1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
8 * Based on the SuperH Ethernet driver
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
36 #define RAVB_DEF_MSG_ENABLE \
42 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
45 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
48 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
52 for (i = 0; i < 10000; i++) {
53 if ((ravb_read(ndev, reg) & mask) == value)
60 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 u32 csr_ops = 1U << (opmode & CCC_OPC);
63 u32 ccc_mask = CCC_OPC;
66 /* If gPTP active in config mode is supported it needs to be configured
67 * along with CSEL and operating mode in the same access. This is a
68 * hardware limitation.
71 ccc_mask |= CCC_GAC | CCC_CSEL;
73 /* Set operating mode */
74 ravb_modify(ndev, CCC, ccc_mask, opmode);
75 /* Check if the operating mode is changed to the requested one */
76 error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
85 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 struct ravb_private *priv = netdev_priv(ndev);
89 switch (priv->speed) {
91 ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 case 100: /* 100BASE */
94 ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 case 1000: /* 1000BASE */
97 ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
102 static void ravb_set_rate_rcar(struct net_device *ndev)
104 struct ravb_private *priv = netdev_priv(ndev);
106 switch (priv->speed) {
107 case 100: /* 100BASE */
108 ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 case 1000: /* 1000BASE */
111 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
116 static struct sk_buff *
117 ravb_alloc_skb(struct net_device *ndev, const struct ravb_hw_info *info,
123 skb = __netdev_alloc_skb(ndev, info->rx_max_frame_size + RAVB_ALIGN - 1,
128 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
130 skb_reserve(skb, RAVB_ALIGN - reserve);
135 /* Get MAC address from the MAC address registers
137 * Ethernet AVB device doesn't have ROM for MAC address.
138 * This function gets the MAC address that was used by a bootloader.
140 static void ravb_read_mac_address(struct device_node *np,
141 struct net_device *ndev)
145 ret = of_get_ethdev_address(np, ndev);
147 u32 mahr = ravb_read(ndev, MAHR);
148 u32 malr = ravb_read(ndev, MALR);
151 addr[0] = (mahr >> 24) & 0xFF;
152 addr[1] = (mahr >> 16) & 0xFF;
153 addr[2] = (mahr >> 8) & 0xFF;
154 addr[3] = (mahr >> 0) & 0xFF;
155 addr[4] = (malr >> 8) & 0xFF;
156 addr[5] = (malr >> 0) & 0xFF;
157 eth_hw_addr_set(ndev, addr);
161 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
163 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
166 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
169 /* MDC pin control */
170 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
172 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
175 /* Data I/O pin control */
176 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
178 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
182 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
184 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
188 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
190 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
193 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
196 /* MDIO bus control struct */
197 static const struct mdiobb_ops bb_ops = {
198 .owner = THIS_MODULE,
199 .set_mdc = ravb_set_mdc,
200 .set_mdio_dir = ravb_set_mdio_dir,
201 .set_mdio_data = ravb_set_mdio_data,
202 .get_mdio_data = ravb_get_mdio_data,
205 static struct ravb_rx_desc *
206 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
209 return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
212 /* Free TX skb function for AVB-IP */
213 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
215 struct ravb_private *priv = netdev_priv(ndev);
216 struct net_device_stats *stats = &priv->stats[q];
217 unsigned int num_tx_desc = priv->num_tx_desc;
218 struct ravb_tx_desc *desc;
223 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
226 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
228 desc = &priv->tx_ring[q][entry];
229 txed = desc->die_dt == DT_FEMPTY;
230 if (free_txed_only && !txed)
232 /* Descriptor type must be checked before all other reads */
234 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
235 /* Free the original skb. */
236 if (priv->tx_skb[q][entry / num_tx_desc]) {
237 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
238 size, DMA_TO_DEVICE);
239 /* Last packet descriptor? */
240 if (entry % num_tx_desc == num_tx_desc - 1) {
241 entry /= num_tx_desc;
242 dev_kfree_skb_any(priv->tx_skb[q][entry]);
243 priv->tx_skb[q][entry] = NULL;
250 stats->tx_bytes += size;
251 desc->die_dt = DT_EEMPTY;
256 static void ravb_rx_ring_free(struct net_device *ndev, int q)
258 struct ravb_private *priv = netdev_priv(ndev);
259 unsigned int ring_size;
262 if (!priv->rx_ring[q].raw)
265 for (i = 0; i < priv->num_rx_ring[q]; i++) {
266 struct ravb_rx_desc *desc = ravb_rx_get_desc(priv, q, i);
268 if (!dma_mapping_error(ndev->dev.parent,
269 le32_to_cpu(desc->dptr)))
270 dma_unmap_single(ndev->dev.parent,
271 le32_to_cpu(desc->dptr),
272 priv->info->rx_max_frame_size,
275 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
276 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
277 priv->rx_desc_dma[q]);
278 priv->rx_ring[q].raw = NULL;
281 /* Free skb's and DMA buffers for Ethernet AVB */
282 static void ravb_ring_free(struct net_device *ndev, int q)
284 struct ravb_private *priv = netdev_priv(ndev);
285 unsigned int num_tx_desc = priv->num_tx_desc;
286 unsigned int ring_size;
289 ravb_rx_ring_free(ndev, q);
291 if (priv->tx_ring[q]) {
292 ravb_tx_free(ndev, q, false);
294 ring_size = sizeof(struct ravb_tx_desc) *
295 (priv->num_tx_ring[q] * num_tx_desc + 1);
296 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
297 priv->tx_desc_dma[q]);
298 priv->tx_ring[q] = NULL;
301 /* Free RX skb ringbuffer */
302 if (priv->rx_skb[q]) {
303 for (i = 0; i < priv->num_rx_ring[q]; i++)
304 dev_kfree_skb(priv->rx_skb[q][i]);
306 kfree(priv->rx_skb[q]);
307 priv->rx_skb[q] = NULL;
309 /* Free aligned TX buffers */
310 kfree(priv->tx_align[q]);
311 priv->tx_align[q] = NULL;
313 /* Free TX skb ringbuffer.
314 * SKBs are freed by ravb_tx_free() call above.
316 kfree(priv->tx_skb[q]);
317 priv->tx_skb[q] = NULL;
320 static void ravb_rx_ring_format(struct net_device *ndev, int q)
322 struct ravb_private *priv = netdev_priv(ndev);
323 struct ravb_rx_desc *rx_desc;
324 unsigned int rx_ring_size;
328 rx_ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
329 memset(priv->rx_ring[q].raw, 0, rx_ring_size);
330 /* Build RX ring buffer */
331 for (i = 0; i < priv->num_rx_ring[q]; i++) {
333 rx_desc = ravb_rx_get_desc(priv, q, i);
334 rx_desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
335 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
336 priv->info->rx_max_frame_size,
338 /* We just set the data size to 0 for a failed mapping which
339 * should prevent DMA from happening...
341 if (dma_mapping_error(ndev->dev.parent, dma_addr))
342 rx_desc->ds_cc = cpu_to_le16(0);
343 rx_desc->dptr = cpu_to_le32(dma_addr);
344 rx_desc->die_dt = DT_FEMPTY;
346 rx_desc = ravb_rx_get_desc(priv, q, i);
347 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
348 rx_desc->die_dt = DT_LINKFIX; /* type */
351 /* Format skb and descriptor buffer for Ethernet AVB */
352 static void ravb_ring_format(struct net_device *ndev, int q)
354 struct ravb_private *priv = netdev_priv(ndev);
355 unsigned int num_tx_desc = priv->num_tx_desc;
356 struct ravb_tx_desc *tx_desc;
357 struct ravb_desc *desc;
358 unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
364 priv->dirty_rx[q] = 0;
365 priv->dirty_tx[q] = 0;
367 ravb_rx_ring_format(ndev, q);
369 memset(priv->tx_ring[q], 0, tx_ring_size);
370 /* Build TX ring buffer */
371 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
373 tx_desc->die_dt = DT_EEMPTY;
374 if (num_tx_desc > 1) {
376 tx_desc->die_dt = DT_EEMPTY;
379 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
380 tx_desc->die_dt = DT_LINKFIX; /* type */
382 /* RX descriptor base address for best effort */
383 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
384 desc->die_dt = DT_LINKFIX; /* type */
385 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
387 /* TX descriptor base address for best effort */
388 desc = &priv->desc_bat[q];
389 desc->die_dt = DT_LINKFIX; /* type */
390 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
393 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
395 struct ravb_private *priv = netdev_priv(ndev);
396 unsigned int ring_size;
398 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
400 priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
401 &priv->rx_desc_dma[q],
404 return priv->rx_ring[q].raw;
407 /* Init skb and descriptor buffer for Ethernet AVB */
408 static int ravb_ring_init(struct net_device *ndev, int q)
410 struct ravb_private *priv = netdev_priv(ndev);
411 const struct ravb_hw_info *info = priv->info;
412 unsigned int num_tx_desc = priv->num_tx_desc;
413 unsigned int ring_size;
417 /* Allocate RX and TX skb rings */
418 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
419 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
420 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
421 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
422 if (!priv->rx_skb[q] || !priv->tx_skb[q])
425 for (i = 0; i < priv->num_rx_ring[q]; i++) {
426 skb = ravb_alloc_skb(ndev, info, GFP_KERNEL);
429 priv->rx_skb[q][i] = skb;
432 if (num_tx_desc > 1) {
433 /* Allocate rings for the aligned buffers */
434 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
435 DPTR_ALIGN - 1, GFP_KERNEL);
436 if (!priv->tx_align[q])
440 /* Allocate all RX descriptors. */
441 if (!ravb_alloc_rx_desc(ndev, q))
444 priv->dirty_rx[q] = 0;
446 /* Allocate all TX descriptors. */
447 ring_size = sizeof(struct ravb_tx_desc) *
448 (priv->num_tx_ring[q] * num_tx_desc + 1);
449 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
450 &priv->tx_desc_dma[q],
452 if (!priv->tx_ring[q])
458 ravb_ring_free(ndev, q);
463 static void ravb_csum_init_gbeth(struct net_device *ndev)
465 bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
466 bool rx_enable = ndev->features & NETIF_F_RXCSUM;
468 if (!(tx_enable || rx_enable))
471 ravb_write(ndev, 0, CSR0);
472 if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
473 netdev_err(ndev, "Timeout enabling hardware checksum\n");
476 ndev->features &= ~NETIF_F_HW_CSUM;
479 ndev->features &= ~NETIF_F_RXCSUM;
482 ravb_write(ndev, CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, CSR1);
485 ravb_write(ndev, CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
490 ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
493 static void ravb_emac_init_gbeth(struct net_device *ndev)
495 struct ravb_private *priv = netdev_priv(ndev);
497 if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
498 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
499 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
501 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
502 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
506 /* Receive frame limit set register */
507 ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
509 /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
510 ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
511 ECMR_TE | ECMR_RE | ECMR_RCPT |
512 ECMR_TXF | ECMR_RXF, ECMR);
514 ravb_set_rate_gbeth(ndev);
516 /* Set MAC address */
518 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
519 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
520 ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
522 /* E-MAC status register clear */
523 ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
525 ravb_csum_init_gbeth(ndev);
527 /* E-MAC interrupt enable register */
528 ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
531 static void ravb_emac_init_rcar(struct net_device *ndev)
533 /* Receive frame limit set register */
534 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
536 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
537 ravb_write(ndev, ECMR_ZPF | ECMR_DM |
538 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
539 ECMR_TE | ECMR_RE, ECMR);
541 ravb_set_rate_rcar(ndev);
543 /* Set MAC address */
545 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
546 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
548 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
550 /* E-MAC status register clear */
551 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
553 /* E-MAC interrupt enable register */
554 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
557 /* E-MAC init function */
558 static void ravb_emac_init(struct net_device *ndev)
560 struct ravb_private *priv = netdev_priv(ndev);
561 const struct ravb_hw_info *info = priv->info;
563 info->emac_init(ndev);
566 static int ravb_dmac_init_gbeth(struct net_device *ndev)
568 struct ravb_private *priv = netdev_priv(ndev);
571 error = ravb_ring_init(ndev, RAVB_BE);
575 /* Descriptor format */
576 ravb_ring_format(ndev, RAVB_BE);
579 ravb_write(ndev, 0x60000000, RCR);
581 /* Set Max Frame Length (RTC) */
582 ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
585 ravb_write(ndev, 0x00222200, TGC);
587 ravb_write(ndev, 0, TCCR);
590 ravb_write(ndev, RIC0_FRE0, RIC0);
591 /* Disable FIFO full warning */
592 ravb_write(ndev, 0x0, RIC1);
593 /* Receive FIFO full error, descriptor empty */
594 ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
596 ravb_write(ndev, TIC_FTE0, TIC);
601 static int ravb_dmac_init_rcar(struct net_device *ndev)
603 struct ravb_private *priv = netdev_priv(ndev);
604 const struct ravb_hw_info *info = priv->info;
607 error = ravb_ring_init(ndev, RAVB_BE);
610 error = ravb_ring_init(ndev, RAVB_NC);
612 ravb_ring_free(ndev, RAVB_BE);
616 /* Descriptor format */
617 ravb_ring_format(ndev, RAVB_BE);
618 ravb_ring_format(ndev, RAVB_NC);
622 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
625 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
627 /* Timestamp enable */
628 ravb_write(ndev, TCCR_TFEN, TCCR);
630 /* Interrupt init: */
631 if (info->multi_irqs) {
633 ravb_write(ndev, 0, DIL);
634 /* Set queue specific interrupt */
635 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
638 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
639 /* Disable FIFO full warning */
640 ravb_write(ndev, 0, RIC1);
641 /* Receive FIFO full error, descriptor empty */
642 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
643 /* Frame transmitted, timestamp FIFO updated */
644 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
649 /* Device init function for Ethernet AVB */
650 static int ravb_dmac_init(struct net_device *ndev)
652 struct ravb_private *priv = netdev_priv(ndev);
653 const struct ravb_hw_info *info = priv->info;
656 /* Set CONFIG mode */
657 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
661 error = info->dmac_init(ndev);
665 /* Setting the control will start the AVB-DMAC process. */
666 return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
669 static void ravb_get_tx_tstamp(struct net_device *ndev)
671 struct ravb_private *priv = netdev_priv(ndev);
672 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
673 struct skb_shared_hwtstamps shhwtstamps;
675 struct timespec64 ts;
680 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
682 tfa2 = ravb_read(ndev, TFA2);
683 tfa_tag = (tfa2 & TFA2_TST) >> 16;
684 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
685 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
686 ravb_read(ndev, TFA1);
687 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
688 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
689 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
693 list_del(&ts_skb->list);
695 if (tag == tfa_tag) {
696 skb_tstamp_tx(skb, &shhwtstamps);
697 dev_consume_skb_any(skb);
700 dev_kfree_skb_any(skb);
703 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
707 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
709 __wsum csum_ip_hdr, csum_proto;
712 /* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
713 * bytes appended to packet data. First 2 bytes is ip header checksum
714 * and last 2 bytes is protocol checksum.
716 if (unlikely(skb->len < sizeof(__sum16) * 2))
719 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
720 csum_proto = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
722 hw_csum -= sizeof(__sum16);
723 csum_ip_hdr = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
724 skb_trim(skb, skb->len - 2 * sizeof(__sum16));
726 /* TODO: IPV6 Rx checksum */
727 if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
728 skb->ip_summed = CHECKSUM_UNNECESSARY;
731 static void ravb_rx_csum(struct sk_buff *skb)
735 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
736 * appended to packet data
738 if (unlikely(skb->len < sizeof(__sum16)))
740 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
741 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
742 skb->ip_summed = CHECKSUM_COMPLETE;
743 skb_trim(skb, skb->len - sizeof(__sum16));
746 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
747 struct ravb_rx_desc *desc)
749 struct ravb_private *priv = netdev_priv(ndev);
752 skb = priv->rx_skb[RAVB_BE][entry];
753 priv->rx_skb[RAVB_BE][entry] = NULL;
754 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
755 ALIGN(priv->info->rx_max_frame_size, 16),
761 /* Packet receive function for Gigabit Ethernet */
762 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
764 struct ravb_private *priv = netdev_priv(ndev);
765 const struct ravb_hw_info *info = priv->info;
766 struct net_device_stats *stats;
767 struct ravb_rx_desc *desc;
778 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
779 stats = &priv->stats[q];
781 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
782 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
783 desc = &priv->rx_ring[q].desc[entry];
784 if (rx_packets == *quota || desc->die_dt == DT_FEMPTY)
787 /* Descriptor type must be checked before all other reads */
789 desc_status = desc->msc;
790 desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
792 /* We use 0-byte descriptors to mark the DMA mapping errors */
796 if (desc_status & MSC_MC)
799 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
801 if (desc_status & MSC_CRC)
802 stats->rx_crc_errors++;
803 if (desc_status & MSC_RFE)
804 stats->rx_frame_errors++;
805 if (desc_status & (MSC_RTLF | MSC_RTSF))
806 stats->rx_length_errors++;
807 if (desc_status & MSC_CEEF)
808 stats->rx_missed_errors++;
810 die_dt = desc->die_dt & 0xF0;
813 skb = ravb_get_skb_gbeth(ndev, entry, desc);
814 skb_put(skb, desc_len);
815 skb->protocol = eth_type_trans(skb, ndev);
816 if (ndev->features & NETIF_F_RXCSUM)
817 ravb_rx_csum_gbeth(skb);
818 napi_gro_receive(&priv->napi[q], skb);
820 stats->rx_bytes += desc_len;
823 priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
824 skb_put(priv->rx_1st_skb, desc_len);
827 skb = ravb_get_skb_gbeth(ndev, entry, desc);
828 skb_copy_to_linear_data_offset(priv->rx_1st_skb,
829 priv->rx_1st_skb->len,
832 skb_put(priv->rx_1st_skb, desc_len);
836 skb = ravb_get_skb_gbeth(ndev, entry, desc);
837 skb_copy_to_linear_data_offset(priv->rx_1st_skb,
838 priv->rx_1st_skb->len,
841 skb_put(priv->rx_1st_skb, desc_len);
843 priv->rx_1st_skb->protocol =
844 eth_type_trans(priv->rx_1st_skb, ndev);
845 if (ndev->features & NETIF_F_RXCSUM)
846 ravb_rx_csum_gbeth(priv->rx_1st_skb);
847 stats->rx_bytes += priv->rx_1st_skb->len;
848 napi_gro_receive(&priv->napi[q],
856 /* Refill the RX ring buffers. */
857 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
858 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
859 desc = &priv->rx_ring[q].desc[entry];
860 desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
862 if (!priv->rx_skb[q][entry]) {
863 skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
866 dma_addr = dma_map_single(ndev->dev.parent,
868 priv->info->rx_max_frame_size,
870 skb_checksum_none_assert(skb);
871 /* We just set the data size to 0 for a failed mapping
872 * which should prevent DMA from happening...
874 if (dma_mapping_error(ndev->dev.parent, dma_addr))
875 desc->ds_cc = cpu_to_le16(0);
876 desc->dptr = cpu_to_le32(dma_addr);
877 priv->rx_skb[q][entry] = skb;
879 /* Descriptor type must be set after all the above writes */
881 desc->die_dt = DT_FEMPTY;
884 stats->rx_packets += rx_packets;
885 *quota -= rx_packets;
889 /* Packet receive function for Ethernet AVB */
890 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
892 struct ravb_private *priv = netdev_priv(ndev);
893 const struct ravb_hw_info *info = priv->info;
894 struct net_device_stats *stats = &priv->stats[q];
895 struct ravb_ex_rx_desc *desc;
896 unsigned int limit, i;
899 struct timespec64 ts;
905 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
906 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
907 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
908 desc = &priv->rx_ring[q].ex_desc[entry];
909 if (rx_packets == *quota || desc->die_dt == DT_FEMPTY)
912 /* Descriptor type must be checked before all other reads */
914 desc_status = desc->msc;
915 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
917 /* We use 0-byte descriptors to mark the DMA mapping errors */
921 if (desc_status & MSC_MC)
924 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
927 if (desc_status & MSC_CRC)
928 stats->rx_crc_errors++;
929 if (desc_status & MSC_RFE)
930 stats->rx_frame_errors++;
931 if (desc_status & (MSC_RTLF | MSC_RTSF))
932 stats->rx_length_errors++;
933 if (desc_status & MSC_CEEF)
934 stats->rx_missed_errors++;
936 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
938 skb = priv->rx_skb[q][entry];
939 priv->rx_skb[q][entry] = NULL;
940 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
941 priv->info->rx_max_frame_size,
943 get_ts &= (q == RAVB_NC) ?
944 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
945 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
947 struct skb_shared_hwtstamps *shhwtstamps;
949 shhwtstamps = skb_hwtstamps(skb);
950 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
951 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
952 32) | le32_to_cpu(desc->ts_sl);
953 ts.tv_nsec = le32_to_cpu(desc->ts_n);
954 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
957 skb_put(skb, pkt_len);
958 skb->protocol = eth_type_trans(skb, ndev);
959 if (ndev->features & NETIF_F_RXCSUM)
961 napi_gro_receive(&priv->napi[q], skb);
963 stats->rx_bytes += pkt_len;
967 /* Refill the RX ring buffers. */
968 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
969 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
970 desc = &priv->rx_ring[q].ex_desc[entry];
971 desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
973 if (!priv->rx_skb[q][entry]) {
974 skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
976 break; /* Better luck next round. */
977 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
978 priv->info->rx_max_frame_size,
980 skb_checksum_none_assert(skb);
981 /* We just set the data size to 0 for a failed mapping
982 * which should prevent DMA from happening...
984 if (dma_mapping_error(ndev->dev.parent, dma_addr))
985 desc->ds_cc = cpu_to_le16(0);
986 desc->dptr = cpu_to_le32(dma_addr);
987 priv->rx_skb[q][entry] = skb;
989 /* Descriptor type must be set after all the above writes */
991 desc->die_dt = DT_FEMPTY;
994 stats->rx_packets += rx_packets;
995 *quota -= rx_packets;
999 /* Packet receive function for Ethernet AVB */
1000 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1002 struct ravb_private *priv = netdev_priv(ndev);
1003 const struct ravb_hw_info *info = priv->info;
1005 return info->receive(ndev, quota, q);
1008 static void ravb_rcv_snd_disable(struct net_device *ndev)
1010 /* Disable TX and RX */
1011 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1014 static void ravb_rcv_snd_enable(struct net_device *ndev)
1016 /* Enable TX and RX */
1017 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1020 /* function for waiting dma process finished */
1021 static int ravb_stop_dma(struct net_device *ndev)
1023 struct ravb_private *priv = netdev_priv(ndev);
1024 const struct ravb_hw_info *info = priv->info;
1027 /* Wait for stopping the hardware TX process */
1028 error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1033 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1038 /* Stop the E-MAC's RX/TX processes. */
1039 ravb_rcv_snd_disable(ndev);
1041 /* Wait for stopping the RX DMA process */
1042 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1046 /* Stop AVB-DMAC process */
1047 return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1050 /* E-MAC interrupt handler */
1051 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1053 struct ravb_private *priv = netdev_priv(ndev);
1056 ecsr = ravb_read(ndev, ECSR);
1057 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
1059 if (ecsr & ECSR_MPD)
1060 pm_wakeup_event(&priv->pdev->dev, 0);
1061 if (ecsr & ECSR_ICD)
1062 ndev->stats.tx_carrier_errors++;
1063 if (ecsr & ECSR_LCHNG) {
1065 if (priv->no_avb_link)
1067 psr = ravb_read(ndev, PSR);
1068 if (priv->avb_link_active_low)
1070 if (!(psr & PSR_LMON)) {
1071 /* DIsable RX and TX */
1072 ravb_rcv_snd_disable(ndev);
1074 /* Enable RX and TX */
1075 ravb_rcv_snd_enable(ndev);
1080 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1082 struct net_device *ndev = dev_id;
1083 struct ravb_private *priv = netdev_priv(ndev);
1084 struct device *dev = &priv->pdev->dev;
1085 irqreturn_t result = IRQ_HANDLED;
1087 pm_runtime_get_noresume(dev);
1089 if (unlikely(!pm_runtime_active(dev))) {
1094 spin_lock(&priv->lock);
1095 ravb_emac_interrupt_unlocked(ndev);
1096 spin_unlock(&priv->lock);
1099 pm_runtime_put_noidle(dev);
1103 /* Error interrupt handler */
1104 static void ravb_error_interrupt(struct net_device *ndev)
1106 struct ravb_private *priv = netdev_priv(ndev);
1109 eis = ravb_read(ndev, EIS);
1110 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1111 if (eis & EIS_QFS) {
1112 ris2 = ravb_read(ndev, RIS2);
1113 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1116 /* Receive Descriptor Empty int */
1117 if (ris2 & RIS2_QFF0)
1118 priv->stats[RAVB_BE].rx_over_errors++;
1120 /* Receive Descriptor Empty int */
1121 if (ris2 & RIS2_QFF1)
1122 priv->stats[RAVB_NC].rx_over_errors++;
1124 /* Receive FIFO Overflow int */
1125 if (ris2 & RIS2_RFFF)
1126 priv->rx_fifo_errors++;
1130 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1132 struct ravb_private *priv = netdev_priv(ndev);
1133 const struct ravb_hw_info *info = priv->info;
1134 u32 ris0 = ravb_read(ndev, RIS0);
1135 u32 ric0 = ravb_read(ndev, RIC0);
1136 u32 tis = ravb_read(ndev, TIS);
1137 u32 tic = ravb_read(ndev, TIC);
1139 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
1140 if (napi_schedule_prep(&priv->napi[q])) {
1141 /* Mask RX and TX interrupts */
1142 if (!info->irq_en_dis) {
1143 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1144 ravb_write(ndev, tic & ~BIT(q), TIC);
1146 ravb_write(ndev, BIT(q), RID0);
1147 ravb_write(ndev, BIT(q), TID);
1149 __napi_schedule(&priv->napi[q]);
1152 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1155 " tx status 0x%08x, tx mask 0x%08x.\n",
1163 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1165 u32 tis = ravb_read(ndev, TIS);
1167 if (tis & TIS_TFUF) {
1168 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1169 ravb_get_tx_tstamp(ndev);
1175 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1177 struct net_device *ndev = dev_id;
1178 struct ravb_private *priv = netdev_priv(ndev);
1179 const struct ravb_hw_info *info = priv->info;
1180 struct device *dev = &priv->pdev->dev;
1181 irqreturn_t result = IRQ_NONE;
1184 pm_runtime_get_noresume(dev);
1186 if (unlikely(!pm_runtime_active(dev)))
1189 spin_lock(&priv->lock);
1190 /* Get interrupt status */
1191 iss = ravb_read(ndev, ISS);
1193 /* Received and transmitted interrupts */
1194 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1197 /* Timestamp updated */
1198 if (ravb_timestamp_interrupt(ndev))
1199 result = IRQ_HANDLED;
1201 /* Network control and best effort queue RX/TX */
1202 if (info->nc_queues) {
1203 for (q = RAVB_NC; q >= RAVB_BE; q--) {
1204 if (ravb_queue_interrupt(ndev, q))
1205 result = IRQ_HANDLED;
1208 if (ravb_queue_interrupt(ndev, RAVB_BE))
1209 result = IRQ_HANDLED;
1213 /* E-MAC status summary */
1215 ravb_emac_interrupt_unlocked(ndev);
1216 result = IRQ_HANDLED;
1219 /* Error status summary */
1221 ravb_error_interrupt(ndev);
1222 result = IRQ_HANDLED;
1225 /* gPTP interrupt status summary */
1226 if (iss & ISS_CGIS) {
1227 ravb_ptp_interrupt(ndev);
1228 result = IRQ_HANDLED;
1231 spin_unlock(&priv->lock);
1234 pm_runtime_put_noidle(dev);
1238 /* Timestamp/Error/gPTP interrupt handler */
1239 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1241 struct net_device *ndev = dev_id;
1242 struct ravb_private *priv = netdev_priv(ndev);
1243 struct device *dev = &priv->pdev->dev;
1244 irqreturn_t result = IRQ_NONE;
1247 pm_runtime_get_noresume(dev);
1249 if (unlikely(!pm_runtime_active(dev)))
1252 spin_lock(&priv->lock);
1253 /* Get interrupt status */
1254 iss = ravb_read(ndev, ISS);
1256 /* Timestamp updated */
1257 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1258 result = IRQ_HANDLED;
1260 /* Error status summary */
1262 ravb_error_interrupt(ndev);
1263 result = IRQ_HANDLED;
1266 /* gPTP interrupt status summary */
1267 if (iss & ISS_CGIS) {
1268 ravb_ptp_interrupt(ndev);
1269 result = IRQ_HANDLED;
1272 spin_unlock(&priv->lock);
1275 pm_runtime_put_noidle(dev);
1279 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1281 struct net_device *ndev = dev_id;
1282 struct ravb_private *priv = netdev_priv(ndev);
1283 struct device *dev = &priv->pdev->dev;
1284 irqreturn_t result = IRQ_NONE;
1286 pm_runtime_get_noresume(dev);
1288 if (unlikely(!pm_runtime_active(dev)))
1291 spin_lock(&priv->lock);
1293 /* Network control/Best effort queue RX/TX */
1294 if (ravb_queue_interrupt(ndev, q))
1295 result = IRQ_HANDLED;
1297 spin_unlock(&priv->lock);
1300 pm_runtime_put_noidle(dev);
1304 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1306 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1309 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1311 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1314 static int ravb_poll(struct napi_struct *napi, int budget)
1316 struct net_device *ndev = napi->dev;
1317 struct ravb_private *priv = netdev_priv(ndev);
1318 const struct ravb_hw_info *info = priv->info;
1319 unsigned long flags;
1320 int q = napi - priv->napi;
1325 /* Processing RX Descriptor Ring */
1326 /* Clear RX interrupt */
1327 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1328 unmask = !ravb_rx(ndev, "a, q);
1330 /* Processing TX Descriptor Ring */
1331 spin_lock_irqsave(&priv->lock, flags);
1332 /* Clear TX interrupt */
1333 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1334 ravb_tx_free(ndev, q, true);
1335 netif_wake_subqueue(ndev, q);
1336 spin_unlock_irqrestore(&priv->lock, flags);
1338 /* Receive error message handling */
1339 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1340 if (info->nc_queues)
1341 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1342 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1343 ndev->stats.rx_over_errors = priv->rx_over_errors;
1344 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1345 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1350 napi_complete(napi);
1352 /* Re-enable RX/TX interrupts */
1353 spin_lock_irqsave(&priv->lock, flags);
1354 if (!info->irq_en_dis) {
1355 ravb_modify(ndev, RIC0, mask, mask);
1356 ravb_modify(ndev, TIC, mask, mask);
1358 ravb_write(ndev, mask, RIE0);
1359 ravb_write(ndev, mask, TIE);
1361 spin_unlock_irqrestore(&priv->lock, flags);
1364 return budget - quota;
1367 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1369 struct ravb_private *priv = netdev_priv(ndev);
1371 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1374 /* PHY state control function */
1375 static void ravb_adjust_link(struct net_device *ndev)
1377 struct ravb_private *priv = netdev_priv(ndev);
1378 const struct ravb_hw_info *info = priv->info;
1379 struct phy_device *phydev = ndev->phydev;
1380 bool new_state = false;
1381 unsigned long flags;
1383 spin_lock_irqsave(&priv->lock, flags);
1385 /* Disable TX and RX right over here, if E-MAC change is ignored */
1386 if (priv->no_avb_link)
1387 ravb_rcv_snd_disable(ndev);
1390 if (info->half_duplex && phydev->duplex != priv->duplex) {
1392 priv->duplex = phydev->duplex;
1393 ravb_set_duplex_gbeth(ndev);
1396 if (phydev->speed != priv->speed) {
1398 priv->speed = phydev->speed;
1399 info->set_rate(ndev);
1402 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1404 priv->link = phydev->link;
1406 } else if (priv->link) {
1410 if (info->half_duplex)
1414 /* Enable TX and RX right over here, if E-MAC change is ignored */
1415 if (priv->no_avb_link && phydev->link)
1416 ravb_rcv_snd_enable(ndev);
1418 spin_unlock_irqrestore(&priv->lock, flags);
1420 if (new_state && netif_msg_link(priv))
1421 phy_print_status(phydev);
1424 /* PHY init function */
1425 static int ravb_phy_init(struct net_device *ndev)
1427 struct device_node *np = ndev->dev.parent->of_node;
1428 struct ravb_private *priv = netdev_priv(ndev);
1429 const struct ravb_hw_info *info = priv->info;
1430 struct phy_device *phydev;
1431 struct device_node *pn;
1432 phy_interface_t iface;
1439 /* Try connecting to PHY */
1440 pn = of_parse_phandle(np, "phy-handle", 0);
1442 /* In the case of a fixed PHY, the DT node associated
1443 * to the PHY is the Ethernet MAC DT node.
1445 if (of_phy_is_fixed_link(np)) {
1446 err = of_phy_register_fixed_link(np);
1450 pn = of_node_get(np);
1453 iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1454 : priv->phy_interface;
1455 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1458 netdev_err(ndev, "failed to connect PHY\n");
1460 goto err_deregister_fixed_link;
1463 if (!info->half_duplex) {
1464 /* 10BASE, Pause and Asym Pause is not supported */
1465 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1466 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1467 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1468 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1470 /* Half Duplex is not supported */
1471 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1472 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1475 phy_attached_info(phydev);
1479 err_deregister_fixed_link:
1480 if (of_phy_is_fixed_link(np))
1481 of_phy_deregister_fixed_link(np);
1486 /* PHY control start function */
1487 static int ravb_phy_start(struct net_device *ndev)
1491 error = ravb_phy_init(ndev);
1495 phy_start(ndev->phydev);
1500 static u32 ravb_get_msglevel(struct net_device *ndev)
1502 struct ravb_private *priv = netdev_priv(ndev);
1504 return priv->msg_enable;
1507 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1509 struct ravb_private *priv = netdev_priv(ndev);
1511 priv->msg_enable = value;
1514 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1515 "rx_queue_0_current",
1516 "tx_queue_0_current",
1519 "rx_queue_0_packets",
1520 "tx_queue_0_packets",
1523 "rx_queue_0_mcast_packets",
1524 "rx_queue_0_errors",
1525 "rx_queue_0_crc_errors",
1526 "rx_queue_0_frame_errors",
1527 "rx_queue_0_length_errors",
1528 "rx_queue_0_csum_offload_errors",
1529 "rx_queue_0_over_errors",
1532 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1533 "rx_queue_0_current",
1534 "tx_queue_0_current",
1537 "rx_queue_0_packets",
1538 "tx_queue_0_packets",
1541 "rx_queue_0_mcast_packets",
1542 "rx_queue_0_errors",
1543 "rx_queue_0_crc_errors",
1544 "rx_queue_0_frame_errors",
1545 "rx_queue_0_length_errors",
1546 "rx_queue_0_missed_errors",
1547 "rx_queue_0_over_errors",
1549 "rx_queue_1_current",
1550 "tx_queue_1_current",
1553 "rx_queue_1_packets",
1554 "tx_queue_1_packets",
1557 "rx_queue_1_mcast_packets",
1558 "rx_queue_1_errors",
1559 "rx_queue_1_crc_errors",
1560 "rx_queue_1_frame_errors",
1561 "rx_queue_1_length_errors",
1562 "rx_queue_1_missed_errors",
1563 "rx_queue_1_over_errors",
1566 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1568 struct ravb_private *priv = netdev_priv(netdev);
1569 const struct ravb_hw_info *info = priv->info;
1573 return info->stats_len;
1579 static void ravb_get_ethtool_stats(struct net_device *ndev,
1580 struct ethtool_stats *estats, u64 *data)
1582 struct ravb_private *priv = netdev_priv(ndev);
1583 const struct ravb_hw_info *info = priv->info;
1588 num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1589 /* Device-specific stats */
1590 for (q = RAVB_BE; q < num_rx_q; q++) {
1591 struct net_device_stats *stats = &priv->stats[q];
1593 data[i++] = priv->cur_rx[q];
1594 data[i++] = priv->cur_tx[q];
1595 data[i++] = priv->dirty_rx[q];
1596 data[i++] = priv->dirty_tx[q];
1597 data[i++] = stats->rx_packets;
1598 data[i++] = stats->tx_packets;
1599 data[i++] = stats->rx_bytes;
1600 data[i++] = stats->tx_bytes;
1601 data[i++] = stats->multicast;
1602 data[i++] = stats->rx_errors;
1603 data[i++] = stats->rx_crc_errors;
1604 data[i++] = stats->rx_frame_errors;
1605 data[i++] = stats->rx_length_errors;
1606 data[i++] = stats->rx_missed_errors;
1607 data[i++] = stats->rx_over_errors;
1611 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1613 struct ravb_private *priv = netdev_priv(ndev);
1614 const struct ravb_hw_info *info = priv->info;
1616 switch (stringset) {
1618 memcpy(data, info->gstrings_stats, info->gstrings_size);
1623 static void ravb_get_ringparam(struct net_device *ndev,
1624 struct ethtool_ringparam *ring,
1625 struct kernel_ethtool_ringparam *kernel_ring,
1626 struct netlink_ext_ack *extack)
1628 struct ravb_private *priv = netdev_priv(ndev);
1630 ring->rx_max_pending = BE_RX_RING_MAX;
1631 ring->tx_max_pending = BE_TX_RING_MAX;
1632 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1633 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1636 static int ravb_set_ringparam(struct net_device *ndev,
1637 struct ethtool_ringparam *ring,
1638 struct kernel_ethtool_ringparam *kernel_ring,
1639 struct netlink_ext_ack *extack)
1641 struct ravb_private *priv = netdev_priv(ndev);
1642 const struct ravb_hw_info *info = priv->info;
1645 if (ring->tx_pending > BE_TX_RING_MAX ||
1646 ring->rx_pending > BE_RX_RING_MAX ||
1647 ring->tx_pending < BE_TX_RING_MIN ||
1648 ring->rx_pending < BE_RX_RING_MIN)
1650 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1653 if (netif_running(ndev)) {
1654 netif_device_detach(ndev);
1655 /* Stop PTP Clock driver */
1657 ravb_ptp_stop(ndev);
1658 /* Wait for DMA stopping */
1659 error = ravb_stop_dma(ndev);
1662 "cannot set ringparam! Any AVB processes are still running?\n");
1665 synchronize_irq(ndev->irq);
1667 /* Free all the skb's in the RX queue and the DMA buffers. */
1668 ravb_ring_free(ndev, RAVB_BE);
1669 if (info->nc_queues)
1670 ravb_ring_free(ndev, RAVB_NC);
1673 /* Set new parameters */
1674 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1675 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1677 if (netif_running(ndev)) {
1678 error = ravb_dmac_init(ndev);
1681 "%s: ravb_dmac_init() failed, error %d\n",
1686 ravb_emac_init(ndev);
1688 /* Initialise PTP Clock driver */
1690 ravb_ptp_init(ndev, priv->pdev);
1692 netif_device_attach(ndev);
1698 static int ravb_get_ts_info(struct net_device *ndev,
1699 struct ethtool_ts_info *info)
1701 struct ravb_private *priv = netdev_priv(ndev);
1702 const struct ravb_hw_info *hw_info = priv->info;
1704 info->so_timestamping =
1705 SOF_TIMESTAMPING_TX_SOFTWARE |
1706 SOF_TIMESTAMPING_RX_SOFTWARE |
1707 SOF_TIMESTAMPING_SOFTWARE |
1708 SOF_TIMESTAMPING_TX_HARDWARE |
1709 SOF_TIMESTAMPING_RX_HARDWARE |
1710 SOF_TIMESTAMPING_RAW_HARDWARE;
1711 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1713 (1 << HWTSTAMP_FILTER_NONE) |
1714 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1715 (1 << HWTSTAMP_FILTER_ALL);
1716 if (hw_info->gptp || hw_info->ccc_gac)
1717 info->phc_index = ptp_clock_index(priv->ptp.clock);
1722 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1724 struct ravb_private *priv = netdev_priv(ndev);
1726 wol->supported = WAKE_MAGIC;
1727 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1730 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1732 struct ravb_private *priv = netdev_priv(ndev);
1733 const struct ravb_hw_info *info = priv->info;
1735 if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1738 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1740 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1745 static const struct ethtool_ops ravb_ethtool_ops = {
1746 .nway_reset = phy_ethtool_nway_reset,
1747 .get_msglevel = ravb_get_msglevel,
1748 .set_msglevel = ravb_set_msglevel,
1749 .get_link = ethtool_op_get_link,
1750 .get_strings = ravb_get_strings,
1751 .get_ethtool_stats = ravb_get_ethtool_stats,
1752 .get_sset_count = ravb_get_sset_count,
1753 .get_ringparam = ravb_get_ringparam,
1754 .set_ringparam = ravb_set_ringparam,
1755 .get_ts_info = ravb_get_ts_info,
1756 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1757 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1758 .get_wol = ravb_get_wol,
1759 .set_wol = ravb_set_wol,
1762 static int ravb_set_config_mode(struct net_device *ndev)
1764 struct ravb_private *priv = netdev_priv(ndev);
1765 const struct ravb_hw_info *info = priv->info;
1769 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1772 /* Set CSEL value */
1773 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1774 } else if (info->ccc_gac) {
1775 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1777 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1783 static void ravb_set_gti(struct net_device *ndev)
1785 struct ravb_private *priv = netdev_priv(ndev);
1786 const struct ravb_hw_info *info = priv->info;
1788 if (!(info->gptp || info->ccc_gac))
1791 ravb_write(ndev, priv->gti_tiv, GTI);
1793 /* Request GTI loading */
1794 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1797 static int ravb_compute_gti(struct net_device *ndev)
1799 struct ravb_private *priv = netdev_priv(ndev);
1800 const struct ravb_hw_info *info = priv->info;
1801 struct device *dev = ndev->dev.parent;
1805 if (!(info->gptp || info->ccc_gac))
1808 if (info->gptp_ref_clk)
1809 rate = clk_get_rate(priv->gptp_clk);
1811 rate = clk_get_rate(priv->clk);
1815 inc = div64_ul(1000000000ULL << 20, rate);
1817 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1818 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1819 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1822 priv->gti_tiv = inc;
1827 /* Set tx and rx clock internal delay modes */
1828 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1830 struct ravb_private *priv = netdev_priv(ndev);
1831 bool explicit_delay = false;
1834 if (!priv->info->internal_delay)
1837 if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1838 /* Valid values are 0 and 1800, according to DT bindings */
1839 priv->rxcidm = !!delay;
1840 explicit_delay = true;
1842 if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1843 /* Valid values are 0 and 2000, according to DT bindings */
1844 priv->txcidm = !!delay;
1845 explicit_delay = true;
1851 /* Fall back to legacy rgmii-*id behavior */
1852 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1853 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1855 priv->rgmii_override = 1;
1858 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1859 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1861 priv->rgmii_override = 1;
1865 static void ravb_set_delay_mode(struct net_device *ndev)
1867 struct ravb_private *priv = netdev_priv(ndev);
1870 if (!priv->info->internal_delay)
1877 ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1880 /* Network device open function for Ethernet AVB */
1881 static int ravb_open(struct net_device *ndev)
1883 struct ravb_private *priv = netdev_priv(ndev);
1884 const struct ravb_hw_info *info = priv->info;
1885 struct device *dev = &priv->pdev->dev;
1888 napi_enable(&priv->napi[RAVB_BE]);
1889 if (info->nc_queues)
1890 napi_enable(&priv->napi[RAVB_NC]);
1892 error = pm_runtime_resume_and_get(dev);
1896 /* Set AVB config mode */
1897 error = ravb_set_config_mode(ndev);
1901 ravb_set_delay_mode(ndev);
1902 ravb_write(ndev, priv->desc_bat_dma, DBAT);
1905 error = ravb_dmac_init(ndev);
1909 ravb_emac_init(ndev);
1913 /* Initialise PTP Clock driver */
1914 if (info->gptp || info->ccc_gac)
1915 ravb_ptp_init(ndev, priv->pdev);
1917 /* PHY control start */
1918 error = ravb_phy_start(ndev);
1922 netif_tx_start_all_queues(ndev);
1927 /* Stop PTP Clock driver */
1928 if (info->gptp || info->ccc_gac)
1929 ravb_ptp_stop(ndev);
1930 ravb_stop_dma(ndev);
1932 ravb_set_opmode(ndev, CCC_OPC_RESET);
1934 pm_runtime_mark_last_busy(dev);
1935 pm_runtime_put_autosuspend(dev);
1937 if (info->nc_queues)
1938 napi_disable(&priv->napi[RAVB_NC]);
1939 napi_disable(&priv->napi[RAVB_BE]);
1943 /* Timeout function for Ethernet AVB */
1944 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1946 struct ravb_private *priv = netdev_priv(ndev);
1948 netif_err(priv, tx_err, ndev,
1949 "transmit timed out, status %08x, resetting...\n",
1950 ravb_read(ndev, ISS));
1952 /* tx_errors count up */
1953 ndev->stats.tx_errors++;
1955 schedule_work(&priv->work);
1958 static void ravb_tx_timeout_work(struct work_struct *work)
1960 struct ravb_private *priv = container_of(work, struct ravb_private,
1962 const struct ravb_hw_info *info = priv->info;
1963 struct net_device *ndev = priv->ndev;
1966 if (!rtnl_trylock()) {
1967 usleep_range(1000, 2000);
1968 schedule_work(&priv->work);
1972 netif_tx_stop_all_queues(ndev);
1974 /* Stop PTP Clock driver */
1976 ravb_ptp_stop(ndev);
1978 /* Wait for DMA stopping */
1979 if (ravb_stop_dma(ndev)) {
1980 /* If ravb_stop_dma() fails, the hardware is still operating
1981 * for TX and/or RX. So, this should not call the following
1982 * functions because ravb_dmac_init() is possible to fail too.
1983 * Also, this should not retry ravb_stop_dma() again and again
1984 * here because it's possible to wait forever. So, this just
1985 * re-enables the TX and RX and skip the following
1986 * re-initialization procedure.
1988 ravb_rcv_snd_enable(ndev);
1992 ravb_ring_free(ndev, RAVB_BE);
1993 if (info->nc_queues)
1994 ravb_ring_free(ndev, RAVB_NC);
1997 error = ravb_dmac_init(ndev);
1999 /* If ravb_dmac_init() fails, descriptors are freed. So, this
2000 * should return here to avoid re-enabling the TX and RX in
2003 netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2007 ravb_emac_init(ndev);
2010 /* Initialise PTP Clock driver */
2012 ravb_ptp_init(ndev, priv->pdev);
2014 netif_tx_start_all_queues(ndev);
2020 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2022 struct iphdr *ip = ip_hdr(skb);
2024 /* TODO: Need to add support for VLAN tag 802.1Q */
2025 if (skb_vlan_tag_present(skb))
2028 /* TODO: Need to add hardware checksum for IPv6 */
2029 if (skb->protocol != htons(ETH_P_IP))
2032 switch (ip->protocol) {
2036 /* If the checksum value in the UDP header field is 0, TOE does
2037 * not calculate checksum for UDP part of this frame as it is
2038 * optional function as per standards.
2040 if (udp_hdr(skb)->check == 0)
2050 /* Packet transmit function for Ethernet AVB */
2051 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2053 struct ravb_private *priv = netdev_priv(ndev);
2054 const struct ravb_hw_info *info = priv->info;
2055 unsigned int num_tx_desc = priv->num_tx_desc;
2056 u16 q = skb_get_queue_mapping(skb);
2057 struct ravb_tstamp_skb *ts_skb;
2058 struct ravb_tx_desc *desc;
2059 unsigned long flags;
2060 dma_addr_t dma_addr;
2065 if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2066 skb_checksum_help(skb);
2068 spin_lock_irqsave(&priv->lock, flags);
2069 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2071 netif_err(priv, tx_queued, ndev,
2072 "still transmitting with the full ring!\n");
2073 netif_stop_subqueue(ndev, q);
2074 spin_unlock_irqrestore(&priv->lock, flags);
2075 return NETDEV_TX_BUSY;
2078 if (skb_put_padto(skb, ETH_ZLEN))
2081 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2082 priv->tx_skb[q][entry / num_tx_desc] = skb;
2084 if (num_tx_desc > 1) {
2085 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2086 entry / num_tx_desc * DPTR_ALIGN;
2087 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2089 /* Zero length DMA descriptors are problematic as they seem
2090 * to terminate DMA transfers. Avoid them by simply using a
2091 * length of DPTR_ALIGN (4) when skb data is aligned to
2094 * As skb is guaranteed to have at least ETH_ZLEN (60)
2095 * bytes of data by the call to skb_put_padto() above this
2096 * is safe with respect to both the length of the first DMA
2097 * descriptor (len) overflowing the available data and the
2098 * length of the second DMA descriptor (skb->len - len)
2104 memcpy(buffer, skb->data, len);
2105 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2107 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2110 desc = &priv->tx_ring[q][entry];
2111 desc->ds_tagl = cpu_to_le16(len);
2112 desc->dptr = cpu_to_le32(dma_addr);
2114 buffer = skb->data + len;
2115 len = skb->len - len;
2116 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2118 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2123 desc = &priv->tx_ring[q][entry];
2125 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2127 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2130 desc->ds_tagl = cpu_to_le16(len);
2131 desc->dptr = cpu_to_le32(dma_addr);
2133 /* TX timestamp required */
2134 if (info->gptp || info->ccc_gac) {
2136 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2138 if (num_tx_desc > 1) {
2140 dma_unmap_single(ndev->dev.parent, dma_addr,
2141 len, DMA_TO_DEVICE);
2145 ts_skb->skb = skb_get(skb);
2146 ts_skb->tag = priv->ts_skb_tag++;
2147 priv->ts_skb_tag &= 0x3ff;
2148 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2150 /* TAG and timestamp required flag */
2151 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2152 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2153 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2156 skb_tx_timestamp(skb);
2158 /* Descriptor type must be set after all the above writes */
2160 if (num_tx_desc > 1) {
2161 desc->die_dt = DT_FEND;
2163 desc->die_dt = DT_FSTART;
2165 desc->die_dt = DT_FSINGLE;
2167 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2169 priv->cur_tx[q] += num_tx_desc;
2170 if (priv->cur_tx[q] - priv->dirty_tx[q] >
2171 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2172 !ravb_tx_free(ndev, q, true))
2173 netif_stop_subqueue(ndev, q);
2176 spin_unlock_irqrestore(&priv->lock, flags);
2177 return NETDEV_TX_OK;
2180 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2181 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2183 dev_kfree_skb_any(skb);
2184 priv->tx_skb[q][entry / num_tx_desc] = NULL;
2188 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2189 struct net_device *sb_dev)
2191 /* If skb needs TX timestamp, it is handled in network control queue */
2192 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2197 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2199 struct ravb_private *priv = netdev_priv(ndev);
2200 const struct ravb_hw_info *info = priv->info;
2201 struct net_device_stats *nstats, *stats0, *stats1;
2202 struct device *dev = &priv->pdev->dev;
2204 nstats = &ndev->stats;
2206 pm_runtime_get_noresume(dev);
2208 if (!pm_runtime_active(dev))
2211 stats0 = &priv->stats[RAVB_BE];
2213 if (info->tx_counters) {
2214 nstats->tx_dropped += ravb_read(ndev, TROCR);
2215 ravb_write(ndev, 0, TROCR); /* (write clear) */
2218 if (info->carrier_counters) {
2219 nstats->collisions += ravb_read(ndev, CXR41);
2220 ravb_write(ndev, 0, CXR41); /* (write clear) */
2221 nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2222 ravb_write(ndev, 0, CXR42); /* (write clear) */
2225 nstats->rx_packets = stats0->rx_packets;
2226 nstats->tx_packets = stats0->tx_packets;
2227 nstats->rx_bytes = stats0->rx_bytes;
2228 nstats->tx_bytes = stats0->tx_bytes;
2229 nstats->multicast = stats0->multicast;
2230 nstats->rx_errors = stats0->rx_errors;
2231 nstats->rx_crc_errors = stats0->rx_crc_errors;
2232 nstats->rx_frame_errors = stats0->rx_frame_errors;
2233 nstats->rx_length_errors = stats0->rx_length_errors;
2234 nstats->rx_missed_errors = stats0->rx_missed_errors;
2235 nstats->rx_over_errors = stats0->rx_over_errors;
2236 if (info->nc_queues) {
2237 stats1 = &priv->stats[RAVB_NC];
2239 nstats->rx_packets += stats1->rx_packets;
2240 nstats->tx_packets += stats1->tx_packets;
2241 nstats->rx_bytes += stats1->rx_bytes;
2242 nstats->tx_bytes += stats1->tx_bytes;
2243 nstats->multicast += stats1->multicast;
2244 nstats->rx_errors += stats1->rx_errors;
2245 nstats->rx_crc_errors += stats1->rx_crc_errors;
2246 nstats->rx_frame_errors += stats1->rx_frame_errors;
2247 nstats->rx_length_errors += stats1->rx_length_errors;
2248 nstats->rx_missed_errors += stats1->rx_missed_errors;
2249 nstats->rx_over_errors += stats1->rx_over_errors;
2253 pm_runtime_put_noidle(dev);
2257 /* Update promiscuous bit */
2258 static void ravb_set_rx_mode(struct net_device *ndev)
2260 struct ravb_private *priv = netdev_priv(ndev);
2261 unsigned long flags;
2263 spin_lock_irqsave(&priv->lock, flags);
2264 ravb_modify(ndev, ECMR, ECMR_PRM,
2265 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2266 spin_unlock_irqrestore(&priv->lock, flags);
2269 /* Device close function for Ethernet AVB */
2270 static int ravb_close(struct net_device *ndev)
2272 struct device_node *np = ndev->dev.parent->of_node;
2273 struct ravb_private *priv = netdev_priv(ndev);
2274 const struct ravb_hw_info *info = priv->info;
2275 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2276 struct device *dev = &priv->pdev->dev;
2279 netif_tx_stop_all_queues(ndev);
2281 /* Disable interrupts by clearing the interrupt masks. */
2282 ravb_write(ndev, 0, RIC0);
2283 ravb_write(ndev, 0, RIC2);
2284 ravb_write(ndev, 0, TIC);
2286 /* PHY disconnect */
2288 phy_stop(ndev->phydev);
2289 phy_disconnect(ndev->phydev);
2290 if (of_phy_is_fixed_link(np))
2291 of_phy_deregister_fixed_link(np);
2294 /* Stop PTP Clock driver */
2295 if (info->gptp || info->ccc_gac)
2296 ravb_ptp_stop(ndev);
2298 /* Set the config mode to stop the AVB-DMAC's processes */
2299 if (ravb_stop_dma(ndev) < 0)
2301 "device will be stopped after h/w processes are done.\n");
2303 /* Clear the timestamp list */
2304 if (info->gptp || info->ccc_gac) {
2305 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2306 list_del(&ts_skb->list);
2307 kfree_skb(ts_skb->skb);
2312 cancel_work_sync(&priv->work);
2314 if (info->nc_queues)
2315 napi_disable(&priv->napi[RAVB_NC]);
2316 napi_disable(&priv->napi[RAVB_BE]);
2318 /* Free all the skb's in the RX queue and the DMA buffers. */
2319 ravb_ring_free(ndev, RAVB_BE);
2320 if (info->nc_queues)
2321 ravb_ring_free(ndev, RAVB_NC);
2323 /* Update statistics. */
2324 ravb_get_stats(ndev);
2326 /* Set reset mode. */
2327 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2331 pm_runtime_mark_last_busy(dev);
2332 pm_runtime_put_autosuspend(dev);
2337 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2339 struct ravb_private *priv = netdev_priv(ndev);
2340 struct hwtstamp_config config;
2343 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2345 switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2346 case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2347 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2349 case RAVB_RXTSTAMP_TYPE_ALL:
2350 config.rx_filter = HWTSTAMP_FILTER_ALL;
2353 config.rx_filter = HWTSTAMP_FILTER_NONE;
2356 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2360 /* Control hardware time stamping */
2361 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2363 struct ravb_private *priv = netdev_priv(ndev);
2364 struct hwtstamp_config config;
2365 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2368 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2371 switch (config.tx_type) {
2372 case HWTSTAMP_TX_OFF:
2375 case HWTSTAMP_TX_ON:
2376 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2382 switch (config.rx_filter) {
2383 case HWTSTAMP_FILTER_NONE:
2386 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2387 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2390 config.rx_filter = HWTSTAMP_FILTER_ALL;
2391 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2394 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2395 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2397 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2401 /* ioctl to device function */
2402 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2404 struct phy_device *phydev = ndev->phydev;
2406 if (!netif_running(ndev))
2414 return ravb_hwtstamp_get(ndev, req);
2416 return ravb_hwtstamp_set(ndev, req);
2419 return phy_mii_ioctl(phydev, req, cmd);
2422 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2424 struct ravb_private *priv = netdev_priv(ndev);
2426 ndev->mtu = new_mtu;
2428 if (netif_running(ndev)) {
2429 synchronize_irq(priv->emac_irq);
2430 ravb_emac_init(ndev);
2433 netdev_update_features(ndev);
2438 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2440 struct ravb_private *priv = netdev_priv(ndev);
2441 unsigned long flags;
2443 spin_lock_irqsave(&priv->lock, flags);
2445 /* Disable TX and RX */
2446 ravb_rcv_snd_disable(ndev);
2448 /* Modify RX Checksum setting */
2449 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2451 /* Enable TX and RX */
2452 ravb_rcv_snd_enable(ndev);
2454 spin_unlock_irqrestore(&priv->lock, flags);
2457 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2460 u32 csr0 = CSR0_TPE | CSR0_RPE;
2463 ravb_write(ndev, csr0 & ~mask, CSR0);
2464 ret = ravb_wait(ndev, CSR0, mask, 0);
2466 ravb_write(ndev, val, reg);
2468 ravb_write(ndev, csr0, CSR0);
2473 static int ravb_set_features_gbeth(struct net_device *ndev,
2474 netdev_features_t features)
2476 netdev_features_t changed = ndev->features ^ features;
2477 struct ravb_private *priv = netdev_priv(ndev);
2478 unsigned long flags;
2482 spin_lock_irqsave(&priv->lock, flags);
2483 if (changed & NETIF_F_RXCSUM) {
2484 if (features & NETIF_F_RXCSUM)
2485 val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2489 ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2494 if (changed & NETIF_F_HW_CSUM) {
2495 if (features & NETIF_F_HW_CSUM)
2496 val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2500 ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2506 spin_unlock_irqrestore(&priv->lock, flags);
2511 static int ravb_set_features_rcar(struct net_device *ndev,
2512 netdev_features_t features)
2514 netdev_features_t changed = ndev->features ^ features;
2516 if (changed & NETIF_F_RXCSUM)
2517 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2522 static int ravb_set_features(struct net_device *ndev,
2523 netdev_features_t features)
2525 struct ravb_private *priv = netdev_priv(ndev);
2526 const struct ravb_hw_info *info = priv->info;
2527 struct device *dev = &priv->pdev->dev;
2530 pm_runtime_get_noresume(dev);
2532 if (pm_runtime_active(dev))
2533 ret = info->set_feature(ndev, features);
2537 pm_runtime_put_noidle(dev);
2542 ndev->features = features;
2547 static const struct net_device_ops ravb_netdev_ops = {
2548 .ndo_open = ravb_open,
2549 .ndo_stop = ravb_close,
2550 .ndo_start_xmit = ravb_start_xmit,
2551 .ndo_select_queue = ravb_select_queue,
2552 .ndo_get_stats = ravb_get_stats,
2553 .ndo_set_rx_mode = ravb_set_rx_mode,
2554 .ndo_tx_timeout = ravb_tx_timeout,
2555 .ndo_eth_ioctl = ravb_do_ioctl,
2556 .ndo_change_mtu = ravb_change_mtu,
2557 .ndo_validate_addr = eth_validate_addr,
2558 .ndo_set_mac_address = eth_mac_addr,
2559 .ndo_set_features = ravb_set_features,
2562 /* MDIO bus init function */
2563 static int ravb_mdio_init(struct ravb_private *priv)
2565 struct platform_device *pdev = priv->pdev;
2566 struct device *dev = &pdev->dev;
2567 struct phy_device *phydev;
2568 struct device_node *pn;
2572 priv->mdiobb.ops = &bb_ops;
2574 /* MII controller setting */
2575 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2579 /* Hook up MII support for ethtool */
2580 priv->mii_bus->name = "ravb_mii";
2581 priv->mii_bus->parent = dev;
2582 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2583 pdev->name, pdev->id);
2585 /* Register MDIO bus */
2586 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2590 pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2591 phydev = of_phy_find_device(pn);
2593 phydev->mac_managed_pm = true;
2594 put_device(&phydev->mdio.dev);
2601 free_mdio_bitbang(priv->mii_bus);
2605 /* MDIO bus release function */
2606 static int ravb_mdio_release(struct ravb_private *priv)
2608 /* Unregister mdio bus */
2609 mdiobus_unregister(priv->mii_bus);
2611 /* Free bitbang info */
2612 free_mdio_bitbang(priv->mii_bus);
2617 static const struct ravb_hw_info ravb_gen3_hw_info = {
2618 .receive = ravb_rx_rcar,
2619 .set_rate = ravb_set_rate_rcar,
2620 .set_feature = ravb_set_features_rcar,
2621 .dmac_init = ravb_dmac_init_rcar,
2622 .emac_init = ravb_emac_init_rcar,
2623 .gstrings_stats = ravb_gstrings_stats,
2624 .gstrings_size = sizeof(ravb_gstrings_stats),
2625 .net_hw_features = NETIF_F_RXCSUM,
2626 .net_features = NETIF_F_RXCSUM,
2627 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2628 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2629 .rx_max_frame_size = SZ_2K,
2630 .rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2631 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2632 .internal_delay = 1,
2641 static const struct ravb_hw_info ravb_gen2_hw_info = {
2642 .receive = ravb_rx_rcar,
2643 .set_rate = ravb_set_rate_rcar,
2644 .set_feature = ravb_set_features_rcar,
2645 .dmac_init = ravb_dmac_init_rcar,
2646 .emac_init = ravb_emac_init_rcar,
2647 .gstrings_stats = ravb_gstrings_stats,
2648 .gstrings_size = sizeof(ravb_gstrings_stats),
2649 .net_hw_features = NETIF_F_RXCSUM,
2650 .net_features = NETIF_F_RXCSUM,
2651 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2652 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2653 .rx_max_frame_size = SZ_2K,
2654 .rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2655 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2662 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2663 .receive = ravb_rx_rcar,
2664 .set_rate = ravb_set_rate_rcar,
2665 .set_feature = ravb_set_features_rcar,
2666 .dmac_init = ravb_dmac_init_rcar,
2667 .emac_init = ravb_emac_init_rcar,
2668 .gstrings_stats = ravb_gstrings_stats,
2669 .gstrings_size = sizeof(ravb_gstrings_stats),
2670 .net_hw_features = NETIF_F_RXCSUM,
2671 .net_features = NETIF_F_RXCSUM,
2672 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2673 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2674 .rx_max_frame_size = SZ_2K,
2675 .rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2676 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2685 static const struct ravb_hw_info gbeth_hw_info = {
2686 .receive = ravb_rx_gbeth,
2687 .set_rate = ravb_set_rate_gbeth,
2688 .set_feature = ravb_set_features_gbeth,
2689 .dmac_init = ravb_dmac_init_gbeth,
2690 .emac_init = ravb_emac_init_gbeth,
2691 .gstrings_stats = ravb_gstrings_stats_gbeth,
2692 .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2693 .net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2694 .net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2695 .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2696 .tccr_mask = TCCR_TSRQ0,
2697 .rx_max_frame_size = SZ_8K,
2698 .rx_max_desc_use = 4080,
2699 .rx_desc_size = sizeof(struct ravb_rx_desc),
2702 .carrier_counters = 1,
2706 static const struct of_device_id ravb_match_table[] = {
2707 { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2708 { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2709 { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2710 { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2711 { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2712 { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2713 { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2714 { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2717 MODULE_DEVICE_TABLE(of, ravb_match_table);
2719 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2720 const char *ch, int *irq, irq_handler_t handler)
2722 struct platform_device *pdev = priv->pdev;
2723 struct net_device *ndev = priv->ndev;
2724 struct device *dev = &pdev->dev;
2725 const char *dev_name;
2726 unsigned long flags;
2730 dev_name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
2734 irq_num = platform_get_irq_byname(pdev, irq_name);
2737 dev_name = ndev->name;
2738 irq_num = platform_get_irq(pdev, 0);
2739 flags = IRQF_SHARED;
2747 error = devm_request_irq(dev, irq_num, handler, flags, dev_name, ndev);
2749 netdev_err(ndev, "cannot request IRQ %s\n", dev_name);
2754 static int ravb_setup_irqs(struct ravb_private *priv)
2756 const struct ravb_hw_info *info = priv->info;
2757 struct net_device *ndev = priv->ndev;
2758 const char *irq_name, *emac_irq_name;
2761 if (!info->multi_irqs)
2762 return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2764 if (info->err_mgmt_irqs) {
2766 emac_irq_name = "line3";
2769 emac_irq_name = "ch24";
2772 error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2776 error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2777 ravb_emac_interrupt);
2781 if (info->err_mgmt_irqs) {
2782 error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2786 error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2791 error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2795 error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2799 error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2803 return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2806 static int ravb_probe(struct platform_device *pdev)
2808 struct device_node *np = pdev->dev.of_node;
2809 const struct ravb_hw_info *info;
2810 struct reset_control *rstc;
2811 struct ravb_private *priv;
2812 struct net_device *ndev;
2813 struct resource *res;
2818 "this driver is required to be instantiated from device tree\n");
2822 rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2824 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2825 "failed to get cpg reset\n");
2827 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2828 NUM_TX_QUEUE, NUM_RX_QUEUE);
2832 info = of_device_get_match_data(&pdev->dev);
2834 ndev->features = info->net_features;
2835 ndev->hw_features = info->net_hw_features;
2837 error = reset_control_deassert(rstc);
2839 goto out_free_netdev;
2841 SET_NETDEV_DEV(ndev, &pdev->dev);
2843 priv = netdev_priv(ndev);
2848 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2849 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2850 if (info->nc_queues) {
2851 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2852 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2855 error = ravb_setup_irqs(priv);
2857 goto out_reset_assert;
2859 priv->clk = devm_clk_get(&pdev->dev, NULL);
2860 if (IS_ERR(priv->clk)) {
2861 error = PTR_ERR(priv->clk);
2862 goto out_reset_assert;
2865 if (info->gptp_ref_clk) {
2866 priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2867 if (IS_ERR(priv->gptp_clk)) {
2868 error = PTR_ERR(priv->gptp_clk);
2869 goto out_reset_assert;
2873 priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2874 if (IS_ERR(priv->refclk)) {
2875 error = PTR_ERR(priv->refclk);
2876 goto out_reset_assert;
2878 clk_prepare(priv->refclk);
2880 platform_set_drvdata(pdev, ndev);
2881 pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2882 pm_runtime_use_autosuspend(&pdev->dev);
2883 pm_runtime_enable(&pdev->dev);
2884 error = pm_runtime_resume_and_get(&pdev->dev);
2886 goto out_rpm_disable;
2888 priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2889 if (IS_ERR(priv->addr)) {
2890 error = PTR_ERR(priv->addr);
2894 /* The Ether-specific entries in the device structure. */
2895 ndev->base_addr = res->start;
2897 spin_lock_init(&priv->lock);
2898 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2900 error = of_get_phy_mode(np, &priv->phy_interface);
2901 if (error && error != -ENODEV)
2904 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2905 priv->avb_link_active_low =
2906 of_property_read_bool(np, "renesas,ether-link-active-low");
2908 ndev->max_mtu = info->rx_max_frame_size -
2909 (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2910 ndev->min_mtu = ETH_MIN_MTU;
2912 /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2913 * Use two descriptor to handle such situation. First descriptor to
2914 * handle aligned data buffer and second descriptor to handle the
2915 * overflow data because of alignment.
2917 priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2920 ndev->netdev_ops = &ravb_netdev_ops;
2921 ndev->ethtool_ops = &ravb_ethtool_ops;
2923 error = ravb_compute_gti(ndev);
2927 ravb_parse_delay_mode(np, ndev);
2929 /* Allocate descriptor base address table */
2930 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2931 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2932 &priv->desc_bat_dma, GFP_KERNEL);
2933 if (!priv->desc_bat) {
2935 "Cannot allocate desc base address table (size %d bytes)\n",
2936 priv->desc_bat_size);
2940 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2941 priv->desc_bat[q].die_dt = DT_EOS;
2943 /* Initialise HW timestamp list */
2944 INIT_LIST_HEAD(&priv->ts_skb_list);
2946 /* Debug message level */
2947 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2949 /* Set config mode as this is needed for PHY initialization. */
2950 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2954 /* Read and set MAC address */
2955 ravb_read_mac_address(np, ndev);
2956 if (!is_valid_ether_addr(ndev->dev_addr)) {
2957 dev_warn(&pdev->dev,
2958 "no valid MAC address supplied, using a random one\n");
2959 eth_hw_addr_random(ndev);
2963 error = ravb_mdio_init(priv);
2965 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2966 goto out_reset_mode;
2969 /* Undo previous switch to config opmode. */
2970 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2972 goto out_mdio_release;
2974 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2975 if (info->nc_queues)
2976 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2978 /* Network device register */
2979 error = register_netdev(ndev);
2983 device_set_wakeup_capable(&pdev->dev, 1);
2985 /* Print device information */
2986 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2987 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2989 pm_runtime_mark_last_busy(&pdev->dev);
2990 pm_runtime_put_autosuspend(&pdev->dev);
2995 if (info->nc_queues)
2996 netif_napi_del(&priv->napi[RAVB_NC]);
2998 netif_napi_del(&priv->napi[RAVB_BE]);
3000 ravb_mdio_release(priv);
3002 ravb_set_opmode(ndev, CCC_OPC_RESET);
3003 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3004 priv->desc_bat_dma);
3006 pm_runtime_put(&pdev->dev);
3008 pm_runtime_disable(&pdev->dev);
3009 pm_runtime_dont_use_autosuspend(&pdev->dev);
3010 clk_unprepare(priv->refclk);
3012 reset_control_assert(rstc);
3018 static void ravb_remove(struct platform_device *pdev)
3020 struct net_device *ndev = platform_get_drvdata(pdev);
3021 struct ravb_private *priv = netdev_priv(ndev);
3022 const struct ravb_hw_info *info = priv->info;
3023 struct device *dev = &priv->pdev->dev;
3026 error = pm_runtime_resume_and_get(dev);
3030 unregister_netdev(ndev);
3031 if (info->nc_queues)
3032 netif_napi_del(&priv->napi[RAVB_NC]);
3033 netif_napi_del(&priv->napi[RAVB_BE]);
3035 ravb_mdio_release(priv);
3037 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3038 priv->desc_bat_dma);
3040 pm_runtime_put_sync_suspend(&pdev->dev);
3041 pm_runtime_disable(&pdev->dev);
3042 pm_runtime_dont_use_autosuspend(dev);
3043 clk_unprepare(priv->refclk);
3044 reset_control_assert(priv->rstc);
3046 platform_set_drvdata(pdev, NULL);
3049 static int ravb_wol_setup(struct net_device *ndev)
3051 struct ravb_private *priv = netdev_priv(ndev);
3052 const struct ravb_hw_info *info = priv->info;
3054 /* Disable interrupts by clearing the interrupt masks. */
3055 ravb_write(ndev, 0, RIC0);
3056 ravb_write(ndev, 0, RIC2);
3057 ravb_write(ndev, 0, TIC);
3059 /* Only allow ECI interrupts */
3060 synchronize_irq(priv->emac_irq);
3061 if (info->nc_queues)
3062 napi_disable(&priv->napi[RAVB_NC]);
3063 napi_disable(&priv->napi[RAVB_BE]);
3064 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3066 /* Enable MagicPacket */
3067 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3069 if (priv->info->ccc_gac)
3070 ravb_ptp_stop(ndev);
3072 return enable_irq_wake(priv->emac_irq);
3075 static int ravb_wol_restore(struct net_device *ndev)
3077 struct ravb_private *priv = netdev_priv(ndev);
3078 const struct ravb_hw_info *info = priv->info;
3081 /* Set reset mode to rearm the WoL logic. */
3082 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3086 /* Set AVB config mode. */
3087 error = ravb_set_config_mode(ndev);
3091 if (priv->info->ccc_gac)
3092 ravb_ptp_init(ndev, priv->pdev);
3094 if (info->nc_queues)
3095 napi_enable(&priv->napi[RAVB_NC]);
3096 napi_enable(&priv->napi[RAVB_BE]);
3098 /* Disable MagicPacket */
3099 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3103 return disable_irq_wake(priv->emac_irq);
3106 static int ravb_suspend(struct device *dev)
3108 struct net_device *ndev = dev_get_drvdata(dev);
3109 struct ravb_private *priv = netdev_priv(ndev);
3112 if (!netif_running(ndev))
3115 netif_device_detach(ndev);
3117 if (priv->wol_enabled)
3118 return ravb_wol_setup(ndev);
3120 ret = ravb_close(ndev);
3124 ret = pm_runtime_force_suspend(&priv->pdev->dev);
3129 return reset_control_assert(priv->rstc);
3132 static int ravb_resume(struct device *dev)
3134 struct net_device *ndev = dev_get_drvdata(dev);
3135 struct ravb_private *priv = netdev_priv(ndev);
3138 ret = reset_control_deassert(priv->rstc);
3142 if (!netif_running(ndev))
3145 /* If WoL is enabled restore the interface. */
3146 if (priv->wol_enabled) {
3147 ret = ravb_wol_restore(ndev);
3151 ret = pm_runtime_force_resume(dev);
3156 /* Reopening the interface will restore the device to the working state. */
3157 ret = ravb_open(ndev);
3161 ravb_set_rx_mode(ndev);
3162 netif_device_attach(ndev);
3167 if (!priv->wol_enabled) {
3168 pm_runtime_mark_last_busy(dev);
3169 pm_runtime_put_autosuspend(dev);
3175 static int ravb_runtime_suspend(struct device *dev)
3177 struct net_device *ndev = dev_get_drvdata(dev);
3178 struct ravb_private *priv = netdev_priv(ndev);
3180 clk_disable(priv->refclk);
3185 static int ravb_runtime_resume(struct device *dev)
3187 struct net_device *ndev = dev_get_drvdata(dev);
3188 struct ravb_private *priv = netdev_priv(ndev);
3190 return clk_enable(priv->refclk);
3193 static const struct dev_pm_ops ravb_dev_pm_ops = {
3194 SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3195 RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3198 static struct platform_driver ravb_driver = {
3199 .probe = ravb_probe,
3200 .remove_new = ravb_remove,
3203 .pm = pm_ptr(&ravb_dev_pm_ops),
3204 .of_match_table = ravb_match_table,
3208 module_platform_driver(ravb_driver);
3210 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3211 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3212 MODULE_LICENSE("GPL v2");