         rcu_read_lock();
2310         if (!list_empty(&pool->active_thins)) {
2311                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2312                 thin_get(tc);
2313         }
2314         rcu_read_unlock();
2315
2316         return tc;
2317 }
2318
2319 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2320 {
2321         struct thin_c *old_tc = tc;
2322
2323         rcu_read_lock();
2324         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2325                 thin_get(tc);
2326                 thin_put(old_tc);
2327                 rcu_read_unlock();
2328                 return tc;
2329         }
2330         thin_put(old_tc);
2331         rcu_read_unlock();
2332
2333         return NULL;
2334 }
2335
2336 static void process_deferred_bios(struct pool *pool)
2337 {
2338         struct bio *bio;
2339         struct bio_list bios, bio_completions;
2340         struct thin_c *tc;
2341
2342         tc = get_first_thin(pool);
2343         while (tc) {
2344                 process_thin_deferred_cells(tc);
2345                 process_thin_deferred_bios(tc);
2346                 tc = get_next_thin(pool, tc);
2347         }
2348
2349         /*
2350          * If there are any deferred flush bios, we must commit the metadata
2351          * before issuing them or signaling their completion.
2352          */
2353         bio_list_init(&bios);
2354         bio_list_init(&bio_completions);
2355
2356         spin_lock_irq(&pool->lock);
2357         bio_list_merge(&bios, &pool->deferred_flush_bios);
2358         bio_list_init(&pool->deferred_flush_bios);
2359
2360         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2361         bio_list_init(&pool->deferred_flush_completions);
2362         spin_unlock_irq(&pool->lock);
2363
2364         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2365             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2366                 return;
2367
2368         if (commit(pool)) {
2369                 bio_list_merge(&bios, &bio_completions);
2370
2371                 while ((bio = bio_list_pop(&bios)))
2372                         bio_io_error(bio);
2373                 return;
2374         }
2375         pool->last_commit_jiffies = jiffies;
2376
2377         while ((bio = bio_list_pop(&bio_completions)))
2378                 bio_endio(bio);
2379
2380         while ((bio = bio_list_pop(&bios))) {
2381                 /*
2382                  * The data device was flushed as part of metadata commit,
2383                  * so complete redundant flushes immediately.
2384                  */
2385                 if (bio->bi_opf & REQ_PREFLUSH)
2386                         bio_endio(bio);
2387                 else
2388                         dm_submit_bio_remap(bio, NULL);
2389         }
2390 }
2391
2392 static void do_worker(struct work_struct *ws)
2393 {
2394         struct pool *pool = container_of(ws, struct pool, worker);
2395
2396         throttle_work_start(&pool->throttle);
2397         dm_pool_issue_prefetches(pool->pmd);
2398         throttle_work_update(&pool->throttle);
2399         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2400         throttle_work_update(&pool->throttle);
2401         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2402         throttle_work_update(&pool->throttle);
2403         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2404         throttle_work_update(&pool->throttle);
2405         process_deferred_bios(pool);
2406         throttle_work_complete(&pool->throttle);
2407 }
2408
2409 /*
2410  * We want to commit periodically so that not too much
2411  * unwritten data builds up.
2412  */
2413 static void do_waker(struct work_struct *ws)
2414 {
2415         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2416
2417         wake_worker(pool);
2418         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2419 }
2420
2421 /*
2422  * We're holding onto IO to allow userland time to react.  After the
2423  * timeout either the pool will have been resized (and thus back in
2424  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2425  */
2426 static void do_no_space_timeout(struct work_struct *ws)
2427 {
2428         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2429                                          no_space_timeout);
2430
2431         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2432                 pool->pf.error_if_no_space = true;
2433                 notify_of_pool_mode_change(pool);
2434                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2435         }
2436 }
2437
2438 /*----------------------------------------------------------------*/
2439
2440 struct pool_work {
2441         struct work_struct worker;
2442         struct completion complete;
2443 };
2444
2445 static struct pool_work *to_pool_work(struct work_struct *ws)
2446 {
2447         return container_of(ws, struct pool_work, worker);
2448 }
2449
2450 static void pool_work_complete(struct pool_work *pw)
2451 {
2452         complete(&pw->complete);
2453 }
2454
2455 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2456                            void (*fn)(struct work_struct *))
2457 {
2458         INIT_WORK_ONSTACK(&pw->worker, fn);
2459         init_completion(&pw->complete);
2460         queue_work(pool->wq, &pw->worker);
2461         wait_for_completion(&pw->complete);
2462 }
2463
2464 /*----------------------------------------------------------------*/
2465
2466 struct noflush_work {
2467         struct pool_work pw;
2468         struct thin_c *tc;
2469 };
2470
2471 static struct noflush_work *to_noflush(struct work_struct *ws)
2472 {
2473         return container_of(to_pool_work(ws), struct noflush_work, pw);
2474 }
2475
2476 static void do_noflush_start(struct work_struct *ws)
2477 {
2478         struct noflush_work *w = to_noflush(ws);
2479
2480         w->tc->requeue_mode = true;
2481         requeue_io(w->tc);
2482         pool_work_complete(&w->pw);
2483 }
2484
2485 static void do_noflush_stop(struct work_struct *ws)
2486 {
2487         struct noflush_work *w = to_noflush(ws);
2488
2489         w->tc->requeue_mode = false;
2490         pool_work_complete(&w->pw);
2491 }
2492
2493 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2494 {
2495         struct noflush_work w;
2496
2497         w.tc = tc;
2498         pool_work_wait(&w.pw, tc->pool, fn);
2499 }
2500
2501 /*----------------------------------------------------------------*/
2502
2503 static bool passdown_enabled(struct pool_c *pt)
2504 {
2505         return pt->adjusted_pf.discard_passdown;
2506 }
2507
2508 static void set_discard_callbacks(struct pool *pool)
2509 {
2510         struct pool_c *pt = pool->ti->private;
2511
2512         if (passdown_enabled(pt)) {
2513                 pool->process_discard_cell = process_discard_cell_passdown;
2514                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2515                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2516         } else {
2517                 pool->process_discard_cell = process_discard_cell_no_passdown;
2518                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2519         }
2520 }
2521
2522 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2523 {
2524         struct pool_c *pt = pool->ti->private;
2525         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2526         enum pool_mode old_mode = get_pool_mode(pool);
2527         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2528
2529         /*
2530          * Never allow the pool to transition to PM_WRITE mode if user
2531          * intervention is required to verify metadata and data consistency.
2532          */
2533         if (new_mode == PM_WRITE && needs_check) {
2534                 DMERR("%s: unable to switch pool to write mode until repaired.",
2535                       dm_device_name(pool->pool_md));
2536                 if (old_mode != new_mode)
2537                         new_mode = old_mode;
2538                 else
2539                         new_mode = PM_READ_ONLY;
2540         }
2541         /*
2542          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2543          * not going to recover without a thin_repair.  So we never let the
2544          * pool move out of the old mode.
2545          */
2546         if (old_mode == PM_FAIL)
2547                 new_mode = old_mode;
2548
2549         switch (new_mode) {
2550         case PM_FAIL:
2551                 dm_pool_metadata_read_only(pool->pmd);
2552                 pool->process_bio = process_bio_fail;
2553                 pool->process_discard = process_bio_fail;
2554                 pool->process_cell = process_cell_fail;
2555                 pool->process_discard_cell = process_cell_fail;
2556                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2557                 pool->process_prepared_discard = process_prepared_discard_fail;
2558
2559                 error_retry_list(pool);
2560                 break;
2561
2562         case PM_OUT_OF_METADATA_SPACE:
2563         case PM_READ_ONLY:
2564                 dm_pool_metadata_read_only(pool->pmd);
2565                 pool->process_bio = process_bio_read_only;
2566                 pool->process_discard = process_bio_success;
2567                 pool->process_cell = process_cell_read_only;
2568                 pool->process_discard_cell = process_cell_success;
2569                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2570                 pool->process_prepared_discard = process_prepared_discard_success;
2571
2572                 error_retry_list(pool);
2573                 break;
2574
2575         case PM_OUT_OF_DATA_SPACE:
2576                 /*
2577                  * Ideally we'd never hit this state; the low water mark
2578                  * would trigger userland to extend the pool before we
2579                  * completely run out of data space.  However, many small
2580                  * IOs to unprovisioned space can consume data space at an
2581                  * alarming rate.  Adjust your low water mark if you're
2582                  * frequently seeing this mode.
2583                  */
2584                 pool->out_of_data_space = true;
2585                 pool->process_bio = process_bio_read_only;
2586                 pool->process_discard = process_discard_bio;
2587                 pool->process_cell = process_cell_read_only;
2588                 pool->process_prepared_mapping = process_prepared_mapping;
2589                 set_discard_callbacks(pool);
2590
2591                 if (!pool->pf.error_if_no_space && no_space_timeout)
2592                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2593                 break;
2594
2595         case PM_WRITE:
2596                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2597                         cancel_delayed_work_sync(&pool->no_space_timeout);
2598                 pool->out_of_data_space = false;
2599                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2600                 dm_pool_metadata_read_write(pool->pmd);
2601                 pool->process_bio = process_bio;
2602                 pool->process_discard = process_discard_bio;
2603                 pool->process_cell = process_cell;
2604                 pool->process_prepared_mapping = process_prepared_mapping;
2605                 set_discard_callbacks(pool);
2606                 break;
2607         }
2608
2609         pool->pf.mode = new_mode;
2610         /*
2611          * The pool mode may have changed, sync it so bind_control_target()
2612          * doesn't cause an unexpected mode transition on resume.
2613          */
2614         pt->adjusted_pf.mode = new_mode;
2615
2616         if (old_mode != new_mode)
2617                 notify_of_pool_mode_change(pool);
2618 }
2619
2620 static void abort_transaction(struct pool *pool)
2621 {
2622         const char *dev_name = dm_device_name(pool->pool_md);
2623
2624         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2625         if (dm_pool_abort_metadata(pool->pmd)) {
2626                 DMERR("%s: failed to abort metadata transaction", dev_name);
2627                 set_pool_mode(pool, PM_FAIL);
2628         }
2629
2630         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2631                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2632                 set_pool_mode(pool, PM_FAIL);
2633         }
2634 }
2635
2636 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2637 {
2638         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2639                     dm_device_name(pool->pool_md), op, r);
2640
2641         abort_transaction(pool);
2642         set_pool_mode(pool, PM_READ_ONLY);
2643 }
2644
2645 /*----------------------------------------------------------------*/
2646
2647 /*
2648  * Mapping functions.
2649  */
2650
2651 /*
2652  * Called only while mapping a thin bio to hand it over to the workqueue.
2653  */
2654 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2655 {
2656         struct pool *pool = tc->pool;
2657
2658         spin_lock_irq(&tc->lock);
2659         bio_list_add(&tc->deferred_bio_list, bio);
2660         spin_unlock_irq(&tc->lock);
2661
2662         wake_worker(pool);
2663 }
2664
2665 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2666 {
2667         struct pool *pool = tc->pool;
2668
2669         throttle_lock(&pool->throttle);
2670         thin_defer_bio(tc, bio);
2671         throttle_unlock(&pool->throttle);
2672 }
2673
2674 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2675 {
2676         struct pool *pool = tc->pool;
2677
2678         throttle_lock(&pool->throttle);
2679         spin_lock_irq(&tc->lock);
2680         list_add_tail(&cell->user_list, &tc->deferred_cells);
2681         spin_unlock_irq(&tc->lock);
2682         throttle_unlock(&pool->throttle);
2683
2684         wake_worker(pool);
2685 }
2686
2687 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2688 {
2689         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2690
2691         h->tc = tc;
2692         h->shared_read_entry = NULL;
2693         h->all_io_entry = NULL;
2694         h->overwrite_mapping = NULL;
2695         h->cell = NULL;
2696 }
2697
2698 /*
2699  * Non-blocking function called from the thin target's map function.
2700  */
2701 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2702 {
2703         int r;
2704         struct thin_c *tc = ti->private;
2705         dm_block_t block = get_bio_block(tc, bio);
2706         struct dm_thin_device *td = tc->td;
2707         struct dm_thin_lookup_result result;
2708         struct dm_bio_prison_cell *virt_cell, *data_cell;
2709         struct dm_cell_key key;
2710
2711         thin_hook_bio(tc, bio);
2712
2713         if (tc->requeue_mode) {
2714                 bio->bi_status = BLK_STS_DM_REQUEUE;
2715                 bio_endio(bio);
2716                 return DM_MAPIO_SUBMITTED;
2717         }
2718
2719         if (get_pool_mode(tc->pool) == PM_FAIL) {
2720                 bio_io_error(bio);
2721                 return DM_MAPIO_SUBMITTED;
2722         }
2723
2724         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2725                 thin_defer_bio_with_throttle(tc, bio);
2726                 return DM_MAPIO_SUBMITTED;
2727         }
2728
2729         /*
2730          * We must hold the virtual cell before doing the lookup, otherwise
2731          * there's a race with discard.
2732          */
2733         build_virtual_key(tc->td, block, &key);
2734         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2735                 return DM_MAPIO_SUBMITTED;
2736
2737         r = dm_thin_find_block(td, block, 0, &result);
2738
2739         /*
2740          * Note that we defer readahead too.
2741          */
2742         switch (r) {
2743         case 0:
2744                 if (unlikely(result.shared)) {
2745                         /*
2746                          * We have a race condition here between the
2747                          * result.shared value returned by the lookup and
2748                          * snapshot creation, which may cause new
2749                          * sharing.
2750                          *
2751                          * To avoid this always quiesce the origin before
2752                          * taking the snap.  You want to do this anyway to
2753                          * ensure a consistent application view
2754                          * (i.e. lockfs).
2755                          *
2756                          * More distant ancestors are irrelevant. The
2757                          * shared flag will be set in their case.
2758                          */
2759                         thin_defer_cell(tc, virt_cell);
2760                         return DM_MAPIO_SUBMITTED;
2761                 }
2762
2763                 build_data_key(tc->td, result.block, &key);
2764                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2765                         cell_defer_no_holder(tc, virt_cell);
2766                         return DM_MAPIO_SUBMITTED;
2767                 }
2768
2769                 inc_all_io_entry(tc->pool, bio);
2770                 cell_defer_no_holder(tc, data_cell);
2771                 cell_defer_no_holder(tc, virt_cell);
2772
2773                 remap(tc, bio, result.block);
2774                 return DM_MAPIO_REMAPPED;
2775
2776         case -ENODATA:
2777         case -EWOULDBLOCK:
2778                 thin_defer_cell(tc, virt_cell);
2779                 return DM_MAPIO_SUBMITTED;
2780
2781         default:
2782                 /*
2783                  * Must always call bio_io_error on failure.
2784                  * dm_thin_find_block can fail with -EINVAL if the
2785                  * pool is switched to fail-io mode.
2786                  */
2787                 bio_io_error(bio);
2788                 cell_defer_no_holder(tc, virt_cell);
2789                 return DM_MAPIO_SUBMITTED;
2790         }
2791 }
2792
2793 static void requeue_bios(struct pool *pool)
2794 {
2795         struct thin_c *tc;
2796
2797         rcu_read_lock();
2798         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2799                 spin_lock_irq(&tc->lock);
2800                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2801                 bio_list_init(&tc->retry_on_resume_list);
2802                 spin_unlock_irq(&tc->lock);
2803         }
2804         rcu_read_unlock();
2805 }
2806
2807 /*
2808  *--------------------------------------------------------------
2809  * Binding of control targets to a pool object
2810  *--------------------------------------------------------------
2811  */
2812 static bool is_factor(sector_t block_size, uint32_t n)
2813 {
2814         return !sector_div(block_size, n);
2815 }
2816
2817 /*
2818  * If discard_passdown was enabled verify that the data device
2819  * supports discards.  Disable discard_passdown if not.
2820  */
2821 static void disable_passdown_if_not_supported(struct pool_c *pt)
2822 {
2823         struct pool *pool = pt->pool;
2824         struct block_device *data_bdev = pt->data_dev->bdev;
2825         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2826         const char *reason = NULL;
2827
2828         if (!pt->adjusted_pf.discard_passdown)
2829                 return;
2830
2831         if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2832                 reason = "discard unsupported";
2833
2834         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2835                 reason = "max discard sectors smaller than a block";
2836
2837         if (reason) {
2838                 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2839                 pt->adjusted_pf.discard_passdown = false;
2840         }
2841 }
2842
2843 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2844 {
2845         struct pool_c *pt = ti->private;
2846
2847         /*
2848          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2849          */
2850         enum pool_mode old_mode = get_pool_mode(pool);
2851         enum pool_mode new_mode = pt->adjusted_pf.mode;
2852
2853         /*
2854          * Don't change the pool's mode until set_pool_mode() below.
2855          * Otherwise the pool's process_* function pointers may
2856          * not match the desired pool mode.
2857          */
2858         pt->adjusted_pf.mode = old_mode;
2859
2860         pool->ti = ti;
2861         pool->pf = pt->adjusted_pf;
2862         pool->low_water_blocks = pt->low_water_blocks;
2863
2864         set_pool_mode(pool, new_mode);
2865
2866         return 0;
2867 }
2868
2869 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2870 {
2871         if (pool->ti == ti)
2872                 pool->ti = NULL;
2873 }
2874
2875 /*
2876  *--------------------------------------------------------------
2877  * Pool creation
2878  *--------------------------------------------------------------
2879  */
2880 /* Initialize pool features. */
2881 static void pool_features_init(struct pool_features *pf)
2882 {
2883         pf->mode = PM_WRITE;
2884         pf->zero_new_blocks = true;
2885         pf->discard_enabled = true;
2886         pf->discard_passdown = true;
2887         pf->error_if_no_space = false;
2888 }
2889
2890 static void __pool_destroy(struct pool *pool)
2891 {
2892         __pool_table_remove(pool);
2893
2894         vfree(pool->cell_sort_array);
2895         if (dm_pool_metadata_close(pool->pmd) < 0)
2896                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2897
2898         dm_bio_prison_destroy(pool->prison);
2899         dm_kcopyd_client_destroy(pool->copier);
2900
2901         cancel_delayed_work_sync(&pool->waker);
2902         cancel_delayed_work_sync(&pool->no_space_timeout);
2903         if (pool->wq)
2904                 destroy_workqueue(pool->wq);
2905
2906         if (pool->next_mapping)
2907                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2908         mempool_exit(&pool->mapping_pool);
2909         dm_deferred_set_destroy(pool->shared_read_ds);
2910         dm_deferred_set_destroy(pool->all_io_ds);
2911         kfree(pool);
2912 }
2913
2914 static struct kmem_cache *_new_mapping_cache;
2915
2916 static struct pool *pool_create(struct mapped_device *pool_md,
2917                                 struct block_device *metadata_dev,
2918                                 struct block_device *data_dev,
2919                                 unsigned long block_size,
2920                                 int read_only, char **error)
2921 {
2922         int r;
2923         void *err_p;
2924         struct pool *pool;
2925         struct dm_pool_metadata *pmd;
2926         bool format_device = read_only ? false : true;
2927
2928         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2929         if (IS_ERR(pmd)) {
2930                 *error = "Error creating metadata object";
2931                 return (struct pool *)pmd;
2932         }
2933
2934         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2935         if (!pool) {
2936                 *error = "Error allocating memory for pool";
2937                 err_p = ERR_PTR(-ENOMEM);
2938                 goto bad_pool;
2939         }
2940
2941         pool->pmd = pmd;
2942         pool->sectors_per_block = block_size;
2943         if (block_size & (block_size - 1))
2944                 pool->sectors_per_block_shift = -1;
2945         else
2946                 pool->sectors_per_block_shift = __ffs(block_size);
2947         pool->low_water_blocks = 0;
2948         pool_features_init(&pool->pf);
2949         pool->prison = dm_bio_prison_create();
2950         if (!pool->prison) {
2951                 *error = "Error creating pool's bio prison";
2952                 err_p = ERR_PTR(-ENOMEM);
2953                 goto bad_prison;
2954         }
2955
2956         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2957         if (IS_ERR(pool->copier)) {
2958                 r = PTR_ERR(pool->copier);
2959                 *error = "Error creating pool's kcopyd client";
2960                 err_p = ERR_PTR(r);
2961                 goto bad_kcopyd_client;
2962         }
2963
2964         /*
2965          * Create singlethreaded workqueue that will service all devices
2966          * that use this metadata.
2967          */
2968         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2969         if (!pool->wq) {
2970                 *error = "Error creating pool's workqueue";
2971                 err_p = ERR_PTR(-ENOMEM);
2972                 goto bad_wq;
2973         }
2974
2975         throttle_init(&pool->throttle);
2976         INIT_WORK(&pool->worker, do_worker);
2977         INIT_DELAYED_WORK(&pool->waker, do_waker);
2978         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2979         spin_lock_init(&pool->lock);
2980         bio_list_init(&pool->deferred_flush_bios);
2981         bio_list_init(&pool->deferred_flush_completions);
2982         INIT_LIST_HEAD(&pool->prepared_mappings);
2983         INIT_LIST_HEAD(&pool->prepared_discards);
2984         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2985         INIT_LIST_HEAD(&pool->active_thins);
2986         pool->low_water_triggered = false;
2987         pool->suspended = true;
2988         pool->out_of_data_space = false;
2989
2990         pool->shared_read_ds = dm_deferred_set_create();
2991         if (!pool->shared_read_ds) {
2992                 *error = "Error creating pool's shared read deferred set";
2993                 err_p = ERR_PTR(-ENOMEM);
2994                 goto bad_shared_read_ds;
2995         }
2996
2997         pool->all_io_ds = dm_deferred_set_create();
2998         if (!pool->all_io_ds) {
2999                 *error = "Error creating pool's all io deferred set";
3000                 err_p = ERR_PTR(-ENOMEM);
3001                 goto bad_all_io_ds;
3002         }
3003
3004         pool->next_mapping = NULL;
3005         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3006                                    _new_mapping_cache);
3007         if (r) {
3008                 *error = "Error creating pool's mapping mempool";
3009                 err_p = ERR_PTR(r);
3010                 goto bad_mapping_pool;
3011         }
3012
3013         pool->cell_sort_array =
3014                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3015                                    sizeof(*pool->cell_sort_array)));
3016         if (!pool->cell_sort_array) {
3017                 *error = "Error allocating cell sort array";
3018                 err_p = ERR_PTR(-ENOMEM);
3019                 goto bad_sort_array;
3020         }
3021
3022         pool->ref_count = 1;
3023         pool->last_commit_jiffies = jiffies;
3024         pool->pool_md = pool_md;
3025         pool->md_dev = metadata_dev;
3026         pool->data_dev = data_dev;
3027         __pool_table_insert(pool);
3028
3029         return pool;
3030
3031 bad_sort_array:
3032         mempool_exit(&pool->mapping_pool);
3033 bad_mapping_pool:
3034         dm_deferred_set_destroy(pool->all_io_ds);
3035 bad_all_io_ds:
3036         dm_deferred_set_destroy(pool->shared_read_ds);
3037 bad_shared_read_ds:
3038         destroy_workqueue(pool->wq);
3039 bad_wq:
3040         dm_kcopyd_client_destroy(pool->copier);
3041 bad_kcopyd_client:
3042         dm_bio_prison_destroy(pool->prison);
3043 bad_prison:
3044         kfree(pool);
3045 bad_pool:
3046         if (dm_pool_metadata_close(pmd))
3047                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3048
3049         return err_p;
3050 }
3051
3052 static void __pool_inc(struct pool *pool)
3053 {
3054         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3055         pool->ref_count++;
3056 }
3057
3058 static void __pool_dec(struct pool *pool)
3059 {
3060         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3061         BUG_ON(!pool->ref_count);
3062         if (!--pool->ref_count)
3063                 __pool_destroy(pool);
3064 }
3065
3066 static struct pool *__pool_find(struct mapped_device *pool_md,
3067                                 struct block_device *metadata_dev,
3068                                 struct block_device *data_dev,
3069                                 unsigned long block_size, int read_only,
3070                                 char **error, int *created)
3071 {
3072         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3073
3074         if (pool) {
3075                 if (pool->pool_md != pool_md) {
3076                         *error = "metadata device already in use by a pool";
3077                         return ERR_PTR(-EBUSY);
3078                 }
3079                 if (pool->data_dev != data_dev) {
3080                         *error = "data device already in use by a pool";
3081                         return ERR_PTR(-EBUSY);
3082                 }
3083                 __pool_inc(pool);
3084
3085         } else {
3086                 pool = __pool_table_lookup(pool_md);
3087                 if (pool) {
3088                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3089                                 *error = "different pool cannot replace a pool";
3090                                 return ERR_PTR(-EINVAL);
3091                         }
3092                         __pool_inc(pool);
3093
3094                 } else {
3095                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3096                         *created = 1;
3097                 }
3098         }
3099
3100         return pool;
3101 }
3102
3103 /*
3104  *--------------------------------------------------------------
3105  * Pool target methods
3106  *--------------------------------------------------------------
3107  */
3108 static void pool_dtr(struct dm_target *ti)
3109 {
3110         struct pool_c *pt = ti->private;
3111
3112         mutex_lock(&dm_thin_pool_table.mutex);
3113
3114         unbind_control_target(pt->pool, ti);
3115         __pool_dec(pt->pool);
3116         dm_put_device(ti, pt->metadata_dev);
3117         dm_put_device(ti, pt->data_dev);
3118         kfree(pt);
3119
3120         mutex_unlock(&dm_thin_pool_table.mutex);
3121 }
3122
3123 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3124                                struct dm_target *ti)
3125 {
3126         int r;
3127         unsigned int argc;
3128         const char *arg_name;
3129
3130         static const struct dm_arg _args[] = {
3131                 {0, 4, "Invalid number of pool feature arguments"},
3132         };
3133
3134         /*
3135          * No feature arguments supplied.
3136          */
3137         if (!as->argc)
3138                 return 0;
3139
3140         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3141         if (r)
3142                 return -EINVAL;
3143
3144         while (argc && !r) {
3145                 arg_name = dm_shift_arg(as);
3146                 argc--;
3147
3148                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3149                         pf->zero_new_blocks = false;
3150
3151                 else if (!strcasecmp(arg_name, "ignore_discard"))
3152                         pf->discard_enabled = false;
3153
3154                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3155                         pf->discard_passdown = false;
3156
3157                 else if (!strcasecmp(arg_name, "read_only"))
3158                         pf->mode = PM_READ_ONLY;
3159
3160                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3161                         pf->error_if_no_space = true;
3162
3163                 else {
3164                         ti->error = "Unrecognised pool feature requested";
3165                         r = -EINVAL;
3166                         break;
3167                 }
3168         }
3169
3170         return r;
3171 }
3172
3173 static void metadata_low_callback(void *context)
3174 {
3175         struct pool *pool = context;
3176
3177         DMWARN("%s: reached low water mark for metadata device: sending event.",
3178                dm_device_name(pool->pool_md));
3179
3180         dm_table_event(pool->ti->table);
3181 }
3182
3183 /*
3184  * We need to flush the data device **before** committing the metadata.
3185  *
3186  * This ensures that the data blocks of any newly inserted mappings are
3187  * properly written to non-volatile storage and won't be lost in case of a
3188  * crash.
3189  *
3190  * Failure to do so can result in data corruption in the case of internal or
3191  * external snapshots and in the case of newly provisioned blocks, when block
3192  * zeroing is enabled.
3193  */
3194 static int metadata_pre_commit_callback(void *context)
3195 {
3196         struct pool *pool = context;
3197
3198         return blkdev_issue_flush(pool->data_dev);
3199 }
3200
3201 static sector_t get_dev_size(struct block_device *bdev)
3202 {
3203         return bdev_nr_sectors(bdev);
3204 }
3205
3206 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3207 {
3208         sector_t metadata_dev_size = get_dev_size(bdev);
3209
3210         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3211                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3212                        bdev, THIN_METADATA_MAX_SECTORS);
3213 }
3214
3215 static sector_t get_metadata_dev_size(struct block_device *bdev)
3216 {
3217         sector_t metadata_dev_size = get_dev_size(bdev);
3218
3219         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3220                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3221
3222         return metadata_dev_size;
3223 }
3224
3225 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3226 {
3227         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3228
3229         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3230
3231         return metadata_dev_size;
3232 }
3233
3234 /*
3235  * When a metadata threshold is crossed a dm event is triggered, and
3236  * userland should respond by growing the metadata device.  We could let
3237  * userland set the threshold, like we do with the data threshold, but I'm
3238  * not sure they know enough to do this well.
3239  */
3240 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3241 {
3242         /*
3243          * 4M is ample for all ops with the possible exception of thin
3244          * device deletion which is harmless if it fails (just retry the
3245          * delete after you've grown the device).
3246          */
3247         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3248
3249         return min((dm_block_t)1024ULL /* 4M */, quarter);
3250 }
3251
3252 /*
3253  * thin-pool <metadata dev> <data dev>
3254  *           <data block size (sectors)>
3255  *           <low water mark (blocks)>
3256  *           [<#feature args> [<arg>]*]
3257  *
3258  * Optional feature arguments are:
3259  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3260  *           ignore_discard: disable discard
3261  *           no_discard_passdown: don't pass discards down to the data device
3262  *           read_only: Don't allow any changes to be made to the pool metadata.
3263  *           error_if_no_space: error IOs, instead of queueing, if no space.
3264  */
3265 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3266 {
3267         int r, pool_created = 0;
3268         struct pool_c *pt;
3269         struct pool *pool;
3270         struct pool_features pf;
3271         struct dm_arg_set as;
3272         struct dm_dev *data_dev;
3273         unsigned long block_size;
3274         dm_block_t low_water_blocks;
3275         struct dm_dev *metadata_dev;
3276         fmode_t metadata_mode;
3277
3278         /*
3279          * FIXME Remove validation from scope of lock.
3280          */
3281         mutex_lock(&dm_thin_pool_table.mutex);
3282
3283         if (argc < 4) {
3284                 ti->error = "Invalid argument count";
3285                 r = -EINVAL;
3286                 goto out_unlock;
3287         }
3288
3289         as.argc = argc;
3290         as.argv = argv;
3291
3292         /* make sure metadata and data are different devices */
3293         if (!strcmp(argv[0], argv[1])) {
3294                 ti->error = "Error setting metadata or data device";
3295                 r = -EINVAL;
3296                 goto out_unlock;
3297         }
3298
3299         /*
3300          * Set default pool features.
3301          */
3302         pool_features_init(&pf);
3303
3304         dm_consume_args(&as, 4);
3305         r = parse_pool_features(&as, &pf, ti);
3306         if (r)
3307                 goto out_unlock;
3308
3309         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3310         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3311         if (r) {
3312                 ti->error = "Error opening metadata block device";
3313                 goto out_unlock;
3314         }
3315         warn_if_metadata_device_too_big(metadata_dev->bdev);
3316
3317         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3318         if (r) {
3319                 ti->error = "Error getting data device";
3320                 goto out_metadata;
3321         }
3322
3323         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3324             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3325             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3326             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3327                 ti->error = "Invalid block size";
3328                 r = -EINVAL;
3329                 goto out;
3330         }
3331
3332         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3333                 ti->error = "Invalid low water mark";
3334                 r = -EINVAL;
3335                 goto out;
3336         }
3337
3338         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3339         if (!pt) {
3340                 r = -ENOMEM;
3341                 goto out;
3342         }
3343
3344         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3345                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3346         if (IS_ERR(pool)) {
3347                 r = PTR_ERR(pool);
3348                 goto out_free_pt;
3349         }
3350
3351         /*
3352          * 'pool_created' reflects whether this is the first table load.
3353          * Top level discard support is not allowed to be changed after
3354          * initial load.  This would require a pool reload to trigger thin
3355          * device changes.
3356          */
3357         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3358                 ti->error = "Discard support cannot be disabled once enabled";
3359                 r = -EINVAL;
3360                 goto out_flags_changed;
3361         }
3362
3363         pt->pool = pool;
3364         pt->ti = ti;
3365         pt->metadata_dev = metadata_dev;
3366         pt->data_dev = data_dev;
3367         pt->low_water_blocks = low_water_blocks;
3368         pt->adjusted_pf = pt->requested_pf = pf;
3369         ti->num_flush_bios = 1;
3370
3371         /*
3372          * Only need to enable discards if the pool should pass
3373          * them down to the data device.  The thin device's discard
3374          * processing will cause mappings to be removed from the btree.
3375          */
3376         if (pf.discard_enabled && pf.discard_passdown) {
3377                 ti->num_discard_bios = 1;
3378
3379                 /*
3380                  * Setting 'discards_supported' circumvents the normal
3381                  * stacking of discard limits (this keeps the pool and
3382                  * thin devices' discard limits consistent).
3383                  */
3384                 ti->discards_supported = true;
3385         }
3386         ti->private = pt;
3387
3388         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3389                                                 calc_metadata_threshold(pt),
3390                                                 metadata_low_callback,
3391                                                 pool);
3392         if (r) {
3393                 ti->error = "Error registering metadata threshold";
3394                 goto out_flags_changed;
3395         }
3396
3397         dm_pool_register_pre_commit_callback(pool->pmd,
3398                                              metadata_pre_commit_callback, pool);
3399
3400         mutex_unlock(&dm_thin_pool_table.mutex);
3401
3402         return 0;
3403
3404 out_flags_changed:
3405         __pool_dec(pool);
3406 out_free_pt:
3407         kfree(pt);
3408 out:
3409         dm_put_device(ti, data_dev);
3410 out_metadata:
3411         dm_put_device(ti, metadata_dev);
3412 out_unlock:
3413         mutex_unlock(&dm_thin_pool_table.mutex);
3414
3415         return r;
3416 }
3417
3418 static int pool_map(struct dm_target *ti, struct bio *bio)
3419 {
3420         int r;
3421         struct pool_c *pt = ti->private;
3422         struct pool *pool = pt->pool;
3423
3424         /*
3425          * As this is a singleton target, ti->begin is always zero.
3426          */
3427         spin_lock_irq(&pool->lock);
3428         bio_set_dev(bio, pt->data_dev->bdev);
3429         r = DM_MAPIO_REMAPPED;
3430         spin_unlock_irq(&pool->lock);
3431
3432         return r;
3433 }
3434
3435 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3436 {
3437         int r;
3438         struct pool_c *pt = ti->private;
3439         struct pool *pool = pt->pool;
3440         sector_t data_size = ti->len;
3441         dm_block_t sb_data_size;
3442
3443         *need_commit = false;
3444
3445         (void) sector_div(data_size, pool->sectors_per_block);
3446
3447         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3448         if (r) {
3449                 DMERR("%s: failed to retrieve data device size",
3450                       dm_device_name(pool->pool_md));
3451                 return r;
3452         }
3453
3454         if (data_size < sb_data_size) {
3455                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3456                       dm_device_name(pool->pool_md),
3457                       (unsigned long long)data_size, sb_data_size);
3458                 return -EINVAL;
3459
3460         } else if (data_size > sb_data_size) {
3461                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3462                         DMERR("%s: unable to grow the data device until repaired.",
3463                               dm_device_name(pool->pool_md));
3464                         return 0;
3465                 }
3466
3467                 if (sb_data_size)
3468                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3469                                dm_device_name(pool->pool_md),
3470                                sb_data_size, (unsigned long long)data_size);
3471                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3472                 if (r) {
3473                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3474                         return r;
3475                 }
3476
3477                 *need_commit = true;
3478         }
3479
3480         return 0;
3481 }
3482
3483 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3484 {
3485         int r;
3486         struct pool_c *pt = ti->private;
3487         struct pool *pool = pt->pool;
3488         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3489
3490         *need_commit = false;
3491
3492         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3493
3494         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3495         if (r) {
3496                 DMERR("%s: failed to retrieve metadata device size",
3497                       dm_device_name(pool->pool_md));
3498                 return r;
3499         }
3500
3501         if (metadata_dev_size < sb_metadata_dev_size) {
3502                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3503                       dm_device_name(pool->pool_md),
3504                       metadata_dev_size, sb_metadata_dev_size);
3505                 return -EINVAL;
3506
3507         } else if (metadata_dev_size > sb_metadata_dev_size) {
3508                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3509                         DMERR("%s: unable to grow the metadata device until repaired.",
3510                               dm_device_name(pool->pool_md));
3511                         return 0;
3512                 }
3513
3514                 warn_if_metadata_device_too_big(pool->md_dev);
3515                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3516                        dm_device_name(pool->pool_md),
3517                        sb_metadata_dev_size, metadata_dev_size);
3518
3519                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3520                         set_pool_mode(pool, PM_WRITE);
3521
3522                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3523                 if (r) {
3524                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3525                         return r;
3526                 }
3527
3528                 *need_commit = true;
3529         }
3530
3531         return 0;
3532 }
3533
3534 /*
3535  * Retrieves the number of blocks of the data device from
3536  * the superblock and compares it to the actual device size,
3537  * thus resizing the data device in case it has grown.
3538  *
3539  * This both copes with opening preallocated data devices in the ctr
3540  * being followed by a resume
3541  * -and-
3542  * calling the resume method individually after userspace has
3543  * grown the data device in reaction to a table event.
3544  */
3545 static int pool_preresume(struct dm_target *ti)
3546 {
3547         int r;
3548         bool need_commit1, need_commit2;
3549         struct pool_c *pt = ti->private;
3550         struct pool *pool = pt->pool;
3551
3552         /*
3553          * Take control of the pool object.
3554          */
3555         r = bind_control_target(pool, ti);
3556         if (r)
3557                 goto out;
3558
3559         r = maybe_resize_data_dev(ti, &need_commit1);
3560         if (r)
3561                 goto out;
3562
3563         r = maybe_resize_metadata_dev(ti, &need_commit2);
3564         if (r)
3565                 goto out;
3566
3567         if (need_commit1 || need_commit2)
3568                 (void) commit(pool);
3569 out:
3570         /*
3571          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3572          * bio is in deferred list. Therefore need to return 0
3573          * to allow pool_resume() to flush IO.
3574          */
3575         if (r && get_pool_mode(pool) == PM_FAIL)
3576                 r = 0;
3577
3578         return r;
3579 }
3580
3581 static void pool_suspend_active_thins(struct pool *pool)
3582 {
3583         struct thin_c *tc;
3584
3585         /* Suspend all active thin devices */
3586         tc = get_first_thin(pool);
3587         while (tc) {
3588                 dm_internal_suspend_noflush(tc->thin_md);
3589                 tc = get_next_thin(pool, tc);
3590         }
3591 }
3592
3593 static void pool_resume_active_thins(struct pool *pool)
3594 {
3595         struct thin_c *tc;
3596
3597         /* Resume all active thin devices */
3598         tc = get_first_thin(pool);
3599         while (tc) {
3600                 dm_internal_resume(tc->thin_md);
3601                 tc = get_next_thin(pool, tc);
3602         }
3603 }
3604
3605 static void pool_resume(struct dm_target *ti)
3606 {
3607         struct pool_c *pt = ti->private;
3608         struct pool *pool = pt->pool;
3609
3610         /*
3611          * Must requeue active_thins' bios and then resume
3612          * active_thins _before_ clearing 'suspend' flag.
3613          */
3614         requeue_bios(pool);
3615         pool_resume_active_thins(pool);
3616
3617         spin_lock_irq(&pool->lock);
3618         pool->low_water_triggered = false;
3619         pool->suspended = false;
3620         spin_unlock_irq(&pool->lock);
3621
3622         do_waker(&pool->waker.work);
3623 }
3624
3625 static void pool_presuspend(struct dm_target *ti)
3626 {
3627         struct pool_c *pt = ti->private;
3628         struct pool *pool = pt->pool;
3629
3630         spin_lock_irq(&pool->lock);
3631         pool->suspended = true;
3632         spin_unlock_irq(&pool->lock);
3633
3634         pool_suspend_active_thins(pool);
3635 }
3636
3637 static void pool_presuspend_undo(struct dm_target *ti)
3638 {
3639         struct pool_c *pt = ti->private;
3640         struct pool *pool = pt->pool;
3641
3642         pool_resume_active_thins(pool);
3643
3644         spin_lock_irq(&pool->lock);
3645         pool->suspended = false;
3646         spin_unlock_irq(&pool->lock);
3647 }
3648
3649 static void pool_postsuspend(struct dm_target *ti)
3650 {
3651         struct pool_c *pt = ti->private;
3652         struct pool *pool = pt->pool;
3653
3654         cancel_delayed_work_sync(&pool->waker);
3655         cancel_delayed_work_sync(&pool->no_space_timeout);
3656         flush_workqueue(pool->wq);
3657         (void) commit(pool);
3658 }
3659
3660 static int check_arg_count(unsigned int argc, unsigned int args_required)
3661 {
3662         if (argc != args_required) {
3663                 DMWARN("Message received with %u arguments instead of %u.",
3664                        argc, args_required);
3665                 return -EINVAL;
3666         }
3667
3668         return 0;
3669 }
3670
3671 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3672 {
3673         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3674             *dev_id <= MAX_DEV_ID)
3675                 return 0;
3676
3677         if (warning)
3678                 DMWARN("Message received with invalid device id: %s", arg);
3679
3680         return -EINVAL;
3681 }
3682
3683 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3684 {
3685         dm_thin_id dev_id;
3686         int r;
3687
3688         r = check_arg_count(argc, 2);
3689         if (r)
3690                 return r;
3691
3692         r = read_dev_id(argv[1], &dev_id, 1);
3693         if (r)
3694                 return r;
3695
3696         r = dm_pool_create_thin(pool->pmd, dev_id);
3697         if (r) {
3698                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3699                        argv[1]);
3700                 return r;
3701         }
3702
3703         return 0;
3704 }
3705
3706 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3707 {
3708         dm_thin_id dev_id;
3709         dm_thin_id origin_dev_id;
3710         int r;
3711
3712         r = check_arg_count(argc, 3);
3713         if (r)
3714                 return r;
3715
3716         r = read_dev_id(argv[1], &dev_id, 1);
3717         if (r)
3718                 return r;
3719
3720         r = read_dev_id(argv[2], &origin_dev_id, 1);
3721         if (r)
3722                 return r;
3723
3724         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3725         if (r) {
3726                 DMWARN("Creation of new snapshot %s of device %s failed.",
3727                        argv[1], argv[2]);
3728                 return r;
3729         }
3730
3731         return 0;
3732 }
3733
3734 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3735 {
3736         dm_thin_id dev_id;
3737         int r;
3738
3739         r = check_arg_count(argc, 2);
3740         if (r)
3741                 return r;
3742
3743         r = read_dev_id(argv[1], &dev_id, 1);
3744         if (r)
3745                 return r;
3746
3747         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3748         if (r)
3749                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3750
3751         return r;
3752 }
3753
3754 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3755 {
3756         dm_thin_id old_id, new_id;
3757         int r;
3758
3759         r = check_arg_count(argc, 3);
3760         if (r)
3761                 return r;
3762
3763         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3764                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3765                 return -EINVAL;
3766         }
3767
3768         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3769                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3770                 return -EINVAL;
3771         }
3772
3773         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3774         if (r) {
3775                 DMWARN("Failed to change transaction id from %s to %s.",
3776                        argv[1], argv[2]);
3777                 return r;
3778         }
3779
3780         return 0;
3781 }
3782
3783 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3784 {
3785         int r;
3786
3787         r = check_arg_count(argc, 1);
3788         if (r)
3789                 return r;
3790
3791         (void) commit(pool);
3792
3793         r = dm_pool_reserve_metadata_snap(pool->pmd);
3794         if (r)
3795                 DMWARN("reserve_metadata_snap message failed.");
3796
3797         return r;
3798 }
3799
3800 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3801 {
3802         int r;
3803
3804         r = check_arg_count(argc, 1);
3805         if (r)
3806                 return r;
3807
3808         r = dm_pool_release_metadata_snap(pool->pmd);
3809         if (r)
3810                 DMWARN("release_metadata_snap message failed.");
3811
3812         return r;
3813 }
3814
3815 /*
3816  * Messages supported:
3817  *   create_thin        <dev_id>
3818  *   create_snap        <dev_id> <origin_id>
3819  *   delete             <dev_id>
3820  *   set_transaction_id <current_trans_id> <new_trans_id>
3821  *   reserve_metadata_snap
3822  *   release_metadata_snap
3823  */
3824 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3825                         char *result, unsigned int maxlen)
3826 {
3827         int r = -EINVAL;
3828         struct pool_c *pt = ti->private;
3829         struct pool *pool = pt->pool;
3830
3831         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3832                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3833                       dm_device_name(pool->pool_md));
3834                 return -EOPNOTSUPP;
3835         }
3836
3837         if (!strcasecmp(argv[0], "create_thin"))
3838                 r = process_create_thin_mesg(argc, argv, pool);
3839
3840         else if (!strcasecmp(argv[0], "create_snap"))
3841                 r = process_create_snap_mesg(argc, argv, pool);
3842
3843         else if (!strcasecmp(argv[0], "delete"))
3844                 r = process_delete_mesg(argc, argv, pool);
3845
3846         else if (!strcasecmp(argv[0], "set_transaction_id"))
3847                 r = process_set_transaction_id_mesg(argc, argv, pool);
3848
3849         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3850                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3851
3852         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3853                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3854
3855         else
3856                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3857
3858         if (!r)
3859                 (void) commit(pool);
3860
3861         return r;
3862 }
3863
3864 static void emit_flags(struct pool_features *pf, char *result,
3865                        unsigned int sz, unsigned int maxlen)
3866 {
3867         unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3868                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3869                 pf->error_if_no_space;
3870         DMEMIT("%u ", count);
3871
3872         if (!pf->zero_new_blocks)
3873                 DMEMIT("skip_block_zeroing ");
3874
3875         if (!pf->discard_enabled)
3876                 DMEMIT("ignore_discard ");
3877
3878         if (!pf->discard_passdown)
3879                 DMEMIT("no_discard_passdown ");
3880
3881         if (pf->mode == PM_READ_ONLY)
3882                 DMEMIT("read_only ");
3883
3884         if (pf->error_if_no_space)
3885                 DMEMIT("error_if_no_space ");
3886 }
3887
3888 /*
3889  * Status line is:
3890  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3891  *    <used data sectors>/<total data sectors> <held metadata root>
3892  *    <pool mode> <discard config> <no space config> <needs_check>
3893  */
3894 static void pool_status(struct dm_target *ti, status_type_t type,
3895                         unsigned int status_flags, char *result, unsigned int maxlen)
3896 {
3897         int r;
3898         unsigned int sz = 0;
3899         uint64_t transaction_id;
3900         dm_block_t nr_free_blocks_data;
3901         dm_block_t nr_free_blocks_metadata;
3902         dm_block_t nr_blocks_data;
3903         dm_block_t nr_blocks_metadata;
3904         dm_block_t held_root;
3905         enum pool_mode mode;
3906         char buf[BDEVNAME_SIZE];
3907         char buf2[BDEVNAME_SIZE];
3908         struct pool_c *pt = ti->private;
3909         struct pool *pool = pt->pool;
3910
3911         switch (type) {
3912         case STATUSTYPE_INFO:
3913                 if (get_pool_mode(pool) == PM_FAIL) {
3914                         DMEMIT("Fail");
3915                         break;
3916                 }
3917
3918                 /* Commit to ensure statistics aren't out-of-date */
3919                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3920                         (void) commit(pool);
3921
3922                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3923                 if (r) {
3924                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3925                               dm_device_name(pool->pool_md), r);
3926                         goto err;
3927                 }
3928
3929                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3930                 if (r) {
3931                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3932                               dm_device_name(pool->pool_md), r);
3933                         goto err;
3934                 }
3935
3936                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3937                 if (r) {
3938                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3939                               dm_device_name(pool->pool_md), r);
3940                         goto err;
3941                 }
3942
3943                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3944                 if (r) {
3945                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3946                               dm_device_name(pool->pool_md), r);
3947                         goto err;
3948                 }
3949
3950                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3951                 if (r) {
3952                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3953                               dm_device_name(pool->pool_md), r);
3954                         goto err;
3955                 }
3956
3957                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3958                 if (r) {
3959                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3960                               dm_device_name(pool->pool_md), r);
3961                         goto err;
3962                 }
3963
3964                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3965                        (unsigned long long)transaction_id,
3966                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3967                        (unsigned long long)nr_blocks_metadata,
3968                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3969                        (unsigned long long)nr_blocks_data);
3970
3971                 if (held_root)
3972                         DMEMIT("%llu ", held_root);
3973                 else
3974                         DMEMIT("- ");
3975
3976                 mode = get_pool_mode(pool);
3977                 if (mode == PM_OUT_OF_DATA_SPACE)
3978                         DMEMIT("out_of_data_space ");
3979                 else if (is_read_only_pool_mode(mode))
3980                         DMEMIT("ro ");
3981                 else
3982                         DMEMIT("rw ");
3983
3984                 if (!pool->pf.discard_enabled)
3985                         DMEMIT("ignore_discard ");
3986                 else if (pool->pf.discard_passdown)
3987                         DMEMIT("discard_passdown ");
3988                 else
3989                         DMEMIT("no_discard_passdown ");
3990
3991                 if (pool->pf.error_if_no_space)
3992                         DMEMIT("error_if_no_space ");
3993                 else
3994                         DMEMIT("queue_if_no_space ");
3995
3996                 if (dm_pool_metadata_needs_check(pool->pmd))
3997                         DMEMIT("needs_check ");
3998                 else
3999                         DMEMIT("- ");
4000
4001                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4002
4003                 break;
4004
4005         case STATUSTYPE_TABLE:
4006                 DMEMIT("%s %s %lu %llu ",
4007                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4008                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4009                        (unsigned long)pool->sectors_per_block,
4010                        (unsigned long long)pt->low_water_blocks);
4011                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4012                 break;
4013
4014         case STATUSTYPE_IMA:
4015                 *result = '\0';
4016                 break;
4017         }
4018         return;
4019
4020 err:
4021         DMEMIT("Error");
4022 }
4023
4024 static int pool_iterate_devices(struct dm_target *ti,
4025                                 iterate_devices_callout_fn fn, void *data)
4026 {
4027         struct pool_c *pt = ti->private;
4028
4029         return fn(ti, pt->data_dev, 0, ti->len, data);
4030 }
4031
4032 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4033 {
4034         struct pool_c *pt = ti->private;
4035         struct pool *pool = pt->pool;
4036         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4037
4038         /*
4039          * If max_sectors is smaller than pool->sectors_per_block adjust it
4040          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4041          * This is especially beneficial when the pool's data device is a RAID
4042          * device that has a full stripe width that matches pool->sectors_per_block
4043          * -- because even though partial RAID stripe-sized IOs will be issued to a
4044          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4045          *    boundary.. which avoids additional partial RAID stripe writes cascading
4046          */
4047         if (limits->max_sectors < pool->sectors_per_block) {
4048                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4049                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4050                                 limits->max_sectors--;
4051                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4052                 }
4053         }
4054
4055         /*
4056          * If the system-determined stacked limits are compatible with the
4057          * pool's blocksize (io_opt is a factor) do not override them.
4058          */
4059         if (io_opt_sectors < pool->sectors_per_block ||
4060             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4061                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4062                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4063                 else
4064                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4065                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4066         }
4067
4068         /*
4069          * pt->adjusted_pf is a staging area for the actual features to use.
4070          * They get transferred to the live pool in bind_control_target()
4071          * called from pool_preresume().
4072          */
4073         if (!pt->adjusted_pf.discard_enabled) {
4074                 /*
4075                  * Must explicitly disallow stacking discard limits otherwise the
4076                  * block layer will stack them if pool's data device has support.
4077                  */
4078                 limits->discard_granularity = 0;
4079                 return;
4080         }
4081
4082         disable_passdown_if_not_supported(pt);
4083
4084         /*
4085          * The pool uses the same discard limits as the underlying data
4086          * device.  DM core has already set this up.
4087          */
4088 }
4089
4090 static struct target_type pool_target = {
4091         .name = "thin-pool",
4092         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4093                     DM_TARGET_IMMUTABLE,
4094         .version = {1, 22, 0},
4095         .module = THIS_MODULE,
4096         .ctr = pool_ctr,
4097         .dtr = pool_dtr,
4098         .map = pool_map,
4099         .presuspend = pool_presuspend,
4100         .presuspend_undo = pool_presuspend_undo,
4101         .postsuspend = pool_postsuspend,
4102         .preresume = pool_preresume,
4103         .resume = pool_resume,
4104         .message = pool_message,
4105         .status = pool_status,
4106         .iterate_devices = pool_iterate_devices,
4107         .io_hints = pool_io_hints,
4108 };
4109
4110 /*
4111  *--------------------------------------------------------------
4112  * Thin target methods
4113  *--------------------------------------------------------------
4114  */
4115 static void thin_get(struct thin_c *tc)
4116 {
4117         refcount_inc(&tc->refcount);
4118 }
4119
4120 static void thin_put(struct thin_c *tc)
4121 {
4122         if (refcount_dec_and_test(&tc->refcount))
4123                 complete(&tc->can_destroy);
4124 }
4125
4126 static void thin_dtr(struct dm_target *ti)
4127 {
4128         struct thin_c *tc = ti->private;
4129
4130         spin_lock_irq(&tc->pool->lock);
4131         list_del_rcu(&tc->list);
4132         spin_unlock_irq(&tc->pool->lock);
4133         synchronize_rcu();
4134
4135         thin_put(tc);
4136         wait_for_completion(&tc->can_destroy);
4137
4138         mutex_lock(&dm_thin_pool_table.mutex);
4139
4140         __pool_dec(tc->pool);
4141         dm_pool_close_thin_device(tc->td);
4142         dm_put_device(ti, tc->pool_dev);
4143         if (tc->origin_dev)
4144                 dm_put_device(ti, tc->origin_dev);
4145         kfree(tc);
4146
4147         mutex_unlock(&dm_thin_pool_table.mutex);
4148 }
4149
4150 /*
4151  * Thin target parameters:
4152  *
4153  * <pool_dev> <dev_id> [origin_dev]
4154  *
4155  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4156  * dev_id: the internal device identifier
4157  * origin_dev: a device external to the pool that should act as the origin
4158  *
4159  * If the pool device has discards disabled, they get disabled for the thin
4160  * device as well.
4161  */
4162 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4163 {
4164         int r;
4165         struct thin_c *tc;
4166         struct dm_dev *pool_dev, *origin_dev;
4167         struct mapped_device *pool_md;
4168
4169         mutex_lock(&dm_thin_pool_table.mutex);
4170
4171         if (argc != 2 && argc != 3) {
4172                 ti->error = "Invalid argument count";
4173                 r = -EINVAL;
4174                 goto out_unlock;
4175         }
4176
4177         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4178         if (!tc) {
4179                 ti->error = "Out of memory";
4180                 r = -ENOMEM;
4181                 goto out_unlock;
4182         }
4183         tc->thin_md = dm_table_get_md(ti->table);
4184         spin_lock_init(&tc->lock);
4185         INIT_LIST_HEAD(&tc->deferred_cells);
4186         bio_list_init(&tc->deferred_bio_list);
4187         bio_list_init(&tc->retry_on_resume_list);
4188         tc->sort_bio_list = RB_ROOT;
4189
4190         if (argc == 3) {
4191                 if (!strcmp(argv[0], argv[2])) {
4192                         ti->error = "Error setting origin device";
4193                         r = -EINVAL;
4194                         goto bad_origin_dev;
4195                 }
4196
4197                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4198                 if (r) {
4199                         ti->error = "Error opening origin device";
4200                         goto bad_origin_dev;
4201                 }
4202                 tc->origin_dev = origin_dev;
4203         }
4204
4205         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4206         if (r) {
4207                 ti->error = "Error opening pool device";
4208                 goto bad_pool_dev;
4209         }
4210         tc->pool_dev = pool_dev;
4211
4212         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4213                 ti->error = "Invalid device id";
4214                 r = -EINVAL;
4215                 goto bad_common;
4216         }
4217
4218         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4219         if (!pool_md) {
4220                 ti->error = "Couldn't get pool mapped device";
4221                 r = -EINVAL;
4222                 goto bad_common;
4223         }
4224
4225         tc->pool = __pool_table_lookup(pool_md);
4226         if (!tc->pool) {
4227                 ti->error = "Couldn't find pool object";
4228                 r = -EINVAL;
4229                 goto bad_pool_lookup;
4230         }
4231         __pool_inc(tc->pool);
4232
4233         if (get_pool_mode(tc->pool) == PM_FAIL) {
4234                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4235                 r = -EINVAL;
4236                 goto bad_pool;
4237         }
4238
4239         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4240         if (r) {
4241                 ti->error = "Couldn't open thin internal device";
4242                 goto bad_pool;
4243         }
4244
4245         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4246         if (r)
4247                 goto bad;
4248
4249         ti->num_flush_bios = 1;
4250         ti->flush_supported = true;
4251         ti->accounts_remapped_io = true;
4252         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4253
4254         /* In case the pool supports discards, pass them on. */
4255         if (tc->pool->pf.discard_enabled) {
4256                 ti->discards_supported = true;
4257                 ti->num_discard_bios = 1;
4258         }
4259
4260         mutex_unlock(&dm_thin_pool_table.mutex);
4261
4262         spin_lock_irq(&tc->pool->lock);
4263         if (tc->pool->suspended) {
4264                 spin_unlock_irq(&tc->pool->lock);
4265                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4266                 ti->error = "Unable to activate thin device while pool is suspended";
4267                 r = -EINVAL;
4268                 goto bad;
4269         }
4270         refcount_set(&tc->refcount, 1);
4271         init_completion(&tc->can_destroy);
4272         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4273         spin_unlock_irq(&tc->pool->lock);
4274         /*
4275          * This synchronize_rcu() call is needed here otherwise we risk a
4276          * wake_worker() call finding no bios to process (because the newly
4277          * added tc isn't yet visible).  So this reduces latency since we
4278          * aren't then dependent on the periodic commit to wake_worker().
4279          */
4280         synchronize_rcu();
4281
4282         dm_put(pool_md);
4283
4284         return 0;
4285
4286 bad:
4287         dm_pool_close_thin_device(tc->td);
4288 bad_pool:
4289         __pool_dec(tc->pool);
4290 bad_pool_lookup:
4291         dm_put(pool_md);
4292 bad_common:
4293         dm_put_device(ti, tc->pool_dev);
4294 bad_pool_dev:
4295         if (tc->origin_dev)
4296                 dm_put_device(ti, tc->origin_dev);
4297 bad_origin_dev:
4298         kfree(tc);
4299 out_unlock:
4300         mutex_unlock(&dm_thin_pool_table.mutex);
4301
4302         return r;
4303 }
4304
4305 static int thin_map(struct dm_target *ti, struct bio *bio)
4306 {
4307         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4308
4309         return thin_bio_map(ti, bio);
4310 }
4311
4312 static int thin_endio(struct dm_target *ti, struct bio *bio,
4313                 blk_status_t *err)
4314 {
4315         unsigned long flags;
4316         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4317         struct list_head work;
4318         struct dm_thin_new_mapping *m, *tmp;
4319         struct pool *pool = h->tc->pool;
4320
4321         if (h->shared_read_entry) {
4322                 INIT_LIST_HEAD(&work);
4323                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4324
4325                 spin_lock_irqsave(&pool->lock, flags);
4326                 list_for_each_entry_safe(m, tmp, &work, list) {
4327                         list_del(&m->list);
4328                         __complete_mapping_preparation(m);
4329                 }
4330                 spin_unlock_irqrestore(&pool->lock, flags);
4331         }
4332
4333         if (h->all_io_entry) {
4334                 INIT_LIST_HEAD(&work);
4335                 dm_deferred_entry_dec(h->all_io_entry, &work);
4336                 if (!list_empty(&work)) {
4337                         spin_lock_irqsave(&pool->lock, flags);
4338                         list_for_each_entry_safe(m, tmp, &work, list)
4339                                 list_add_tail(&m->list, &pool->prepared_discards);
4340                         spin_unlock_irqrestore(&pool->lock, flags);
4341                         wake_worker(pool);
4342                 }
4343         }
4344
4345         if (h->cell)
4346                 cell_defer_no_holder(h->tc, h->cell);
4347
4348         return DM_ENDIO_DONE;
4349 }
4350
4351 static void thin_presuspend(struct dm_target *ti)
4352 {
4353         struct thin_c *tc = ti->private;
4354
4355         if (dm_noflush_suspending(ti))
4356                 noflush_work(tc, do_noflush_start);
4357 }
4358
4359 static void thin_postsuspend(struct dm_target *ti)
4360 {
4361         struct thin_c *tc = ti->private;
4362
4363         /*
4364          * The dm_noflush_suspending flag has been cleared by now, so
4365          * unfortunately we must always run this.
4366          */
4367         noflush_work(tc, do_noflush_stop);
4368 }
4369
4370 static int thin_preresume(struct dm_target *ti)
4371 {
4372         struct thin_c *tc = ti->private;
4373
4374         if (tc->origin_dev)
4375                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4376
4377         return 0;
4378 }
4379
4380 /*
4381  * <nr mapped sectors> <highest mapped sector>
4382  */
4383 static void thin_status(struct dm_target *ti, status_type_t type,
4384                         unsigned int status_flags, char *result, unsigned int maxlen)
4385 {
4386         int r;
4387         ssize_t sz = 0;
4388         dm_block_t mapped, highest;
4389         char buf[BDEVNAME_SIZE];
4390         struct thin_c *tc = ti->private;
4391
4392         if (get_pool_mode(tc->pool) == PM_FAIL) {
4393                 DMEMIT("Fail");
4394                 return;
4395         }
4396
4397         if (!tc->td)
4398                 DMEMIT("-");
4399         else {
4400                 switch (type) {
4401                 case STATUSTYPE_INFO:
4402                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4403                         if (r) {
4404                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4405                                 goto err;
4406                         }
4407
4408                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4409                         if (r < 0) {
4410                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4411                                 goto err;
4412                         }
4413
4414                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4415                         if (r)
4416                                 DMEMIT("%llu", ((highest + 1) *
4417                                                 tc->pool->sectors_per_block) - 1);
4418                         else
4419                                 DMEMIT("-");
4420                         break;
4421
4422                 case STATUSTYPE_TABLE:
4423                         DMEMIT("%s %lu",
4424                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4425                                (unsigned long) tc->dev_id);
4426                         if (tc->origin_dev)
4427                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4428                         break;
4429
4430                 case STATUSTYPE_IMA:
4431                         *result = '\0';
4432                         break;
4433                 }
4434         }
4435
4436         return;
4437
4438 err:
4439         DMEMIT("Error");
4440 }
4441
4442 static int thin_iterate_devices(struct dm_target *ti,
4443                                 iterate_devices_callout_fn fn, void *data)
4444 {
4445         sector_t blocks;
4446         struct thin_c *tc = ti->private;
4447         struct pool *pool = tc->pool;
4448
4449         /*
4450          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4451          * we follow a more convoluted path through to the pool's target.
4452          */
4453         if (!pool->ti)
4454                 return 0;       /* nothing is bound */
4455
4456         blocks = pool->ti->len;
4457         (void) sector_div(blocks, pool->sectors_per_block);
4458         if (blocks)
4459                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4460
4461         return 0;
4462 }
4463
4464 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4465 {
4466         struct thin_c *tc = ti->private;
4467         struct pool *pool = tc->pool;
4468
4469         if (!pool->pf.discard_enabled)
4470                 return;
4471
4472         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4473         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4474 }
4475
4476 static struct target_type thin_target = {
4477         .name = "thin",
4478         .version = {1, 22, 0},
4479         .module = THIS_MODULE,
4480         .ctr = thin_ctr,
4481         .dtr = thin_dtr,
4482         .map = thin_map,
4483         .end_io = thin_endio,
4484         .preresume = thin_preresume,
4485         .presuspend = thin_presuspend,
4486         .postsuspend = thin_postsuspend,
4487         .status = thin_status,
4488         .iterate_devices = thin_iterate_devices,
4489         .io_hints = thin_io_hints,
4490 };
4491
4492 /*----------------------------------------------------------------*/
4493
4494 static int __init dm_thin_init(void)
4495 {
4496         int r = -ENOMEM;
4497
4498         pool_table_init();
4499
4500         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4501         if (!_new_mapping_cache)
4502                 return r;
4503
4504         r = dm_register_target(&thin_target);
4505         if (r)
4506                 goto bad_new_mapping_cache;
4507
4508         r = dm_register_target(&pool_target);
4509         if (r)
4510                 goto bad_thin_target;
4511
4512         return 0;
4513
4514 bad_thin_target:
4515         dm_unregister_target(&thin_target);
4516 bad_new_mapping_cache:
4517         kmem_cache_destroy(_new_mapping_cache);
4518
4519         return r;
4520 }
4521
4522 static void dm_thin_exit(void)
4523 {
4524         dm_unregister_target(&thin_target);
4525         dm_unregister_target(&pool_target);
4526
4527         kmem_cache_destroy(_new_mapping_cache);
4528
4529         pool_table_exit();
4530 }
4531
4532 module_init(dm_thin_init);
4533 module_exit(dm_thin_exit);
4534
4535 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4536 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4537
4538 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4539 MODULE_AUTHOR("Joe Thornber <[email protected]>");
4540 MODULE_LICENSE("GPL");
This page took 0.297814 seconds and 4 git commands to generate.