]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include "drm_atomic.h"
36 #include "drm_atomic_helper.h"
37 #include "drm_crtc_helper.h"
38 #include "linux/clk.h"
39 #include "drm_fb_cma_helper.h"
40 #include "linux/component.h"
41 #include "linux/of_device.h"
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc {
46         struct drm_crtc base;
47         const struct vc4_crtc_data *data;
48         void __iomem *regs;
49
50         /* Timestamp at start of vblank irq - unaffected by lock delays. */
51         ktime_t t_vblank;
52
53         /* Which HVS channel we're using for our CRTC. */
54         int channel;
55
56         u8 lut_r[256];
57         u8 lut_g[256];
58         u8 lut_b[256];
59         /* Size in pixels of the COB memory allocated to this CRTC. */
60         u32 cob_size;
61
62         struct drm_pending_vblank_event *event;
63 };
64
65 struct vc4_crtc_state {
66         struct drm_crtc_state base;
67         /* Dlist area for this CRTC configuration. */
68         struct drm_mm_node mm;
69 };
70
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74         return (struct vc4_crtc *)crtc;
75 }
76
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80         return (struct vc4_crtc_state *)crtc_state;
81 }
82
83 struct vc4_crtc_data {
84         /* Which channel of the HVS this pixelvalve sources from. */
85         int hvs_channel;
86
87         enum vc4_encoder_type encoder_types[4];
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95         u32 reg;
96         const char *name;
97 } crtc_regs[] = {
98         CRTC_REG(PV_CONTROL),
99         CRTC_REG(PV_V_CONTROL),
100         CRTC_REG(PV_VSYNCD_EVEN),
101         CRTC_REG(PV_HORZA),
102         CRTC_REG(PV_HORZB),
103         CRTC_REG(PV_VERTA),
104         CRTC_REG(PV_VERTB),
105         CRTC_REG(PV_VERTA_EVEN),
106         CRTC_REG(PV_VERTB_EVEN),
107         CRTC_REG(PV_INTEN),
108         CRTC_REG(PV_INTSTAT),
109         CRTC_REG(PV_STAT),
110         CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118                 DRM_INFO("0x%04x (%s): 0x%08x\n",
119                          crtc_regs[i].reg, crtc_regs[i].name,
120                          CRTC_READ(crtc_regs[i].reg));
121         }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127         struct drm_info_node *node = (struct drm_info_node *)m->private;
128         struct drm_device *dev = node->minor->dev;
129         int crtc_index = (uintptr_t)node->info_ent->data;
130         struct drm_crtc *crtc;
131         struct vc4_crtc *vc4_crtc;
132         int i;
133
134         i = 0;
135         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136                 if (i == crtc_index)
137                         break;
138                 i++;
139         }
140         if (!crtc)
141                 return 0;
142         vc4_crtc = to_vc4_crtc(crtc);
143
144         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146                            crtc_regs[i].name, crtc_regs[i].reg,
147                            CRTC_READ(crtc_regs[i].reg));
148         }
149
150         return 0;
151 }
152 #endif
153
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155                             unsigned int flags, int *vpos, int *hpos,
156                             ktime_t *stime, ktime_t *etime,
157                             const struct drm_display_mode *mode)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162         u32 val;
163         int fifo_lines;
164         int vblank_lines;
165         int ret = 0;
166
167         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168
169         /* Get optional system timestamp before query. */
170         if (stime)
171                 *stime = ktime_get();
172
173         /*
174          * Read vertical scanline which is currently composed for our
175          * pixelvalve by the HVS, and also the scaler status.
176          */
177         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178
179         /* Get optional system timestamp after query. */
180         if (etime)
181                 *etime = ktime_get();
182
183         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184
185         /* Vertical position of hvs composed scanline. */
186         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187         *hpos = 0;
188
189         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190                 *vpos /= 2;
191
192                 /* Use hpos to correct for field offset in interlaced mode. */
193                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194                         *hpos += mode->crtc_htotal / 2;
195         }
196
197         /* This is the offset we need for translating hvs -> pv scanout pos. */
198         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199
200         if (fifo_lines > 0)
201                 ret |= DRM_SCANOUTPOS_VALID;
202
203         /* HVS more than fifo_lines into frame for compositing? */
204         if (*vpos > fifo_lines) {
205                 /*
206                  * We are in active scanout and can get some meaningful results
207                  * from HVS. The actual PV scanout can not trail behind more
208                  * than fifo_lines as that is the fifo's capacity. Assume that
209                  * in active scanout the HVS and PV work in lockstep wrt. HVS
210                  * refilling the fifo and PV consuming from the fifo, ie.
211                  * whenever the PV consumes and frees up a scanline in the
212                  * fifo, the HVS will immediately refill it, therefore
213                  * incrementing vpos. Therefore we choose HVS read position -
214                  * fifo size in scanlines as a estimate of the real scanout
215                  * position of the PV.
216                  */
217                 *vpos -= fifo_lines + 1;
218
219                 ret |= DRM_SCANOUTPOS_ACCURATE;
220                 return ret;
221         }
222
223         /*
224          * Less: This happens when we are in vblank and the HVS, after getting
225          * the VSTART restart signal from the PV, just started refilling its
226          * fifo with new lines from the top-most lines of the new framebuffers.
227          * The PV does not scan out in vblank, so does not remove lines from
228          * the fifo, so the fifo will be full quickly and the HVS has to pause.
229          * We can't get meaningful readings wrt. scanline position of the PV
230          * and need to make things up in a approximative but consistent way.
231          */
232         ret |= DRM_SCANOUTPOS_IN_VBLANK;
233         vblank_lines = mode->vtotal - mode->vdisplay;
234
235         if (flags & DRM_CALLED_FROM_VBLIRQ) {
236                 /*
237                  * Assume the irq handler got called close to first
238                  * line of vblank, so PV has about a full vblank
239                  * scanlines to go, and as a base timestamp use the
240                  * one taken at entry into vblank irq handler, so it
241                  * is not affected by random delays due to lock
242                  * contention on event_lock or vblank_time lock in
243                  * the core.
244                  */
245                 *vpos = -vblank_lines;
246
247                 if (stime)
248                         *stime = vc4_crtc->t_vblank;
249                 if (etime)
250                         *etime = vc4_crtc->t_vblank;
251
252                 /*
253                  * If the HVS fifo is not yet full then we know for certain
254                  * we are at the very beginning of vblank, as the hvs just
255                  * started refilling, and the stime and etime timestamps
256                  * truly correspond to start of vblank.
257                  */
258                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
259                         ret |= DRM_SCANOUTPOS_ACCURATE;
260         } else {
261                 /*
262                  * No clue where we are inside vblank. Return a vpos of zero,
263                  * which will cause calling code to just return the etime
264                  * timestamp uncorrected. At least this is no worse than the
265                  * standard fallback.
266                  */
267                 *vpos = 0;
268         }
269
270         return ret;
271 }
272
273 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
274                                   int *max_error, struct timeval *vblank_time,
275                                   unsigned flags)
276 {
277         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
278         struct drm_crtc_state *state = crtc->state;
279
280         /* Helper routine in DRM core does all the work: */
281         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282                                                      vblank_time, flags,
283                                                      &state->adjusted_mode);
284 }
285
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288         drm_crtc_cleanup(crtc);
289 }
290
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294         struct drm_device *dev = crtc->dev;
295         struct vc4_dev *vc4 = to_vc4_dev(dev);
296         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297         u32 i;
298
299         /* The LUT memory is laid out with each HVS channel in order,
300          * each of which takes 256 writes for R, 256 for G, then 256
301          * for B.
302          */
303         HVS_WRITE(SCALER_GAMADDR,
304                   SCALER_GAMADDR_AUTOINC |
305                   (vc4_crtc->channel * 3 * crtc->gamma_size));
306
307         for (i = 0; i < crtc->gamma_size; i++)
308                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309         for (i = 0; i < crtc->gamma_size; i++)
310                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311         for (i = 0; i < crtc->gamma_size; i++)
312                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317                    uint32_t size,
318                    struct drm_modeset_acquire_ctx *ctx)
319 {
320         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321         u32 i;
322
323         for (i = 0; i < size; i++) {
324                 vc4_crtc->lut_r[i] = r[i] >> 8;
325                 vc4_crtc->lut_g[i] = g[i] >> 8;
326                 vc4_crtc->lut_b[i] = b[i] >> 8;
327         }
328
329         vc4_crtc_lut_load(crtc);
330
331         return 0;
332 }
333
334 static u32 vc4_get_fifo_full_level(u32 format)
335 {
336         static const u32 fifo_len_bytes = 64;
337         static const u32 hvs_latency_pix = 6;
338
339         switch (format) {
340         case PV_CONTROL_FORMAT_DSIV_16:
341         case PV_CONTROL_FORMAT_DSIC_16:
342                 return fifo_len_bytes - 2 * hvs_latency_pix;
343         case PV_CONTROL_FORMAT_DSIV_18:
344                 return fifo_len_bytes - 14;
345         case PV_CONTROL_FORMAT_24:
346         case PV_CONTROL_FORMAT_DSIV_24:
347         default:
348                 return fifo_len_bytes - 3 * hvs_latency_pix;
349         }
350 }
351
352 /*
353  * Returns the encoder attached to the CRTC.
354  *
355  * VC4 can only scan out to one encoder at a time, while the DRM core
356  * allows drivers to push pixels to more than one encoder from the
357  * same CRTC.
358  */
359 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
360 {
361         struct drm_connector *connector;
362
363         drm_for_each_connector(connector, crtc->dev) {
364                 if (connector->state->crtc == crtc) {
365                         return connector->encoder;
366                 }
367         }
368
369         return NULL;
370 }
371
372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
373 {
374         struct drm_device *dev = crtc->dev;
375         struct vc4_dev *vc4 = to_vc4_dev(dev);
376         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
377         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
378         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
379         struct drm_crtc_state *state = crtc->state;
380         struct drm_display_mode *mode = &state->adjusted_mode;
381         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
382         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
383         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
384                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
385         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
386         bool debug_dump_regs = false;
387
388         if (debug_dump_regs) {
389                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
390                 vc4_crtc_dump_regs(vc4_crtc);
391         }
392
393         /* Reset the PV fifo. */
394         CRTC_WRITE(PV_CONTROL, 0);
395         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
396         CRTC_WRITE(PV_CONTROL, 0);
397
398         CRTC_WRITE(PV_HORZA,
399                    VC4_SET_FIELD((mode->htotal -
400                                   mode->hsync_end) * pixel_rep,
401                                  PV_HORZA_HBP) |
402                    VC4_SET_FIELD((mode->hsync_end -
403                                   mode->hsync_start) * pixel_rep,
404                                  PV_HORZA_HSYNC));
405         CRTC_WRITE(PV_HORZB,
406                    VC4_SET_FIELD((mode->hsync_start -
407                                   mode->hdisplay) * pixel_rep,
408                                  PV_HORZB_HFP) |
409                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
410
411         CRTC_WRITE(PV_VERTA,
412                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
413                                  PV_VERTA_VBP) |
414                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
415                                  PV_VERTA_VSYNC));
416         CRTC_WRITE(PV_VERTB,
417                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
418                                  PV_VERTB_VFP) |
419                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
420
421         if (interlace) {
422                 CRTC_WRITE(PV_VERTA_EVEN,
423                            VC4_SET_FIELD(mode->crtc_vtotal -
424                                          mode->crtc_vsync_end - 1,
425                                          PV_VERTA_VBP) |
426                            VC4_SET_FIELD(mode->crtc_vsync_end -
427                                          mode->crtc_vsync_start,
428                                          PV_VERTA_VSYNC));
429                 CRTC_WRITE(PV_VERTB_EVEN,
430                            VC4_SET_FIELD(mode->crtc_vsync_start -
431                                          mode->crtc_vdisplay,
432                                          PV_VERTB_VFP) |
433                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
434
435                 /* We set up first field even mode for HDMI.  VEC's
436                  * NTSC mode would want first field odd instead, once
437                  * we support it (to do so, set ODD_FIRST and put the
438                  * delay in VSYNCD_EVEN instead).
439                  */
440                 CRTC_WRITE(PV_V_CONTROL,
441                            PV_VCONTROL_CONTINUOUS |
442                            (is_dsi ? PV_VCONTROL_DSI : 0) |
443                            PV_VCONTROL_INTERLACE |
444                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
445                                          PV_VCONTROL_ODD_DELAY));
446                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
447         } else {
448                 CRTC_WRITE(PV_V_CONTROL,
449                            PV_VCONTROL_CONTINUOUS |
450                            (is_dsi ? PV_VCONTROL_DSI : 0));
451         }
452
453         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
454
455         CRTC_WRITE(PV_CONTROL,
456                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
457                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
458                                  PV_CONTROL_FIFO_LEVEL) |
459                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
460                    PV_CONTROL_CLR_AT_START |
461                    PV_CONTROL_TRIGGER_UNDERFLOW |
462                    PV_CONTROL_WAIT_HSTART |
463                    VC4_SET_FIELD(vc4_encoder->clock_select,
464                                  PV_CONTROL_CLK_SELECT) |
465                    PV_CONTROL_FIFO_CLR |
466                    PV_CONTROL_EN);
467
468         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
469                   SCALER_DISPBKGND_AUTOHS |
470                   SCALER_DISPBKGND_GAMMA |
471                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
472
473         /* Reload the LUT, since the SRAMs would have been disabled if
474          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
475          */
476         vc4_crtc_lut_load(crtc);
477
478         if (debug_dump_regs) {
479                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
480                 vc4_crtc_dump_regs(vc4_crtc);
481         }
482 }
483
484 static void require_hvs_enabled(struct drm_device *dev)
485 {
486         struct vc4_dev *vc4 = to_vc4_dev(dev);
487
488         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
489                      SCALER_DISPCTRL_ENABLE);
490 }
491
492 static void vc4_crtc_disable(struct drm_crtc *crtc)
493 {
494         struct drm_device *dev = crtc->dev;
495         struct vc4_dev *vc4 = to_vc4_dev(dev);
496         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
497         u32 chan = vc4_crtc->channel;
498         int ret;
499         require_hvs_enabled(dev);
500
501         /* Disable vblank irq handling before crtc is disabled. */
502         drm_crtc_vblank_off(crtc);
503
504         CRTC_WRITE(PV_V_CONTROL,
505                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
506         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
507         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
508
509         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
510             SCALER_DISPCTRLX_ENABLE) {
511                 HVS_WRITE(SCALER_DISPCTRLX(chan),
512                           SCALER_DISPCTRLX_RESET);
513
514                 /* While the docs say that reset is self-clearing, it
515                  * seems it doesn't actually.
516                  */
517                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
518         }
519
520         /* Once we leave, the scaler should be disabled and its fifo empty. */
521
522         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
523
524         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
525                                    SCALER_DISPSTATX_MODE) !=
526                      SCALER_DISPSTATX_MODE_DISABLED);
527
528         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
529                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
530                      SCALER_DISPSTATX_EMPTY);
531 }
532
533 static void vc4_crtc_enable(struct drm_crtc *crtc)
534 {
535         struct drm_device *dev = crtc->dev;
536         struct vc4_dev *vc4 = to_vc4_dev(dev);
537         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
538         struct drm_crtc_state *state = crtc->state;
539         struct drm_display_mode *mode = &state->adjusted_mode;
540
541         require_hvs_enabled(dev);
542
543         /* Turn on the scaler, which will wait for vstart to start
544          * compositing.
545          */
546         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
547                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
548                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
549                   SCALER_DISPCTRLX_ENABLE);
550
551         /* Turn on the pixel valve, which will emit the vstart signal. */
552         CRTC_WRITE(PV_V_CONTROL,
553                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
554
555         /* Enable vblank irq handling after crtc is started. */
556         drm_crtc_vblank_on(crtc);
557 }
558
559 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
560                                 const struct drm_display_mode *mode,
561                                 struct drm_display_mode *adjusted_mode)
562 {
563         /* Do not allow doublescan modes from user space */
564         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
565                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
566                               crtc->base.id);
567                 return false;
568         }
569
570         return true;
571 }
572
573 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
574                                  struct drm_crtc_state *state)
575 {
576         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
577         struct drm_device *dev = crtc->dev;
578         struct vc4_dev *vc4 = to_vc4_dev(dev);
579         struct drm_plane *plane;
580         unsigned long flags;
581         const struct drm_plane_state *plane_state;
582         u32 dlist_count = 0;
583         int ret;
584
585         /* The pixelvalve can only feed one encoder (and encoders are
586          * 1:1 with connectors.)
587          */
588         if (hweight32(state->connector_mask) > 1)
589                 return -EINVAL;
590
591         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
592                 dlist_count += vc4_plane_dlist_size(plane_state);
593
594         dlist_count++; /* Account for SCALER_CTL0_END. */
595
596         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
597         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
598                                  dlist_count);
599         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600         if (ret)
601                 return ret;
602
603         return 0;
604 }
605
606 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
607                                   struct drm_crtc_state *old_state)
608 {
609         struct drm_device *dev = crtc->dev;
610         struct vc4_dev *vc4 = to_vc4_dev(dev);
611         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
612         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
613         struct drm_plane *plane;
614         bool debug_dump_regs = false;
615         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
616         u32 __iomem *dlist_next = dlist_start;
617
618         if (debug_dump_regs) {
619                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
620                 vc4_hvs_dump_state(dev);
621         }
622
623         /* Copy all the active planes' dlist contents to the hardware dlist. */
624         drm_atomic_crtc_for_each_plane(plane, crtc) {
625                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
626         }
627
628         writel(SCALER_CTL0_END, dlist_next);
629         dlist_next++;
630
631         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
632
633         if (crtc->state->event) {
634                 unsigned long flags;
635
636                 crtc->state->event->pipe = drm_crtc_index(crtc);
637
638                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
639
640                 spin_lock_irqsave(&dev->event_lock, flags);
641                 vc4_crtc->event = crtc->state->event;
642                 crtc->state->event = NULL;
643
644                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
645                           vc4_state->mm.start);
646
647                 spin_unlock_irqrestore(&dev->event_lock, flags);
648         } else {
649                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
650                           vc4_state->mm.start);
651         }
652
653         if (debug_dump_regs) {
654                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
655                 vc4_hvs_dump_state(dev);
656         }
657 }
658
659 static int vc4_enable_vblank(struct drm_crtc *crtc)
660 {
661         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
662
663         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
664
665         return 0;
666 }
667
668 static void vc4_disable_vblank(struct drm_crtc *crtc)
669 {
670         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
671
672         CRTC_WRITE(PV_INTEN, 0);
673 }
674
675 /* Must be called with the event lock held */
676 bool vc4_event_pending(struct drm_crtc *crtc)
677 {
678         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
679
680         return !!vc4_crtc->event;
681 }
682
683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
684 {
685         struct drm_crtc *crtc = &vc4_crtc->base;
686         struct drm_device *dev = crtc->dev;
687         struct vc4_dev *vc4 = to_vc4_dev(dev);
688         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689         u32 chan = vc4_crtc->channel;
690         unsigned long flags;
691
692         spin_lock_irqsave(&dev->event_lock, flags);
693         if (vc4_crtc->event &&
694             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
695                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
696                 vc4_crtc->event = NULL;
697                 drm_crtc_vblank_put(crtc);
698         }
699         spin_unlock_irqrestore(&dev->event_lock, flags);
700 }
701
702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
703 {
704         struct vc4_crtc *vc4_crtc = data;
705         u32 stat = CRTC_READ(PV_INTSTAT);
706         irqreturn_t ret = IRQ_NONE;
707
708         if (stat & PV_INT_VFP_START) {
709                 vc4_crtc->t_vblank = ktime_get();
710                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
711                 drm_crtc_handle_vblank(&vc4_crtc->base);
712                 vc4_crtc_handle_page_flip(vc4_crtc);
713                 ret = IRQ_HANDLED;
714         }
715
716         return ret;
717 }
718
719 struct vc4_async_flip_state {
720         struct drm_crtc *crtc;
721         struct drm_framebuffer *fb;
722         struct drm_pending_vblank_event *event;
723
724         struct vc4_seqno_cb cb;
725 };
726
727 /* Called when the V3D execution for the BO being flipped to is done, so that
728  * we can actually update the plane's address to point to it.
729  */
730 static void
731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
732 {
733         struct vc4_async_flip_state *flip_state =
734                 container_of(cb, struct vc4_async_flip_state, cb);
735         struct drm_crtc *crtc = flip_state->crtc;
736         struct drm_device *dev = crtc->dev;
737         struct vc4_dev *vc4 = to_vc4_dev(dev);
738         struct drm_plane *plane = crtc->primary;
739
740         vc4_plane_async_set_fb(plane, flip_state->fb);
741         if (flip_state->event) {
742                 unsigned long flags;
743
744                 spin_lock_irqsave(&dev->event_lock, flags);
745                 drm_crtc_send_vblank_event(crtc, flip_state->event);
746                 spin_unlock_irqrestore(&dev->event_lock, flags);
747         }
748
749         drm_crtc_vblank_put(crtc);
750         drm_framebuffer_unreference(flip_state->fb);
751         kfree(flip_state);
752
753         up(&vc4->async_modeset);
754 }
755
756 /* Implements async (non-vblank-synced) page flips.
757  *
758  * The page flip ioctl needs to return immediately, so we grab the
759  * modeset semaphore on the pipe, and queue the address update for
760  * when V3D is done with the BO being flipped to.
761  */
762 static int vc4_async_page_flip(struct drm_crtc *crtc,
763                                struct drm_framebuffer *fb,
764                                struct drm_pending_vblank_event *event,
765                                uint32_t flags)
766 {
767         struct drm_device *dev = crtc->dev;
768         struct vc4_dev *vc4 = to_vc4_dev(dev);
769         struct drm_plane *plane = crtc->primary;
770         int ret = 0;
771         struct vc4_async_flip_state *flip_state;
772         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
773         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
774
775         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
776         if (!flip_state)
777                 return -ENOMEM;
778
779         drm_framebuffer_reference(fb);
780         flip_state->fb = fb;
781         flip_state->crtc = crtc;
782         flip_state->event = event;
783
784         /* Make sure all other async modesetes have landed. */
785         ret = down_interruptible(&vc4->async_modeset);
786         if (ret) {
787                 drm_framebuffer_unreference(fb);
788                 kfree(flip_state);
789                 return ret;
790         }
791
792         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
793
794         /* Immediately update the plane's legacy fb pointer, so that later
795          * modeset prep sees the state that will be present when the semaphore
796          * is released.
797          */
798         drm_atomic_set_fb_for_plane(plane->state, fb);
799         plane->fb = fb;
800
801         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
802                            vc4_async_page_flip_complete);
803
804         /* Driver takes ownership of state on successful async commit. */
805         return 0;
806 }
807
808 static int vc4_page_flip(struct drm_crtc *crtc,
809                          struct drm_framebuffer *fb,
810                          struct drm_pending_vblank_event *event,
811                          uint32_t flags,
812                          struct drm_modeset_acquire_ctx *ctx)
813 {
814         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
815                 return vc4_async_page_flip(crtc, fb, event, flags);
816         else
817                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
818 }
819
820 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
821 {
822         struct vc4_crtc_state *vc4_state;
823
824         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
825         if (!vc4_state)
826                 return NULL;
827
828         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
829         return &vc4_state->base;
830 }
831
832 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
833                                    struct drm_crtc_state *state)
834 {
835         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
836         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
837
838         if (vc4_state->mm.allocated) {
839                 unsigned long flags;
840
841                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
842                 drm_mm_remove_node(&vc4_state->mm);
843                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
844
845         }
846
847         drm_atomic_helper_crtc_destroy_state(crtc, state);
848 }
849
850 static void
851 vc4_crtc_reset(struct drm_crtc *crtc)
852 {
853         if (crtc->state)
854                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
855
856         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
857         if (crtc->state)
858                 crtc->state->crtc = crtc;
859 }
860
861 static const struct drm_crtc_funcs vc4_crtc_funcs = {
862         .set_config = drm_atomic_helper_set_config,
863         .destroy = vc4_crtc_destroy,
864         .page_flip = vc4_page_flip,
865         .set_property = NULL,
866         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
867         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
868         .reset = vc4_crtc_reset,
869         .atomic_duplicate_state = vc4_crtc_duplicate_state,
870         .atomic_destroy_state = vc4_crtc_destroy_state,
871         .gamma_set = vc4_crtc_gamma_set,
872         .enable_vblank = vc4_enable_vblank,
873         .disable_vblank = vc4_disable_vblank,
874 };
875
876 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
877         .mode_set_nofb = vc4_crtc_mode_set_nofb,
878         .disable = vc4_crtc_disable,
879         .enable = vc4_crtc_enable,
880         .mode_fixup = vc4_crtc_mode_fixup,
881         .atomic_check = vc4_crtc_atomic_check,
882         .atomic_flush = vc4_crtc_atomic_flush,
883 };
884
885 static const struct vc4_crtc_data pv0_data = {
886         .hvs_channel = 0,
887         .encoder_types = {
888                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
889                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
890         },
891 };
892
893 static const struct vc4_crtc_data pv1_data = {
894         .hvs_channel = 2,
895         .encoder_types = {
896                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
897                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
898         },
899 };
900
901 static const struct vc4_crtc_data pv2_data = {
902         .hvs_channel = 1,
903         .encoder_types = {
904                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
905                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
906         },
907 };
908
909 static const struct of_device_id vc4_crtc_dt_match[] = {
910         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
911         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
912         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
913         {}
914 };
915
916 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
917                                         struct drm_crtc *crtc)
918 {
919         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
920         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
921         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
922         struct drm_encoder *encoder;
923
924         drm_for_each_encoder(encoder, drm) {
925                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
926                 int i;
927
928                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
929                         if (vc4_encoder->type == encoder_types[i]) {
930                                 vc4_encoder->clock_select = i;
931                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
932                                 break;
933                         }
934                 }
935         }
936 }
937
938 static void
939 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
940 {
941         struct drm_device *drm = vc4_crtc->base.dev;
942         struct vc4_dev *vc4 = to_vc4_dev(drm);
943         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
944         /* Top/base are supposed to be 4-pixel aligned, but the
945          * Raspberry Pi firmware fills the low bits (which are
946          * presumably ignored).
947          */
948         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
949         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
950
951         vc4_crtc->cob_size = top - base + 4;
952 }
953
954 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
955 {
956         struct platform_device *pdev = to_platform_device(dev);
957         struct drm_device *drm = dev_get_drvdata(master);
958         struct vc4_crtc *vc4_crtc;
959         struct drm_crtc *crtc;
960         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
961         const struct of_device_id *match;
962         int ret, i;
963
964         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
965         if (!vc4_crtc)
966                 return -ENOMEM;
967         crtc = &vc4_crtc->base;
968
969         match = of_match_device(vc4_crtc_dt_match, dev);
970         if (!match)
971                 return -ENODEV;
972         vc4_crtc->data = match->data;
973
974         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
975         if (IS_ERR(vc4_crtc->regs))
976                 return PTR_ERR(vc4_crtc->regs);
977
978         /* For now, we create just the primary and the legacy cursor
979          * planes.  We should be able to stack more planes on easily,
980          * but to do that we would need to compute the bandwidth
981          * requirement of the plane configuration, and reject ones
982          * that will take too much.
983          */
984         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
985         if (IS_ERR(primary_plane)) {
986                 dev_err(dev, "failed to construct primary plane\n");
987                 ret = PTR_ERR(primary_plane);
988                 goto err;
989         }
990
991         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
992                                   &vc4_crtc_funcs, NULL);
993         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
994         primary_plane->crtc = crtc;
995         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
996         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
997
998         /* Set up some arbitrary number of planes.  We're not limited
999          * by a set number of physical registers, just the space in
1000          * the HVS (16k) and how small an plane can be (28 bytes).
1001          * However, each plane we set up takes up some memory, and
1002          * increases the cost of looping over planes, which atomic
1003          * modesetting does quite a bit.  As a result, we pick a
1004          * modest number of planes to expose, that should hopefully
1005          * still cover any sane usecase.
1006          */
1007         for (i = 0; i < 8; i++) {
1008                 struct drm_plane *plane =
1009                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1010
1011                 if (IS_ERR(plane))
1012                         continue;
1013
1014                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1015         }
1016
1017         /* Set up the legacy cursor after overlay initialization,
1018          * since we overlay planes on the CRTC in the order they were
1019          * initialized.
1020          */
1021         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1022         if (!IS_ERR(cursor_plane)) {
1023                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1024                 cursor_plane->crtc = crtc;
1025                 crtc->cursor = cursor_plane;
1026         }
1027
1028         vc4_crtc_get_cob_allocation(vc4_crtc);
1029
1030         CRTC_WRITE(PV_INTEN, 0);
1031         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1032         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1033                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1034         if (ret)
1035                 goto err_destroy_planes;
1036
1037         vc4_set_crtc_possible_masks(drm, crtc);
1038
1039         for (i = 0; i < crtc->gamma_size; i++) {
1040                 vc4_crtc->lut_r[i] = i;
1041                 vc4_crtc->lut_g[i] = i;
1042                 vc4_crtc->lut_b[i] = i;
1043         }
1044
1045         platform_set_drvdata(pdev, vc4_crtc);
1046
1047         return 0;
1048
1049 err_destroy_planes:
1050         list_for_each_entry_safe(destroy_plane, temp,
1051                                  &drm->mode_config.plane_list, head) {
1052                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1053                     destroy_plane->funcs->destroy(destroy_plane);
1054         }
1055 err:
1056         return ret;
1057 }
1058
1059 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1060                             void *data)
1061 {
1062         struct platform_device *pdev = to_platform_device(dev);
1063         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1064
1065         vc4_crtc_destroy(&vc4_crtc->base);
1066
1067         CRTC_WRITE(PV_INTEN, 0);
1068
1069         platform_set_drvdata(pdev, NULL);
1070 }
1071
1072 static const struct component_ops vc4_crtc_ops = {
1073         .bind   = vc4_crtc_bind,
1074         .unbind = vc4_crtc_unbind,
1075 };
1076
1077 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1078 {
1079         return component_add(&pdev->dev, &vc4_crtc_ops);
1080 }
1081
1082 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1083 {
1084         component_del(&pdev->dev, &vc4_crtc_ops);
1085         return 0;
1086 }
1087
1088 struct platform_driver vc4_crtc_driver = {
1089         .probe = vc4_crtc_dev_probe,
1090         .remove = vc4_crtc_dev_remove,
1091         .driver = {
1092                 .name = "vc4_crtc",
1093                 .of_match_table = vc4_crtc_dt_match,
1094         },
1095 };
This page took 0.100084 seconds and 4 git commands to generate.