1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
7 * DOC: VC4 plane module
9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
11 * At atomic modeset check time, we compute the HVS display element
12 * state that would be necessary for displaying the plane (giving us a
13 * chance to figure out if a plane configuration is invalid), then at
14 * atomic flush time the CRTC will ask us to write our element state
15 * into the region of the HVS that it has allocated for us.
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_atomic_uapi.h>
21 #include <drm/drm_fb_cma_helper.h>
22 #include <drm/drm_fourcc.h>
23 #include <drm/drm_gem_framebuffer_helper.h>
24 #include <drm/drm_plane_helper.h>
26 #include "uapi/drm/vc4_drm.h"
31 static const struct hvs_format {
32 u32 drm; /* DRM_FORMAT_* */
33 u32 hvs; /* HVS_FORMAT_* */
38 .drm = DRM_FORMAT_XRGB8888,
39 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
40 .pixel_order = HVS_PIXEL_ORDER_ABGR,
41 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
44 .drm = DRM_FORMAT_ARGB8888,
45 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 .pixel_order = HVS_PIXEL_ORDER_ABGR,
47 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
50 .drm = DRM_FORMAT_ABGR8888,
51 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
52 .pixel_order = HVS_PIXEL_ORDER_ARGB,
53 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
56 .drm = DRM_FORMAT_XBGR8888,
57 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
58 .pixel_order = HVS_PIXEL_ORDER_ARGB,
59 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
62 .drm = DRM_FORMAT_RGB565,
63 .hvs = HVS_PIXEL_FORMAT_RGB565,
64 .pixel_order = HVS_PIXEL_ORDER_XRGB,
67 .drm = DRM_FORMAT_BGR565,
68 .hvs = HVS_PIXEL_FORMAT_RGB565,
69 .pixel_order = HVS_PIXEL_ORDER_XBGR,
72 .drm = DRM_FORMAT_ARGB1555,
73 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
74 .pixel_order = HVS_PIXEL_ORDER_ABGR,
77 .drm = DRM_FORMAT_XRGB1555,
78 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
79 .pixel_order = HVS_PIXEL_ORDER_ABGR,
82 .drm = DRM_FORMAT_RGB888,
83 .hvs = HVS_PIXEL_FORMAT_RGB888,
84 .pixel_order = HVS_PIXEL_ORDER_XRGB,
87 .drm = DRM_FORMAT_BGR888,
88 .hvs = HVS_PIXEL_FORMAT_RGB888,
89 .pixel_order = HVS_PIXEL_ORDER_XBGR,
92 .drm = DRM_FORMAT_YUV422,
93 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
94 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
97 .drm = DRM_FORMAT_YVU422,
98 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
99 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
102 .drm = DRM_FORMAT_YUV420,
103 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
104 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
107 .drm = DRM_FORMAT_YVU420,
108 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
109 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
112 .drm = DRM_FORMAT_NV12,
113 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
114 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
117 .drm = DRM_FORMAT_NV21,
118 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
119 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
122 .drm = DRM_FORMAT_NV16,
123 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
124 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
127 .drm = DRM_FORMAT_NV61,
128 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
129 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
133 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
137 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
138 if (hvs_formats[i].drm == drm_format)
139 return &hvs_formats[i];
145 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
148 return VC4_SCALING_NONE;
149 if (3 * dst >= 2 * src)
150 return VC4_SCALING_PPF;
152 return VC4_SCALING_TPZ;
155 static bool plane_enabled(struct drm_plane_state *state)
157 return state->fb && !WARN_ON(!state->crtc);
160 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
162 struct vc4_plane_state *vc4_state;
164 if (WARN_ON(!plane->state))
167 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
171 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
172 vc4_state->dlist_initialized = 0;
174 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
176 if (vc4_state->dlist) {
177 vc4_state->dlist = kmemdup(vc4_state->dlist,
178 vc4_state->dlist_count * 4,
180 if (!vc4_state->dlist) {
184 vc4_state->dlist_size = vc4_state->dlist_count;
187 return &vc4_state->base;
190 static void vc4_plane_destroy_state(struct drm_plane *plane,
191 struct drm_plane_state *state)
193 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
194 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
196 if (drm_mm_node_allocated(&vc4_state->lbm)) {
197 unsigned long irqflags;
199 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
200 drm_mm_remove_node(&vc4_state->lbm);
201 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
204 kfree(vc4_state->dlist);
205 __drm_atomic_helper_plane_destroy_state(&vc4_state->base);
209 /* Called during init to allocate the plane's atomic state. */
210 static void vc4_plane_reset(struct drm_plane *plane)
212 struct vc4_plane_state *vc4_state;
214 WARN_ON(plane->state);
216 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
220 __drm_atomic_helper_plane_reset(plane, &vc4_state->base);
223 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
225 if (vc4_state->dlist_count == vc4_state->dlist_size) {
226 u32 new_size = max(4u, vc4_state->dlist_count * 2);
227 u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
231 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
233 kfree(vc4_state->dlist);
234 vc4_state->dlist = new_dlist;
235 vc4_state->dlist_size = new_size;
238 vc4_state->dlist[vc4_state->dlist_count++] = val;
241 /* Returns the scl0/scl1 field based on whether the dimensions need to
242 * be up/down/non-scaled.
244 * This is a replication of a table from the spec.
246 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
248 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
250 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
251 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
252 return SCALER_CTL0_SCL_H_PPF_V_PPF;
253 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
254 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
255 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
256 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
257 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
258 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
259 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
260 return SCALER_CTL0_SCL_H_PPF_V_NONE;
261 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
262 return SCALER_CTL0_SCL_H_NONE_V_PPF;
263 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
264 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
265 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
266 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
268 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
269 /* The unity case is independently handled by
276 static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
278 struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
279 unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
280 struct drm_crtc_state *crtc_state;
282 crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
285 vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
286 if (!left && !right && !top && !bottom)
289 if (left + right >= crtc_state->mode.hdisplay ||
290 top + bottom >= crtc_state->mode.vdisplay)
293 adjhdisplay = crtc_state->mode.hdisplay - (left + right);
294 vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
296 crtc_state->mode.hdisplay);
297 vc4_pstate->crtc_x += left;
298 if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
299 vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
301 adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
302 vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
304 crtc_state->mode.vdisplay);
305 vc4_pstate->crtc_y += top;
306 if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
307 vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
309 vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
311 crtc_state->mode.hdisplay);
312 vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
314 crtc_state->mode.vdisplay);
316 if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
322 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
324 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
325 struct drm_framebuffer *fb = state->fb;
326 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
327 u32 subpixel_src_mask = (1 << 16) - 1;
328 int num_planes = fb->format->num_planes;
329 struct drm_crtc_state *crtc_state;
330 u32 h_subsample = fb->format->hsub;
331 u32 v_subsample = fb->format->vsub;
334 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
337 DRM_DEBUG_KMS("Invalid crtc state\n");
341 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
342 INT_MAX, true, true);
346 for (i = 0; i < num_planes; i++)
347 vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
349 /* We don't support subpixel source positioning for scaling. */
350 if ((state->src.x1 & subpixel_src_mask) ||
351 (state->src.x2 & subpixel_src_mask) ||
352 (state->src.y1 & subpixel_src_mask) ||
353 (state->src.y2 & subpixel_src_mask)) {
357 vc4_state->src_x = state->src.x1 >> 16;
358 vc4_state->src_y = state->src.y1 >> 16;
359 vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
360 vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
362 vc4_state->crtc_x = state->dst.x1;
363 vc4_state->crtc_y = state->dst.y1;
364 vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
365 vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
367 ret = vc4_plane_margins_adj(state);
371 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
373 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
376 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
377 vc4_state->y_scaling[0] == VC4_SCALING_NONE);
379 if (num_planes > 1) {
380 vc4_state->is_yuv = true;
382 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
383 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
385 vc4_state->x_scaling[1] =
386 vc4_get_scaling_mode(vc4_state->src_w[1],
388 vc4_state->y_scaling[1] =
389 vc4_get_scaling_mode(vc4_state->src_h[1],
392 /* YUV conversion requires that horizontal scaling be enabled
393 * on the UV plane even if vc4_get_scaling_mode() returned
394 * VC4_SCALING_NONE (which can happen when the down-scaling
395 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
398 if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
399 vc4_state->x_scaling[1] = VC4_SCALING_PPF;
401 vc4_state->is_yuv = false;
402 vc4_state->x_scaling[1] = VC4_SCALING_NONE;
403 vc4_state->y_scaling[1] = VC4_SCALING_NONE;
409 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
413 scale = (1 << 16) * src / dst;
415 /* The specs note that while the reciprocal would be defined
416 * as (1<<32)/scale, ~0 is close enough.
420 vc4_dlist_write(vc4_state,
421 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
422 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
423 vc4_dlist_write(vc4_state,
424 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
427 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
429 u32 scale = (1 << 16) * src / dst;
431 vc4_dlist_write(vc4_state,
433 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
434 VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
437 static u32 vc4_lbm_size(struct drm_plane_state *state)
439 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
440 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
444 /* LBM is not needed when there's no vertical scaling. */
445 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
446 vc4_state->y_scaling[1] == VC4_SCALING_NONE)
450 * This can be further optimized in the RGB/YUV444 case if the PPF
451 * decimation factor is between 0.5 and 1.0 by using crtc_w.
453 * It's not an issue though, since in that case since src_w[0] is going
454 * to be greater than or equal to crtc_w.
456 if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
457 pix_per_line = vc4_state->crtc_w;
459 pix_per_line = vc4_state->src_w[0];
461 if (!vc4_state->is_yuv) {
462 if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
463 lbm = pix_per_line * 8;
465 /* In special cases, this multiplier might be 12. */
466 lbm = pix_per_line * 16;
469 /* There are cases for this going down to a multiplier
470 * of 2, but according to the firmware source, the
471 * table in the docs is somewhat wrong.
473 lbm = pix_per_line * 16;
476 /* Align it to 64 or 128 (hvs5) bytes */
477 lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64);
479 /* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
480 lbm /= vc4->hvs->hvs5 ? 4 : 2;
485 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
488 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
490 /* Ch0 H-PPF Word 0: Scaling Parameters */
491 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
492 vc4_write_ppf(vc4_state,
493 vc4_state->src_w[channel], vc4_state->crtc_w);
496 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
497 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
498 vc4_write_ppf(vc4_state,
499 vc4_state->src_h[channel], vc4_state->crtc_h);
500 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
503 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
504 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
505 vc4_write_tpz(vc4_state,
506 vc4_state->src_w[channel], vc4_state->crtc_w);
509 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
510 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
511 vc4_write_tpz(vc4_state,
512 vc4_state->src_h[channel], vc4_state->crtc_h);
513 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
517 static void vc4_plane_calc_load(struct drm_plane_state *state)
519 unsigned int hvs_load_shift, vrefresh, i;
520 struct drm_framebuffer *fb = state->fb;
521 struct vc4_plane_state *vc4_state;
522 struct drm_crtc_state *crtc_state;
523 unsigned int vscale_factor;
526 vc4 = to_vc4_dev(state->plane->dev);
527 if (!vc4->load_tracker_available)
530 vc4_state = to_vc4_plane_state(state);
531 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
533 vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
535 /* The HVS is able to process 2 pixels/cycle when scaling the source,
536 * 4 pixels/cycle otherwise.
537 * Alpha blending step seems to be pipelined and it's always operating
538 * at 4 pixels/cycle, so the limiting aspect here seems to be the
540 * HVS load is expressed in clk-cycles/sec (AKA Hz).
542 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
543 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
544 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
545 vc4_state->y_scaling[1] != VC4_SCALING_NONE)
550 vc4_state->membus_load = 0;
551 vc4_state->hvs_load = 0;
552 for (i = 0; i < fb->format->num_planes; i++) {
553 /* Even if the bandwidth/plane required for a single frame is
555 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
557 * when downscaling, we have to read more pixels per line in
558 * the time frame reserved for a single line, so the bandwidth
559 * demand can be punctually higher. To account for that, we
560 * calculate the down-scaling factor and multiply the plane
561 * load by this number. We're likely over-estimating the read
562 * demand, but that's better than under-estimating it.
564 vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
566 vc4_state->membus_load += vc4_state->src_w[i] *
567 vc4_state->src_h[i] * vscale_factor *
569 vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
572 vc4_state->hvs_load *= vrefresh;
573 vc4_state->hvs_load >>= hvs_load_shift;
574 vc4_state->membus_load *= vrefresh;
577 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
579 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
580 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
581 unsigned long irqflags;
584 lbm_size = vc4_lbm_size(state);
588 if (WARN_ON(!vc4_state->lbm_offset))
591 /* Allocate the LBM memory that the HVS will use for temporary
592 * storage due to our scaling/format conversion.
594 if (!drm_mm_node_allocated(&vc4_state->lbm)) {
597 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
598 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
601 vc4->hvs->hvs5 ? 64 : 32,
603 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
608 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
611 vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
616 /* Writes out a full display list for an active plane to the plane's
617 * private dlist state.
619 static int vc4_plane_mode_set(struct drm_plane *plane,
620 struct drm_plane_state *state)
622 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
623 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
624 struct drm_framebuffer *fb = state->fb;
625 u32 ctl0_offset = vc4_state->dlist_count;
626 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
627 u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
628 int num_planes = fb->format->num_planes;
629 u32 h_subsample = fb->format->hsub;
630 u32 v_subsample = fb->format->vsub;
631 bool mix_plane_alpha;
633 u32 scl0, scl1, pitch0;
635 u32 hvs_format = format->hvs;
636 unsigned int rotation;
639 if (vc4_state->dlist_initialized)
642 ret = vc4_plane_setup_clipping_and_scaling(state);
646 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
647 * and 4:4:4, scl1 should be set to scl0 so both channels of
648 * the scaler do the same thing. For YUV, the Y plane needs
649 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
650 * the scl fields here.
652 if (num_planes == 1) {
653 scl0 = vc4_get_scl_field(state, 0);
656 scl0 = vc4_get_scl_field(state, 1);
657 scl1 = vc4_get_scl_field(state, 0);
660 rotation = drm_rotation_simplify(state->rotation,
665 /* We must point to the last line when Y reflection is enabled. */
666 src_y = vc4_state->src_y;
667 if (rotation & DRM_MODE_REFLECT_Y)
668 src_y += vc4_state->src_h[0] - 1;
670 switch (base_format_mod) {
671 case DRM_FORMAT_MOD_LINEAR:
672 tiling = SCALER_CTL0_TILING_LINEAR;
673 pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
675 /* Adjust the base pointer to the first pixel to be scanned
678 for (i = 0; i < num_planes; i++) {
679 vc4_state->offsets[i] += src_y /
680 (i ? v_subsample : 1) *
683 vc4_state->offsets[i] += vc4_state->src_x /
684 (i ? h_subsample : 1) *
690 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
691 u32 tile_size_shift = 12; /* T tiles are 4kb */
692 /* Whole-tile offsets, mostly for setting the pitch. */
693 u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
694 u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
695 u32 tile_w_mask = (1 << tile_w_shift) - 1;
696 /* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
697 * the height (in pixels) of a 4k tile.
699 u32 tile_h_mask = (2 << tile_h_shift) - 1;
700 /* For T-tiled, the FB pitch is "how many bytes from one row to
701 * the next, such that
703 * pitch * tile_h == tile_size * tiles_per_row
705 u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
706 u32 tiles_l = vc4_state->src_x >> tile_w_shift;
707 u32 tiles_r = tiles_w - tiles_l;
708 u32 tiles_t = src_y >> tile_h_shift;
709 /* Intra-tile offsets, which modify the base address (the
710 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
713 u32 tile_y = (src_y >> 4) & 1;
714 u32 subtile_y = (src_y >> 2) & 3;
715 u32 utile_y = src_y & 3;
716 u32 x_off = vc4_state->src_x & tile_w_mask;
717 u32 y_off = src_y & tile_h_mask;
719 /* When Y reflection is requested we must set the
720 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
721 * after the initial one should be fetched in descending order,
722 * which makes sense since we start from the last line and go
724 * Don't know why we need y_off = max_y_off - y_off, but it's
725 * definitely required (I guess it's also related to the "going
726 * backward" situation).
728 if (rotation & DRM_MODE_REFLECT_Y) {
729 y_off = tile_h_mask - y_off;
730 pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
735 tiling = SCALER_CTL0_TILING_256B_OR_T;
736 pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
737 VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
738 VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
739 VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
740 vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
741 vc4_state->offsets[0] += subtile_y << 8;
742 vc4_state->offsets[0] += utile_y << 4;
744 /* Rows of tiles alternate left-to-right and right-to-left. */
746 pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
747 vc4_state->offsets[0] += (tiles_w - tiles_l) <<
749 vc4_state->offsets[0] -= (1 + !tile_y) << 10;
751 vc4_state->offsets[0] += tiles_l << tile_size_shift;
752 vc4_state->offsets[0] += tile_y << 10;
758 case DRM_FORMAT_MOD_BROADCOM_SAND64:
759 case DRM_FORMAT_MOD_BROADCOM_SAND128:
760 case DRM_FORMAT_MOD_BROADCOM_SAND256: {
761 uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
762 u32 tile_w, tile, x_off, pix_per_tile;
764 hvs_format = HVS_PIXEL_FORMAT_H264;
766 switch (base_format_mod) {
767 case DRM_FORMAT_MOD_BROADCOM_SAND64:
768 tiling = SCALER_CTL0_TILING_64B;
771 case DRM_FORMAT_MOD_BROADCOM_SAND128:
772 tiling = SCALER_CTL0_TILING_128B;
775 case DRM_FORMAT_MOD_BROADCOM_SAND256:
776 tiling = SCALER_CTL0_TILING_256B_OR_T;
783 if (param > SCALER_TILE_HEIGHT_MASK) {
784 DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
788 pix_per_tile = tile_w / fb->format->cpp[0];
789 tile = vc4_state->src_x / pix_per_tile;
790 x_off = vc4_state->src_x % pix_per_tile;
792 /* Adjust the base pointer to the first pixel to be scanned
795 for (i = 0; i < num_planes; i++) {
796 vc4_state->offsets[i] += param * tile_w * tile;
797 vc4_state->offsets[i] += src_y /
798 (i ? v_subsample : 1) *
800 vc4_state->offsets[i] += x_off /
801 (i ? h_subsample : 1) *
805 pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
810 DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
811 (long long)fb->modifier);
815 /* Don't waste cycles mixing with plane alpha if the set alpha
816 * is opaque or there is no per-pixel alpha information.
817 * In any case we use the alpha property value as the fixed alpha.
819 mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
820 fb->format->has_alpha;
822 if (!vc4->hvs->hvs5) {
824 vc4_dlist_write(vc4_state,
826 (rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
827 (rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
828 VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
829 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
830 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
831 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
832 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
833 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
834 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
836 /* Position Word 0: Image Positions and Alpha Value */
837 vc4_state->pos0_offset = vc4_state->dlist_count;
838 vc4_dlist_write(vc4_state,
839 VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
840 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
841 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
843 /* Position Word 1: Scaled Image Dimensions. */
844 if (!vc4_state->is_unity) {
845 vc4_dlist_write(vc4_state,
846 VC4_SET_FIELD(vc4_state->crtc_w,
847 SCALER_POS1_SCL_WIDTH) |
848 VC4_SET_FIELD(vc4_state->crtc_h,
849 SCALER_POS1_SCL_HEIGHT));
852 /* Position Word 2: Source Image Size, Alpha */
853 vc4_state->pos2_offset = vc4_state->dlist_count;
854 vc4_dlist_write(vc4_state,
855 VC4_SET_FIELD(fb->format->has_alpha ?
856 SCALER_POS2_ALPHA_MODE_PIPELINE :
857 SCALER_POS2_ALPHA_MODE_FIXED,
858 SCALER_POS2_ALPHA_MODE) |
859 (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
860 (fb->format->has_alpha ?
861 SCALER_POS2_ALPHA_PREMULT : 0) |
862 VC4_SET_FIELD(vc4_state->src_w[0],
864 VC4_SET_FIELD(vc4_state->src_h[0],
865 SCALER_POS2_HEIGHT));
867 /* Position Word 3: Context. Written by the HVS. */
868 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
871 u32 hvs_pixel_order = format->pixel_order;
873 if (format->pixel_order_hvs5)
874 hvs_pixel_order = format->pixel_order_hvs5;
877 vc4_dlist_write(vc4_state,
879 (hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
880 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
881 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
882 (vc4_state->is_unity ?
883 SCALER5_CTL0_UNITY : 0) |
884 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
885 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
886 SCALER5_CTL0_ALPHA_EXPAND |
887 SCALER5_CTL0_RGB_EXPAND);
889 /* Position Word 0: Image Positions and Alpha Value */
890 vc4_state->pos0_offset = vc4_state->dlist_count;
891 vc4_dlist_write(vc4_state,
892 (rotation & DRM_MODE_REFLECT_Y ?
893 SCALER5_POS0_VFLIP : 0) |
894 VC4_SET_FIELD(vc4_state->crtc_x,
895 SCALER_POS0_START_X) |
896 (rotation & DRM_MODE_REFLECT_X ?
897 SCALER5_POS0_HFLIP : 0) |
898 VC4_SET_FIELD(vc4_state->crtc_y,
899 SCALER5_POS0_START_Y)
903 vc4_dlist_write(vc4_state,
904 VC4_SET_FIELD(state->alpha >> 4,
905 SCALER5_CTL2_ALPHA) |
906 (fb->format->has_alpha ?
907 SCALER5_CTL2_ALPHA_PREMULT : 0) |
909 SCALER5_CTL2_ALPHA_MIX : 0) |
910 VC4_SET_FIELD(fb->format->has_alpha ?
911 SCALER5_CTL2_ALPHA_MODE_PIPELINE :
912 SCALER5_CTL2_ALPHA_MODE_FIXED,
913 SCALER5_CTL2_ALPHA_MODE)
916 /* Position Word 1: Scaled Image Dimensions. */
917 if (!vc4_state->is_unity) {
918 vc4_dlist_write(vc4_state,
919 VC4_SET_FIELD(vc4_state->crtc_w,
920 SCALER5_POS1_SCL_WIDTH) |
921 VC4_SET_FIELD(vc4_state->crtc_h,
922 SCALER5_POS1_SCL_HEIGHT));
925 /* Position Word 2: Source Image Size */
926 vc4_state->pos2_offset = vc4_state->dlist_count;
927 vc4_dlist_write(vc4_state,
928 VC4_SET_FIELD(vc4_state->src_w[0],
929 SCALER5_POS2_WIDTH) |
930 VC4_SET_FIELD(vc4_state->src_h[0],
931 SCALER5_POS2_HEIGHT));
933 /* Position Word 3: Context. Written by the HVS. */
934 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
938 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
940 * The pointers may be any byte address.
942 vc4_state->ptr0_offset = vc4_state->dlist_count;
943 for (i = 0; i < num_planes; i++)
944 vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
946 /* Pointer Context Word 0/1/2: Written by the HVS */
947 for (i = 0; i < num_planes; i++)
948 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
951 vc4_dlist_write(vc4_state, pitch0);
954 for (i = 1; i < num_planes; i++) {
955 if (hvs_format != HVS_PIXEL_FORMAT_H264) {
956 vc4_dlist_write(vc4_state,
957 VC4_SET_FIELD(fb->pitches[i],
960 vc4_dlist_write(vc4_state, pitch0);
964 /* Colorspace conversion words */
965 if (vc4_state->is_yuv) {
966 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
967 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
968 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
971 vc4_state->lbm_offset = 0;
973 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
974 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
975 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
976 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
977 /* Reserve a slot for the LBM Base Address. The real value will
978 * be set when calling vc4_plane_allocate_lbm().
980 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
981 vc4_state->y_scaling[1] != VC4_SCALING_NONE)
982 vc4_state->lbm_offset = vc4_state->dlist_count++;
984 if (num_planes > 1) {
985 /* Emit Cb/Cr as channel 0 and Y as channel
986 * 1. This matches how we set up scl0/scl1
989 vc4_write_scaling_parameters(state, 1);
991 vc4_write_scaling_parameters(state, 0);
993 /* If any PPF setup was done, then all the kernel
994 * pointers get uploaded.
996 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
997 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
998 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
999 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1000 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1001 SCALER_PPF_KERNEL_OFFSET);
1004 vc4_dlist_write(vc4_state, kernel);
1006 vc4_dlist_write(vc4_state, kernel);
1008 vc4_dlist_write(vc4_state, kernel);
1010 vc4_dlist_write(vc4_state, kernel);
1014 vc4_state->dlist[ctl0_offset] |=
1015 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1017 /* crtc_* are already clipped coordinates. */
1018 covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1019 vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1020 vc4_state->crtc_h == state->crtc->mode.vdisplay;
1021 /* Background fill might be necessary when the plane has per-pixel
1022 * alpha content or a non-opaque plane alpha and could blend from the
1023 * background or does not cover the entire screen.
1025 vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1026 state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1028 /* Flag the dlist as initialized to avoid checking it twice in case
1029 * the async update check already called vc4_plane_mode_set() and
1030 * decided to fallback to sync update because async update was not
1033 vc4_state->dlist_initialized = 1;
1035 vc4_plane_calc_load(state);
1040 /* If a modeset involves changing the setup of a plane, the atomic
1041 * infrastructure will call this to validate a proposed plane setup.
1042 * However, if a plane isn't getting updated, this (and the
1043 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
1044 * compute the dlist here and have all active plane dlists get updated
1045 * in the CRTC's flush.
1047 static int vc4_plane_atomic_check(struct drm_plane *plane,
1048 struct drm_plane_state *state)
1050 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1053 vc4_state->dlist_count = 0;
1055 if (!plane_enabled(state))
1058 ret = vc4_plane_mode_set(plane, state);
1062 return vc4_plane_allocate_lbm(state);
1065 static void vc4_plane_atomic_update(struct drm_plane *plane,
1066 struct drm_plane_state *old_state)
1068 /* No contents here. Since we don't know where in the CRTC's
1069 * dlist we should be stored, our dlist is uploaded to the
1070 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1075 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1077 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1080 vc4_state->hw_dlist = dlist;
1082 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
1083 for (i = 0; i < vc4_state->dlist_count; i++)
1084 writel(vc4_state->dlist[i], &dlist[i]);
1086 return vc4_state->dlist_count;
1089 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1091 const struct vc4_plane_state *vc4_state =
1092 container_of(state, typeof(*vc4_state), base);
1094 return vc4_state->dlist_count;
1097 /* Updates the plane to immediately (well, once the FIFO needs
1098 * refilling) scan out from at a new framebuffer.
1100 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1102 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1103 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1106 /* We're skipping the address adjustment for negative origin,
1107 * because this is only called on the primary plane.
1109 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1110 addr = bo->paddr + fb->offsets[0];
1112 /* Write the new address into the hardware immediately. The
1113 * scanout will start from this address as soon as the FIFO
1114 * needs to refill with pixels.
1116 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1118 /* Also update the CPU-side dlist copy, so that any later
1119 * atomic updates that don't do a new modeset on our plane
1120 * also use our updated address.
1122 vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1125 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1126 struct drm_plane_state *state)
1128 struct vc4_plane_state *vc4_state, *new_vc4_state;
1130 swap(plane->state->fb, state->fb);
1131 plane->state->crtc_x = state->crtc_x;
1132 plane->state->crtc_y = state->crtc_y;
1133 plane->state->crtc_w = state->crtc_w;
1134 plane->state->crtc_h = state->crtc_h;
1135 plane->state->src_x = state->src_x;
1136 plane->state->src_y = state->src_y;
1137 plane->state->src_w = state->src_w;
1138 plane->state->src_h = state->src_h;
1139 plane->state->src_h = state->src_h;
1140 plane->state->alpha = state->alpha;
1141 plane->state->pixel_blend_mode = state->pixel_blend_mode;
1142 plane->state->rotation = state->rotation;
1143 plane->state->zpos = state->zpos;
1144 plane->state->normalized_zpos = state->normalized_zpos;
1145 plane->state->color_encoding = state->color_encoding;
1146 plane->state->color_range = state->color_range;
1147 plane->state->src = state->src;
1148 plane->state->dst = state->dst;
1149 plane->state->visible = state->visible;
1151 new_vc4_state = to_vc4_plane_state(state);
1152 vc4_state = to_vc4_plane_state(plane->state);
1154 vc4_state->crtc_x = new_vc4_state->crtc_x;
1155 vc4_state->crtc_y = new_vc4_state->crtc_y;
1156 vc4_state->crtc_h = new_vc4_state->crtc_h;
1157 vc4_state->crtc_w = new_vc4_state->crtc_w;
1158 vc4_state->src_x = new_vc4_state->src_x;
1159 vc4_state->src_y = new_vc4_state->src_y;
1160 memcpy(vc4_state->src_w, new_vc4_state->src_w,
1161 sizeof(vc4_state->src_w));
1162 memcpy(vc4_state->src_h, new_vc4_state->src_h,
1163 sizeof(vc4_state->src_h));
1164 memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1165 sizeof(vc4_state->x_scaling));
1166 memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1167 sizeof(vc4_state->y_scaling));
1168 vc4_state->is_unity = new_vc4_state->is_unity;
1169 vc4_state->is_yuv = new_vc4_state->is_yuv;
1170 memcpy(vc4_state->offsets, new_vc4_state->offsets,
1171 sizeof(vc4_state->offsets));
1172 vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1174 /* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1175 vc4_state->dlist[vc4_state->pos0_offset] =
1176 new_vc4_state->dlist[vc4_state->pos0_offset];
1177 vc4_state->dlist[vc4_state->pos2_offset] =
1178 new_vc4_state->dlist[vc4_state->pos2_offset];
1179 vc4_state->dlist[vc4_state->ptr0_offset] =
1180 new_vc4_state->dlist[vc4_state->ptr0_offset];
1182 /* Note that we can't just call vc4_plane_write_dlist()
1183 * because that would smash the context data that the HVS is
1186 writel(vc4_state->dlist[vc4_state->pos0_offset],
1187 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1188 writel(vc4_state->dlist[vc4_state->pos2_offset],
1189 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1190 writel(vc4_state->dlist[vc4_state->ptr0_offset],
1191 &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1194 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1195 struct drm_plane_state *state)
1197 struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1201 ret = vc4_plane_mode_set(plane, state);
1205 old_vc4_state = to_vc4_plane_state(plane->state);
1206 new_vc4_state = to_vc4_plane_state(state);
1207 if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1208 old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1209 old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1210 old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1211 vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1214 /* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1215 * if anything else has changed, fallback to a sync update.
1217 for (i = 0; i < new_vc4_state->dlist_count; i++) {
1218 if (i == new_vc4_state->pos0_offset ||
1219 i == new_vc4_state->pos2_offset ||
1220 i == new_vc4_state->ptr0_offset ||
1221 (new_vc4_state->lbm_offset &&
1222 i == new_vc4_state->lbm_offset))
1225 if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1232 static int vc4_prepare_fb(struct drm_plane *plane,
1233 struct drm_plane_state *state)
1241 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1243 drm_gem_fb_prepare_fb(plane, state);
1245 if (plane->state->fb == state->fb)
1248 ret = vc4_bo_inc_usecnt(bo);
1255 static void vc4_cleanup_fb(struct drm_plane *plane,
1256 struct drm_plane_state *state)
1260 if (plane->state->fb == state->fb || !state->fb)
1263 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1264 vc4_bo_dec_usecnt(bo);
1267 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1268 .atomic_check = vc4_plane_atomic_check,
1269 .atomic_update = vc4_plane_atomic_update,
1270 .prepare_fb = vc4_prepare_fb,
1271 .cleanup_fb = vc4_cleanup_fb,
1272 .atomic_async_check = vc4_plane_atomic_async_check,
1273 .atomic_async_update = vc4_plane_atomic_async_update,
1276 static void vc4_plane_destroy(struct drm_plane *plane)
1278 drm_plane_cleanup(plane);
1281 static bool vc4_format_mod_supported(struct drm_plane *plane,
1285 /* Support T_TILING for RGB formats only. */
1287 case DRM_FORMAT_XRGB8888:
1288 case DRM_FORMAT_ARGB8888:
1289 case DRM_FORMAT_ABGR8888:
1290 case DRM_FORMAT_XBGR8888:
1291 case DRM_FORMAT_RGB565:
1292 case DRM_FORMAT_BGR565:
1293 case DRM_FORMAT_ARGB1555:
1294 case DRM_FORMAT_XRGB1555:
1295 switch (fourcc_mod_broadcom_mod(modifier)) {
1296 case DRM_FORMAT_MOD_LINEAR:
1297 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1302 case DRM_FORMAT_NV12:
1303 case DRM_FORMAT_NV21:
1304 switch (fourcc_mod_broadcom_mod(modifier)) {
1305 case DRM_FORMAT_MOD_LINEAR:
1306 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1307 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1308 case DRM_FORMAT_MOD_BROADCOM_SAND256:
1313 case DRM_FORMAT_RGBX1010102:
1314 case DRM_FORMAT_BGRX1010102:
1315 case DRM_FORMAT_RGBA1010102:
1316 case DRM_FORMAT_BGRA1010102:
1317 case DRM_FORMAT_YUV422:
1318 case DRM_FORMAT_YVU422:
1319 case DRM_FORMAT_YUV420:
1320 case DRM_FORMAT_YVU420:
1321 case DRM_FORMAT_NV16:
1322 case DRM_FORMAT_NV61:
1324 return (modifier == DRM_FORMAT_MOD_LINEAR);
1328 static const struct drm_plane_funcs vc4_plane_funcs = {
1329 .update_plane = drm_atomic_helper_update_plane,
1330 .disable_plane = drm_atomic_helper_disable_plane,
1331 .destroy = vc4_plane_destroy,
1332 .set_property = NULL,
1333 .reset = vc4_plane_reset,
1334 .atomic_duplicate_state = vc4_plane_duplicate_state,
1335 .atomic_destroy_state = vc4_plane_destroy_state,
1336 .format_mod_supported = vc4_format_mod_supported,
1339 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1340 enum drm_plane_type type)
1342 struct drm_plane *plane = NULL;
1343 struct vc4_plane *vc4_plane;
1344 u32 formats[ARRAY_SIZE(hvs_formats)];
1347 static const uint64_t modifiers[] = {
1348 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1349 DRM_FORMAT_MOD_BROADCOM_SAND128,
1350 DRM_FORMAT_MOD_BROADCOM_SAND64,
1351 DRM_FORMAT_MOD_BROADCOM_SAND256,
1352 DRM_FORMAT_MOD_LINEAR,
1353 DRM_FORMAT_MOD_INVALID
1356 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1359 return ERR_PTR(-ENOMEM);
1361 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1362 formats[i] = hvs_formats[i].drm;
1364 plane = &vc4_plane->base;
1365 ret = drm_universal_plane_init(dev, plane, 0,
1367 formats, ARRAY_SIZE(formats),
1368 modifiers, type, NULL);
1370 return ERR_PTR(ret);
1372 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1374 drm_plane_create_alpha_property(plane);
1375 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1377 DRM_MODE_ROTATE_180 |
1378 DRM_MODE_REFLECT_X |
1379 DRM_MODE_REFLECT_Y);
1384 int vc4_plane_create_additional_planes(struct drm_device *drm)
1386 struct drm_plane *cursor_plane;
1387 struct drm_crtc *crtc;
1390 /* Set up some arbitrary number of planes. We're not limited
1391 * by a set number of physical registers, just the space in
1392 * the HVS (16k) and how small an plane can be (28 bytes).
1393 * However, each plane we set up takes up some memory, and
1394 * increases the cost of looping over planes, which atomic
1395 * modesetting does quite a bit. As a result, we pick a
1396 * modest number of planes to expose, that should hopefully
1397 * still cover any sane usecase.
1399 for (i = 0; i < 16; i++) {
1400 struct drm_plane *plane =
1401 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1406 plane->possible_crtcs =
1407 GENMASK(drm->mode_config.num_crtc - 1, 0);
1410 drm_for_each_crtc(crtc, drm) {
1411 /* Set up the legacy cursor after overlay initialization,
1412 * since we overlay planes on the CRTC in the order they were
1415 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1416 if (!IS_ERR(cursor_plane)) {
1417 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1418 crtc->cursor = cursor_plane;